Skip to content

Commit fb6a2a2

Browse files
Add files via upload
1 parent dece418 commit fb6a2a2

21 files changed

+7146
-0
lines changed

Python_Coding_Test1.ipynb

Lines changed: 540 additions & 0 deletions
Large diffs are not rendered by default.

Python_Daily_Challenge1.ipynb

Lines changed: 188 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,188 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"id": "4221f9eb-836e-45e8-86ed-b5399fb7f556",
6+
"metadata": {
7+
"id": "4221f9eb-836e-45e8-86ed-b5399fb7f556"
8+
},
9+
"source": [
10+
"# Daily Challenge Questions"
11+
]
12+
},
13+
{
14+
"cell_type": "markdown",
15+
"id": "e71d7e35-2485-40c2-9e12-18b4d04dd701",
16+
"metadata": {
17+
"id": "e71d7e35-2485-40c2-9e12-18b4d04dd701"
18+
},
19+
"source": [
20+
"# Question 1:\n",
21+
"\n",
22+
"Given the nested list **data** = [[['a', 'b', 'c'], ['d', 'e', 'f']], [['g', 'h', 'i'], ['j', 'k', 'l']]], using list comprehension, **create a new list containing all vowels from data.**\n",
23+
"\n",
24+
"**Output:**\n",
25+
"\n",
26+
"For the given data, the output list should be **['a', 'e', 'i'].**"
27+
]
28+
},
29+
{
30+
"cell_type": "code",
31+
"execution_count": null,
32+
"id": "72807312-6d82-4b89-89b8-3f5ebf4fc340",
33+
"metadata": {
34+
"colab": {
35+
"base_uri": "https://localhost:8080/"
36+
},
37+
"id": "72807312-6d82-4b89-89b8-3f5ebf4fc340",
38+
"outputId": "ea13e8bc-eb07-4311-d0ea-59371001142e"
39+
},
40+
"outputs": [
41+
{
42+
"output_type": "stream",
43+
"name": "stdout",
44+
"text": [
45+
"Vowels present in given data are: ['a', 'e', 'i']\n"
46+
]
47+
}
48+
],
49+
"source": [
50+
"data = [[['a', 'b', 'c'], ['d', 'e', 'f']], [['g', 'h', 'i'], ['j', 'k', 'l']]]\n",
51+
"\n",
52+
"# looping through sub-lists using list comprehension\n",
53+
"# sub-list in list\n",
54+
"# sub-sub-list in sub-list\n",
55+
"# sub-sub-sub-list in sub-sub-list\n",
56+
"\n",
57+
"vowel_list = [x for ele_list in data for coll_list in ele_list for x in coll_list if x in ['a', 'e', 'i','o','u']]\n",
58+
"\n",
59+
"print(\"Vowels present in given data are: \", vowel_list)"
60+
]
61+
},
62+
{
63+
"cell_type": "markdown",
64+
"id": "1bf9e7f4-885e-4f16-8e73-1edc83028db6",
65+
"metadata": {
66+
"id": "1bf9e7f4-885e-4f16-8e73-1edc83028db6"
67+
},
68+
"source": [
69+
" # Question 2:\n",
70+
"\n",
71+
"\n",
72+
"Given the nested tuple **info** = ((('Alice', 25), ('Bob', 30)), (('Charlie', 22), ('David', 28))), using tuple unpacking and list comprehension, create a new list containing the **ages of all individuals whose names start with 'D'**.\n",
73+
"\n",
74+
"**Output:**\n",
75+
"\n",
76+
"For the given info, the output list should be [28,26,32,27]."
77+
]
78+
},
79+
{
80+
"cell_type": "code",
81+
"execution_count": null,
82+
"id": "1feeba73-778c-49dd-8c9c-580d0dc9b364",
83+
"metadata": {
84+
"id": "1feeba73-778c-49dd-8c9c-580d0dc9b364",
85+
