Skip to content

Commit edca8e0

Browse files
committed
update to Ciw 1.1.5
1 parent 7ba209d commit edca8e0

6 files changed

+277
-246
lines changed

Basic Queueing Network.ipynb

Lines changed: 42 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -29,62 +29,78 @@
2929
"cell_type": "code",
3030
"execution_count": 2,
3131
"metadata": {
32-
"collapsed": false
32+
"collapsed": true
3333
},
3434
"outputs": [],
3535
"source": [
3636
"import ciw\n",
37+
"import matplotlib\n",
3738
"import matplotlib.pyplot as plt"
3839
]
3940
},
4041
{
4142
"cell_type": "markdown",
4243
"metadata": {},
4344
"source": [
44-
"### First define the parameters dictionary"
45+
"(ensure latest version of libraries)"
4546
]
4647
},
4748
{
4849
"cell_type": "code",
4950
"execution_count": 3,
51+
"metadata": {},
52+
"outputs": [],
53+
"source": [
54+
"assert ciw.__version__ == '1.1.5'\n",
55+
"assert matplotlib.__version__ == '2.0.0'"
56+
]
57+
},
58+
{
59+
"cell_type": "markdown",
60+
"metadata": {},
61+
"source": [
62+
"### First define the and create a Network object"
63+
]
64+
},
65+
{
66+
"cell_type": "code",
67+
"execution_count": 4,
5068
"metadata": {
5169
"collapsed": true
5270
},
5371
"outputs": [],
5472
"source": [
55-
"params = {\n",
56-
" 'Arrival_distributions': {'Class 0': [['Exponential', 6.0], ['Exponential', 2.5]]},\n",
57-
" 'Number_of_nodes': 2,\n",
58-
" 'Number_of_servers': [1, 1],\n",
59-
" 'Queue_capacities': ['Inf', 4],\n",
60-
" 'Number_of_classes': 1,\n",
61-
" 'Service_distributions': {'Class 0': [['Exponential', 8.5], ['Exponential', 5.5]]},\n",
62-
" 'Transition_matrices': {'Class 0': [[0.0, 0.2], [0.1, 0.0]]}\n",
63-
"}"
73+
"N = ciw.create_network(\n",
74+
" Arrival_distributions=[['Exponential', 6.0], ['Exponential', 2.5]],\n",
75+
" Number_of_servers=[1, 1],\n",
76+
" Queue_capacities=['Inf', 4],\n",
77+
" Service_distributions=[['Exponential', 8.5], ['Exponential', 5.5]],\n",
78+
" Transition_matrices=[[0.0, 0.2], [0.1, 0.0]]\n",
79+
")"
6480
]
6581
},
6682
{
6783
"cell_type": "markdown",
6884
"metadata": {},
6985
"source": [
70-
