|
| 1 | +import os, dataclasses, numcodecs, abc, time, dask |
| 2 | +from aicsimageio import AICSImage |
| 3 | +from aicsimageio.metadata.utils import OME |
| 4 | +import numpy as np, cupy as cp |
| 5 | +from pathlib import Path |
| 6 | +import zarr |
| 7 | +from typing import (Union, Iterable) |
| 8 | +import warnings |
| 9 | +from dask import array as da, bag, delayed |
| 10 | +from dask.highlevelgraph import HighLevelGraph |
| 11 | +import dask |
| 12 | +from dask_cuda import LocalCUDACluster |
| 13 | +from rmm.allocators.cupy import rmm_cupy_allocator |
| 14 | +import rmm |
| 15 | + |
| 16 | +import itertools |
| 17 | +from pathlib import Path |
| 18 | +import glob, zarr |
| 19 | +from ome_zarr_io.ngff.multiscales import Pyramid, Multimeta |
| 20 | +from ome_zarr_io.base.readers import ImageReader |
| 21 | +from typing import Callable, Any |
| 22 | +from collections import defaultdict |
| 23 | + |
| 24 | +from distributed import LocalCluster, Client |
| 25 | +from joblib import delayed as jdel, Parallel, parallel_config |
| 26 | +from joblib.externals.loky import get_reusable_executor |
| 27 | +get_reusable_executor().shutdown() |
| 28 | + |
| 29 | + |
| 30 | +def get_regions(array_shape, |
| 31 | + region_shape, |
| 32 | + as_slices = False |
| 33 | + ): |
| 34 | + assert len(array_shape) == len(region_shape) |
| 35 | + steps = [] |
| 36 | + for i in range(len(region_shape)): |
| 37 | + size = array_shape[i] |
| 38 | + inc = region_shape[i] |
| 39 | + seq = np.arange(0, size, inc) |
| 40 | + if size > seq[-1]: |
| 41 | + seq = np.append(seq, size) |
| 42 | + increments = tuple([(seq[i], seq[i+1]) for i in range(len(seq) - 1)]) |
| 43 | + tuples = tuple(tuple(item) for item in increments) |
| 44 | + if as_slices: |
| 45 | + slcs = tuple([slice(*item) for item in tuples]) |
| 46 | + steps.append(slcs) |
| 47 | + else: |
| 48 | + steps.append(tuples) |
| 49 | + out = list(itertools.product(*steps)) |
| 50 | + return out |
| 51 | + |
| 52 | +def read_image(file_path: Path | str): |
| 53 | + img = AICSImage(file_path) |
| 54 | + return img.get_image_dask_data() |
| 55 | + |
| 56 | +def create_zarr_array(directory: Path | str | zarr.Group, |
| 57 | + array_name: str, |
| 58 | + shape: tuple, |
| 59 | + chunks: tuple, |
| 60 | + dtype: Any, |
| 61 | + overwrite: bool = False, |
| 62 | + ) -> zarr.Array: |
| 63 | + chunks = tuple(np.minimum(shape, chunks)) |
| 64 | + if not isinstance(directory, zarr.Group): |
| 65 | + path = os.path.join(directory, array_name) |
| 66 | + dataset = zarr.create(shape=shape, |
| 67 | + chunks=chunks, |
| 68 | + dtype=dtype, |
| 69 | + store=path, |
| 70 | + dimension_separator='/', |
| 71 | + overwrite=overwrite |
| 72 | + ) |
| 73 | + else: |
| 74 | + _ = directory.create(name = array_name, |
| 75 | + shape = shape, |
| 76 | + chunks = chunks, |
| 77 | + dtype = dtype, |
| 78 | + dimension_separator='/', |
| 79 | + overwrite=overwrite |
| 80 | + ) |
| 81 | + dataset = directory[array_name] |
| 82 | + return dataset |
| 83 | + |
| 84 | +def write_single_region(region: da.Array, |
