forked from encrypted-def/BOJ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11152.cpp
147 lines (140 loc) · 4.06 KB
/
11152.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# pragma GCC optimize ("O3")
# pragma GCC optimize ("Ofast")
# pragma GCC optimize ("unroll-loops")
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef tuple<int, int, int> ti3;
typedef tuple<int, int, int, int> ti4;
typedef stack<int> si;
typedef queue<int> qi;
typedef priority_queue<int> pqi;
typedef pair<ll, ll> pll;
typedef vector<ll> vl;
typedef tuple<ll, ll, ll> tl3;
typedef tuple<ll, ll, ll, ll> tl4;
typedef stack<ll> sl;
typedef queue<ll> ql;
typedef priority_queue<ll> pql;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update>ordered_set;
const int dx[4] = { 1,0,-1,0 };
const int dy[4] = { 0,1,0,-1 };
const int ddx[8] = { 0,0,1,1,1,-1,-1,-1 }, ddy[8] = { 1,-1,1,0,-1,1,0,-1 };
ll POW(ll a, ll b, ll MMM) { ll ret = 1; for (; b; b >>= 1, a = (a*a) % MMM)if (b & 1)ret = (ret*a) % MMM; return ret; }
ll GCD(ll a, ll b) { return b ? GCD(b, a%b) : a; }
ll LCM(ll a, ll b) { if (a == 0 || b == 0)return a + b; return a / GCD(a, b) * b; }
ll INV(ll a, ll m) {
ll m0 = m, y = 0, x = 1;
if (m == 1) return 0;
while (a > 1) {
ll q = a / m;
ll t = m;
m = a % m, a = t;
t = y;
y = x - q * y;
x = t;
}
if (x < 0) x += m0;
return x;
}
pll EXGCD(ll a, ll b) {
if (b == 0) return { 1,0 };
auto t = EXGCD(b, a%b);
return { t.second,t.first - t.second*(a / b) };
}
bool OOB(ll x, ll y, ll N, ll M) { return 0 > x || x >= N || 0 > y || y >= M; }
#define X first
#define Y second
#define rep(i,a,b) for(int i = a; i < b; i++)
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define sz(a) ((int)(a.size()))
#define sf1(a) cin >> a
#define sf2(a,b) cin >> a >> b
#define sf3(a,b,c) cin >> a >> b >> c
#define sf4(a,b,c,d) cin >> a >> b >> c >> d
#define sf5(a,b,c,d,e) cin >> a >> b >> c >> d >> e
#define sf6(a,b,c,d,e,f) cin >> a >> b >> c >> d >> e >> f
#define pf1(a) cout << (a) << ' '
#define pf2(a,b) cout << (a) << ' ' << (b) << ' '
#define pf3(a,b,c) cout << (a) << ' ' << (b) << ' '<< (c) << ' '
#define pf4(a,b,c,d) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '
#define pf5(a,b,c,d,e) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << ' '
#define pf6(a,b,c,d,e,f) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << ' ' << (f) << ' '
#define pf0l() cout << '\n';
#define pf1l(a) cout << (a) << '\n'
#define pf2l(a,b) cout << (a) << ' ' << (b) << '\n'
#define pf3l(a,b,c) cout << (a) << ' ' << (b) << ' '<< (c) << '\n'
#define pf4l(a,b,c,d) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << '\n'
#define pf5l(a,b,c,d,e) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << '\n'
#define pf6l(a,b,c,d,e,f) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << ' ' << (f) << '\n'
#define pfvec(V) for(auto const &t : V) pf1(t)
#define pfvecl(V) for(auto const &t : V) pf1(t); pf0l()
vl ans;
vector<bool> sieve;
bool isPrime(ll n){
if(n<=100000) return sieve[n];
if(n==1) return 0;
for(int d = 2; d*d <= n; d++){
if(n%d==0) return 0;
}
return 1;
}
void solve(int least, ll cur, ll N){
if(N-1 <= least) return;
if(isPrime(N-1))
ans.pb(cur*(N-1));
for(int p = least; p*p <= N; p++){
if(!isPrime(p)) continue;
ll tot = p+1;
ll powP = p;
while(true){
if(N==tot){
ans.pb(cur*powP);
break;
}
if(N%tot == 0){
solve(p+1,cur*powP,N/tot);
}
powP *= p;
tot += powP;
if(tot > N) break;
}
}
}
int main(void) {
ios::sync_with_stdio(false);
cin.tie(0);
sieve.resize(100006,1);
sieve[0]=0;
sieve[1]=0;
rep(prime,2,1000){
if(!sieve[prime]) continue;
for(int j = prime*prime; j<=100000; j+=prime) sieve[j]=0;
}
int T;
sf1(T);
while(T--){
ans.clear();
ll N;
sf1(N);
if(N==1){
pf1l(1);
continue;
}
solve(2,1,N);
if (ans.empty()) {
pf1l("none!");
continue;
}
sort(all(ans));
pfvecl(ans);
}
}