-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOpenMarkovTensorFlow.py
238 lines (229 loc) · 11.3 KB
/
OpenMarkovTensorFlow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# http://math.ucr.edu/home/baez/coarse_graining.pdf
import numpy as np
import math
import tensorflow as tf
import matplotlib.pyplot as plt
import networkx as nx
def stochasticSection(p):
returnVal = p.T
(r,c) = p.shape
returnVal = returnVal*0
for i in range(r):
nonzeros = p[i].nonzero()[0]
total = len(nonzeros)
for j in nonzeros:
toAssign=(1.0)/(total+.0)
returnVal[j,i]=toAssign
return returnVal
def block_diagonal(matrices, dtype=tf.float32):
matrices = [tf.convert_to_tensor(matrix, dtype=dtype) for matrix in matrices]
blocked_rows = tf.Dimension(0)
blocked_cols = tf.Dimension(0)
batch_shape = tf.TensorShape(None)
for matrix in matrices:
full_matrix_shape = matrix.get_shape().with_rank_at_least(2)
batch_shape = batch_shape.merge_with(full_matrix_shape[:-2])
blocked_rows += full_matrix_shape[-2]
blocked_cols += full_matrix_shape[-1]
ret_columns_list = []
for matrix in matrices:
matrix_shape = tf.shape(matrix)
ret_columns_list.append(matrix_shape[-1])
ret_columns = tf.add_n(ret_columns_list)
row_blocks = []
current_column = 0
for matrix in matrices:
matrix_shape = tf.shape(matrix)
row_before_length = current_column
current_column += matrix_shape[-1]
row_after_length = ret_columns - current_column
row_blocks.append(tf.pad(
tensor=matrix,
paddings=tf.concat(
[tf.zeros([tf.rank(matrix) - 1, 2], dtype=tf.int32),
[(row_before_length, row_after_length)]],
axis=0)))
blocked = tf.concat(row_blocks, -2)
blocked.set_shape(batch_shape.concatenate((blocked_rows, blocked_cols)))
return blocked
# make a syntactic open Markov Process by specifying the number X of possibilities
# as well as arrays S and T that label which of the possibilities are connected to input and output lines
def OpenMarkovProcesses(X,S,T):
class OpenMarkovProcess():
# a particular instance of the class has the explicit infinitesimal generator H and the input and output rates
def __init__(self,H,inflow,outflow,asFullSize=False):
self.H=H
self.mySyntax=OpenMarkovProcess
shape = self.mySyntax.size
# can pass inflow and outflow as either tensors of length X or with only length the sizes of S/T.
# these get embedded into R^X using the data of S \to X and T \to X
# by default asFullSize is False so passed as length S/T by assumption
if (asFullSize):
self.inflow=inflow
self.outflow=outflow
else:
self.inflow=tf.scatter_nd(self.mySyntax.inputs,inflow,shape)
self.outflow=tf.scatter_nd(self.mySyntax.outputs,outflow,shape)
# approximate e^{Ht} p as (1+H)p and then possibly renormalize to a probability distribution
def timeStep(self,timestep,p_init):
approxP = p_init + tf.tensordot(self.H * timestep, p_init, axes=1)
approxP = approxP +self.inflow * timestep - self.outflow * timestep
# if don't want normalization
#return approxP
# if want normalization without net in or outflow of probability
mySum = tf.tensordot(approxP,OpenMarkovProcess.myOnes,axes=1)
#mySum = tf.cumsum(approxP)
return approxP/mySum
# divide timeStep into intervals smaller than eps, rather than one step Euler method
def timeFlow(self,timestep,p_init,eps=.1):
divisions=math.floor(timestep/eps)
newTimeStep = timestep/divisions
newP = p_init
for i in range(divisions):
