Skip to content

Files

Number of Increasing Paths in a Grid

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Sep 1, 2022
Aug 17, 2022
Sep 4, 2022
Sep 7, 2023
Jan 27, 2024
Aug 21, 2022
Aug 17, 2022

2328. Number of Increasing Paths in a Grid

You are given an m x n integer matrix grid, where you can move from a cell to any adjacent cell in all 4 directions.

Return the number of strictly increasing paths in the grid such that you can start from any cell and end at any cell. Since the answer may be very large, return it modulo 109 + 7.

Two paths are considered different if they do not have exactly the same sequence of visited cells.

 

Example 1:

Input: grid = [[1,1],[3,4]]
Output: 8
Explanation: The strictly increasing paths are:
- Paths with length 1: [1], [1], [3], [4].
- Paths with length 2: [1 -> 3], [1 -> 4], [3 -> 4].
- Paths with length 3: [1 -> 3 -> 4].
The total number of paths is 4 + 3 + 1 = 8.

Example 2:

Input: grid = [[1],[2]]
Output: 3
Explanation: The strictly increasing paths are:
- Paths with length 1: [1], [2].
- Paths with length 2: [1 -> 2].
The total number of paths is 2 + 1 = 3.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 1000
  • 1 <= m * n <= 105
  • 1 <= grid[i][j] <= 105