|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | + |
| 4 | +class block(nn.Module): |
| 5 | + def __init__(self, in_channels, out_channels, identity_downsample=None, stride=1): |
| 6 | + super(block, self).__init__() |
| 7 | + self.expansion = 4 |
| 8 | + self.cov1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
| 9 | + self.bn1 = nn.BatchNorm2d(out_channels) |
| 10 | + self.cov2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1) |
| 11 | + self.bn2 = nn.BatchNorm2d(out_channels) |
| 12 | + self.cov3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, stride=1, padding=0) |
| 13 | + self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) |
| 14 | + self.relu = nn.ReLU() |
| 15 | + self.identity_downsample = identity_downsample |
| 16 | + |
| 17 | + def forward(self, x): |
| 18 | + identity = x |
| 19 | + |
| 20 | + x = self.relu(self.bn1(self.cov1(x))) |
| 21 | + x = self.relu(self.bn2(self.cov2(x))) |
| 22 | + x = self.bn3(self.cov3(x)) |
| 23 | + |
| 24 | + if self.identity_downsample is not None: |
| 25 | + identity = self.identity_downsample(identity) |
| 26 | + |
| 27 | + x += identity |
| 28 | + x = self.relu(x) |
| 29 | + return x |
| 30 | + |
| 31 | + |
| 32 | +class ResNet(nn.Module): |
| 33 | + def __init__(self, block, layers, image_channels, num_classes): |
| 34 | + super(ResNet, self).__init__() |
| 35 | + self.in_channels = 64 |
| 36 | + self.conv1 = nn.Conv2d(image_channels, 64, kernel_size=7, stride=2, padding=3) |
| 37 | + self.bn1 = nn.BatchNorm2d(64) |
| 38 | + self.relu = nn.ReLU() |
| 39 | + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
| 40 | + |
| 41 | + self.layer1 = self._make_layer(block, layers[0], out_channels=64, stride=1) |
| 42 | + self.layer2 = self._make_layer(block, layers[1], out_channels=128, stride=2) |
| 43 | + self.layer3 = self._make_layer(block, layers[2], out_channels=256, stride=2) |
| 44 | + self.layer4 = self._make_layer(block, layers[3], out_channels=512, stride=2) |
| 45 | + |
| 46 | + self.avgpool = nn.AdaptiveAvgPool2d((1,1)) |
| 47 | + self.fc = nn.Linear(512*4, num_classes) |
| 48 | + |
| 49 | + def forward(self, x): |
| 50 | + x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) |
| 51 | + x = self.layer4(self.layer3(self.layer2(self.layer1(x)))) |
| 52 | + x = self.avgpool(x) |
| 53 | + x = x.reshape(x.shape[0], -1) |
| 54 | + x = self.fc(x) |
| 55 | + return x |
| 56 | + |
| 57 | + def _make_layer(self, block, num_residual_blocks, out_channels, stride): |
| 58 | + identity_downsample = None |
| 59 | + layers = [] |
| 60 | + |
| 61 | + if stride != 1 or self.in_channels != out_channels * 4: |
| 62 | + identity_downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels * 4, kernel_size=1, |
| 63 | + stride=stride), |
| 64 | + nn.BatchNorm2d(out_channels * 4)) |
| 65 | + |
| 66 | + layers.append(block(self.in_channels, out_channels, identity_downsample, stride)) |
| 67 | + self.in_channels = out_channels * 4 |
| 68 | + |
| 69 | + for i in range(num_residual_blocks - 1): |
| 70 | + layers.append(block(self.in_channels, out_channels)) |
| 71 | + |
| 72 | + return nn.Sequential(*layers) |
| 73 | + |
| 74 | + |
| 75 | +def ResNet50(img_channels=3, num_classes=1000): |
| 76 | + return ResNet(block, [3, 4, 6, 3], img_channels, num_classes) |
| 77 | + |
| 78 | + |
| 79 | +def ResNet101(img_channels=3, num_classes=1000): |
| 80 | + return ResNet(block, [3, 4, 23, 3], img_channels, num_classes) |
| 81 | + |
| 82 | + |
| 83 | +def ResNet152(img_channels=3, num_classes=1000): |
| 84 | + return ResNet(block, [3, 8, 36, 3], img_channels, num_classes) |
| 85 | + |
| 86 | +def test(): |
| 87 | + net = ResNet152() |
| 88 | + x = torch.randn(2, 3, 224, 224) |
| 89 | + y = net(x) |
| 90 | + print(y.shape) |
| 91 | + |
| 92 | +test() |
0 commit comments