"colab": {
86+
"base_uri": "https://localhost:8080/"
87+
},
88+
"outputId": "d8b59321-938c-4c8b-9f9c-00cae5f5d464"
89+
},
90+
"outputs": [
91+
{
92+
"output_type": "stream",
93+
"name": "stdout",
94+
"text": [
95+
"[28, 26, 32, 27]\n"
96+
]
97+
}
98+
],
99+
"source": [
100+
"info = (\n",
101+
" (('Alice', 25), ('Bob', 30)),\n",
102+
" (('Charlie', 22), ('David', 28)),\n",
103+
" (('Diana', 26), ('Derek', 32)),\n",
104+
" (('Daniel', 27), ('Emily', 29))\n",
105+
")\n",
106+
"\n",
107+
"# looping through sub-tuples using list comprehension\n",
108+
"# sub-tuple in tuple\n",
109+
"# (name,age) in sub-tuple\n",
110+
"# if name.startswith('D') --> append age into list\n",
111+
"age_list_whose_name_startswith_letter_D = [age for x in info for (name,age) in x if name.startswith(\"D\")]\n",
112+
"print(age_list_whose_name_startswith_letter_D)"
113+
]
114+
},
115+
{
116+
"cell_type": "markdown",
117+
"id": "07ac759c-f8ac-4779-ba86-0a0a2cea5a6e",
118+
"metadata": {
119+
"id": "07ac759c-f8ac-4779-ba86-0a0a2cea5a6e"
120+
},
121+
"source": [
122+
"# Question 3\n",
123+
"\n",
124+
"Given the nested dictionary **data** = {'A': {'x': [1, 2, 3]}, 'B': {'y': [4, 5, 6]}}, using dictionary comprehension, create a new dictionary where each key is from the original dictionary and each value is the sum of its associated list values.\n",
125+
"\n",
126+
"**Output:**\n",
127+
"\n",
128+
"For the given data, the output dictionary should be {'A': 6, 'B': 15}.\n",
129+
"\n"
130+
]
131+
},
132+
{
133+
"cell_type": "code",
134+
"execution_count": null,
135+
"id": "d693d5d8-66b4-4b97-bab8-223ab01f6e24",
136+
"metadata": {
137+
"id": "d693d5d8-66b4-4b97-bab8-223ab01f6e24",
138+
"colab": {
139+
"base_uri": "https://localhost:8080/"
140+
},
141+
"outputId": "099e7e91-1300-490c-d48e-2208ff5826fa"
142+
},
143+
"outputs": [
144+
{
145+
"output_type": "stream",
146+
"name": "stdout",
147+
"text": [
148+
"{'A': 6, 'B': 15}\n"
149+
]
150+
}
151+
],
152+
"source": [
153+
"data = {'A': {'x': [1, 2, 3]}, 'B': {'y': [4, 5, 6]}}\n",
154+
"\n",
155+
"# looping through sub-values using dictionary comprehension\n",
156+
"# (key,value)pair in dict.items()\n",
157+
"# val_list in value.values()\n",
158+
"# sum(val_list)\n",
159+
"dict_new = {m: sum(i) for m,n in data.items() for i in n.values()}\n",
160+
"print(dict_new)"
161+
]
162+
}
163+
],
164+
"metadata": {
165+
"kernelspec": {
166+
"display_name": "Python 3 (ipykernel)",
167+
"language": "python",
168+
"name": "python3"
169+
},
170+
"language_info": {
171+
"codemirror_mode": {
172+
"name": "ipython",
173+
"version": 3
174+
},
175+
"file_extension": ".py",
176+
"mimetype": "text/x-python",
177+
"name": "python",
178+
"nbconvert_exporter": "python",
179+
"pygments_lexer": "ipython3",
180+
"version": "3.11.8"
181+
},
182+
"colab": {
183+
"provenance": []
184+
}
185+
},
186+
"nbformat": 4,
187+
"nbformat_minor": 5
188+
}

