diff --git a/Bootstrap.ipynb b/Bootstrap.ipynb
index f252656..5f5f944 100644
--- a/Bootstrap.ipynb
+++ b/Bootstrap.ipynb
@@ -6,7 +6,7 @@
"metadata": {},
"outputs": [],
"source": [
- "# Demonstration of Boostrap \n",
+ "# Demonstration of Bootstrap \n",
"# Contact: Michael Pyrcz, University of Texas at Austin, Geostatistics Course\n",
"#\n",
"# Steps:\n",
@@ -14,7 +14,7 @@
"# 2. Draw from this initial sample set, with replacement, $ndata$ times to build a new realization of the sample. \n",
"# Repeat this $nreal$ times to make realizations of the sample.\n",
"# 3. Calculate the statistic of interest for each realization. This demonstration considers with mean and variance. \n",
- "# We could have considered any sstatistic including median, 13th percentile, skew etc. \n",
+ "# We could have considered any statistic including median, 13th percentile, skew etc. \n",
"# 4. - 6. Quantify and visualize uncertainty with histograms and summary statistics.\n",
"#\n",
"# Efron, 1982, The jackknife, the bootstrap, and other resampling plans, Society of Industrial and Applied Math, \n",
@@ -298,7 +298,7 @@
}
],
"source": [
- "# 2. Perform ndata random draws with replacement, nreal times. Here we aquire the nreal realizations of the distribution of \n",
+ "# 2. Perform ndata random draws with replacement, nreal times. Here we acquire the nreal realizations of the distribution of \n",
"# ndata, samples.\n",
"draw = np.zeros((ndata,nreal)) \n",
"for ireal in range(0, nreal):\n",
diff --git a/Declustering.ipynb b/Declustering.ipynb
index 9967a1c..f3c7797 100644
--- a/Declustering.ipynb
+++ b/Declustering.ipynb
@@ -14,7 +14,7 @@
"\n",
"This is a tutorial for / demonstration of **spatial declustering in Python with simple wrappers and reimplementations of GSLIB: Geostatistical Library methods** (Deutsch and Journel, 1997). Almost every spatial dataset is based on biased sampling. This includes clustering (increased density of samples) over specific ranges of values. For example, more samples in an area of high feature values. Spatial declustering is a process of assigning data weights based on local data density. The cell-based declustering approach (Deutsch and Journel, 1997; Pyrcz and Deutsch, 2014; Pyrcz and Deutsch, 2003, paper is available here: http://gaa.org.au/pdf/DeclusterDebias-CCG.pdf) is based on the use of a mesh over the area of interest. Each datum's weight is inverse to the number of data in each cell. Cell offsets of applied to smooth out influence of mesh origin. Multiple cell sizes are applied and typically the cell size that minimizes the declustered distribution mean is applied for preferential sampling in the high-valued locations (the maximizing cell size is applied if the data is preferential sampled in the low-valued locations). If there is a nominal data spacing with local clusters, then this spacing is the best cell size.\n",
"\n",
- "This exercise demonstrates the cell-based declustering approach in Python with wrappers and reimplimentation of GSLIB methods. The steps include:\n",
+ "This exercise demonstrates the cell-based declustering approach in Python with wrappers and reimplementation of GSLIB methods. The steps include:\n",
"\n",
"1. generate a 2D sequential Guassian simulation using a wrapper of GSLIB's sgsim method\n",
"2. apply regular sampling to the 2D realization\n",
@@ -24,7 +24,7 @@
"\n",
"To accomplish this I have provide wrappers or reimplementation in Python for the following GSLIB methods:\n",
"\n",
- "1. sgsim - sequantial Gaussian simulation limited to 2D and unconditional\n",
+ "1. sgsim - sequential Gaussian simulation limited to 2D and unconditional\n",
"2. hist - histograms plots reimplemented with GSLIB parameters using python methods\n",
"3. locmap - location maps reimplemented with GSLIB parameters using python methods\n",
"4. pixelplt - pixel plots reimplemented with GSLIB parameters using python methods\n",
@@ -39,7 +39,7 @@
"\n",
"The GSLIB source and executables are available at http://www.statios.com/Quick/gslib.html. For the reference on using GSLIB check out the User Guide, GSLIB: Geostatistical Software Library and User's Guide by Clayton V. Deutsch and Andre G. Journel.\n",
"\n",
- "I did this to allow people to use these GSLIB functions that are extremely robust in Python. Also this should be a bridge to allow so many familar with GSLIB to work in Python as a kept the parameterization and displays consistent with GSLIB. The wrappers are simple functions declared below that write the parameter files, run the GSLIB executable in the working directory and load and visualize the output in Python. This will be included on GitHub for anyone to try it out https://github.com/GeostatsGuy/. \n",
+ "I did this to allow people to use these GSLIB functions that are extremely robust in Python. Also this should be a bridge to allow so many familiar with GSLIB to work in Python as a kept the parameterization and displays consistent with GSLIB. The wrappers are simple functions declared below that write the parameter files, run the GSLIB executable in the working directory and load and visualize the output in Python. This will be included on GitHub for anyone to try it out https://github.com/GeostatsGuy/. \n",
"\n",
"I used this tutorial in my Introduction to Geostatistics undergraduate class (PGE337 at UT Austin) as part of a first introduction to geostatistics and Python for the engineering undergraduate students. It is assumed that students have no previous Python, geostatistics nor machine learning experience; therefore, all steps of the code and workflow are explored and described. This tutorial is augmented with course notes in my class. The Python code and markdown was developed and tested in Jupyter. \n",
"\n",
diff --git a/Experiential_Bootstrap_MCS.ipynb b/Experiential_Bootstrap_MCS.ipynb
index 2cb7ddb..f8038f9 100644
--- a/Experiential_Bootstrap_MCS.ipynb
+++ b/Experiential_Bootstrap_MCS.ipynb
@@ -81,9 +81,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "#### Declare Functions and Provide Code Snipets\n",
+ "#### Declare Functions and Provide Code Snippets\n",
"\n",
- "Declare convenience functions and code snipets to help with the workflow construction."
+ "Declare convenience functions and code snippets to help with the workflow construction."
]
},
{
diff --git a/Experiential_DecisionTree.ipynb b/Experiential_DecisionTree.ipynb
index b32ad82..895b4db 100644
--- a/Experiential_DecisionTree.ipynb
+++ b/Experiential_DecisionTree.ipynb
@@ -33,9 +33,9 @@
"\n",
"1. method for supervised learning\n",
"2. categorical prediction with a classification tree and continuous prediction with a regression tree\n",
- "3. fundamental idea is to divide feature space into exhastive, mutually exclusive regions (terminal or leaf nodes in the tree)\n",
+ "3. fundamental idea is to divide feature space into exhaustive, mutually exclusive regions (terminal or leaf nodes in the tree)\n",
"4. estimate with the average of data in each region for continuous prediction or the majority category for the data in each region for categorical prediction\n",
- "5. segment the feature space with hierarchical, binary splitting that may be respresented as a decision tree\n",
+ "5. segment the feature space with hierarchical, binary splitting that may be represented as a decision tree\n",
"6. apply a greedy method to find the sequential splits for any feature that minimizes the residual sum of squares\n",
"\n",
"Let's build some decision trees together. You'll get a chance to see the trees and the divided feature space graphically. \n",
@@ -50,11 +50,11 @@
"\n",
"* the prediction is of the form $\\hat{Y} = \\hat{f}(X_1,\\ldots,X_m)$ \n",
"\n",
- "**Suppervised Learning**\n",
+ "**Supervised Learning**\n",
"\n",
"* the response feature label, $Y$, is available over the training and testing data\n",
" \n",
- "**Hiearchical, Binary Segmentation of the Feature Space**\n",
+ "**Hierarchical, Binary Segmentation of the Feature Space**\n",
"\n",
"The fundamental idea is to divide the predictor space, $đť‘‹_1,\\ldots,X_m$, into $J$ mutually exclusive, exhaustive regions\n",
"\n",
@@ -93,7 +93,7 @@
"\n",
"* **predicts with the average of training response features** in each region $\\hat{Y}(R_j)$. \n",
"\n",
- "**Proceedure for Tree Construction**\n",
+ "**Procedure for Tree Construction**\n",
"\n",
"The tree is constructed from the top down. We begin with a sigle region that covers the entire feature space and then proceed with a sequence of splits.\n",
"\n",
diff --git a/GeostatsPy_Confidence_Hypothesis.ipynb b/GeostatsPy_Confidence_Hypothesis.ipynb
index b36336a..512605f 100644
--- a/GeostatsPy_Confidence_Hypothesis.ipynb
+++ b/GeostatsPy_Confidence_Hypothesis.ipynb
@@ -84,7 +84,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_Monte_Carlo_simulation.ipynb b/GeostatsPy_Monte_Carlo_simulation.ipynb
index 212d0e4..71c2a81 100644
--- a/GeostatsPy_Monte_Carlo_simulation.ipynb
+++ b/GeostatsPy_Monte_Carlo_simulation.ipynb
@@ -111,7 +111,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_bootstrap.ipynb b/GeostatsPy_bootstrap.ipynb
index 569a0d1..ce777d3 100644
--- a/GeostatsPy_bootstrap.ipynb
+++ b/GeostatsPy_bootstrap.ipynb
@@ -37,7 +37,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -74,7 +74,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -108,7 +108,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
@@ -629,7 +629,7 @@
" samples = random.choices(df['Porosity'].values, k=len(df)) # n Monte Carlo simulations\n",
" por_avg_real.append(np.average(samples)) # calculate the statistic of interest from the new bootstrap dataset\n",
"plt.hist(por_avg_real,color = 'darkorange',alpha = 0.8,edgecolor = 'black') # plot the distribution, could also calculate any summary statistics\n",
- "plt.xlabel('Boostrap Realizations of Average Porosity'); plt.ylabel('Frequency'); plt.title('Uncertainty Distribution for Average Porosity')\n",
+ "plt.xlabel('Bootstrap Realizations of Average Porosity'); plt.ylabel('Frequency'); plt.title('Uncertainty Distribution for Average Porosity')\n",
"plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.1, wspace=0.2, hspace=0.2); plt.show()"
]
},
@@ -681,9 +681,9 @@
"source": [
"##### A Couple of Bootstrap Realizations\n",
"\n",
- "We will attempt boostrap by-hand and manually loop over $L$ realizations and draw $n$ samples to calculate the summary statistics of interest, mean and variance. The choice function from the random package simplifies sampling with replacement from a set of samples with weights.\n",
+ "We will attempt bootstrap by-hand and manually loop over $L$ realizations and draw $n$ samples to calculate the summary statistics of interest, mean and variance. The choice function from the random package simplifies sampling with replacement from a set of samples with weights.\n",
"\n",
- "This command returns a ndarray with k samples with replacment from the 'Porosity' column of our DataFrame (df) accounting for the data weights in column 'Wts'.\n",
+ "This command returns a ndarray with k samples with replacement from the 'Porosity' column of our DataFrame (df) accounting for the data weights in column 'Wts'.\n",
"```p\n",
"samples1 = random.choices(df['Porosity'].values, weights=df['Wts'].values, cum_weights=None, k=len(df))\n",
"```\n",
diff --git a/GeostatsPy_cosimulation.ipynb b/GeostatsPy_cosimulation.ipynb
index 01ebecb..8502431 100644
--- a/GeostatsPy_cosimulation.ipynb
+++ b/GeostatsPy_cosimulation.ipynb
@@ -456,7 +456,7 @@
"\n",
"Let's jump right to building two independent simulations and visualizing the results. \n",
"\n",
- "* independently simulate porosity and permability \n",
+ "* independently simulate porosity and permeability \n",
"* check the porosity an permeability relationship, the scatter plot.\n",
"\n",
"Note we have already demonstrated univariate simulation checks for:\n",
diff --git a/GeostatsPy_datadistributions.ipynb b/GeostatsPy_datadistributions.ipynb
index 9f404f2..77a182f 100644
--- a/GeostatsPy_datadistributions.ipynb
+++ b/GeostatsPy_datadistributions.ipynb
@@ -56,7 +56,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_declustering.ipynb b/GeostatsPy_declustering.ipynb
index f9ec562..9960cc9 100644
--- a/GeostatsPy_declustering.ipynb
+++ b/GeostatsPy_declustering.ipynb
@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python \n",
"import warnings \n",
"warnings.filterwarnings('ignore') # suppress warnings"
diff --git a/GeostatsPy_ensemble_declustering.ipynb b/GeostatsPy_ensemble_declustering.ipynb
index 2748c42..79d5589 100644
--- a/GeostatsPy_ensemble_declustering.ipynb
+++ b/GeostatsPy_ensemble_declustering.ipynb
@@ -99,7 +99,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_inv_distance.ipynb b/GeostatsPy_inv_distance.ipynb
index e872cc9..50e06c4 100644
--- a/GeostatsPy_inv_distance.ipynb
+++ b/GeostatsPy_inv_distance.ipynb
@@ -82,7 +82,7 @@
},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_kriging.ipynb b/GeostatsPy_kriging.ipynb
index 94153be..ddfd5bf 100644
--- a/GeostatsPy_kriging.ipynb
+++ b/GeostatsPy_kriging.ipynb
@@ -121,7 +121,7 @@
},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_kriging_byfacies.ipynb b/GeostatsPy_kriging_byfacies.ipynb
index 1c7c98c..0d1a7a0 100644
--- a/GeostatsPy_kriging_byfacies.ipynb
+++ b/GeostatsPy_kriging_byfacies.ipynb
@@ -121,7 +121,7 @@
},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_multivariate.ipynb b/GeostatsPy_multivariate.ipynb
index a8d84a2..cb91ef7 100644
--- a/GeostatsPy_multivariate.ipynb
+++ b/GeostatsPy_multivariate.ipynb
@@ -117,7 +117,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_overfit.ipynb b/GeostatsPy_overfit.ipynb
index 9363244..96c6b9f 100644
--- a/GeostatsPy_overfit.ipynb
+++ b/GeostatsPy_overfit.ipynb
@@ -148,7 +148,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_plottingdata.ipynb b/GeostatsPy_plottingdata.ipynb
index f9feec0..640e066 100644
--- a/GeostatsPy_plottingdata.ipynb
+++ b/GeostatsPy_plottingdata.ipynb
@@ -52,7 +52,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_spatial_continuity_directions.ipynb b/GeostatsPy_spatial_continuity_directions.ipynb
index 5b404da..c73555d 100644
--- a/GeostatsPy_spatial_continuity_directions.ipynb
+++ b/GeostatsPy_spatial_continuity_directions.ipynb
@@ -177,7 +177,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_spatial_updating.ipynb b/GeostatsPy_spatial_updating.ipynb
index 96b14c7..20e277d 100644
--- a/GeostatsPy_spatial_updating.ipynb
+++ b/GeostatsPy_spatial_updating.ipynb
@@ -142,7 +142,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_synthetic_well_maker.ipynb b/GeostatsPy_synthetic_well_maker.ipynb
index 7e687d7..9344ea3 100644
--- a/GeostatsPy_synthetic_well_maker.ipynb
+++ b/GeostatsPy_synthetic_well_maker.ipynb
@@ -56,7 +56,7 @@
},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_transformations.ipynb b/GeostatsPy_transformations.ipynb
index 42e41cd..7c226b9 100644
--- a/GeostatsPy_transformations.ipynb
+++ b/GeostatsPy_transformations.ipynb
@@ -84,7 +84,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_trends.ipynb b/GeostatsPy_trends.ipynb
index ca32a45..6a2e501 100644
--- a/GeostatsPy_trends.ipynb
+++ b/GeostatsPy_trends.ipynb
@@ -113,7 +113,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_variable_ranking.ipynb b/GeostatsPy_variable_ranking.ipynb
index 17ed200..402c4aa 100644
--- a/GeostatsPy_variable_ranking.ipynb
+++ b/GeostatsPy_variable_ranking.ipynb
@@ -77,7 +77,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_variogram_calculation.ipynb b/GeostatsPy_variogram_calculation.ipynb
index 09b2345..9c719da 100644
--- a/GeostatsPy_variogram_calculation.ipynb
+++ b/GeostatsPy_variogram_calculation.ipynb
@@ -152,7 +152,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_variogram_from_image.ipynb b/GeostatsPy_variogram_from_image.ipynb
index afed290..04a25ee 100644
--- a/GeostatsPy_variogram_from_image.ipynb
+++ b/GeostatsPy_variogram_from_image.ipynb
@@ -181,7 +181,7 @@
}
],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # variogram calculations "
]
},
diff --git a/GeostatsPy_variogram_modeling.ipynb b/GeostatsPy_variogram_modeling.ipynb
index dad493c..c8ba13f 100644
--- a/GeostatsPy_variogram_modeling.ipynb
+++ b/GeostatsPy_variogram_modeling.ipynb
@@ -168,7 +168,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/GeostatsPy_widearray_declustering.ipynb b/GeostatsPy_widearray_declustering.ipynb
index 5ae8cea..f2f8287 100644
--- a/GeostatsPy_widearray_declustering.ipynb
+++ b/GeostatsPy_widearray_declustering.ipynb
@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Bootstrap.ipynb b/Interactive_Bootstrap.ipynb
index 97d9069..0ca8528 100644
--- a/Interactive_Bootstrap.ipynb
+++ b/Interactive_Bootstrap.ipynb
@@ -11,7 +11,7 @@
"\n",
"## Interactive Bootstrap Demonstration\n",
"\n",
- "### Boostrap for Uncertainty in Sample Statistics Tutorial\n",
+ "### Bootstrap for Uncertainty in Sample Statistics Tutorial\n",
"\n",
"* interactive plot demonstration with ipywidget package\n",
"\n",
@@ -31,7 +31,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -68,7 +68,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -80,7 +80,7 @@
"Provide an example and demonstration for:\n",
"\n",
"1. interactive plotting in Jupyter Notebooks with Python packages matplotlib and ipywidgets\n",
- "2. provide an intuitive hands-on example of statistical boostrap \n",
+ "2. provide an intuitive hands-on example of statistical bootstrap \n",
"\n",
"#### Getting Started\n",
"\n",
@@ -143,7 +143,7 @@
"bins = np.linspace(0,1000,1000)\n",
"\n",
"# interactive calculation of the sample set (control of source parametric distribution and number of samples)\n",
- "l = widgets.Text(value=' Boostrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
+ "l = widgets.Text(value=' Bootstrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
"dist = widgets.Dropdown(\n",
" options=['Triangular', 'Uniform', 'Gaussian'],\n",
" value='Gaussian',\n",
@@ -229,7 +229,7 @@
"version_minor": 0
},
"text/plain": [
- "VBox(children=(Text(value=' Boostrap Demonstration, Michael Pyrcz, Associ…"
+ "VBox(children=(Text(value=' Bootstrap Demonstration, Michael Pyrcz, Associ…"
]
},
"metadata": {},
@@ -355,7 +355,7 @@
"# parameters for the synthetic dataset\n",
"bins = np.linspace(0,1000,1000)\n",
"\n",
- "l = widgets.Text(value=' Boostrap Demonstration with Modified Number of Data, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
+ "l = widgets.Text(value=' Bootstrap Demonstration with Modified Number of Data, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
"\n",
"n = widgets.IntSlider(min = 2, max = 1000, value = 100, description = 'New Number Samples',orientation='horizontal',layout=Layout(width='800px', height='20px'),continuous_update=False)\n",
"n.style.handle_color = 'gray'\n",
@@ -411,7 +411,7 @@
"version_minor": 0
},
"text/plain": [
- "VBox(children=(Text(value=' Boostrap Demonstration with Modified Number of Data, Mic…"
+ "VBox(children=(Text(value=' Bootstrap Demonstration with Modified Number of Data, Mic…"
]
},
"metadata": {},
diff --git a/Interactive_Bootstrap_Simple.ipynb b/Interactive_Bootstrap_Simple.ipynb
index e2a4679..9cbabdf 100644
--- a/Interactive_Bootstrap_Simple.ipynb
+++ b/Interactive_Bootstrap_Simple.ipynb
@@ -11,7 +11,7 @@
"\n",
"## Interactive Simple Bootstrap Demonstration\n",
"\n",
- "### Boostrap for Uncertainty in Sample Statistics, The Red and Yellow Blocks with a Cowboy Hat Tutorial\n",
+ "### Bootstrap for Uncertainty in Sample Statistics, The Red and Yellow Blocks with a Cowboy Hat Tutorial\n",
"\n",
"* in class I bring in 3 red blocks, 2 yellow blocks and my cowboy hat, yes I have one, recall I was a farmhand in Alberta, Canada\n",
"\n",
@@ -37,7 +37,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -74,7 +74,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -86,7 +86,7 @@
"Provide an example and demonstration for:\n",
"\n",
"1. interactive plotting in Jupyter Notebooks with Python packages matplotlib and ipywidgets\n",
- "2. provide an intuitive hands-on example of statistical boostrap \n",
+ "2. provide an intuitive hands-on example of statistical bootstrap \n",
"\n",
"#### Getting Started\n",
"\n",
@@ -155,7 +155,7 @@
"bins = np.linspace(0,1000,1000)\n",
"\n",
"# interactive calculation of the sample set (control of source parametric distribution and number of samples)\n",
- "l = widgets.Text(value=' Simple Boostrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
+ "l = widgets.Text(value=' Simple Bootstrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
"\n",
"a = widgets.IntSlider(min=0, max = 100, value = 2, step = 1, description = '$n_{red}$',orientation='horizontal',layout=Layout(width='400px', height='20px'),continuous_update=False)\n",
"a.style.handle_color = 'red'\n",
@@ -239,7 +239,7 @@
"version_minor": 0
},
"text/plain": [
- "VBox(children=(Text(value=' Simple Boostrap Demonstration, Michael Pyrcz, Assoc…"
+ "VBox(children=(Text(value=' Simple Bootstrap Demonstration, Michael Pyrcz, Assoc…"
]
},
"metadata": {},
@@ -283,7 +283,7 @@
"bins = np.linspace(0,1000,1000)\n",
"\n",
"# interactive calculation of the sample set (control of source parametric distribution and number of samples)\n",
- "l = widgets.Text(value=' Simple Boostrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
+ "l = widgets.Text(value=' Simple Bootstrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
"\n",
"a = widgets.IntSlider(min=0, max = 100, value = 2, step = 1, description = '$n_{red}$',orientation='horizontal',layout=Layout(width='400px', height='20px'),continuous_update=False)\n",
"a.style.handle_color = 'red'\n",
@@ -368,7 +368,7 @@
"version_minor": 0
},
"text/plain": [
- "VBox(children=(Text(value=' Simple Boostrap Demonstration, Michael Pyrcz, Assoc…"
+ "VBox(children=(Text(value=' Simple Bootstrap Demonstration, Michael Pyrcz, Assoc…"
]
},
"metadata": {},
@@ -418,7 +418,7 @@
"bins = np.linspace(0,1000,1000)\n",
"\n",
"# interactive calculation of the sample set (control of source parametric distribution and number of samples)\n",
- "l2 = widgets.Text(value=' Simple Boostrap Demonstration, Uncertainty in Proportion of Balls by Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
+ "l2 = widgets.Text(value=' Simple Bootstrap Demonstration, Uncertainty in Proportion of Balls by Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
"\n",
"a2 = widgets.IntSlider(min=0, max = 100, value = 2, step = 1, description = '$n_{red}$',orientation='horizontal',layout=Layout(width='400px', height='20px'),continuous_update=False)\n",
"a2.style.handle_color = 'red'\n",
@@ -524,7 +524,7 @@
"version_minor": 0
},
"text/plain": [
- "VBox(children=(Text(value=' Simple Boostrap Demonstration, Uncertainty in Proportion of Balls by…"
+ "VBox(children=(Text(value=' Simple Bootstrap Demonstration, Uncertainty in Proportion of Balls by…"
]
},
"metadata": {},
diff --git a/Interactive_Confidence_Interval.ipynb b/Interactive_Confidence_Interval.ipynb
index 9906611..1638199 100644
--- a/Interactive_Confidence_Interval.ipynb
+++ b/Interactive_Confidence_Interval.ipynb
@@ -11,9 +11,9 @@
"\n",
"## Interactive Confidence Interval Demonstration\n",
"\n",
- "### Boostrap and Analytical Confidence Intervals\n",
+ "### Bootstrap and Analytical Confidence Intervals\n",
"\n",
- "* we calculate the confidence interval in the mean with boostrap and compare to the analytical expression\n",
+ "* we calculate the confidence interval in the mean with bootstrap and compare to the analytical expression\n",
"\n",
"* with this workflow we all provide an interactive plot demonstration with matplotlib and ipywidget packages\n",
