Skip to content

Latest commit

 

History

History
366 lines (250 loc) · 11.5 KB

MPPQwen14B_README.md

File metadata and controls

366 lines (250 loc) · 11.5 KB

似乎被爱可可老师转发了🥹,感谢大家关注!

MiniGPT4Qwen相关可以跳转到:MiniGPT4Qwen_README.md

MPP-Qwen14B

知乎博客:https://zhuanlan.zhihu.com/p/687106694

多卡推理以及chatml模板知乎博客:https://zhuanlan.zhihu.com/p/698549757

已支持MPP-Qwen-14B模型在2张RTX4090 24GB上预训练和6张RTX4090 24GB上sft的deepspeed流水线并行训练!

sft后的权重(百度网盘):

Quick Start

你可以使用automap_inference.ipynb(link)来做简单的推理!

准备的权重文件参考:模型下载部分,以及百度网盘中的sft文件即可

然后你就可以使用automap_inference.ipynb快速尝试对话了!

记得修改checkpoint_path到你下载的百度网盘sft权重的路径哦

Introduction

去年11月发布的LLaVA1.5,用可以接受的数据量(558K Pretrain + 665K SFT),以Vicuna-v1.5-13B为基座,得到了非常好的性能。后续被学术界和工业界广泛follow。

在读过其在github上的README后发现,24GB的消费级别显卡(RTX3090、RTX4090等)仅可以完成以Vicuna-v1.5-7B为底座的训练,而且Open出的是LoRA的配置。

为了不让贫穷限制想象力,接着MiniGPT4Qwen-14B的deepspeed流水线并行框架,推出MPP-Qwen14B(Multimodal Pipeline Parallel-Qwen14B),全程在RTX4090 24GB上完成只训练linear层的Pretrain阶段和LLM全参数训练的SFT阶段。

附属项目

所需计算资源

  • MPP-Qwen14B Pretrain:2张RTX 4090 24GB
  • MPP-Qwen14B SFT:6张RTX 4090 24GB

TODO LIST

  • 支持model parallelism的推理(使用了transformers的device_map="auto"
  • 开源sft权重(huggingface或百度网盘)
  • 开源pretrain权重
  • 开源处理好的pretrain和sft的数据集json文件
  • 开源pretrain和sft代码和config
  • 支持deepspeed的流水线并行

Installation

conda create -n minigpt4qwen python=3.8
conda activate minigpt4qwen
pip install -e .

Getting Started

模型下载

请将模型权重下载后都放在 cache/ckpt

mkdir cache
cd cache
mkdir ckpt
mkdir dataset

1.下载BLIP2的相关权重

(a) eva vit-g

eva_vit_g.pth

wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth

(b) bert-base-uncased

huggingface,下载如下的文件即可

image-20231026013454256

(c) blip2_pretrained_flant5xxl

blip2_pretrained_flant5xxl.pth

wget https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth

2.下载Qwen-14B-Chat的权重

Qwen-14B-chat huggingface

3.获得pretrain后的checkpoint(optional,如果你想直接在这上面做sft的话)

(建议放入 lavis/output/pp_14b/pretrain)

在本仓库的release里放有checkpoint,可以直接下载

wget https://github.com/Coobiw/MiniGPT4Qwen/releases/download/MPP-Qwen14B_ckpt-and-data/ckpt-and-data.zip
unzip ckpt-and-data.zip

目录结构:

├── cache
│   ├── ckpt
│   │   ├── bert-base-uncased
│   │   ├── blip2
│   │   │   ├── blip2_pretrained_flant5xxl.pth
│   │   ├── eva
│   │   │   ├── eva_vit_g.pth
│   │   ├── Qwen-14B-chat
  1. sft后的权重(百度网盘):

训练

数据准备

MPP-Qwen14B使用了LLaVA的Pretrain和指令微调的数据集,所以整体数据获取流程与LLaVA仓库说明的大体一致。

预训练数据:558K subset of the LAION-CC-SBU dataset with BLIP captions,去该huggingface链接下载images.zipblip_laion_cc_sbu_558k.json

指令微调数据:下载coco的train2017里的图片:

wget http://images.cocodataset.org/zips/train2017.zip
unzip train2017.zip

MPP-Qwen14B format的标注json文件:在本仓库的release中(https://github.com/Coobiw/MiniGPT4Qwen/releases/tag/MPP-Qwen14B_ckpt-and-data):

wget https://github.com/Coobiw/MiniGPT4Qwen/releases/download/MPP-Qwen14B_ckpt-and-data/ckpt-and-data.zip
unzip ckpt-and-data.zip

