-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmain_multi_modal.py
369 lines (316 loc) · 18.8 KB
/
main_multi_modal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import tensorflow as tf
import numpy as np
import json
from load_data_multimodal import load_num_category, load_graph, load_train_data, load_train_size, load_fitb_data, load_test_size, load_auc_data
#from load_data_2 import load_num_category, load_graph, load_train_data, load_valid_data, load_test_data
#from taobao_load_data import load_num_category, load_graph, load_train_data, load_valid_data, load_test_data
from model_multimodal_1 import GNN
from datetime import *
import time
import pickle
from tensorflow.contrib.rnn import GRUCell
import os
##################load data###################
ftrain = open('train_no_dup_new_100.json', 'r')
train_outfit_list = json.load(ftrain)
ftest = open('test_no_dup_new_100.json', 'r')
test_outfit_list = json.load(ftest)
def cm_ggnn(batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate, G, num_category, opt, i, beta):
hidden_stdv = np.sqrt(1. / (image_hidden_size))
if i == 0:
with tf.variable_scope("cm_ggnn", reuse=None):
w_conf_image = tf.get_variable(name='gnn/w/conf_image', shape=[image_hidden_size, 1],
initializer=tf.random_normal_initializer(hidden_stdv))
w_score_image = tf.get_variable(name='gnn/w/score_image', shape=[image_hidden_size, 1],
initializer=tf.random_normal_initializer(hidden_stdv))
w_conf_text = tf.get_variable(name='gnn/w/conf_text', shape=[text_hidden_size, 1],
initializer=tf.random_normal_initializer(hidden_stdv))
w_score_text = tf.get_variable(name='gnn/w/score_text', shape=[text_hidden_size, 1],
initializer=tf.random_normal_initializer(hidden_stdv))
#w_atten = tf.get_variable(name='gnn/w/atten', shape=[num_category, num_category], initializer=tf.random_normal_initializer(num_stdv))
else:
with tf.variable_scope("cm_ggnn"):
tf.get_variable_scope().reuse_variables()
#################feed#######################
image_pos = tf.placeholder(tf.float32, [batch_size, num_category, 2048])
image_neg = tf.placeholder(tf.float32, [batch_size, num_category, 2048])
text_pos = tf.placeholder(tf.float32, [batch_size, num_category, 2757])
text_neg = tf.placeholder(tf.float32, [batch_size, num_category, 2757])
graph_pos = tf.placeholder(tf.float32, [batch_size, num_category, num_category])
graph_neg = tf.placeholder(tf.float32, [batch_size, num_category, num_category])
##################GGNN's output###################
with tf.variable_scope("gnn_image", reuse=None):
image_state_pos, image_ini = GNN('image', image_pos, batch_size, image_hidden_size, n_steps, num_category, graph_pos) #output: [batch_size, num_category, 2048]
tf.get_variable_scope().reuse_variables()
image_state_neg, text_ini = GNN('image', image_neg, batch_size, image_hidden_size, n_steps, num_category, graph_neg)
with tf.variable_scope("gnn_text", reuse=None):
text_state_pos, test2 = GNN('text', text_pos, batch_size, text_hidden_size, n_steps, num_category, graph_pos)
tf.get_variable_scope().reuse_variables()
text_state_neg, test2 = GNN('text', text_neg, batch_size, text_hidden_size, n_steps, num_category, graph_neg)
##################predict positive###################
