diff --git a/Muhammad_Ihtsham_Lhr.ipynb b/Muhammad_Ihtsham_Lhr.ipynb new file mode 100644 index 0000000..de02d65 --- /dev/null +++ b/Muhammad_Ihtsham_Lhr.ipynb @@ -0,0 +1,762 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello world\n" + ] + } + ], + "source": [ + "print \"Hello world\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df=pd.read_csv(\"/resources/data/chronic_kidney_disease_updated.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " age bp sg al su rbc pc pcc ba \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 48 80 1.020 1 0 ? normal notpresent notpresent \n", + "2 7 50 1.020 4 0 ? normal notpresent notpresent \n", + "3 62 80 1.010 2 3 normal normal notpresent notpresent \n", + "4 48 70 1.005 4 0 normal abnormal present notpresent \n", + "5 51 80 1.010 2 0 normal normal notpresent notpresent \n", + "6 60 90 1.015 3 0 ? ? notpresent notpresent \n", + "7 68 70 1.010 0 0 ? normal notpresent notpresent \n", + "8 24 ? 1.015 2 4 normal abnormal notpresent notpresent \n", + "9 52 100 1.015 3 0 normal abnormal present notpresent \n", + "10 53 90 1.020 2 0 abnormal abnormal present notpresent \n", + "11 50 60 1.010 2 4 ? abnormal present notpresent \n", + "12 63 70 1.010 3 0 abnormal abnormal present notpresent \n", + "13 68 70 1.015 3 1 ? normal present notpresent \n", + "14 68 70 ? ? ? ? ? notpresent notpresent \n", + "15 68 80 1.010 3 2 normal abnormal present present \n", + "16 40 80 1.015 3 0 ? normal notpresent notpresent \n", + "17 47 70 1.015 2 0 ? normal notpresent notpresent \n", + "18 47 80 ? ? ? ? ? notpresent notpresent \n", + "19 60 100 1.025 0 3 ? normal notpresent notpresent \n", + "20 62 60 1.015 1 0 ? abnormal present notpresent \n", + "21 61 80 1.015 2 0 abnormal abnormal notpresent notpresent \n", + "22 60 90 ? ? ? ? ? notpresent notpresent \n", + "23 48 80 1.025 4 0 normal abnormal notpresent notpresent \n", + "24 21 70 1.010 0 0 ? normal notpresent notpresent \n", + "25 42 100 1.015 4 0 normal abnormal notpresent present \n", + "26 61 60 1.025 0 0 ? normal notpresent notpresent \n", + "27 75 80 1.015 0 0 ? normal notpresent notpresent \n", + "28 69 70 1.010 3 4 normal abnormal notpresent notpresent \n", + "29 75 70 ? 1 3 ? ? notpresent notpresent \n", + ".. ... ... ... ... ... ... ... ... ... \n", + "371 69 70 1.020 0 0 normal normal notpresent notpresent \n", + "372 28 60 1.025 0 0 normal normal notpresent notpresent \n", + "373 72 60 1.020 0 0 normal normal notpresent notpresent \n", + "374 61 70 1.025 0 0 normal normal notpresent notpresent \n", + "375 79 80 1.025 0 0 normal normal notpresent notpresent \n", + "376 70 80 1.020 0 0 normal normal notpresent notpresent \n", + "377 58 70 1.025 0 0 normal normal notpresent notpresent \n", + "378 64 70 1.020 0 0 normal normal notpresent notpresent \n", + "379 71 60 1.025 0 0 normal normal notpresent notpresent \n", + "380 62 80 1.025 0 0 normal normal notpresent notpresent \n", + "381 59 60 1.020 0 0 normal normal notpresent notpresent \n", + "382 71 70 1.025 0 0 ? ? notpresent notpresent \n", + "383 48 80 1.025 0 0 normal normal notpresent notpresent \n", + "384 80 80 1.025 0 0 normal normal notpresent notpresent \n", + "385 57 60 1.020 0 0 normal normal notpresent notpresent \n", + "386 63 70 1.020 0 0 normal normal notpresent notpresent \n", + "387 46 70 1.025 0 0 normal normal notpresent notpresent \n", + "388 15 80 1.025 0 0 normal normal notpresent notpresent \n", + "389 51 80 1.020 0 0 normal normal notpresent notpresent \n", + "390 41 80 1.025 0 0 normal normal notpresent notpresent \n", + "391 52 80 1.025 0 0 normal normal notpresent notpresent \n", + "392 36 80 1.025 0 0 normal normal notpresent notpresent \n", + "393 57 80 1.020 0 0 normal normal notpresent notpresent \n", + "394 43 60 1.025 0 0 normal normal notpresent notpresent \n", + "395 50 80 1.020 0 0 normal normal notpresent notpresent \n", + "396 55 80 1.020 0 0 normal normal notpresent notpresent \n", + "397 42 70 1.025 0 0 normal normal notpresent notpresent \n", + "398 12 80 1.020 0 0 normal normal notpresent notpresent \n", + "399 17 60 1.025 0 0 normal normal notpresent notpresent \n", + "400 58 80 1.025 0 0 normal normal notpresent notpresent \n", + "\n", + " bgr ... pcv wbcc rbcc htn dm cad appet pe ane class \n", + "0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 121 ... 44 7800 5.2 yes yes no good no no ckd \n", + "2 ? ... 38 6000 ? no no no good no no ckd \n", + "3 423 ... 31 7500 ? no yes no poor no yes ckd \n", + "4 117 ... 32 6700 3.9 yes no no poor yes yes ckd \n", + "5 106 ... 35 7300 4.6 no no no good no no ckd \n", + "6 74 ... 39 7800 4.4 yes yes no good yes no ckd \n", + "7 100 ... 36 ? ? no no no good no no ckd \n", + "8 410 ... 44 6900 5 no yes no good yes no ckd \n", + "9 138 ... 33 9600 4.0 yes yes no good no yes ckd \n", + "10 70 ... 29 12100 3.7 yes yes no poor no yes ckd \n", + "11 490 ... 28 ? ? yes yes no good no yes ckd \n", + "12 380 ... 32 4500 3.8 yes yes no poor yes no ckd \n", + "13 208 ... 28 12200 3.4 yes yes yes poor yes no ckd \n", + "14 98 ... ? ? ? yes yes yes poor yes no ckd \n", + "15 157 ... 16 11000 2.6 yes yes yes poor yes no ckd \n", + "16 76 ... 24 3800 2.8 yes no no good no yes ckd \n", + "17 99 ... ? ? ? no no no good no no ckd \n", + "18 114 ... ? ? ? yes no no poor no no ckd \n", + "19 263 ... 37 11400 4.3 yes yes yes good no no ckd \n", + "20 100 ... 30 5300 3.7 yes no yes good no no ckd \n", + "21 173 ... 24 9200 3.2 yes yes yes poor yes yes ckd \n", + "22 ? ... 32 6200 3.6 yes yes yes good no no ckd \n", + "23 95 ... 32 6900 3.4 yes no no good no yes ckd \n", + "24 ? ... ? ? ? no no no poor no yes ckd \n", + "25 ? ... 39 8300 4.6 yes no no poor no no ckd \n", + "26 108 ... 29 8400 3.7 yes yes no good no yes ckd \n", + "27 156 ... 35 10300 4 yes yes no poor no no ckd \n", + "28 264 ... 37 9600 4.1 yes yes yes good yes no ckd \n", + "29 123 ... ? ? ? no yes no good no no ckd \n", + ".. ... ... ... ... ... ... ... ... ... ... ... ... \n", + "371 83 ... 50 9300 5.4 no no no good no no notckd \n", + "372 79 ... 51 6500 5.0 no no no good no no notckd \n", + "373 109 ... 52 10500 5.5 no no no good no no notckd \n", + "374 133 ... 47 9200 4.9 no no no good no no notckd \n", + "375 111 ... 40 8000 6.4 no no no good no no notckd \n", + "376 74 ... 48 9700 5.6 no no no good no no notckd \n", + "377 88 ... 53 9100 5.2 no no no good no no notckd \n", + "378 97 ... 49 6400 4.8 no no no good no no notckd \n", + "379 ? ... 42 7700 5.5 no no no good no no notckd \n", + "380 78 ... 50 5400 5.7 no no no good no no notckd \n", + "381 113 ... 54 6500 4.9 no no no good no no notckd \n", + "382 79 ... 40 5800 5.9 no no no good no no notckd \n", + "383 75 ... 51 6000 6.5 no no no good no no notckd \n", + "384 119 ... 49 5100 5.0 no no no good no no notckd \n", + "385 132 ... 42 11000 4.5 no no no good no no notckd \n", + "386 113 ... 52 8000 5.1 no no no good no no notckd \n", + "387 100 ... 43 5700 6.5 no no no good no no notckd \n", + "388 93 ... 50 6200 5.2 no no no good no no notckd \n", + "389 94 ... 46 9500 6.4 no no no good no no notckd \n", + "390 112 ... 52 7200 5.8 no no no good no no notckd \n", + "391 99 ... 52 6300 5.3 no no no good no no notckd \n", + "392 85 ... 44 5800 6.3 no no no good no no notckd \n", + "393 133 ... 46 6600 5.5 no no no good no no notckd \n", + "394 117 ... 54 7400 5.4 no no no good no no notckd \n", + "395 137 ... 45 9500 4.6 no no no good no no notckd \n", + "396 140 ... 47 6700 4.9 no no no good no no notckd \n", + "397 75 ... 54 7800 6.2 no no no good no no notckd \n", + "398 100 ... 49 6600 5.4 no no no good no no notckd \n", + "399 114 ... 51 7200 5.9 no no no good no no notckd \n", + "400 131 ... 53 6800 6.1 no no no good no no notckd \n", + "\n", + "[401 rows x 25 columns]\n" + ] + } + ], + "source": [ + "print df" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 NaN\n", + "1 ?\n", + "2 ?\n", + "3 normal\n", + "4 normal\n", + "5 normal\n", + "6 ?\n", + "7 ?\n", + "8 normal\n", + "9 normal\n", + "10 abnormal\n", + "11 ?\n", + "12 abnormal\n", + "13 ?\n", + "14 ?\n", + "15 normal\n", + "16 ?\n", + "17 ?\n", + "18 ?\n", + "19 ?\n", + "20 ?\n", + "21 abnormal\n", + "22 ?\n", + "23 normal\n", + "24 ?\n", + "25 normal\n", + "26 ?\n", + "27 ?\n", + "28 normal\n", + "29 ?\n", + " ... \n", + "371 normal\n", + "372 normal\n", + "373 normal\n", + "374 normal\n", + "375 normal\n", + "376 normal\n", + "377 normal\n", + "378 normal\n", + "379 normal\n", + "380 normal\n", + "381 normal\n", + "382 ?\n", + "383 normal\n", + "384 normal\n", + "385 normal\n", + "386 normal\n", + "387 normal\n", + "388 normal\n", + "389 normal\n", + "390 normal\n", + "391 normal\n", + "392 normal\n", + "393 normal\n", + "394 normal\n", + "395 normal\n", + "396 normal\n", + "397 normal\n", + "398 normal\n", + "399 normal\n", + "400 normal\n", + "Name: rbc, dtype: object\n" + ] + } + ], + "source": [ + "print df['rbc']" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['age',\n", + " 'bp',\n", + " 'sg',\n", + " 'al',\n", + " 'su',\n", + " 'rbc',\n", + " 'pc',\n", + " 'pcc',\n", + " 'ba',\n", + " 'bgr',\n", + " 'bu',\n", + " 'sc',\n", + " 'sod',\n", + " 'pot',\n", + " 'hemo',\n", + " 'pcv',\n", + " 'wbcc',\n", + " 'rbcc',\n", + " 'htn',\n", + " 'dm',\n", + " 'cad',\n", + " 'appet',\n", + " 'pe',\n", + " 'ane',\n", + " 'class']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agebpsgalsurbcpcpccbabgr...pcvwbccrbcchtndmcadappetpeaneclass
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
148801.02010?normalnotpresentnotpresent121...4478005.2yesyesnogoodnonockd
27501.02040?normalnotpresentnotpresent?...386000?nononogoodnonockd
