Skip to content

Commit 36a0b58

Browse files
committed
adding homework 3
1 parent 7aba212 commit 36a0b58

File tree

6 files changed

+1037
-0
lines changed

6 files changed

+1037
-0
lines changed

hw3/README

+5
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
See http://rll.berkeley.edu/deeprlcourse/docs/hw3.pdf for instructions
2+
3+
The starter code was based on an implementation of Q-learning for Atari
4+
generously provided by Szymon Sidor from OpenAI
5+

hw3/atari_wrappers.py

+149
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,149 @@
1+
import cv2
2+
import numpy as np
3+
from collections import deque
4+
import gym
5+
from gym import spaces
6+
7+
8+
class NoopResetEnv(gym.Wrapper):
9+
def __init__(self, env=None, noop_max=30):
10+
"""Sample initial states by taking random number of no-ops on reset.
11+
No-op is assumed to be action 0.
12+
"""
13+
super(NoopResetEnv, self).__init__(env)
14+
self.noop_max = noop_max
15+
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
16+
17+
def _reset(self):
18+
""" Do no-op action for a number of steps in [1, noop_max]."""
19+
self.env.reset()
20+
noops = np.random.randint(1, self.noop_max + 1)
21+
for _ in range(noops):
22+
obs, _, _, _ = self.env.step(0)
23+
return obs
24+
25+
class FireResetEnv(gym.Wrapper):
26+
def __init__(self, env=None):
27+
"""Take action on reset for environments that are fixed until firing."""
28+
super(FireResetEnv, self).__init__(env)
29+
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
30+
assert len(env.unwrapped.get_action_meanings()) >= 3
31+
32+
def _reset(self):
33+
self.env.reset()
34+
obs, _, _, _ = self.env.step(1)
35+
obs, _, _, _ = self.env.step(2)
36+
return obs
37+
38+
class EpisodicLifeEnv(gym.Wrapper):
39+
def __init__(self, env=None):
40+
"""Make end-of-life == end-of-episode, but only reset on true game over.
41+
Done by DeepMind for the DQN and co. since it helps value estimation.
42+
"""
43+
super(EpisodicLifeEnv, self).__init__(env)
44+
self.lives = 0
45+
self.was_real_done = True
46+
self.was_real_reset = False
47+
48+
def _step(self, action):
49+
obs, reward, done, info = self.env.step(action)
50+
self.was_real_done = done
51+
# check current lives, make loss of life terminal,
52+
# then update lives to handle bonus lives
53+
lives = self.env.unwrapped.ale.lives()
54+
if lives < self.lives and lives > 0:
55+
# for Qbert somtimes we stay in lives == 0 condtion for a few frames
56+
# so its important to keep lives > 0, so that we only reset once
57+
# the environment advertises done.
58+
done = True
59+
self.lives = lives
60+
return obs, reward, done, info
61+
62+
def _reset(self):
63+
"""Reset only when lives are exhausted.
64+
This way all states are still reachable even though lives are episodic,
65+
and the learner need not know about any of this behind-the-scenes.
66+
"""
67+
if self.was_real_done:
68+
obs = self.env.reset()
69+
self.was_real_reset = True
70+
else:
71+
# no-op step to advance from terminal/lost life state
72+
obs, _, _, _ = self.env.step(0)
73+
self.was_real_reset = False
74+
self.lives = self.env.unwrapped.ale.lives()
75+
return obs
76+
77+
class MaxAndSkipEnv(gym.Wrapper):
78+
def __init__(self, env=None, skip=4):
79+
"""Return only every `skip`-th frame"""
80+
super(MaxAndSkipEnv, self).__init__(env)
81+
# most recent raw observations (for max pooling across time steps)
82+
self._obs_buffer = deque(maxlen=2)
83+
self._skip = skip
84+
85+
def _step(self, action):
86+
total_reward = 0.0
87+
done = None
88+
for _ in range(self._skip):
89+
obs, reward, done, info = self.env.step(action)
90+
self._obs_buffer.append(obs)
91+
total_reward += reward
92+
if done:
93+
break
94+
95+
max_frame = np.max(np.stack(self._obs_buffer), axis=0)
96+
97+
return max_frame, total_reward, done, info
98+
99+
def _reset(self):
100+
"""Clear past frame buffer and init. to first obs. from inner env."""
101+
self._obs_buffer.clear()
102+
obs = self.env.reset()
103+
self._obs_buffer.append(obs)
104+
return obs
105+
106+
def _process_frame84(frame):
107+
img = np.reshape(frame, [210, 160, 3]).astype(np.float32)
108+
img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:, :, 2] * 0.114
109+
resized_screen = cv2.resize(img, (84, 110), interpolation=cv2.INTER_LINEAR)
110+
x_t = resized_screen[18:102, :]
111+
x_t = np.reshape(x_t, [84, 84, 1])
112+
return x_t.astype(np.uint8)
113+
114+
class ProcessFrame84(gym.Wrapper):
115+
def __init__(self, env=None):
116+
super(ProcessFrame84, self).__init__(env)
117+
self.observation_space = spaces.Box(low=0, high=255, shape=(84, 84, 1))
118+
119+
def _step(self, action):
120+
obs, reward, done, info = self.env.step(action)
121+
return _process_frame84(obs), reward, done, info
122+
123+
def _reset(self):
124+
return _process_frame84(self.env.reset())
125+
126+
class ClippedRewardsWrapper(gym.Wrapper):
127+
def _step(self, action):
128+
obs, reward, done, info = self.env.step(action)
129+
return obs, np.sign(reward), done, info
130+
131+
def wrap_deepmind_ram(env):
132+
env = EpisodicLifeEnv(env)
133+
env = NoopResetEnv(env, noop_max=30)
134+
env = MaxAndSkipEnv(env, skip=4)
135+
if 'FIRE' in env.unwrapped.get_action_meanings():
136+
env = FireResetEnv(env)
137+
env = ClippedRewardsWrapper(env)
138+
return env
139+
140+
def wrap_deepmind(env):
141+
assert 'NoFrameskip' in env.spec.id
142+
env = EpisodicLifeEnv(env)
143+
env = NoopResetEnv(env, noop_max=30)
144+
env = MaxAndSkipEnv(env, skip=4)
145+
if 'FIRE' in env.unwrapped.get_action_meanings():
146+
env = FireResetEnv(env)
147+
env = ProcessFrame84(env)
148+
env = ClippedRewardsWrapper(env)
149+
return env

0 commit comments

Comments
 (0)