for i in range(batch_size):
image_conf_pos = tf.nn.sigmoid(tf.reshape(tf.matmul(image_state_pos[i], w_conf_image), [1, num_category]))
image_score_pos = tf.reshape(tf.matmul(image_state_pos[i], w_score_image), [num_category, 1])
image_score_pos = tf.maximum(0.01 * image_score_pos, image_score_pos)
image_score_pos = tf.reshape(tf.matmul(image_conf_pos, image_score_pos), [1])
text_conf_pos = tf.nn.sigmoid(tf.reshape(tf.matmul(text_state_pos[i], w_conf_text), [1, num_category]))
text_score_pos = tf.reshape(tf.matmul(text_state_pos[i], w_score_text), [num_category, 1])
text_score_pos = tf.maximum(0.01 * text_score_pos, text_score_pos)
text_score_pos = tf.reshape(tf.matmul(text_conf_pos, text_score_pos), [1])
score_pos = beta * image_score_pos + (1 - beta) * text_score_pos
image_conf_neg = tf.nn.sigmoid(tf.reshape(tf.matmul(image_state_neg[i], w_conf_image), [1, num_category]))
image_score_neg = tf.reshape(tf.matmul(image_state_neg[i], w_score_image), [num_category, 1])
image_score_neg = tf.maximum(0.01 * image_score_neg, image_score_neg)
image_score_neg = tf.reshape(tf.matmul(image_conf_neg, image_score_neg), [1])
text_conf_neg = tf.nn.sigmoid(tf.reshape(tf.matmul(text_state_neg[i], w_conf_text), [1, num_category]))
text_score_neg = tf.reshape(tf.matmul(text_state_neg[i], w_score_text), [num_category, 1])
text_score_neg = tf.maximum(0.01 * text_score_neg, text_score_neg)
text_score_neg = tf.reshape(tf.matmul(text_conf_neg, text_score_neg), [1])
score_neg = beta * image_score_neg + (1 - beta) * text_score_neg
if i == 0:
s_pos = score_pos
s_neg = score_neg
else:
s_pos = tf.concat([s_pos, score_pos], 0)
s_neg = tf.concat([s_neg, score_neg], 0)
s_pos = tf.reshape(s_pos, [batch_size, 1])
s_neg = tf.reshape(s_neg, [batch_size, 1])
s_pos_mean = tf.reduce_mean(s_pos)
s_neg_mean = tf.reduce_mean(s_neg)
##################cost, optimizer###################
cost_parameter = 0.
num_parameter = 0.
for variable in tf.trainable_variables():
print (variable)
cost_parameter += tf.contrib.layers.l2_regularizer(0.1)(variable)
num_parameter += 1.
cost_parameter /= num_parameter
score = tf.nn.sigmoid(s_pos - s_neg)
score_mean = tf.reduce_mean(score)
cost_vt = tf.reduce_mean(tf.square(image_ini - text_ini))
cost = -score_mean + 5 * cost_vt
if opt == 'Adam':
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
if opt == 'Momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(cost)
if opt == 'RMSProp':
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
if opt == 'Adadelta':
optimizer = tf.train.AdadeltaOptimizer(learning_rate).minimize(cost)
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
with tf.Session() as sess:
# initialize the graph
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
######record######
best_accurancy = 0.
best_auc = 0.
best_epoch = 0
saver = tf.train.Saver()
train_size, train_size_ = load_train_size()
print ('train_size is %d' % train_size_)
train_batch = int(train_size_ / batch_size)
print ('train_batch is %d' % train_batch)
for epoch in range(30):
#########train##########
test_interval = 2000
if epoch > 10:
test_interval = 1000
no_count = 0
c_all = 0.
score_all = 0.
vt_all = 0.
dis_pos_all = 0.
dis_neg_all = 0.
