|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "1-1\n", |
| 8 | + "在用数组表示的循环队列中,front值一定小于等于rear值。 F (2分)\n", |
| 9 | + "\n", |
| 10 | + "1-2\n", |
| 11 | + "将1、2、3、4、5、6顺序插入初始为空的AVL树中,当完成这6个元素的插入后,该AVL树的先序遍历结果是:4、2、1、3、5、6。 T (3分)\n", |
| 12 | + "\n", |
| 13 | + "1-3\n", |
| 14 | + "无向连通图边数一定大于顶点个数减1。 F (3分)\n", |
| 15 | + "\n", |
| 16 | + "1-4\n", |
| 17 | + "算法分析的两个主要方面是时间复杂度和空间复杂度的分析。 T(2分)\n", |
| 18 | + "\n", |
| 19 | + "1-5\n", |
| 20 | + "若用链表来表示一个线性表,则表中元素的地址一定是连续的。 F(3分)\n", |
| 21 | + "\n", |
| 22 | + "1-6\n", |
| 23 | + "通过对堆栈S操作:Push(S,1), Push(S,2), Pop(S), Push(S,3), Pop(S), Pop(S)。输出的序列为:123。 F(3分)\n", |
| 24 | + "\n", |
| 25 | + "1-7\n", |
| 26 | + "某二叉树的后序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无右孩子。 T(3分)\n", |
| 27 | + "\n", |
| 28 | + "1-8\n", |
| 29 | + "将一棵完全二叉树存于数组中(根结点的下标为1)。则下标为23和24的两个结点是兄弟。 F (3分)\n", |
| 30 | + "\n", |
| 31 | + "1-9\n", |
| 32 | + "如果无向图G必须进行两次广度优先搜索才能访问其所有顶点,则G中一定有回路。 F(3分)\n", |
| 33 | + "\n", |
| 34 | + "1-10\n", |
| 35 | + "在一棵由包含4、5、6等等一系列整数结点构成的二叉搜索树中,如果结点4和6在树的同一层,那么可以断定结点5一定是结点4和6的父亲结点。 F (3分)\n", |
| 36 | + "\n", |
| 37 | + "2-1\n", |
| 38 | + "表达式a*(b+c)-d的后缀表达式是:a b c + * d - (4分)\n", |
| 39 | + "\n", |
| 40 | + "2-2\n", |
| 41 | + "在单链表中,若p所指的结点不是最后结点,在p之后插入s所指结点,则执行 s->next=p->next; p->next=s;(4分)\n", |
| 42 | + "\n", |
| 43 | + "2-3\n", |
| 44 | + "在并查集问题中,已知集合元素0~8所以对应的父结点编号值分别是{ 1, -4, 1, 1, -3, 4, 4, 8, -2 }(注:−n表示树根且对应集合大小为n),那么将元素6和8所在的集合合并(要求必须将小集合并到大集合)后,该集合对应的树根和父结点编号值分别是多少? (4分)\n", |
| 45 | + "4和-5\n", |
| 46 | + "\n", |
| 47 | + "2-4\n", |
| 48 | + "将{5, 2, 7, 3, 4, 1, 6}依次插入初始为空的二叉搜索树。则该树的后序遍历结果是:1, 4, 3, 2, 6, 7, 5 (4分)\n", |
| 49 | + "\n", |
| 50 | + "2-5\n", |
| 51 | + "对最小堆(小顶堆){1,3,2,12,6,4,8,15,14,9,7,5,11,13,10} 进行三次删除最小元的操作后,结果序列为:4,6,5,12,7,10,8,15,14,9,13,11(4分)\n", |
| 52 | + "\n", |
| 53 | + "2-6\n", |
| 54 | + "三叉树中,度为1的结点有5个,度为2的结点3个,度为3的结点2个,问该树含有几个叶结点? 8\n", |
| 55 | + "\n", |
| 56 | + "2-7\n", |
| 57 | + "循环顺序队列中是否可以插入下一个元素(与队头指针和队尾指针的值有关)\n", |
| 58 | + "\n", |
| 59 | + "2-9\n", |
| 60 | + "给定N×N的二维数组A,则在不改变数组的前提下,查找最大元素的时间复杂度是:O(N^2)(4分)\n", |
| 61 | + "\n", |
| 62 | + "2-10\n", |
| 63 | + "设一段文本中包含4个对象{a,b,c,d},其出现次数相应为{4,2,5,1},则该段文本的哈夫曼编码比采用等长方式的编码节省了多少位数? 2\n", |
| 64 | + "\n", |
| 65 | + "2-11\n", |
