Skip to content

Commit 6eba164

Browse files
committed
Draft layout
Signed-off-by: Dj Walker-Morgan <[email protected]>
1 parent 6c5c1c1 commit 6eba164

File tree

2 files changed

+63
-53
lines changed

2 files changed

+63
-53
lines changed
Lines changed: 37 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,47 @@
11
---
2-
title: Lakehouse analytics
3-
navTitle: Lakehouse analytics
2+
title: Analytics Hub
3+
navTitle: Analytics Hub
44
indexCards: simple
55
iconName: Improve
6-
description: How EDB Postgres Lakehouse extends the power of Postgres by adding a vectorized query engine and separating storage from compute, to handle analytical workloads.
7-
directoryDefaults:
8-
displayBanner: "Notice: Since EDB Hosted services have been removed from the Cloud Service, Lakehouse capabilities are now only available as part of the EDB Postgres AI Hybrid Control Plane, which is currently in tech preview."
6+
description: Gathering together all the information about Analytics, from Tiered Tables in PGD to Catalogs and HCP
97
navigation:
108
- concepts
11-
- quick_start
12-
- external_tables
13-
- how_to_lakehouse_sync
9+
- storagelocations
10+
- catalogs
11+
- analytics_engine
12+
- managed_lakehouse
13+
- pgd_tiered_tables
14+
1415
- reference
1516
---
1617

18+
EDB delivers Analytics capabilities for Postgres, enabling you to run analytical queries over large datasets and more.
19+
And EDB Analytics lets you do it all in the Postgres ecosystem wherever you need it.
20+
21+
## Concepts
22+
23+
- **Why?**: The need for analytics in Postgres arises from the growing demand for data-driven decision-making and the need to analyze large datasets efficiently.
24+
- **Analytics Engine**: A vectorized SQL query engine that executes analytical queries over columnar data in object storage, built on Apache DataFusion and optimized for performance.
25+
- **Lakehouse**: A data architecture that combines the best of data lakes and data warehouses, allowing you to store and analyze data in a single platform.
26+
- **Storage locations**: The physical or logical locations where data is stored, such as S3 buckets or on-premises storage systems.
27+
- **Catalog**: A metadata repository that stores information about the data stored in a Lakehouse, including table definitions, schemas, and data locations.
28+
- **Tiered Tables**: A feature of EDB Postgres Distributed (PGD) that allows you to store data in different storage locations based on its usage patterns, optimizing performance and cost.
29+
30+
## Use cases
31+
32+
- *Read-only analytics without a Catalog*
33+
- "I need to run analytical queries over S3 delta tables and I want to use Postgres"
34+
- "I need to run analytical queries over Iceberg data and I want to use Postgres"
35+
- *Read-write analytics without a Catalog*
36+
- "I need to offload data to S3 while keeping it available for analytics"
37+
- "I need to offload tables data to S3 while keeping it available for queries and analytics"
38+
- *Read-write analytics with a Catalog*
39+
- "I want to read and write data to a Catalog"
40+
- *Lakehouse read-only analytics*
41+
- "I need a Managed Lakehouse to read and analyze data stored as Delta Tables, Iceberg or a Catalog"
42+
43+
44+
<!--
1745
EDB Postgres Lakehouse extends the power of Postgres to analytical workloads,
1846
by adding a vectorized query engine and separating storage from compute. Building
1947
a data Lakehouse has never been easier: just use Postgres.
@@ -52,26 +80,4 @@ Postgres, while still falling back to native execution when necessary.
5280
Postgres Lakehouse is optimized to query "Lakehouse Tables" in object storage,
5381
extending the power of open source database to open table formats. Currently,
5482
it supports querying "Delta Tables" stored according to the Delta Lake protocol.
55-
56-
## Lakehouse Sync
57-
58-
You can sync your own data from tables in transactional sources (initially, EDB
59-
Postgres® AI Cloud Service databases) into Lakehouse Tables in Storage Locations
60-
(initially, managed locations in S3 object storage).
61-
62-
## Fully managed service
63-
64-
You can launch Postgres Lakehouse nodes using the EDB Postgres AI Cloud
65-
Service (formerly EDB BigAnimal). Point a Lakehouse node at a storage bucket
66-
with some Delta Tables in it, and get results of analytical (OLAP) queries in
67-
less time than if you queried the same data in a transactional Postgres database.
68-
69-
Postgres Lakehouse nodes are available now for customers using
70-
EDB Postgres AI - Hosted environments on AWS, and will be rolling out
71-
to additional cloud environments soon.
72-
73-
## Try it today
74-
75-
It's easy to start using Postgres Lakehouse. Provision a Lakehouse node in five
76-
minutes, and start querying pre-loaded benchmark data like TPC-H, TPC-DS,
77-
Clickbench, and the 1 Billion Row challenge.
83+
-->

src/pages/index.js

Lines changed: 26 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,31 @@ const Page = () => {
266266
PostgreSQL
267267
</BannerCardLink>
268268
</BannerSubCard>
269+
<BannerSubCard
270+
iconName={iconNames.IMPROVE}
271+
headingText="Analytics Accelerator"
272+
to="/edb-postgres-ai/analytics"
273+
>
274+
<BannerCardLink to="/edb-postgres-ai/analytics/concepts/">
275+
Concepts
276+
</BannerCardLink>
277+
278+
<BannerCardLink to="/edb-postgres-ai/analytics/quickstart/">
279+
Quick Start
280+
</BannerCardLink>
281+
282+
<BannerCardLink to="/edb-postgres-ai/analytics/use_cases/">
283+
Use Cases
284+
</BannerCardLink>
285+
286+
<BannerCardLink to="/edb-postgres-ai/analytics/catalogs/">
287+
Catalogs
288+
</BannerCardLink>
289+
290+
<BannerCardLink to="/edb-postgres-ai/analytics/reference/">
291+
Reference
292+
</BannerCardLink>
293+
</BannerSubCard>
269294

270295
<BannerSubCard
271296
iconName={iconNames.BRAIN_CIRCUIT}
@@ -288,6 +313,7 @@ const Page = () => {
288313
PGvector
289314
</BannerCardLink>
290315
</BannerSubCard>
316+
291317
<BannerSubCard
292318
iconName={iconNames.CONTROL}
293319
headingText="Console"
@@ -348,28 +374,6 @@ const Page = () => {
348374
</BannerCardLink>
349375
</BannerSubCard>
350376

351-
<BannerSubCard
352-
iconName={iconNames.IMPROVE}
353-
headingText="Lakehouse Analytics"
354-
to="/edb-postgres-ai/analytics"
355-
>
356-
<BannerCardLink to="/edb-postgres-ai/analytics/concepts/">
357-
Concepts
358-
</BannerCardLink>
359-
360-
<BannerCardLink to="/edb-postgres-ai/analytics/quick_start/">
361-
Quick Start
362-
</BannerCardLink>
363-
364-
<BannerCardLink to="/edb-postgres-ai/analytics/external_tables/">
365-
External Tables
366-
</BannerCardLink>
367-
368-
<BannerCardLink to="/edb-postgres-ai/analytics/reference/">
369-
Reference
370-
</BannerCardLink>
371-
</BannerSubCard>
372-
373377
<BannerWideCard>
374378
<BannerWideCardLink
375379
className="col-md-6"

0 commit comments

Comments
 (0)