|
| 1 | +# https://www.lintcode.com/problem/partition-equal-subset-sum/description |
| 2 | + |
| 3 | +# Given a non-empty array containing only positive integers, |
| 4 | +# find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal. |
| 5 | +# |
| 6 | +# Example: |
| 7 | +# Input: nums = [1, 5, 11, 5], |
| 8 | +# Output: true |
| 9 | +# Explanation: |
| 10 | +# two subsets: [1, 5, 5], [11] |
| 11 | + |
| 12 | +""" |
| 13 | +>>> Solution().canPartition([1, 5, 11, 5]) |
| 14 | +True |
| 15 | +>>> Solution().canPartition([1, 2, 3, 9]) |
| 16 | +False |
| 17 | +>>> Solution().canPartition([1, 4, 5, 6, 1, 32, 4, 1, 3, 4, 5, 5, 5, 5, 1, 2, 4, 5, 1]) |
| 18 | +True |
| 19 | +""" |
| 20 | + |
| 21 | + |
| 22 | +class Solution: |
| 23 | + """ |
| 24 | + @param nums: a non-empty array only positive integers |
| 25 | + @return: true if can partition or false |
| 26 | + """ |
| 27 | + |
| 28 | + def canPartition(self, nums): |
| 29 | + memo = dict() |
| 30 | + total = sum(nums) |
| 31 | + if total % 2 != 0: |
| 32 | + return False |
| 33 | + return self._canPartition(nums, 0, 0, total, memo) |
| 34 | + |
| 35 | + def _canPartition(self, nums, index, partial_sum, total, memo): |
| 36 | + current = f'{index}_{partial_sum}' |
| 37 | + if current in memo: |
| 38 | + return memo[current] |
| 39 | + if partial_sum * 2 == total: |
| 40 | + return True |
| 41 | + elif partial_sum > total // 2 or index >= len(nums): |
| 42 | + return False |
| 43 | + without_get_number = self._canPartition(nums, index + 1, partial_sum, total, memo) |
| 44 | + get_number = self._canPartition(nums, index + 1, partial_sum + nums[index], total, memo) |
| 45 | + memo[current] = without_get_number or get_number |
| 46 | + return memo[current] |
0 commit comments