"### Now create a Network object from that dictionary, and simulate for 1000 time units"
86+
"### Now create a Simulation object, and simulate for 1000 time units"
7187
]
7288
},
7389
{
7490
"cell_type": "code",
75-
"execution_count": 4,
91+
"execution_count": 5,
7692
"metadata": {
7793
"collapsed": true
7894
},
7995
"outputs": [],
8096
"source": [
81-
"N = ciw.create_network(params)\n",
97+
"ciw.seed(0)\n",
8298
"Q = ciw.Simulation(N)"
8399
]
84100
},
85101
{
86102
"cell_type": "code",
87-
"execution_count": 5,
103+
"execution_count": 6,
88104
"metadata": {
89105
"collapsed": true
90106
},
@@ -102,7 +118,7 @@
102118
},
103119
{
104120
"cell_type": "code",
105-
"execution_count": 6,
121+
"execution_count": 7,
106122
"metadata": {
107123
"collapsed": true
108124
},
@@ -113,9 +129,9 @@
113129
},
114130
{
115131
"cell_type": "code",
116-
"execution_count": 7,
132+
"execution_count": 8,
117133
"metadata": {
118-
"collapsed": false
134+
"collapsed": true
119135
},
120136
"outputs": [],
121137
"source": [
@@ -124,16 +140,14 @@
124140
},
125141
{
126142
"cell_type": "code",
127-
"execution_count": 8,
128-
"metadata": {
129-
"collapsed": false
130-
},
143+
"execution_count": 9,
144+
"metadata": {},
131145
"outputs": [
132146
{
133147
"name": "stdout",
134148
"output_type": "stream",
135149
"text": [
136-
"0.3170468290245843\n"
150+
"0.3216866783621386\n"
137151
]
138152
}
139153
],
@@ -144,16 +158,14 @@
144158
},
145159
{
146160
"cell_type": "code",
147-
"execution_count": 9,
148-
"metadata": {
149-
"collapsed": false
150-
},
161+
"execution_count": 10,
162+
"metadata": {},
151163
"outputs": [
152164
{
153165
"data": {
154-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEACAYAAAC+gnFaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEsZJREFUeJzt3W+sXPV95/H3x3HA+QMu2y52ZENIRUxMUi1BrdMqXeVW\naSFutcCDFUvVXZLASqvAikiVqthRJcyTpjwqiVqQqk2DqVJRt1WCu3HBsM486AOC20CNYgccraC2\nFd/sKo1dEqhM+fbBHMfjG1/P3D+emcvv/ZJGPvOb35nznd9Y85nzO+fMTVUhSWrXqkkXIEmaLINA\nkhpnEEhS4wwCSWqcQSBJjTMIJKlxIwVBkrVJ/iLJoSTfSvKhJJcl2ZvkhSRPJFk70H97ksNd/xsG\n2q9PciDJi0keuBAvSJK0MKPuEXwe2FNVm4H/AHwb2AY8VVXXAPuA7QBJrgVuBTYDW4EHk6R7noeA\nO6tqE7ApyY3L9kokSYsyNAiSXAr8x6r6EkBVvV5VJ4CbgZ1dt53ALd3yTcCjXb+XgMPAliTrgUuq\nan/X75GBdSRJEzLKHsF7gP+f5EtJvpnkj5O8HVhXVbMAVXUcuLzrvwE4MrD+sa5tA3B0oP1o1yZJ\nmqBRgmA1cD3wR1V1PfBD+tNCc3+bwt+qkKQVaPUIfY4CR6rq77r7f0U/CGaTrKuq2W7a53vd48eA\nKwbW39i1zdf+E5IYKpK0CFWV4b3ONjQIug/6I0k2VdWLwEeBb3W3TwD3Ax8HHutW2Q18Ockf0J/6\nuRp4pqoqyYkkW4D9wO3AF+bb7rp1Vy/0tSzaBz7wAZ76P18907DEH+LbsWMHO3bsWFpRE7KSawfr\nnzTrn6wz5+UszCh7BAD30P9wfyvwf4FPAm8BdiW5A3iZ/plCVNXBJLuAg8Ap4K468xOndwMPA2vo\nn4X0+HwbnJ3ds/BXsyj/zIkTvzKmbUnS9BkpCKrqH4BfOMdDvzpP/88BnztH+98DPzdaae8drduS\nnRjTdiRpOnll8QUwMzMz6RIWbSXXDtY/ada/MmUa/zBN/2DxuOo6wZo1V/LqayfPNE3hmEjSMEkW\ndbDYPQJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEk\nNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLj\nDAJJapxBIEmNGykIkryU5B+SPJvkma7tsiR7k7yQ5Ikkawf6b09yOMmhJDcMtF+f5ECSF5M8sPwv\nR5K0UKPuEbwBzFTVB6tqS9e2DXiqqq4B9gHbAZJcC9wKbAa2Ag8mSbfOQ8CdVbUJ2JTkxmV6HZKk\nRRo1CHKOvjcDO7vlncAt3fJNwKNV9XpVvQQcBrYkWQ9cUlX7u36PDKwjSZqQUYOggCeT7E/y37u2\ndVU1C1BVx4HLu/YNwJGBdY91bRuAowPtR7s2SdIErR6x34er6rtJ/j2wN8kL9MNh0Nz7kqQVYKQg\nqKrvdv/+vyRfBbYAs0nWVdVsN+3zva77MeCKgdU3dm3ztc9jx8DyTHeTJJ3W6/Xo9XpLfp5Unf+L\nfJK3A6uq6pUk7wD2AvcBHwW+X1X3J/kMcFlVbesOFn8Z+BD9qZ8ngfdWVSV5GrgH2A98DfhCVT1+\njm3W+HYwTrBmzZW8+trJM01DxkSSplESqirDe55tlD2CdcBX+h/OrAa+XFV7k/wdsCvJHcDL9M8U\noqoOJtkFHAROAXfVmbS5G3gYWAPsOVcISJLGa+gewSS4RyBJC7fYPQKvLJakxhkEktQ4g0CSGmcQ\nSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEk\nNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLj\nDAJJatzIQZBkVZJvJtnd3b8syd4kLyR5Isnagb7bkxxOcijJDQPt1yc5kOTFJA8s70uRJC3GQvYI\nPg0cHLi/DXiqqq4B9gHbAZJcC9wKbAa2Ag8mSbfOQ8CdVbUJ2JTkxiXWL0laopGCIMlG4NeB/zXQ\nfDOws1veCdzSLd8EPFpVr1fVS8BhYEuS9cAlVbW/6/fIwDqSpAkZdY/gD4DfAWqgbV1VzQJU1XHg\n8q59A3BkoN+xrm0DcHSg/WjXJkmaoNXDOiT5DWC2qp5LMnOernWexxZhx8DyTHeTJJ3W6/Xo9XpL\nfp5Unf/zO8nvAf8VeB14G3AJ8BXg54GZqprtpn2+XlWbk2wDqqru79Z/HLgXePl0n679NuAjVfWp\nc2yzlj1X5nWCNWuu5NXXTp5pGjImkjSNklBVGd7zbEOnhqrqs1V1ZVX9LHAbsK+q/hvw18Anum4f\nBx7rlncDtyW5KMl7gKuBZ7rpoxNJtnQHj28fWEeSNCFDp4bO4/eBXUnuoP9t/1aAqjqYZBf9M4xO\nAXfVmd2Ou4GHgTXAnqp6fAnblyQtg6FTQ5Pg1JAkLdwFmxqSJL25GQSS1DiDQJIaZxBIUuMMAklq\nnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZ\nBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuOGBkGSi5N8\nI8mzSZ5Pcm/XflmSvUleSPJEkrUD62xPcjjJoSQ3DLRfn+RAkheTPHBhXpIkaSGGBkFV/QvwK1X1\nQeA6YGuSLcA24KmqugbYB2wHSHItcCuwGdgKPJgk3dM9BNxZVZuATUluXO4XJElamJGmhqrqR93i\nxcBqoICbgZ1d+07glm75JuDRqnq9ql4CDgNbkqwHLqmq/V2/RwbWkSRNyEhBkGRVkmeB48CT3Yf5\nuqqaBaiq48DlXfcNwJGB1Y91bRuAowPtR7s2SdIErR6lU1W9AXwwyaXAV5K8n/5ewVndlre0HQPL\nM91NknRar9ej1+st+XlGCoLTqupkkh7wMWA2ybqqmu2mfb7XdTsGXDGw2saubb72eexYSGmS1JyZ\nmRlmZmZ+fP++++5b1POMctbQz5w+IyjJ24BfAw4Bu4FPdN0+DjzWLe8GbktyUZL3AFcDz3TTRyeS\nbOkOHt8+sI4kaUJG2SN4F7AzySr6wfHnVbUnydPAriR3AC/TP1OIqjqYZBdwEDgF3FVVp6eN7gYe\nBtYAe6rq8WV9NZKkBcuZz+jpkaSW/ZDDvE6wZs2VvPrayTNNUzgmkjRMEqoqw3uezSuLJalxBoEk\nNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLj\nDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4g\nkKTGGQSS1LihQZBkY5J9Sb6V5Pkk93TtlyXZm+SFJE8kWTuwzvYkh5McSnLDQPv1SQ4keTHJAxfm\nJUmSFmKUPYLXgd+uqvcDvwTcneR9wDbgqaq6BtgHbAdIci1wK7AZ2Ao8mCTdcz0E3FlVm4BNSW5c\n1lcjSVqwoUFQVcer6rlu+RXgELARuBnY2XXbCdzSLd8EPFpVr1fVS8BhYEuS9cAlVbW/6/fIwDqS\npAlZ0DGCJFcB1wFPA+uqahb6YQFc3nXbABwZWO1Y17YBODrQfrRrkyRN0OpROyZ5J/CXwKer6pUk\nNafL3PtLtGNgeaa7SZJO6/V69Hq9JT9PqoZ/fidZDfxv4G+q6vNd2yFgpqpmu2mfr1fV5iTbgKqq\n+7t+jwP3Ai+f7tO13wZ8pKo+dY7t1bLnyrxOsGbNlbz62skzTSOMiSRNmyRUVYb3PNuoU0N/Ahw8\nHQKd3cAnuuWPA48NtN+W5KIk7wGuBp7ppo9OJNnSHTy+fWAdSdKEDJ0aSvJh4LeA55M8S/+r+meB\n+4FdSe6g/23/VoCqOphkF3AQOAXcVWd2O+4GHgbWAHuq6vHlfTmSpIUaaWpo3JwakqSFu9BTQ5Kk\nNymDQJIaZxAAr7126qz7SS74bf36qybzYiVpDo8RcAL4qbO2lrFsO0zj2EtauTxGIElaFINAkhpn\nEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaB\nJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYNDYIkX0wym+TAQNtl\nSfYmeSHJE0nWDjy2PcnhJIeS3DDQfn2SA0leTPLA8r8USdJijLJH8CXgxjlt24CnquoaYB+wHSDJ\ntcCtwGZgK/BgknTrPATcWVWbgE1J5j6nJGkChgZBVf0t8E9zmm8GdnbLO4FbuuWbgEer6vWqegk4\nDGxJsh64pKr2d/0eGVhHkjRBiz1GcHlVzQJU1XHg8q59A3BkoN+xrm0DcHSg/WjXJkmasOU6WFzL\n9DySpDFbvcj1ZpOsq6rZbtrne137MeCKgX4bu7b52s9jx8DyTHeTJJ3W6/Xo9XpLfp5UDf8yn+Qq\n4K+r6ue6+/cD36+q+5N8BrisqrZ1B4u/DHyI/tTPk8B7q6qSPA3cA+wHvgZ8oaoen2d7Nb6djBPA\nT521tYxl22GUsZekUSWhqjK859mG7hEk+TP6X8d/Osk/AvcCvw/8RZI7gJfpnylEVR1Msgs4CJwC\n7qozn3Z3Aw8Da4A984VAOy7mzAlV47Fu3bs5fvylsW5T0vQbaY9g3FrZIxj/oRX3QqQ3s8XuEXhl\nsSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBI\nUuMMAklqnEEgSY1b7J+q1IrkH8OR9JMMgqb8C+P+Yzizs+MNHkkL59SQJDXOIJCkxhkEktQ4g0CS\nGmcQSFLjDAJJapxBIEmN8zoCXWDjvYjNC9ikhTMIdIGN9yI2L2CTFs6pIUlqnEEgSY0bexAk+ViS\nbyd5Mclnxr19SdLZxhoESVYBfwjcCLwf+M0k7xtnDePRm3QBS9CbdAFN6/V6ky5hSax/ZRr3HsEW\n4HBVvVxVp4BHgZvHXMMY9CZdwBL0Jl3AEr2FJGO9rV9/1bJVv9I/iKx/ZRr3WUMbgCMD94/SDwdp\nmfwr/tS2tDBTe/ropZf+pzFt6RQnT45pU3qTWt5rJe67776hfVatejtvvPGjZdvmKEbd5ij1L+f2\nltM73rGWHTt2jHWb0yBV4/v2lOQXgR1V9bHu/jagqur+Of3G+5VOkt4kqmrB30rGHQRvAV4APgp8\nF3gG+M2qOjS2IiRJZxnr1FBV/WuS/wnspX+g+ouGgCRN1lj3CCRJ02diVxaPcmFZki8kOZzkuSTX\njbvG8xlWf5KPJPlBkm92t9+dRJ3nkuSLSWaTHDhPn2ke+/PWP81jD5BkY5J9Sb6V5Pkk98zTbyrf\ng1Hqn9b3IMnFSb6R5Nmu9nvn6TetYz+0/kWNfVWN/UY/gL4DvBt4K/Ac8L45fbYCX+uWPwQ8PYla\nl1D/R4Ddk651nvp/GbgOODDP41M79iPWP7Vj39W3HriuW34n/eNmK+n//yj1T+17ALy9+/ctwNPA\nlpUy9iPWv+Cxn9QewSgXlt0MPAJQVd8A1iZZN94y5zXqhXFTeYJ5Vf0t8E/n6TLNYz9K/TClYw9Q\nVcer6rlu+RXgEP1rbAZN7XswYv0wpe9BVZ0+J/Vi+sdJ586PT+3Yw0j1wwLHflJBcK4Ly+b+R5rb\n59g5+kzKKPUD/FK3a/m1JNeOp7RlMc1jP6oVMfZJrqK/d/ONOQ+tiPfgPPXDlL4HSVYleRY4DjxZ\nVfvndJnqsR+hfljg2E/tBWVvAn8PXFlVP0qyFfgqsGnCNbViRYx9kncCfwl8uvtmvaIMqX9q34Oq\negP4YJJLga8mubaqDk66rlGNUP+Cx35SewTHgCsH7m/s2ub2uWJIn0kZWn9VvXJ6F66q/gZ4a5J/\nN74Sl2Sax36olTD2SVbT/xD906p67Bxdpvo9GFb/SngPquok8HXgY3MemuqxP22++hcz9pMKgv3A\n1UneneQi4DZg95w+u4Hb4cdXJP+gqmbHW+a8htY/OKeYZAv9U3W/P94yzyvMP484zWN/2rz1r4Cx\nB/gT4GBVfX6ex6f9PThv/dP6HiT5mSRru+W3Ab8GfHtOt6kd+1HqX8zYT2RqqOa5sCzJ/+g/XH9c\nVXuS/HqS7wA/BD45iVrPZZT6gf+c5FPAKeBV4L9MruKzJfkzYAb46ST/CNwLXMQKGHsYXj9TPPYA\nST4M/BbwfDfXW8Bn6Z+FNvXvwSj1M73vwbuAnen/JP4q4M+7sV4Rnz2MUD+LGHsvKJOkxvmnKiWp\ncQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmN+zdqYTrMmt+xuAAAAABJRU5ErkJggg==\n",
