-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdvae_main.py
61 lines (45 loc) · 2.54 KB
/
dvae_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
import random
import numpy as np
import torch
from gan_training.dvae.solver import Solver
def str2bool(v):
# codes from : https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--seed', default=1, type=int, help='random seed')
parser.add_argument('--cuda', default=True, type=str2bool, help='enable cuda')
parser.add_argument('--max_iter', default=3e5, type=float, help='maximum training iteration')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--c_dim', default=10, type=int, help='dimension of the representation c')
parser.add_argument('--beta', default=4, type=float, help='beta parameter for KL-term in original beta-VAE')
parser.add_argument('--beta1', default=0.9, type=float, help='Adam optimizer beta1')
parser.add_argument('--beta2', default=0.999, type=float, help='Adam optimizer beta2')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--dec_dist', default='gaussian', type=str, choices=['bernoulli', 'gaussian'], help='decoder distribution')
parser.add_argument('--dset_dir', default='data', type=str, help='dataset directory')
parser.add_argument('--dataset', default='CelebA', type=str, choices=['dsprites', 'celeba', 'chairs', 'cars'], help='dataset name')
parser.add_argument('--num_workers', default=2, type=int, help='dataloader num_workers')
parser.add_argument('--name', default='main', type=str, help='run name')
parser.add_argument('--output_dir', default='outputs', type=str, help='output directory')
parser.add_argument('--load_ckpt', default=-1, type=int, help='-1: load last | 0: do not load | X: load X-th')
parser.add_argument('--log_line_iter', default=100, type=int, help='')
parser.add_argument('--log_img_iter', default=1000, type=int, help='')
parser.add_argument('--ckpt_save_iter', default=10000, type=int, help='')
args = parser.parse_args()
print(args)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
net = Solver(args)
net.train()