-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannoy.go
247 lines (214 loc) · 5.5 KB
/
annoy.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
package annoy
import (
"container/heap"
"fmt"
"math"
"os"
"sort"
"github.com/edsrzf/mmap-go"
)
type AnnoyIndexInterface interface {
Unload() error
Load(filename string, memory bool) error
GetDistance(i, j int) float32
GetNnsByItem(item int, n, searchK int) ([]int, []float32)
GetNnsByVector(v []float32, n, searchK int) ([]int, []float32)
GetNItems() int
GetNTrees() int
GetItem(item int) []float32
}
type AnnoyIndex[D DistanceMetric] struct {
distance D
f int
s int
nItems int32
nodes []byte
nNodes int32
roots []int32
k int32
fd *os.File
mmap mmap.MMap
cache map[int32]*Node
}
func NewAnnoyIndex[D DistanceMetric](f int) *AnnoyIndex[D] {
index := &AnnoyIndex[D]{
f: f,
nodes: nil,
nItems: 0,
nNodes: 0,
roots: []int32{},
cache: make(map[int32]*Node),
}
index.s = 12 + f*4
index.k = int32((index.s - 4) / 4)
index.reinitialize()
return index
}
func (index *AnnoyIndex[D]) reinitialize() {
index.fd = nil
index.nodes = nil
index.nItems = 0
index.nNodes = 0
index.roots = []int32{}
}
func (index *AnnoyIndex[D]) Unload() error {
if index.fd != nil {
if index.mmap != nil {
err := index.mmap.Unmap()
if err != nil {
return fmt.Errorf("Error unmapping memory: %v\n", err)
}
index.mmap = nil
}
err := index.fd.Close()
if err != nil {
return fmt.Errorf("Error closing file descriptor: %v\n", err)
}
} else if index.nodes != nil {
index.nodes = nil
}
index.reinitialize()
return nil
}
func (index *AnnoyIndex[D]) Load(filename string, memory bool) error {
f, err := os.OpenFile(filename, os.O_RDONLY, 0400)
if err != nil {
return fmt.Errorf("Unable to open: %v", err)
}
index.fd = f
fi, err := f.Stat()
if err != nil {
return fmt.Errorf("Unable to get size: %v", err)
}
size := fi.Size()
if size == 0 {
return fmt.Errorf("Size of file is zero")
}
if size%int64(index.s) != 0 {
return fmt.Errorf("Index size is not a multiple of vector size. Ensure you are opening using the same metric you used to create the index.")
}
if memory {
nodes := make([]byte, size)
_, err = f.Read(nodes)
index.mmap = nil
if err != nil {
return fmt.Errorf("Unable to read: %v", err)
}
index.nodes = nodes
} else {
nodes, err := mmap.Map(f, mmap.RDONLY, 0)
index.mmap = nodes
if err != nil {
return fmt.Errorf("Unable to mmap: %v", err)
}
index.nodes = nodes
}
index.nNodes = int32(size / int64(index.s))
index.roots = []int32{}
var m int32 = -1
for i := index.nNodes - 1; i >= 0; i-- {
k := index.getNode(i).Descendants
if m == -1 || k == m {
index.roots = append(index.roots, i)
m = k
} else {
break
}
}
if len(index.roots) > 1 && index.getNode(index.roots[0]).Children[0] == index.getNode(index.roots[len(index.roots)-1]).Children[0] {
index.roots = index.roots[:len(index.roots)-1]
}
index.nItems = m
return nil
}
func (index *AnnoyIndex[D]) GetDistance(i, j int32) float32 {
return index.distance.NormalizeDistance(index.distance.Distance(index.getNode(i), index.getNode(j), index.f))
}
func (index *AnnoyIndex[D]) GetNnsByItem(item int32, n, searchK int) ([]int32, []float32) {
m := index.getNode(item)
return index.getAllNns(m.V[:], n, searchK)
}
func (index *AnnoyIndex[D]) GetNnsByVector(v []float32, n, searchK int) ([]int32, []float32) {
return index.getAllNns(v, n, searchK)
}
func (index *AnnoyIndex[D]) GetNItems() int32 {
return index.nItems
}
func (index *AnnoyIndex[D]) GetNTrees() int {
return int(len(index.roots))
}
func (index *AnnoyIndex[D]) GetItem(item int32) []float32 {
m := index.getNode(item)
v := make([]float32, index.f)
copy(v, m.V[:index.f])
return v
}
func (index *AnnoyIndex[D]) getNode(i int32) *Node {
if index.mmap != nil {
return GetNodePtr(index.nodes, index.s, i)
}
node, ok := index.cache[i]
if ok {
return node
}
node = GetNodePtr(index.nodes, index.s, i)
index.cache[i] = node
if node.V != nil {
index.distance.InitNode(node, index.f)
}
return node
}
func (index *AnnoyIndex[D]) getAllNns(v []float32, n, searchK int) ([]int32, []float32) {
vNode := &Node{V: make([]float32, index.f)}
copy(vNode.V, v)
index.distance.InitNode(vNode, index.f)
pq := &PriorityQueue{}
heap.Init(pq)
if searchK == -1 {
searchK = n * len(index.roots)
}
for _, root := range index.roots {
heap.Push(pq, &Pair{float32(math.Inf(1)), root})
}
nns := []int32{}
for len(nns) < searchK && pq.Len() > 0 {
top := heap.Pop(pq).(*Pair)
d := top.first
i := top.second
nd := index.getNode(i)
if nd.Descendants == 1 && i < index.nItems {
nns = append(nns, i)
} else if nd.Descendants <= index.k {
nns = append(nns, nd.Children[:nd.Descendants]...)
} else {
margin := index.distance.Margin(nd, v, index.f)
heap.Push(pq, &Pair{index.distance.PQDistance(d, margin, 1), nd.Children[1]})
heap.Push(pq, &Pair{index.distance.PQDistance(d, margin, 0), nd.Children[0]})
}
}
nnSet := make(map[int32]struct{})
for _, j := range nns {
nnSet[j] = struct{}{}
}
nnsDist := make([]Pair, len(nnSet))
i := 0
for j := range nnSet {
if index.getNode(j).Descendants == 1 {
nnsDist[i] = Pair{index.distance.Distance(vNode, index.getNode(j), index.f), j}
i += 1
}
}
m := len(nnsDist)
p := n
if p > m {
p = m
}
sort.Slice(nnsDist, func(i, j int) bool { return nnsDist[i].first < nnsDist[j].first })
result := []int32{}
distances := []float32{}
for i := 0; i < p; i++ {
distances = append(distances, index.distance.NormalizeDistance(nnsDist[i].first))
result = append(result, nnsDist[i].second)
}
return result, distances
}