362801.01023normalnormalnotpresentnotpresent423...317500?noyesnopoornoyesckd
448701.00540normalabnormalpresentnotpresent117...3267003.9yesnonopooryesyesckd
\n", + "

5 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " age bp sg al su rbc pc pcc ba bgr \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 48 80 1.020 1 0 ? normal notpresent notpresent 121 \n", + "2 7 50 1.020 4 0 ? normal notpresent notpresent ? \n", + "3 62 80 1.010 2 3 normal normal notpresent notpresent 423 \n", + "4 48 70 1.005 4 0 normal abnormal present notpresent 117 \n", + "\n", + " ... pcv wbcc rbcc htn dm cad appet pe ane class \n", + "0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 ... 44 7800 5.2 yes yes no good no no ckd \n", + "2 ... 38 6000 ? no no no good no no ckd \n", + "3 ... 31 7500 ? no yes no poor no yes ckd \n", + "4 ... 32 6700 3.9 yes no no poor yes yes ckd \n", + "\n", + "[5 rows x 25 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(n=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 NaN\n", + "1 yes\n", + "2 no\n", + "3 yes\n", + "4 no\n", + "5 no\n", + "6 yes\n", + "7 no\n", + "8 yes\n", + "9 yes\n", + "10 yes\n", + "11 yes\n", + "12 yes\n", + "13 yes\n", + "14 yes\n", + "15 yes\n", + "16 no\n", + "17 no\n", + "18 no\n", + "19 yes\n", + "20 no\n", + "21 yes\n", + "22 yes\n", + "23 no\n", + "24 no\n", + "25 no\n", + "26 yes\n", + "27 yes\n", + "28 yes\n", + "29 yes\n", + " ... \n", + "371 no\n", + "372 no\n", + "373 no\n", + "374 no\n", + "375 no\n", + "376 no\n", + "377 no\n", + "378 no\n", + "379 no\n", + "380 no\n", + "381 no\n", + "382 no\n", + "383 no\n", + "384 no\n", + "385 no\n", + "386 no\n", + "387 no\n", + "388 no\n", + "389 no\n", + "390 no\n", + "391 no\n", + "392 no\n", + "393 no\n", + "394 no\n", + "395 no\n", + "396 no\n", + "397 no\n", + "398 no\n", + "399 no\n", + "400 no\n", + "Name: dm, dtype: object\n" + ] + } + ], + "source": [ + "print df['dm']" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nan 'yes' 'no' ' yes']\n" + ] + } + ], + "source": [ + "print df.dm.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nan 'yes' 'no' ' yes']\n" + ] + } + ], + "source": [ + "df['dm'].replace(regex=True,inplace=True,to_replace=r'\\t',value=r'')\n", + "df.replace('?', np.nan)\n", + "print df.dm.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nan 'yes' 'no' ' yes']\n" + ] + } + ], + "source": [ + "df.replace(regex=True,inplace=True,to_replace=r'\\t',value=r'')\n", + "print df.dm.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'age'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bp'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bgr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bu'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sod'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'hemo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pcv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'wbcc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rbcc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'age'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bp'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bgr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bu'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sod'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'hemo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pcv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'wbcc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rbcc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "df[['age', 'bp', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbcc']] = df[['age', 'bp', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbcc']].apply(pd.to_numeric)\n", + "print df.dtype" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'rbc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue_counts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "print df['rbc'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'bp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "print df['bp'].max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Muhammad_Ihtsham_Lhr_Python_assignment1/Muhammad_Ihtsham_Lhr.ipynb b/Muhammad_Ihtsham_Lhr_Python_assignment1/Muhammad_Ihtsham_Lhr.ipynb new file mode 100644 index 0000000..de02d65 --- /dev/null +++ b/Muhammad_Ihtsham_Lhr_Python_assignment1/Muhammad_Ihtsham_Lhr.ipynb @@ -0,0 +1,762 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello world\n" + ] + } + ], + "source": [ + "print \"Hello world\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df=pd.read_csv(\"/resources/data/chronic_kidney_disease_updated.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " age bp sg al su rbc pc pcc ba \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 48 80 1.020 1 0 ? normal notpresent notpresent \n", + "2 7 50 1.020 4 0 ? normal notpresent notpresent \n", + "3 62 80 1.010 2 3 normal normal notpresent notpresent \n", + "4 48 70 1.005 4 0 normal abnormal present notpresent \n", + "5 51 80 1.010 2 0 normal normal notpresent notpresent \n", + "6 60 90 1.015 3 0 ? ? notpresent notpresent \n", + "7 68 70 1.010 0 0 ? normal notpresent notpresent \n", + "8 24 ? 1.015 2 4 normal abnormal notpresent notpresent \n", + "9 52 100 1.015 3 0 normal abnormal present notpresent \n", + "10 53 90 1.020 2 0 abnormal abnormal present notpresent \n", + "11 50 60 1.010 2 4 ? abnormal present notpresent \n", + "12 63 70 1.010 3 0 abnormal abnormal present notpresent \n", + "13 68 70 1.015 3 1 ? normal present notpresent \n", + "14 68 70 ? ? ? ? ? notpresent notpresent \n", + "15 68 80 1.010 3 2 normal abnormal present present \n", + "16 40 80 1.015 3 0 ? normal notpresent notpresent \n", + "17 47 70 1.015 2 0 ? normal notpresent notpresent \n", + "18 47 80 ? ? ? ? ? notpresent notpresent \n", + "19 60 100 1.025 0 3 ? normal notpresent notpresent \n", + "20 62 60 1.015 1 0 ? abnormal present notpresent \n", + "21 61 80 1.015 2 0 abnormal abnormal notpresent notpresent \n", + "22 60 90 ? ? ? ? ? notpresent notpresent \n", + "23 48 80 1.025 4 0 normal abnormal notpresent notpresent \n", + "24 21 70 1.010 0 0 ? normal notpresent notpresent \n", + "25 42 100 1.015 4 0 normal abnormal notpresent present \n", + "26 61 60 1.025 0 0 ? normal notpresent notpresent \n", + "27 75 80 1.015 0 0 ? normal notpresent notpresent \n", + "28 69 70 1.010 3 4 normal abnormal notpresent notpresent \n", + "29 75 70 ? 1 3 ? ? notpresent notpresent \n", + ".. ... ... ... ... ... ... ... ... ... \n", + "371 69 70 1.020 0 0 normal normal notpresent notpresent \n", + "372 28 60 1.025 0 0 normal normal notpresent notpresent \n", + "373 72 60 1.020 0 0 normal normal notpresent notpresent \n", + "374 61 70 1.025 0 0 normal normal notpresent notpresent \n", + "375 79 80 1.025 0 0 normal normal notpresent notpresent \n", + "376 70 80 1.020 0 0 normal normal notpresent notpresent \n", + "377 58 70 1.025 0 0 normal normal notpresent notpresent \n", + "378 64 70 1.020 0 0 normal normal notpresent notpresent \n", + "379 71 60 1.025 0 0 normal normal notpresent notpresent \n", + "380 62 80 1.025 0 0 normal normal notpresent notpresent \n", + "381 59 60 1.020 0 0 normal normal notpresent notpresent \n", + "382 71 70 1.025 0 0 ? ? notpresent notpresent \n", + "383 48 80 1.025 0 0 normal normal notpresent notpresent \n", + "384 80 80 1.025 0 0 normal normal notpresent notpresent \n", + "385 57 60 1.020 0 0 normal normal notpresent notpresent \n", + "386 63 70 1.020 0 0 normal normal notpresent notpresent \n", + "387 46 70 1.025 0 0 normal normal notpresent notpresent \n", + "388 15 80 1.025 0 0 normal normal notpresent notpresent \n", + "389 51 80 1.020 0 0 normal normal notpresent notpresent \n", + "390 41 80 1.025 0 0 normal normal notpresent notpresent \n", + "391 52 80 1.025 0 0 normal normal notpresent notpresent \n", + "392 36 80 1.025 0 0 normal normal notpresent notpresent \n", + "393 57 80 1.020 0 0 normal normal notpresent notpresent \n", + "394 43 60 1.025 0 0 normal normal notpresent notpresent \n", + "395 50 80 1.020 0 0 normal normal notpresent notpresent \n", + "396 55 80 1.020 0 0 normal normal notpresent notpresent \n", + "397 42 70 1.025 0 0 normal normal notpresent notpresent \n", + "398 12 80 1.020 0 0 normal normal notpresent notpresent \n", + "399 17 60 1.025 0 0 normal normal notpresent notpresent \n", + "400 58 80 1.025 0 0 normal normal notpresent notpresent \n", + "\n", + " bgr ... pcv wbcc rbcc htn dm cad appet pe ane class \n", + "0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 121 ... 44 7800 5.2 yes yes no good no no ckd \n", + "2 ? ... 38 6000 ? no no no good no no ckd \n", + "3 423 ... 31 7500 ? no yes no poor no yes ckd \n", + "4 117 ... 32 6700 3.9 yes no no poor yes yes ckd \n", + "5 106 ... 35 7300 4.6 no no no good no no ckd \n", + "6 74 ... 39 7800 4.4 yes yes no good yes no ckd \n", + "7 100 ... 36 ? ? no no no good no no ckd \n", + "8 410 ... 44 6900 5 no yes no good yes no ckd \n", + "9 138 ... 33 9600 4.0 yes yes no good no yes ckd \n", + "10 70 ... 29 12100 3.7 yes yes no poor no yes ckd \n", + "11 490 ... 28 ? ? yes yes no good no yes ckd \n", + "12 380 ... 32 4500 3.8 yes yes no poor yes no ckd \n", + "13 208 ... 28 12200 3.4 yes yes yes poor yes no ckd \n", + "14 98 ... ? ? ? yes yes yes poor yes no ckd \n", + "15 157 ... 16 11000 2.6 yes yes yes poor yes no ckd \n", + "16 76 ... 24 3800 2.8 yes no no good no yes ckd \n", + "17 99 ... ? ? ? no no no good no no ckd \n", + "18 114 ... ? ? ? yes no no poor no no ckd \n", + "19 263 ... 37 11400 4.3 yes yes yes good no no ckd \n", + "20 100 ... 30 5300 3.7 yes no yes good no no ckd \n", + "21 173 ... 