-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
1011 lines (848 loc) · 36.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
from __future__ import division
import collections
import os
import matplotlib
import numpy as np
import logging
import torch
import re
import sys
import time
import json
import random
import shelve
import socket
from tqdm import tqdm
import dataset
import metriclearning.model.inweave
import metriclearning
from metriclearning import faissext
import sklearn.utils
import sklearn.cluster
import math
from collect_env_info import get_pretty_env_info
from eval_model import load_mask_model
os.putenv("OMP_NUM_THREADS", "8")
# __repr__ may contain `\n`, json replaces it by `\\n` + indent
json.dumps_ = lambda **kwargs: json.dumps(
**kwargs
).replace('\\n', '\n ')
faiss_memory_holder = None
clustering_random_state = None
def lock_faiss_gpu_memory(args):
"""
Reserve memory for Faiss if backend is faiss-gpu,
Usage: wrap make_clustered_dataloaders in
lock_faiss_gpu_memory() and release_faiss_gpu_memory()
"""
global faiss_memory_holder
if args['backend'] == 'faiss-gpu':
logging.debug('Reserve some memory for FAISS')
faiss_memory_holder = faissext.reserve_faiss_gpu_memory(gpu_id=0)
else:
faiss_memory_holder = None
def release_faiss_gpu_memory():
global faiss_memory_holder
if faiss_memory_holder is not None:
logging.debug('Release memory for FAISS')
faiss_memory_holder = None
class JSONEncoder(json.JSONEncoder):
def default(self, x):
# add encoding for other types if necessary
if isinstance(x, range):
return 'range({}, {})'.format(x.start, x.stop)
if not isinstance(x, (int, str, list, float, bool)):
return repr(x)
return json.JSONEncoder.default(self, x)
class MasksFreezer:
def __init__(self, opt):
self.opt = opt
self.lr = None
self.is_frozen = False
def _find_opt_group(self):
for i, g in enumerate(self.opt.param_groups):
if g.get('group_name', None) == 'masks':
return i
return None
def freeze(self, epoch=None):
group_idx = self._find_opt_group()
if group_idx is None:
return
assert self.opt.param_groups[group_idx]['group_name'] == 'masks'
if self.is_frozen:
assert self.opt.param_groups[group_idx]['lr'] == 0, 'masks lr={}'.format(self.opt.param_groups[group_idx]['lr'])
return
# freeze backbone, just set LR to 0
if epoch is not None:
logging.info('Freezing masks at epoch {}.'.format(epoch))
else:
logging.info('Freezing masks.')
self.lr = self.opt.param_groups[group_idx]['lr']
self.opt.param_groups[group_idx]['lr'] = 0
self.is_frozen = True
def unfreeze(self):
group_idx = self._find_opt_group()
if group_idx is None:
return
if not self.is_frozen:
return
logging.info('Unfreezing masks.')
assert self.opt.param_groups[group_idx]['group_name'] == 'masks'
if self.lr is None:
raise ValueError('masks lr must be saved before!')
self.opt.param_groups[group_idx]['lr'] = self.lr
self.is_frozen = False
def make_clustered_dataloaders(model, dataloader_init, args,
reassign = False, I_prev = None, C_prev = None, logging = None,
e = -1):
import utils
def correct_indices(I):
return torch.sort(torch.LongTensor(I))[1]
if args['clustering_method']['selected'] == 'kmeans':
if args['clustering_method']['options']['mode'] == 'adaptive_centroids' and args['nb_clusters'] > 1:
X, T, I = metriclearning.utils.predict_batchwise(
model=model,
dataloader=dataloader_init,
use_penultimate=args['penultimate_for_clusters'],
is_dry_run=False
)
logging.info('******* CLUSTERING WITH ADAPTIVE CENTROIDS **********')
if hasattr(dataloader_init, 'kmeans_init'):
C_new = C_prev[correct_indices(I_prev)]
logging.info('Adapting centroids with new representation!')
logging.info(str(dataloader_init.kmeans_init.shape))
# C_new is Y_1 in notebook
kmeans_init = dataloader_init.kmeans_init
X_new = X[correct_indices(I)]
new_cluster_centers = []
for c in sorted(list(set(C_new).difference([-1]))):
print(c)
new_cluster_centers.append(
X_new[C_new == c].mean(axis = 0)
)
logging.info('distances between old kmeans init' + \
' and new adpated centroids')
logging.info(str(
metriclearning.similarity.pairwise_distance(
torch.cat([
torch.FloatTensor(kmeans_init),
torch.FloatTensor(new_cluster_centers)
])
)[:len(kmeans_init), len(kmeans_init):]))
kmeans_init = np.array(new_cluster_centers)
else:
logging.info('FIRST time init with k-means++!')
kmeans_init = 'k-means++'
clustering_algorithm = sklearn.cluster.KMeans(
n_clusters=args['nb_clusters'], init = kmeans_init)
C = clustering_algorithm.fit(X).labels_
dataloader_init.kmeans_init = clustering_algorithm.cluster_centers_
else:
C, T, I, X = metriclearning.similarity.get_cluster_labels(
model,
dataloader_init,
use_penultimate = args['penultimate_for_clusters'],
nb_clusters = args['nb_clusters'],
backend = args['backend'],
with_X = True,
ntrials=30,
random_state=clustering_random_state
)
elif args['nb_clusters'] == 1:
num_items_total = len(dataloader_init.dataset)
assert len(dataloader_init.dataset.I) == num_items_total
T = np.array(dataloader_init.dataset.ys, dtype=int)
I = np.array(dataloader_init.dataset.I, dtype=int)
I = np.hstack([I for c in range(args['nb_clusters'])])
T = np.hstack([T for c in range(args['nb_clusters'])])
C = np.hstack([[c] * num_items_total for c in range(args['nb_clusters'])])
assert len(I) == len(T) == len(C) == args['nb_clusters'] * num_items_total
if reassign == True:
# get correct indices for samples by sorting them and return arg sort
perm = correct_indices(I)
I = I[perm]
T = T[perm]
C = C[perm]
if args['hierarchy_method'] in ['top_bot', 'bot_top']:
X = X[perm]
# also use the same indices of sorted samples for previous data
perm = correct_indices(I_prev)
I_prev = I_prev[perm]
C_prev = C_prev[perm]
assert np.array_equal(I, I_prev), (I, I_prev)
logging.info('Reassigning clusters...')
logging.info('Calculating NMI for consecutive cluster assignments...')
logging.info('NMI(prev, cur) = {}'.format(
metriclearning.evaluation.calc_normalized_mutual_information(
C[I],
C_prev[I_prev]
)))
if args['reassign_random'] == True:
# don't use reassignment with cost matrix; i.e. reassign randomly
logging.info('not reassigning!')
else:
# assign s.t. least costs w.r.t. L1 norm
C, costs = dataset.loader.reassign_clusters(C_prev = C_prev,
C_curr = C, I_prev = I_prev, I_curr = I)
logging.info(f'Costs before reassignment = {costs.diagonal().sum()}')
logging.info('\n' + str(costs))
_, costs = dataset.loader.reassign_clusters(C_prev = C_prev,
C_curr = C, I_prev = I_prev, I_curr = I)
# after printing out the costs now, the trace of matrix should
# have lower numbers than other entries in matrix
logging.info(f'Costs after reassignment = {costs.diagonal().sum()}')
logging.info('\n' + str(costs))
utils.log_clustering_stats(C, T)
if args['hierarchy_method'] in ['top_bot'] and e > 0:
if args['hierarchy_method'] == 'top_bot':
if args['nb_clusters'] < args['nb_clusters_final']:
args['nb_clusters'] = int(args['nb_clusters'] * 2)
logging.info('Setting nb_clusters = {}'.format(args['nb_clusters']))
logging.info('Divide each cluster in 2')
C_undivided = C
assert np.array_equal(I, np.arange(len(I))), I
C = utils.divide_clusters(
X = X,
C = C,
T = T,
ntrials=30,
gpu_ids = args['cuda_device'] if args['backend'] != 'faiss' else None,
random_state=clustering_random_state
)
assert np.array_equal(
