forked from pcb2gcode/pcb2gcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoronoi.cpp
300 lines (270 loc) · 13 KB
/
voronoi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
* This file is part of pcb2gcode.
*
* Copyright (C) 2016 Nicola Corna <[email protected]>
*
* pcb2gcode is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* pcb2gcode is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with pcb2gcode. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include "voronoi.hpp"
#include "voronoi_visual_utils.hpp"
#include <list>
#include <map>
#include <algorithm>
using std::list;
using std::map;
#include <vector>
using std::vector;
// For use when we have to convert from float to long and back.
const double SCALE = 1000000.0;
multi_polygon_type_fp Voronoi::build_voronoi(
const multi_polygon_type_fp& input,
const box_type_fp& mask_bounding_box, coordinate_type_fp max_dist) {
// We need to scale all the inputs and call the integer version.
multi_polygon_type_fp scaled_input;
bg::transform(input, scaled_input,
bg::strategy::transform::scale_transformer<coordinate_type_fp, 2, 2>(
SCALE, SCALE));
box_type_fp scaled_mask_bounding_box;
bg::transform(mask_bounding_box, scaled_mask_bounding_box,
bg::strategy::transform::scale_transformer<coordinate_type_fp, 2, 2>(
SCALE, SCALE));
multi_polygon_type voronoi_input;
bg::convert(scaled_input, voronoi_input);
box_type voronoi_bounding_box;
bg::convert(scaled_mask_bounding_box, voronoi_bounding_box);
const multi_polygon_type_fp scaled_voronoi = build_voronoi(voronoi_input, voronoi_bounding_box, max_dist * SCALE);
// Scale the result back down.
multi_polygon_type_fp voronoi;
bg::transform(scaled_voronoi, voronoi,
bg::strategy::transform::scale_transformer<coordinate_type_fp, 2, 2>(
1.0/SCALE, 1.0/SCALE));
return voronoi;
}
multi_polygon_type_fp Voronoi::build_voronoi(
const multi_polygon_type& input,
const box_type& mask_bounding_box, coordinate_type max_dist) {
if (input.empty()) {
return multi_polygon_type_fp();
}
// Bounding_box is a box that is big enough to hold all milling.
box_type_fp bounding_box = bg::return_envelope<box_type_fp>(input);
// Expand that bounding box by the provided bounding_box.
bg::expand(bounding_box, mask_bounding_box);
// Make it large enough so that any voronoi edges between it and
// the input will surely line outside mask_bounding_box.
const auto bounding_box_width = bounding_box.max_corner().x() - bounding_box.min_corner().x();
const auto bounding_box_height = bounding_box.max_corner().y() - bounding_box.min_corner().y();
bounding_box.max_corner().x(bounding_box.max_corner().x() + 2*bounding_box_width);
bounding_box.min_corner().x(bounding_box.min_corner().x() - 2*bounding_box_width);
bounding_box.max_corner().y(bounding_box.max_corner().y() + 2*bounding_box_height);
bounding_box.min_corner().y(bounding_box.min_corner().y() - 2*bounding_box_height);
// Each line segment from all the inputs.
vector<segment_type_p> segments;
// From which polygon each segment is sourced.
std::vector<size_t> segments_to_poly;
for (const auto& polygon : input) {
copy_ring(polygon.outer(), segments);
for (const ring_type& ring : polygon.inners()) {
copy_ring(ring, segments);
}
segments_to_poly.push_back(segments.size());
}
// Add the bounding box but without putting it in segments_to_poly
// so that we won't put voronoi cells from it into the output.
ring_type bounding_box_ring;
bg::convert(bounding_box, bounding_box_ring);
copy_ring(bounding_box_ring, segments);
voronoi_builder_type voronoi_builder;
boost::polygon::insert(segments.begin(), segments.end(), &voronoi_builder);
voronoi_diagram_type voronoi_diagram;
voronoi_builder.construct(&voronoi_diagram);
// The output polygons which are voronoi shapes. The outputs
// match the inputs in number and position but the number of inner
// rings for each output polygon might not match.
multi_polygon_type_fp output;
// Pre-allocate because we are going to add elements out of order.
output.resize(input.size());
// To keep it simply, we first mark each edge as used if it won't
// be part of the output.
const int VISITED = 1;
for (const edge_type& edge : voronoi_diagram.edges()) {
if (!edge.is_primary() || // Not a real voronoi edge.
same_poly(edge, *edge.twin(), segments_to_poly) || // This edge doesn't divide different shapes.