166+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEfxJREFUeJzt3X+s3XV9x/HnSwpq1FiQu4601bLYzKCZiE2pcTFOYqlo\nLMmQsCxSGUuTjW2aLNnQLGtETfQfnW4TQ6RbMU4gqKNDlDWIMfsDpCgiP2RcEUIbsFdaqo6pqXvv\nj/MpHuu93HPb23vu9fN8JCfn8/18P+d73p972vO63x/n3FQVkqT+PGfcBUiSxsMAkKROGQCS1CkD\nQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHVq2bgLeDannnpqrVmzZtxlzN1dd/2y/drXjq8OSV26\n6667flhVE7ONW9QBsGbNGnbv3j3uMuYu+WV7KdYvaUlL8ugo4zwEJEmdMgAkqVMGgCR1ygCQpE4Z\nAJLUKQNAkjplAEhSpwwASeqUASBJnRrpk8BJlgOfBl4FFPAnwIPAdcAa4BHgwqo6kCTAx4HzgKeB\nd1XVN9t2tgB/1zb7waraMW8zmcaay790PDc/o0fG8qySNDej7gF8HPhKVb0CeDXwAHA5cGtVrQVu\nbcsAbwHWtttW4EqAJKcA24CzgfXAtiQnz9M8JElzNGsAJHkx8AbgaoCq+nlVPQVsBg7/Br8DOL+1\nNwPX1MDtwPIkpwHnAruqan9VHQB2AZvmdTaSpJGNsgdwOjAF/EuSbyX5dJIXACuq6vE25glgRWuv\nBB4bevye1jdTvyRpDEYJgGXAWcCVVfUa4H/45eEeAKqqGJwbOGZJtibZnWT31NTUfGxSkjSNUQJg\nD7Cnqu5oyzcwCIQftEM7tPt9bf1eYPXQ41e1vpn6f0VVXVVV66pq3cTErF9nLUk6SrMGQFU9ATyW\n5Hdb1znA/cBOYEvr2wLc2No7gYszsAE42A4V3QJsTHJyO/m7sfVJksZg1D8I85fAZ5OcBDwMXMIg\nPK5PcinwKHBhG3szg0tAJxlcBnoJQFXtT/IB4M427oqq2j8vs5AkzdlIAVBVdwPrpll1zjRjC7hs\nhu1sB7bPpUBJ0vHhJ4ElqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAk\ndcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKn\nDABJ6pQBIEmdMgAkqVMjBUCSR5J8J8ndSXa3vlOS7EryULs/ufUnySeSTCa5J8lZQ9vZ0sY/lGTL\n8ZmSJGkUc9kD+IOqOrOq1rXly4Fbq2otcGtbBngLsLbdtgJXwiAwgG3A2cB6YNvh0JAkLbxjOQS0\nGdjR2juA84f6r6mB24HlSU4DzgV2VdX+qjoA7AI2HcPzS5KOwagBUMB/JrkrydbWt6KqHm/tJ4AV\nrb0SeGzosXta30z9kqQxWDbiuN+vqr1JfgvYleS7wyurqpLUfBTUAmYrwEtf+tL52KQkaRoj7QFU\n1d52vw/4IoNj+D9oh3Zo9/va8L3A6qGHr2p9M/Uf+VxXVdW6qlo3MTExt9lIkkY2awAkeUGSFx1u\nAxuBe4GdwOErebYAN7b2TuDidjXQBuBgO1R0C7Axycnt5O/G1idJGoNRDgGtAL6Y5PD4f6uqryS5\nE7g+yaXAo8CFbfzNwHnAJPA0cAlAVe1P8gHgzjbuiqraP28zkSTNyawBUFUPA6+epv9J4Jxp+gu4\nbIZtbQe2z71MSdJ885PAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNA\nkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSp\nUwaAJHXKAJCkThkAktSpkQMgyQlJvpXkprZ8epI7kkwmuS7JSa3/uW15sq1fM7SN97b+B5OcO9+T\nkSSNbi57AO8GHhha/gjwsap6OXAAuLT1XwocaP0fa+NIcgZwEfBKYBPwySQnHFv5kqSjNVIAJFkF\nvBX4dFsO8CbghjZkB3B+a29uy7T157Txm4Frq+pnVfV9YBJYPx+TkCTN3ah7AP8A/A3wf235JcBT\nVXWoLe8BVrb2SuAxgLb+YBv/TP80j5EkLbBZAyDJ24B9VXXXAtRDkq1JdifZPTU1tRBPKUldGmUP\n4PXA25M8AlzL4NDPx4HlSZa1MauAva29F1gN0Na/GHhyuH+axzyjqq6qqnVVtW5iYmLOE5IkjWbW\nAKiq91bVqqpaw+Ak7ler6o+B24AL2rAtwI2tvbMt09Z/taqq9V/UrhI6HVgLfGPeZiJJmpNlsw+Z\n0d8C1yb5IPAt4OrWfzXwmSSTwH4GoUFV3ZfkeuB+4BBwWVX94hieX5J