utils.merge_clusters(
C,
gpu_ids=args['cuda_device'] if args['backend'] != 'faiss' else None,
),
C_undivided
)
utils.log_clustering_stats(C, T)
else:
if args['nb_clusters'] > args['nb_clusters_final']:
args['nb_clusters'] = int(args['nb_clusters'] / 2)
logging.info('Setting nb_clusters = {}'.format(args['nb_clusters']))
# remove labels s.t. minimum 2 samples per class per cluster
if args['supervised'] == True:
for c in range(args['nb_clusters']):
cnt_removed = 0
for t in np.unique(T[C == c]):
if (T[C == c] == t).sum().item() == 1:
# assign to cluster -1 if only one sample from class
C[(T == t) & (C == c)] = -1
cnt_removed += 1
if cnt_removed:
logging.debug(f' --- Removed {cnt_removed} images (w/o pos pair) from cluster {c}')
dls = dataset.loader.make_trainloaders_from_clusters(
C = C, I = I, model = model, args = args
)
return dls, X, C, T, I
def evaluate(model, dataloaders, logging, layers = ['final', 'penultimate'],
loader_types = ['eval', 'init'], backend='faiss', args = None):
model.eval()
scores = {}
for ltype in loader_types:
scores[ltype] = {}
logging.info("--- Data Loader: {} ---".format(ltype))
for layer in layers:
logging.info("-- Layer: {} --".format(layer))
if args is not None and args['dataset']['selected'] == 'inshop':
logging.info("Using dataset `InShop`")
dl_query = dataset.loader.make_loader(args, model,
'eval', inshop_type = 'query')
dl_gallery = dataset.loader.make_loader(args, model,
'eval', inshop_type = 'gallery')
scores[ltype][layer] = metriclearning.utils.evaluate_in_shop(
model,
dl_query = dl_query,
dl_gallery = dl_gallery,
use_penultimate = True if layer == 'penultimate' else False,
backend = backend)
elif args is not None and args['dataset']['selected'] == 'market':
logging.info("Using dataset `Market1501`")
# we could use the param 'inshop_type' to do similar work for market for now
dl_query = dataset.loader.make_loader(args, model,
'eval', inshop_type='query')
dl_gallery = dataset.loader.make_loader(args, model,
'eval', inshop_type='gallery')
scores[ltype][layer] = metriclearning.utils.evaluate_market(
model,
dl_query=dl_query,
dl_gallery=dl_gallery)
else:
scores[ltype][layer] = metriclearning.utils.evaluate(
model,
dataloaders[ltype],
use_penultimate=True if layer == 'penultimate' else False,
backend=backend
)
return scores
def train_batch(model, criterion, opt, args, batch, dset, first_run=True):
X = batch[0].cuda(non_blocking=True)
T = batch[1].cuda(non_blocking=True) # class labels
I = batch[2] # image ids
opt.zero_grad()
# if force full embedding, call forward pass with dset_id=None
# to ignore masking
if args['force_full_embedding']:
#normalize the whole feature layer output
M = model(X, dset_id=None)
else:
#normalize according to the clusters
M = model(X, dset_id=dset.id)
M = torch.nn.functional.normalize(M, p=2, dim=1)
l_emb = criterion(M, T)
loss = l_emb
mask = model.masks[dset.id]
mask_norm = mask.norm(1)
def calc_orthogonality(vectors):
from torch.nn.functional import relu
sim = torch.nn.CosineSimilarity(dim=0, eps=1e-08)
m = torch.zeros(len(vectors), len(vectors))
s = 0
for i in range(len(vectors)):
for j in range(len(vectors)):
if i != j:
sim_ij = sim(relu(vectors[i]), (relu(vectors[j])))
# make correlation be 0, remove negative one as well
m[i][j] = sim_ij.abs()
s += sim_ij
if len(vectors) > 1:
s /= (len(vectors) * (len(vectors) - 1))
return m, s
m, loss_mask = calc_orthogonality(model.masks)
loss_mask = loss_mask * args['masking_lambda']
# if using full embedding, ignore masking
if args['force_full_embedding']:
if model.masks[0].requires_grad:
for p in model.masks:
logging.info('Stopping to optimize masks.')