for i in range(train_batch):
train_image_pos, train_image_neg, train_text_pos, train_text_neg, \
train_graph_pos, train_graph_neg, size_ = load_train_data(i, batch_size, train_outfit_list)
if size_ >= batch_size:
image_pos_ = train_image_pos[0: batch_size]
image_neg_ = train_image_neg[0: batch_size]
text_pos_ = train_text_pos[0: batch_size]
text_neg_ = train_text_neg[0: batch_size]
train_graph_pos_ = train_graph_pos[0: batch_size]
train_graph_neg_ = train_graph_neg[0: batch_size]
# _, c, c_pred, dis_pos_, dis_neg_, conf_pos_, conf_neg_ = sess.run([optimizer, cost, cost_pred,
# dis_pos_mean, dis_neg_mean, conf_pos_mean, conf_neg_mean],
_, c, score, c_vt, dis_pos_, dis_neg_ = sess.run(
[optimizer, cost, score_mean, cost_vt,
s_pos_mean, s_neg_mean],
feed_dict={image_pos: image_pos_,
image_neg: image_neg_,
text_pos: text_pos_,
text_neg: text_neg_,
graph_pos: train_graph_pos_,
graph_neg: train_graph_neg_})
c_all += c
score_all += score
vt_all += c_vt
dis_pos_all += dis_pos_
dis_neg_all += dis_neg_
if i % test_interval == 0:
print ('now batch: %d, total batch: %d' % (i, train_batch))
print ('less than batch size: %d' % no_count)
c_average = c_all / (i + 1)
score_average = score_all / (i + 1)
vt_average = vt_all / (i + 1)
dis_pos_average = dis_pos_all / (i + 1)
dis_neg_average = dis_neg_all / (i + 1)
############test############
test_size_fitb = load_test_size()
batches = int((test_size_fitb * 4) / batch_size)
right = 0.
for ii in range(batches):
test_fitb = load_fitb_data(ii, batch_size, test_outfit_list)
answer = sess.run([s_pos], feed_dict={image_pos: test_fitb[0],
text_pos: test_fitb[1],
graph_pos: test_fitb[2]})
answer = np.asarray(answer[0])
for j in range(batch_size / 4):
a = []
for k in range(j * 4, (j + 1) * 4):
a.append(answer[k][0])
if np.argmax(a) == 0:
right += 1.
print(answer)
accurancy = float(right / test_size_fitb)
if accurancy > best_accurancy:
best_accurancy = accurancy
best_epoch = epoch
####### AUC #######
test_size_auc = load_test_size()
batches = int((test_size_auc * 2) / batch_size)
right = 0.
for ii in range(batches):
test_auc = load_auc_data(ii, batch_size, test_outfit_list)
answer = sess.run([s_pos], feed_dict={image_pos: test_auc[0],
text_pos: test_auc[1],
graph_pos: test_auc[2]})
answer = np.asarray(answer[0])
for j in range(batch_size / 2):
a = []
for k in range(j * 2, (j + 1) * 2):
a.append(answer[k][0])
if np.argmax(a) == 0:
right += 1.
print(answer)
auc = float(right / test_size_auc)
if auc > best_auc:
best_auc = auc
# saver.save(sess, "trained_model/cm_ggnn.ckpt")
print('now():' + str(datetime.now()))
print("Train Epoch:", '%d' % epoch, "Batch:", '%d' % i,
"total cost:", "{:.9f}".format(c_average), "pred score distance:",
"{:.9f}".format(score_average),
"vt cost:", "{:.9f}".format(vt_average), "postive score:",
"{:.9f}".format(dis_pos_average),
"negative score:", "{:.9f}".format(dis_neg_average),
"accurancy:", ".{:.9f}".format(accurancy), "auc:", ".{:.9f}".format(auc))
print("Epoch:", '%d' % epoch, "finished", "Best accurancy: %f" % best_accurancy,
"Best auc: %f" % best_auc,
"Best epoch: %d" % best_epoch)
print("batch_size: %d, image_hidden_size: %d, text_hidden_size: %d, n_steps: %d, learning_rate: %f" % (
batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate))
else:
no_count += 1
c_average = c_all / train_batch
score_average = score_all / train_batch
vt_average = vt_all / train_batch
dis_pos_average = dis_pos_all / train_batch
dis_neg_average = dis_neg_all / train_batch
print("Train Epoch:", '%d' % epoch, "finished",
"total cost:", "{:.9f}".format(c_average), "pred score distance:", "{:.9f}".format(score_average),
"vt cost:", "{:.9f}".format(vt_average),
"postive score:", "{:.9f}".format(dis_pos_average), "negative score:",
"{:.9f}".format(dis_neg_average))
print("Epoch:", '%d' % epoch, "finished", "Best accurancy: %f" % best_accurancy, "Best auc: %f" % best_auc,
"Best epoch: %d" % best_epoch)
print("batch_size: %d, image_hidden_size: %d, image_hidden_size: %d, n_steps: %d, learning_rate: %f" % (
batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate))
############test############
batches = int((test_size_fitb * 4) / batch_size)
right = 0.
for i in range(batches):
test_fitb = load_fitb_data(i, batch_size, test_outfit_list)
answer = sess.run([s_pos], feed_dict={image_pos: test_fitb[0],
text_pos: test_fitb[1],
graph_pos: test_fitb[2]})
answer = np.asarray(answer[0])
for j in range(batch_size / 4):
a = []
for k in range(j * 4, (j + 1) * 4):
a.append(answer[k][0])
if np.argmax(a) == 0:
right += 1.
print(answer)
accurancy = float(right / test_size_fitb)
##### AUC #####
batches = int((test_size_auc * 2) / batch_size)
right = 0.
for i in range(batches):
test_auc = load_auc_data(i, batch_size, test_outfit_list)
answer = sess.run([s_pos], feed_dict={image_pos: test_auc[0],
text_pos: test_auc[1],
graph_pos: test_auc[2]})
answer = np.asarray(answer[0])
for j in range(batch_size / 2):
a = []
for k in range(j * 2, (j + 1) * 2):
a.append(answer[k][0])
if np.argmax(a) == 0:
right += 1.
print(answer)
auc = float(right / test_size_auc)
if auc > best_auc:
best_auc = auc
best_epoch = epoch
if accurancy > best_accurancy:
best_accurancy = accurancy
best_epoch = epoch
saver.save(sess, "multi_modal_1/cm_ggnn.ckpt")
print("Test Epoch:", '%d' % epoch, "accuracy:", "{:.9f}".format(accurancy), "auc:", "{:.9f}".format(auc))
print('now():' + str(datetime.now()))
print("batch_size: %d, image_hidden_size: %d, text_hidden_size: %d, n_steps: %d, learning_rate: %f" % (
batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate))
print("Epoch:", '%d' % epoch, "finished", "Best accurancy: %f" % best_accurancy, "Best auc: %f" % best_auc,
"Best epoch: %d" % best_epoch)
return best_accurancy
def look_enable_node(graph):
if_enable = np.sum(graph, axis=1)
index_list = []
for index, value in enumerate(if_enable):
if value > 0:
index_list.append(index)
return index_list
if __name__ == '__main__':
num_category = load_num_category()
G = load_graph()
best_accurancy = 0.
i = 0
batch_size = 16
image_hidden_size = 12
text_hidden_size = 12
n_steps = 3
learning_rate = 0.001
opt = "RMSProp"
beta = 0.2
accurancy = cm_ggnn(batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate, G, num_category, opt, i, beta)
print("best parameter is batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate, optimizer:%d, %d ,%d , %d, %f, %s" % (batch_size,
image_hidden_size, text_hidden_size, n_steps, learning_rate, opt))
# for image_hidden_size in [12]: #### n*8
# for text_hidden_size in [12, 16, 64]:
# for n_steps in [3]:
# for learning_rate in [0.001]:
# for opt in ['RMSProp', 'Adam']:
# for beta in [0.2, 0.5, 0.7]:
# accurancy = cm_ggnn(batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate, G, num_category, opt, i, beta)
# if accurancy > best_accurancy:
# best_accurancy = accurancy
# best_parameter = [batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate]
# print("best parameter is batch_size, image_hidden_size, text_hidden_size, n_steps, learning_rate, optimizer:%d, %d ,%d , %d, %f, %s" % (batch_size,
# image_hidden_size, text_hidden_size, n_steps, learning_rate, opt))
# i += 1