-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem0077.cpp
62 lines (52 loc) · 1.34 KB
/
problem0077.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <iostream>
#include <cstring>
#include <vector>
#define MAX 10000
void del_mult(int, bool[]);
int next_prime(int, bool[]);
int find_sum(std::vector<int>);
int main() {
bool sieve[MAX];
memset(sieve, true, sizeof(sieve));
sieve[0] = 0;
sieve[1] = 0;
int prime = 2;
for (int i = 0; i * i < MAX; ++i) {
del_mult(prime, sieve);
prime = next_prime(prime, sieve);
}
// build a vector of the prime numbers for more efficient traversals
std::vector<int> primes;
for (int i = 0; i < MAX; ++i)
if (sieve[i])
primes.push_back(i);
std::cout << find_sum(primes) << std::endl;
return 0;
}
/*
* Uses dynamic programming to find the number of ways to find the sum
* based on the previous values
*/
int find_sum(std::vector<int> primes) {
int sums[MAX];
memset(sums, 0, sizeof(sums));
sums[0] = 1; // base case
for (int i = 0; i < primes.size(); ++i) {
for (int j = 0; j < MAX; ++j) {
if (j - primes[i] >= 0)
sums[j] = sums[j-primes[i]];
}
}
for (int i = 0; i < MAX; ++i)
if (sums[i] > 5000)
return i;
return -1;
}
int next_prime(int p, bool sieve[]) {
while (!sieve[++p]);
return p;
}
void del_mult(int p, bool sieve[]) {
for (int i = p * p; i < MAX; i+=p)
sieve[i] = false;
}