0DOYUAFX1NeBrrf0w01zF\nU1U/Bd4xw+M/BHxorkVKkuafnwSWpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoA\nkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ\n6pQBIEmdMgAkqVMGgCR1ygCQpE7NGgBJnpfkG0m+neS+JO9v/acnuSPJZJLrkpzU+p/blifb+jVD\n23pv638wybnHa1KSpNmNsgfwM+BNVfVq4ExgU5INwEeAj1XVy4EDwKVt/KXAgdb/sTaOJGcAFwGv\nBDYBn0xywnxORpI0ulkDoAZ+0hZPbLcC3gTc0Pp3AOe39ua2TFt/TpK0/mur6mdV9X1gElg/L7OQ\nJM3ZSOcAkpyQ5G5gH7AL+B7wVFUdakP2ACtbeyXwGEBbfxB4yXD/NI8Zfq6tSXYn2T01NTX3GUmS\nRjJSAFTVL6rqTGAVg9/aX3G8Cqqqq6pqXVWtm5iYOF5PI0ndm9NVQFX1FHAb8DpgeZJlbdUqYG9r\n7wVWA7T1LwaeHO6f5jGSpAU2ylVAE0mWt/bzgTcDDzAIggvasC3Aja29sy3T1n+1qqr1X9SuEjod\nWAt8Y74mIkmam2WzD+E0YEe7Yuc5wPVVdVOS+4Frk3wQ+BZwdRt/NfCZJJPAfgZX/lBV9yW5Hrgf\nOARcVlW/mN/pSJJGNWsAVNU9wGum6X+Yaa7iqaqfAu+YYVsfAj409zIlSfPNTwJLUqcMAEnqlAEg\nSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLU\nKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqdmDYAkq5PcluT+\nJPcleXfrPyXJriQPtfuTW3+SfCLJZJJ7kpw1tK0tbfxDSbYcv2lJkmYzyh7AIeCvq+oMYANwWZIz\ngMuBW6tqLXBrWwZ4C7C23bYCV8IgMIBtwNnAemDb4dCQJC28WQOgqh6vqm+29o+BB4CVwGZgRxu2\nAzi/tTcD19TA7cDyJKcB5wK7qmp/VR0AdgGb5nU2kqSRzekcQJI1wGuAO4AVVfV4W/UEsKK1VwKP\nDT1sT+ubqf/I59iaZHeS3VNTU3MpT5I0ByMHQJIXAp8H3lNVPxpeV1UF1HwUVFVXVdW6qlo3MTEx\nH5uUJE1jpABIciKDN//PVtUXWvcP2qEd2v2+1r8XWD308FWtb6Z+SdIYjHIVUICrgQeq6qNDq3YC\nh6/k2QLcONR/cbsaaANwsB0qugXYmOTkdvJ3Y+uTJI3BshHGvB54J/CdJHe3vvcBHwauT3Ip8Chw\nYVt3M3AeMAk8DVwCUFX7k3wAuLONu6Kq9s/LLCRJczZrAFTVfwGZYfU504wv4LIZtrUd2D6XAiVJ\nx4efBJakThkAktQpA0CSOmUASFKnRrkKSMdgzeVfWrDneuTDb12w55K09LkHIEmdMgAkqVMGgCR1\nygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcM\nAEnqlAEgSZ0yACSpUwaAJHVq1gBIsj3JviT3DvWdkmRXkofa/cmtP0k+kWQyyT1Jzhp6zJY2/qEk\nW47PdCRJoxplD+BfgU1H9F0O3FpVa4Fb2zLAW4C17bYVuBIGgQFsA84G1gPbDoeGJGk8Zg2Aqvo6\nsP+I7s3AjtbeAZw/1H9NDdwOLE9yGnAusKuq9lfVAWAXvx4qkqQFdLTnAFZU1eOt/QSworVXAo8N\njdvT+mbqlySNyTGfBK6qAmoeagEgydYku5Psnpqamq/NSpKOcLQB8IN2aId2v6/17wVWD41b1fpm\n6v81VXVVVa2rqnUTExNHWZ4kaTZHGwA7gcNX8mwBbhzqv7hdDbQBONgOFd0CbExycjv5u7H1SZLG\nZNlsA5J8DngjcGqSPQyu5vkwcH2SS4FHgQvb8JuB84BJ4GngEoCq2p/kA8CdbdwVVXXkiWVJ0gKa\nNQCq6o9mWHXONGMLuGyG7WwHts+pOknSceMngSWpUwaAJHXKAJCkTs16DkBLx5rLvzS2537kw28d\n23NLOjruAUhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlF8FoXkx\nrq+h8CsopKPnHoAkdcoAkKROGQCS1CkDQJI65UlgLWn+DQTp6LkHIEmdMgAkqVMGgCR1ygCQpE4Z\nAJLUqQUPgCSbkjyYZDLJ5Qv9/JKkgQW9DDTJCcA/A28G9gB3JtlZVfcvZB3SfPD7j7TULfTnANYD\nk1X1MECSa4HNgAEgjcjPPmi+LHQArAQeG1reA5y9wDVIOkru9fxmWXSfBE6yFdjaFn+S5MFj2Nyp\nwA+Pvaq5yfDCR952LJsaS/3zaKnXD0t/Dr8R9ecj4y7jmIzjNXjZKIMWOgD2AquHlle1vmdU1VXA\nVfPxZEl2V9W6+djWOFj/+C31OVj/+C3mOSz0VUB3AmuTnJ7kJOAiYOcC1yBJYoH3AKrqUJK/AG4B\nTgC2V9V9C1mDJGlgwc8BVNXNwM0L9HTzcihpjKx//Jb6HKx//BbtHFJV465BkjQGfhWEJHVqyQfA\nbF8tkeS5Sa5r6+9Ismbhq3x2I8zhXUmmktzdbn86jjqnk2R7kn1J7p1hfZJ8os3tniRnLXSNsxlh\nDm9McnDo5//3C13js0myOsltSe5Pcl+Sd08zZtG+DiPWv2hfgyTPS/KNJN9u9b9/mjGL832oqpbs\njcGJ5O8BvwOcBHwbOOOIMX8OfKq1LwKuG3fdRzGHdwH/NO5aZ6j/DcBZwL0zrD8P+DKDj0dsAO4Y\nd81HMYc3AjeNu85nqf804KzWfhHw39P8G1q0r8OI9S/a16D9TF/Y2icCdwAbjhizKN+HlvoewDNf\nLVFVPwcOf7XEsM3Ajta+ATgnSVg8RpnDolVVXwf2P8uQzcA1NXA7sDzJaQtT3WhGmMOiVlWPV9U3\nW/vHwAMMPnU/bNG+DiPWv2i1n+lP2uKJ7XbkydVF+T601ANguq+WOPIfzjNjquoQcBB4yYJUN5pR\n5gDwh23X/YYkq6dZv1iNOr/F7nVtF//LSV457mJm0g4tvIbBb6HDlsTr8Cz1wyJ+DZKckORuYB+w\nq6pm/PkvpvehpR4AvfgPYE1V/R6wi1/+JqGF8U3gZVX1auAfgX8fcz3TSvJC4PPAe6rqR+OuZ65m\nqX9RvwZV9YuqOpPBtxusT/Kqcdc0iqUeALN+tcTwmCTLgBcDTy5IdaMZ5esxnqyqn7XFTwOvXaDa\n5sMor9GiVlU/OryLX4PPsZyY5NQxl/UrkpzI4M3zs1X1hWmGLOrXYbb6l8JrAFBVTwG3AZuOWLUo\n34eWegCM8tUSO4EtrX0B8NVqZ2IWiVnncMSx2rczOEa6VOwELm5XoWwADlbV4+Muai6S/Pbh47VJ\n1jP4fzP2/7yHtdquBh6oqo/OMGzRvg6j1L+YX4MkE0mWt/bzGfy9k+8eMWxRvg8tum8DnYua4asl\nklwB7K6qnQz+YX0mySSDE30Xja/iXzfiHP4qyduBQwzm8K6xFXyEJJ9jcIXGqUn2ANsYnASjqj7F\n4FPf5wGTwNPAJeOpdGYjzOEC4M+SHAL+F7hoMfznHfJ64J3Ad9pxaID3AS+FJfE6jFL/Yn4NTgN2\nZPAHr54DXF9VNy2F9yE/CSxJnVrqh4AkSUfJAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAk\nqVP/Dw4hVnPPrMJGAAAAAElFTkSuQmCC\n",
155167
"text/plain": [
156-
"<matplotlib.figure.Figure at 0x10d522320>"
168+
"<matplotlib.figure.Figure at 0x109c83198>"
157169
]
158170
},
159171
"metadata": {},
@@ -196,5 +208,5 @@
196208
}
197209
},
198210
"nbformat": 4,
199-
"nbformat_minor": 0
211+
"nbformat_minor": 1
200212
}

0 commit comments

Comments
 (0)