"\n",
@@ -59,7 +59,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -96,7 +96,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -108,7 +108,7 @@
"Provide an example and demonstration for:\n",
"\n",
"1. interactive plotting in Jupyter Notebooks with Python packages matplotlib and ipywidgets\n",
- "2. provide an intuitive hands-on example of confidence intervals and compare to statistical boostrap \n",
+ "2. provide an intuitive hands-on example of confidence intervals and compare to statistical bootstrap \n",
"\n",
"#### Getting Started\n",
"\n",
@@ -177,7 +177,7 @@
"bins = np.linspace(0,1000,1000)\n",
"\n",
"# interactive calculation of the sample set (control of source parametric distribution and number of samples)\n",
- "l = widgets.Text(value=' Simple Boostrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
+ "l = widgets.Text(value=' Simple Bootstrap Demonstration, Michael Pyrcz, Associate Professor, The University of Texas at Austin',layout=Layout(width='950px', height='30px'))\n",
"\n",
"a = widgets.IntSlider(min=0, max = 100, value = 2, step = 1, description = '$n_{red}$',orientation='horizontal',layout=Layout(width='400px', height='20px'),continuous_update=False)\n",
"a.style.handle_color = 'red'\n",
@@ -262,7 +262,7 @@
"version_minor": 0
},
"text/plain": [
- "VBox(children=(Text(value=' Simple Boostrap Demonstration, Michael Pyrcz, Assoc…"
+ "VBox(children=(Text(value=' Simple Bootstrap Demonstration, Michael Pyrcz, Assoc…"
]
},
"metadata": {},
diff --git a/Interactive_Correlation_Coefficient.ipynb b/Interactive_Correlation_Coefficient.ipynb
index 66f9d76..2fd8986 100644
--- a/Interactive_Correlation_Coefficient.ipynb
+++ b/Interactive_Correlation_Coefficient.ipynb
@@ -134,7 +134,7 @@
}
],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Correlation_Coefficient_Issues.ipynb b/Interactive_Correlation_Coefficient_Issues.ipynb
index f6238be..2d8bb97 100644
--- a/Interactive_Correlation_Coefficient_Issues.ipynb
+++ b/Interactive_Correlation_Coefficient_Issues.ipynb
@@ -123,7 +123,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_DecisionMaking.ipynb b/Interactive_DecisionMaking.ipynb
index 517d8ef..635bd94 100644
--- a/Interactive_DecisionMaking.ipynb
+++ b/Interactive_DecisionMaking.ipynb
@@ -27,9 +27,9 @@
"source": [
"Optimum Decision Making in Python \n",
"\n",
- "Here's a simple interactive demonstration of optimum decision making in the precense of uncertainty. This should help you get started with using your uncertainty models to make decisions. \n",
+ "Here's a simple interactive demonstration of optimum decision making in the presence of uncertainty. This should help you get started with using your uncertainty models to make decisions. \n",
"\n",
- "#### Optimum Decision Making in the Precense of Uncertainty \n",
+ "#### Optimum Decision Making in the presence of Uncertainty \n",
"\n",
"Definition: the decision that minimizes the expected loss or maximizes the expected profit\n",
"\n",
@@ -70,7 +70,7 @@
"\n",
"#### Limitations\n",
"\n",
- "The optimum decision making in the precense of uncertainty assumes:\n",
+ "The optimum decision making in the presence of uncertainty assumes:\n",
"1. **representativity** - the uncertainty distribution is representative, a good uncertainty model\n",
"2. **independence** - between the variables / features impacting the uncertainty distribuiton and those impacting the lose function\n",
"3. **stationarity** - the uncertainty model and the loss function are invariant under translation over included spatial samples and for location of implementation\n",
@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
@@ -326,7 +326,7 @@
"source": [
"#### Comments\n",
"\n",
- "This was a basic demonstration of optimum decision making in the precense of uncertainty. \n",
+ "This was a basic demonstration of optimum decision making in the presence of uncertainty. \n",
"\n",
"* we build uncertainty models all the time to support decision making. Here's how it gets done.\n",
"\n",
diff --git a/Interactive_Declustering.ipynb b/Interactive_Declustering.ipynb
index 40a1a17..1f2aa12 100644
--- a/Interactive_Declustering.ipynb
+++ b/Interactive_Declustering.ipynb
@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Hypothesis_Testing.ipynb b/Interactive_Hypothesis_Testing.ipynb
index e1cd866..3f3b68d 100644
--- a/Interactive_Hypothesis_Testing.ipynb
+++ b/Interactive_Hypothesis_Testing.ipynb
@@ -11,9 +11,9 @@
"\n",
"## Interactive Hypothesis Testing Demonstration\n",
"\n",
- "### Boostrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
+ "### Bootstrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
"\n",
- "* we calculate the hypothesis test for different in means with boostrap and compare to the analytical expression\n",
+ "* we calculate the hypothesis test for different in means with bootstrap and compare to the analytical expression\n",
"\n",
"* **Welch's t-test**: we assume the features are Gaussian distributed and the variance are unequal\n",
"\n",
@@ -78,9 +78,9 @@
" \n",
"* pool the results to assemble the $t_{statistic}$ sampling distribution\n",
"\n",
- "* calculate the cumulative probability of the observed t_{statistic}m, $\\hat{t}$, from the boostrap distribution based on $\\hat{t}^{\\ell}$, $\\ell = 1,\\ldots,L$.\n",
+ "* calculate the cumulative probability of the observed t_{statistic}m, $\\hat{t}$, from the bootstrap distribution based on $\\hat{t}^{\\ell}$, $\\ell = 1,\\ldots,L$.\n",
"\n",
- "Here's some prerequisite information on the boostrap.\n",
+ "Here's some prerequisite information on the bootstrap.\n",
"\n",
"#### Bootstrap\n",
"\n",
@@ -94,7 +94,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -131,7 +131,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -143,7 +143,7 @@
"Provide an example and demonstration for:\n",
"\n",
"1. interactive plotting in Jupyter Notebooks with Python packages matplotlib and ipywidgets\n",
- "2. provide an intuitive hands-on example of confidence intervals and compare to statistical boostrap \n",
+ "2. provide an intuitive hands-on example of confidence intervals and compare to statistical bootstrap \n",
"\n",
"#### Getting Started\n",
"\n",
@@ -314,7 +314,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Boostrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
+ "### Bootstrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
"\n",
"* including the analytical and bootstrap methods for testing the difference in means\n",
"* interactive plot demonstration with ipywidget, matplotlib packages\n",
diff --git a/Interactive_LASSO_Regression.ipynb b/Interactive_LASSO_Regression.ipynb
index 10f7391..366b099 100644
--- a/Interactive_LASSO_Regression.ipynb
+++ b/Interactive_LASSO_Regression.ipynb
@@ -182,7 +182,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Monte_Carlo_simulation.ipynb b/Interactive_Monte_Carlo_simulation.ipynb
index 3437645..10b4822 100644
--- a/Interactive_Monte_Carlo_simulation.ipynb
+++ b/Interactive_Monte_Carlo_simulation.ipynb
@@ -99,7 +99,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Overfit.ipynb b/Interactive_Overfit.ipynb
index 6280990..dbb5539 100644
--- a/Interactive_Overfit.ipynb
+++ b/Interactive_Overfit.ipynb
@@ -107,7 +107,7 @@
}
],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_PreDrill_Prediction.ipynb b/Interactive_PreDrill_Prediction.ipynb
index 80e4f99..2dd321f 100644
--- a/Interactive_PreDrill_Prediction.ipynb
+++ b/Interactive_PreDrill_Prediction.ipynb
@@ -170,7 +170,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_RadialBasisFunctions.ipynb b/Interactive_RadialBasisFunctions.ipynb
index 03d8e3c..a45cfa2 100644
--- a/Interactive_RadialBasisFunctions.ipynb
+++ b/Interactive_RadialBasisFunctions.ipynb
@@ -148,7 +148,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Ridge_Regresion.ipynb b/Interactive_Ridge_Regresion.ipynb
index 92b54f9..e470ffd 100644
--- a/Interactive_Ridge_Regresion.ipynb
+++ b/Interactive_Ridge_Regresion.ipynb
@@ -173,7 +173,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Simple_Kriging.ipynb b/Interactive_Simple_Kriging.ipynb
index eaf818d..fe1cb76 100644
--- a/Interactive_Simple_Kriging.ipynb
+++ b/Interactive_Simple_Kriging.ipynb
@@ -162,7 +162,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Simple_Kriging_Behavoir.ipynb b/Interactive_Simple_Kriging_Behavoir.ipynb
index b3aa5be..17c6733 100644
--- a/Interactive_Simple_Kriging_Behavoir.ipynb
+++ b/Interactive_Simple_Kriging_Behavoir.ipynb
@@ -166,7 +166,7 @@
},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Simulation.ipynb b/Interactive_Simulation.ipynb
index f043cde..812406e 100644
--- a/Interactive_Simulation.ipynb
+++ b/Interactive_Simulation.ipynb
@@ -172,7 +172,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Spatial_Aggregate_Uncertainty.ipynb b/Interactive_Spatial_Aggregate_Uncertainty.ipynb
index 7aa2932..d016d31 100644
--- a/Interactive_Spatial_Aggregate_Uncertainty.ipynb
+++ b/Interactive_Spatial_Aggregate_Uncertainty.ipynb
@@ -218,7 +218,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_String_Effect.ipynb b/Interactive_String_Effect.ipynb
index 3afc88d..43a0a72 100644
--- a/Interactive_String_Effect.ipynb
+++ b/Interactive_String_Effect.ipynb
@@ -182,7 +182,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Uncertainty_Checking.ipynb b/Interactive_Uncertainty_Checking.ipynb
index dddd723..ac28ac5 100644
--- a/Interactive_Uncertainty_Checking.ipynb
+++ b/Interactive_Uncertainty_Checking.ipynb
@@ -175,7 +175,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Variogram_Calculation.ipynb b/Interactive_Variogram_Calculation.ipynb
index 2fddca2..fd5869f 100644
--- a/Interactive_Variogram_Calculation.ipynb
+++ b/Interactive_Variogram_Calculation.ipynb
@@ -189,7 +189,7 @@
}
],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Variogram_Calculation_Modeling.ipynb b/Interactive_Variogram_Calculation_Modeling.ipynb
index 0ab8dbc..51c32b6 100644
--- a/Interactive_Variogram_Calculation_Modeling.ipynb
+++ b/Interactive_Variogram_Calculation_Modeling.ipynb
@@ -246,7 +246,7 @@
}
],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Variogram_Calculation_Modeling_Krige.ipynb b/Interactive_Variogram_Calculation_Modeling_Krige.ipynb
index 93def87..6c7588a 100644
--- a/Interactive_Variogram_Calculation_Modeling_Krige.ipynb
+++ b/Interactive_Variogram_Calculation_Modeling_Krige.ipynb
@@ -399,7 +399,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/Interactive_Variogram_Modeling.ipynb b/Interactive_Variogram_Modeling.ipynb
index b4652ec..f5a2695 100644
--- a/Interactive_Variogram_Modeling.ipynb
+++ b/Interactive_Variogram_Modeling.ipynb
@@ -223,7 +223,7 @@
}
],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/PyGSLIB_declus_python_demo.ipynb b/PyGSLIB_declus_python_demo.ipynb
index fe45cf4..87ece7b 100644
--- a/PyGSLIB_declus_python_demo.ipynb
+++ b/PyGSLIB_declus_python_demo.ipynb
@@ -12,13 +12,13 @@
"\n",
"#### Contacts: [Twitter/@GeostatsGuy](https://twitter.com/geostatsguy) | [GitHub/GeostatsGuy](https://github.com/GeostatsGuy) | [www.michaelpyrcz.com](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446)\n",
"\n",
- "This is a tutorial for / demonstration of **spatial declustering in Python** with the PyGSLIB package (by Adrian Martinez Vargas) that wraps some of the FORTRAN algorithms from GSLIB, Geostatistical Library (Deutsch and Journel, 1997). The GeostatPy (by Michael Pyrcz) is an informal collection of Python programs that write parameter files, data files, run GSLIB executables and then read results back. There has been some reimplimentation of visualization with MatPlotLib methods. \n",
+ "This is a tutorial for / demonstration of **spatial declustering in Python** with the PyGSLIB package (by Adrian Martinez Vargas) that wraps some of the FORTRAN algorithms from GSLIB, Geostatistical Library (Deutsch and Journel, 1997). The GeostatPy (by Michael Pyrcz) is an informal collection of Python programs that write parameter files, data files, run GSLIB executables and then read results back. There has been some reimplementation of visualization with MatPlotLib methods. \n",
"\n",
"Cell-based declustering is available in the declus algorithm from GSLIB. The methods is written about in the GSLIB book (Deutsch and Journel, 1998) and other textbooks such as Pyrcz and Deutsch (2014). The method provides declustering weights that acocunt for spatial clustering of the data samples. It is not sensitive to data boundaries, but relies on a cell size assumption. The common method is to attempt a range of cell sizes and retain that one that minimizes the declustered mean if locations with high values have been over sampled (and visa versa).\n",
"\n",
"We will demonstration calculation of declustering weights on regular and irregular spaced data. \n",
"\n",
- "This exercise demonstrates the cell-based declustering approach in Python with wrappers and reimplimentation of GSLIB methods. The steps include:\n",
+ "This exercise demonstrates the cell-based declustering approach in Python with wrappers and reimplementation of GSLIB methods. The steps include:\n",
"\n",
"1. generate a 2D sequential Guassian simulation using a wrapper of GSLIB's sgsim method\n",
"2. extract regular and irregular sample sets from the exhaustive realization\n",
@@ -376,7 +376,7 @@
"11. vmodel\n",
"12. sgsim\n",
"\n",
- "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the precense of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
+ "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the presence of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
]
},
{
diff --git a/PyGSLIB_variogram_python_demo.ipynb b/PyGSLIB_variogram_python_demo.ipynb
index 6cdd080..ddddced 100644
--- a/PyGSLIB_variogram_python_demo.ipynb
+++ b/PyGSLIB_variogram_python_demo.ipynb
@@ -12,7 +12,7 @@
"\n",
"#### [Twitter/@GeostatsGuy](https://twitter.com/geostatsguy) | [GitHub/GeostatsGuy](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube Lectures](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig)\n",
"\n",
- "This is a tutorial for / demonstration of **variogram calculation in Python** with the PyGSLIB package (by Adrian Martinez Vargas) that wraps some of the FORTRAN algorithms from GSLIB, Geostatistical Library (Deutsch and Journel, 1997). I also use a couple functions form GeostatPy (by Michael Pyrcz, an informal collection of Python programs that write parameter files, data files, run GSLIB executables and then read results back and some reimplimentation of GSLIB visualization with MatPlotLib methods). The GeostatPy functions are embeded directly in the workflow.\n",
+ "This is a tutorial for / demonstration of **variogram calculation in Python** with the PyGSLIB package (by Adrian Martinez Vargas) that wraps some of the FORTRAN algorithms from GSLIB, Geostatistical Library (Deutsch and Journel, 1997). I also use a couple functions form GeostatPy (by Michael Pyrcz, an informal collection of Python programs that write parameter files, data files, run GSLIB executables and then read results back and some reimplementation of GSLIB visualization with MatPlotLib methods). The GeostatPy functions are embeded directly in the workflow.\n",
"\n",
"Variogram calculation for irregularly-spaced data is available in the $gam$ algorithm from GSLIB. The methods is written about in the GSLIB book by Deutsch and Journel (1998) and other textbooks such as Pyrcz and Deutsch (2014). The implementation is true to the GSLIB parameterization and includes the ability to calculate an array of outputs with multiple vairogram types and multiple directions all at once. \n",
"\n",
@@ -70,7 +70,7 @@
"2. locmap\n",
"3. affine\n",
"\n",
- "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the precense of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
+ "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the presence of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
]
},
{
diff --git a/PythonDataBasics_BoostrapHypothesis.ipynb b/PythonDataBasics_BoostrapHypothesis.ipynb
index 835d11c..e3d63fb 100644
--- a/PythonDataBasics_BoostrapHypothesis.ipynb
+++ b/PythonDataBasics_BoostrapHypothesis.ipynb
@@ -37,9 +37,9 @@
"\n",
"* the tests we will demonstrated have analytical solutions and we will show that our bootstrap methods reproduce these analytically-known distributions while providing a more general workflow for any significance problem.\n",
"\n",
- "### Boostrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
+ "### Bootstrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
"\n",
- "* we calculate the hypothesis test for different in means with boostrap and compare to the analytical expression\n",
+ "* we calculate the hypothesis test for different in means with bootstrap and compare to the analytical expression\n",
"\n",
"* **Welch's t-test**: we assume the features are Gaussian distributed and the variance are unequal\n",
"\n",
@@ -104,9 +104,9 @@
" \n",
"* pool the results to assemble the $t_{statistic}$ sampling distribution\n",
"\n",
- "* calculate the cumulative probability of the observed t_{statistic}m, $\\hat{t}$, from the boostrap distribution based on $\\hat{t}^{\\ell}$, $\\ell = 1,\\ldots,L$.\n",
+ "* calculate the cumulative probability of the observed t_{statistic}m, $\\hat{t}$, from the bootstrap distribution based on $\\hat{t}^{\\ell}$, $\\ell = 1,\\ldots,L$.\n",
"\n",
- "Here's some prerequisite information on the boostrap.\n",
+ "Here's some prerequisite information on the bootstrap.\n",
"\n",
"#### Bootstrap\n",
"\n",
@@ -120,7 +120,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -157,7 +157,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -169,7 +169,7 @@
"Provide an example and demonstration for:\n",
"\n",
"1. interactive plotting in Jupyter Notebooks with Python packages matplotlib and ipywidgets\n",
- "2. provide an intuitive hands-on example of confidence intervals and compare to statistical boostrap \n",
+ "2. provide an intuitive hands-on example of confidence intervals and compare to statistical bootstrap \n",
"\n",
"#### Getting Started\n",
"\n",
@@ -663,7 +663,7 @@
"source": [
"### Bootstrap Hypothesis Test\n",
"\n",
- "#### Boostrap Student's t-test, Welch's Test Difference in Means\n",
+ "#### Bootstrap Student's t-test, Welch's Test Difference in Means\n",
"\n",
"First let's calculate the t-statistic observed in our dataset, assuming unequal variances with the Welch's t-test.\n",
"\n",
diff --git a/PythonDataBasics_Bootstrap.ipynb b/PythonDataBasics_Bootstrap.ipynb
index a5a5324..f2e40f5 100644
--- a/PythonDataBasics_Bootstrap.ipynb
+++ b/PythonDataBasics_Bootstrap.ipynb
@@ -124,7 +124,7 @@
"\n",
"These are convenience functions to visualize the data and bootstrap results.\n",
"* **custom_histogram** - data histogram with summary statistics \n",
- "* **custom_histogram_with_uncert** - data histogram with boostrap uncertainty model \n",
+ "* **custom_histogram_with_uncert** - data histogram with bootstrap uncertainty model \n",
"* **display_bootstrap** - bootstrap realizations' histogram with analytical or empirical PDF\n",
"\n",
"I include these for concise, readable workflows."
@@ -165,12 +165,12 @@
" ht = np.max(freq)\n",
" if analytical is None:\n",
" sns.kdeplot(x=zreal,color = 'grey',alpha = 0.1,levels = 1,bw_adjust = 1,label='bootstrap PDF') \n",
- " plt.xlabel('Boostrap Realizations and Kernel Density Estimate') \n",
+ " plt.xlabel('Bootstrap Realizations and Kernel Density Estimate') \n",
" else: \n",
" plt.plot(abin,analytical,color = 'black',label = 'analytical',alpha=0.4)\n",
" plt.fill_between(abin, 0, analytical, where = abin <= np.percentile(zreal,10), facecolor='red', interpolate=True, alpha = 0.5)\n",
" plt.fill_between(abin, 0, analytical, where = abin >= np.percentile(zreal,90), facecolor='red', interpolate=True, alpha = 0.5)\n",
- " plt.xlabel('Boostrap Realizations and Analytical Sampling Distributions') \n",
+ " plt.xlabel('Bootstrap Realizations and Analytical Sampling Distributions') \n",
" plt.axvline(x=stat(zdata),linestyle=\"--\",c='black')\n",
" plt.text(stat(zdata)+offset,ht*0.95, r'Average = ' + str(round(np.average(zreal),1)), fontsize=12)\n",
" plt.text(stat(zdata)+offset,ht*0.90, r'St.Dev. = ' + str(round(np.std(zreal),1)), fontsize=12)\n",
@@ -833,7 +833,7 @@
" \n",
"* calculate a bootstrap realization of the dataset with $n$ samples with replacement\n",
"* calculate the mean and standard deviation from this bootstrapped realization of the dataset\n",
- "* calculate a boostrap realization of the coefficient of variation as the standard deviation realizaiton divided by the mean realization\n",
+ "* calculate a bootstrap realization of the coefficient of variation as the standard deviation realizaiton divided by the mean realization\n",
"\n",
"Repeat this $L$ time on $L$ realizations of the data and then evaluate the resulting distribution.\n",
"\n",
@@ -1006,7 +1006,7 @@
" plt.text(np.average(shale_prop_real)+0.07, 6.6, r'P90 = ' + str(round(np.percentile(shale_prop_real,90),2)), fontsize=12)\n",
" plt.text(np.average(shale_prop_real)+0.07, 6.2, r'P10 = ' + str(round(np.percentile(shale_prop_real,10),2)), fontsize=12)\n",
" \n",
- " plt.xlabel('Boostrap Realizations and Analytical Sampling Distributions'); plt.ylabel('Frequency'); plt.title('Distribution of Bootstrap Proportions')\n",
+ " plt.xlabel('Bootstrap Realizations and Analytical Sampling Distributions'); plt.ylabel('Frequency'); plt.title('Distribution of Bootstrap Proportions')\n",
" plt.legend(loc = 'upper left')\n",
" \n",
" return sand_prop_real, shale_prop_real"
diff --git a/PythonDataBasics_BootstrapConfidence.ipynb b/PythonDataBasics_BootstrapConfidence.ipynb
index 9bc2002..86072bd 100644
--- a/PythonDataBasics_BootstrapConfidence.ipynb
+++ b/PythonDataBasics_BootstrapConfidence.ipynb
@@ -49,7 +49,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -86,7 +86,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -788,7 +788,7 @@
"plt.text(np.percentile(iqr_real,90)+0.009, L*0.036, r'St.Dev. = ' + str(round(np.std(iqr_real),3)), fontsize=12)\n",
"plt.text(np.percentile(iqr_real,90)+0.009, L*0.032, r'P90 = ' + str(round(np.percentile(iqr_real,90),3)), fontsize=12)\n",
"plt.text(np.percentile(iqr_real,90)+0.009, L*0.028, r'P10 = ' + str(round(np.percentile(iqr_real,10),3)), fontsize=12)\n",
- "plt.xlabel('Boostrap Realizations of Interquartile Range'); plt.ylabel('Frequency'); plt.title('Bootstrap Uncertainty Distribution of Interquartile Range')\n",
+ "plt.xlabel('Bootstrap Realizations of Interquartile Range'); plt.ylabel('Frequency'); plt.title('Bootstrap Uncertainty Distribution of Interquartile Range')\n",
"plt.gca().grid(True, which='major',axis='both',linewidth = 1.0); plt.gca().grid(True, which='minor',axis='x',linewidth = 0.2) # add y grids\n",
"plt.gca().tick_params(which='major',length=7); plt.gca().tick_params(which='minor', length=4)\n",
"plt.gca().xaxis.set_minor_locator(AutoMinorLocator()); plt.gca().yaxis.set_minor_locator(AutoMinorLocator()) # turn on minor ticks\n",
@@ -811,7 +811,7 @@
" \n",
"* calculate a bootstrap realization of the dataset with $n$ samples with replacement\n",
"* calculate the mean and standard deviation from this bootstrapped realization of the dataset\n",
- "* calculate a boostrap realization of the coefficient of variation as the standard deviation divided by the mean\n",
+ "* calculate a bootstrap realization of the coefficient of variation as the standard deviation divided by the mean\n",
"\n",
"Repeat this $L$ times and then evaluate the resulting distribution."