| 85 | + dataset: Path | str | zarr.Array, |
| 86 | + region_slice: slice = None |
| 87 | + ): |
| 88 | + da.to_zarr(region, |
| 89 | + url = dataset, |
| 90 | + region = region_slice, |
| 91 | + compute=True, |
| 92 | + return_stored=True |
| 93 | + ) |
| 94 | + return dataset |
| 95 | + |
| 96 | +def write_regions_sequential( |
| 97 | + image_regions: tuple, |
| 98 | + region_slices: tuple, |
| 99 | + dataset: zarr.Array |
| 100 | + ): |
| 101 | + executor = get_reusable_executor(max_workers=n_jobs, |
| 102 | + kill_workers=True, |
| 103 | + context='loky') |
| 104 | + for region_slice, image_region in zip(region_slices, image_regions): |
| 105 | + executor.submit(write_single_region, |
| 106 | + region=image_region, |
| 107 | + dataset=dataset, |
| 108 | + region_slice=region_slice |
| 109 | + ) |
| 110 | + return dataset |
| 111 | + |
| 112 | +def write_regions( |
| 113 | + image_regions: tuple, |
| 114 | + region_slices: tuple, |
| 115 | + dataset: zarr.Array, |
| 116 | + client: Client = None |
| 117 | + ) -> zarr.Array: |
| 118 | + if client is None: |
| 119 | + n_jobs = 4 |
| 120 | + else: |
| 121 | + n_jobs = client.cluster.workers.__len__() |
| 122 | + client.cluster.scale(n_jobs) |
| 123 | + client.scatter(image_regions) |
| 124 | + client.scatter(region_slices) |
| 125 | + with parallel_config(backend = 'loky', n_jobs = n_jobs): |
| 126 | + with Parallel() as parallel: |
| 127 | + parallel(jdel(write_single_region)(region = image_region, |
| 128 | + region_slice = region_slice, |
| 129 | + dataset = dataset) |
| 130 | + for image_region, region_slice in |
| 131 | + zip(image_regions, region_slices) |
| 132 | + ) |
| 133 | + return dataset |
| 134 | + |
| 135 | +def deconvolve_block(img, psf=None, iterations=20): |
| 136 | + # Pad PSF with zeros to match image shape |
| 137 | + pad_l, pad_r = np.divmod(np.array(img.shape) - np.array(psf.shape), 2) |
| 138 | + pad_r += pad_l |
| 139 | + psf = np.pad(psf, tuple(zip(pad_l, pad_r)), 'constant', constant_values=0) |
| 140 | + # Recenter PSF at the origin |
| 141 | + # Needed to ensure PSF doesn't introduce an offset when |
| 142 | + # convolving with image |
| 143 | + for i in range(psf.ndim): |
| 144 | + psf = np.roll(psf, psf.shape[i] // 2, axis=i) |
| 145 | + # Convolution requires FFT of the PSF |
| 146 | + psf = np.fft.rfftn(psf) |
| 147 | + # Perform deconvolution in-place on a copy of the image |
| 148 | + # (avoids changing the original) |
| 149 | + img_decon = np.copy(img) |
| 150 | + for _ in range(iterations): |
| 151 | + ratio = img / np.fft.irfftn(np.fft.rfftn(img_decon) * psf) |
| 152 | + img_decon *= np.fft.irfftn((np.fft.rfftn(ratio).conj() * psf).conj()) |
| 153 | + return img_decon |
| 154 | + |
| 155 | + |
| 156 | +import numpy as np |
| 157 | + |
| 158 | + |
| 159 | +def gaussian_psf(shape, mean, cov): |
| 160 | + """ |
| 161 | + Computes an n-dimensional Gaussian function over a grid defined by the given shape. |
| 162 | +
|
| 163 | + Parameters: |
| 164 | + shape (tuple of int): Shape of the n-dimensional grid (e.g., (height, width, depth)). |