p.requires_grad = False
assert len(model.opt.param_groups) in [3, 4]
assert model.opt.param_groups[-1]['group_name'] == 'masks'
del model.opt.param_groups[-1]
else:
loss = loss + loss_mask
if args['is_debug'] and first_run:
logging.info(
'{}(loss emb) + {}(loss mask) = {}'.format(
l_emb.item(),
loss_mask,
loss.item()
)
)
logging.info('l1 norm of mask {} w/o rescaling: {}'.format(dset.id, mask_norm))
logging.info('cosine similarity:')
logging.info(m.detach().cpu().numpy())
loss.backward()
opt.step()
if isinstance(loss_mask, torch.Tensor):
loss_mask = loss_mask.item()
return l_emb.item(), loss_mask
def get_criterion(args):
name = args['criterion']['selected']
loss_class = metriclearning.loss.__dict__[name]
dataset_name = args['dataset']['selected']
num_classes = len(args['dataset']['types'][dataset_name]['classes']['train'])
logging.debug('Create {} loss. Num classes={}'.format(name, num_classes))
# use the same margin loss for every cluster
criterion = \
loss_class(nb_classes=num_classes,
sampler_args=args['criterion']['sampler'],
**args['criterion']['types'][name]).cuda()
return criterion
def get_optimizer(args, model, criterion):
class OptimizerGroup(object):
"""
Group several optimizers in one object
"""
def __init__(self, optimizers):
self.optimizers = optimizers
# optimizer which will use scheduler
self.optimizer_for_scheduler = optimizers[0]
def zero_grad(self):
for opt in self.optimizers:
opt.zero_grad()
def step(self):
for opt in self.optimizers:
opt.step()
extra_opt_params = []
if args['criterion']['selected'] == 'MarginLoss' \
and args['criterion']['types']['MarginLoss']['lr_beta'] > 0:
# we assume we have the same loss isntance for all clusters
assert not isinstance(criterion, collections.Iterable)
extra_opt_params = [{
'group_name': 'loss_params',
'params': criterion.parameters(),
'lr': args['criterion']['types']['MarginLoss']['lr_beta'],
'weight_decay': 0.0
}]
elif args['criterion']['selected'] == 'NPairsLoss' \
and args['criterion']['types']['NPairsLoss']['lr_alpha'] > 0:
extra_opt_params = [{
'group_name': 'loss_params',
'params': criterion.parameters(),
'lr': args['criterion']['types']['NPairsLoss']['lr_alpha'],
'weight_decay': 0.0
}]
opt = getattr(torch.optim, args['opt']['selected'])(
[
# DON'T CHANGE POSITION, because used for setting LR,
# when freezing
{
'params': model.parameters_dict['backbone'],
**args['opt']['features_w']
},
{
'params': model.parameters_dict['embedding'],
**args['opt']['embedding_w']
}
] + \
extra_opt_params + \
[
{
'group_name': 'masks',
'params': model.masks,
**args['opt']['mask']
}
],
**args['opt']['base']
)
optimizers = [opt]
# make sure that model is on first place in optimizers[0]
assert len(optimizers[0].param_groups[0]['params']) > 2
# Currently LR scheduler is completely disabled
assert args['opt']['features_w']['lr'] == args['opt']['embedding_w']['lr']
return OptimizerGroup(optimizers)
def read_num_epoch_trained(db_path):
"""
Read information about the the number of epochs trained from db
"""
try:
f = shelve.open(db_path, flag='r')
except Exception as e:
logging.debug(e)
raise IOError('Db file {} not found!'.format(db_path))
if 'metrics' in f:
try:
m = f['metrics']
max_epoch = np.max(list(m.keys()))
except EOFError:
max_epoch = -1
else:
max_epoch = -1
f.close()
return max_epoch + 1
def read_ckpt_info_from_df(db_path):
"""
Read information about the best checkpoint from the db file
"""
try:
f = shelve.open(db_path, flag='r')
