-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem0027.cpp
77 lines (72 loc) · 2.27 KB
/
problem0027.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*
Euler discovered the remarkable quadratic formula:
n² + n + 41
It turns out that the formula will produce 40 primes for the consecutive
values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41
is divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly
divisible by 41.
The incredible formula n² − 79n + 1601 was discovered, which produces 80
primes for the consecutive values n = 0 to 79. The product of the
coefficients, −79 and 1601, is −126479.
Considering quadratics of the form:
n² + an + b, where |a| < 1000 and |b| < 1000
where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |−4| = 4
Find the product of the coefficients, a and b, for the quadratic expression
that produces the maximum number of primes for consecutive values of n,
starting with n = 0.
*/
#include <iostream>
#include "PrimeSieve.hpp"
#define MAX 1000000
int primes_produced(int, int, PrimeSieve &);
int main() {
PrimeSieve sieve(MAX);
int max = 0;
int tmp, max_a, max_b;
for (int a = 1; a < 1000; ++a) {
for (int b = 1; b < 1000; ++b) {
tmp = primes_produced(a, b, sieve);
if (tmp > max) {
max = tmp;
max_a = a;
max_b = b;
}
tmp = primes_produced(-1 * a, b, sieve);
if (tmp > max) {
max = tmp;
max_a = -1 * a;
max_b = b;
}
tmp = primes_produced(a, -1 * b, sieve);
if (tmp > max) {
max = tmp;
max_a = a;
max_b = -1 * b;
}
tmp = primes_produced(-1 * a, -1 * b, sieve);
if (tmp > max) {
max = tmp;
max_a = -1 * a;
max_b = -1 * b;
}
}
}
std::cout << max_a * max_b << std::endl;
std::cout << primes_produced(max_a, max_b, sieve) << std::endl;
return 0;
}
// count the number of prime numbers produced by this quadratic
int primes_produced(int a, int b, PrimeSieve &sieve) {
int c = 0;
int tmp = (c * c) + a * c + b;
while (tmp < MAX) {
if (tmp < 0)
return false;
if (!sieve[tmp])
break;
++c;
tmp = (c * c) + a * c + b;
}
return c;
}