Skip to content

Commit 83ef6df

Browse files
committed
repo moved
1 parent 01db228 commit 83ef6df

File tree

1 file changed

+1
-94
lines changed

1 file changed

+1
-94
lines changed

README.md

Lines changed: 1 addition & 94 deletions
Original file line numberDiff line numberDiff line change
@@ -1,94 +1 @@
1-
# Introduction
2-
3-
Official Pytorch implementation for [Deep Contextual Video Compression](https://proceedings.neurips.cc/paper/2021/file/96b250a90d3cf0868c83f8c965142d2a-Paper.pdf), NeurIPS 2021
4-
5-
# Prerequisites
6-
* Python 3.8 and conda, get [Conda](https://www.anaconda.com/)
7-
* CUDA 11.0
8-
* Environment
9-
```
10-
conda create -n $YOUR_PY38_ENV_NAME python=3.8
11-
conda activate $YOUR_PY38_ENV_NAME
12-
13-
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
14-
python -m pip install -r requirements.txt
15-
```
16-
17-
18-
19-
# Test dataset
20-
Currenlty the spatial resolution of video needs to be cropped into the integral times of 64.
21-
22-
The dataset format can be seen in dataset_config_example.json.
23-
24-
For example, one video of HEVC Class B can be prepared as:
25-
* Crop the original YUV via ffmpeg:
26-
```
27-
ffmpeg -pix_fmt yuv420p -s 1920x1080 -i BasketballDrive_1920x1080_50.yuv -vf crop=1920:1024:0:0 BasketballDrive_1920x1024_50.yuv
28-
```
29-
* Make the video path:
30-
```
31-
mkdir BasketballDrive_1920x1024_50
32-
```
33-
* Convert YUV to PNG:
34-
```
35-
ffmpeg -pix_fmt yuv420p -s 1920x1024 -i BasketballDrive_1920x1024_50.yuv -f image2 BasketballDrive_1920x1024_50/im%05d.png
36-
```
37-
At last, the folder structure of dataset is like:
38-
39-
/media/data/HEVC_B/
40-
* BQTerrace_1920x1024_60/
41-
- im00001.png
42-
- im00002.png
43-
- im00003.png
44-
- ...
45-
* BasketballDrive_1920x1024_50/
46-
- im00001.png
47-
- im00002.png
48-
- im00003.png
49-
- ...
50-
* ...
51-
/media/data/HEVC_D
52-
/media/data/HEVC_C/
53-
...
54-
55-
# Pretrained models
56-
57-
* Download CompressAI models
58-
```
59-
cd ./checkpoints
60-
python download_compressai_models.py
61-
cd ..
62-
```
63-
64-
* Download [DCVC models](https://1drv.ms/u/s!AozfVVwtWWYoiS5mcGX320bFXI0k?e=iMeykH) and put them into ./checkpoints folder.
65-
66-
# Test DCVC
67-
68-
Example of test the PSNR model:
69-
```bash
70-
python test_video.py --i_frame_model_name cheng2020-anchor --i_frame_model_path checkpoints/cheng2020-anchor-3-e49be189.pth.tar checkpoints/cheng2020-anchor-4-98b0b468.pth.tar checkpoints/cheng2020-anchor-5-23852949.pth.tar checkpoints/cheng2020-anchor-6-4c052b1a.pth.tar --test_config dataset_config_example.json --cuda true --cuda_device 0,1,2,3 --worker 4 --output_json_result_path DCVC_result_psnr.json --model_type psnr --recon_bin_path recon_bin_folder_psnr --model_path checkpoints/model_dcvc_quality_0_psnr.pth checkpoints/model_dcvc_quality_1_psnr.pth checkpoints/model_dcvc_quality_2_psnr.pth checkpoints/model_dcvc_quality_3_psnr.pth
71-
```
72-
73-
Example of test the MSSSIM model:
74-
```bash
75-
python test_video.py --i_frame_model_name bmshj2018-hyperprior --i_frame_model_path checkpoints/bmshj2018-hyperprior-ms-ssim-3-92dd7878.pth.tar checkpoints/bmshj2018-hyperprior-ms-ssim-4-4377354e.pth.tar checkpoints/bmshj2018-hyperprior-ms-ssim-5-c34afc8d.pth.tar checkpoints/bmshj2018-hyperprior-ms-ssim-6-3a6d8229.pth.tar --test_config dataset_config_example.json --cuda true --cuda_device 0,1,2,3 --worker 4 --output_json_result_path DCVC_result_msssim.json --model_type msssim --recon_bin_path recon_bin_folder_msssim --model_path checkpoints/model_dcvc_quality_0_msssim.pth checkpoints/model_dcvc_quality_1_msssim.pth checkpoints/model_dcvc_quality_2_msssim.pth checkpoints/model_dcvc_quality_3_msssim.pth
76-
```
77-
It is recommended that the ```--worker``` number is equal to your GPU number.
78-
79-
80-
# Acknowledgement
81-
The implementation is based on [CompressAI](https://github.com/InterDigitalInc/CompressAI) and [PyTorchVideoCompression](https://github.com/ZhihaoHu/PyTorchVideoCompression). The model weights of intra coding come from [CompressAI](https://github.com/InterDigitalInc/CompressAI).
82-
83-
# Citation
84-
If you find this work useful for your research, please cite:
85-
86-
```
87-
@article{li2021deep,
88-
title={Deep Contextual Video Compression},
89-
author={Li, Jiahao and Li, Bin and Lu, Yan},
90-
journal={Advances in Neural Information Processing Systems},
91-
volume={34},
92-
year={2021}
93-
}
94-
```
1+
The code has been moved to [https://github.com/microsoft/DCVC](https://github.com/microsoft/DCVC). The new repository also includes our latest neural codec which outperforms H.266(VTM) using the highest compression ratio configuration and also supports smooth rate adjustment in single model.

0 commit comments

Comments
 (0)