diff --git a/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh b/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh
index 1c543de4ce..87df087414 100644
--- a/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh
+++ b/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh
@@ -2,6 +2,8 @@ set -e
#
export ENDPOINT_NAME=""
+# imagenet sample base URI
+IMAGENET_SAMPLE_URI_BASE="https://automlsamplenotebookdata.blob.core.windows.net/batch/data/imagenet"
#
#
@@ -14,7 +16,7 @@ ENDPOINT_NAME="$ENDPOINT_NAME-$ENDPOINT_SUFIX"
echo "Download model from Azure Storage"
#
-wget https://azuremlexampledata.blob.core.windows.net/data/imagenet/model.zip
+wget "${IMAGENET_SAMPLE_URI_BASE}/model.zip"
unzip model.zip -d .
#
@@ -51,7 +53,7 @@ az ml batch-deployment show --name $DEPLOYMENT_NAME --endpoint-name $ENDPOINT_NA
#
#
-wget https://azuremlexampledata.blob.core.windows.net/data/imagenet/imagenet-1000.zip
+wget "${IMAGENET_SAMPLE_URI_BASE}/imagenet-1000.zip"
unzip imagenet-1000.zip -d data
#
diff --git a/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh b/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh
index 77a9a1eafa..1fb820af24 100644
--- a/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh
+++ b/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh
@@ -2,6 +2,8 @@ set -e
#
export ENDPOINT_NAME=""
+# sample input URI variable
+SAMPLE_INPUT_URI="https://automlsamplenotebookdata.blob.core.windows.net/batch/data/mnist/sample"
#
#
@@ -46,7 +48,7 @@ az ml batch-deployment show --name $DEPLOYMENT_NAME --endpoint-name $ENDPOINT_NA
echo "Invoking batch endpoint with public URI (MNIST)"
#
-JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv)
+JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input $SAMPLE_INPUT_URI --input-type uri_folder --query name -o tsv)
#
echo "Showing job detail"
@@ -80,7 +82,7 @@ echo "Invoke batch endpoint with specific output file name"
OUTPUT_FILE_NAME=predictions_`echo $RANDOM`.csv
OUTPUT_PATH="azureml://datastores/workspaceblobstore/paths/$ENDPOINT_NAME"
-JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --output-path $OUTPUT_PATH --set output_file_name=$OUTPUT_FILE_NAME --query name -o tsv)
+JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input $SAMPLE_INPUT_URI --output-path $OUTPUT_PATH --set output_file_name=$OUTPUT_FILE_NAME --query name -o tsv)
#
echo "Invoke batch endpoint with specific overwrites"
@@ -133,7 +135,7 @@ az ml batch-deployment create --file deployment-keras/deployment.yml --endpoint-
echo "Invoke batch endpoint with public data"
#
DEPLOYMENT_NAME="mnist-keras-dpl"
-JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --deployment-name $DEPLOYMENT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv)
+JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --deployment-name $DEPLOYMENT_NAME --input $SAMPLE_INPUT_URI --input-type uri_folder --query name -o tsv)
#
echo "Show job detail"
@@ -174,7 +176,7 @@ az ml batch-endpoint show --name $ENDPOINT_NAME --query "{Name:name, Defaults:de
echo "Invoke batch endpoint with the new default deployment with public URI"
#
-JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv)
+JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input $SAMPLE_INPUT_URI --input-type uri_folder --query name -o tsv)
#
echo "Stream job logs to console"