-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtiny_dataloader.py
168 lines (143 loc) · 5.64 KB
/
tiny_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset
from torchsummary import summary
import torchvision
import torchvision.transforms as transforms
from torchvision import datasets
import os
import numpy as np
import cv2
import time
import albumentations as A
from albumentations.pytorch import ToTensorV2
from sklearn.model_selection import train_test_split
# Giving each folder a ID
def get_id_dictionary(path):
"""This Function will genrate Id's for all classes
Args:
path (sting): file path to the classes txt file
Returns:
dict: key-class, value-Id
"""
id_dict = {}
for i, line in enumerate(open( path + 'wnids.txt', 'r')):
id_dict[line.replace('\n', '')] = i
return id_dict
def get_data(path):
"""This function will create a list of file path to the image and their respective labels
and will split them in training and testing samples
Args:
path (sting): file path to the classes txt file
Returns:
list: training and testing images and labels
"""
id_dict = get_id_dictionary(path)
print('starting loading data')
train_data, test_data = [], []
train_labels, test_labels = [], []
t = time.time()
for key, value in id_dict.items():
#train_data += [cv2.imread( path + 'train/{}/images/{}_{}.JPEG'.format(key, key, str(i)), cv2.COLOR_BGR2RGB) for i in range(500)]
train_data += [path + 'train/{}/images/{}_{}.JPEG'.format(key, key, str(i)) for i in range(500)]
train_labels += [value for i in range(500)]
X_train, X_test, y_train, y_test = train_test_split(train_data, train_labels, test_size=0.3, random_state=42)
print('Training samples: {}'.format(len(X_train)))
print('Testing samples: {}'.format(len(X_test)))
print('Data loading completed, in {} seconds'.format(time.time() - t))
return X_train, X_test, y_train, y_test
class ImagenetDataset(Dataset):
"""Pytoch class to generate data loaders for Tiny Image Net Dataset
Args:
Dataset (pytorch class):
"""
def __init__(self, path, labels, transforms=None):
"""
Args:
path (list): list containing path of images
labels (list): respective labels for images
transforms (albumentations compose class, optional): Contains Image transformations to be applied. Defaults to None
"""
self.transform = transforms
self.path, self.labels = path, labels
def __len__(self):
return len(self.path)
def __getitem__(self, idx):
"""genrate data and label
Args:
idx (int): index of sample
Returns:
tensor: tansformed image and label
"""
label = self.labels[idx]
image = cv2.imread(self.path[idx])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self.transform:
# Apply transformations
image = self.transform(image=image)['image']
#image = np.transpose(image, (2, 0, 1)).astype(np.float32)
return image, label
def get_class_to_id_dict(self, path, id_dict):
"""Create a dict of label to class
Args:
path (string): file path to the classes txt file
id_dict (dict): key-class, value-Id
Returns:
dict: get class of respective label
"""
all_classes = {}
result = {}
for i, line in enumerate(open( path + 'words.txt', 'r')):
n_id, word = line.split('\t')[:2]
all_classes[n_id] = word
for key, value in id_dict.items():
result[value] = (key, all_classes[key])
return result
def calculate_mean_std():
mean,std = (0.4802, 0.4481, 0.3975), (0.2302, 0.2265, 0.2262)
return mean, std
def get_mean_std(loader):
"""Calculate mean and standard deviation of the dataset
Args:
loader (instance): torch instance for data loader
Returns:
tensor: mean and std of data
"""
channel_sum, channel_squared_sum, num_batches = 0,0,0
for img,_ in loader:
channel_sum += torch.mean(img/255., dim=[0,1,2])
channel_squared_sum += torch.mean((img/255.)**2, dim=[0,1,2])
num_batches += 1
mean = channel_sum / num_batches
std = (channel_squared_sum/num_batches - mean**2)**0.5
print("The mean of dataset : ", mean)
print("The std of dataset : ", std)
return mean,std
def get_transforms(mean,std):
train_transform = A.Compose([
A.PadIfNeeded(min_height=76, min_width=76, always_apply=True),
A.RandomCrop(64,64),
A.Rotate(limit=15),
A.CoarseDropout(1,24, 24, 1, 8, 8,fill_value=[m*255 for m in mean], mask_fill_value=None),
A.VerticalFlip(),
A.HorizontalFlip(),
A.Normalize(mean, std),
ToTensorV2()])
test_transform = A.Compose([A.Normalize(mean, std),ToTensorV2()])
return(train_transform,test_transform)
def get_dataloaders(X_train, X_test, y_train, y_test, train_transform, test_transform):
SEED = 1
# CUDA?
cuda = torch.cuda.is_available()
# For reproducibility
torch.manual_seed(SEED)
if cuda:
torch.cuda.manual_seed(SEED)
# dataloader arguments
dataloader_args = dict(shuffle=True,batch_size=512,num_workers=2, pin_memory=True) if cuda else dict(shuffle=True,batch_size=64,num_workers=1)
# dataloaders
train_loader = torch.utils.data.DataLoader(ImagenetDataset(X_train, y_train, train_transform) , **dataloader_args)
test_loader = torch.utils.data.DataLoader(ImagenetDataset(X_test, y_test, test_transform), **dataloader_args)
return(train_loader,test_loader)