24 9200 3.2 yes yes yes poor yes yes ckd \n", + "22 ? ... 32 6200 3.6 yes yes yes good no no ckd \n", + "23 95 ... 32 6900 3.4 yes no no good no yes ckd \n", + "24 ? ... ? ? ? no no no poor no yes ckd \n", + "25 ? ... 39 8300 4.6 yes no no poor no no ckd \n", + "26 108 ... 29 8400 3.7 yes yes no good no yes ckd \n", + "27 156 ... 35 10300 4 yes yes no poor no no ckd \n", + "28 264 ... 37 9600 4.1 yes yes yes good yes no ckd \n", + "29 123 ... ? ? ? no yes no good no no ckd \n", + ".. ... ... ... ... ... ... ... ... ... ... ... ... \n", + "371 83 ... 50 9300 5.4 no no no good no no notckd \n", + "372 79 ... 51 6500 5.0 no no no good no no notckd \n", + "373 109 ... 52 10500 5.5 no no no good no no notckd \n", + "374 133 ... 47 9200 4.9 no no no good no no notckd \n", + "375 111 ... 40 8000 6.4 no no no good no no notckd \n", + "376 74 ... 48 9700 5.6 no no no good no no notckd \n", + "377 88 ... 53 9100 5.2 no no no good no no notckd \n", + "378 97 ... 49 6400 4.8 no no no good no no notckd \n", + "379 ? ... 42 7700 5.5 no no no good no no notckd \n", + "380 78 ... 50 5400 5.7 no no no good no no notckd \n", + "381 113 ... 54 6500 4.9 no no no good no no notckd \n", + "382 79 ... 40 5800 5.9 no no no good no no notckd \n", + "383 75 ... 51 6000 6.5 no no no good no no notckd \n", + "384 119 ... 49 5100 5.0 no no no good no no notckd \n", + "385 132 ... 42 11000 4.5 no no no good no no notckd \n", + "386 113 ... 52 8000 5.1 no no no good no no notckd \n", + "387 100 ... 43 5700 6.5 no no no good no no notckd \n", + "388 93 ... 50 6200 5.2 no no no good no no notckd \n", + "389 94 ... 46 9500 6.4 no no no good no no notckd \n", + "390 112 ... 52 7200 5.8 no no no good no no notckd \n", + "391 99 ... 52 6300 5.3 no no no good no no notckd \n", + "392 85 ... 44 5800 6.3 no no no good no no notckd \n", + "393 133 ... 46 6600 5.5 no no no good no no notckd \n", + "394 117 ... 54 7400 5.4 no no no good no no notckd \n", + "395 137 ... 45 9500 4.6 no no no good no no notckd \n", + "396 140 ... 47 6700 4.9 no no no good no no notckd \n", + "397 75 ... 54 7800 6.2 no no no good no no notckd \n", + "398 100 ... 49 6600 5.4 no no no good no no notckd \n", + "399 114 ... 51 7200 5.9 no no no good no no notckd \n", + "400 131 ... 53 6800 6.1 no no no good no no notckd \n", + "\n", + "[401 rows x 25 columns]\n" + ] + } + ], + "source": [ + "print df" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 NaN\n", + "1 ?\n", + "2 ?\n", + "3 normal\n", + "4 normal\n", + "5 normal\n", + "6 ?\n", + "7 ?\n", + "8 normal\n", + "9 normal\n", + "10 abnormal\n", + "11 ?\n", + "12 abnormal\n", + "13 ?\n", + "14 ?\n", + "15 normal\n", + "16 ?\n", + "17 ?\n", + "18 ?\n", + "19 ?\n", + "20 ?\n", + "21 abnormal\n", + "22 ?\n", + "23 normal\n", + "24 ?\n", + "25 normal\n", + "26 ?\n", + "27 ?\n", + "28 normal\n", + "29 ?\n", + " ... \n", + "371 normal\n", + "372 normal\n", + "373 normal\n", + "374 normal\n", + "375 normal\n", + "376 normal\n", + "377 normal\n", + "378 normal\n", + "379 normal\n", + "380 normal\n", + "381 normal\n", + "382 ?\n", + "383 normal\n", + "384 normal\n", + "385 normal\n", + "386 normal\n", + "387 normal\n", + "388 normal\n", + "389 normal\n", + "390 normal\n", + "391 normal\n", + "392 normal\n", + "393 normal\n", + "394 normal\n", + "395 normal\n", + "396 normal\n", + "397 normal\n", + "398 normal\n", + "399 normal\n", + "400 normal\n", + "Name: rbc, dtype: object\n" + ] + } + ], + "source": [ + "print df['rbc']" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['age',\n", + " 'bp',\n", + " 'sg',\n", + " 'al',\n", + " 'su',\n", + " 'rbc',\n", + " 'pc',\n", + " 'pcc',\n", + " 'ba',\n", + " 'bgr',\n", + " 'bu',\n", + " 'sc',\n", + " 'sod',\n", + " 'pot',\n", + " 'hemo',\n", + " 'pcv',\n", + " 'wbcc',\n", + " 'rbcc',\n", + " 'htn',\n", + " 'dm',\n", + " 'cad',\n", + " 'appet',\n", + " 'pe',\n", + " 'ane',\n", + " 'class']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agebpsgalsurbcpcpccbabgr...pcvwbccrbcchtndmcadappetpeaneclass
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
148801.02010?normalnotpresentnotpresent121...4478005.2yesyesnogoodnonockd
27501.02040?normalnotpresentnotpresent?...386000?nononogoodnonockd
362801.01023normalnormalnotpresentnotpresent423...317500?noyesnopoornoyesckd
448701.00540normalabnormalpresentnotpresent117...3267003.9yesnonopooryesyesckd
\n", + "

5 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " age bp sg al su rbc pc pcc ba bgr \\\n", + "0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 48 80 1.020 1 0 ? normal notpresent notpresent 121 \n", + "2 7 50 1.020 4 0 ? normal notpresent notpresent ? \n", + "3 62 80 1.010 2 3 normal normal notpresent notpresent 423 \n", + "4 48 70 1.005 4 0 normal abnormal present notpresent 117 \n", + "\n", + " ... pcv wbcc rbcc htn dm cad appet pe ane class \n", + "0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", + "1 ... 44 7800 5.2 yes yes no good no no ckd \n", + "2 ... 38 6000 ? no no no good no no ckd \n", + "3 ... 31 7500 ? no yes no poor no yes ckd \n", + "4 ... 32 6700 3.9 yes no no poor yes yes ckd \n", + "\n", + "[5 rows x 25 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(n=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 NaN\n", + "1 yes\n", + "2 no\n", + "3 yes\n", + "4 no\n", + "5 no\n", + "6 yes\n", + "7 no\n", + "8 yes\n", + "9 yes\n", + "10 yes\n", + "11 yes\n", + "12 yes\n", + "13 yes\n", + "14 yes\n", + "15 yes\n", + "16 no\n", + "17 no\n", + "18 no\n", + "19 yes\n", + "20 no\n", + "21 yes\n", + "22 yes\n", + "23 no\n", + "24 no\n", + "25 no\n", + "26 yes\n", + "27 yes\n", + "28 yes\n", + "29 yes\n", + " ... \n", + "371 no\n", + "372 no\n", + "373 no\n", + "374 no\n", + "375 no\n", + "376 no\n", + "377 no\n", + "378 no\n", + "379 no\n", + "380 no\n", + "381 no\n", + "382 no\n", + "383 no\n", + "384 no\n", + "385 no\n", + "386 no\n", + "387 no\n", + "388 no\n", + "389 no\n", + "390 no\n", + "391 no\n", + "392 no\n", + "393 no\n", + "394 no\n", + "395 no\n", + "396 no\n", + "397 no\n", + "398 no\n", + "399 no\n", + "400 no\n", + "Name: dm, dtype: object\n" + ] + } + ], + "source": [ + "print df['dm']" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nan 'yes' 'no' ' yes']\n" + ] + } + ], + "source": [ + "print df.dm.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nan 'yes' 'no' ' yes']\n" + ] + } + ], + "source": [ + "df['dm'].replace(regex=True,inplace=True,to_replace=r'\\t',value=r'')\n", + "df.replace('?', np.nan)\n", + "print df.dm.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nan 'yes' 'no' ' yes']\n" + ] + } + ], + "source": [ + "df.replace(regex=True,inplace=True,to_replace=r'\\t',value=r'')\n", + "print df.dm.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'age'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bp'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bgr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bu'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sod'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'hemo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pcv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'wbcc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rbcc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'age'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bp'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bgr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'bu'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sod'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'hemo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'pcv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'wbcc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rbcc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "df[['age', 'bp', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbcc']] = df[['age', 'bp', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbcc']].apply(pd.to_numeric)\n", + "print df.dtype" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'rbc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue_counts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "print df['rbc'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'bp'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "print df['bp'].max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "widgets": { + "state": {}, + "version": "1.1.