newP = self.timeStep(newTimeStep,newP)
return newP
#def identifySystem(sequenceOfProbs)
# return a specific object from learning H, inflow and outflow
# ----- Building other open Markov processes from smaller ones -----
# tensor product of these one morphisms, does disjoint union of the inputs and outputs
# these are labelled by their indices in 0-size which is dimension of the matrices
def disjointUnion(self,other):
inputIndices = self.mySyntax.Sindices
inputIndices = np.append(inputIndices,self.mySyntax.mySize+other.mySyntax.Sindices)
outputIndices = self.mySyntax.Tindices
outputIndices = np.append(outputIndices,self.mySyntax.mySize+other.mySyntax.Tindices)
# X is the disjoint union of the self and other
# use SIndices and TIndices as arrays to make the input and outputs for the combined system
newSyntax = OpenMarkovProcesses(self.mySyntax.mySize+other.mySyntax.mySize,inputIndices,outputIndices)
newH = block_diagonal([self.H,other.H])
shape = tf.constant([self.mySyntax.mySize+other.mySyntax.mySize])
firstBatch = np.arange(self.mySyntax.mySize)
firstBatch = tf.constant(firstBatch.reshape(-1,1))
secondBatch = np.arange(other.mySyntax.mySize)+self.mySyntax.mySize
secondBatch = tf.constant(secondBatch.reshape(-1,1))
newInFlow=tf.scatter_nd(firstBatch,self.inflow,shape)
newInFlow=newInFlow+tf.scatter_nd(secondBatch,other.inflow,shape)
newOutFlow=tf.scatter_nd(firstBatch,self.outflow,shape)
newOutFlow = newOutFlow+tf.scatter_nd(secondBatch,other.outflow,shape)
return newSyntax(newH,newInFlow,newOutFlow,True)
# first form the disjoint union of the two morphisms and then glue together which outputs of self
# go with which inputs of other, then eliminate these from the disjoint union, this leaves the composition
# with it's newH , newInFlow and newOutFlow
#def composeMorphisms(self,other):
# apply a 2 morphism specified by the lumping myP, actually p_* not p in the notation of the paper
# assume lumpable, if it is not returns garbage without failing loudly so caution when using it
def coarseGrain(self,myP):
# size of X is decided by shape of myP, inputs and outputs are same in number
(r,c) = myP.shape
myS = myP * self.S
myT = myP * self.T
newSyntax = OpenMarkovProcesses(r,myS,myT)
myStS = stochasticSection(myP)
newH = tf.matmul(myP,self.H)
newH = tf.matmul(newH,myStS)
# use myP to make newInFlow and newOutFlow
# toReturn = newSyntax(newH,newInFlow,newOutFlow)
return 0
# display the network as a directed graph with blue for vertices connected to input lines, red output
def displayGraph(self,session,cutoff=0):
numVertices=self.mySyntax.mySize
inputVertices=self.mySyntax.Sindices
outputVertices=self.mySyntax.Tindices
G = nx.DiGraph()
colors=["black" for number in range(numVertices)]
for i in inputVertices:
colors[i]="blue"
for i in outputVertices:
colors[i]="red"
myH = sess.run(self.H)
for i in range(numVertices):
for j in range(numVertices):
edgeWeight=myH[i,j]
if (np.abs(edgeWeight)>cutoff):
G.add_edge(i,j,weight=edgeWeight)
plt.subplot(121)
nx.draw_networkx(G, node_color=colors,with_labels=True, font_weight='bold')
OpenMarkovProcess.myOnes=tf.constant(1.0,shape=(X,))
OpenMarkovProcess.mySize=X
OpenMarkovProcess.size=tf.constant([X])
OpenMarkovProcess.Sindices = S
OpenMarkovProcess.inputs=tf.constant(S.reshape(-1,1))
OpenMarkovProcess.Tindices = T
OpenMarkovProcess.outputs=tf.constant(T.reshape(-1,1))
return OpenMarkovProcess
def observableExpectation(obsOperator,probDist):
return tf.tensordot(probDist,obsOperator,axes=1)
def randomInfStochastic(xSize,maxV=1):
toReturn=np.random.rand(xSize,xSize)*maxV
for i in range(xSize):
tempVar=0
for j in range(xSize):
if (i!=j):
tempVar=tempVar+toReturn[j,i]
toReturn[i,i]=-tempVar
return tf.constant(toReturn,dtype=tf.float32)
def showGraphAndObsTrace(sess,myProcess,cutoff,pInitTest,timeStep,timeLength,numItems,obsOperator):
myProcess.displayGraph(sess,cutoff)
plt.subplot(122)
resultPlot=np.zeros(timeLength)
timeLength=range(timeLength)
pInit = tf.placeholder(tf.float32, shape=(numItems, ))
newProb = myProcess.timeFlow(timeStep,pInit)
for i in timeLength:
resultPlot[i]=np.dot(pInitTest,obsOperator)
pInitTest=sess.run(newProb,{pInit: pInitTest})
plt.plot(timeLength,resultPlot)
plt.title("Expectation Value over time")
plt.xlabel("Time in increments of %f" % timeStep)
plt.legend()
plt.show()
def showGraphAndProbs(sess,myProcess,cutoff,pInitTest,timeStep,timeLength,numItems):
myProcess.displayGraph(sess,cutoff)
plt.subplot(122)
resultPlot=np.zeros((timeLength,numItems))
timeLength=range(timeLength)
pInit = tf.placeholder(tf.float32, shape=(numItems, ))
newProb = myProcess.timeFlow(timeStep,pInit)
for i in timeLength:
resultPlot[i,:]=pInitTest
pInitTest=sess.run(newProb,{pInit: pInitTest})
for i in range(numItems):
plt.plot(timeLength,resultPlot[:,i],label=str(i))
plt.title("Probabilities over time")
plt.xlabel("Time in increments of %f" % timeStep)
plt.legend()
plt.show()
def runExamples():
sess = tf.Session()
# 3 possibilities with input at site 0 and out at site 2
xSize=3
myProcesses = OpenMarkovProcesses(xSize,np.array([0]),np.array([2]))
# the infinitesimal stochastic rates, input and output rates are provided
myH = randomInfStochastic(3)
myInRates = tf.constant([.01])
myOutRates = tf.constant([.1])
myProcess = myProcesses(myH,myInRates,myOutRates)
# simulate an evolution for a time of .5 starting with two different starting
pInitTest = [.93,0.05,0.02]
maxEnt=np.full((xSize,),1.0/xSize)
#print(sess.run((myH,newProb),{pInit: pInitTest}))
# Graph the probabilities of the 3 possibilities with time increments of .5 for timeLength time steps
timeLength=100
showGraphAndProbs(sess,myProcess,.1,pInitTest,.5,timeLength,xSize)
# start with uniform distribution on the 3 possibilities
showGraphAndProbs(sess,myProcess,.1,maxEnt,.5,timeLength,xSize)
# two copies of the same system
newProcess=myProcess.disjointUnion(myProcess)
xSize=6
pInitTest = [.75*.93,.75*0.05,.75*0.02,.25*.33,.25*.34,.25*.33]
showGraphAndProbs(sess,newProcess,.1,pInitTest,.5,timeLength,xSize)
# if there was no inflow or outflow, this observable would stay at .75
# with in/out, the ratio between components goes like (.75+x)/(.25+x) with x net inflow
obsOperator = np.array([1.0,1.0,1.0,0,0,0])
showGraphAndObsTrace(sess,newProcess,.1,pInitTest,.5,timeLength,xSize,obsOperator)
# if there was no inflow or outflow, this observable would stay at .25
obsOperator = np.array([0,0,0,1.0,1.0,1.0])
showGraphAndObsTrace(sess,newProcess,.1,pInitTest,.5,timeLength,xSize,obsOperator)
# some arbitrary other observable
obsOperator = np.array([.2,4.3,2.4,1.2,.91,-10.1])
showGraphAndObsTrace(sess,newProcess,.1,pInitTest,.5,timeLength,xSize,obsOperator)