except Exception as e:
logging.debug(e)
raise IOError('Db file {} not found!'.format(db_path))
m = f['metrics']
epochs = np.arange(0, np.max(list(m.keys())))
best_epoch_idx = np.argmax([m[e]['score']['eval']['final'][1][0] for e in epochs])
best_epoch = epochs[best_epoch_idx]
best_recall = m[best_epoch]['score']['eval']['final'][1][0]
f.close()
return best_epoch, best_recall
def wandb_log_metrics(metrics, e):
metric_names = [
*['R@{}'.format(i) for i in [1,]],
]
metric_values = [*metrics[e]['score']['eval']['final'][1],
]
# w&b doesn't allow negative step number, use 0 again in that case
step = e if e >= 0 else 0
wnb.log({k: v for k, v in zip(metric_names, metric_values)}, step=step)
def log_extra_info_after_epoch(args, criterion):
if args['criterion']['selected'] == 'MarginLoss' \
and args['criterion']['types']['MarginLoss']['lr_beta'] > 0:
beta = criterion.beta.detach().cpu().numpy()
k = min(len(beta) // 2, 10)
logging.info(' - Margin loss beta: [{} ... {}]'.format(
' '.join(str(round(i.item(), 3)) for i in beta[:k]),
' '.join(str(round(i.item(), 3)) for i in beta[-k:])
)
)
def start(args, metrics):
"""
Import `plt` after setting `matplotlib` backend to `agg`, because `tkinter`
missing. If `agg` set, when this module is imported, then plots can not
be displayed in jupyter notebook, because backend can be set only once.
"""
db_path = os.path.join(args['log']['path'], args['log']['name'])
if os.path.exists(db_path + '.dat'):
print(f'Found db file: {db_path}.dat')
num_epochs_trained = read_num_epoch_trained(db_path)
if num_epochs_trained > args['nb_epochs'] - 10:
print(f'The model was already trained for '
f'{num_epochs_trained}/{args["nb_epochs"]}\n'
f'Aborting.')
return
elif num_epochs_trained > 0:
print(f'The model was already trained only for '
f'{num_epochs_trained}/{args["nb_epochs"]}\n'
f'Retrain from scratch.')
import matplotlib.pyplot as plt
# create logging directory
os.makedirs(args['log']['path'], exist_ok = True)
# warn if log file exists already and wait for user interaction
import warnings
_fpath = os.path.join(args['log']['path'], args['log']['name'])
if os.path.exists(_fpath):
warnings.warn('Log file exists already: {}'.format(_fpath))
print('Appending underscore to log file and database')
args['log']['name'] += '_'
logging.basicConfig(
format="%(asctime)s %(message)s",
level=logging.DEBUG,
handlers=[
logging.FileHandler(
"{0}/{1}.log".format(args['log']['path'], args['log']['name'])
),
logging.StreamHandler()
]
)
env_cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
logging.info('--\nThe script was run with the following command:\n' + \
'==================================================\n' + \
(
f'CUDA_VISIBLE_DEVICES={env_cuda_visible_devices} '
if env_cuda_visible_devices else ''
) + \
'python ' + ' '.join(sys.argv) + '\n' +
'==================================================\n')
logging.info(f'Hostname {socket.gethostname()}')
logging.info('\n' + get_pretty_env_info())
# print summary of args
logging.info(
json.dumps_(obj = args, indent=4, cls = JSONEncoder, sort_keys = True)
)
torch.cuda.set_device(args['cuda_device'])
if not os.path.isdir(args['log']['path']):
os.mkdir(args['log']['path'])
seed = args['random_seed']
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # set random seed for all gpus
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
global clustering_random_state
if args['clustering_random_state'] is not None:
clustering_random_state = np.random.RandomState(args['clustering_random_state'])
# print out GPU info, since different GPU architectures may act differently during training
logging.info('Current GPU information: {}'.format(torch.cuda.get_device_properties(torch.cuda.current_device())))
lock_faiss_gpu_memory(args)
model = metriclearning.model.make(args).cuda()
#wnb.watch(model)
if args['checkpoint'] is None:
ckpt_paths = [os.path.join(args['log']['path'], args['log']['name'] + \
'-before-finetune.pt'),
os.path.join(args['log']['path'], args['log']['name'] + \
'.pt')]
for p in ckpt_paths:
if os.path.exists(p):
print('### Not loading the checkpoint. Retrain again')
break
args['checkpoint'] = p
if args['checkpoint'] is not None:
logging.info('Loading checkpoint from {}'.format(args['checkpoint']))
if not os.path.exists(args['checkpoint']):
logging.error('Checkpoint {} not found!'.format(args['checkpoint']))
raise IOError(args['checkpoint'])
db_path = os.path.splitext(args['checkpoint'])[0]
if '-full-emb-' in db_path:
db_path = db_path.rsplit('before-finetune', 1)[0]
db_path = db_path.rsplit('-full-emb-', 1)[0]
db_path = db_path.rsplit('_ep', 1)[0]
else:
db_path = db_path.rsplit('-before-finetune', 1)[0]
db_path = db_path.rsplit('_ep', 1)[0]
best_epoch, best_recall = read_ckpt_info_from_df(db_path)
m = re.search(r'ep(\d+)\.pt', args['checkpoint'])
if m is not None:
start_epoch = int(m.groups()[0]) + 1
else:
start_epoch = best_epoch + 1
# TODO: alpha of the Npair loss are not stored,
# checkpoint of a model trained with Npair-loss won't give you exact same result
args, model = load_mask_model(args, args['checkpoint'])
logging.info('Loaded model at epoch {}; best_epoch: {}, R@1={}'.format(start_epoch - 1, best_epoch, best_recall))
else:
start_epoch = 0
best_epoch = -1
best_recall = 0
dataloaders = {}
for dl_type in ['init', 'eval']:
if args['dataset']['selected'] in ['inshop', 'market']:
# query and gallery initialized in `make_clustered_dataloaders`
if dl_type == 'init':
dataloaders[dl_type] = dataset.loader.make_loader(args, model,
dl_type, inshop_type = 'train')
else:
dataloaders[dl_type] = dataset.loader.make_loader(args, model,
dl_type)
criterion = get_criterion(args)
opt = get_optimizer(args, model, criterion)
model.opt = opt.optimizers[0]
if args['hierarchy_method'] in ['top_bot', 'bot_top']:
if args['hierarchy_method'] == 'top_bot':
#NOTE: args['nb_clusters_final'] is number of cluster to be reached at the end
# args['nb_clusters'] becomes the current clusters num
args['nb_clusters_final'] = args['nb_clusters']
args['nb_clusters'] = 1
if start_epoch > 0:
assert args['checkpoint'] is not None
if start_epoch // args['recluster']['mod_epoch'] > math.log(args['nb_clusters_final'], 2) * args['recluster']['mod_epoch']:
args['nb_clusters'] = args['nb_clusters_final']
else:
args['nb_clusters'] = int(2**(start_epoch // args['recluster']['mod_epoch']))
logging.info('Start from {} clusters'.format(args['nb_clusters']))
elif args['hierarchy_method'] == 'bot_top':
args['nb_clusters_final'] = 1
args['nb_clusters'] = args['nb_clusters']
logging.info('From {} to {} clusters.'.format(
args['nb_clusters'], args['nb_clusters_final'])
)
elif args['hierarchy_method'] == 'none':
pass
else:
logging.error('--- hierarchy method not known, may be typo ---')
raise SystemExit
# we need faiss to evaluate
release_faiss_gpu_memory()
logging.info("Evaluating initial model...")