]
@@ -854,7 +854,7 @@
"plt.text(np.percentile(cv_real,90)+0.009, 15, r'St.Dev. = ' + str(round(np.std(cv_real),3)), fontsize=12)\n",
"plt.text(np.percentile(cv_real,90)+0.009, 14, r'P90 = ' + str(round(np.percentile(cv_real,90),3)), fontsize=12)\n",
"plt.text(np.percentile(cv_real,90)+0.009, 13, r'P10 = ' + str(round(np.percentile(cv_real,10),3)), fontsize=12)\n",
- "plt.xlabel('Boostrap Realizations of Coefficient of Variation'); plt.ylabel('Frequency'); plt.title('Bootstrap Uncertainty Distribution of Coefficient of Variation')\n",
+ "plt.xlabel('Bootstrap Realizations of Coefficient of Variation'); plt.ylabel('Frequency'); plt.title('Bootstrap Uncertainty Distribution of Coefficient of Variation')\n",
"plt.gca().grid(True, which='major',axis='both',linewidth = 1.0); plt.gca().grid(True, which='minor',axis='x',linewidth = 0.2) # add y grids\n",
"plt.gca().tick_params(which='major',length=7); plt.gca().tick_params(which='minor', length=4)\n",
"plt.gca().xaxis.set_minor_locator(AutoMinorLocator()); plt.gca().yaxis.set_minor_locator(AutoMinorLocator()) # turn on minor ticks\n",
@@ -870,7 +870,7 @@
"#### Bootstrap of the Correlation Coefficient\n",
"\n",
"Here's a statistic that requires us to work with multiple, paired features at once. \n",
- "* this reinforces that we boostrap for a new realization of the dataset, a set of samples with all their features.\n",
+ "* this reinforces that we bootstrap for a new realization of the dataset, a set of samples with all their features.\n",
"\n",
"For the correlation coefficient we will:\n",
" \n",
@@ -918,7 +918,7 @@
"# plt.text(np.percentile(corr_real,90)+0.009, 15, r'St.Dev. = ' + str(round(np.std(corr_real),3)), fontsize=12)\n",
"# plt.text(np.percentile(corr_real,90)+0.009, 14, r'P90 = ' + str(round(np.percentile(corr_real,90),3)), fontsize=12)\n",
"# plt.text(np.percentile(corr_real,90)+0.009, 13, r'P10 = ' + str(round(np.percentile(corr_real,10),3)), fontsize=12)\n",
- "plt.xlabel('Boostrap Realizations of Correlation Coefficient'); plt.ylabel('Frequency'); plt.title('Bootstrap Uncertainty Distribution of Correlation Coefficient')\n",
+ "plt.xlabel('Bootstrap Realizations of Correlation Coefficient'); plt.ylabel('Frequency'); plt.title('Bootstrap Uncertainty Distribution of Correlation Coefficient')\n",
"plt.gca().grid(True, which='major',axis='both',linewidth = 1.0); plt.gca().grid(True, which='minor',axis='x',linewidth = 0.2) # add y grids\n",
"plt.gca().tick_params(which='major',length=7); plt.gca().tick_params(which='minor', length=4)\n",
"plt.gca().xaxis.set_minor_locator(AutoMinorLocator()); plt.gca().yaxis.set_minor_locator(AutoMinorLocator()) # turn on minor ticks\n",
diff --git a/PythonDataBasics_Distribution_Transformations.ipynb b/PythonDataBasics_Distribution_Transformations.ipynb
index ec1964f..a735527 100644
--- a/PythonDataBasics_Distribution_Transformations.ipynb
+++ b/PythonDataBasics_Distribution_Transformations.ipynb
@@ -80,7 +80,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/PythonDataBasics_Feature_Ranking.ipynb b/PythonDataBasics_Feature_Ranking.ipynb
index f3667c7..307e809 100644
--- a/PythonDataBasics_Feature_Ranking.ipynb
+++ b/PythonDataBasics_Feature_Ranking.ipynb
@@ -66,7 +66,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/PythonDataBasics_HypothesisTesting.ipynb b/PythonDataBasics_HypothesisTesting.ipynb
index 4ab0caf..53affb8 100644
--- a/PythonDataBasics_HypothesisTesting.ipynb
+++ b/PythonDataBasics_HypothesisTesting.ipynb
@@ -11,9 +11,9 @@
"\n",
"## Bootstrap-based Hypothesis Testing Demonstration\n",
"\n",
- "### Boostrap and Methods for Hypothesis Testing, Difference in Means\n",
+ "### Bootstrap and Methods for Hypothesis Testing, Difference in Means\n",
"\n",
- "* we calculate the hypothesis test for different in means with boostrap and compare to the analytical expression\n",
+ "* we calculate the hypothesis test for different in means with bootstrap and compare to the analytical expression\n",
"\n",
"* **Welch's t-test**: we assume the features are Gaussian distributed and the variance are unequal\n",
"\n",
@@ -78,16 +78,16 @@
" \n",
"* pool the results to assemble the $t_{statistic}$ sampling distribution\n",
"\n",
- "* calculate the cumulative probability of the observed t_{statistic}m, $\\hat{t}$, from the boostrap distribution based on $\\hat{t}^{\\ell}$, $\\ell = 1,\\ldots,L$.\n",
+ "* calculate the cumulative probability of the observed t_{statistic}m, $\\hat{t}$, from the bootstrap distribution based on $\\hat{t}^{\\ell}$, $\\ell = 1,\\ldots,L$.\n",
"\n",
- "Here's some prerequisite information on the boostrap.\n",
+ "Here's some prerequisite information on the bootstrap.\n",
"\n",
"#### Bootstrap\n",
"\n",
"Bootstrap is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -124,7 +124,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -136,7 +136,7 @@
"Provide an example and demonstration for:\n",
"\n",
"1. interactive plotting in Jupyter Notebooks with Python packages matplotlib and ipywidgets\n",
- "2. provide an intuitive hands-on example of confidence intervals and compare to statistical boostrap \n",
+ "2. provide an intuitive hands-on example of confidence intervals and compare to statistical bootstrap \n",
"\n",
"#### Getting Started\n",
"\n",
@@ -307,7 +307,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Boostrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
+ "### Bootstrap and Analytical Methods for Hypothesis Testing, Difference in Means\n",
"\n",
"* including the analytical and bootstrap methods for testing the difference in means\n",
"* interactive plot demonstration with ipywidget, matplotlib packages\n",
diff --git a/PythonDataBasics_SpatialBootstrap.ipynb b/PythonDataBasics_SpatialBootstrap.ipynb
index 5ad7b08..18b8122 100644
--- a/PythonDataBasics_SpatialBootstrap.ipynb
+++ b/PythonDataBasics_SpatialBootstrap.ipynb
@@ -41,7 +41,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -78,7 +78,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
diff --git a/PythonDataBasics_ndarrays.ipynb b/PythonDataBasics_ndarrays.ipynb
index 572f5c5..1bd17dc 100644
--- a/PythonDataBasics_ndarrays.ipynb
+++ b/PythonDataBasics_ndarrays.ipynb
@@ -1384,7 +1384,7 @@
"source": [
"#### Constant Value Imputation for an ndarray \n",
"\n",
- "Now that we have identified the precense of missing values we can update them.\n",
+ "Now that we have identified the presence of missing values we can update them.\n",
"\n",
"* NumPy.nan_to_num() function can be to replace the NaN values with a constant"
]
diff --git a/Spatial_Bootstrap.ipynb b/Spatial_Bootstrap.ipynb
index e0d83c0..057b721 100644
--- a/Spatial_Bootstrap.ipynb
+++ b/Spatial_Bootstrap.ipynb
@@ -18,7 +18,7 @@
"##### [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1)\n",
"\n",
"\n",
- "### A Demonstration of Spatial Boostrap \n",
+ "### A Demonstration of Spatial Bootstrap \n",
"\n",
"Here's a simple workflow to demonstrate spatial bootstrap and to compare with regular (non-spatial) bootstrap.\n",
"\n",
diff --git a/SubsurfaceDataAnalytics_Basic_Data_Loading_Display.ipynb b/SubsurfaceDataAnalytics_Basic_Data_Loading_Display.ipynb
index d82a294..48381c1 100644
--- a/SubsurfaceDataAnalytics_Basic_Data_Loading_Display.ipynb
+++ b/SubsurfaceDataAnalytics_Basic_Data_Loading_Display.ipynb
@@ -900,7 +900,7 @@
"\n",
"* There is a lot to learn, a bit of a hurdle\n",
"\n",
- "* We will use the *pixelplt* reimplimentation from the GeostatsPy package. \n",
+ "* We will use the *pixelplt* reimplementation from the GeostatsPy package. \n",
"\n",
"This function uses MatPlotLib with the function parameters to build a nice figure, so we can procastinate learning MatPlotLib for now! \n",
"\n",
diff --git a/SubsurfaceDataAnalytics_Clustering.ipynb b/SubsurfaceDataAnalytics_Clustering.ipynb
index 6b20d07..fcb2755 100644
--- a/SubsurfaceDataAnalytics_Clustering.ipynb
+++ b/SubsurfaceDataAnalytics_Clustering.ipynb
@@ -83,7 +83,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
@@ -104,7 +104,9 @@
"import pandas as pd # DataFrames for tabular data\n",
"import os # set working directory, run executables\n",
"import matplotlib.pyplot as plt # for plotting\n",
- "import copy # for deep copies"
+ "import copy # for deep copies\n",
+ "import warnings # supress all warnings\n",
+ "warnings.filterwarnings('ignore')"
]
},
{
@@ -168,7 +170,7 @@
"metadata": {},
"outputs": [],
"source": [
- "os.chdir(\"C:/PGE383\") # set the working directory with the input data file"
+ "#os.chdir(\"C:/PGE383\") # set the working directory with the input data file"
]
},
{
@@ -225,7 +227,8 @@
"metadata": {},
"outputs": [],
"source": [
- "df = pd.read_csv('12_sample_data.csv') # load our data table\n",
+ "#df = pd.read_csv('12_sample_data.csv') # load our data table\n",
+ "df = pd.read_csv('https://raw.githubusercontent.com/GeostatsGuy/GeoDataSets/master/12_sample_data.csv')\n",
"df = df.sample(frac=.30, random_state = 73073); df = df.reset_index() # extract 30% random to reduce the number of data"
]
},
@@ -289,6 +292,17 @@
"
"
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -987,15 +1026,15 @@
"plt.subplot(121) # plot the assigned training data and K prototypes\n",
"plt.scatter(df['Porosity'], df['AI'], color=df['color'], alpha=0.5, edgecolor='k')\n",
"for i in centroids.keys():\n",
- " plt.scatter(centroids.get(i)[0], centroids.get(i)[1], color=colmap[i],linewidths=1.0, verts=None, edgecolors=\"black\")\n",
+ " plt.scatter(centroids.get(i)[0], centroids.get(i)[1], color=colmap[i],linewidths=1.0, edgecolors=\"black\")\n",
"plt.title('Acoustic Impedence vs. Porosity with Updated Training Data'); plt.xlabel('Porosity (fraction)'); plt.ylabel('Acoustic impedance (kg/m^3 x m/s x 10^3)')\n",
"plt.xlim(por_min, por_max)\n",
"plt.ylim(AI_min, AI_max)\n",
"\n",
"plt.subplot(122) # plot the training data and K prototypes\n",
- "plt.scatter(df_subset['Norm_Porosity'], df['Norm_AI'], c=df['color'], alpha = 0.4, linewidths=1.0, verts=None, edgecolors=\"black\")\n",
+ "plt.scatter(df_subset['Norm_Porosity'], df['Norm_AI'], c=df['color'], alpha = 0.4, linewidths=1.0, edgecolors=\"black\")\n",
"for i in centroids.keys():\n",
- " plt.scatter(centroids.get(i)[2], centroids.get(i)[3], color=colmap[i],linewidths=1.0, verts=None, edgecolors=\"black\")\n",
+ " plt.scatter(centroids.get(i)[2], centroids.get(i)[3], color=colmap[i],linewidths=1.0, edgecolors=\"black\")\n",
"plt.title('Normalized Acoustic Impedence vs. Porosity with Updated Training Data'); plt.xlabel('Porosity (normalized)'); plt.ylabel('Acoustic impedance (normalized)')\n",
"plt.xlim(0, 1)\n",
"plt.ylim(0, 1)\n",
@@ -1019,42 +1058,56 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 18,
"metadata": {},
"outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Iteration:\n",
+ "2 3 4 5 6 "