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Muhammad_Ihtsham_Lhr_Python_assignment1/chronic_kidney_disease_answer.csv b/Muhammad_Ihtsham_Lhr_Python_assignment1/chronic_kidney_disease_answer.csv new file mode 100644 index 0000000..1078170 --- /dev/null +++ b/Muhammad_Ihtsham_Lhr_Python_assignment1/chronic_kidney_disease_answer.csv @@ -0,0 +1,402 @@ +,age,bp,sg,al,su,rbc,pc,pcc,ba,bgr,bu,sc,sod,pot,hemo,pcv,wbcc,rbcc,htn,dm,cad,appet,pe,ane,class +0,,,,,,,,,,,,,,,,,,,,,,,,, +1,48.0,80.0,1.020,1,0,,normal,notpresent,notpresent,121.0,36.0,1.2,,,15.4,44.0,7800.0,5.2,yes,yes,no,good,no,no,ckd +2,7.0,50.0,1.020,4,0,,normal,notpresent,notpresent,,18.0,0.8,,,11.3,38.0,6000.0,,no,no,no,good,no,no,ckd +3,62.0,80.0,1.010,2,3,normal,normal,notpresent,notpresent,423.0,53.0,1.8,,,9.6,31.0,7500.0,,no,yes,no,poor,no,yes,ckd +4,48.0,70.0,1.005,4,0,normal,abnormal,present,notpresent,117.0,56.0,3.8,111.0,2.5,11.2,32.0,6700.0,3.9,yes,no,no,poor,yes,yes,ckd +5,51.0,80.0,1.010,2,0,normal,normal,notpresent,notpresent,106.0,26.0,1.4,,,11.6,35.0,7300.0,4.6,no,no,no,good,no,no,ckd +6,60.0,90.0,1.015,3,0,,,notpresent,notpresent,74.0,25.0,1.1,142.0,3.2,12.2,39.0,7800.0,4.4,yes,yes,no,good,yes,no,ckd +7,68.0,70.0,1.010,0,0,,normal,notpresent,notpresent,100.0,54.0,24.0,104.0,4.0,12.4,36.0,,,no,no,no,good,no,no,ckd +8,24.0,,1.015,2,4,normal,abnormal,notpresent,notpresent,410.0,31.0,1.1,,,12.4,44.0,6900.0,5.0,no,yes,no,good,yes,no,ckd +9,52.0,100.0,1.015,3,0,normal,abnormal,present,notpresent,138.0,60.0,1.9,,,10.8,33.0,9600.0,4.0,yes,yes,no,good,no,yes,ckd +10,53.0,90.0,1.020,2,0,abnormal,abnormal,present,notpresent,70.0,107.0,7.2,114.0,3.7,9.5,29.0,12100.0,3.7,yes,yes,no,poor,no,yes,ckd +11,50.0,60.0,1.010,2,4,,abnormal,present,notpresent,490.0,55.0,4.0,,,9.4,28.0,,,yes,yes,no,good,no,yes,ckd +12,63.0,70.0,1.010,3,0,abnormal,abnormal,present,notpresent,380.0,60.0,2.7,131.0,4.2,10.8,32.0,4500.0,3.8,yes,yes,no,poor,yes,no,ckd +13,68.0,70.0,1.015,3,1,,normal,present,notpresent,208.0,72.0,2.1,138.0,5.8,9.7,28.0,12200.0,3.4,yes,yes,yes,poor,yes,no,ckd +14,68.0,70.0,,,,,,notpresent,notpresent,98.0,86.0,4.6,135.0,3.4,9.8,,,,yes,yes,yes,poor,yes,no,ckd +15,68.0,80.0,1.010,3,2,normal,abnormal,present,present,157.0,90.0,4.1,130.0,6.4,5.6,16.0,11000.0,2.6,yes,yes,yes,poor,yes,no,ckd +16,40.0,80.0,1.015,3,0,,normal,notpresent,notpresent,76.0,162.0,9.6,141.0,4.9,7.6,24.0,3800.0,2.8,yes,no,no,good,no,yes,ckd +17,47.0,70.0,1.015,2,0,,normal,notpresent,notpresent,99.0,46.0,2.2,138.0,4.1,12.6,,,,no,no,no,good,no,no,ckd +18,47.0,80.0,,,,,,notpresent,notpresent,114.0,87.0,5.2,139.0,3.7,12.1,,,,yes,no,no,poor,no,no,ckd +19,60.0,100.0,1.025,0,3,,normal,notpresent,notpresent,263.0,27.0,1.3,135.0,4.3,12.7,37.0,11400.0,4.3,yes,yes,yes,good,no,no,ckd +20,62.0,60.0,1.015,1,0,,abnormal,present,notpresent,100.0,31.0,1.6,,,10.3,30.0,5300.0,3.7,yes,no,yes,good,no,no,ckd +21,61.0,80.0,1.015,2,0,abnormal,abnormal,notpresent,notpresent,173.0,148.0,3.9,135.0,5.2,7.7,24.0,9200.0,3.2,yes,yes,yes,poor,yes,yes,ckd +22,60.0,90.0,,,,,,notpresent,notpresent,,180.0,76.0,4.5,,10.9,32.0,6200.0,3.6,yes,yes,yes,good,no,no,ckd +23,48.0,80.0,1.025,4,0,normal,abnormal,notpresent,notpresent,95.0,163.0,7.7,136.0,3.8,9.8,32.0,6900.0,3.4,yes,no,no,good,no,yes,ckd +24,21.0,70.0,1.010,0,0,,normal,notpresent,notpresent,,,,,,,,,,no,no,no,poor,no,yes,ckd +25,42.0,100.0,1.015,4,0,normal,abnormal,notpresent,present,,50.0,1.4,129.0,4.0,11.1,39.0,8300.0,4.6,yes,no,no,poor,no,no,ckd +26,61.0,60.0,1.025,0,0,,normal,notpresent,notpresent,108.0,75.0,1.9,141.0,5.2,9.9,29.0,8400.0,3.7,yes,yes,no,good,no,yes,ckd +27,75.0,80.0,1.015,0,0,,normal,notpresent,notpresent,156.0,45.0,2.4,140.0,3.4,11.6,35.0,10300.0,4.0,yes,yes,no,poor,no,no,ckd +28,69.0,70.0,1.010,3,4,normal,abnormal,notpresent,notpresent,264.0,87.0,2.7,130.0,4.0,12.5,37.0,9600.0,4.1,yes,yes,yes,good,yes,no,ckd +29,75.0,70.0,,1,3,,,notpresent,notpresent,123.0,31.0,1.4,,,,,,,no,yes,no,good,no,no,ckd +30,68.0,70.0,1.005,1,0,abnormal,abnormal,present,notpresent,,28.0,1.4,,,12.9,38.0,,,no,no,yes,good,no,no,ckd +31,,70.0,,,,,,notpresent,notpresent,93.0,155.0,7.3,132.0,4.9,,,,,yes, yes,no,good,no,no,ckd +32,73.0,90.0,1.015,3,0,,abnormal,present,notpresent,107.0,33.0,1.5,141.0,4.6,10.1,30.0,7800.0,4.0,no,no,no,poor,no,no,ckd +33,61.0,90.0,1.010,1,1,,normal,notpresent,notpresent,159.0,39.0,1.5,133.0,4.9,11.3,34.0,9600.0,4.0,yes,yes,no,poor,no,no,ckd +34,60.0,100.0,1.020,2,0,abnormal,abnormal,notpresent,notpresent,140.0,55.0,2.5,,,10.1,29.0,,,yes,no,no,poor,no,no,ckd +35,70.0,70.0,1.010,1,0,normal,,present,present,171.0,153.0,5.2,,,,,,,no,yes,no,poor,no,no,ckd +36,65.0,90.0,1.020,2,1,abnormal,normal,notpresent,notpresent,270.0,39.0,2.0,,,12.0,36.0,9800.0,4.9,yes,yes,no,poor,no,yes,ckd +37,76.0,70.0,1.015,1,0,normal,normal,notpresent,notpresent,92.0,29.0,1.8,133.0,3.9,10.3,32.0,,,yes,no,no,good,no,no,ckd +38,72.0,80.0,,,,,,notpresent,notpresent,137.0,65.0,3.4,141.0,4.7,9.7,28.0,6900.0,2.5,yes,yes,no,poor,no,yes,ckd +39,69.0,80.0,1.020,3,0,abnormal,normal,notpresent,notpresent,,103.0,4.1,132.0,5.9,12.5,,,,yes,no,no,good,no,no,ckd +40,82.0,80.0,1.010,2,2,normal,,notpresent,notpresent,140.0,70.0,3.4,136.0,4.2,13.0,40.0,9800.0,4.2,yes,yes,no,good,no,no,ckd +41,46.0,90.0,1.010,2,0,normal,abnormal,notpresent,notpresent,99.0,80.0,2.1,,,11.1,32.0,9100.0,4.1,yes,no, no,good,no,no,ckd +42,45.0,70.0,1.010,0,0,,normal,notpresent,notpresent,,20.0,0.7,,,,,,,no,no,no,good,yes,no,ckd +43,47.0,100.0,1.010,0,0,,normal,notpresent,notpresent,204.0,29.0,1.0,139.0,4.2,9.7,33.0,9200.0,4.5,yes,no,no,good,no,yes,ckd +44,35.0,80.0,1.010,1,0,abnormal,,notpresent,notpresent,79.0,202.0,10.8,134.0,3.4,7.9,24.0,7900.0,3.1,no,yes,no,good,no,no,ckd +45,54.0,80.0,1.010,3,0,abnormal,abnormal,notpresent,notpresent,207.0,77.0,6.3,134.0,4.8,9.7,28.0,,,yes,yes,no,poor,yes,no,ckd +46,54.0,80.0,1.020,3,0,,abnormal,notpresent,notpresent,208.0,89.0,5.9,130.0,4.9,9.3,,,,yes,yes,no,poor,yes,no,ckd +47,48.0,70.0,1.015,0,0,,normal,notpresent,notpresent,124.0,24.0,1.2,142.0,4.2,12.4,37.0,6400.0,4.7,no,yes,no,good,no,no,ckd +48,11.0,80.0,1.010,3,0,,normal,notpresent,notpresent,,17.0,0.8,,,15.0,45.0,8600.0,,no,no,no,good,no,no,ckd +49,73.0,70.0,1.005,0,0,normal,normal,notpresent,notpresent,70.0,32.0,0.9,125.0,4.0,10.0,29.0,18900.0,3.5,yes,yes,no,good,yes,no,ckd +50,60.0,70.0,1.010,2,0,normal,abnormal,present,notpresent,144.0,72.0,3.0,,,9.7,29.0,21600.0,3.5,yes,yes,no,poor,no,yes,ckd +51,53.0,60.0,,,,,,notpresent,notpresent,91.0,114.0,3.25,142.0,4.3,8.6,28.0,11000.0,3.8,yes,yes,no,poor,yes,yes,ckd +52,54.0,100.0,1.015,3,0,,normal,present,notpresent,162.0,66.0,1.6,136.0,4.4,10.3,33.0,,,yes,yes,no,poor,yes,no,ckd +53,53.0,90.0,1.015,0,0,,normal,notpresent,notpresent,,38.0,2.2,,,10.9,34.0,4300.0,3.7,no,no,no,poor,no,yes,ckd +54,62.0,80.0,1.015,0,5,,,notpresent,notpresent,246.0,24.0,1.0,,,13.6,40.0,8500.0,4.7,yes,yes,no,good,no,no,ckd +55,63.0,80.0,1.010,2,2,normal,,notpresent,notpresent,,,3.4,136.0,4.2,13.0,40.0,9800.0,4.2,yes,no,yes,good,no,no,ckd +56,35.0,80.0,1.005,3,0,abnormal,normal,notpresent,notpresent,,,,,,9.5,28.0,,,no,no,no,good,yes,no,ckd +57,76.0,70.0,1.015,3,4,normal,abnormal,present,notpresent,,164.0,9.7,131.0,4.4,10.2,30.0,11300.0,3.4,yes,yes,yes,poor,yes,no,ckd +58,76.0,90.0,,,,,normal,notpresent,notpresent,93.0,155.0,7.3,132.0,4.9,,,,,yes,yes,yes,poor,no,no,ckd +59,73.0,80.0,1.020,2,0,abnormal,abnormal,notpresent,notpresent,253.0,142.0,4.6,138.0,5.8,10.5,33.0,7200.0,4.3,yes,yes,yes,good,no,no,ckd +60,59.0,100.0,,,,,,notpresent,notpresent,,96.0,6.4,,,6.6,,,,yes,yes,no,good,no,yes,ckd +61,67.0,90.0,1.020,1,0,,abnormal,present,notpresent,141.0,66.0,3.2,138.0,6.6,,,,,yes,no,no,good,no,no,ckd +62,67.0,80.0,1.010,1,3,normal,abnormal,notpresent,notpresent,182.0,391.0,32.0,163.0,39.0,,,,,no,no,no,good,yes,no,ckd +63,15.0,60.0,1.020,3,0,,normal,notpresent,notpresent,86.0,15.0,0.6,138.0,4.0,11.0,33.0,7700.0,3.8,yes,yes,no,good,no,no,ckd +64,46.0,70.0,1.015,1,0,abnormal,normal,notpresent,notpresent,150.0,111.0,6.1,131.0,3.7,7.5,27.0,,,no,no,no,good,no,yes,ckd +65,55.0,80.0,1.010,0,0,,normal,notpresent,notpresent,146.0,,,,,9.8,,,,no,no, no,good,no,no,ckd +66,44.0,90.0,1.010,1,0,,normal,notpresent,notpresent,,20.0,1.1,,,15.0,48.0,,,no,no,no,good,no,no,ckd +67,67.0,70.0,1.020,2,0,abnormal,normal,notpresent,notpresent,150.0,55.0,1.6,131.0,4.8,,,,,yes,yes,no,good,yes,no,ckd +68,45.0,80.0,1.020,3,0,normal,abnormal,notpresent,notpresent,425.0,,,,,,,,,no,no,no,poor,no,no,ckd +69,65.0,70.0,1.010,2,0,,normal,present,notpresent,112.0,73.0,3.3,,,10.9,37.0,,,no,no,no,good,no,no,ckd +70,26.0,70.0,1.015,0,4,,normal,notpresent,notpresent,250.0,20.0,1.1,,,15.6,52.0,6900.0,6.0,no,yes,no,good,no,no,ckd +71,61.0,80.0,1.015,0,4,,normal,notpresent,notpresent,360.0,19.0,0.7,137.0,4.4,15.2,44.0,8300.0,5.2,yes,yes,no,good,no,no,ckd +72,46.0,60.0,1.010,1,0,normal,normal,notpresent,notpresent,163.0,92.0,3.3,141.0,4.0,9.8,28.0,14600.0,3.2,yes,yes,no,good,no,no,ckd +73,64.0,90.0,1.010,3,3,,abnormal,present,notpresent,,35.0,1.3,,,10.3,,,,yes,yes,no,good,yes,no,ckd +74,,100.0,1.015,2,0,abnormal,abnormal,notpresent,notpresent,129.0,107.0,6.7,132.0,4.4,4.8,14.0,6300.0,,yes,no,no,good,yes,yes,ckd +75,56.0,90.0,1.015,2,0,abnormal,abnormal,notpresent,notpresent,129.0,107.0,6.7,131.0,4.8,9.1,29.0,6400.0,3.4,yes,no,no,good,no,no,ckd +76,5.0,,1.015,1,0,,normal,notpresent,notpresent,,16.0,0.7,138.0,3.2,8.1,,,,no,no,no,good,no,yes,ckd +77,48.0,80.0,1.005,4,0,abnormal,abnormal,notpresent,present,133.0,139.0,8.5,132.0,5.5,10.3,36.0,6200.0,4.0,no,yes,no,good,yes,no,ckd +78,67.0,70.0,1.010,1,0,,normal,notpresent,notpresent,102.0,48.0,3.2,137.0,5.0,11.9,34.0,7100.0,3.7,yes,yes,no,good,yes,no,ckd +79,70.0,80.0,,,,,,notpresent,notpresent,158.0,85.0,3.2,141.0,3.5,10.1,30.0,,,yes,no,no,good,yes,no,ckd +80,56.0,80.0,1.010,1,0,,normal,notpresent,notpresent,165.0,55.0,1.8,,,13.5,40.0,11800.0,5.0,yes,yes,no,poor,yes,no,ckd +81,74.0,80.0,1.010,0,0,,normal,notpresent,notpresent,132.0,98.0,2.8,133.0,5.0,10.8,31.0,9400.0,3.8,yes,yes,no,good,no,no,ckd +82,45.0,90.0,,,,,,notpresent,notpresent,360.0,45.0,2.4,128.0,4.4,8.3,29.0,5500.0,3.7,yes,yes,no,good,no,no,ckd +83,38.0,70.0,,,,,,notpresent,notpresent,104.0,77.0,1.9,140.0,3.9,,,,,yes,no,no,poor,yes,no,ckd +84,48.0,70.0,1.015,1,0,normal,normal,notpresent,notpresent,127.0,19.0,1.0,134.0,3.6,,,,,yes,yes,no,good,no,no,ckd +85,59.0,70.0,1.010,3,0,normal,abnormal,notpresent,notpresent,76.0,186.0,15.0,135.0,7.6,7.1,22.0,3800.0,2.1,yes,no,no,poor,yes,yes,ckd +86,70.0,70.0,1.015,2,,,,notpresent,notpresent,,46.0,1.5,,,9.9,,,,no,yes,no,poor,yes,no,ckd +87,56.0,80.0,,,,,,notpresent,notpresent,415.0,37.0,1.9,,,,,,,no,yes,no,good,no,no,ckd +88,70.0,100.0,1.005,1,0,normal,abnormal,present,notpresent,169.0,47.0,2.9,,,11.1,32.0,5800.0,5.0,yes,yes,no,poor,no,no,ckd +89,58.0,110.0,1.010,4,0,,normal,notpresent,notpresent,251.0,52.0,2.2,,,,,13200.0,4.7,yes,yes,no,good,no,no,ckd +90,50.0,70.0,1.020,0,0,,normal,notpresent,notpresent,109.0,32.0,1.4,139.0,4.7,,,,,no,no,no,poor,no,no,ckd +91,63.0,100.0,1.010,2,2,normal,normal,notpresent,present,280.0,35.0,3.2,143.0,3.5,13.0,40.0,9800.0,4.2,yes,no,yes,good,no,no,ckd +92,56.0,70.0,1.015,4,1,abnormal,normal,notpresent,notpresent,210.0,26.0,1.7,136.0,3.8,16.1,52.0,12500.0,5.6,no,no,no,good,no,no,ckd +93,71.0,70.0,1.010,3,0,normal,abnormal,present,present,219.0,82.0,3.6,133.0,4.4,10.4,33.0,5600.0,3.6,yes,yes,yes,good,no,no,ckd +94,73.0,100.0,1.010,3,2,abnormal,abnormal,present,notpresent,295.0,90.0,5.6,140.0,2.9,9.2,30.0,7000.0,3.2,yes,yes,yes,poor,no,no,ckd +95,65.0,70.0,1.010,0,0,,normal,notpresent,notpresent,93.0,66.0,1.6,137.0,4.5,11.6,36.0,11900.0,3.9,no,yes,no,good,no,no,ckd +96,62.0,90.0,1.015,1,0,,normal,notpresent,notpresent,94.0,25.0,1.1,131.0,3.7,,,,,yes,no,no,good,yes,yes,ckd +97,60.0,80.0,1.010,1,1,,normal,notpresent,notpresent,172.0,32.0,2.7,,,11.2,36.0,,,no,yes,yes,poor,no,no,ckd +98,65.0,60.0,1.015,1,0,,normal,notpresent,notpresent,91.0,51.0,2.2,132.0,3.8,10.0,32.0,9100.0,4.0,yes,yes,no,poor,yes,no,ckd +99,50.0,140.0,,,,,,notpresent,notpresent,101.0,106.0,6.5,135.0,4.3,6.2,18.0,5800.0,2.3,yes,yes,no,poor,no,yes,ckd +100,56.0,180.0,,0,4,,abnormal,notpresent,notpresent,298.0,24.0,1.2,139.0,3.9,11.2,32.0,10400.0,4.2,yes,yes,no,poor,yes,no,ckd +101,34.0,70.0,1.015,4,0,abnormal,abnormal,notpresent,notpresent,153.0,22.0,0.9,133.0,3.8,,,,,no,no,no,good,yes,no,ckd +102,71.0,90.0,1.015,2,0,,abnormal,present,present,88.0,80.0,4.4,139.0,5.7,11.3,33.0,10700.0,3.9,no,no,no,good,no,no,ckd +103,17.0,60.0,1.010,0,0,,normal,notpresent,notpresent,92.0,32.0,2.1,141.0,4.2,13.9,52.0,7000.0,,no,no,no,good,no,no,ckd +104,76.0,70.0,1.015,2,0,normal,abnormal,present,notpresent,226.0,217.0,10.2,,,10.2,36.0,12700.0,4.2,yes,no,no,poor,yes,yes,ckd +105,55.0,90.0,,,,,,notpresent,notpresent,143.0,88.0,2.0,,,,,,,yes,yes,no,poor,yes,no,ckd +106,65.0,80.0,1.015,0,0,,normal,notpresent,notpresent,115.0,32.0,11.5,139.0,4.0,14.1,42.0,6800.0,5.2,no,no,no,good,no,no,ckd +107,50.0,90.0,,,,,,notpresent,notpresent,89.0,118.0,6.1,127.0,4.4,6.0,17.0,6500.0,,yes,yes,no,good,yes,yes,ckd +108,55.0,100.0,1.015,1,4,normal,,notpresent,notpresent,297.0,53.0,2.8,139.0,4.5,11.2,34.0,13600.0,4.4,yes,yes,no,good,no,no,ckd +109,45.0,80.0,1.015,0,0,,abnormal,notpresent,notpresent,107.0,15.0,1.0,141.0,4.2,11.8,37.0,10200.0,4.2,no,no,no,good,no,no,ckd +110,54.0,70.0,,,,,,notpresent,notpresent,233.0,50.1,1.9,,,11.7,,,,no,yes,no,good,no,no,ckd +111,63.0,90.0,1.015,0,0,,normal,notpresent,notpresent,123.0,19.0,2.0,142.0,3.8,11.7,34.0,11400.0,4.7,no,no,no,good,no,no,ckd +112,65.0,80.0,1.010,3,3,,normal,notpresent,notpresent,294.0,71.0,4.4,128.0,5.4,10.0,32.0,9000.0,3.9,yes,yes,yes,good,no,no,ckd +113,,60.0,1.015,3,0,abnormal,abnormal,notpresent,notpresent,,34.0,1.2,,,10.8,33.0,,,no,no,no,good,no,no,ckd +114,61.0,90.0,1.015,0,2,,normal,notpresent,notpresent,,,,,,,,9800.0,,no,yes,no,poor,no,yes,ckd +115,12.0,60.0,1.015,3,0,abnormal,abnormal,present,notpresent,,51.0,1.8,,,12.1,,10300.0,,no,no,no,good,no,no,ckd +116,47.0,80.0,1.010,0,0,,abnormal,notpresent,notpresent,,28.0,0.9,,,12.4,44.0,5600.0,4.3,no,no,no,good,no,yes,ckd +117,,70.0,1.015,4,0,abnormal,normal,notpresent,notpresent,104.0,16.0,0.5,,,,,,,no,no,no,good,yes,no,ckd +118,,70.0,1.020,0,0,,,notpresent,notpresent,219.0,36.0,1.3,139.0,3.7,12.5,37.0,9800.0,4.4,no,no,no,good,no,no,ckd +119,55.0,70.0,1.010,3,0,,normal,notpresent,notpresent,99.0,25.0,1.2,,,11.4,,,,no,no,no,poor,yes,no,ckd +120,60.0,70.0,1.010,0,0,,normal,notpresent,notpresent,140.0,27.0,1.2,,,,,,,no,no,no,good,no,no,ckd +121,72.0,90.0,1.025,1,3,,normal,notpresent,notpresent,323.0,40.0,2.2,137.0,5.3,12.6,,,,no,yes,yes,poor,no,no,ckd +122,54.0,60.0,,3,,,,notpresent,notpresent,125.0,21.0,1.3,137.0,3.4,15.0,46.0,,,yes,yes,no,good,yes,no,ckd +123,34.0,70.0,,,,,,notpresent,notpresent,,219.0,12.2,130.0,3.8,6.0,,,,yes,no,no,good,no,yes,ckd +124,43.0,80.0,1.015,2,3,,abnormal,present,present,,30.0,1.1,,,14.0,42.0,14900.0,,no,no,no,good,no,no,ckd +125,65.0,100.0,1.015,0,0,,normal,notpresent,notpresent,90.0,98.0,2.5,,,9.1,28.0,5500.0,3.6,yes,no,no,good,no,no,ckd +126,72.0,90.0,,,,,,notpresent,notpresent,308.0,36.0,2.5,131.0,4.3,,,,,yes,yes,no,poor,no,no,ckd +127,70.0,90.0,1.015,0,0,,normal,notpresent,notpresent,144.0,125.0,4.0,136.0,4.6,12.0,37.0,8200.0,4.5,yes,yes,no,poor,yes,no,ckd +128,71.0,60.0,1.015,4,0,normal,normal,notpresent,notpresent,118.0,125.0,5.3,136.0,4.9,11.4,35.0,15200.0,4.3,yes,yes,no,poor,yes,no,ckd +129,52.0,90.0,1.015,4,3,normal,abnormal,notpresent,notpresent,224.0,166.0,5.6,133.0,47.0,8.1,23.0,5000.0,2.9,yes,yes,no,good,no,yes,ckd +130,75.0,70.0,1.025,1,0,,normal,notpresent,notpresent,158.0,49.0,1.4,135.0,4.7,11.1,,,,yes,no,no,poor,yes,no,ckd +131,50.0,90.0,1.010,2,0,normal,abnormal,present,present,128.0,208.0,9.2,134.0,4.8,8.2,22.0,16300.0,2.7,no,no,no,poor,yes,yes,ckd +132,5.0,50.0,1.010,0,0,,normal,notpresent,notpresent,,25.0,0.6,,,11.8,36.0,12400.0,,no,no,no,good,no,no,ckd +133,50.0,,,,,normal,,notpresent,notpresent,219.0,176.0,13.8,136.0,4.5,8.6,24.0,13200.0,2.7,yes,no,no,good,yes,yes,ckd +134,70.0,100.0,1.015,4,0,normal,normal,notpresent,notpresent,118.0,125.0,5.3,136.0,4.9,12.0,37.0,8400.0,8.0,yes,no,no,good,no,no,ckd +135,47.0,100.0,1.010,,,normal,,notpresent,notpresent,122.0,,16.9,138.0,5.2,10.8,33.0,10200.0,3.8,no,yes,no,good,no,no,ckd +136,48.0,80.0,1.015,0,2,,normal,notpresent,notpresent,214.0,24.0,1.3,140.0,4.0,13.2,39.0,,,no,yes,no,poor,no,no,ckd +137,46.0,90.0,1.020,,,,normal,notpresent,notpresent,213.0,68.0,2.8,146.0,6.3,9.3,,,,yes,yes,no,good,no,no,ckd +138,45.0,60.0,1.010,2,0,normal,abnormal,present,notpresent,268.0,86.0,4.0,134.0,5.1,10.0,29.0,9200.0,,yes,yes,no,good,no,no,ckd +139,73.0,,1.010,1,0,,,notpresent,notpresent,95.0,51.0,1.6,142.0,3.5,,,,,no,no,no,good,no,no,ckd +140,41.0,70.0,1.015,2,0,,abnormal,notpresent,present,,68.0,2.8,132.0,4.1,11.1,33.0,,,yes,no,no,good,yes,yes,ckd +141,69.0,70.0,1.010,0,4,,normal,notpresent,notpresent,256.0,40.0,1.2,142.0,5.6,,,,,no,no,no,good,no,no,ckd +142,67.0,70.0,1.010,1,0,normal,normal,notpresent,notpresent,,106.0,6.0,137.0,4.9,6.1,19.0,6500.0,,yes,no,no,good,no,yes,ckd +143,72.0,90.0,,,,,,notpresent,notpresent,84.0,145.0,7.1,135.0,5.3,,,,,no,yes,no,good,no,no,ckd +144,41.0,80.0,1.015,1,4,abnormal,normal,notpresent,notpresent,210.0,165.0,18.0,135.0,4.7,,,,,no,yes,no,good,no,no,ckd +145,60.0,90.0,1.010,2,0,abnormal,normal,notpresent,notpresent,105.0,53.0,2.3,136.0,5.2,11.1,33.0,10500.0,4.1,no,no,no,good,no,no,ckd +146,57.0,90.0,1.015,5,0,abnormal,abnormal,notpresent,present,,322.0,13.0,126.0,4.8,8.0,24.0,4200.0,3.3,yes,yes,yes,poor,yes,yes,ckd +147,53.0,100.0,1.010,1,3,abnormal,normal,notpresent,notpresent,213.0,23.0,1.0,139.0,4.0,,,,,no,yes,no,good,no,no,ckd +148,60.0,60.0,1.010,3,1,normal,abnormal,present,notpresent,288.0,36.0,1.7,130.0,3.0,7.9,25.0,15200.0,3.0,yes,no,no,poor,no,yes,ckd +149,69.0,60.0,,,,,,notpresent,notpresent,171.0,26.0,48.1,,,,,,,yes,no,no,poor,no,no,ckd +150,65.0,70.0,1.020,1,0,abnormal,abnormal,notpresent,notpresent,139.0,29.0,1.0,,,10.5,32.0,,,yes,no,no,good,yes,no,ckd +151,8.0,60.0,1.025,3,0,normal,normal,notpresent,notpresent,78.0,27.0,0.9,,,12.3,41.0,6700.0,,no,no,no,poor,yes,no,ckd +152,76.0,90.0,,,,,,notpresent,notpresent,172.0,46.0,1.7,141.0,5.5,9.6,30.0,,,yes,yes,no,good,no,yes,ckd +153,39.0,70.0,1.010,0,0,,normal,notpresent,notpresent,121.0,20.0,0.8,133.0,3.5,10.9,32.0,,,no,yes,no,good,no,no,ckd +154,55.0,90.0,1.010,2,1,abnormal,abnormal,notpresent,notpresent,273.0,235.0,14.2,132.0,3.4,8.3,22.0,14600.0,2.9,yes,yes,no,poor,yes,yes,ckd +155,56.0,90.0,1.005,4,3,abnormal,abnormal,notpresent,notpresent,242.0,132.0,16.4,140.0,4.2,8.4,26.0,,3.0,yes,yes,no,poor,yes,yes,ckd +156,50.0,70.0,1.020,3,0,abnormal,normal,present,present,123.0,40.0,1.8,,,11.1,36.0,4700.0,,no,no,no,good,no,no,ckd +157,66.0,90.0,1.015,2,0,,normal,notpresent,present,153.0,76.0,3.3,,,,,,,no,no,no,poor,no,no,ckd +158,62.0,70.0,1.025,3,0,normal,abnormal,notpresent,notpresent,122.0,42.0,1.7,136.0,4.7,12.6,39.0,7900.0,3.9,yes,yes,no,good,no,no,ckd +159,71.0,60.0,1.020,3,2,normal,normal,present,notpresent,424.0,48.0,1.5,132.0,4.0,10.9,31.0,,,yes,yes,yes,good,no,no,ckd +160,59.0,80.0,1.010,1,0,abnormal,normal,notpresent,notpresent,303.0,35.0,1.3,122.0,3.5,10.4,35.0,10900.0,4.3,no,yes,no,poor,no,no,ckd +161,81.0,60.0,,,,,,notpresent,notpresent,148.0,39.0,2.1,147.0,4.2,10.9,35.0,9400.0,2.4,yes,yes,yes,poor,yes,no,ckd +162,62.0,,1.015,3,0,abnormal,,notpresent,notpresent,,,,,,14.3,42.0,10200.0,4.8,yes,yes,no,good,no,no,ckd +163,59.0,70.0,,,,,,notpresent,notpresent,204.0,34.0,1.5,124.0,4.1,9.8,37.0,6000.0,,no,yes,no,good,no,no,ckd +164,46.0,80.0,1.010,0,0,,normal,notpresent,notpresent,160.0,40.0,2.0,140.0,4.1,9.0,27.0,8100.0,3.2,yes,no,no,poor,no,yes,ckd +165,14.0,,1.015,0,0,,,notpresent,notpresent,192.0,15.0,0.8,137.0,4.2,14.3,40.0,9500.0,5.4,no,yes,no,poor,yes,no,ckd +166,60.0,80.0,1.020,0,2,,,notpresent,notpresent,,,,,,,,,,no,yes,no,good,no,no,ckd +167,27.0,60.0,,,,,,notpresent,notpresent,76.0,44.0,3.9,127.0,4.3,,,,,no,no,no,poor,yes,yes,ckd +168,34.0,70.0,1.020,0,0,abnormal,normal,notpresent,notpresent,139.0,19.0,0.9,,,12.7,42.0,2200.0,,no,no,no,poor,no,no,ckd +169,65.0,70.0,1.015,4,4,,normal,present,notpresent,307.0,28.0,1.5,,,11.0,39.0,6700.0,,yes,yes,no,good,no,no,ckd +170,,70.0,1.010,0,2,,normal,notpresent,notpresent,220.0,68.0,2.8,,,8.7,27.0,,,yes,yes,no,good,no,yes,ckd +171,66.0,70.0,1.015,2,5,,normal,notpresent,notpresent,447.0,41.0,1.7,131.0,3.9,12.5,33.0,9600.0,4.4,yes,yes,no,good,no,no,ckd +172,83.0,70.0,1.020,3,0,normal,normal,notpresent,notpresent,102.0,60.0,2.6,115.0,5.7,8.7,26.0,12800.0,3.1,yes,no,no,poor,no,yes,ckd +173,62.0,80.0,1.010,1,2,,,notpresent,notpresent,309.0,113.0,2.9,130.0,2.5,10.6,34.0,12800.0,4.9,no,no,no,good,no,no,ckd +174,17.0,70.0,1.015,1,0,abnormal,normal,notpresent,notpresent,22.0,1.5,7.3,145.0,2.8,13.1,41.0,11200.0,,no,no,no,good,no,no,ckd +175,54.0,70.0,,,,,,notpresent,notpresent,111.0,146.0,7.5,141.0,4.7,11.0,35.0,8600.0,4.6,no,no,no,good,no,no,ckd +176,60.0,50.0,1.010,0,0,,normal,notpresent,notpresent,261.0,58.0,2.2,113.0,3.0,,,4200.0,3.4,yes,no,no,good,no,no,ckd +177,21.0,90.0,1.010,4,0,normal,abnormal,present,present,107.0,40.0,1.7,125.0,3.5,8.3,23.0,12400.0,3.9,no,no,no,good,no,yes,ckd +178,65.0,80.0,1.015,2,1,normal,normal,present,notpresent,215.0,133.0,2.5,,,13.2,41.0,,,no,yes,no,good,no,no,ckd +179,42.0,90.0,1.020,2,0,abnormal,abnormal,present,notpresent,93.0,153.0,2.7,139.0,4.3,9.8,34.0,9800.0,,no,no,no,poor,yes,yes,ckd +180,72.0,90.0,1.010,2,0,,abnormal,present,notpresent,124.0,53.0,2.3,,,11.9,39.0,,,no,no,no,good,no,no,ckd +181,73.0,90.0,1.010,1,4,abnormal,abnormal,present,notpresent,234.0,56.0,1.9,,,10.3,28.0,,,no,yes,no,good,no,no,ckd +182,45.0,70.0,1.025,2,0,normal,abnormal,present,notpresent,117.0,52.0,2.2,136.0,3.8,10.0,30.0,19100.0,3.7,no,no,no,good,no,no,ckd +183,61.0,80.0,1.020,0,0,,normal,notpresent,notpresent,131.0,23.0,0.8,140.0,4.1,11.3,35.0,,,no,no,no,good,no,no,ckd +184,30.0,70.0,1.015,0,0,,normal,notpresent,notpresent,101.0,106.0,6.5,135.0,4.3,,,,,no,no,no,poor,no,no,ckd +185,54.0,60.0,1.015,3,2,,abnormal,notpresent,notpresent,352.0,137.0,3.3,133.0,4.5,11.3,31.0,5800.0,3.6,yes,yes,yes,poor,yes,no,ckd +186,4.0,,1.020,1,0,,normal,notpresent,notpresent,99.0,23.0,0.6,138.0,4.4,12.0,34.0,,,no,no,no,good,no,no,ckd +187,8.0,50.0,1.020,4,0,normal,normal,notpresent,notpresent,,46.0,1.0,135.0,3.8,,,,,no,no,no,good,yes,no,ckd +188,3.0,,1.010,2,0,normal,normal,notpresent,notpresent,,22.0,0.7,,,10.7,34.0,12300.0,,no,no,no,good,no,no,ckd +189,8.0,,,,,,,notpresent,notpresent,80.0,66.0,2.5,142.0,3.6,12.2,38.0,,,no,no,no,good,no,no,ckd +190,64.0,60.0,1.010,4,1,abnormal,abnormal,notpresent,present,239.0,58.0,4.3,137.0,5.4,9.5,29.0,7500.0,3.4,yes,yes,no,poor,yes,no,ckd +191,6.0,60.0,1.010,4,0,abnormal,abnormal,notpresent,present,94.0,67.0,1.0,135.0,4.9,9.9,30.0,16700.0,4.8,no,no,no,poor,no,no,ckd +192,,70.0,1.010,3,0,normal,normal,notpresent,notpresent,110.0,115.0,6.0,134.0,2.7,9.1,26.0,9200.0,3.4,yes,yes,no,poor,no,no,ckd +193,46.0,110.0,1.015,0,0,,normal,notpresent,notpresent,130.0,16.0,0.9,,,,,,,no,no,no,good,no,no,ckd +194,32.0,90.0,1.025,1,0,abnormal,abnormal,notpresent,notpresent,,223.0,18.1,113.0,6.5,5.5,15.0,2600.0,2.8,yes,yes,no,poor,yes,yes,ckd +195,80.0,70.0,1.010,2,,,abnormal,notpresent,notpresent,,49.0,1.2,,,,,,,yes,yes,no,good,no,no,ckd +196,70.0,90.0,1.020,2,1,abnormal,abnormal,notpresent,present,184.0,98.6,3.3,138.0,3.9,5.8,,,,yes,yes,yes,poor,no,no,ckd +197,49.0,100.0,1.010,3,0,abnormal,abnormal,notpresent,notpresent,129.0,158.0,11.8,122.0,3.2,8.1,24.0,9600.0,3.5,yes,yes,no,poor,yes,yes,ckd +198,57.0,80.0,,,,,,notpresent,notpresent,,111.0,9.3,124.0,5.3,6.8,,4300.0,3.0,yes,yes,no,good,no,yes,ckd +199,59.0,100.0,1.020,4,2,normal,normal,notpresent,notpresent,252.0,40.0,3.2,137.0,4.7,11.2,30.0,26400.0,3.9,yes,yes,no,poor,yes,no,ckd +200,65.0,80.0,1.015,0,0,,normal,notpresent,notpresent,92.0,37.0,1.5,140.0,5.2,8.8,25.0,10700.0,3.2,yes,no,yes,good,yes,no,ckd +201,90.0,90.0,1.025,1,0,,normal,notpresent,notpresent,139.0,89.0,3.0,140.0,4.1,12.0,37.0,7900.0,3.9,yes,yes,no,good,no,no,ckd +202,64.0,70.0,,,,,,notpresent,notpresent,113.0,94.0,7.3,137.0,4.3,7.9,21.0,,,yes,yes,yes,good,yes,yes,ckd +203,78.0,60.0,,,,,,notpresent,notpresent,114.0,74.0,2.9,135.0,5.9,8.0,24.0,,,no,yes,no,good,no,yes,ckd +204,,90.0,,,,,,notpresent,notpresent,207.0,80.0,6.8,142.0,5.5,8.5,,,,yes,yes,no,good,no,yes,ckd +205,65.0,90.0,1.010,4,2,normal,normal,notpresent,notpresent,172.0,82.0,13.5,145.0,6.3,8.8,31.0,,,yes,yes,no,good,yes,yes,ckd +206,61.0,70.0,,,,,,notpresent,notpresent,100.0,28.0,2.1,,,12.6,43.0,,,yes,yes,no,good,no,no,ckd +207,60.0,70.0,1.010,1,0,,normal,notpresent,notpresent,109.0,96.0,3.9,135.0,4.0,13.8,41.0,,,yes,no,no,good,no,no,ckd +208,50.0,70.0,1.010,0,0,,normal,notpresent,notpresent,230.0,50.0,2.2,,,12.0,41.0,10400.0,4.6,yes,yes,no,good,no,no,ckd +209,67.0,80.0,,,,,,notpresent,notpresent,341.0,37.0,1.5,,,12.3,41.0,6900.0,4.9,yes,yes,no,good,no,yes,ckd +210,19.0,70.0,1.020,0,0,,normal,notpresent,notpresent,,,,,,11.5,,6900.0,,no,no,no,good,no,no,ckd +211,59.0,100.0,1.015,4,2,normal,normal,notpresent,notpresent,255.0,132.0,12.8,135.0,5.7,7.3,20.0,9800.0,3.9,yes,yes,yes,good,no,yes,ckd +212,54.0,120.0,1.015,0,0,,normal,notpresent,notpresent,103.0,18.0,1.2,,,,,,,no,no,no,good,no,no,ckd +213,40.0,70.0,1.015,3,4,normal,normal,notpresent,notpresent,253.0,150.0,11.9,132.0,5.6,10.9,31.0,8800.0,3.4,yes,yes,no,poor,yes,no,ckd +214,55.0,80.0,1.010,3,1,normal,abnormal,present,present,214.0,73.0,3.9,137.0,4.9,10.9,34.0,7400.0,3.7,yes,yes,no,good,yes,no,ckd +215,68.0,80.0,1.015,0,0,,abnormal,notpresent,notpresent,171.0,30.0,1.0,,,13.7,43.0,4900.0,5.2,no,yes,no,good,no,no,ckd +216,2.0,,1.010,3,0,normal,abnormal,notpresent,notpresent,,,,,,,,,,no,no,no,good,yes,no,ckd +217,64.0,70.0,1.010,0,0,,normal,notpresent,notpresent,107.0,15.0,,,,12.8,38.0,,,no,no,no,good,no,no,ckd +218,63.0,100.0,1.010,1,0,,normal,notpresent,notpresent,78.0,61.0,1.8,141.0,4.4,12.2,36.0,10500.0,4.3,no,yes,no,good,no,no,ckd +219,33.0,90.0,1.015,0,0,,normal,notpresent,notpresent,92.0,19.0,0.8,,,11.8,34.0,7000.0,,no,no,no,good,no,no,ckd +220,68.0,90.0,1.010,0,0,,normal,notpresent,notpresent,238.0,57.0,2.5,,,9.8,28.0,8000.0,3.3,yes,yes,no,poor,no,no,ckd +221,36.0,80.0,1.010,0,0,,normal,notpresent,notpresent,103.0,,,,,11.9,36.0,8800.0,,no,no,no,good,no,no,ckd +222,66.0,70.0,1.020,1,0,normal,,notpresent,notpresent,248.0,30.0,1.7,138.0,5.3,,,,,yes,yes,no,good,no,no,ckd +223,74.0,60.0,,,,,,notpresent,notpresent,108.0,68.0,1.8,,,,,,,yes,yes,no,good,no,no,ckd +224,71.0,90.0,1.010,0,3,,normal,notpresent,notpresent,303.0,30.0,1.3,136.0,4.1,13.0,38.0,9200.0,4.6,yes,yes,no,good,no,no,ckd +225,34.0,60.0,1.020,0,0,,normal,notpresent,notpresent,117.0,28.0,2.2,138.0,3.8,,,,,no,no,no,good,yes,no,ckd +226,60.0,90.0,1.010,3,5,abnormal,normal,notpresent,present,490.0,95.0,2.7,131.0,3.8,11.5,35.0,12000.0,4.5,yes,yes,no,good,no,no,ckd +227,64.0,100.0,1.015,4,2,abnormal,abnormal,notpresent,present,163.0,54.0,7.2,140.0,4.6,7.9,26.0,7500.0,3.4,yes,yes,no,good,yes,no,ckd +228,57.0,80.0,1.015,0,0,,normal,notpresent,notpresent,120.0,48.0,1.6,,,11.3,36.0,7200.0,3.8,yes,yes,no,good,no,no,ckd +229,60.0,70.0,,,,,,notpresent,notpresent,124.0,52.0,2.5,,,,,,,yes,no,no,good,no,no,ckd +230,59.0,50.0,1.010,3,0,normal,abnormal,notpresent,notpresent,241.0,191.0,12.0,114.0,2.9,9.6,31.0,15700.0,3.8,no,yes,no,good,yes,no,ckd +231,65.0,60.0,1.010,2,0,normal,abnormal,present,notpresent,192.0,17.0,1.7,130.0,4.3,,,9500.0,,yes,yes,no,poor,no,no,ckd +232,60.0,90.0,,,,,,notpresent,notpresent,269.0,51.0,2.8,138.0,3.7,11.5,35.0,,,yes,yes,yes,good,yes,no,ckd +233,50.0,90.0,1.015,1,0,abnormal,abnormal,notpresent,notpresent,,,,,,,,,,no,no,no,good,yes,no,ckd +234,51.0,100.0,1.015,2,0,normal,normal,notpresent,present,93.0,20.0,1.6,146.0,4.5,,,,,no,no,no,poor,no,no,ckd +235,37.0,100.0,1.010,0,0,abnormal,normal,notpresent,notpresent,,19.0,1.3,,,15.0,44.0,4100.0,5.2,yes,no,no,good,no,no,ckd +236,45.0,70.0,1.010,2,0,,normal,notpresent,notpresent,113.0,93.0,2.3,,,7.9,26.0,5700.0,,no,no,yes,good,no,yes,ckd +237,65.0,80.0,,,,,,notpresent,notpresent,74.0,66.0,2.0,136.0,5.4,9.1,25.0,,,yes,yes,yes,good,yes,no,ckd +238,80.0,70.0,1.015,2,2,,normal,notpresent,notpresent,141.0,53.0,2.2,,,12.7,40.0,9600.0,,yes,yes,no,poor,yes,no,ckd +239,72.0,100.0,,,,,,notpresent,notpresent,201.0,241.0,13.4,127.0,4.8,9.4,28.0,,,yes,yes,no,good,no,yes,ckd +240,34.0,90.0,1.015,2,0,normal,normal,notpresent,notpresent,104.0,50.0,1.6,137.0,4.1,11.9,39.0,,,no,no,no,good,no,no,ckd +241,65.0,70.0,1.015,1,0,,normal,notpresent,notpresent,203.0,46.0,1.4,,,11.4,36.0,5000.0,4.1,yes,yes,no,poor,yes,no,ckd +242,57.0,70.0,1.015,1,0,,abnormal,notpresent,notpresent,165.0,45.0,1.5,140.0,3.3,10.4,31.0,4200.0,3.9,no,no,no,good,no,no,ckd +243,69.0,70.0,1.010,4,3,normal,abnormal,present,present,214.0,96.0,6.3,120.0,3.9,9.4,28.0,11500.0,3.3,yes,yes,yes,good,yes,yes,ckd +244,62.0,90.0,1.020,2,1,,normal,notpresent,notpresent,169.0,48.0,2.4,138.0,2.9,13.4,47.0,11000.0,6.1,yes,no,no,good,no,no,ckd +245,64.0,90.0,1.015,3,2,,abnormal,present,notpresent,463.0,64.0,2.8,135.0,4.1,12.2,40.0,9800.0,4.6,yes,yes,no,good,no,yes,ckd +246,48.0,100.0,,,,,,notpresent,notpresent,103.0,79.0,5.3,135.0,6.3,6.3,19.0,7200.0,2.6,yes,no,yes,poor,no,no,ckd +247,48.0,110.0,1.015,3,0,abnormal,normal,present,notpresent,106.0,215.0,15.2,120.0,5.7,8.6,26.0,5000.0,2.5,yes,no,yes,good,no,yes,ckd +248,54.0,90.0,1.025,1,0,normal,abnormal,notpresent,notpresent,150.0,18.0,1.2,140.0,4.2,,,,,no,no,no,poor,yes,yes,ckd +249,59.0,70.0,1.010,1,3,abnormal,abnormal,notpresent,notpresent,424.0,55.0,1.7,138.0,4.5,12.6,37.0,10200.0,4.1,yes,yes,yes,good,no,no,ckd +250,56.0,90.0,1.010,4,1,normal,abnormal,present,notpresent,176.0,309.0,13.3,124.0,6.5,3.1,9.0,5400.0,2.1,yes,yes,no,poor,yes,yes,ckd +251,40.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,140.0,10.0,1.2,135.0,5.0,15.0,48.0,10400.0,4.5,no,no,no,good,no,no,notckd +252,23.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,70.0,36.0,1.0,150.0,4.6,17.0,52.0,9800.0,5.0,no,no,no,good,no,no,notckd +253,45.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,82.0,49.0,0.6,147.0,4.4,15.9,46.0,9100.0,4.7,no,no,no,good,no,no,notckd +254,57.