然后按照下面的目录结构组织文件

最后需要将数据集放入 ./cache/dataset中,目录结构如下:

├── cache
│   └── dataset
│       ├── llava_pretrain
│   │   │   ├── blip_laion_cc_sbu_558k
│   │   │   |   ├── images
│   │   │   |   ├── llava_pretrain_minigpt4qwen_format.json
│       ├── llava_instuct
│   │   │   ├── coco
│   │   │   |   ├── train2017
│   │   │   ├── llava_instruction_100k.json

数据tokens数目分析

python tokenize_analysis.py

根据此,会在train的配置文件中,pretrain和sft的max_txt_len分别设置为256和512

运行train_pipeline.py进行流水线并行训练

Pretrain:

python -m torch.distributed.run --nproc_per_node=2 train_pipeline.py --cfg-path lavis/projects/pp_qwen14b/pretrain_pp.yaml --num-stages 2

SFT:

python -m torch.distributed.run --nproc_per_node=6 train_pipeline.py --cfg-path lavis/projects/pp_qwen14b/sft_100k_pp.yaml --num-stages 6

deepspeed权重转换为pth文件

预训练阶段

(仅转换linear projection层)

python pipe_proj2pth.py --ckpt-dir lavis/output/pp_14b/pretrain/global_stepxxx

转换后,模型文件会存储在ckpt_dir底下,名为model.pth

sft阶段

(需要转换projection层和所有LLM的参数)

python pipemodel2pth.py --ckpt-dir lavis/output/pp_14b/sft/global_stepxxx

转换后,模型文件会存储在ckpt_dir底下,名为unfreeze_llm_model.pth

推理

运行命令行demo

Single-GPU Inference(显存>=32GB才可以):

python cli_demo.py --model-type qwen14b_chat -c lavis/output/pp_14b/sft/global_step296/unfreeze_llm_model.pth

MultiGPU(llm使用device_map="auto"加载,需要两张以上GPU,加起来的显存大于32GB即可,本项目使用AutoDL的2x24GB 4090):

python cli_demo.py --model-type qwen14b_chat -c lavis/output/pp_14b/sft/global_step296/unfreeze_llm_model.pth --llm_device_map "auto"

使用auto-map时的显存占用情况:

CPU(速度极慢):

python cli_demo.py -c xxxxxx --model-type qwen14b_chat --cpu-only # 如果显存足够(>32GB)可以不要--cpu-only

运行后需要输入图片路径,输入后进入对话

常见操作:

:help 查看help

:clear 清空当前命令行

:clh 清空对话历史(但图像输入不会更改)

:his 查看对话历史

:img 查看输入的图像路径

运行gradio webui demo

Single-GPU Inference(显存>=32GB才可以):

python webui_demo.py --model-type qwen14b_chat -c lavis/output/pp_14b/sft/global_step296/unfreeze_llm_model.pth

MultiGPU(llm使用device_map="auto"加载,需要两张以上GPU,加起来的显存大于32GB即可,本项目使用AutoDL的2x24GB 4090):

python webui_demo.py --model-type qwen14b_chat -c lavis/output/pp_14b/sft/global_step296/unfreeze_llm_model.pth --llm_device_map "auto"

CPU:

python webui_demo.py -c xxxxxx --model-type qwen14b_chat --cpu-only # 如果显存足够(>30GB)可以不要--cpu-only

MPP-Qwen14B对话示例

Really Interesting Case(compared with GPT-4o)

Our model:

GPT-4o:

Our model:

GPT-4o:

可以看出,我们的模型主要基于一些“常识”,如:猫大概率是该趴在地上的,所以总认为趴在地上的是真猫

而GPT-4o这种更强大的模型,会更基于视觉上的毛的纹理以及眼睛,来判断是否为living cat,很有意思的cases!

Acknowledgement

  • Lavis 本仓库是基于lavis进行构建的,且使用了其中BLIP2的ViT和Q-former
  • QwenLM 本仓库的语言模型采用Qwen-14B-Chat
  • DeepSpeed 👍
  • DeepSpeedExamples 👍👍
  • LLaVA 参照其训练范式,使用了其预训练和指令微调数据

License

  • 本仓库的许多代码是基于Lavis 的,其采用 BSD 3-Clause License.
  • 本仓库采用Qwen-7B-Chat,支持商用和科研、开发用途,其License为LICENSE