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFdCAYAAAAUvaAlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4VVW6+PHve9IDISGQQEilNwsgRWwURRELdkVEx3Fk2nW8M9475eq943X0OnPHmdHxd8exKyNiGRujIlhooiiggEOTloQASQghPSFt/f5YK+EknDRSTsr7eZ48OXvtst6zz9577bX32muLMQallFJKKaWUUqqjefwdgFJKKaWUUkqpnkkrpEoppZRSSiml/EIrpEoppZRSSiml/EIrpEoppZRSSiml/EIrpEoppZRSSiml/EIrpEoppZRSSiml/EIrpD2ciCSJSJGIBPg7llMlIqkicpG/4+juROSvIvKfnSlPEblfRF5qg3zOF5FdrV2OW9YqEfleWyxLKdU83seC9irXunpZIyLbRGS6v+M4VSLygog86O84ujsRmS8iKzpTniIyXUQy2iivIhEZ0gbLaZPzD2VphbSDuJPUYyIS4uc46hSoxph0Y0xvY0xVC5fzHRH5tO0jVL64grjcHUhzReRDERnVkTEYY35gjPmNi6fNCoeOzFNEjIgUu/VYJCJ5Lp+1xpiRbRFzE/nfLyIVNXmLyGciMvUUl5Xivk9ge0yvlDdXdmSJSC+vtO+JyCo/huXTqZZrbcHt40ZEJnd03vXiOKnyZowZa4xZ1cLl6HGjA7lzqypXRhSIyGYRubwjYzDGLDbGXOwVkxGRYV0pT3fOXeZV1hfVlLXu2LCvLeJuJP/pIlLt8i0UkV0icnsrlteii2Fd8eKZVkg7gIikAOcDBrjSr8Gorux/jTG9gQQgG3ihpQvQkwoAznQFUm9jTJQf8n/V/Y4xwKfAmyIi9SfS30p1QoHA3a1diFjd7vzD7ccLgFzgNj+Ho7quz10ZEQU8C7wmItEtWYCWHwD8i1dZ39sY83kH53/I/Y59gF8AT4vImPoT6W9ldbsCoZO6FViPrUDUKaREJExE/iAiaSKSLyKfikiYG3ela2KT5672jPaar87VI++roSLSX0TedfPlishaEfGIyN+AJOAf7qrNz+tf/RSRaBF5XkQOuTu6bzfnC7qrMf8uIlvdHahnRWSAiCxzV4c+EpG+btqaPBe6fA6LyD1ey/KIyC9FZK+IHBWROgdjEVng1tdREbm3XhwNzuuV720iki4iOd7zi0iAiPyHm7dQRDaJSKIbN0rsXclcd6XrhgbWw00isrFe2k9FZKn7PEdEtrvlHxSRf2vO+vVmjCkBXgZOc8sMEZFH3bo85D6HuHHTRSRDRH4hIpnA8y79ThHZ477PUhEZ5NJFRP4kItlue9wqIjX5vCAiD4q9Q7IMGCQnrjwOEpESEenn9b3PEpEjIhJUb32EikipiPR3w/eJSKWI9HHDD4rIo83J0y0yWEQWuXW6TUQmtnSdSr27r257/jf3/fNF5FURCXXj+ordv464feRdEUloaZ7GmArgRWAg0E/slfF1bv3nAve77fk+t71nu+8Z6Raxxv3Pc+tjagunn+Z+/9O9vnes+21ivLad/3D7SqqIzPeaNkREHnH7UpbY5tU1xy6fx6CWriPV6fwe+DcR8XkhR0TOEZENbp/ZICLneI1bJSIPicg6oAQY4tIeFNtSoEhE/iEi/URksdi7QxvEXtCtWcZjInLAjdskIuc3EEdtueb2C++7JGUikuqmO+WypgHnA4OwlfabRCS4Xlx3isgOd6zaLiITXPpoty7y3DHsSq956jwCIF6tk8Q66XgtIguB+cDPa9arm772rok0Ut41Ruwx+S9iy/Yid8waKLbcOSYiO0VkvNf0qSLyK/d9j4k9vwj1Gn+52LuANS1GzvAaN15EvnLxvQqE1oulsXkbPIa78XPdvAVuHcx26ZFiz18Oiy2jHxQfTb/Flnml9baX8WKPlUEiMkxEVru8c1z8LWKMqQaeA8KAIS4Pn2W3G2dE5McishvY7dIa2ye/IyL73PrdL+74Xm8bqyk3trjf+0YR+aeIXOG1nCD3Hcf5WE+rReRa9/k8F+McN3yRiGxuTp5ey7vHbe+H5RTvOIrX+bPbnv9PRN5z6+ELERnqNW2zjjmNMdbbwDFgjJw4Pt0hIunAJy4vn+f84uPcvaXTu+93V731sFVErvJaJz9x20OOiPxevMpsEfmu2GPXMRFZLiLJLl2kgXPGFjPG6F87/wF7gB8BZwEVwACvcf8HrALigQDgHCAEGAEUA7OAIODnbjnBbj4DDPNazgvAg+7zw8Bf3XxB2EJS3LhU4CKv+VLcsgLd8HvAq0BfN++0Br7Td4BPvYZTsZXuAe67ZANfAePd9/kE+HW9PJcAvYDTgSM1cQH/6paV4OZ9Eljixo0BioAL3Lg/ApXNnLcm36exB/gzgePAaDf+34FvgJGAuPH9XIwHgNuxdwgmADnAWB/rJRwoBIZ7pW0AbnKfDwPnu899gQnN3Ia8f9/e2ArpWjf8gPvOsdi7bp8Bv3Hjprv18zu3PsKAmS7+CS7tcWCNm/4SYBP2yqwAo4E4HzFMBzLqxfg+8EOv4T8BjzfwfdYA17rPK4C9wKVe465uZp73A2XAHOz+8zCwvpH1WGe/8Uqvs2zs9vwl9uQyGtgB/MCN6wdc637rCOB14G2veVcB32sg//uBl9znEOwJ/gGvfaoSuAu7nYUB38Xu90Pc7/4m8Ddf+65La+n0fwF+5zV8N/CPetvOH12s07DHpJFu/KPAUrd+IoB/AA83dQzSv6755/aJi9w2VbNPfg9Y5T5HY0+4Frjtd54b7ufGrwLSgbFufJBL2wMMBSKB7cC3Lp9AYBHwvFcMt7j9LxC4B8gEQt04733rpG3dpdfkWbOdnnJZ08A6ehZ4zeVzFLjGa9z1wEFgEvbYOgxIdtPuAf4DCMYenwu99rNVeB1P8Cp7aebxuv5v6D77LO98fKc669ItNwd7PhOKLdv3Yy+8BwAPAivr5flPIBG7jazjxPYzAXuuMMXNe5ubPsStizTgp24dXYc9f2pyXq98GzqGTwbysedXHuw5yyg37m23HfTClqlfAt9v4Pf+BLjTa/j3wF/d5yXAvW75ocB5zdzPvH/fmhYJhdj9o8Gy201vgA/d9w2jkX3Sfb8CTmxncbhzGk4+v6t/vvlzbEufmuG5wDcNfJ8HcOcB2G18L67MceMea2ae07H73wNue5iDvbDVt4F8V9FwOVy7bOz2nOu2iUBgMfBKS485PvKYjjuncNvA1djtdyQn9qlF7ncIo+lz/lTqnru3dPobgC+8hs/EHqO86xQr3TaThD0Of8+Nu8ote7RbD/cBnzV1DGpxGXMqM+lfC1YwnOc2wv5ueCfwU6+NtBTbhLD+fP8JvOY17MEWZtO9Np6GKqQPAO/g+8S7/kZas2MEYg9I1TSwg9dbznc4uUI632v4DeAJr+G7cCftXnmO8hr/v8Cz7vMO4EKvcXFuHQYC/0Xdg0UvoJwThWxj89bkm+A1/ktOVBZ3AXN9fNcbcZU/r7QncRVsH9O/BPyX+zwcW5iEu+F04PtAnxZuRy9gK1552APiUmCoG7cXmOM17SVAqvs83a2fUK/xz2Kb/9YM93brKAVb4H0LnA14fMTQWOXwRmCd+xzg4pzcwPf5DfBn97tkYgvd32IL7lJO7C9N5Xk/8JHX8BigtJH1aLCFcJ77+7OvZWO351vqbZ9/bWCZ44BjXsOraLxCWu7yzsae0JzltU+l15v+Y+BHXsMjOXl7DmzF9FOwF1s8bngjcIPXOqkEenlN/xr22CTYwnCo17ipwH73ucFjkP51zT9OVEhPw57Mx1C3QroA+LLePJ8D33GfVwEP1Bu/CrjXa/gPwDKv4SuAzY3EdAxXftK8CukT2IuuNdv7KZc1PmIJxx5brnLDTwLveI1fDtztY77zscdAj1faEuB+r3XUUIW0Wcfr+r+h++yzvPMRX5116Zb7tNf4u4AdXsOnA3n18vyB1/AcYK/X7/Gbevntwl78ugA4hNeFLOzF1gebmtcrX5/HcPfb/MnHdx2AvUgd5pU2D68Kdr3pvwd84j4L9lh6gRteBDyF1/lGM/ez72CPu3nYyud6r9+swbLbDRtgptf4BvdJ7Pach724GuYjhsYqh4Ow5zV93PDfgZ838H0uBLa6zx+4dbbeDa/GXbRpRp7TsecG3uVXNnB2A/muwlZYa8r6r3wtG7s9P1Nv+9zZyO/j85jjY7rp2PPpPGyFdzMnzjVTXAxDvKZv6pw/lbrn7i2dPsTFMdwNPwL8pd46me01/CPgY/d5GXBHvbxKsBfUGjwGtfRPm1C1v9uAFcaYHDf8Miea7fbHnoDv9THfIOzVQaC26cYB7JW8pvweezVjhbv9/stmxpoI5BpjjjVz+vqyvD6X+hjuXW/6A16f07DfGexG/pZrhpCHPWmowhYWg7znM8YUY6/y0Ix5a2R6fS7xiisR379FMjClZpluufOxTS19eRlbiAHcjK2Il7jha7EHvDTXlKUlHdo8YoyJMsYMNMZcaYypibXOtkLddQlwxBhT5jVcf9sqwq7DeGPMJ8D/w965zxKRp8Q1pW2Gd7DNUYZgr9rlG2O+bGDa1dgD9gTsVfoPsSchZwN7vPaX5qj/e4ZK489kTHDrMcoY85MWLLc3gIiEi8iTYpvyFWDv6EZJ83v0fM3lHWuMmWmM2eQ17kC9aX39toHU3Z5PeXpjzBfYiuU0sZ1kDcNe7KhxzO1j3ssbhK2MhAObvPaJD1w6nPoxSHVyxph/Au8C9X/T+tsebti7zKq/fUMLyg3XXG+HaxqWh71r1L85cYvI97HHnJtdeQqtK2vquxpbkXjfDS8GLhWRmn2iofJlELaVRLVXWv315lMrj9cNxdMcbVnW31OvbE104wcBB407A/aal2bMW+NUyvog4LDXMp/E3in15e/AVLHNZi/AntSvdeN+jq2kfumaVX63gWX4st6VEf2NMWcbYz5y6Q2W3V7zeq/rBvdJtz3fCPzAfd/3pJkdJRpjDmHvdF8rtvn+pdjt3ZfPgREiMgB78XYRkCj2kZ3JnHiUpDmOGmMqvYa9f1NffuJV1k9oZLqGtpNWHXOwz5BGGWOijTHjjDGv1Bvf4G/VjHP+Fk1vjDmOvaB8i2uKOw/4WyPx1N9PH/PaJ3Kx23Zrzxnr0AppOxL7PNUN2JO9TLHP8P0UOFNEzsRe/SrDNleq7xB2I6hZlmAPogddUgn2hLBGbeXIGFNojLnHGDMEe4X5ZyJyYc3oRkI+AERLA88HtQPv51WSsN+5Jo5LvQ4kUcaYUGPMQWyT19r5RCQc25yCZszblAP4/i0OAKvrLbO3MeaHDSxnBdBf7PMU87AVVACMMRuMMXOxBdzb2ANEa9XZVqi7LuHk37z+ttULuw4Puhj/bIw5C9u0bgS2aVd9J21HrtL7GrayvoCTD3bePsPevbsau263u7gvw1ZWfWls2+1I92Bjn2KM6YM9EQF7gG6tRn8r7DqqxJ4A+lofLZ0e7HOst2B/s7/Xu3jRV7x6VeXEtpWDPfEc67VPRBrbgUNTxyDV9f0auJO6Jz/1tz2w24v3sfeU92H37NYvsGVqX2M7JMunGfudm/c32DuC+V6jWlPW1Hcb9kQ23ZX1r2MrNzUXJxsqXw5hT9C9z8e811sxDZT10Ojxuql13VA87aGxsv6heus/3BizBLv+4925j/e8NGPepjRW1h/HttCpWWYfY8xYXwsxxuRhy/sbsBefl9RUoI0xmcaYO40xg7Ctov4ire+pttGyuyashqZ3arctY8xyY8wsbMuAndjHmZqrpty4HtsJk89zLHcxfhO2FdQ/jTHl2PL/Z9g75S25+NyhWnPMaaYGfysf5/xNncc1NT3Y32w+9q51iTm5k6fG9tPv19vXwowxn0GzzxmbpBXS9nUV9mrrGOyVoXHY9tVrgVvNiQfW/yj2AfkAsR0whGBP7C8TkQvFdgpzD/ZA+Zlb9mbgZjfPbOzdJaD2Qf9hbgMtcDHUdH+fhXs4vj5jzGHsrfm/iO24JUhELvA1bRv5T3e3aSz2+cyah/7/Cjzk9dB0jIjMdeP+Dlwu9uH4YGzTQO/tuLF5m/IM8BsRGe4e1D5DbCc972Kv8C1w6yRIRCaJVydT3twVvL9j7xJFY+/+ISLBYt+1FWlshzY1v01rLQHuc9+1P7apWWPvxnoZuF1Exrlt7X+wzxakuu81xW1zxdgLJr5izMJ2xBNZL30RtunNlY3F4FVI/ZgTFdDPsAV3QxXShvLsaBHYylie2A4tft2OeS0Bfioig0WkN/a3etVtY0ewTYKGtGJ6sBcOrsaeXCzyEcN/u233fOBy4HV37Hoa+JOIxAKISLyIXOI+N3YMUl2cMWYP9njt3cLgfexx8maxnQndiC373m2jbCOwF1eOAIEi8l/Y3isbJbajnlexZe639Ua3pqzxziMee5J3OSfK+jOxz+7XtIh6Btsh1FmufBnm8q1ppfBzV7ZMx17Eqbmbshm4xpWVw4A7vPJt7HjdYFnvFY+v8q49/FhEEtzx8j84UdY/DfzAfQcRkV4icpmIRGDvrFUCP3Hb0zXYO2o0Y96mPIstAy8U27FVvIiMcudAK4A/iEgfN26oiExrZFkvY5+fvRavi88icr2c6OzuGLaC0NpjYINldwPTN7hPiu108kqxldrj2OelG4rP17b0NraF0934Lje8rQb+hRNl+6p6w83Ns6Od0jHnFDV1zl9/fbR0elwFtBr7aISvGwb/LvbcPxH7u3qfk/9K7Ll6Tcdf17vPzT1nbJJWSNvXbdgOGdLd1bJMY0wm9vb2fLHNCv8N22RxA/Y2+O+w7bB3YU8QH8fejbgCuMJdXQK7sVyBbZ8+H3twqDEc+Ah7gPkc2058lRv3MLbykie+e3hdgH0mYSe2ff6/tn41NGg1tlnfx9jmqDUvRX4M22xwhYgUYp+hmAJgjNmGrcS8jL2Cegzwfjdlg/M2wx+xO/kK7En0s9hnKwqBi4GbsFeMMjnRSVBDXsY+b/V6vSYmC4BUsU09f4D9jZETL3JPOnlRTXoQ++zfVuy29JVL88kY8zH2+YM3sOtwqPtuYA+2T2PXaxq2OdAjPpaxE1v52ee2pUEufR32gPdVI4VkjdXYOwhfeg1H0EATnoby9INHsZ0Q1Dzf80E75vUctuBYg+04pAz7zFZNpf4hYJ1bH2efwvQYYzKw24x3c7Mamdht4RC2SdYP3O8A9srxHmC9254/wt45hsaPQap7eAD7HBoAxpij2ArZPdjjxs+By9vwDshy7AXTb7HHpjJ8NwGu70LsXcW/y4medre5ca0pa7wtwD7ruqJeWf9n4AwROc0Y8zp2/3sZ+/zd20C0K9OvxDZ7zMF2NHar1372J+yzq1nYOxzeTSMbO14/i32EIk9895bvs7xrZD22xssun33u70EAY8xG7J32/+e+wx7sBU3cernGDR/DNi99s2aBjc3bFGMfJbkdu27zsWVPzd2mW7EdKm13y/079g5iQ5Zij3dZxpgtXumTgC9EpMhNc7cxZj+A2Ca8809eVJNxN1Z2+5q+sX3S49IPYc89p2GfG/TlfuBFty3d4JZd6uIYjNfv0oD6ZXujZX1DefrBqR5zWqwZ5/x1zt1bOr1XVouwz3n7umHwDvZGwWbss/bPutjewp7zvuLK+n9ij1fQzHPG5qjpeVWpDiO2G//9QFC9yprqBkTkE+BlY8wz/o5FNY+IPId93uU+r7Tp2A4bWvxKG6WUAvv6FWynTB81Na3qWtwdwxHGmFv8HYtqHhG5FVhojDmvXrrBdni0xz+R2c4ulFKqTYjIJGwznuY2k1Z+5i4QXYN9RZNSSinVKNf8+g5s6wDVBYh9Dv5H2FYYnY422VVKtQkReRHbTPNfXTNn1cmJyG+wzW9+X9OcTHUPIvKc2JeV/7OB8SIifxaRPWJfZt5YL5RKKQWAiNyJbbq6zBjTkl5ylZ+I7d/hCLbp/8tNTO4X2mRXKaWU6mbEdkhXBCwyxpzmY/wc7PPFc7DPTT5mjGnu8/ZKKaVUm9E7pEoppVQ34+5c5DYyyVxsZdUYY9Zj36XbWOctSimlVLvQCqlSSinV88RTt8fIDBp+CbtSSinVbrplp0b9+/c3KSkp/g5DKaVUJ7Rp06YcY0yMv+PwM18vd/f5DI+ILAQWAvTq1eusUaNGtWdcHaK8vJwjR44QHBx8UnpUVBS9evVqYE6llFK+tKZs7ZYV0pSUFDZu3OjvMJRSSnVCIpLm7xg6gQwg0Ws4AftOwpMYY54CngKYOHGi6Q7la1VVFY899hilpaXExNjzp6KiIvLz8/nZz35GZGSknyNUSqmupTVlqzbZVUoppXqepcCtrrfds4F8Y8xhfwfVUQICArj11luJiIggLS2N9PR0jh8/zq233qqVUaWU6mDd8g6pUkop1ZOJyBJgOtBfRDKAXwNBAMaYvwLvY3vY3QOUALf7J1L/6d+/P3fddRdZWVlUVlYycOBAAgP1tEgppTqaHnmVUkqpbsYYM6+J8Qb4cQeF02mJCAMHDvR3GEop1aNpk12llFJKKaWUUn6hFVKllFJKKaWUUn6hFVKllFJKKaWUUn6hFVKllFJKKaWUUn6hFVKllFJKKaWUUn6hFVKllFJKKaWUUn6hFVKllFJKKaWUUn6h7yFVSimlVJvIysoiNTWVwMBAhg8fTp8+ffwdklJKqU5OK6Q9RFVVFaWlpYSHh+Px6I1xpZRSbWvVqlWsWLECj8eDMYaAgADmz5/PyJEj/R2aUkqpTkwrpN2cMYaPP/6Yd955h+LiYiIjI7nhhhuYOnWqv0NTSinVTRw6dIgVK1aQkJBAYKA9tSgpKeGVV17hF7/4BaGhoX6OUCmlVGelt8q6udWrV/Piiy8SHh5OUlISgYGBPPHEE2zevNnfoSmllOomdu/eTWBgYG1lFCA8PJyKigoyMjL8GJlSSqnOTiuk3ZgxhqVLlzJw4EDCwsIA6NWrF3379mXp0qV+jk4ppVR3ERAQgDHmpHRjDCLih4iUUkp1FVoh7cYqKyvJzc0lPDy8Tnrv3r3JysryU1RKKaW6mxEjRlBdXU15eXltWmFhIeHh4SQmJvoxMqWUUp2dVki7scDAQJKTk8nLy6uTnpuby4gRI/wUlVJKqe4mNjaWq666iqysLNLS0khLS6O0tJRbbrmF4OBgf4enlFKqE9NOjboxEeGGG27g97//PRUVFURERJCXl0d1dTVXXXWVv8NTSinVjUyaNImRI0dy4MABAgICGDx4MCEhIf4OSymlVCenFdJubuzYsdx333289957HDhwgPHjx3PZZZdpEyqllFJtrk+fPowdO9bfYSillOpCtELaAwwbNoy7777b32EopZRSSimlVB36DKlSSimllFJKKb/QCqlSSimllFJKKb/QCqlSSimllFJKKb9o1wqpiESJyN9FZKeI7BCRqSISLSIfishu97+vm1ZE5M8iskdEtorIBK/l3Oam3y0it7VnzEoppZRSSimlOkZ73yF9DPjAGDMKOBPYAfwS+NgYMxz42A0DXAoMd38LgScARCQa+DUwBZgM/LqmEquUUkoppZRSqutqtwqpiPQBLgCeBTDGlBtj8oC5wItusheBmhdizgUWGWs9ECUiccAlwIfGmFxjzDHgQ2B2e8XdlgoKCti0aRObN2+mtLTU3+EopZRSSimlVKfSnq99GQIcAZ4XkTOBTcDdwABjzGEAY8xhEYl108cDB7zmz3BpDaV3auvWreP555+nqqoKgLCwMO666y5Gjx7t58iUUkoppZRSqnNozya7gcAE4AljzHigmBPNc30RH2mmkfS6M4ssFJGNIrLxyJEjpxJvm8nOzubZZ5+lf//+JCcnk5ycTFhYGI8//rjeKVVKKaWUUkoppz0rpBlAhjHmCzf8d2wFNcs1xcX9z/aaPtFr/gTgUCPpdRhjnjLGTDTGTIyJiWnTL9JSW7ZswRhDaGhobVpERASlpaXs2rXLj5EppZRSSimlVOfRbhVSY0wmcEBERrqkC4HtwFKgpqfc24B33OelwK2ut92zgXzXtHc5cLGI9HWdGV3s0jqtysrKBsfVNOFVSimllFJKqZ6uPZ8hBbgLWCwiwcA+4HZsJfg1EbkDSAeud9O+D8wB9gAlblqMMbki8htgg5vuAWNMbjvH3SqnnXYar776KpWVlQQG2lVcVlZGYGAgI0aM8HN0SimllFJKKdU5tGuF1BizGZjoY9SFPqY1wI8bWM5zwHNtG137SUhI4Oqrr+att95CxD4CKyLceeedRERE+Dk6pZRSSimllOoc2vsOaY8kIlx55ZVMmDCB7du3ExAQwBlnnEFsbGzTMyullFJKKaVUD9HkM6Qi4hGR8SJymYjMFJEBHRFYVyciJCYmcskll3DRRRdpZVQppZTqQhYvXkxKSgoej4eUlBQWL17s75CUUqpbavAOqYgMBX4BXATsxr5TNBQYISIlwJPAi8aY6o4IVCmllFKdS2VlJTk5OYSEhNC3b19/h9NmFi9ezMKFCykpKQEgLS2NhQsXAjB//nx/hqaUUt1OY012HwSeAL7vnu+sJSKxwM3AAuDF9gtPKaWUUp3Rjh07eOuttygtLaW6uprhw4dz3XXX0bt3b3+H1mr33ntvbWW0RklJCffee69WSJVSqo012GTXGDPPGLOmfmXUjcs2xjxqjNHKqFJKKdXDZGdn89JLLxEeHk5iYiJJSUns27eP119/3d+htYn09PQWpSullDp1jT5DKiKTRWSS+zxGRH4mInM6JjSllFJKdUabN28mMDCQ8PBwwPabEB8fz549e8jJyfFzdK2XlJTUonSllFKnrsEKqYj8Gvgz8ISIPAz8P6A38EsRubeD4lNKKaVUJ1NYWEhwcHCdNBHB4/FQVlbmp6jazkMPPVRb2a4RHh7OQw895KeIlFKq+2rsDul1wLnABdj3g15ljHkAuAS4sQNiU0oppVQnNGLECAoLC+uklZWVERQU1C16lZ8/fz5oxfnXAAAgAElEQVRPPfUUycnJiAjJyck89dRT+vyoUkq1g8Y6Nao0xlQBJSKy1xhTAGCMKRUR7VlXKaWU6qFGjRrF8OHD2bNnD3369KG8vJzjx49zww03nHTntKuaP3++VkCVUqoDNFYhLReRcGNMCXBWTaKIRAJaIVVKKaV6qKCgIBYsWMD27dvZvn07ERERjB8/noSEBH+HpnyorKxk//79FBQU0K9fP5KSkvB4mnwVvVJKdYjGKqQXGGOOA9R712gQcFu7RqWUUkqpTi04OJhx48Yxbtw4f4eiGlFQUMCLL77I4cOHATDGMHLkSG6++eZuczdbKdW1NVghramM+kjPAbp+F3pKKaWUUt3cihUrOHLkCCkpKbVpu3btYv369VxwwQX+C0wppZwm22uIyP0dEIdSSimlVJurqKhgw4YNPP3007zwwgts27YNH69Y75YqKyvZunUrcXFxddIHDBjAxo0b/RSVUkrV1dhrXzwi8iwQ0oHxqA60ePFiUlJS8Hg8pKSksHjxYn+HpJRSSrWZqqoqlixZwhtvvEFeXh6ZmZksWrSI5cuX+zs0pZRSTmPPkP4D2G6M+VVHBdPVHTt2jOXLl7Nlyxaio6O55JJLOP300xERf4d2ksWLF7Nw4UJKSkoASEtLY+HChQDaq6BSSqluYf/+/ezYsYMhQ4bUpkVGRrJ27VomT55MdHS0H6Nrf4GBgZx55pls2bKlTodTWVlZXHbZZX6MTCmlTmisye5E4K2OCqSry8/P58EHH2TFihVUVlaSnp7OI488wsqVK/0dmk/33ntvbWW0RklJCffee6+fIlJKKaXa1oEDB07quCcgIACA7Oxsf4TU7rKzs1m5ciUffPAB+/btY9asWQwYMIC0tDTS0tJITU1l9OjRTJ482d+hKqUU0Pgd0hnAqyLyPWPMFx0VUFe1du1acnNzSU5OBqBXr1707t2b119/nXPPPZeQkM7V8jk9Pb1F6UoppVRXExkZSVVVlc9x4eHhHRxN+9u6dSuvvvoqAQEBeDweVq9ezeTJk/n+979PWloahYWFREdHk5iY2ClbbymleqbGetndLiKXAK8A2g1bE7Zt20ZkZGSdtJCQEMrLy8nJySE+Pt5PkfmWlJREWlqaz3SllFKqOxg1ahTh4eHk5OTQv39/qquryczMJD4+vtu9M7WsrIw333yTAQMGEBoaCkB1dTVffPEF48aNY+jQoX6OUCmlfGu0l11jzCFAHzJohkGDBlFcXFwnreaqbEREhD9CatRDDz100tXh8PBwHnroIT9FpJRSSrWt8PBwvvvd7xIVFUVaWhoZGRkMGzaMW265BY+nyRcNdCmHDh2isrKytjIK4PF4CA0N5dtvv/VjZEop1bjGmuwCYIwp7IhAuroZM2awatUq8vLyiIyMpLKykoyMDGbOnEmfPn38Hd5Jajouuvfee0lPTycpKYmHHnqo03VolJ+fj4h0ynWolFKq8xs4cCA/+tGPKCgowOPx0Lt3b3+H1C6CgoJ8vs6mqqqqTiVVKaU6mwYrpCISCfwKuAqIccnZwDvAb40xee0fXteRkJDAPffcw9/+9jfS09MJDAzk0ksv5ZprrvF3aA2aP39+p6uA1sjKyuKFF15g165dGGMYM2YMt912G7Gxsf4OTSmlOj0RmQ08BgQAzxhjfltvfBLwIhDlpvmlMeb9Dg+0A3X3C5vx8fH069evtnky2Ga8xhjGjh3r5+iUUqph0tDLoUVkOfAJ8KIxJtOlDQRuAy4yxszqsChbaOLEicZfL3w2xlBQUEBoaGin68ioqzh+/Dj33XcfBQUFDBw4EIDMzEwiIyN58MEHT+oxUSmlWkJENhljJvo7jvYiIgHAt8AsIAPYAMwzxmz3muYp4GtjzBMiMgZ43xiT0tSy/Vm+qqZlZ2ezePFicnJyEBECAwO57rrrOO200/wdmlKqm2tN2dpYk90UY8zvvBNcxfR3IvLdU8msJxCRkzo36kiHDx9m2bJl7Nixg7i4OObMmcOoUaP8Fs+p2L59O0eOHCElJaU2LS4ujtTUVLZv3864ceP8F5xSSnV+k4E9xph9ACLyCjAX2O41jQFqbhlGAoc6NELVLmJjY7n77rs5ePAglZWVxMXFaXNdpVSn19gT/Wki8nMRGVCTICIDROQXwIH2D0211OHDh3nggQf4/PPP8Xg87N27l4cffphNmzb5O7QWKSgo8JlujKGwUB9pVkqpJsRTt5zOcGne7gduEZEM4H3groYWJiILRWSjiGw8cuRIW8eq2pjH4yExMZHBgwdrZVQp1SU0ViG9EegHrBaRXBHJBVYB0cANHRCbaqFly5ZRWVlJfHw8YWFhxMTE0L9/f5YsWUJ1dbW/w2tSdXU1R44coU+fPhhj6nTOYIxBRDrd63OUUqoT8vWCyfrP58wDXjDGJABzgL+JiM9zAmPMU8aYicaYiTExMb4mUUoppU5ZY+8hPQb8wv2pLmDHjh1ER0fXSYuIiCA9PZ3i4uJO+fqZGnv27OGZZ54hKysLYwxFRUXs3LmTuLg4AHJzczn77LMZPHiwnyNVSqlOLwNI9BpO4OQmuXcAswGMMZ+LSCjQH9t5oepgubm5FBQU0K9fv05dViulVHto8rUvvojI7caY59s6GNU6cXFx7N27l7CwsNq048ePExISUiets8nNzeWRRx4hJCSE5ORkjDEcOGBbm/Xr1w8R4eqrr+bcc89FxNeFf6WUUl42AMNFZDBwELgJuLneNOnAhcALIjIaCAW0PW4HKy8v5+2332bLli14PB6MMZx//vnMmjWr270nVSmlGnKqR7v/btMoVJuYM2cORUVFtc9ZHj9+nIyMDC6//HICA0/p2kOH2LBhA8ePH6dv376A7RgqMTERYwy33HIL9913H9OmTevU30EppToLY0wl8C/AcmAH8JoxZpuIPCAiV7rJ7gHuFJEtwBLgO6ahbvdVu1m5ciWbN28mMTGRxMRE4uPj+eSTT9i8ebO/Q1NKqQ7T2HtItzY0ChjQwDjlR6NGjeInP/kJS5YsIS0tjdDQUG666SYuvfRSf4fWqNzcXIKCguqkiQgej4eioiI/RaWUUv4nIrHAucAgoBT4J7DRGNNoxwDunaLv10v7L6/P291ylZ9UVVWxfv164uPja++GBgQEEBMTw2effcaECRP8HKFSSnWMxm45DQAuAY7VSxfgs3aLSLXKWWedxfjx4ykuLiYsLKxL3FUcOXIkH3zwQW3HRQCVlZUYY0hISPBzdEop1fFEZAbwS2xHgl9jn+0MBa4ChorI34E/GGN8d0uuOr3q6moqKioICAiokx4cHExJSYmfolJKqY7XWG3lXaC3MeakdiMisqrdIlKt5vF4ulSnCKeffjqjR49m+/btREdHU1FRQUFBAddcc01tM16llOph5gB3GmPS648QkUDgcmAW8EZHB6baRlBQEEOHDuXgwYPExsbWph85coRzz9Wb10qpnqOxXnbvaGRc/c4RlDplQUFB/PSnP2XdunWsX7+eXr16MW3aNM4880x/h6aUUn5hjPn3RsZVAm93YDiqnVx22WU8/fTTpKenExYWRklJCf3799cKqVKqR+n87TlVjxASEsLMmTOZOXOmv0NRSim/E5GfNTbeGPPHjopFtZ/Y2Fh+8pOf8M0335CdnU1iYiJjx44lNDTU36EppVSH0QqpajPV1dXs3buXnJwcYmNjGTJkiL6mRSmlTk3NcxcjgUnAUjd8BbDGLxGpdhEREcE555zj7zCUUspvtEKq2kRxcTGPPfYY3377LSKCMYbTTz+dH//4x3qlVymlWsgY898AIrICmGCMKXTD9wOv+zE0pZRSqk01+R5SERnjI216u0Sjuqy3336b3bt3k5ycXPu3detWli1b5u/QlFKqK0sCyr2Gy4EU/4SilFJKtb0mK6TAayLyC7HCRORx4OH2Dkx1HcYYVq9ezaBBg2qb6IoIcXFxrFq1yr/BKaVU1/Y34EsRuV9Efg18ASzyc0xKKaVUm2lOhXQKkIh99+gG4BD6Mm3lxRhDdXX1Sc+LigiVlZV+ikoppbo+Y8xDwO3Yd4LnAbcbY/7Hv1EppZRSbac5z5BWAKVAGPal3PuNMdXtGpXqUjweD1OnTuWzzz4jMTGxNj0zM5NLLrnEj5EppVS3EA4UGGOeF5EYERlsjNnv76Dawr59+/j66685duwYUVFRjB8/nqFDh/o7LKWUUh2oORXSDcA72F7++gFPish1xpjr2jUy1aVce+217N27l9TU1NpOjQYPHszll1/u79CUUqrLcs10J2J7230eCAJeohu0VNq3bx/r16/nggsuYODAgWRlZbFmje1AWCulSinVczSnQnqHMWaj+5wJzBWRBe0Yk+qCoqKiuP/++9m2bRtZWVnExcUxduxYAgO1I2ellGqFq4HxwFcAxphDIhLR+Cxdw1dffcW0adOIj48HID4+nmnTprFu3TqtkHaw4uJiDh48SGBgIElJSVp2K6U6VJNHHK/KqHfa39onHNWVBQcHM378eH+HoZRS3Um5McaIiAEQkV7+Dqit5OXlMXDgwDppAwcOJC8vr13zzc7OpqSkhNjYWMLDw9s1r65g09df884XX1AdE4OpqKDPxx9z6+WXExcX5+/QlFI9hF4CU0oppTqv10TkSSBKRO4Evgs84+eY2kRkZCRZWVkMGjSoNi07O5vIyMh2ya+4uJjly5dTWVlJnz59WLVqFWPGjGHy5Mntkl9XkJWVxZsbNxI3axbBYWEAHDt8mJfee4+f3X47AQEBfo5QKdUTaIW0kzDGnNRLrVJKqZ7NGPOIiMwCCrDPkf6XMeZDP4fVJsaPH8+aNWuYNm1a7TOkq1at4qyzzmqX/FauXElycnLt8svKynj33XeJjo5m2LBh7ZJnZ7f9228JSE6urYwC9I2LI23nTg4ePEhSUpIfo2sf+fn5VFRUEB0djcfTnJdNKKXaW5MVUtc8qNQYUy0iI4BRwDJjTEW7R9cDHDp0iI8++ojU1FRCQ0OZMGEC06dP1+c3lFJKISL/CbzgXQkVkYXGmKf8GFabGDZsGMYY1q5dS15eHlFRUUyYMIHhw4e3eV5FRUXk5uYyZ86c2rSaMnfnzp09tkJaUVmJJyjopHQJDOx2r20rKiri7eXL2ZGTg4SEEFlVxbUzZjBkyBB/h6ZUj9ecWs8a4HwR6Qt8DGwEbgTmt2dgPcGxY8dYvHgxF154ITfffDMFBQV88MEH/OMf/+Dqq6/2d3hKKaX87y5gnoj82Biz0qX9AOjyFVKA4cOHt0sFtL7y8nKCg4NPuiMWFhZGeXl5u+ffWY0YPJiVK1dSPWwYHtc8t7SggOBjx2o7m+ouXn3vPdL69iXp7LMREQqPHuWFDz/kX6+/nujoaH+Hp1SP1py2CmKMKQGuAR43xlwNjGnfsHqGL7/8kvHjxzNhwgQCAwOJjo7m+uuvZ/fu3eTn5/s7vE6puLiY95cv54HHH+dPzzzDN998gzHG32EppVR7OQjMBn4rIv/u0vT5jhaKioqiurqazMzMOum7du0iISHBT1H5X3JyMuclJJD+0Ucc2LaN9M2bObp6NddNm0ZISIi/w2sz2dnZ7CsuJuG002ofj4ro1w+TksLW7dv9HJ1Sqjl3SEVEpmLviN7RgvlUE3Jycpg0aVKdtKCgIAYMGMDRo0db1bHDnj17WLduHTk5OcTExHDeeed1+WYpZWVl/O+TT5IaFUX0hAlklZTw9XvvcXNWFrMvusjf4SmlVLswxqSLyDTgCRF5HQhrah5Vl8fj4dxzz2XFihWMGTOGyMhI9u/fT35+PlOnTm3TvKqqqsjKysLj8RAbG+v35xSrqqrYt28fWUeOEB0VxbBhwwgODgZARJhz0UWcefAge1NTCYmMZOTUqfTt29evMbe10tJSxEePyiG9e5NXWOiHiJRS3ppTsfxX4FfAW8aYbSIyBFjZxDyqGWJiYkhLS2PEiBG1aeXl5WRmZtKvX79TXu7OnTt57733mD17NomJiaSlpfHmm28yd+7cDmka1V42bNxIWu/eDJ4xozYtctAg3njtNc6fOpVevTr32xDKy8spLS0lIiLC7ycoSqkuYyOAMaYMuF1Efgy0T68/3VxycjJXXHEFO3fuJD09nUGDBjFjxgyCfDxDearS0tJYvXo1kZGRVFVVUVZWxoUXXsiAAQPaLI+WKCsr46W33mJvdTWBsbFUHTxIzBdfcPvVVxMVFQXYSmlCQkK3vlMcGxtLwLFjlJeW1unAqejAAYaddpofI1NKQSMVUhH5FfCBMWY1sLom3RizD/hJcxYuIqlAIVAFVBpjJopINPAqkAKkAjcYY46JbUPxGDAHKAG+Y4z5yi3nNuA+t9gHjTEvtuA7dlqTJ0/m6aefpm/fvpx++ukUFhayfPlyRo4c2aq7o6tWrWLu3Lm1nTScfvrpBAUFsXr16i5dId2emkp4cnKdtODwcKr79ePQoUOd9rtVVlbyzvvvs2LTJsoDAugXFMT8Sy9l/Lhx/g5NKdXJGWPurDf8f8D/+SmcLq9v375tfke0RlFREatXr2b27NnExsYCkJ6ezooVK5g3b167dla4Z88e1m3ZwrGiIkYlJHDOpEn06dOHzzdsYF94OIO9WmMd2rmT5WvWcOOVV7ZbPJ1NWFgYcyZO5O1VqwgfOZLg0FDyUlMZLsKoUaP8HZ5SPV5jt2n2A3eLyNci8oKI3Og6NmqpGcaYccaYiW74l8DHxpjh2E6SfunSLwWGu7+FwBMArgL7a2AKMBn49SnG0elERUWxYMECdu3axe9//3tefPFFBg0axBVXXHHKyzTGkJmZeVLz3KFDh5707ExXE9OnD8frvTDdVFdTnZ9PRESEn6Jq2tvvvcc7Bw7Q74YbSF6wADNjBo/94x/s2bPH36EppTopEXnN/f9GRLbW//N3fOpke/bsYciQIbWVUYCkpCRiYmJITU1tt3w3fvUVz6xezeGkJJg8mXWVlfz1tdcoLCxk0+7dDBg5ss70A4cP55sDB7pdL7pNmTJpEt+/8EJG5+cTl57O9UOHsuDqq/WtBkp1Ag3uhcaYV4BXAERkPLZThTdFJAD4CHv39MtTyHMuMN19fhFYBfzCpS8ytoea9SISJSJxbtoPjTG5LpYPXSxLTiHvTmfgwIHMn992HRaLCFFRUWRmZtZ52fjhw4drm+d0FcYYjDG1zVvPnTKFZX/9K/nx8UTGx1NdWUnGF19wRmwsAwcO9HO0vpWVlbHiq69IvOkmgkJDAYgYMICSs85ixbp1PfZVA0qpJt3t/l/u1yhUsx0/ftznoyPh4eEcP368XfKsqKjggw0bGDRzJqEu7/DTTye9qoqvtmwhwOOhuqqqzjymuhpPD33veUpKCikpKf4OQylVT7MuCxljvga+Bh4WkT7ALOB7QFMVUgOsEBEDPOnemzbAGHPYLfewiNRcSowHDnjNm+HSGkqvQ0QWYu+sdssXObfEOeecw9KlS7n22muJiYkhOzubd999l3POOeeUlldYWMjnn39OWloavXr1YtKkSe3aPLa6uppVa9bw7rp15BYWMjIxkRtmz2bo0KHcc+ONPP/OO6RXVkJ5OZOHDGHBLbe0WyytVVxcTGVwcG1ltEav/v3J3LXLT1EppTo7r3Iyzd+xqOaJj49n/fr1nHnmmbUXUsvLy0lLS+OMM85olzzz8/MpCwkhtl5FOHLQIPbs3s2UUaNYun07g885p7Z32UPbt3PWkCF6Z1Ap1Wk0eTRyd0Qvwz7zWTu9MWZhM5Z/rjHmkKt0figiOxvLykeaaSS9boKt7D4FMHHixB79HpBJkyZRVVXFiy++SFVVFYGBgZx33nmMHz++xcsqLCzkmWeeYfTo0cyePZtjx47x/vvvM3XqVCZPntzqWCsqKti2bRv70tOJjorirPHjWbNuHUu2b2fQ7NkkR0VxcP9+Hn7pJe6/4w5GjRrFwyNGkJubS0hISKduqgu2WXaEMRQfPUovr46qjqWmMrHe87BKKVVDRArxUdZhy0RjjOnTwSGpJsTHxxMZGcnSpUsZM2YM1dXVfPPNNwwbNqzdWiiFh4cjpaVUVVQQ4NU5U3FeHqMiI5k8cSIHsrLY8sEHeGJiqM7LY3BQEBfPndsu8Sil1KlozuWxfwBlwDdAtUtrVoXPGHPI/c8Wkbewz4BmiUicuzsaB2S7yTOARK/ZE4BDLn16vfRVzcm/pxIRpk6dypQpUygrKyM0NPSUe3Vdv349I0eOZPbs2QAkJiaSkJDA008/zfjx41vVO2FpaSl/euYZdlVXE5SURNXevbz28ccUFBeT9J3vEOyu+PYfOpRDxcV8uHYtt8+bh8fjoX///qecb0cKCAhg3sUX85fly4mYPJnwvn3J3b+f8F27uOiHP/R3eEqpTsoY07mvtqmTiAgXXngh+/btIzU1FY/Hw+TJk0lux4uP4eHhnD1sGJ9u2EDChAkEhYaSn51N1a5dTJo7l8DAQG6cO5cLDh/m6NGj9OnTh8TExNq7pUop1Rk0p0KaYIxpcVsTEekFeIwxhe7zxcADwFLgNuC37v87bpalwL+IyCvYDozyXaV1OfA/Xh0ZXYx9DY1qgsfjIdzHe7da4sCBA8ycObNOWnR0NJGRkWRnZxMff1Lr6WZbtXYtO8PCGDxzZm3hmLZhA9uXLmVoveZHEQMHkvr556eclz+dPXkykRERLF+3jqwtW5iZksLFP/hBl6lUK6X8z7U0qm37b4xJ92M4qgEej4dhw4Z1aP8Al8yYQdDatXy2YgUVQExYGLfPmlWnb4W4uDji4uI6LCallGqJ5lRIl4nIxcaYFS1c9gDgLVfRCAReNsZ8ICIbgNdE5A4gHbjeTf8+9pUve7CvfbkdwBiTKyK/ATa46R6o6eBItb+IiAiOHj1apxOAyspKCgoK6N27d6uW/fm2bcRMnVrnSm38GWfw+aJFFOTkEOlVYcs/dIgzvTpp6mpGjx7N6NGj/R2GUqqLEZErgT8Ag7AtipKBHcBYf8alOo/AwEAunjGDGeedR3l5uW3Gq3dAlVJdSHMqpOuxFUsPUEEzn19x7ys900f6UeBCH+kG+HEDy3oOeK4Zsao2NnHiRN5++20SEhIYMGAAFRUVrFixgsTExFa9KxUgJCiIgoqKOmmegACS+/Uj86OPkOnTCe/bl5x9+wjYupVZC5vz2LJSSnUrvwHOBj4yxowXkRnAPD/HpDqhoKCgVj1Go5RS/tKcCukfgKnAN67SqHqQwYMHM336dBYtWkR4eDhFRUWkpKRw1VVXtXrZM846iyfWr6fPwIF4XG9/B7/6iiumTeOsMWN499NPOZKfz9iUFK7+7ne1uZFSqieqMMYcFRGPiHiMMStF5Hf+Dkr1bFVVVQQEBPg7DKVUN9GcCulu4J9aGe25xo8fz+mnn87Ro0cJDw9vs55tz54yhb0HDvDJkiXIoEGYY8cYEhTEgttvJzIykqlnn90m+SilVBeWJyK9gTXAYhHJBir9HJPqoXbt2sXyL74gKz+fmIgIZk2ezNgxY/wdllKqi2tOhfQwsEpElgG1b3Y2xvyx3aJSnU5gYCADBgxo02V6PB4W3HADF2dlcejQIfr06cPgwYNPuUdgpZTqhuZie7r/KTAfiMR2ENht7d27l+rqaoYOHarlQQtUVVWxbds2vt69mwCPh7NGjWLUqFFt9jzp7t27eX7NGvpPmUJy//4UHj3Kos8+4zYRxmgfCUqpVmhOhXS/+wt2f0q1qQEDBrRpZdcYw6FDh6ioqCA+Pl6fqVFKdVnGmGIAEemDfQ1bt7Vjxw5eeOEFgoODERFKSkq49dZbOeMM3x39G2PYvXs3+/bto7q6mpSUFEaNGtUjK7HGGP7+7rt8XVJC3+HD7TtQN2xgWkYGc2bNapM8Pt6wgeizzqKP63Awol8/zOTJfLRhg1ZIlVKt0mSF1Bjz3x0RiOrZqquryc7OJiAggP79+5/yFd3s7Gz+76WXSC8rQ0JC6F1czMJrruG0005r44iVUqr9icj3sXdES7HvAhfsu8CH+COegoICMjMz67xSpC2UlJTw5JNPMn/+fCZNmgTA5s2bee6557j//vuJioo6aZ41a9Zw7NgxzjjjDDweD9u2bSMtLY3Zs2f3uF5m09PT2ZyXx+CLLqr97n3j4vj0gw+YnJPTJq8Zyzx2jAH1ltOnf3/S8vIwxvS4da6UajvNuUOqOsjevXt55ZVXyMzMJCYmhhtvvJGRI0eeNF1ZWRn79+8nMDCQwYMHExjYtX/G/fv38/Trr3O4shKprmZIRAR33nRTi++aVlVV8egLL5B72mkkuWZKhdnZPPbGGzw8cKC+91Mp1RX9GzDWGJPj70AAgoOD+eijjzjvvPPqvA6stdauXcvIkSNrK6MA48aN44wzzmD16tXMnTu3zvRHjx4lIyODG2+8sbYMTEpK4q233uLAgQMkJSU1K19jDNXV1V2+g56Dhw8TEBdXp1LoCQjAExtLZmZmm5R/iTExHMnKItrr/eN5mZkk9OunlVGlVKv0vHYtbejgwYOsXLmSTz/9lGPHjrVqWVu3buXee+8lKSmJ2267jeHDh3P//fezYcOGOtNt2bKFRx99lE2bNvHpp5/y6KOPkpaW1qq8/amwsJBH/vY3iiZNInnePBJvvpmM4cP54/PPU1nZsn479u3bx+GAAAaOHl1bOEbExlI1fDgbvvqqPcJXSqn2thf7bu5OITQ0lJkzZ/Lll1+26XLz8/N9Vpr69+9Pfn7+SemHDx8mOTm5zgVZj8fD4MGDOXz4cJP5VVdX8+WXX7Jo0SKef/553nzzTTIyMlr3JfwoolcvTFHRSemmpITw8PA2yeOiKVMo/PprjmZkUFleTu7BgxzbuJFZU6a0yfKVUj3XKVVIRaRHP0tqjGHZsmW8/vrrVFdXU1BQwNNPP82WLVtOeZnPPfccCxYsYJy/HmgAACAASURBVMGCBUycOJF58+bxve99j+eeO/H61ZycHFasWMEdd9zBLbfcwu23384111zDa6+9Rnl5eaPLr6yspLq6+pTjay9btmyhOCGBaHelXUQYOHo02WFhfPvtty1aVmlpKdKr10npAeHhFBQXt0W4SinV0X4FfCYiT4rIn2v+/BnQoEGDKC0tpaysrM2WOXbsWLZs2UKF17upKysr2bx5M2N89OIaFhZGYWHhSelFRUWEhYU1md9nn33G0aNHueaaa7jjjjuYMGECn3zyCTk5neJGdIsNGzaMXkePctRVqo0xZO7ZQ/+yMpKTk9skj+TkZBZecgkD09I4umwZMfv3s3DWLIYNG9Ymy1dK9VxNtvUUkVXAd4wxqW54MvA0cGa7RtaJpaamsnv3bn74wx8SEhICwKRJk3j22WcZMWJEswrD+jIyMpg2bVqdtAsuuIDHH3+cyspKAgMD+eabbxg3bhwxMTG10wwZMoRBgwbx7bff+nxO8tChQyxfvpyMjAwCAgI444wzuPjiiwkO7hzXFAqKivD07n3yiIgIinxc7W1McnIy8sYbVJSWEuR+A1NdTfm+fYy9+OK2CFcppTrak8AnwDfYZ0j9rqSkBGNMm3YYN3bsWKKjo/nzn//M9OnTERHWrFlDUFAQEydOPGn65ORkPv/8c/bs2VNbIcrIyCA1NZXrrruu0bzKysrYs2cP8+bNqy3DU1JSKCoq4ptvvmHGjBlt9r06SlhYGN+94gre+PBD0rduxVRXMyQykqvnzm3T5sjJycnc3kYVXKWUqtGchw8fBj5wV2Tj4f+zd9/xWZb34sc/17OSJ3snZCeQTSCEMGWDIKggqFSxrtLapZ7aemx7/LWnx7a2p6e17bHVU62jbgVlKTMMGWEFIQlkQvbe48l61vX7IyESZvaTwP1+vXiZ5849vhnmfr7XfV3fL8uBx4c1qlEuOzubxMTEnhsZgLe3N6GhoZw/f574+Ph+n1On01FdXY3TJclZTU0NWq22p2JgZ2dnr89fpNfrr/qEtLGxkffff5/bb7+dRx55hPb2dvbs2cPGjRtZt25dv2McDuGhoVi2bUNOnYro/jotJhOUlhJy5539OperqyvfmDeP9zdtwi4+Ho2dHS1ZWUx3dSVGqQCoUCjGJrOU8se2DuIiKSWHDx8mMjJyyNdd/uhHP2LXrl3s3LkTgPj4eFasWHHVfTUaDcuXL2fv3r2kpqaiUqkwm80sWbLkhlNUDQYDTk5Ove7h0HUfP3/+/NB8MTbg5+fHD775TRobG1GpVLi6uto6JIVCoeiTvlTZ3SWE+B6wB6gFpkgpK4c9slFMCHHV6a9Wq3XA5eZnzZrFO++8w7PPPouTkxPt7e289dZbTJs2reecERER7Nq1i5kzZ/asmzEYDOTl5bF48eIrznnq1CkmTZpEQkICAE5OTqxcuZK//vWv1NTU9HrSaiuRkZFM8/Tk+PbtuMXFYbVYaElLY8XEiQNqBXP7okWEBgWR8tVXdDQ1MfW225gyZcqYL1ihUChuWfuFEE/Q1fLl0l7g9bYIpr6+Hnt7e2YMw7pBlUrF8uXLWb58eZ/29/T0ZO3atdTX12O1WvHsY3EdFxcXDAYDbZetrywvL8fDw2PA8Y8GQgjc3d1tHYZCoVD0S1+m7P4CWAvMAyYBB4QQP5FSfjHcwY1WcXFxbNy4kalTp+LYvWaxvLyckpIS7r333gGd8/vf/z4vvvgi3/nOdwgODqa0tJTQ0FB+8Ytf9OwTHh6Or68v//znP5k6dSpGo5GTJ08ya9asq46E1tXVXbH2Rq1W4+fnR11d3ahISFUqFd975BGmnjzJ0XPn0KhUzFuyhMmTBzYjXAhBZGQkkZGRQxypQqFQ2MTF6Sw/v2Sbzdq+eHh4MG/ePFtc+pr6m0TqdDri4uLYvXt3z/2zoKCAjIwMVq5cOUxRKhQKheJa+jJl1wuYLqVsB44KIXYC/wRu2YQ0KCiIxMREXnnlFaKjo+ns7OTChQvcc889V0wB6iuNRsMvf/lLKisruXDhAiEhIQQGBvbaRwjBmjVryMnJIScnB7VazerVq69ZsMDX15eCgoJea0tNJhNlZWXccccdA4pzOGg0GmbNmsWsWbNsHYpCoVCMGkIIFfBNKeURW8dy0c3S3iMpKQm9Xs+XX35JW1sbfn5+rFix4qr9ThUKhaKqqoozZ8/Q1NJEVFgUMTExo6Yey81ASCltHcOQS0pKkqmpqcN+nbq6OvLy8tBqtcTExAxZafWhYjAY+Mc//sH06dNJSEigtbWV5ORkHBwcWLNmja3DUyjGBCkl58+f5/hXxzFbzCRNSiI2NnbA0/MVtieEOCWlvLJSzigkhDgqpRw1o3UjdX9VKBSK0SIrO4v3d76PepwaO70dLZUtjHcYzyNrH1GS0ksM5t7alyekimvw9PTE09PT1mFck5OTE48//jj79+/nlVdewd7enoSEBObMmWPr0BSKMWP7ru188uUn6EJ0qNQq9n20j8Uxi3lk3SM3zdMixai2WwhxL/CZvBlHkBUKhWIUM5vNbErehFeCFw7OXQ+evAK8uPDVBc6eO0vilEQbR3hzUBLSm5yHh8eA17UqFLe6uro6Pt33KYGLA9HadbW4sIZb2b9vP3Py5zB+/HgbR6i4BfwYcAQsQoh2QABSSuli27AUCoXi5ldXV0ebaMPL2avXdld/V7Lys5SEdIgoc87GmA8//JCJEyeiVquZOHEiH374oa1DUihuWvn5+UhP2ZOMAqjUKoSPIDcv14aRKW4VUkpnKaVKSqmVUrp0v1aSUZT7oUKhGH52dnZIo+TyCSrGDiNO+itbMSoG5ppPSIUQDsCTdFXzexl4AFgDZAMvSCkNIxKhoseHH37I888/zxtvvMGcOXM4fPgw69evB+DBBx+0cXQjT0pJcXEx2bm52NvZMSk+Xil3rxhS9vb2cGWLX6RRotfrRz4gxS1JCLGSrkr3AAeklJ/bMp7RQLkfDp+2tjZST58ms7gYF72eGfHxymwQxS3Lzc2N6IBo8nLzCIgMQAhBR1sHHSUdTL1vqq3Du2lcs6iREOIToATQA1FAFvAJcDfgJ6V8eKSC7K+btejCxIkTefnll1m4cGHPtv379/PUU09x9uxZG0Y28qSUfLxpEzuzsmD8eOjoQFdUxFNr1hAfH2/r8BQ3CaPRyHO/fg5LlAXPwK714i11LRhOGvjvn/23UpFzjBpjRY1+D0wD3u/e9CBwSkr5M1vEM1rur8r9cHh0dHTw2scfU+XhgUdoKJ2trTSfO8eayZOZnjQm/pdRKIacwWBg4+cbyavMQ9gJdEYdKxesJGFygq1DG1UGc2+9XkJ6RkqZILqqdlQA46SUsvt1mpRy0sBDHl6j5YY51NRqNR0dHWi1X08fNJlM2NvbY7FYbBjZyMvJyeHFzZsJXr0adff3w1BTQ/uOHbz0s58NuP2OQnG54uJi/vb236g114IKnMxOfG/d967o8asYO8ZYQpoOJEgprd2v1cDpG92DhRB3AH8F1MA/pZS/v8o+a4Ff0TUTKk1Kue7yfS43Wu6vyv1weJxITWVzSQmhM2b0bDO2t1O3Zw8/e/xx5d6quKXV1dXR0dGBt7e3Ul33Koa1ym53Err9YnW/7tdKpT8biImJ4fDhw71GhA8fPkxMTIwNo7KN0+fOoYuK6klGAZy8val3d6egoIDo6GgbRqe4mQQHB/O7539HcXExVquV4ODgXm+CFYoR4AbUd3/seqOdu5PWvwO3A6XASSHEVill5iX7RAA/B26TUjYIIXyGPuzho9wPh8f5sjJcLuuBrtPrMTs5UV9fz7hx42wUmUJhe6O5s8ZYd72iRqlCCCcAKeW3Lm4UQowHWoY7MMWVnn/+edavX8/+/fsxmUzs37+f9evX8/zzzw/5taxWK2lpaXz88cds2LCBrKysKxZ025JGrUZarVd+wmpV+kMqhpxarSYsLIzx48cryahipP0OOC2EeFsI8S/gFPDiDY6ZDpyXUuZLKY3AR8Cqy/b5DvB3KWUDgJSyeojjHlYjeT/si4aGBkpKSmhra7PJ9YeKp7Mz7U1NvbZZrVZka+uo67WuUChuHtd8Qiql/PY1tl8QQswdvpAU13KxUMNTTz1FVlYWMTEx/Pa3vx3yAg5SSjZs2EBraytJSUlYLBYOHDhAYWEhy5cvH9JrXY3VaqWqqgqdTnfV0aiOjg5C/P3p3L4dU3Q02u7iMo2lpbgaDISHhw97jAqFQjESpJQfCiEO0LWOVAA/lVJW3uCwALpqQFxUCsy4bJ9IACHEEbqm9f5KSrlzSIIeASN1P7yRzs5O9u7dS0NDA+7u7lRXVxMZGcmsWbPGZJ/ixPh4jmzaRLOPDy5eXljMZkrPnGHyuHG4ut7w4bxCoVAMyDXXkPbsIIRaSjmmFmSMljUuY9WFCxfYtWsX3/3ud1Gr1UDXTffll1/m0Ucfxdvbe9DXaG1tJeXYMbKKi/F1c2PujBn4+/uTm5vL659+Sp0QSKORGC8vvv3AA3h4eGC1Wvl8506+OH4cs15PxfnzmE0mxs2dS0FKCmd27sRQVUVwZCS//cUveGjdDZdDKRSKW9BYWkMKIIQIAEK4ZBBZSnnwOvvfDyy7OLAshHgYmC6lfOqSfT4HTMBaIBA4BEyUUjZe5XxPAE8ABAcHTy0qKhqKL+umsG/fPnQ6HbNnz0alUtHZ2cmOHTuIjIy0+TpzKSVlZWWUl5fj6OjI+PHjuyqHX8ZisVBYWEhzczOenp6YTCa2HDxIvcWCMBqZGh7O8oULlfWjCoXiuoZtDakQwhn4ELhrICdXjE35+fk9vd0usrOzIyoqioKCgkEnpM3Nzbz46qtU+vjgHBxMekMDe15/nfVLl/L27t3oFy8mOCAAabVyPj2dv779Nv/5ox+x98ABNuTkELR2LToHB3xaWji/dSvaEyc4uXMnHf/+7xAfT1FGBk889xyAkpQqFIoxTQjx38A3gHPAxXUKErhmQkrXE9GgS14HAuVX2eeYlNIEFAghcoAI4OTlJ5NSvga8Bl0DvgP4Mm5KRqORoqIiHnrooZ6lInZ2dkybNo0TJ04Me0JaX1/PgWPHyCwuxtnBgXmTJpEweTJCCCwWC5t27OCr2lqEnx+ypATnlBS+tXIlvr6+PecwGAz867PPKNdowNUVmZ5OtIMDP3jwQTo7O/ls0yZ+9MwzrMnNVQZ7FQrFsLleH9JxwGbgtyMXjmI00Ov1NDU1IaWksrKSyspKLBYLOTk5+Pn5Dfr8+w8epNLfn9A5c3q2Nfr58ee33sJx7lzGBQQAIFQq/BMSKDp/noKCAr5ISWHcihXoutex2Dk7E7R4MW/cd19XMjplStfJpkyh7Sc/4flf/1q5cSoUirHuHiBKStnZj2NOAhFCiDCgjK4+4pf/MdxMVwuZt4UQXnRN4c0fgnhvGWazGbVafUW1TQcHBzo7+/Pj6r/m5mb+79NPMU6YgPfSpXS2tfHRV1/R2NLCwrlzyczM5GRTE2FLlvQky7UlJXy6Zw8/+OY3e86z59AhKn19CbmkXVrWsWOcOHWKkqIinvx//4+2n/xEGexVKBTD6nrVXw4Bv5dSbh2pYBSjw6RJkzh37hyHDh2ivLyc4OBgAPLy8jh69ChGo3FQ5z+Vl4dnZGSvbW4BAVS3tWG5ynQi4exMS0sLjQYD+svWsDi4u9NcUQGX9x6Nj6c4N3dQcQ63trY2srOzKSoqGhUFo1paWqiqqsJsNts6FIVC8bV8oF+VtKSUZuBJYBfdPcSllOeEEC8IIVZ277YLqBNCZAL7gX+XUtYNYdw3PQcHB/R6fU8F7qqqKjIzM9m9ezcazQ2bGAzKV+nptAcG4h8VhdbeHicPD4LnzuXA2bN0dHRwOi8P98jIXkX+vIKCKOvooKGhAeiaqvtVfj7+l1Um9o2J4URODs//+tddyeiUKaDR9BrsVSgUiqF0vb+YDXQVRlDcYlxcXFi0aBH/8z//w8KFCzlx4gSdnZ384he/4NChQ6SlpTFt2rQBn9/NyYl6gwFnn6+7DFiMRtwdHLAUFyOnTu0pBmHu7ISKCkJDQ4kKCqKsoACv8eN7jqs5fx73gAAaMjK+fkIKkJFB8GVJr63U1taScvw4lY2NRAYFMT0piZOnTvFecjIWb29kayuhOh1PPvKITUqKt7e38/77W0hJKUIIJ5yd23j44SVMnTrlxgcrFIrh1gacEULsBXoeu0kpn77eQVLK7cD2y7b98pKPJfDj7n+KAZo9ezbJycnY29vj7OxMZ2cn5eXleHp6cuzYMWbOnDks1y2pqcGpe7D4Iq2dHVYnJxobG1EJcfWBTilvWGzp4ueLc3PH5GCvQqEYe66XkC4APhFCSCnl30coHsUoodfrWbVqFbNnz0atVhMQEIBKpSI6OprCwsJBJaRLZszgj9u34+Lri87REavFQklKCnfOm0djSwtpO3bgHhuLqaMDQ1oa98+YgZubG99YvpzfvfsuZS0tOPv50VxWhubcOf7rpz/lZ7//fc+0IjIycPjTn/jtH/4whN+RgcnPz+cP776LMTISey8vUnJy+PiLL2iytyfk3nuxc3ZGSkl5Rgavvv8+zz/11IhXZnz33c2kpLgQFPRj1GotBkMVf/vbB/znf7oTGho6orEoFIorbO3+pxiFAgICSExMZNu2bSQmJhISEsLy5ctRqVR89NFHxMbG4uLiMuTXHefuTl5dHe6X9AW1mExgMODi4kJiVBRnT53Cfdw4VN31IKry8wlxcsLNzQ3oameVEBpKWnY2gRMn9pynMiuLOyIjCY6MpGgUD/YORFNTEyqVCmdn555tBoOBw8ePk1ZQgL1Ox6zYWKZOmdKrjsZoVFFRwYkT52hoaCMiwpcpU+KV1jyKMet6bV9au6f2/GME41GMEs7OzjQ2NhISEtIrQaqtrR30zTU+Pp6Ha2vZsGEDZldXZEsLM0NDeejee1Gr1XyxfTtvv/8+VfX1hPj4YJ04EZPJRHh4OL/69rdJPnSIotRUpo4bx5LvfQ9fX188PDx4/te/pvhi4YU//MHma1yklLyzZQvaOXPwu9iKJjKSvWfPYh8YSGT3DVEIgV98PBfOnqWysnJEG483NTVx9GgJwcE/RqXq+nPg5ORLc/Nc9u8/yeOPh45YLAqF4kpSyn/ZOgbF9RkMBlasWEFCQkKv7cHBwZSVlQ1LQjp18mRSPvmEGmdnPIOCMLa3U37qFAsiI3FwcCA6Opo5paWk7NqF8PGBtjY82tq4d1XvdrRL582jYtMmiurqwM0NWVtLpJ0dM6dN47e/+AVPPPfcqBzs7a+qqio2JSdT0toKVisRnp7cc/vt6PV63ty4kWpfX3zmz8fc2cmnGRlU1dVx97Jltg77mnJycnnnnZPodIno9a7k5RVy4sQmnnjiHhwdHW0dnkLRb9dd5NDd7uWq/UgVg1NfX09TUxO+vr6jckQrKCgItVrNl19+yZw5c1Cr1eTn53PmzBnWr18/qHMLIbh90SLmzJpFVVUVzs7OPVNVGxsb2ZeRgd899zA5OhpTWxufHTlC/YYNfGvdOgICAnj0gQeuOOdD69b1OQGtrKykvLwcV1dXwsPDh+2JpMFgoKixkeCwsF7b7Tw9qWtv77VNCIHQ64e9EMblDAYDKpVrTzJ6kV7vSU1NxojGolAoviaE2EZXZdud3ZVwL/1cOPAYUCilfNMG4SkuYWdnR1tb2xXb29rahq1Viru7O0+sWsXOw4fJS03FQafjzvh4Zs/oajerUqm4a+lSpldXU1FRQWdnJ+Hh4VcsC3F2duZ769ZRWFhIU1MTnjExBAcHo1Kpeu6po22wt786Ojp4c+tWZHw8IcHBSCkpysvjnc2bmTNpEpXOzoROnty1s6MjDnPmcGz7duZ095YdbaxWK1u3nsDTczlOTl0/Tzc3f4qKVKSmpjF//mwbR6hQ9F+fV90LIVzo3QOtflgiusl1dHSwadMmysrK8PT0pKqqiqSkJBYvXjyqmmgLIXjwwQfZsmULf/rTn9DpdGg0GtasWYOHh8eQXEOv118xJfToiRO0hoYSHBcHdFXSDV2yhMMffMCqurpBrbG0WCy8v3Ej+3JyUPn7Y62vZ4K9PU8/9tiwjGBrtVrUUmIxGtFc8qbEw8uLusxM5CVreVrr6tC3tBAQMLLLtr29vbG3b6S9vR69/uufa1NTFnfcEXSdIxUKxTD7Dl3rO/8ihKgHagB7IAw4D/xNSrnFhvEpukVERLBp0yYiIiJ62qIVFhZSX1/fUxRwOPj5+fHYffdhsVhQqVRXfQ9hNBrZf/o0tVYrpKUR5uLCvcuW9UzbBdBoNEyYMOGq1+jPYO9olZubi8HTk5Dun4UQgnGRkRSVlZGWlYV9UO97nUqtRnh4UF9fPyoT0qamJpqatAQH934/5O4eTnb2YebPt1FgCsUg3DAhFUJ8F3gBaKer9xnd/w0fxrhuWtu3b8fR0ZFnnnkGtVpNa2sr7733Hh4eHiQmJto6vF5cXFx4+OGHaWlpwWg04uHhMexJc3F1NfpLeqQBqDSanpvDYBLSlGPH2FNZSdiDD6LqroBYcPw4H27ezHcfeWRQcV+Nvb09c2JiOHDsGCFz5yJUKsydnWhbWpjv6krBtm04RERgMhiQWVk8uXIlWm2/imkOmk6nY926Bbz22rvo9QvQ691pbMzEzy+HuXO/M6KxKBSKr0kpK4HngOeEEKHAOLruw7lSyisfx40hHR0dmM1mnJycbB3KkHB2dmbevHns2LEDFxcXzGYzJpOJpUuXDnu1XeCaax0NBgNvffEFdtOmEeznh5SSsvPneXfLFn748MO9KvAONSkl1dXVmM1mfH19R+T7cC3NBgOqq/yuCScn9B0ddHZXHb5ISom1qWlYBqqHgr29PUK0Y7GYUau//r52dDQTFKS3YWQKxcD15S/Es0CclLJ2uIO52XV2dpKTk9OTjAI4OjqyePFiDhw4MOoS0osuXfx/PSaTiaysLCoqKtBqtSQkJPT7aWqYnx/HSkshIqJnm8Vkwlpb2zPyPFD7T53Ca+rUnmQUwD8xkePvvssj7e3o9UP/h/wb99xDywcf8NUHH6Byc4PaWu6bNo27li0jIyOD9NxcXB0dmfnEEyO6dvRSt902Ax8fD5KTT1Jf38rixSHMn//tm+bNokIx1kkpC4FCG4cxaG1tbRw6dIiKigrUanXXoN2cOTb72zeUQkNDCQoKoqqqCpVKha+vr81nPWXn5NAxbhy+3f3DhRD4RURQVFJCaWnpsD29raur46MvvqDcYgGtFse2Nu5fuJCIS+7rIynQ3x/zwYPIuLien4nVYsFaXc3sZcso2r2byvPn8QkPx2I0UpaeTryX16DfcwwXvV7PtGmBHDt2lODg2ahUatrbmzEYUpk5c5atw1MoBqQvCekFusrOKwaps7MTjUZzxZoSV1fXq64/GUuampr4n9deI6WmhmIpEQ0NuPz1r6xftYpvrVuH/VX6i17NzOnT2Xn8OKWnT+MbHY2xtZXKY8e4Iz6+1xQj6CpSkHr6NO2dnUyMiiLysp5rl+s0mVBf1sBcpVYjVSosFkv/v+g+0Ov1PLV+PVVVVTQ1NeHn59cz6pqYmDhqBiEiIiJs9mZBoVDcGnbv3o2/vz+LFy9Go9FQVFTEnj17WL16dZ8HPkcztVqNv7+/rcPo0WQwoLnawKJeT/tldQyGitVq5b1t22iJiCCku35Ca0MD7+7dyzNeXjaZAhscHMxEJycyDh/GIyICq8VCQ04Oc0NCCA4OZv0997Dz4EGy09PRqFTMi4pi4Zw5Ix5nf9xxxzwslgOcOvU+4Ii9vYEHH5xKSEiIrUNTKAakLwnpz4EUIcRx+tEDTXElZ2dn9Ho9+fn5jL+kl2Z6ejqenp4cPHgQq9VKdHQ0ft0jmmPFq2+9xYaKCqr9/dGGhODk4EBnbi6fpKXh6OBw1UJEV+Pi4sLPn3iCrbt3k/rxxzjp9Tw6fToLL1sUkXrqFK9+/jkyMhKVvT3btm5lfkAAjz344DWT0llxcWzIyMBx4cKeUdLq3FwifXyG/Wmgr68vvpdNRVYoFIpbRVVVFUajkenTp/dsCwkJITIykuzs7EG1ElNcXWhgIMkpKcioqJ57nsVkQtTUDNt7jLKyMqo1mp5kFMDR3Z26kBAys7O5bdbIP8FTqVR8Y+VKYjIy+CovD41azV0JCcTGxgLg5eXFN9eswWw2o1KphnUq81DR6XSsXr2UpUtbaWtrw93d3abTohWKwerLb+8/gH1ABmAd3nBubkIIli1bxmeffcbMmTPx9fUlLy+P5ORkPDw88PT0RK1W8/7775OYmMjChQttHXKf1NfX8/bu3bSvXIk+KAituzvtra2Y/PxwKCnhUGYm97e19bmasLe3N+sfeohr1fLt6Ojgn1u34rlqFQ7do63W+HgObNrEjKws4roLIl1u8fz5pL3+Ormff442KAhzfT2u5eU88q1vDeTLVigUihEhhNADwVLKHFvHMlCtra1XfTrm4eFBWVmZDSIaPYqKijh46hQF5eXYW60kxsaSlJR0xayg/goLC2NiWhoZhw7hNn48FrOZ5uxslsbE4OrqOkTR99bZ2Ym4SmVhjb09rR0dw3LNvtBoNCROmULipT1Vr7LPWOPo6Ki0eVHcFPryf59ZSvnjYY/kFhEREcHDDz/MyZMnKSoqwtXVFU9PT5588smem89tt93G//3f/xEdHT0m1tac+uorrE5OCLUalb09QgjsnJxoq63FaDZjtbOjvb19yNrbFBYWYvTy6klGoWvqrX1kJKevk5Dq9Xqe+/73OXv2LAUlJXhFRpL4jW8oayUVCsWoJYS4G/gjoAPChBAJwAtSypW2jax/vLy8OHz4MCaTqVfxtqKiolE1zXWk5eTk8HpyMuV6PWVaLVYh+HzHDpJOn+bRO+5gcnz88aWIVwAAIABJREFUgM998clg3LlzZOTno1WrmTpnznWXZxiNRr46c4b0/HzstFqmx8YSHR3d5/Ww48aNQ5WcjLG9HV13XQYpJZ0lJUwY5dNgFQqF7fQlId0vhHgC2EbvKbtK25cB8vPz4+677wYgNTUVs9ncayTUwcGByZMnk5WVNSYS0qbWVsaFhlJcWkqnuzsaBweklJizsnB1c8NDpRrSdSNarRaMxiu2W00m9DeoUqvVapkyZQpTrjNKqlAoFKPIr4DpwAEAKeWZ7qq7Y4qLiwthYWHs2LGDqVOnYmdnR3Z2Ng0NDSxYsICWlhbOnz+P2WwmKChozC1bGQgpJS9/8AEZnp6UNTWhCw3FTa/HzdeXxpoaPj1yhPFhYYMaNNVoNCRMnkzCxT6b12E2m3l/82Zy1Wo8oqOxmEy8ffIkt1dVsWTBgj5dz9HRkbuSkti8fz+6CRPQaLUYCgqY6u5+RZs3hUKhuKgvCenFBlQ/v2Sb0vZliAghsFqvnAltsVjQXVaAZ7SKCA0lICsLS2MjuZs30xwSgqqlBXVxMb6RkTxy331DuiYjNDQUL5OJ2vx8vMK7fg07DQbMWVlMe/TRIbuOQqFQjAJmKWWTrSu2DoU5c+aQlZXFyZMnMRqNBAcHs3LlSoqKikhJSWH8+PHY2dlx4MAB/P39mTdvnq1DHlZnz57lVFUVzjNmYG824xgQQEtDA3R24mAwYAkOpri4uGet43C7cOECuRYLYZc8yXT18eHAjh1MmzKlz9N8pycl4e/nR3p2Np3t7cROm0ZERMSYWJupUChs45oJqRBinJSyQkoZdq19FIMXFRVFcnIy1dXV+Pj4ANDc3ExaWhqPjpHkKi4ujilHjqBydiYwPJzi06dpKi1lfkwMP3vyySEvLa9Wq3n6m9/kr++8Q1F6OsLeHlVlJY8vWTKsTcgVCoXCBs4KIdYBaiFEBPA0kGLjmAZECEFsbGyvBMtoNHL48GFWrlzZ0yYsISGBTZs2UVJSQlBQkK3CHXanc3Nx9vYGk6lnm4ObG7X5+YzX60HKEW0dU1Rejt1ls7LUWi14e1NdXd2vdaeBgYEEBgYOdYgKheImdb0npG8KIdzpmia0EzgspTSPSFS3ECcnJ1asWMGbb75JVFQUarWa7Oxs5s6d25OgjnYajYan16/n6PHjHDt3jllJScz/7neZPHnysN1MAwMD+d1zz3HhwgU6OzsJDw9X1oIqFIqb0VPA83QtmfkA2AX8xqYRDaGysjJ8fX179azWaDTExMRQUFBwUyekHSYTUdHRZBYUYLG3x+LtjbW9HUtODr7z56MtLx/Raa6uTk6YKyuv2C4NBqVwjkKhGFbXTEillMuFEPbAAmA18EchRDFdyelOKWXxyIR484uPjycsLIysrCysVivz5s0bdHW9kWZnZ8eCefNYMIJTrDQaDVFRUSN2PYVCoRhpUso2uhLS520dy3C43rKVm32K58TQUArKy0mKiODEwYOUHj2K1GrxsbPDqayMh5YsQd9dGGgkxMXEsPurr6j388MjIACr1Up5ZiYhWu2YqGehUCjGruuuIZVSdtCdgAIIIcKA5cDfhBB+Usrp1zte0XdOTk5KH7YBampqwmq14ubmdtUnsjU1NdTW1uLl5YW3t7cNIlQoFIqBEULsAe6XUjZ2v3YHPpJSLrNtZEMjMDCQgwcPUllZ2VPIqKOjg8zMTBb0sZDOWJWYkED6hQsUmc0sWLGC5ooK2jMzuXf+fGbPnj2iySh0vQ9Zf/fdbNq7l+IzZ8BiIdbPj5UrV47o1GGFQnHrEVLKgR0ohE5KeWWp01EgKSlJpqam2joMxTCrqanh7Y0byayqAiGY4O7O4/fd19NCwGQy8a+PP+bIhQuovL2x1tQwZ8IEHlm7tlfbAYVCcWsRQpySUibZOo6+EEKcllJOudG2kTIc99fS0lL27t2Lv78/dnZ2FBYWEtvdi/NmZzKZyM7OpqCiAncnJ+JjY20+Q0pKSXNzMxqNRpmqq1Ao+mww99YbVtkVQrTQVVX3Uk1AqhDiJ1LK/IFcWKEYDJPJxJ/efJP6mBiCly4FISjNyeF/3nqLF3/8Y/R6PTv37OFgSwuhDz2ESq3GarFwYPdufPfu5a477rD1l6AYJDnCBT8UChuxCiGCLy6TEUKEcOU9eUwLDAzkwQcfpKCgAJPJREJCAi4uLrYOa0RotVri4+OJH0S/0aEmhOhXASOFQqEYrL60fXkJKKermIIAHgD8gBzgTbrWmCoUIyonJ4cqvZ6QS27ivtHRFBYVcfbsWaZNm8bukyfxv+ceVGo1ACq1Gv/Zs9mzbduoT0illBiNRnQ6nZJ0XSY/P58Nn28gpyAHL3cv7lp0F3Nvm6t8nxQ3q+eBw0KIL7tfzwOesGE8w0Kn0yk1ARQKheIW1ZeE9A4p5YxLXr8mhDgmpXxBCPEfwxWYQnE9zc3NcLURXFdXmpqbAWg3GnGzt+/1aa29PfUdHSMR4oBIKTl8+BibNqXQ0NCJj48D998/j6SkRFuHNiqUlJTw4j9exC7WjsC7AmlrauP1na/T2dnJ7Ytvt3V4CsWQk1LuFEIkAjPpGhR+RkpZa+OwFAqFQqEYMn0pYWcVQqwVQqi6/6295HM3nDYkhFALIU4LIT7vfh0mhDguhMgTQnwshNB1b7frfn2++/Ohl5zj593bc4QQN0UhB8XgBAYGIktLsVosPduklMjSUoK72wQkRUVRmZnZ67jKrCymRUcP6tqVlZW88/HH/L+XXuLVd96hoKBgUOe7VErKcV57LQ21+mFCQv4Dk+l+/vd/D5OenjFk1xjLdu7biTpcjXeINyq1CicPJwJmBrB572ZMl/TyUyhuMnZAPV3LZWKFECNXzlxxSyouLmbXvn3s3LuX4uJrN1Vob2/n4JEj/O2993hzwwbOnTvHQGuTKBSKW1dfEtKHgIeBaqCq++NvCiH0wJN9OP7fgKxLXv838GcpZQTQAKzv3r4eaJBSTgD+3L0fQohYuqYJxwF3AK8IIdR9uK5ilCopKWH7pk18vnEjeXl5A7p5BQUFMSckhIIvvqChuJjG0lLyd+xgqrs7EyZMAODe5ctxysyk6MABqrKyKDpwAJfMTFYPYrpueXk5v/rHPzio09E5dy5pnp688O67nDt3bsDnvEhKyebNKfj63oOjY1cPWheXANzd72LLliODPv9AVFZWkpeXh8FgsMn1L1dYXoiLT++1ZfZO9rTL9lETo0IxlIQQ/w0coWvq7r93/3vWpkEpbmr7Dh7k1eRkjgrBMZWKV5OT2fvll1fsZzQaeWvjRnbW1mJMSKAmPJx3Tp1i38GDNohaoVCMZX2Zstsopbz70g1CiDApZTtw+HoHCiECgTuB3wI/Fl2LvBYB67p3+RfwK+BVYFX3xwAb6WotI7q3fySl7AQKhBDngenA0T7ErhgidXV1nD5xgtaGBoJjYoiPj0ej6cuvT28H9+3j1DvvME2tRiMEe7ZtI+vOO7n7/vv7tQZQCMHjDz5IzPHjHDxzBquUrJ40idkzZ/b0rvP29uaFp5/mZGoqRVVVhISGMv3++3FycupXzCaTieLiYlQqFbsOHsSakEDgpEkAOHp50eDszEe7dvFCbOyg1jFaLBZqagyEhPj22u7s7E95ecOAzzsQra2tvP76J6SlNSGEJypVGWvWJLF8+eIhXatZUVFBZWUl7u7uhISEIIRASklVVRUtLS34+/v3qvIYHhjO8erjOLp/va3D0IFe6Pv9c1Uoxoh