Python_Daily_Challenge2.ipynb

Lines changed: 167 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,167 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"id": "4221f9eb-836e-45e8-86ed-b5399fb7f556",
6+
"metadata": {
7+
"id": "4221f9eb-836e-45e8-86ed-b5399fb7f556"
8+
},
9+
"source": [
10+
"# Daily Challenge Questions July 16"
11+
]
12+
},
13+
{
14+
"cell_type": "markdown",
15+
"id": "e71d7e35-2485-40c2-9e12-18b4d04dd701",
16+
"metadata": {
17+
"id": "e71d7e35-2485-40c2-9e12-18b4d04dd701"
18+
},
19+
"source": [
20+
"# Question 1:\n",
21+
"\n",
22+
"Given the nested tuple info = ((('Emma', 26), ('Frank', 32)), (('Grace', 29), ('Henry', 27)), (('Ivy', 30), ('Jack', 25)), (('Kate', 28), ('Leo', 31))).\n",
23+
"\n",
24+
"Using tuple unpacking and list comprehension, create a new list containing the **ages of all individuals whose names end with 'y'.**"
25+
]
26+
},
27+
{
28+
"cell_type": "code",
29+
"execution_count": null,
30+
"id": "72807312-6d82-4b89-89b8-3f5ebf4fc340",
31+
"metadata": {
32+
"colab": {
33+
"base_uri": "https://localhost:8080/"
34+
},
35+
"id": "72807312-6d82-4b89-89b8-3f5ebf4fc340",
36+
"outputId": "8ec93012-22fb-4846-f644-75ce2b5e531c"
37+
},
38+
"outputs": [
39+
{
40+
"output_type": "stream",
41+
"name": "stdout",
42+
"text": [
43+
"[27, 30]\n"
44+
]
45+
}
46+
],
47+
"source": [
48+
"info = ((('Emma', 26), ('Frank', 32)), (('Grace', 29), ('Henry', 27)), (('Ivy', 30), ('Jack', 25)), (('Kate', 28), ('Leo', 31)))\n",
49+
"\n",
50+
"age_of_individual_whose_name_ends_with_y = [age for pair in info for (name,age) in pair if name.endswith('y')]\n",
51+
"\n",
52+
"print(age_of_individual_whose_name_ends_with_y)"
53+
]
54+
},
55+
{
56+
"cell_type": "markdown",
57+
"id": "1bf9e7f4-885e-4f16-8e73-1edc83028db6",
58+
"metadata": {
59+
"id": "1bf9e7f4-885e-4f16-8e73-1edc83028db6"
60+
},
61+
"source": [
62+
" # Question 2:\n",
63+
"\n",
64+
"Given the nested list data = [[['a', 'b', 'c'], ['d', 'e', 'f']], [['g', 'h', 'i'], ['j', 'k', 'l']]].\n",
65+
"\n",
66+
"Using list comprehension, create a **new list containing all characters from data that are not vowels ('a', 'e', 'i', 'o', 'u').**"
67+
]
68+
},
69+
{
70+
"cell_type": "code",
71+
"execution_count": null,
72+
"id": "1feeba73-778c-49dd-8c9c-580d0dc9b364",
73+
"metadata": {
74+
"colab": {
75+
"base_uri": "https://localhost:8080/"
76+
},
77+
"id": "1feeba73-778c-49dd-8c9c-580d0dc9b364",
78+
"outputId": "f6b9f36f-fac0-4f3b-cd7f-a5dbddc4f5e3"
79+
},
80+
"outputs": [
81+
{
82+
"output_type": "stream",
83+
"name": "stdout",
84+
"text": [
85+
"['b', 'c', 'd', 'f', 'g', 'h', 'j', 'k', 'l']\n"
86+
]
87+
}
88+
],
89+
"source": [
90+
"data = [[['a', 'b', 'c'], ['d', 'e', 'f']], [['g', 'h', 'i'], ['j', 'k', 'l']]]\n",
91+
"\n",
92+
"consonant_in_data = [x for collections in data for items in collections for x in items if x not in ['a', 'e', 'i', 'o', 'u']]\n",
93+
"\n",
94+
"print(consonant_in_data)"
95+
]
96+
},
97+
{
98+
"cell_type": "markdown",
99+
"id": "07ac759c-f8ac-4779-ba86-0a0a2cea5a6e",
100+
"metadata": {
101+
"id": "07ac759c-f8ac-4779-ba86-0a0a2cea5a6e"
102+
},
103+
"source": [
104+
"# Question 3\n",
105+
"\n",
106+
"Given the nested dictionary **data** = {'A': {'x': [1, 2, 3]}, 'B': {'y': [4, 5, 6]}}, using dictionary comprehension, create a new dictionary where each key is from the original dictionary and each value is the sum of its associated list values.\n",
107+
"\n",
108+
"**Output:**\n",
109+
"\n",
110+
"For the given data, the output dictionary should be {'A': 6, 'B': 15}.\n",
111+
"\n"
112+
]
113+
},
114+
{
115+
"cell_type": "code",
116+
"execution_count": null,
117+
"id": "d693d5d8-66b4-4b97-bab8-223ab01f6e24",
118+
"metadata": {
119+
"colab": {
120+
"base_uri": "https://localhost:8080/"
121+
},
122+
"id": "d693d5d8-66b4-4b97-bab8-223ab01f6e24",
123+
"outputId": "ed0f542b-ec8d-47a9-d903-167f94b2ad1e"
124+
},
125+
"outputs": [
126+
{
127+
"output_type": "stream",
128+
"name": "stdout",
129+
"text": [
130+
"{'A': 6, 'B': 15}\n"
131+
]
132+
}
133+
],
134+
"source": [
135+
"data = {'A': {'x': [1, 2, 3]}, 'B': {'y': [4, 5, 6]}}\n",
136+
"\n",
137+
"new_dict_data = {m : sum(i) for (m,n) in data.items() for i in n.values()}\n",
138+
"\n",
139+
"print(new_dict_data)"
140+
]
141+
}
142+
],
143+
"metadata": {
144+
"kernelspec": {
145+
"display_name": "Python 3 (ipykernel)",
146+
"language": "python",
147+
"name": "python3"
148+
},
149+
"language_info": {
150+
"codemirror_mode": {
151+
"name": "ipython",
152+
"version": 3
153+
},
154+
"file_extension": ".py",
155+
"mimetype": "text/x-python",
156+
"name": "python",
157+
"nbconvert_exporter": "python",
158+
"pygments_lexer": "ipython3",
159+
"version": "3.11.8"
160+
},
161+
"colab": {
162+
"provenance": []
163+
}
164+
},
165+
"nbformat": 4,
166+
"nbformat_minor": 5
167+
}

0 commit comments

Comments
 (0)