diff --git a/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh b/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh index 1c543de4ce..87df087414 100644 --- a/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh +++ b/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh @@ -2,6 +2,8 @@ set -e # export ENDPOINT_NAME="" +# imagenet sample base URI +IMAGENET_SAMPLE_URI_BASE="https://automlsamplenotebookdata.blob.core.windows.net/batch/data/imagenet" # # @@ -14,7 +16,7 @@ ENDPOINT_NAME="$ENDPOINT_NAME-$ENDPOINT_SUFIX" echo "Download model from Azure Storage" # -wget https://azuremlexampledata.blob.core.windows.net/data/imagenet/model.zip +wget "${IMAGENET_SAMPLE_URI_BASE}/model.zip" unzip model.zip -d . # @@ -51,7 +53,7 @@ az ml batch-deployment show --name $DEPLOYMENT_NAME --endpoint-name $ENDPOINT_NA # # -wget https://azuremlexampledata.blob.core.windows.net/data/imagenet/imagenet-1000.zip +wget "${IMAGENET_SAMPLE_URI_BASE}/imagenet-1000.zip" unzip imagenet-1000.zip -d data # diff --git a/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh b/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh index 77a9a1eafa..1fb820af24 100644 --- a/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh +++ b/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh @@ -2,6 +2,8 @@ set -e # export ENDPOINT_NAME="" +# sample input URI variable +SAMPLE_INPUT_URI="https://automlsamplenotebookdata.blob.core.windows.net/batch/data/mnist/sample" # # @@ -46,7 +48,7 @@ az ml batch-deployment show --name $DEPLOYMENT_NAME --endpoint-name $ENDPOINT_NA echo "Invoking batch endpoint with public URI (MNIST)" # -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input $SAMPLE_INPUT_URI --input-type uri_folder --query name -o tsv) # echo "Showing job detail" @@ -80,7 +82,7 @@ echo "Invoke batch endpoint with specific output file name" OUTPUT_FILE_NAME=predictions_`echo $RANDOM`.csv OUTPUT_PATH="azureml://datastores/workspaceblobstore/paths/$ENDPOINT_NAME" -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --output-path $OUTPUT_PATH --set output_file_name=$OUTPUT_FILE_NAME --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input $SAMPLE_INPUT_URI --output-path $OUTPUT_PATH --set output_file_name=$OUTPUT_FILE_NAME --query name -o tsv) # echo "Invoke batch endpoint with specific overwrites" @@ -133,7 +135,7 @@ az ml batch-deployment create --file deployment-keras/deployment.yml --endpoint- echo "Invoke batch endpoint with public data" # DEPLOYMENT_NAME="mnist-keras-dpl" -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --deployment-name $DEPLOYMENT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --deployment-name $DEPLOYMENT_NAME --input $SAMPLE_INPUT_URI --input-type uri_folder --query name -o tsv) # echo "Show job detail" @@ -174,7 +176,7 @@ az ml batch-endpoint show --name $ENDPOINT_NAME --query "{Name:name, Defaults:de echo "Invoke batch endpoint with the new default deployment with public URI" # -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input $SAMPLE_INPUT_URI --input-type uri_folder --query name -o tsv) # echo "Stream job logs to console"