// The edge belongs to the boundary.
std::upper_bound(segments_to_poly.cbegin(), segments_to_poly.cend(), edge.twin()->cell()->source_index()) == segments_to_poly.cend()) {
edge.color(edge.color() | VISITED);
}
}
for (const edge_type& edge : voronoi_diagram.edges()) {
if ((edge.color() & VISITED) == VISITED) {
continue; // Used already.
}
const edge_type* current_edge = &edge;
const edge_type* const start_edge = current_edge;
ring_type_fp ring;
do {
linestring_type_fp discrete_edge = edge_to_linestring(*current_edge, segments, bounding_box, max_dist);
// Don't push the last one because we'll put it at the end.
for(std::size_t i=0; i<discrete_edge.size()-1; ++i)
{
bg::append(ring, discrete_edge.at(i));
}
current_edge->color(current_edge->color() | VISITED); // Mark used
current_edge = current_edge->next();
// Check that we are still circling the same polygon for
// our ring, and that we are on edge that is between
// different traces, and that it's a primary edge.
while (current_edge != start_edge &&
((current_edge->color() & VISITED) == VISITED ||
// Still circling the same twin. We look at twin because we need clockwise outer loops.
!same_poly(*current_edge->twin(), *start_edge->twin(), segments_to_poly))) {
current_edge = current_edge->rot_next();
}
} while (current_edge != start_edge);
if(!ring.empty())
{
ring.push_back(ring.front()); // Close the ring.
size_t poly_index = std::distance(segments_to_poly.cbegin(), std::upper_bound(segments_to_poly.cbegin(), segments_to_poly.cend(), edge.twin()->cell()->source_index()));
if (bg::area(ring) > 0) {
// This is the outer ring of the poly.
output[poly_index].outer().swap(ring);
} else {
// This has negative area, it must be a hole in the outer.
output[poly_index].inners().push_back(ring);
}
}
}
return output;
}
bool Voronoi::same_poly(const edge_type& edge0, const edge_type& edge1, const std::vector<size_t>& segments_to_poly) {
return (std::upper_bound(segments_to_poly.cbegin(), segments_to_poly.cend(), edge0.cell()->source_index()) ==
std::upper_bound(segments_to_poly.cbegin(), segments_to_poly.cend(), edge1.cell()->source_index()));
}
linestring_type_fp Voronoi::edge_to_linestring(const edge_type& edge, const vector<segment_type_p>& segments, const box_type_fp& bounding_box, coordinate_type max_dist) {
linestring_type_fp new_voronoi_edge;
if (edge.is_finite()) {
if (edge.is_linear()) {
new_voronoi_edge.push_back(point_type_fp(edge.vertex0()->x(),
edge.vertex0()->y()));
new_voronoi_edge.push_back(point_type_fp(edge.vertex1()->x(),
edge.vertex1()->y()));
} else {
// It's a curve, it needs sampling.
vector<point_type_fp_p> sampled_edge;
sample_curved_edge(&edge, segments, sampled_edge, max_dist);
for (const auto& point : sampled_edge) {
new_voronoi_edge.push_back(point_type_fp(point.x(), point.y()));
}
}
} else {
// Infinite edge, only make it if it is inside the bounding_box.
if ((edge.vertex0() == NULL ||
bg::covered_by(point_type(edge.vertex0()->x(), edge.vertex0()->y()),
bounding_box)) &&
(edge.vertex1() == NULL ||
bg::covered_by(point_type(edge.vertex1()->x(), edge.vertex1()->y()),
bounding_box))) {
vector<point_type_fp_p> clipped_edge;
clip_infinite_edge(
edge, segments, &clipped_edge, bounding_box);
for (const auto& point : clipped_edge) {
new_voronoi_edge.push_back(point_type_fp(point.x(), point.y()));
}
}
}
return new_voronoi_edge;
}
// Make segments from the ring and put them in segments.
