Skip to content

Commit 1d0a5b5

Browse files
author
tt'ct'c'y田宸宇
committed
期中考试测试题
1 parent 5663256 commit 1d0a5b5

File tree

1 file changed

+137
-0
lines changed

1 file changed

+137
-0
lines changed

midterm exam

Lines changed: 137 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,137 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"1-1\n",
8+
"在用数组表示的循环队列中,front值一定小于等于rear值。 F (2分)\n",
9+
"\n",
10+
"1-2\n",
11+
"将1、2、3、4、5、6顺序插入初始为空的AVL树中,当完成这6个元素的插入后,该AVL树的先序遍历结果是:4、2、1、3、5、6。 T (3分)\n",
12+
"\n",
13+
"1-3\n",
14+
"无向连通图边数一定大于顶点个数减1。 F (3分)\n",
15+
"\n",
16+
"1-4\n",
17+
"算法分析的两个主要方面是时间复杂度和空间复杂度的分析。 T(2分)\n",
18+
"\n",
19+
"1-5\n",
20+
"若用链表来表示一个线性表,则表中元素的地址一定是连续的。 F(3分)\n",
21+
"\n",
22+
"1-6\n",
23+
"通过对堆栈S操作:Push(S,1), Push(S,2), Pop(S), Push(S,3), Pop(S), Pop(S)。输出的序列为:123。 F(3分)\n",
24+
"\n",
25+
"1-7\n",
26+
"某二叉树的后序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无右孩子。 T(3分)\n",
27+
"\n",
28+
"1-8\n",
29+
"将一棵完全二叉树存于数组中(根结点的下标为1)。则下标为23和24的两个结点是兄弟。 F (3分)\n",
30+
"\n",
31+
"1-9\n",
32+
"如果无向图G必须进行两次广度优先搜索才能访问其所有顶点,则G中一定有回路。 F(3分)\n",
33+
"\n",
34+
"1-10\n",
35+
"在一棵由包含4、5、6等等一系列整数结点构成的二叉搜索树中,如果结点4和6在树的同一层,那么可以断定结点5一定是结点4和6的父亲结点。 F (3分)\n",
36+
"\n",
37+
"2-1\n",
38+
"表达式a*(b+c)-d的后缀表达式是:a b c + * d - (4分)\n",
39+
"\n",
40+
"2-2\n",
41+
"在单链表中,若p所指的结点不是最后结点,在p之后插入s所指结点,则执行 s->next=p->next; p->next=s;(4分)\n",
42+
"\n",
43+
"2-3\n",
44+
"在并查集问题中,已知集合元素0~8所以对应的父结点编号值分别是{ 1, -4, 1, 1, -3, 4, 4, 8, -2 }(注:−n表示树根且对应集合大小为n),那么将元素6和8所在的集合合并(要求必须将小集合并到大集合)后,该集合对应的树根和父结点编号值分别是多少? (4分)\n",
45+
"4和-5\n",
46+
"\n",
47+
"2-4\n",
48+
"将{5, 2, 7, 3, 4, 1, 6}依次插入初始为空的二叉搜索树。则该树的后序遍历结果是:1, 4, 3, 2, 6, 7, 5 (4分)\n",
49+
"\n",
50+
"2-5\n",
51+
"对最小堆(小顶堆){1,3,2,12,6,4,8,15,14,9,7,5,11,13,10} 进行三次删除最小元的操作后,结果序列为:4,6,5,12,7,10,8,15,14,9,13,11(4分)\n",
52+
"\n",
53+
"2-6\n",
54+
"三叉树中,度为1的结点有5个,度为2的结点3个,度为3的结点2个,问该树含有几个叶结点? 8\n",
55+
"\n",
56+
"2-7\n",
57+
"循环顺序队列中是否可以插入下一个元素(与队头指针和队尾指针的值有关)\n",
58+
"\n",
59+
"2-9\n",
60+
"给定N×N的二维数组A,则在不改变数组的前提下,查找最大元素的时间复杂度是:O(N^2)(4分)\n",
61+
"\n",
62+
"2-10\n",
63+
"设一段文本中包含4个对象{a,b,c,d},其出现次数相应为{4,2,5,1},则该段文本的哈夫曼编码比采用等长方式的编码节省了多少位数? 2\n",
64+
"\n",
65+
"2-11\n",
66+
"具有65个结点的完全二叉树其深度为(根的深度为1):7\n",
67+
"\n",
68+
"2-12\n",
69+
"下列函数中,哪个函数具有最慢的增长速度:NlogN^2(4分)\n",
70+
"\n",
71+
"N(logN)^2\n",
72+
"N^1.5\n",
73+
"NlogN^2\n",
74+
"N^2logN\n",
75+
"\n",
76+
"5-1\n",
77+
"下列代码的功能是返回带头结点的单链表L的逆转链表。\n",
78+
"\n",
79+
"List Reverse( List L )\n",
80+
"{\n",
81+
" Position Old_head, New_head, Temp;\n",
82+
" New_head = NULL;\n",
83+
" Old_head = L->Next;\n",
84+
"\n",
85+
" while ( Old_head ) {\n",
86+
" Temp = Old_head->Next;\n",
87+
" Old_head->Next = New_head(6分); \n",
88+
" New_head = Old_head; \n",
89+
" Old_head = Temp; \n",
90+
" }\n",
91+
" \n",
92+
" L->Next = New_head(6分);\n",
93+
" return L;\n",
94+
"}\n",
95+
"\n",
96+
"5-2\n",
97+
"下列代码的功能是从一个大顶堆H的某个指定位置p开始执行下滤。\n",
98+
"\n",
99+
"void PercolateDown( int p, PriorityQueue H )\n",
100+
"{\n",
101+
" int child;\n",
102+
" ElementType Tmp = H->Elements[p];\n",
103+
" for ( ; p * 2 <= H->Size; p = child ) {\n",
104+
" child = p * 2;\n",
105+
" if ( child!=H->Size && H->Elements[child+1] > H->Elements[child](6分) )\n",
106+
" child++;\n",
107+
" if ( H->Elements[child] > Tmp )\n",
108+
" H->Elements[p] = H->Elements[child](6分);\n",
109+
" else break;\n",
110+
" }\n",
111+
" H->Elements[p] = Tmp; \n",
112+
"}"
113+
]
114+
}
115+
],
116+
"metadata": {
117+
"kernelspec": {
118+
"display_name": "Python 3",
119+
"language": "python",
120+
"name": "python3"
121+
},
122+
"language_info": {
123+
"codemirror_mode": {
124+
"name": "ipython",
125+
"version": 3
126+
},
127+
"file_extension": ".py",
128+
"mimetype": "text/x-python",
129+
"name": "python",
130+
"nbconvert_exporter": "python",
131+
"pygments_lexer": "ipython3",
132+
"version": "3.6.3"
133+
}
134+
},
135+
"nbformat": 4,
136+
"nbformat_minor": 2
137+
}

0 commit comments

Comments
 (0)