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,119.0,17.0,1.2,135.0,4.7,15.4,42.0,6200.0,6.2,no,no,no,good,no,no,notckd +255,51.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,99.0,38.0,0.8,135.0,3.7,13.0,49.0,8300.0,5.2,no,no,no,good,no,no,notckd +256,34.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,121.0,27.0,1.2,144.0,3.9,13.6,52.0,9200.0,6.3,no,no,no,good,no,no,notckd +257,60.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,131.0,10.0,0.5,146.0,5.0,14.5,41.0,10700.0,5.1,no,no,no,good,no,no,notckd +258,38.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,91.0,36.0,0.7,135.0,3.7,14.0,46.0,9100.0,5.8,no,no,no,good,no,no,notckd +259,42.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,98.0,20.0,0.5,140.0,3.5,13.9,44.0,8400.0,5.5,no,no,no,good,no,no,notckd +260,35.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,104.0,31.0,1.2,135.0,5.0,16.1,45.0,4300.0,5.2,no,no,no,good,no,no,notckd +261,30.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,131.0,38.0,1.0,147.0,3.8,14.1,45.0,9400.0,5.3,no,no,no,good,no,no,notckd +262,49.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,122.0,32.0,1.2,139.0,3.9,17.0,41.0,5600.0,4.9,no,no,no,good,no,no,notckd +263,55.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,118.0,18.0,0.9,135.0,3.6,15.5,43.0,7200.0,5.4,no,no,no,good,no,no,notckd +264,45.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,117.0,46.0,1.2,137.0,5.0,16.2,45.0,8600.0,5.2,no,no,no,good,no,no,notckd +265,42.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,132.0,24.0,0.7,140.0,4.1,14.4,50.0,5000.0,4.5,no,no,no,good,no,no,notckd +266,50.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,97.0,40.0,0.6,150.0,4.5,14.2,48.0,10500.0,5.0,no,no,no,good,no,no,notckd +267,55.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,133.0,17.0,1.2,135.0,4.8,13.2,41.0,6800.0,5.3,no,no,no,good,no,no,notckd +268,48.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,122.0,33.0,0.9,146.0,3.9,13.9,48.0,9500.0,4.8,no,no,no,good,no,no,notckd +269,,80.0,,,,,,notpresent,notpresent,100.0,49.0,1.0,140.0,5.0,16.3,53.0,8500.0,4.9,no,no,no,good,no,no,notckd +270,25.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,121.0,19.0,1.2,142.0,4.9,15.0,48.0,6900.0,5.3,no,no,no,good,no,no,notckd +271,23.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,111.0,34.0,1.1,145.0,4.0,14.3,41.0,7200.0,5.0,no,no,no,good,no,no,notckd +272,30.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,96.0,25.0,0.5,144.0,4.8,13.8,42.0,9000.0,4.5,no,no,no,good,no,no,notckd +273,56.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,139.0,15.0,1.2,135.0,5.0,14.8,42.0,5600.0,5.5,no,no,no,good,no,no,notckd +274,47.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,95.0,35.0,0.9,140.0,4.1,,,,,no,no,no,good,no,no,notckd +275,19.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,107.0,23.0,0.7,141.0,4.2,14.4,44.0,,,no,no,no,good,no,no,notckd +276,52.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,125.0,22.0,1.2,139.0,4.6,16.5,43.0,4700.0,4.6,no,no,no,good,no,no,notckd +277,20.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,,,,137.0,4.7,14.0,41.0,4500.0,5.5,no,no,no,good,no,no,notckd +278,46.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,123.0,46.0,1.0,135.0,5.0,15.7,50.0,6300.0,4.8,no,no,no,good,no,no,notckd +279,48.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,112.0,44.0,1.2,142.0,4.9,14.5,44.0,9400.0,6.4,no,no,no,good,no,no,notckd +280,24.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,140.0,23.0,0.6,140.0,4.7,16.3,48.0,5800.0,5.6,no,no,no,good,no,no,notckd +281,47.0,80.0,,,,,,notpresent,notpresent,93.0,33.0,0.9,144.0,4.5,13.3,52.0,8100.0,5.2,no,no,no,good,no,no,notckd +282,55.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,130.0,50.0,1.2,147.0,5.0,15.5,41.0,9100.0,6.0,no,no,no,good,no,no,notckd +283,20.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,123.0,44.0,1.0,135.0,3.8,14.6,44.0,5500.0,4.8,no,no,no,good,no,no,notckd +284,60.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,,,,,,16.4,43.0,10800.0,5.7,no,no,no,good,no,no,notckd +285,33.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,100.0,37.0,1.2,142.0,4.0,16.9,52.0,6700.0,6.0,no,no,no,good,no,no,notckd +286,66.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,94.0,19.0,0.7,135.0,3.9,16.0,41.0,5300.0,5.9,no,no,no,good,no,no,notckd +287,71.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,81.0,18.0,0.8,145.0,5.0,14.7,44.0,9800.0,6.0,no,no,no,good,no,no,notckd +288,39.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,124.0,22.0,0.6,137.0,3.8,13.4,43.0,,,no,no,no,good,no,no,notckd +289,56.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,70.0,46.0,1.2,135.0,4.9,15.9,50.0,11000.0,5.1,,,,good,no,no,notckd +290,42.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,93.0,32.0,0.9,143.0,4.7,16.6,43.0,7100.0,5.3,no,no,no,good,no,no,notckd +291,54.0,70.0,1.020,0,0,,,,,76.0,28.0,0.6,146.0,3.5,14.8,52.0,8400.0,5.9,no,no,no,good,no,no,notckd +292,47.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,124.0,44.0,1.0,140.0,4.9,14.9,41.0,7000.0,5.7,no,no,no,good,no,no,notckd +293,30.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,89.0,42.0,0.5,139.0,5.0,16.7,52.0,10200.0,5.0,no,no,no,good,no,no,notckd +294,50.0,,1.020,0,0,normal,normal,notpresent,notpresent,92.0,19.0,1.2,150.0,4.8,14.9,48.0,4700.0,5.4,no,no,no,good,no,no,notckd +295,75.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,110.0,50.0,0.7,135.0,5.0,14.3,40.0,8300.0,5.8,no,no,no,,,,notckd +296,44.0,70.0,,,,,,notpresent,notpresent,106.0,25.0,0.9,150.0,3.6,15.0,50.0,9600.0,6.5,no,no,no,good,no,no,notckd +297,41.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,125.0,38.0,0.6,140.0,5.0,16.8,41.0,6300.0,5.9,no,no,no,good,no,no,notckd +298,53.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,116.0,26.0,1.0,146.0,4.9,15.8,45.0,7700.0,5.2,,,,good,no,no,notckd +299,34.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,91.0,49.0,1.2,135.0,4.5,13.5,48.0,8600.0,4.9,no,no,no,good,no,no,notckd +300,73.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,127.0,48.0,0.5,150.0,3.5,15.1,52.0,11000.0,4.7,no,no,no,good,no,no,notckd +301,45.0,60.0,1.020,0,0,normal,normal,,,114.0,26.0,0.7,141.0,4.2,15.0,43.0,9200.0,5.8,no,no,no,good,no,no,notckd +302,44.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,96.0,33.0,0.9,147.0,4.5,16.9,41.0,7200.0,5.0,no,no,no,good,no,no,notckd +303,29.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,127.0,44.0,1.2,145.0,5.0,14.8,48.0,,,no,no,no,good,no,no,notckd +304,55.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,107.0,26.0,1.1,,,17.0,50.0,6700.0,6.1,no,no,no,good,no,no,notckd +305,33.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,128.0,38.0,0.6,135.0,3.9,13.1,45.0,6200.0,4.5,no,no,no,good,no,no,notckd +306,41.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,122.0,25.0,0.8,138.0,5.0,17.1,41.0,9100.0,5.2,no,no,no,good,no,no,notckd +307,52.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,128.0,30.0,1.2,140.0,4.5,15.2,52.0,4300.0,5.7,no,no,no,good,no,no,notckd +308,47.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,137.0,17.0,0.5,150.0,3.5,13.6,44.0,7900.0,4.5,no,no,no,good,no,no,notckd +309,43.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,81.0,46.0,0.6,135.0,4.9,13.9,48.0,6900.0,4.9,no,no,no,good,no,no,notckd +310,51.0,60.0,1.020,0,0,,,notpresent,notpresent,129.0,25.0,1.2,139.0,5.0,17.2,40.0,8100.0,5.9,no,no,no,good,no,no,notckd +311,46.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,102.0,27.0,0.7,142.0,4.9,13.2,44.0,11000.0,5.4,no,no,no,good,no,no,notckd +312,56.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,132.0,18.0,1.1,147.0,4.7,13.7,45.0,7500.0,5.6,no,no,no,good,no,no,notckd +313,80.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,,,,135.0,4.1,15.3,48.0,6300.0,6.1,no,no,no,good,no,no,notckd +314,55.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,104.0,28.0,0.9,142.0,4.8,17.3,52.0,8200.0,4.8,no,no,no,good,no,no,notckd +315,39.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,131.0,46.0,0.6,145.0,5.0,15.6,41.0,9400.0,4.7,no,no,no,good,no,no,notckd +316,44.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,,,,,,13.8,48.0,7800.0,4.4,no,no,no,good,no,no,notckd +317,35.0,,1.020,0,0,normal,normal,,,99.0,30.0,0.5,135.0,4.9,15.4,48.0,5000.0,5.2,no,no,no,good,no,no,notckd +318,58.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,102.0,48.0,1.2,139.0,4.3,15.0,40.0,8100.0,4.9,no,no,no,good,no,no,notckd +319,61.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,120.0,29.0,0.7,137.0,3.5,17.4,52.0,7000.0,5.3,no,no,no,good,no,no,notckd +320,30.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,138.0,15.0,1.1,135.0,4.4,,,,,no,no,no,good,no,no,notckd +321,57.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,105.0,49.0,1.2,150.0,4.7,15.7,44.0,10400.0,6.2,no,no,no,good,no,no,notckd +322,65.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,109.0,39.0,1.0,144.0,3.5,13.9,48.0,9600.0,4.8,no,no,no,good,no,no,notckd +323,70.0,60.0,,,,,,notpresent,notpresent,120.0,40.0,0.5,140.0,4.6,16.0,43.0,4500.0,4.9,no,no,no,good,no,no,notckd +324,43.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,130.0,30.0,1.1,143.0,5.0,15.9,45.0,7800.0,4.5,no,no,no,good,no,no,notckd +325,40.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,119.0,15.0,0.7,150.0,4.9,,,,,no,no,no,good,no,no,notckd +326,58.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,100.0,50.0,1.2,140.0,3.5,14.0,50.0,6700.0,6.5,no,no,no,good,no,no,notckd +327,47.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,109.0,25.0,1.1,141.0,4.7,15.8,41.0,8300.0,5.2,no,no,no,good,no,no,notckd +328,30.