| 165 | + mean (float or list-like): Scalar or array-like representing the mean of the Gaussian. |
| 166 | + If scalar, it will be applied to all dimensions. |
| 167 | + cov (float or list-like): Scalar, 1D array, or 2D array representing the covariance. |
| 168 | + - If scalar, creates an isotropic Gaussian. |
| 169 | + - If 1D, creates a diagonal covariance matrix. |
| 170 | + - If 2D, used directly as the covariance matrix. |
| 171 | +
|
| 172 | + Returns: |
| 173 | + np.ndarray: An n-dimensional array containing the Gaussian function values. |
| 174 | + """ |
| 175 | + n = len(shape) |
| 176 | + if np.isscalar(mean): |
| 177 | + mean = np.full(n, mean) |
| 178 | + else: |
| 179 | + mean = np.asarray(mean) |
| 180 | + if mean.shape[0] != n: |
| 181 | + raise ValueError(f"Mean must match the number of dimensions ({n}).") |
| 182 | + if np.isscalar(cov): |
| 183 | + cov = np.eye(n) * cov |
| 184 | + elif np.ndim(cov) == 1: |
| 185 | + if len(cov) != n: |
| 186 | + raise ValueError(f"Covariance vector length must match the number of dimensions ({n}).") |
| 187 | + cov = np.diag(cov) |
| 188 | + elif np.ndim(cov) == 2: |
| 189 | + cov = np.asarray(cov) |
| 190 | + if cov.shape != (n, n): |
| 191 | + raise ValueError(f"Covariance matrix must be ({n}, {n}).") |
| 192 | + else: |
| 193 | + raise ValueError("Covariance must be a scalar, 1D array, or 2D matrix.") |
| 194 | + grids = np.meshgrid(*[np.arange(s) for s in shape], indexing='ij') |
| 195 | + coords = np.stack(grids, axis=-1) # Shape: (*shape, n) |
| 196 | + flat_coords = coords.reshape(-1, n) |
| 197 | + det_cov = np.linalg.det(cov) |
| 198 | + inv_cov = np.linalg.inv(cov) |
| 199 | + if det_cov <= 0: |
| 200 | + raise ValueError("Covariance matrix must be positive definite.") |
| 201 | + norm_factor = 1 / (np.sqrt((2 * np.pi) ** n * det_cov)) |
| 202 | + diff = flat_coords - mean |
| 203 | + exponent = -0.5 * np.sum(diff @ inv_cov * diff, axis=1) |
| 204 | + gaussian_values = norm_factor * np.exp(exponent) |
| 205 | + return gaussian_values.reshape(shape) |
| 206 | + |
| 207 | + |
| 208 | + |
| 209 | +def richardson_lucy(img: da.Array, |
| 210 | + psf: da.Array, |
| 211 | + iterations: int = 20, |
| 212 | + backend: str = 'cupy' |
| 213 | + ): |
| 214 | + if backend == 'cupy': |
| 215 | + img = img.map_blocks(cp.asarray) |
| 216 | + psf = psf.map_blocks(cp.asarray) |
| 217 | + deconvolved = img.map_overlap( |
| 218 | + deconvolve_block, |
| 219 | + psf = psf, |
| 220 | + iterations = iterations, |
| 221 | + meta = img._meta, |
| 222 | + depth = tuple(np.array(psf.shape) // 2), |
| 223 | + boundary = "periodic" |
| 224 | + ) |
| 225 | + if backend == 'cupy': |
| 226 | + deconvolved = deconvolved.map_blocks(cp.asnumpy) |
| 227 | + return deconvolved |
| 228 | + |
| 229 | + |
| 230 | + |
| 231 | +def to_ngff(arr: da.Array, |
| 232 | + output_path: str | Path, |
| 233 | + region_shape: tuple = None, |
| 234 | + scale: tuple = None, |
| 235 | + units: tuple = None, |
| 236 | + client: Client = None |
| 237 | + ) -> zarr.Group: |
| 238 | + |
| 239 | + region_slices = get_regions(arr.shape, region_shape, as_slices = True) |