metrics[-1] = {
'score': evaluate(model, dataloaders, logging,
['final'] + \
(['penultimate'] if args['penultimate_at_eval'] else []),
['eval'],
backend=args['backend'],
args = args)}
wandb_log_metrics(metrics, -1)
dataloaders['train'], X, C, T, I = make_clustered_dataloaders(model,
dataloaders['init'], args, reassign = False, logging = logging)
lock_faiss_gpu_memory(args)
if args['save_masks']:
metrics[-1].update({'C': C, 'T': T, 'I': I, 'masks': [model_mask.detach().cpu().numpy().astype(np.half) for model_mask in model.masks]})
else:
metrics[-1].update({'C': C, 'T': T, 'I': I})
logging.debug('Printing only first 200 classes (because of SOProducts)')
for c in range(args['nb_clusters']):
if len(dataloaders['train'][c].dataset.ys):
logging.debug(str(np.bincount(dataloaders['train'][c].dataset.ys)[:200]))
plt.hist(dataloaders['train'][c].dataset.ys, bins = 100)
plt.show()
else:
logging.debug('Empty cluster {}'.format(c))
logging.info("Training for {} epochs.".format(args['nb_epochs']))
t1 = time.time()
def freeze():
nonlocal opt
# freeze backbone, just set LR to 0
logging.info('Freezing backbone at epoch {}.'.format(e))
opt.optimizers[0].param_groups[0]['lr'] = 0
def unfreeze():
nonlocal opt
logging.info('Unfreezing backbone at epoch {}.'.format(e))
opt.optimizers[0].param_groups[0]['lr'] = opt.optimizers[0]\
.param_groups[1]['lr']
masks_freezer = MasksFreezer(model.opt)
for e in range(start_epoch, args['nb_epochs']):
is_best = False
model.eval()
metrics[e] = {}
time_per_epoch_1 = time.time()
losses_per_epoch = collections.defaultdict(list)
# initially set mod epoch freeze and unfreeze
assert args['mod_epoch_freeze'] < args['recluster']['mod_epoch']
if args['stop_recluster']:
if (args['hierarchy_method'] == 'top_bot' and \
args['nb_clusters'] == args['nb_clusters_final']) or \
(args['hierarchy_method'] == 'none' and e >= args['mod_epoch_freeze']):
logging.info('Stopping to recluster.')
logging.info(
'Setting mod epoch to 1000, mod epoch freeze to 0.')
args['recluster']['mod_epoch'] = 1000
args['mod_epoch_freeze'] = 0
logging.info(
'Setting LR of features to LR of embedding.')
opt.optimizers[0].param_groups[0]['lr'] = opt.optimizers[
0
].param_groups[1]['lr']
args['stop_recluster'] = False
if e >= args['force_full_embedding_epoch']:
args['force_full_embedding'] = True
if e == args['force_full_embedding_epoch']:
#unfreeze()
logging.info(
'Starting to use the entire embedding every iter...')
if args['recluster']['enabled'] and args['nb_clusters'] > 0:
if e % args['recluster']['mod_epoch'] == 0 or \
e % args['recluster']['mod_epoch'] < \
args['mod_epoch_freeze']:
if args['mod_epoch_freeze'] > 0:
freeze()
elif e % args['recluster']['mod_epoch'] == \
args['mod_epoch_freeze'] and \
args['mod_epoch_freeze'] > 0:
unfreeze()
if e % args['recluster']['mod_epoch'] == 0:
logging.info("Reclustering dataloaders...")
