@@ -2057,7 +2057,7 @@ val termsem_strong_limit_cardinal = store_thm("termsem_strong_limit_cardinal",
2057
2057
simp[Abbr`vvx`,APPLY_UPDATE_THM] >>
2058
2058
simp[Abbr`vv`,Abbr`s`,APPLY_UPDATE_THM,UPDATE_LIST_THM] >>
2059
2059
CONV_TAC(LAND_CONV(REWR_CONV inter_subset)) >>
2060
- Q.PAT_ABBREV_TAC`P:'U set reln = $SUBSET` >>
2060
+ Q.PAT_ABBREV_TAC`P:'U set -> 'U set -> bool = $SUBSET` >>
2061
2061
simp[Holds_Abstract,boolean_in_boolset] >>
2062
2062
simp[Abbr`P`,boolean_eq_true] >>
2063
2063
simp[SUBSET_DEF,IN_DEF] ) >>
@@ -2120,7 +2120,7 @@ val termsem_strong_limit_cardinal = store_thm("termsem_strong_limit_cardinal",
2120
2120
simp[Holds_Abstract,boolean_in_boolset] >>
2121
2121
simp[boolean_eq_true] >>
2122
2122
ONCE_REWRITE_TAC[inter_subset] >>
2123
- Q.PAT_ABBREV_TAC`P:'U set reln = $SUBSET` >>
2123
+ Q.PAT_ABBREV_TAC`P:'U set -> 'U set -> bool = $SUBSET` >>
2124
2124
simp[Holds_Abstract,boolean_in_boolset] >>
2125
2125
simp[Abbr`P`,boolean_eq_true] >>
2126
2126
simp[Abbr`vv`,APPLY_UPDATE_THM,UPDATE_LIST_THM,Abbr`s`] >>
@@ -2820,7 +2820,7 @@ val LCA_name_UNIV = replace_term ``strlit"l"``name LCA_l_UNIV
2820
2820
val intermediate_thm_gen = Q.store_thm(" intermediate_thm_gen" ,
2821
2821
`(name ≠ strlit" f" ∧ name ≠ strlit" k" ) (* makes proof easier *) ⇒
2822
2822
LCA (SUC l) (UNIV:'U set) ⇒
2823
- ∃(mem:'U reln ).
2823
+ ∃(mem:'U -> 'U -> bool ).
2824
2824
is_set_theory mem ∧ (∃inf. is_infinite mem inf) ∧
2825
2825
wf_to_inner ((to_inner Ind):ind->'U) ∧
2826
2826
(wf_to_inner ((to_inner_Num mem):num->'U) ∧
@@ -3198,7 +3198,7 @@ val intermediate_thm_gen = Q.store_thm("intermediate_thm_gen",
3198
3198
qmatch_abbrev_tac`A ∩ B ⊆ C` >>
3199
3199
`A ∩ B ⊆ A ∩ C` suffices_by simp[] >>
3200
3200
map_every qunabbrev_tac[`A`,`B`,`C`] >>
3201
- Q.PAT_ABBREV_TAC`P:'U set reln = $SUBSET` >>
3201
+ Q.PAT_ABBREV_TAC`P:'U set -> 'U set -> bool = $SUBSET` >>
3202
3202
simp[Holds_Abstract,boolean_in_boolset] >>
3203
3203
simp[Abbr`P`,boolean_eq_true] >>
3204
3204
fs[SUBSET_DEF] >>
@@ -3257,7 +3257,7 @@ val intermediate_thm_gen = Q.store_thm("intermediate_thm_gen",
3257
3257
val intermediate_thm = store_thm(" intermediate_thm" ,
3258
3258
``(name ≠ strlit" f" ∧ name ≠ strlit" k" ) (* makes proof easier *) ⇒
3259
3259
LCA (SUC l) (UNIV:'U set) ⇒
3260
- ∃(mem:'U reln ).
3260
+ ∃(mem:'U -> 'U -> bool ).
3261
3261
is_set_theory mem ∧ (∃inf. is_infinite mem inf) ∧
3262
3262
wf_to_inner ((to_inner Ind):ind->'U) ∧
3263
3263
(wf_to_inner ((to_inner Num):num->'U) ∧
0 commit comments