| 240 | + |
| 241 | + gr = zarr.open_group(output_path, mode='a') |
| 242 | + dataset = create_zarr_array(gr, |
| 243 | + array_name = '0', |
| 244 | + shape = arr.shape, |
| 245 | + chunks = chunks, |
| 246 | + dtype = arr.dtype, |
| 247 | + overwrite = True |
| 248 | + ) |
| 249 | + |
| 250 | + meta = Multimeta() |
| 251 | + meta.parse_axes(axis_order='tczyx', |
| 252 | + unit_list = units |
| 253 | + ) |
| 254 | + meta.add_dataset(path = '0', |
| 255 | + scale = scale |
| 256 | + ) |
| 257 | + meta.to_ngff(gr) |
| 258 | + |
| 259 | + image_regions = [arr[region_slice] for region_slice in region_slices] |
| 260 | + if client is not None: |
| 261 | + client.scatter(region_slices) |
| 262 | + client.scatter(image_regions) |
| 263 | + |
| 264 | + write_regions(image_regions = image_regions, |
| 265 | + region_slices = region_slices, |
| 266 | + dataset = dataset, |
| 267 | + client = client) |
| 268 | + return gr |
| 269 | + |
| 270 | + |
| 271 | + |
| 272 | +if __name__ == '__main__': |
| 273 | + |
| 274 | + chunks = (1, 1, 96, 128, 128) |
| 275 | + region_shape = (128, 2, 96, 128, 128) |
| 276 | + scale = (600, 1, 2, 0.406, 0.406) |
| 277 | + units = ('s', 'Channel', 'µm', 'µm', 'µm') |
| 278 | + psf = gaussian_psf((1, 1, 12, 16, 16), (1, 1, 6, 8, 8), (1, 1, 12, 16, 16)) |
| 279 | + psf = da.from_array(psf, chunks = chunks) |
| 280 | + |
| 281 | + n_jobs = 4 |
| 282 | + threads_per_worker = 1 |
| 283 | + memory_limit = '3GB' |
| 284 | + |
| 285 | + input_tiff_path_mg = f"/home/oezdemir/data/original/franziska/crop/mG_View1/*" |
| 286 | + input_tiff_path_h2b = f"/home/oezdemir/data/original/franziska/crop/H2B_View1/*" |
| 287 | + |
| 288 | + output_zarr_path = f"/home/oezdemir/data/original/franziska/concat.zarr" |
| 289 | + |
| 290 | + t0 = time.time() |
| 291 | + |
| 292 | + paths_mg = sorted(glob.glob(input_tiff_path_mg)) |
| 293 | + paths_h2b = sorted(glob.glob(input_tiff_path_h2b)) |
| 294 | + |
| 295 | + with LocalCluster(n_workers=n_jobs, threads_per_worker=threads_per_worker, memory_limit=memory_limit) as cluster: |
| 296 | + cluster.scale(n_jobs) |
| 297 | + with Client(cluster) as client: |
| 298 | + |
| 299 | + ### Read image collections |
| 300 | + imgs_mg = [read_image(path) for path in paths_mg] |
| 301 | + imgs_h2b = [read_image(path) for path in paths_h2b] |
| 302 | + |
| 303 | + ### Concatenate collections into a single dask array |
| 304 | + mg_merged = da.concatenate(imgs_mg, axis = 0) # concatenate along the time dimension |
| 305 | + h2b_merged = da.concatenate(imgs_h2b, axis = 0) # concatenate along the time dimension |
| 306 | + imgs_merged = da.concatenate((mg_merged, h2b_merged), axis = 1) # concatenate along the channel dimension |
| 307 | + |
| 308 | + ### Process merged images |
| 309 | + |
| 310 | + ### |
| 311 | + to_ngff(imgs_merged, |
| 312 | + output_path = output_zarr_path, |
| 313 | + region_shape = region_shape, |
| 314 | + scale = scale, |
| 315 | + units = units, |
| 316 | + client = client |
| 317 | + ) |
| 318 | + |
| 319 | + |
| 320 | + |
| 321 | + |
| 322 | + |
0 commit comments