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,120.0,31.0,0.8,150.0,4.6,13.4,44.0,10700.0,5.8,no,no,no,good,no,no,notckd +329,28.0,70.0,1.020,0,0,normal,normal,,,131.0,29.0,0.6,145.0,4.9,,45.0,8600.0,6.5,no,no,no,good,no,no,notckd +330,33.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,80.0,25.0,0.9,146.0,3.5,14.1,48.0,7800.0,5.1,no,no,no,good,no,no,notckd +331,43.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,114.0,32.0,1.1,135.0,3.9,,42.0,,,no,no,no,good,no,no,notckd +332,59.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,130.0,39.0,0.7,147.0,4.7,13.5,46.0,6700.0,4.5,no,no,no,good,no,no,notckd +333,34.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,,33.0,1.0,150.0,5.0,15.3,44.0,10500.0,6.1,no,no,no,good,no,no,notckd +334,23.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,99.0,46.0,1.2,142.0,4.0,17.7,46.0,4300.0,5.5,no,no,no,good,no,no,notckd +335,24.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,125.0,,,136.0,3.5,15.4,43.0,5600.0,4.5,no,no,no,good,no,no,notckd +336,60.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,134.0,45.0,0.5,139.0,4.8,14.2,48.0,10700.0,5.6,no,no,no,good,no,no,notckd +337,25.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,119.0,27.0,0.5,,,15.2,40.0,9200.0,5.2,no,no,no,good,no,no,notckd +338,44.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,92.0,40.0,0.9,141.0,4.9,14.0,52.0,7500.0,6.2,no,no,no,good,no,no,notckd +339,62.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,132.0,34.0,0.8,147.0,3.5,17.8,44.0,4700.0,4.5,no,no,no,good,no,no,notckd +340,25.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,88.0,42.0,0.5,136.0,3.5,13.3,48.0,7000.0,4.9,no,no,no,good,no,no,notckd +341,32.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,100.0,29.0,1.1,142.0,4.5,14.3,43.0,6700.0,5.9,no,no,no,good,no,no,notckd +342,63.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,130.0,37.0,0.9,150.0,5.0,13.4,41.0,7300.0,4.7,no,no,no,good,no,no,notckd +343,44.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,95.0,46.0,0.5,138.0,4.2,15.0,50.0,7700.0,6.3,no,no,no,good,no,no,notckd +344,37.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,111.0,35.0,0.8,135.0,4.1,16.2,50.0,5500.0,5.7,no,no,no,good,no,no,notckd +345,64.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,106.0,27.0,0.7,150.0,3.3,14.4,42.0,8100.0,4.7,no,no,no,good,no,no,notckd +346,22.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,97.0,18.0,1.2,138.0,4.3,13.5,42.0,7900.0,6.4,no,no,no,good,no,no,notckd +347,33.0,60.0,,,,normal,normal,notpresent,notpresent,130.0,41.0,0.9,141.0,4.4,15.5,52.0,4300.0,5.8,no,no,no,good,no,no,notckd +348,43.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,108.0,25.0,1.0,144.0,5.0,17.8,43.0,7200.0,5.5,no,no,no,good,no,no,notckd +349,38.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,99.0,19.0,0.5,147.0,3.5,13.6,44.0,7300.0,6.4,no,no,no,good,no,no,notckd +350,35.0,70.0,1.025,0,0,,,notpresent,notpresent,82.0,36.0,1.1,150.0,3.5,14.5,52.0,9400.0,6.1,no,no,no,good,no,no,notckd +351,65.0,70.0,1.025,0,0,,,notpresent,notpresent,85.0,20.0,1.0,142.0,4.8,16.1,43.0,9600.0,4.5,no,no,no,good,no,no,notckd +352,29.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,83.0,49.0,0.9,139.0,3.3,17.5,40.0,9900.0,4.7,no,no,no,good,no,no,notckd +353,37.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,109.0,47.0,1.1,141.0,4.9,15.0,48.0,7000.0,5.2,no,no,no,good,no,no,notckd +354,39.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,86.0,37.0,0.6,150.0,5.0,13.6,51.0,5800.0,4.5,no,no,no,good,no,no,notckd +355,32.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,102.0,17.0,0.4,147.0,4.7,14.6,41.0,6800.0,5.1,no,no,no,good,no,no,notckd +356,23.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,95.0,24.0,0.8,145.0,5.0,15.0,52.0,6300.0,4.6,no,no,no,good,no,no,notckd +357,34.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,87.0,38.0,0.5,144.0,4.8,17.1,47.0,7400.0,6.1,no,no,no,good,no,no,notckd +358,66.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,107.0,16.0,1.1,140.0,3.6,13.6,42.0,11000.0,4.9,no,no,no,good,no,no,notckd +359,47.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,117.0,22.0,1.2,138.0,3.5,13.0,45.0,5200.0,5.6,no,no,no,good,no,no,notckd +360,74.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,88.0,50.0,0.6,147.0,3.7,17.2,53.0,6000.0,4.5,no,no,no,good,no,no,notckd +361,35.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,105.0,39.0,0.5,135.0,3.9,14.7,43.0,5800.0,6.2,no,no,no,good,no,no,notckd +362,29.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,70.0,16.0,0.7,138.0,3.5,13.7,54.0,5400.0,5.8,no,no,no,good,no,no,notckd +363,33.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,89.0,19.0,1.1,144.0,5.0,15.0,40.0,10300.0,4.8,no,no,no,good,no,no,notckd +364,67.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,99.0,40.0,0.5,,,17.8,44.0,5900.0,5.2,no,no,no,good,no,no,notckd +365,73.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,118.0,44.0,0.7,137.0,3.5,14.8,45.0,9300.0,4.7,no,no,no,good,no,no,notckd +366,24.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,93.0,46.0,1.0,145.0,3.5,,,10700.0,6.3,no,no,no,good,no,no,notckd +367,60.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,81.0,15.0,0.5,141.0,3.6,15.0,46.0,10500.0,5.3,no,no,no,good,no,no,notckd +368,68.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,125.0,41.0,1.1,139.0,3.8,17.4,50.0,6700.0,6.1,no,no,no,good,no,no,notckd +369,30.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,82.0,42.0,0.7,146.0,5.0,14.9,45.0,9400.0,5.9,no,no,no,good,no,no,notckd +370,75.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,107.0,48.0,0.8,144.0,3.5,13.6,46.0,10300.0,4.8,no,no,no,good,no,no,notckd +371,69.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,83.0,42.0,1.2,139.0,3.7,16.2,50.0,9300.0,5.4,no,no,no,good,no,no,notckd +372,28.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,79.0,50.0,0.5,145.0,5.0,17.6,51.0,6500.0,5.0,no,no,no,good,no,no,notckd +373,72.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,109.0,26.0,0.9,150.0,4.9,15.0,52.0,10500.0,5.5,no,no,no,good,no,no,notckd +374,61.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,133.0,38.0,1.0,142.0,3.6,13.7,47.0,9200.0,4.9,no,no,no,good,no,no,notckd +375,79.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,111.0,44.0,1.2,146.0,3.6,16.3,40.0,8000.0,6.4,no,no,no,good,no,no,notckd +376,70.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,74.0,41.0,0.5,143.0,4.5,15.1,48.0,9700.0,5.6,no,no,no,good,no,no,notckd +377,58.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,88.0,16.0,1.1,147.0,3.5,16.4,53.0,9100.0,5.2,no,no,no,good,no,no,notckd +378,64.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,97.0,27.0,0.7,145.0,4.8,13.8,49.0,6400.0,4.8,no,no,no,good,no,no,notckd +379,71.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,,,0.9,140.0,4.8,15.2,42.0,7700.0,5.5,no,no,no,good,no,no,notckd +380,62.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,78.0,45.0,0.6,138.0,3.5,16.1,50.0,5400.0,5.7,no,no,no,good,no,no,notckd +381,59.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,113.0,23.0,1.1,139.0,3.5,15.3,54.0,6500.0,4.9,no,no,no,good,no,no,notckd +382,71.0,70.0,1.025,0,0,,,notpresent,notpresent,79.0,47.0,0.5,142.0,4.8,16.6,40.0,5800.0,5.9,no,no,no,good,no,no,notckd +383,48.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,75.0,22.0,0.8,137.0,5.0,16.8,51.0,6000.0,6.5,no,no,no,good,no,no,notckd +384,80.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,119.0,46.0,0.7,141.0,4.9,13.9,49.0,5100.0,5.0,no,no,no,good,no,no,notckd +385,57.0,60.0,1.020,0,0,normal,normal,notpresent,notpresent,132.0,18.0,1.1,150.0,4.7,15.4,42.0,11000.0,4.5,no,no,no,good,no,no,notckd +386,63.0,70.0,1.020,0,0,normal,normal,notpresent,notpresent,113.0,25.0,0.6,146.0,4.9,16.5,52.0,8000.0,5.1,no,no,no,good,no,no,notckd +387,46.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,100.0,47.0,0.5,142.0,3.5,16.4,43.0,5700.0,6.5,no,no,no,good,no,no,notckd +388,15.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,93.0,17.0,0.9,136.0,3.9,16.7,50.0,6200.0,5.2,no,no,no,good,no,no,notckd +389,51.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,94.0,15.0,1.2,144.0,3.7,15.5,46.0,9500.0,6.4,no,no,no,good,no,no,notckd +390,41.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,112.0,48.0,0.7,140.0,5.0,17.0,52.0,7200.0,5.8,no,no,no,good,no,no,notckd +391,52.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,99.0,25.0,0.8,135.0,3.7,15.0,52.0,6300.0,5.3,no,no,no,good,no,no,notckd +392,36.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,85.0,16.0,1.1,142.0,4.1,15.6,44.0,5800.0,6.3,no,no,no,good,no,no,notckd +393,57.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,133.0,48.0,1.2,147.0,4.3,14.8,46.0,6600.0,5.5,no,no,no,good,no,no,notckd +394,43.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,117.0,45.0,0.7,141.0,4.4,13.0,54.0,7400.0,5.4,no,no,no,good,no,no,notckd +395,50.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,137.0,46.0,0.8,139.0,5.0,14.1,45.0,9500.0,4.6,no,no,no,good,no,no,notckd +396,55.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,140.0,49.0,0.5,150.0,4.9,15.7,47.0,6700.0,4.9,no,no,no,good,no,no,notckd +397,42.0,70.0,1.025,0,0,normal,normal,notpresent,notpresent,75.0,31.0,1.2,141.0,3.5,16.5,54.0,7800.0,6.2,no,no,no,good,no,no,notckd +398,12.0,80.0,1.020,0,0,normal,normal,notpresent,notpresent,100.0,26.0,0.6,137.0,4.4,15.8,49.0,6600.0,5.4,no,no,no,good,no,no,notckd +399,17.0,60.0,1.025,0,0,normal,normal,notpresent,notpresent,114.0,50.0,1.0,135.0,4.9,14.2,51.0,7200.0,5.9,no,no,no,good,no,no,notckd +400,58.0,80.0,1.025,0,0,normal,normal,notpresent,notpresent,131.0,18.0,1.1,141.0,3.5,15.8,53.0,6800.0,6.1,no,no,no,good,no,no,notckd