void Voronoi::copy_ring(const ring_type& ring, vector<segment_type_p> &segments)
{
for (auto iter = ring.begin(); iter + 1 != ring.end(); iter++) {
segments.push_back(segment_type_p(point_type_p(iter->x(), iter->y()),
point_type_p((iter + 1)->x(), (iter + 1)->y())));
}
}
point_type_p Voronoi::retrieve_point(const cell_type& cell, const vector<segment_type_p> &segments) {
source_index_type index = cell.source_index();
source_category_type category = cell.source_category();
if (category == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT)
return boost::polygon::low(segments[index]);
else
return boost::polygon::high(segments[index]);
}
const segment_type_p& Voronoi::retrieve_segment(const cell_type& cell, const vector<segment_type_p> &segments) {
source_index_type index = cell.source_index();
return segments[index];
}
void Voronoi::sample_curved_edge(const edge_type *edge, const vector<segment_type_p> &segments,
vector<point_type_fp_p>& sampled_edge, coordinate_type_fp max_dist) {
point_type_p point = edge->cell()->contains_point() ?
retrieve_point(*(edge->cell()), segments) :
retrieve_point(*(edge->twin()->cell()), segments);
const segment_type_p& segment = edge->cell()->contains_point() ?
retrieve_segment(*(edge->twin()->cell()), segments) :
retrieve_segment(*(edge->cell()), segments);
sampled_edge.push_back(point_type_fp_p(edge->vertex0()->x(), edge->vertex0()->y()));
sampled_edge.push_back(point_type_fp_p(edge->vertex1()->x(), edge->vertex1()->y()));
boost::polygon::voronoi_visual_utils<coordinate_type_fp>::discretize(point, segment, max_dist, &sampled_edge);
}
void Voronoi::clip_infinite_edge(
const edge_type& edge, const vector<segment_type_p>& segments, std::vector<point_type_fp_p>* clipped_edge, const box_type_fp& bounding_box) {
const cell_type& cell1 = *edge.cell();
const cell_type& cell2 = *edge.twin()->cell();
point_type_p origin, direction;
// Infinite edges could not be created by two segment sites.
if (cell1.contains_point() && cell2.contains_point()) {
point_type_p p1 = retrieve_point(cell1, segments);
point_type_p p2 = retrieve_point(cell2, segments);
origin.x((p1.x() + p2.x()) * 0.5);
origin.y((p1.y() + p2.y()) * 0.5);
direction.x(p1.y() - p2.y());
direction.y(p2.x() - p1.x());
} else {
origin = cell1.contains_segment() ?
retrieve_point(cell2, segments) :
retrieve_point(cell1, segments);
segment_type_p segment = cell1.contains_segment() ?
retrieve_segment(cell1, segments) :
retrieve_segment(cell2, segments);
coordinate_type dx = high(segment).x() - low(segment).x();
coordinate_type dy = high(segment).y() - low(segment).y();
if ((low(segment) == origin) ^ cell1.contains_point()) {
direction.x(dy);
direction.y(-dx);
} else {
direction.x(-dy);
direction.y(dx);
}
}
coordinate_type side = bounding_box.max_corner().x() - bounding_box.min_corner().x();
coordinate_type koef =
side / std::max(std::abs(direction.x()), std::abs(direction.y()));
if (edge.vertex0() == NULL) {
clipped_edge->push_back(point_type_fp_p(
origin.x() - direction.x() * koef,
origin.y() - direction.y() * koef));
} else {
clipped_edge->push_back(
point_type_fp_p(edge.vertex0()->x(), edge.vertex0()->y()));
}
if (edge.vertex1() == NULL) {
clipped_edge->push_back(point_type_fp_p(
origin.x() + direction.x() * koef,
origin.y() + direction.y() * koef));
} else {
clipped_edge->push_back(
point_type_fp_p(edge.vertex1()->x(), edge.vertex1()->y()));
}
}