if args['recluster']['method']['selected'] == 'reassign':
release_faiss_gpu_memory()
dataloaders['train'], X, C, T, I = \
make_clustered_dataloaders(
model, dataloaders['init'], args, reassign = True,
C_prev = C, I_prev = I, logging = logging, e = e)
lock_faiss_gpu_memory(args)
for c in range(args['nb_clusters']):
ys = dataloaders['train'][c].dataset.ys
if len(ys):
logging.debug('Cluster {}: num GT classes = {} ({} samples)'\
.format(c, len(np.unique(ys)), len(ys)))
else:
logging.debug('Cluster {}: Empty!'.format(c))
else:
release_faiss_gpu_memory()
dataloaders['train'], X, C, T, I = \
make_clustered_dataloaders(
model, dataloaders['init'], args, logging = logging)
lock_faiss_gpu_memory(args)
if args['save_masks']:
metrics[e].update({'C': C, 'T': T, 'I': I, 'masks': [model_mask.detach().cpu().numpy().astype(np.half) for model_mask in model.masks]})
else:
metrics[e].update({'C': C, 'T': T, 'I': I})
if args['masks_freeze_one_cluster']:
if args['nb_clusters'] == 1:
masks_freezer.freeze(epoch=e)
else:
masks_freezer.unfreeze()
mdl = dataset.loader.merge_dataloaders(
dataloaders['train'], **args['dataloader']['merged']
)
logging.info(f'Optimizer: {opt.optimizers[0]}')
logging.info('LR of backbone: {}'.format(
opt.optimizers[0].param_groups[0]['lr']
))
model.train()
num_batches_approx = max(
[len(dl) for dl in dataloaders['train']]
) * len(dataloaders['train'])
first_batch_run = True
for batch, dset in tqdm(mdl,
total=num_batches_approx,
disable=num_batches_approx < 100,
desc='Train epoch {}'.format(e)):
loss, loss_masks = train_batch(model, criterion, opt, args, batch, dset, first_run=first_batch_run)
# now disable first_batch_run, to disable printing of log
first_batch_run = False
losses_per_epoch['loss_metric'].append(loss)
losses_per_epoch['loss_masks'].append(loss_masks)
logging.info(model.summarize_masks())
time_per_epoch_2 = time.time()
mean_loss_metric = np.mean(losses_per_epoch['loss_metric'])
mean_loss_masks = np.mean(losses_per_epoch['loss_masks'])
logging.info(
"Epoch: {}, loss: {} + {}, time (seconds): {:.2f}.".format(
e,
mean_loss_metric,
mean_loss_masks,
time_per_epoch_2 - time_per_epoch_1
)
)
log_extra_info_after_epoch(args, criterion)
release_faiss_gpu_memory()
tic = time.time()
metrics[e].update({
'score': evaluate(model, dataloaders, logging,
['final'] + \
(['penultimate'] if args['penultimate_at_eval'] else []),
['eval'],
backend=args['backend'],
args = args),
'loss': {
'train': mean_loss_metric,
'loss_masks': mean_loss_masks,
},
})
logging.debug('Evaluation total elapsed time: {:.2f} s'.format(time.time() - tic))
wandb_log_metrics(metrics, e)
wnb.log({
'loss_metric': mean_loss_metric,
'loss_masks': mean_loss_masks
}, step=e)
lock_faiss_gpu_memory(args)
recall_curr = metrics[e]['score']['eval']['final'][1][0]
if recall_curr > best_recall:
best_recall = recall_curr
best_epoch = e
is_best = True
logging.info('Best epoch!')
wnb.log({'R@1_best': best_recall}, step=best_epoch)
model.current_epoch = e
with shelve.open(
os.path.join(
args['log']['path'], args['log']['name']),
writeback = True
) as _f:
if 'args' not in _f:
_f['args'] = args
if 'metrics' not in _f:
_f['metrics'] = {}
# if initial model evaluated, append metrics
if -1 in metrics:
_f['metrics'][-1] = metrics[-1]
_f['metrics'][e] = metrics[e]
if args['save_model'] and is_best:
if e < args['finetune_epoch']:
if not args['force_full_embedding']:
save_suff = '-before-finetune.pt'
else:
save_suff = '-full-emb-before-finetune.pt'
else:
save_suff = '.pt'
torch.save(
model.state_dict(),
os.path.join(
args['log']['path'], args['log']['name'] + save_suff
)
)
if args['save_model'] and not isinstance(args['save_model'], bool) and e % args['save_model'] == 1:
torch.save(
model.state_dict(),
os.path.join(
args['log']['path'], args['log']['name'] + '_ep{}.pt'.format(e)
)
)
t2 = time.time()
logging.info("Total training time (minutes): {:.2f}.".format((t2 - t1) / 60))
logging.info("Best R@1 = {} at epoch {}.".format(best_recall, best_epoch))
def main():
import sys
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--experiment', required = True, type = str)
parser_args = parser.parse_args(sys.argv[1:3])
from importlib import import_module
args = import_module('experiment.' + parser_args.experiment).make_args()
matplotlib.use('agg')
global wnb
if not args['wandb_enabled']:
class Blank:
def log(*args, **kwargs):
pass
wnb = Blank()
else: