-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerate_data.py
179 lines (157 loc) · 5.12 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Run this file to generate datasets for DROPE/L experiments.
"""
from drorl.types import DataInput
import numpy as np
from typing import List
import jax
from utils import vectorized_multinomial
import pickle
import math, os
from utils import set_global_seeds, subarray_datacls
from drorl.types import AlphaUpdateMethod, OptimConfig, OptMethod
from drorl.dro import run_dro
import logging
log = logging.getLogger(__name__)
class ToyDataset:
"""Linear example from Si et al., 2020."""
def __init__(self, betas: List[List[float]], sigmas: List[float]):
self.betas = np.array(list([np.array(beta) for beta in betas])).astype(
np.float32
)
self.sigmas = np.array(sigmas)
assert self.betas.shape[0] == len(self.sigmas)
self.state_dim = self.betas.shape[1]
self.num_actions = self.betas.shape[0]
def generate_data(self, n):
s = np.random.uniform(low=-1.0, high=1.0, size=(n, self.state_dim))
s_cross_beta = s @ self.betas.T
opt_a = np.argmax(s_cross_beta, axis=1)
means = s_cross_beta
scales = self.sigmas
reward_mat = np.random.normal(means, scale=scales)
# Softmax action
temp = 0.5
logits = s_cross_beta
a_prob_mat = np.array(jax.nn.softmax(logits / temp, axis=-1))
a = vectorized_multinomial(a_prob_mat)
a_prob = a_prob_mat[range(n), a]
r = reward_mat[range(n), a]
## Target policy is softmax with temp 1.0
target_a_prob_mat = np.array(jax.nn.softmax(logits, axis=-1))
return DataInput(
s=s,
a=a,
r=r,
a_prob=a_prob,
reward_mat=reward_mat,
opt_a=opt_a,
probs_mat=target_a_prob_mat,
)
def save_dataset(
data,
dataset_name,
seed: int,
datasize_list: list,
test_datasize: int,
num_actions: int,
**kwargs,
):
## Require action's to be {0, 1, ..., num_actions-1}
## Should contain at least one of each action.
num_actions = data.a.max() + 1
unique_a = np.unique(data.a)
assert unique_a.shape[0] == num_actions
for i in range(num_actions):
assert unique_a[i] == i
meta_dict = {
"num_actions": num_actions,
"training_sizes": datasize_list,
"test_size": test_datasize,
"deltas": deltas,
"seed": seed,
"ground_truth": {},
**kwargs,
}
data_dir = f"data/{dataset_name}/{seed}/"
if not os.path.exists(data_dir):
os.makedirs(data_dir, exist_ok=True)
assert datasize_list[-1] + test_datasize < data.s.shape[0]
for datasize in datasize_list:
data_file_path = f"data/{dataset_name}/{seed}/{datasize}.pkl"
with open(data_file_path, "wb") as f:
sub_data = subarray_datacls(data, datasize)
pickle.dump(sub_data, f)
test_data_path = f"data/{dataset_name}/{seed}/test.pkl"
with open(test_data_path, "wb") as f:
test_data = subarray_datacls(data, test_datasize, from_back=True)
pickle.dump(test_data, f)
## Create meta dataset
meta_file_path = f"data/{dataset_name}/{seed}/meta.pkl"
if data.probs_mat is not None and len(data.probs_mat) > 0:
for delta in deltas:
optim_config = OptimConfig(
seed=seed,
delta=delta,
num_actions=num_actions,
alpha_update_method=AlphaUpdateMethod.FULL_INFO,
opt_method=OptMethod.GRADIENT_ASCENT,
# high bar,
converge_criterion=1e-6,
num_consecutive_stops_needed=20,
)
out = run_dro(
data=data,
optim_config=optim_config,
)
assert out is not None
log.info(f"For {delta} seed {seed}, ground truth is: ", out)
meta_dict["ground_truth"][delta] = out
with open(meta_file_path, "wb") as f:
pickle.dump(meta_dict, f)
if __name__ == "__main__":
num_seeds = 30
total_datapoints = 100000
datasize_list = [
1000,
2000,
3000,
4000,
5000,
8000,
10000,
15000,
20000,
]
test_datasize = 20000
deltas = [
0.1,
0.2,
0.3,
0.5,
]
num_actions = 5
dataset_name = f"linear_{num_actions}"
a = np.array([i * 1j for i in range(num_actions)])
## Roots of unity, exp(2kpi i/N) for k=1, ..., N
rou = np.exp(2 * math.pi * a / num_actions)
betas = [[np.real(x), np.imag(x)] for x in rou]
sigmas = [
# Need this diversity to illustrate Distributional Robustness
0.1 * k
for k in range(1, num_actions + 1)
]
for seed in range(num_seeds):
set_global_seeds(seed)
dataset = ToyDataset(betas=betas, sigmas=sigmas)
data = dataset.generate_data(total_datapoints)
save_dataset(
data=data,
dataset_name=dataset_name,
seed=seed,
datasize_list=datasize_list,
test_datasize=test_datasize,
num_actions=num_actions,
betas=betas,
sigmas=sigmas,
)