| 66 | + "具有65个结点的完全二叉树其深度为(根的深度为1):7\n", |
| 67 | + "\n", |
| 68 | + "2-12\n", |
| 69 | + "下列函数中,哪个函数具有最慢的增长速度:NlogN^2(4分)\n", |
| 70 | + "\n", |
| 71 | + "N(logN)^2\n", |
| 72 | + "N^1.5\n", |
| 73 | + "NlogN^2\n", |
| 74 | + "N^2logN\n", |
| 75 | + "\n", |
| 76 | + "5-1\n", |
| 77 | + "下列代码的功能是返回带头结点的单链表L的逆转链表。\n", |
| 78 | + "\n", |
| 79 | + "List Reverse( List L )\n", |
| 80 | + "{\n", |
| 81 | + " Position Old_head, New_head, Temp;\n", |
| 82 | + " New_head = NULL;\n", |
| 83 | + " Old_head = L->Next;\n", |
| 84 | + "\n", |
| 85 | + " while ( Old_head ) {\n", |
| 86 | + " Temp = Old_head->Next;\n", |
| 87 | + " Old_head->Next = New_head(6分); \n", |
| 88 | + " New_head = Old_head; \n", |
| 89 | + " Old_head = Temp; \n", |
| 90 | + " }\n", |
| 91 | + " \n", |
| 92 | + " L->Next = New_head(6分);\n", |
| 93 | + " return L;\n", |
| 94 | + "}\n", |
| 95 | + "\n", |
| 96 | + "5-2\n", |
| 97 | + "下列代码的功能是从一个大顶堆H的某个指定位置p开始执行下滤。\n", |
| 98 | + "\n", |
| 99 | + "void PercolateDown( int p, PriorityQueue H )\n", |
| 100 | + "{\n", |
| 101 | + " int child;\n", |
| 102 | + " ElementType Tmp = H->Elements[p];\n", |
| 103 | + " for ( ; p * 2 <= H->Size; p = child ) {\n", |
| 104 | + " child = p * 2;\n", |
| 105 | + " if ( child!=H->Size && H->Elements[child+1] > H->Elements[child](6分) )\n", |
| 106 | + " child++;\n", |
| 107 | + " if ( H->Elements[child] > Tmp )\n", |
| 108 | + " H->Elements[p] = H->Elements[child](6分);\n", |
| 109 | + " else break;\n", |
| 110 | + " }\n", |
| 111 | + " H->Elements[p] = Tmp; \n", |
| 112 | + "}" |
| 113 | + ] |
| 114 | + } |
| 115 | + ], |
| 116 | + "metadata": { |
| 117 | + "kernelspec": { |
| 118 | + "display_name": "Python 3", |
| 119 | + "language": "python", |
| 120 | + "name": "python3" |
| 121 | + }, |
| 122 | + "language_info": { |
| 123 | + "codemirror_mode": { |
| 124 | + "name": "ipython", |
| 125 | + "version": 3 |
| 126 | + }, |
| 127 | + "file_extension": ".py", |
| 128 | + "mimetype": "text/x-python", |
| 129 | + "name": "python", |
| 130 | + "nbconvert_exporter": "python", |
| 131 | + "pygments_lexer": "ipython3", |
| 132 | + "version": "3.6.3" |
| 133 | + } |
| 134 | + }, |
| 135 | + "nbformat": 4, |
| 136 | + "nbformat_minor": 2 |
| 137 | +} |
0 commit comments