7gKjue6BCMaxqa2vZm5ND8NKlqLur0VvCw9m3ezeT4+Lw8vLq2Tc7O5tSe3tCL2lZ5+Llxf7t25memIizs/OIx6+4uXR0dKBSqdDpdLYORTHM+pJRbBNCLJdSNgMIIWKADcDEPhz7F+A54OJfJU+6Elxz9+tSIKD74wCgBEBKaRZCNHXvHwAcu+Sclx6jGAE5OTls+dOfSDSZCNRqObtrF6kTJ/Lov/1bv/5INDQ0cPS99/ihvz9O3cclWiz8Y/t2iqZPJzQ0tF9xqdVqbps9m9tmz77mPs7OzixauLBf571UTk4Of//kEwyOjmC1knboEDN++MNe+7gFBlK8ezednZ3YX7ZmtT/UajVBQR40NRXh5hbas72hIZ/x432vfeAweO+9LaSnBxIc/BhCCEymNj766B0CA32Y1J2MD4bZbObtD97m8LnDqNxVWFusxPjE8NgDj/Hexvc4W3IW4SBQG9SsXbaWJYuWIIRg2cJlHPvbMap11XgFe9FS10LGrgxcLa788D9+SGJsIqtXrMbXd2S/XwrFMMoHtICSkCqGXWlpKXLcuJ5kFECt1SLHjaOkpKRXQlpUVYV+3Lhex6u1WoSnJ7W1tUpCqhiwqqoqPk/+nPyqfNSoSYxKZNmiZSPem1cxcvqSkL5IV1J6JxAFvEPXNN7rEkLcBVRLKU8JIRZc3HyVXeUNPne9Yy693hN0Vx4MDg6+UXhjmtlsRqVS9TwJHE5Wq5Uv/vlP7re3x8fVFTs7OxLVajZkZHDy+HFumzu3z+e6cOECUVL2JKMAOrWaSUKQl5XV74R0uDU1NfHShx/iuGwZwd0N2zN1OlI++4y7fvQjNHZ2AHQ0N+Oo1Q56BE8Iwdq1C/jjHzdhNq/AxSWAxsZCOjp2snr16kF/PX1lMBg4fryEwMC1PU9DtVoHXFwWsHfv8SFJSA8eOsiXBV8StjQMlVqFlJLsr7J59pfPoo3WErwsGCEExnYj7+59F38/f+Li4ggMDOQ/vvsffPrFp2Rvz6amqga1vZqwVWHYO9rzVf5XZL6cyQvPvmDzXn4KxRBpA84IIfZySVIqpXzadiEpblZarRZhvLLFvOiu+n4pT2dnOuvqem2TUmJpbr7pZqycO5fF3r1pVFe3EBrqye23TyUkJMTWYd2UDAYD//zknxAMwVHBWC1WTmafpGlLE48+8Kitw1MMkxsmpFLKL4QQWmA3XU8675FS5vXh3LcBK4UQKwB7wIWuJ6ZuQghN91PSQLpaykDXk88goFQIoQFc6SricHH7RZcec2mcrwGvQVfj7j7EN+YUFhayZ88eKisr0Wq1JCYmsmjRogFNne2ryspK6jMyKKuro8ZsxqhS4RcRwRRvb470MyHVarVcrb5tB2A3CqdjpKen0xkSwrjuZBQgYdo09pw7R+mZM4TOmIGxtZXyAwdYN3v2kAwQxMdP5Oc/17B162FKSuqIiPBh1ao1hIeHD/rcfdXZ2QnYoVL1/r3S6Zxobm4fkmskH03GZ6IPKnXX90wIgWe4J1s/38r99349fVun1+EU4cT+lP3ExcUBEBYWxrNPPktTUxPP/PYZAm4PwGq1UppVSlVZFW1VbWzauonHH3n8hnE0NTWRm5uLWq0mKipKaQKvGI22dv9TKIZdeHg49ocP01xTg4u3NwDNtbXY19QQvnx5r30nxsay98MPqffxwSMgAIvZTFlGBjFubnh3HzvUysrKKCwuxk6nIzIiYkT61aalneXDD7Px8lpEYKAXtbVlvPbal3z/+2oCAwOH/fq3mnOZ52hzbiMksCvhV2vUhEwMIfdILlVVVcoMqJvUNTMZIcTL9H4S6ULX1KGnutd5XXd0Vkr5c+Dn3edaADwrpXxICLEBuA/4CHgU2NJ9yNbu10e7P79PSimFEFuBD4QQLwH+QARwor9f6FhXVVXFhg0buPPOO4mOjqa5uZkdO3bwxRdfsGrVqmG77rmzZ6nOyyPRzw8HR0eMFgtZmZlUBAej7We12qioKHY6OlLU2EhI99Or2rY20tRq1ickDEf4g9LW0YG4bHqIr58fkaGhtO/bR/H58+hMJtbOnMmyxYuH7LrR0dFED7IS8KWsViu5ubmUlJTh5uZCfHz8dacWu7u74+MDjY1FuLl9PQJcV5fGkiXjr3mcyWSiuroaBwcH3N3drxtTp7ETjbb3nx+rxYpUS4Sq96QInV5Hc1XzFeeora1FOAmsVitHthyhQdOA3Tg7DCYDr21+jUkTJzE1ceo1Yzhy9AhvbXoLi4cFaZXYfWzHUw8/xcSJfVmNMDBms5ns7Gzq6urw8/MjIiJiRGY6KMYuKeW/bB2DYvSRUtLW1oZOp0N7yfTawdLr9Ty6fDkf7NpFkYMDAM5tbTy6fPkV0yVdXFxYf/fdbNm/n6JTp1BJydTQUO64884hi+ciKSXbk5M5XFyMOjAQ2dmJNjWVR26/fVgHbKWU7N59Bl/fFTg6egDg4RGExTKbL788w0MPKQnpUKtvqsfO2e6K7cJB0NLSoiSkN6nrPVpLvez1qSG65k+Bj4QQvwFOA290b38DeLe7aFE9XZV1kVKeE0J8AmQCZuCHUkrLlae9uR0/fpxZs2YRGxsLgJubG2vWrOEvf/kLixcvHrbpMbmHDzNh3DjS29qYqdWiU6sJcnDg9fPn+e68/nUesLe3575nnuHj//1f/IqK0ApBkU7H8h/+EE9Pz2GJfzAixo/HevIk1qlTUXU/hbZ0duJnNPK7F17Azs4OR0fHUb3Y3mg08ve/v8eZMxaEiASK8PD4kuee+yZ+lzz5vZRKpeLxx5fzxz9+QnPzdOztvWhryyE4uJT589df9ZiTJ0/xzjt7aWtzRcoWpk715bHH1lzziePshNlsy91GaFJozzZDrYFA50DaGtpw8f561LuhsIEVU1dccQ5PT0+kQVJ0togGbQPuU7qSYBMmxgWO41+f/YvJkyZfdQZBdXU1b2x6A595Ptg7dSXnhnoDf3vvb7z0y5dw6H4jNpSampr44yt/pMRY0jXXpBFiPGN4+omnlXUximsSQkQAvwNi6ZptBICUcuSmTShGlYKCAo5v24apuhqLRkP4bbcxe+HCIZstFRwczLOPP05FRQVSSvz9/a95bn9/f77/0EMYDAa0Wi12dlcmEkOhsLCQw2VlhCxdikrd1WjBUF/Ph3v28NP164dtppjRaKSx0UxIiEev7a6ufpSW2qb6/Y2YTCbOncsiO7sMJyc7pkyJIiBg7JReCfQL5FDhIQj9epvFbEG2yF5rmBU3l2v+HzyUo7JSygPAge6P8+mqknv5Ph3A/dc4/rd0Veodc6SUmEwmNBrNoJ6E1NXVER8f32ubnZ0dHh4eNDY2DltCaqivZ920aWw5fZq0xkbchSAfaA0IICoqqt/nGz9+PM/88Y9cuHABi8XCPeHho/bNeFhYGIvHjyd50yb0sbFIi4XOzEzunTbtmsncaHP48FFOn3YmLOy+nmmwlZVnePvtrfzsZ09c87ioqCh+85tHSEk5RU1NJTExgSQlXTlCDl1vFF555SDe3t/C09MLq9VCauo+rNZPeeqpR656/mVLlpGenU7h4UK0nlrMzWbcWt341Y9+xbvb36UpsAk7Jztay1sJ14Yz57Y5V5zDzc2NRVMX8ecP/4wmSYO0SgwNBrTtWiISIqhJqaGqquqqN+L0jHSsvtaeZBTAycOJOpc6srOzSUxMvOH3tr8+2fwJZQ5lhM4KBbr+Npw7fo5dybu45+57hvx6ipvGW8B/0tUObSHwOFevraAYJaqrq0ndv5/qvDycPD2ZuGAB0TExQ3LuyspKjrz5JktcXPALDqbDZOLIvn0cMplYuOLKgbuB0mg0BAUF3XjHbkP9HqSyspKCoiI0ajUREyaQdeEC9mFhPckogJOHB/XOzpSXlw9b7RCdToebm4bW1vqeJ6QATU2VhIZefyaQLZhMJt57bxu5uS64uMTS2dlKSspB1q6dSEJC/I1PMEhWq5X8/Hxy83Ox09kRHxuPj49Pz+cNBgN5eXl0GjsJDgrG39//inNERUURmBpIYUYh3iHemI1mas7XsCh+EQ4ODjQ0NODs7Dysy9UUI+96U3a30bUmc6eU0nTZ58KBx4BCKeWbwxrhGJaTk0NycjKNjY1oNBqmTZvGggULBpSY+vr6UlhYSFhYWM+2trY26urq8PDwuM6RgxMYF0f16dP8cP58ChsbMRiNTLBYcAsKGvCTQa1WO6RTUoeLEIJv3n8/U7OyOJmRgVqtZsa99xIREdHvc3V2dtLe3o6Li0uffv5SSvLy8khNzQQgKSmWiIiIfrdcOXQoC0/PO3sd5+s7iZyc3TQ3N193/Y2vry+rV9/4Dc6BA6lotXNxcOgauVSp1AQFLeKrr/5MfX39VX8/nZyceP7Hz5OWlkZhaSF+8X4kTknE0dGRqKgoUo6nUNNQQ9yCOJKmJl1zivED9z7Aia9OsK9oH9ZWK35efsROi8VOZ4fslNcc7LBarVfvwqzq/twQs1gsHEs/RsAdXyfHQgjGxY7jYOrBfiWkra2tJO9PJuVMCjqtjsUzFzN3zlzUaqU9801KL6XcK4QQUsoi4FdCiEN0JamKUaa2tpadr77KDCFY5OlJg8HAkbffpuP++0lIShr0+c+dPEmiWo2fqysA9lot84KD+eDoUdoXLhy1A7z9se/gQZJzc1EFBiLNZlSpqQTa2WG9ShEhabEM67IHIQRLlybwwQd78faeh5OTN42NpbS1pTB//oJhu+5AZWfnkJPjRHj4kp5tHR3BbN26kdjYqGGd0WW1Wvls22ecKj2F3k+P2Whm35l9fGPxN5gUP4mCggL+teVfmNxMCI3AetzKnOg5LL99ea/3KDqdjse+8RgnUk9wJvcMTjonFs9eTH1jPS/+/UUsGgt20o5lty1j2tRp14lIMZZcb3jhO8CPgb8IIeqBGrqmC4UB54G/SSm3XOf4W1pRURHbtm1j9erVhIeH09jYyLZt29izZw/Lli3r9/lmzpzJG2+8gaOjI3FxcTQ2NrJr1y4SExOHZXrhRQtXreK99HQ6ysoIc3Wltr2dL61WVj3wwJBfS0pJZmYmZ1NSsJhMRM+cyeTJk236RlulUhEXF9dTUKe/jEYjn366nX37sjCbdfj4qHn44duZOPH659u0aTtbthSi03X9sd21aw+rVp1nzZr+jYCr1Sqk7J1gSSkBOWT9ROvrW7G3713RVqVSI4QLDQ0NuLm5XfUNg06nY9q0aUyb1vuG4ufnx5pVa/p0bY1Gw9PfeZqmfzbhN9sPvbMeaZWUpJcwZfyUaw7WxMXGQTKYOk1o7brWX3UYOlA3qImMjLxi/87OTqSUg2rrMxRMJhN/euVP5Mt8vCd602pq5Y0Db3Ch+ALrH776dGrFmNchhFABeUKIJ4EywOcGxyhsJO3oURKlJMLXt2vQydWVpTodm3fvJn7KlEHfz1qqqoi7bCmEVq3GUUpaW1vHfEJaUVFBcm4ugUuWoOlOntojIsjZsgV1ezum0FC03X+HG8rL8TAar/qUbShNnjwRjUbN/v0HKC9vITjYg3Xr5o3Kgka5ueU4O0/otc3e3gmTyYvq6uphjTk/P5/UklRCZ4T23PM7Ajv4bO9nhIeF89EXH+ES74KTW9fTdKvFyqHjh4iJiOn1sAXAwcGBBfMWsGDeAqCr5kNydjJBM4LQ2mnpaOtg45GNODk4ETNEsw8UtnW9KbuVdPUQfU4IEQqMA9qBXCll24hEN4YdPXqURYsWMX58VxEYd3d37r33Xl5++WUWLFjQ73UWHh4ePPLII+zbt499+/bh6OhIUlISM2fOHI7we/j7+/PYf/0XR/bsIeP8eTwnTuSB228flj9qOzZtonjzZmY5OKBRqTh59CjZc+fywLe/PeAR0Pb2djLS02lubCQgOJioqKgRLSLz0UfbSE4WBAX9CK1WT1NTCS+99Am/+pXzNacYlZeXs3VrLkFBP0Cj6fo9MZsns3XrK8yaNYVxl/V9u8hqtSKE6JVozpsXx+uvH8bFJRCVquuNUGXlKeLjvYesR9zkySGkpZ3Dw+Prm2BJyVEyMvbzX/9VgZubnrvvns7ixfOG5Xs/YcIEvn33t3l/2/vU2tdiabcwOXQyj6+7dpXdgIAA1i5ayyf7PgFfQIK6Ws23V3+711PjxsZGPvzsQ1IzU5FSkhCVwLo16/q9jkWtVjNz0kyOZh4leHLXz11KSUVmBWuS+pZ8Q1fl5wvtFwib9/XN22mOE4d2H2JFxYpr/m4oxrQfAQ7A08CvgUV0FQC8pVVWVnLmzBnq6+txdXVl8uTJoyJBuJCWhjo7myMnTqDW6fCLjCQ0PBxtTQ2tra2DrgrrM2ECxcnJPU9IAQwdHbTa2+N6ybax6nx+Purg4J5kFEDv7Iw+LIxJQMbu3UgfHzCZcG5uZt1dd43IPT0uLoa4uNGf+Dg52WE0Gnptk1JitRqGfUA1ryAPvZ++18/D3sEes95MWloarepWPN2+rheiUqvQ++vJysu6IiG9lNVq5cvUL/FP8Edrp8VittBY3Ug77WzeuZno6OgBDbC3t7fT0dGBq6urUlxwFOjTBGwpZSFQOKyR3GTq6+uvGLVzdHTEwcEBg8EwoIX/vr6+PPjgg0MVYp/5+Piw+qEbtp4dlJqaGjK3beOp4GDsutcFxHh789qRI5xfsOCqT61upKKigvf/8AfCGhrwFoIjVispkyfz8JNPjkghopaWFr788jwhIc+gVnddz9U1iNbWeezbd4LHHrt6QnrhwgUgricZBdBo7JAylvPnz1+RdNTV1bFx4y6OHz+PVqtm0aJ4Vq1air29PbNnzyA19Sz79/8MjWYCLi52BAQ08uijDw/Z1zlr1nQOHnyDwsKtuLpOpLr6LCdPbiYx8WnCwmbS0dHAO+9swWy2sHz50FUjvtTc2+aSmJBIWloaLi4uxMXF3fAGtWLZCiZPnExmViZqtZr4ifG9WhVYLBZeevUlypzK8L/DHyEEZ3PP8odX/sBvfvabfv8Orb1nLcWvFFN0sAjpJKER4jzjWLak7zMmikqL0Hr1rqipUqtQuauoqKhQEtKbkJTyZPeHBrrWj97yysvL2bt3LzNmzOC2226jurqaAwcOMGfOHJv2s66rqyM/PZ1JdXXMGDeOTrOZ8+npZLS20unrOySzmeKnTmXz8eNoSkqJXnR9AAAgAElEQVQI9/SkuaOD442NTL7vviGttmsrKpUKablK3UqrlalTp7Lcx4fS0lJ0Oh0hISE3xdd8ObPZjMlkGtDT7oSEaA4e3ENbWzAODm5IKSkvT2f8eN2wFwSy19ljMV75s5MWiU6n656d1ZvVYr3hvdpisdDa2YqXgxetza2k7E3BoDVg1VpJz0sneGMwa+9Z2+ffBaPRyM7knZzMPonUSFw0LqxavGpAdVGGmtlsRqVS3ZIJsrIieJj4+flRUFDQq/hNQ0MDHR0dI9I3a6wpLCwkEnqSUQCVEMSpVBSeP9/vhFRKyba332ZpRweTut+gzJWSjWfOcPTwYeYvWjSE0V9dS0sL4NqTjF7k4OBDRUX6NY/rGqyovWK7EG3Y2fUuotDe3s7vf/8vGhtnERBwPxaLke3b91Fe/gH/9m+P8fnne0hPb0KvT6C1tQKNpogf/OAHQ1rV2MHBgZ/+9P+z997hUV7Xvv9nT1ObUe9lVEASiCIQAlGF6AZs3LANxol9wjG4JS7Jubn5cZL45MT3JufaNyc3iZ0ch9iOjXHwMTbGNINBgJDpiCoEajPqqLeRNG3//hhZICSQhCQkYD7PwyPmnbesae/ea+21vms1mZlHyMo6QFXVaSZPfob4+GkAuLn5Eh7+KFu3vsP8+amDMoHIycnhLx//hTp7HdImifKJ4rnvP9ejPHxYWNgN1QdzcnIoaisictrVuqXQ0aEUVhdy7ty5PgsfeXl58ct/+WW/2r4E+AVgvWjttE1KiWySeHt73+AoJ3ci7ToON+ypLaVcdhvNGVacOHGC6dOnd2Qg6XQ6XFxcOHz48JA6pGePHWN+eDi5zc2Em0yEu7sTotXy51OnmPnv/z4gIiw6nY5lzz3HqW+/ZefFi7gFBzNx+XJGjhzZ88F3APGxsWz/7DPaYmNxaXfgG6qqcK+rQ6/Xo9FoOroN3G1YrVbS078lMzOPtjZBaKgb99+fQmQ3tbM3IigoiFWrkvn88y1UVXkhpYnYWHeWL1/Yq+Nramo4ceIcFRWNREf7k5g4pteCVWMTxrLn5B5aw1tx9XCsxlYWVxKoDmTixIkcOHGA2iu1+AS2K+KbLbSVtTFu+s3FltRqNeEB4dRW1JJzNoe2wDb8wv2or6onKjiKc3XniM2KZcrkLnqp3bJ993aOlh8lYkYESpWSpromPtzxIS/oXhj09O8bUV5ezo59O8gryUOj0jBjwgxmz5x9Twk33Tuv9DYzffp0/v73v6PRaIiPj6eqqoodO3Ywffr0uzKi11/c3d3p2mkSGgCvW1Dva2xspP7SJcZdkxYrhGCqnx/bDh68LQ6pv78/Li71tLbWdaqxrK+/zNy5N5ZgHzNmDG5u+6ivL8LLK6L9mCLc3C4xZkznQeXUqdNUVkYRFeVw/pRKNVFR93P69J/Yu3cvmzcb0Otf7lhtvXLlLO+++wWvv/7igNWQguPzmz9/DvPnw89+9gdsts4TBhcXT1pb1TQ3Nw+441RbW8v/fe//4jHJA32AHikl5Xnl/O7d3/HGz9645Zqturo6R3uW69FCdU31LZ1TpVL1q89p0sQkPvv6M8ovlxM0Igi7zU7JuRJi/WJvmvLk5I7kzfa/jwDBwEftj1dyj2csVVVVdVGADQ8Pp7a2FrvdPmSrCw3l5UwOCSE2IIDD589TV1ODxtUVl1GjGDWA/Y29vLxIu+8+uO++ATvncMHf35/lU6eyefdu7EFBYLPhVlPD9xcvHtYt1gaCXbsOkJEhCQ9fgVrtSm1tCevX7+WllxZ1UqrtiYSEUcTFjaSysrKjG0NvKC4u5q9/3YvdPh4PjxguXiwmM/ML1qx5oFfp4AEBAaxcuJLPdn+Gxc2CtEoCNYGsengVKpWKJx98kg8++wBDkQGpkijqFSxNWdqrVPulc5by9idvk5ubS+CsQOoq6lA2KYmfEo/dbOfY+WO9ckibm5s5nnO8wxkF0HpraYpo4ljWMR4MfbDnN2qAqa+v591N76KIVBCRFoGlzcKeC3tobG7koaX3jgJ/rxxSIYQboJdS5gyyPXcNwcHBPPXUU6Snp/PNN9/g6elJSkoKEydOHGrThiVxcXHs9PPj/JUrJAQEIITAWF/PeRcX1iYm9vl8QgjsgF1KlNc4XjYpO3qKDjYajYYnnpjJ+vUb8PSch5ubL9XVF/DxOU1q6o0FaDw8PHj11Yf50582YjQ6BiGd7gqvvda1r2dpaRVqdeebuRAChSKc9PTjuLsv7pT6GxAwFqMxnbKyskGLBMbGBnH4cEGH6i6AyVSFTmcbsLrVazlx8gTmADMhAY50VSEEQSODMBQbyM3NveU0nJCQEGSNRMqrAlBSSmSNJCx0aHq6eXh48NPnf8qGzzZwfvt5FCiYPn46Kx5ZMaABBidDj5RyP4AQ4t+llNc2fd4qhDgwRGb1Cikl9fX1qNXqG/Yi7g86nY7q6upOKeo1NTW4ubkNaaqbb0QEpXl5TIqIIDI1FavNhtlqZVN1tTODoQ9MTEwkdsQIjEYjKpWKyMjIQetvOlwwmUwcPlyEXr8KpdIxR/HxCaOlZSLHj59nyZK+6ZipVKo+l3Bs23YYV9c0fH317dcPp7jYhUOHTrJkyZxenWPsmLHEjoylrKwMtVpNSEhIx28yJCSE19a8RmFhIRaLhbCwsF7/LvR6Pc8/8Tx5v8lDU68h1CeU6LHReLh70FDTgEL07nff0tKC0IgOZ/Q73LRutxxo7i9ZZ7Kw+Fk6HHONq4bIxEiOHzrO3Flz75msyh5n5kKIB3BEajVAtBBiAvCrezldqLeEhoby5JNPDrUZdwRqtZqVr73GZ++8Q3pRESqgyceHh3/841sSatDpdASOH8/x7GxS2h0vm91ORnU1Y5cv79U5srOzObRlC1VFRQRGRzPrwQf73PJl9uwZ+Pl5sWvXt1RXN3PffXoWLPhBjzfhuLg43nzzVQoLCwGIiorqdmU9IiIQi8XAta19pbRjtxtxdXVHqex8jEP0SI2tuxqdAeK++2Zy+PBHlJWp8POLo7n5CrW1O3j22ZmDopjc0NSA0q3reYWrwGS6df21qKgoJkVO4uihowQlOBQzKy5WMMZvzJDWmoSEhPCTl35CS0sLCoXirp+oOSFACBHT3sMbIUQ0ENDDMUOG0WgkIyMDhUKB2WzGz8+PtLS0AXVMx40bR0ZGBvPnz8fHx4eGhgYOHDjA+PHjB+wat2RXcjJbDh/GrbSUmIAAGlpa+LayktEPPOD8nfYRrVY7KKm5bW1tKJXKW06FrK2t5eTJ81RVNREV5c/48WMGRNm4qakJ0HU4o9/h7u7LlSv5/T5/T7S1tWE0NhEZ2Vnbwt9/JBcufElfWty6uLjcMHVeo9HckiYIQGRkJA/Ne4jLtsuEjnTM66SUVOVVMTt5dq/O4e3tjRtutDS14Ka9+rnVldUxLXbaLdnVX8qry3H17Cw4pVAqULgremzP1xNWq5Vvj3zLoaxDtJpbSYxNZO6sucNSAK03v8jXccx20wGklFntqrtOnAwooaGhvPSrX1FWVobNZiM0NLRfDsyy73+fD996i4sGAwFSkgsEzJ5NyrSebzrnzp5l95tvstTTk3BvbwwFBXz5v/4XD/zsZze8mVosFrKzs6mrqyMkJIQRI0agUCgYO3bsLaVpqtXqHh3gCRMSCQ3NxGDYR0jIZGw2M2Vl+0hJ8WHy5FH84Q/H8fcfhWiPHtbXG/HxaR7UOonQ0FB+/vOVfPnlfrKzvyYw0ItnnpnOhAl9X+nuDaNiR7Hl+BbkKIlQOFYJrWYr1NCvejIhBGufWUv8/njSj6Vjs9t4fNLjzJ8zf1j0/LzT2zs46TWvAulCiO9mpVHA2qEz58bU1dWRnp7OggULCAkJwW63c+rUKXbt2sUjj/ReTbon4uPjsVgsbNu2raNv8Lhx4xg37ua1aIONl5cXS597juPp6RzNzsbd25vRTz7J2CFwlG02G3l5eZQXFuLh7U18QkKvawHvRioqKti2LZO8vDrUapgyJYp586b3KVBQXFzM+vV7sVrH4uYWzpkzxWRmbubZZx/s93vr7e2NStWA2WxCo7kqftXQUExKyuCKEYFjRVWjkVgsrajVV52jtrYmPD2Htt3Ztdy/4H4+2PQBhccKEW4Ce72diRETmTihd9mHKpWK+2ffz8ZvNuIR5YGrhyu1pbX4m/17fY6BRh+i50z2GfxDr37OVosVaZL4+Pjc5Mie+XLnlxwrO0bw2GA8XTzJKswif2M+Lz7z4pC3sbse0Z3qVacdhDgipUwRQpySUk5s33ZGSjm0ocibkJycLI8fPz7UZjgZBlitVi5dukRDQwNhYWGEh4f3KrXxT7/8JUvq6oi+5maQU1XFwYgI/vmnP+2yf21tLf/n/3xAaak/jg5JeYwfr+TFF58a9Mh4fX09W7d+Q2ZmDhqNmvnzx7Fw4RyUSiX/9V8bOXzYhFI5Bru9HlfXc7z22kO3HKEcjtjtdt5Z/w6HSw7jGe2JzWLDlG/i8VmPc//i+4faPCfDECHECSll8lDb0VuEEC7AqPaHF6WUbUNly83G18OHD6NSqUhO7vzWbtq0ibS0tD7VwfUGu91Oa2srrq6u96Qq5Y0wm818tWEDrpcuEeXiQp3FQq6rK/NXrx6UYKTVaqWurg53d/dB7Yt+qzQ2NvL//t/nwEz8/aOx2SwUFx9l3Lg6Vq7s/RjxzjufUl+f0pHSClBUdJzUVBMLFqTe5MjeceTICTZvLsTXNwVXV0+qq/PQas/x/PMPDUq5y/Xs2XOQb76xoNenolSqsFhaMRp3snixD7W1bVy50kRMjD9TpiQO6Qqb1WqlsLCQpqYmAgICbihMeDMMBgNHs45S01DDqKhRJCcl3zCLw2w2c+LUCU5dPIVKoWLyuMkkjk8csHtOc3Mzb//9bRq9GgnQB9DW0kblpUoWjlnIvLRb70xQU1PDmx+8iX6mvpOthiwDjyY9StLEvgkz9ob+jK29WSE9J4R4ElAKIWJx9ELLvJWLOXFyu1GpVH1O+7Hb7VQZDERdp2wX7ePDf+d3nzqzceM2rlyZTFTUDACknEtW1ufs3XuQxYvn9+qa58+f5/DhCwghmDZtDAkJCb1ynr28vHjqqUd46qmuz61d+yRz5lzi8uVCtFotSUlrh2WqxvXYbDYuXbpEZWUl/v7+xMfH33BVUqFQsPaf1jL55GSOnTmGRqNh5vdmMmrUqG73d+LkTkII4Q68BkRKKZ8VQsQKIeKllF8NtW3XYzKZuogNgeMe1Z/0+RuhUCiGpQM01JzNysI7J4e5MTEd28Jraji4eTNPvPTSgF7rzKlTnNq2DW1bG01AeEoKqYsWDSvxxrNns2lpiUOvd7wfKpWGyMgZnDu3kerq6l6pzre0tFBSYurSP9zPbyTnzu1gwYKbH28ymcjOzqGurpmIiEBGjBjRZUxLSZmEt7eWQ4eOU1trYurUEGbMWHZbnFGAtLRpmEzpHD36MQqFN0LUkJTkye7dRlxcJuPh4ceBA0UcO7aF559/oN+rd7eKSqXqt6p0ZGRkr9SL7XY7H3/2MTnNOfhH+WO32fkk8xMMxQYeun9gBIc8PDxY8+QaMg5ncCbrDDp3HStmrGBC4oR+nbe2thaFrmsLGVcfV8qulPXr3INBbxzSHwLrgDbgY2AX8OvBNMqJk+uxWCzk5eVht9uJiYnpV6qB3W4nNzeX2tpaQkJCiIiI6OT4KRQKvIKDKW1sJOya3P2ShgZ8u4kut7W1ceyYgYiIFR3bhBAEBs5g//5PenRIpZR8/PEXfP11Ne7ujlrQAwcyWLIklxUr+qf4plAoGDVq1LBzzkpKStizfw8FpQXEhMWwIG1BhwBDc3Mzv3vnd+Q25oIXUA8jdSN55blXbpgWpVKpmDJlClOm9E723YmTO4j3gBPAd7UGxcCnwLBzSAMDAykoKOhUatDW1kZ5eTkzZ84cQsvuLYynTzPtOidL7+tLhtFIfX39gAUl8/PzubhpE4+EhKBzdcVqs5Fx6BCHlErSFi8ekGsMBFVVjbi6dnY+HOJ/fjQ2NvbKIVWpVCiVdqxWMyrVVbVfs9mEj8/Ns6AqKipYv34XJlMMSqU3FksusbHnWLXq/g7lYLvdzpkz5zhy5DJtbVaSk6OYMmXibS3NUKlULFs2n7lzm2hqasLLy4t3392Ct/cCvLwcLQx1ugBKSlRkZp5i6dLB71bQHS0tLZw7fw5jmZFA30ASxyUOmvBPQUEBObU5RKdcVbHX+eo4eugoMypndOpd3h+8vLxYumgpSxctHZDzgSMNXDbJLsrjrXWthEQPv57lPa43SylNUsp1UsrJ7f/+VUrZejuMc+IEIC8vj9/95Ccc/Y//4NSbb/Kfr77K2TM37uN5MxoaGnjn17/m4P/+31T9+c9s+cUv2PDnP2OxWDrtN+Ohh9hSVUV5UxPgcEa/qq1lxkN9i4j1kBEPQFFREXv2FBMV9U8EBycSHJxIZOQP2Lkzn9LS0j5d706goKCA1//wOhn1GTRGN3Kw9iC//P0vMRgMAHy5/UtyySVqThRRSVFEpkWSSy5bd2wdWsOdOBkaRkgp/wOwAEgpW4BhKakcHx9PfX09+/fvp7y8nMLCQrZt20Z8fPygqO066R6Viwvm64Tr7HY7VhjQvoYXMjOZrNOhaw8Qq5RKpkdEUHj4MGazecCu01/Cw/1oaSnutM1msyJlRa9boqjValJSoiguPtxRt2yxtFFdfZTp028e8P3ii4PALPT6mYSFjSUqagmXLvly4sTpjn2+/voAGzcaaWiYgc22gF27JB98sLXL3OR2oNVqCQ4ORkrJlSvmDmf0O3x9o7h4sfy22wWO9Os/f/hnPj/zORftF9mVv4vfv/97yssHx57SslJUPp1/MwqFAuElqKysHJRrDhR+fn4kxSRhyDLQamrFZrVRkluCT5sPo0eNHmrzutAbld3dwGNSyrr2xz7AJ1LKRYNtnBMnra2t/PfvfscKlYrI9lSZK83NvP+HPxD+H//R55SRbZ98whiDgbT2VA27lHyamcmhuDjS5l3N1U9OSUFKycbPP6e5sBBdcDCpL7/M+G5a0Li4uDB5ciQnTx4lPHw6QPuNPJMVK3pOF87PL0DKBBSKqz9HpVKNEAnk5+ff1kbN58+f58svMyktrWXkyCCWLUsd8P6Wn371KZpRGgKiHJFFnZ+OCtcKPtv2Ga+98Br7j+8nNO3qaxZCEDomlP3p+1n52MoBtWUwKSsro7S0FLVajaHIwIkLJ9C565g/cz7jx493tmlx0lvM7a3XJIAQYgSOjKVhh1qtZtmyZZw9e5Zvv/0WjUbDuHHj+qxO7qR/xE6Zwqn33iPEywt1e1romdJSfEaPHtDAgKm2Fq/rVvA0KhUam43W1tZh0zc0IWEUBw9uxmA4SmDgKCyWFiorjzF3bmSfVtbmz59BS8teTp36GCG8EaKKpUtHkZBw48l9U1MTRUWt6PWdx1E/vwSysg4wbdpk6urqyMgoJipqRYfKrofHDAoLd3Pp0mXGjBl4teHeoNFo0GjsmM0taDRXP+eWljqCgoYmwHToyCFqPGqIGhXVsa2yuJLte7fzgyd/MODX8/L0wm6yd32ihTsiyPbgkgfxy/TjUNYh2sxtJMYlMm/RvGEpitibUJn/d84ogJSyVggxsMoETpzcgIsXLxLV3Nwp1z/Qw4NxlZWcPnWKkLAwKisrCQgIIDY29qZF5m1tbRQcOcLyaxw8hRDMCgxk8969nRxSIQRTpk1j8tSpWK1WVCrVTR2IFSuWUFz8dwoLC3D0sM9n/HjBvHk9a6W7u7shRE03zzTg5jb46nrfcfJkFv/5n/vx8lqCThfKxYv5nDnz3/z854/1S632WqSUZOdnE3F/5zozf70/F3Zc6OFgOtrVDAeV2xths9n4+8a/s//sfmw6G2cyziCCBDMWzKDKXsVbm95iRfkKlizqg46+k3uZXwI7gQghxAZgBvDMkFp0E1xcXEhOTu4ibOTk9hEfH0/lggV8kp5OGFAnJTa9nsUP9q8E5HpCRo8mf/9+fK+ZmF9paABf39tW99gbXF1dWb16Gd9+e5IzZ77C3V3NypXxjB/fN/V7jUbDo4/ex/z59TQ2NuLr69tjDbNjTmLrkjZps1nQaBxT8KqqKiCkS8sXV9cIjMbyIXNIVSoVs2bFsWvXQSIiZqNWu9DS0kBt7WGWLx94QZzecC73HAEJndNk/cP8yUvPw2w2D3gQJC4uDs8MT64UXSEgPABpl5TllxHmFtZtvfxwQ6VSkZaaRlpq2lCb0iO9cUjtQgi9lNIIIISIpD1S68TJYGM2m+k2jmOx8NWHHzJKSvRAhhDsi43ley+/fMOolZQS7HYU1zmWKoUCm9Xa8dhqtXLsyBGyDx0CIRgzaxbJkyff1Any9fXl3/7txY62L8HBsxk5cmSvVNjGjBmDVptObW0BPj6OKGpNTS5abQFjxjzQ4/EDgZSSTZv24+//KJ6ejubMQUHjqKiQfPnlAX70o6gBuY4QAj9vP1oaWvDwufo5mepN+Hs7nO/USal8feFroiZdvWZhViHaVi1rf+rodjEtcRrLly0flgJNhzIPsTd3L9ELoym6UARxoAhTUHilkMlJk/EK9GLzN5tJnZF6T7dhcNI7pJS7hRAngak4UnVfllJWDbFZToYxQghmzZ/P+MmTqaioIN7Dg9DQ0AHPypiQksKWrCxsRiORXl7UNDdz0mJh6jPP3NK17HY7OTk55J88iZSS6AkTGJ2QMCBqplqtlgULUnsUH+oNXl5evR573N3dGTvWnwsXzhAe7hCpsdms1NScYsmSkR22Sdk1KN3WVoOf39A69qmpKVgshzh0aCN2uzuuri088cTEfosK3Sruru6YWk24elzVEbGaraiV6kEJVLu6urL68dVs2bWFgoMFIGFs1FiWLl3qVPYeYHrjkK4DMoQQ+9sfpwJrBs8kJ06uMnLkSNKFYJ7ZjEd75Mtss7GluJh5AQEsHzMGIQRSSnZdusSerVt5cMWKbs/l6upK6PjxnMrOJjn0alPlI1euMOqxxzoef/Luu5CZyWwfHySQ+ac/kT97NitWr77pIKtWq2+pMbuHhwevvbact9/ejNGoAyT+/s28+OITt61PVFtbGxUVzURGhnfa7uMTw+XLOwf0WvfPuZ/1u9cTPi0cF3cX2kxtVJyq4LnFzwGwbMky8t7JIz89H+klkXWSsqwywqeHEzkxEiEEhy4covDtQn75L78c0JqogSD9SDp+o/xQKBVUllWiCdLgHuBOaW4pFosFtasau9ZOWVmZM5XRSW+ZDczEEQxWA58PrTlO7gT64jjdCjqdjoeee46zJ09y5PJlPOLimJ+SQnBwcM8Hd8PebdswZWQw3ssLIQRnz56lOCWFRX3oYWu327HZbMNK5ff++2dTV7cdg6EAIXyQspjZs8M6Vj6Dg4OJjVWRm3uEsLBJKBRKqqoK8PDIZcyYR4fUdqVSycKFqcyenYLJZEKn0w3pmDt94nQ2ZmzEw8sDpUqJ3W6n+EIxaePTBi1zyt/fn9WrVmMymVAoFMOuf+fdQo/fKinlTiFEElejs686o7NDi9lspqSkBDc3N4KCgu7qWjRfX1+mrFzJuxs2MFmpRCkEJy0W7C4u3Bcb2/HahRDMDA3l/6Wns+yJJ274nixZtYoPf/tbDIWFBCsU5NpsmOLjeaY9XTc/P5/GI0dYGxPTsZIa7e3NOxkZGBcs6JVM+K0QExPDb3/7CsXFxQghCA8Pv63RN41Gg7e3hubmSjw8rqbDNDaWEh7eO9GHnpBSUlVVRUxUDI9Pe5xtB7ZhUVpQ29Q8Ne8pZkx3tMzRarX8f6/9f+Tk5FBZWUl9fT2f8VknlTt9op7CA4VkZ2czbty4AbFvoDBbzSjVjoHRQ+uBtdEKAiQOtTtpl0iTHDRVQCd3F0KIt4GRwMb2TWuFEPOllC8OoVlOnACO+/W01FRI7V8fzoqKCqq+/ZbHoqNRto99ET4+fHb8OCUpKT32mrTb7WRmHiM9PZuWFjt6vSeLF0/p0qZlKNBqtaxd+xglJSU0NzcTEDC+i5jSE0/cx86dBzl58kOkVBAVpeOBBxYNmzpFFxeXQe+p3hsSxydSVVNF+qF0hIfAbrKTFJPEnFlzBv3azhZTg0tvwxwuQE37/gntK1IHBs8sJzfi5PHj7H7vPfxbWmiSEte4OB5/7rkh6wd1O0hbsIDouDjOnTiB3WZjwYQJ1L71VpfUW0X7SunNCAwM5IVf/5qzZ85QV1XFxIgIEhISOiJ+RUVFxEvZ6dxKhYK49ucGyyEFRyTyVs4vpSQvL4/S0lK8vLxISEjoc3RYoVDw0EPTePfdzwkJeRh3d38aGoqpr9/O888v7LNN11NbW8tf/v4XcspyEGqBJ548+9iz6PV6vLy8utR9KJXKjv6xBw8eROHVjXOug+rq6n7bNtBMnzCdT059gnaqFv1oPblf5FKjrCFQF4hKqcJ4ykhiZCJBQUFDbaqTO4PZwFjZfnMTQnwAnB1ak5w4GVjKysqIEqLDGQXHuBQtBGVlZT06pPv2ZbJ7dxOhocsJDNRSU1PEX/+azksvLSIwcOhlT74LNN8INzc3Hn54IUuXmrHZbMNSdGY4IIRg/pz5TJ08lZqaGnQ63V09/72X6I3K7m+BJ4DzwHdSUxJwOqS3maKiIvb96U+sDgjAPyAAKSWH8/P5xzvvsPZnP7urV0qvb2KcMGsWmXv2sOCabZmlpYyeN6/H98HNzY0pKSndPqfT6cjv5vhqIQgaRiIN32E2m/nznz/m5MlWHIso5wkO3stPfvI9/P37JoiUmupQCP7iiw8wGNoICdHy6qtzOhzDW0VKyR/X/xGjuxH9Ij1CCBqrG3ln0zu88dobPYoQBAYGImslUsqOz1ZKCXUMS6duzuw5ZGVnkbM/B3WgGn2AnvD7kvcAACAASURBVOJjxfjH+1Oyq4RpY6ax6rFVQ22mkzuHHEAPGNofRwC31vfKiZNhiru7O1e62d4ABPewMtXa2sqBA7lERKxErXas4vn6RtDWlsSRI2d54IF5Nz2+O6SUnDx5moMHs2lsbGX06BDmzJncq56l/WG4KBMPJmazmQvZF8gz5uGl82LC2Al9nq9otVqnBsNdRm9WSB8C4qWUw1Jm/l7iVGYm01Uq/NtvzkIIpoaGcvzyZUpLS3uMIA4VhYWF7N+yhbJLl/AOCmLasmUkTphww/2bm5s5cfQopTk5eAUHkzyja/Ph+cuW8UFuLmUFBegBI9AQFcXT/VQRHDNmDPt8fTl35Qpj2q955soVSv39eXT08OvbdPBgJseOuRMT83SHs1ZaepSPPvqKV155pk/nEkIwe/YMUlOnO2od1eoBCXIUFRWRX5ePfpK+43w6Px11YXUcOX6EZUuX3fT42NhYRvuP5sLRCwSPDgYB5dnlxHvHExcX12/7Bho3Nzf+xw//B+fPn6fAWIDfeD8mvj4Rs9mMi4vLsEnBcnLH4AdkCyGOtj+eDHwrhPgSQErZ7Q9ICHEf8HtACfxVSvmbG+y3HPgUmCylPD7QxjsZnkgpKS8vp7m5mcDAwEEpIWhra6OwsBCr1UpERMRNrxEdHc0Rb2/yKisZ0T72FlZVUazTMWPEiJtep7m5Gbtd2+GMfoeHRwAVFZdvyfZ9+zLZtauWoKAF+PrqOHcul0uXtvHSSw85yy1ugNFoJP1wOuXV5UQGR5I6NZWQkJBO+7S1tfHeJ+9hMBvQBmppK2tjf9Z+nnngGUb08Dk7ubvpjUOaj0NEwemQDjEt9fXorkvFFELgKQQtLS2dtkspOXPmDKe++YbWxkZGTJ7M9Nmzb/tk2Gg08ukbb3CfSsVIX1/Kq6vZ9tZbmF98kclTp3bZf/1f/8q//fjHlDQ0MFKr5fFJkzi3YweP/vSnxMTEdOyn0+l4bt06srOzKS4qQtvaysTY2H7XOLi6uvLkT37ClvXr+To/Hwl4jBzJqtWrh2Xkcv/+CwQEPNjJcQwOnsSZM3tpbm6+pc9bCDGgr7W5uRnhKro4t2p3NTUN3bW76YxCoeBHa37Erj27SD+WDhIeTH6Q+xbcd1MRg+LiYo6dPObovTUmkfj4+NtWl6tSqUhMTCSxm761Tpz0kV/09QAhhBL4E7AAKAaOCSG+lFJeuG4/HfAj4MhAGOrkzqC5uZmdn3yCzM/HWwgypSR6zhxm9iLDqLcYjUb2/f3vhLW0oAFOCMHYZctImjKl2/3VajWL/+mf2Pvppxw1GBCACA1l0fLlPY7rnp6eqNVNtLU14+Jydcyrry8mMbHvGggtLS2kp18mMvJJVCrHWBgaOgajsZlTp84xe/b0Pp/zbic3N5e/ffU3tDFadON0XKq8xPl/nOe5x5/r1Es963QWBouB6KSrmhCNAY1s/nozP177Y6dy7T1MbxxSE5AlhPiGa5xSKeWPBs0qJ90SnZjI2YwMxgQEdAwada2tlKnVXWoT9mzfTv4//kGapydajYasTZv425EjPPuzn91WhbCMbduYr1Awrj21MtrHh8fUaj7atIlJU6Z0uvls3LCBX734Ih+YzcwEMpqaWJ2ZyUsaDTs//JDnf/GLToOlSqXCajZzessWIi0WsoAdWi2PvvxyvyJtoaGhPPev/0pNTQ1CCHx8fO64dOhrS2lNJhMVFRV4enoOerpRd0RERKBoUGBuMaNx07TbJ2kpaWHs0t71gXNzc+OhBx7ioQce6tX+Bw8d5G9f/g1FuAKFWsGODTuYM2oOT696+o75LFtbWwGcin73OFLK/QBCCE+uGbNld30irjIFyJVS5rcf+wnwIHB9s99/B/4D+MlA2uxkeLN/2zaiCguZ1F7yYrHZ2L57NxfDwhg9AJlAFouFfR99xGJX1476zclmM59v2UJYZOQNSy38/f15/PnnqalxfLV7O/aq1WoWLRrH5s278PefhpubF1VVBbi6nmPy5Jtn4HRHfX09Uvp0OKPfodOFUlR0us/nux0UFxdz/nweFouN0aMjiYmJua1j3a6Du/AZ7YOXv0PVOUgfRKWikn2Z+1i1/GqJyoX8C/iEd6751PnoMFqM1NbWDskc5XYipcRms6FSqTCbzVy+fJnaulqCg4KJjo4e1j3WB5veOKRftv9zMsRMmDiRrDFj+Mf58yTqdDRZLBwym0n753/uNGltbGzkxObN/CgiAvf2FdUwT08+Kyzk5PHjTJ8587bZXJGXx5LrCs6DtFpsBgMmk6lTDcAb69bxvtnMd1ppc4D1Fgs/PHqU74eF0dTU1KnZdnV1NXveeYdnfX3xa09jNtbXs/F3v+OVt97q12qpEKLPN8bGxkZ27NjHoUM5qFRK5swZy8KFaYO6spqaOpoPPshEp1veMfiUlZ1g/Pgg3N3d2blzL599dhSbLQgpq0lJCeHppx+5rYIJWq2WJxY9wUd7PsJthBtqFzV1hXWM9x0/KCuITU1NfLDlA4JnB+Pi4fgO2GPt7Nu7j2mXphEfHz/g1xxIampq+Pizjzl58SQASaOSePLRJ7uoMjq5NxBCrMHhOLbg0HEQOHQcYm5yWBhQdM3jYqBT4bwQYiIQIaX8SgjhdEjvEVpaWqg8c4ZF1wSx1Uolk3x9OXH48IA4pMXFxQSaTAReUxfoptEwWqEg7+LFHmv/b+Vel5IyCZ3Onf37D1FXZyIxMZjU1KV4e3v3+VyOlNw6bDYLSuXVrLTm5iuEhAy/3teHDx9ny5ZcNJqxKJUqMjLOMGNGAfffP3Ar3jfDarVSWl1K5PjOoozegd4UHCvotE3rpqWktaTTNrvdjrTKYZmFNlDY7XaOHjvKvmP7aGptwtfdl5r6GqS/RKlVYj1jZYRuBE8tf+qeDUL3pu3LB7fDECc9o9FoeObVVzl5/DgnT53CzdOTB2fOJDo6utN+ZWVlhEvZ4Yx+R7y7OxcuXoTb6JD6hodTcukS3tf8wGpaWkCr7eIUZRuNXG/ZTCC7vh6bStXlZnU2K4tEm63DGQXQe3kRaTCQk5NzSz1Be4vNZqO8vBy1Wk1AQABWq5U333wfgyGe4OA12O0WNm3aT0HBRl566fuDNiikps7g/PkNnDr1X8BIhLhCYGAZ3/ve98nKOs2GDZeIiPghGo0HdruNw4d34ua2jaefXj4o9tyI+XPnow/Xc+DIAZqam5g8dzJTJk8ZlF5x+fn52L3tHc4ogEKpQB2m5lz2uWHtkFosFt58+00qfSsJX+KYMJ7OOU3p26X820//bVj11nNy2/gXYEwf2611d8PpyJsQQiiA3wHP9OpkDqd4DTAs2mg4uXWsVitKKTup2QJolEos7VkZ58+e5fz+/Zjq6giKi2NSWlqflGrtdjvdJV4qhcBus93wuObmZmw22y3XaCYkjCYhof8Otbu7OzNmRJKevpfQ0OloNB5UVeWjVp9j0qS+r7gOJg0NDXz11QXCwx9HrXbMs+z2WL799nMmTiy5qbLvQKFSqfD28Ka5oRkPz6sp0011TQT5dg4+JI9P5uSXJzEHmNG4apBSUpJTwriocWi1WoqKiqirq8PHx4ewsLA7JqOpJzIyM9h2ehuh40Lx0/qx94u9lJpKeSDlgY5ewfmn8zl6/CipM/vXQulOpTcqu7HA/wYSgA6vQkp5s+isk0FCo9Ewdfp0pk6/cQ2DTqejWnZWJQWoamtD10cls/4yfelStmZl4V5bS5S3N1UmE1vKy5n6zDNdUhNG6/VkGAwdK6QAGUCUhwdxs2Z1WfG0mM10twbqiuMm/eU//sG59HSk3c6oGTNY8NDAiBFcunSJv/xlK7W1bkhpZuRIV6ZNi8Ng8CMq6mqLlOjohzlx4m2KiooGbRKn0Wj40Y+eITc3t73ty2gSEh5Fo9Hw3ntf4u09D43GMUAoFErCw+dz4MD/5fHHW27rKqkQgvj4+NviDGo0GqSla/sfu9mOq8vwjjxmZ2dTKkuJSojq2BaWEEbhQUfP1cEMsjgZtuThKJ3pC8U41Hi/IxwoveaxDhgLpLePEcHAl0KIZd0JG0kp/wv4L4Dk5OSb99ZyMqzR6XRowsIw1tSgv2Yl8mJNDfrp0zlx5AjGzZuZHRCAl48PhosX2ZmTw/0vvtjrlcvw8HAOajTUmUx4tweMLTYbF61WZnQzBjQ1NZH+5ZfUXLiAUkrUYWHMevjhLoI4t5MFC2ah1R7nwIHNNDebiY8PYuHChbe04jqYlJSUIKW+wxkFx1ivVI6koKDotjikAPOnzeeTg58QOj4UN60bTXVN1ObU8uj9j3baLzo6modnPMz2g9uxudmwt9oZFTqKhWkLeX/j+1yuuYzQCmSjZFTgKJ546Ilh0f+0P1gsFtJPpBORHIHGVYPVYqWhpQGvOC/yDHkkjU8CIDAmkBMXTjgd0pvwHvBLHNHUOcA/0X301ckwITg4GN24cew5e5Y5EREohcBQX88xpZJnZsy4rbbExsZy37/8C9s3baLWaMTVx4epq1czY/bsLvuue+MNVq9Zw3qTyVFDCnxfqeSB5ctZ8thjXc89ejRbpWSazYam3bltMpu5KAQuu3cTbzDwo9BQFEJwOD2d93Nzef7nP+/XKlNNTQ1vvfUF7u4r0Ov1SCkxGk9y+vQHaLWPd9pXCAUKRRQVFRWDuqoghCA2NpbY2NhO2+vrW3Bx6dyqRqnUYLOpKS8vx8/P765UCxw5ciS+dl+qi6vxC3ekXbc0tEAZJK9MBhx1HKWlpZjNZsLCwoZNqlBdXR10p0Pl0f6ck3uRnwGZQogj9F7H4RgQK4SIBkqAFcCT1xxbD3REJ4UQ6cBPnCq79wYzH3qIPevXE2s04qPRYGhpoTEmhsWJifz3737Ho2FhaNuzmuKDg2krKeHMkSOkLV7cq/O7uLgwY8UKvvz4Y0ZWVqIBLktJxLx5XboBSCnZ/tFHxJWWsiQ8HIVCgbGmht1/+xuPvPzykLX2UCqVzJyZwsyZKY4V32EqtuMYu1q7bLfbW3B1vX3j2sQJE7HZbez5dg9X2q7g6+HL9xZ+j5EjR3bZd0ryFMaPHU9lZSXu7u74+fmx65td5JpziZoW1bHfxdMXyfg2g3lpfW/bM5wwmUxYhAVN++chhEAgcHFzob6+vmM/u82OStkbt+zupDev3E1K+Y0QQkgpDcDrQoiDOJxUJ8MQIQRPrF3Llo8+4q0jR3ABRFAQD77wQpf2KbeDhDFjGP3661itVlQq1Q1TMFauchS+/3DdOrKNRmJDQvjXn/+ctc891+3+kZGRRC5ZwrvbtpGkVmOx2zkhJfq5c2n65hsWR0Z2XGuuXk9pYSEXLlzoV93iyZOnMZsTCQlxOJhCCEJCJlFSshur9RR6/dWkYyklUpbg6zt47WI2bNjIunVvYDRmo9eP5o031rFq1UoAkpKi2Lr1LFptcMf+RUWHyM09za9+JQAbiYmBPPPMQ8Mu6tsfVCoVr/zzK/x+/e8xXDYg1AJ1o5rnH3ueoKAgqqqqePv9tymoKUBoBG5mN1Y/tpqkiUlDbbpjRaCWrj1XaxnS1QInQ8pfgL3AWa72Ar8pUkqrEOIlYBeOti9/k1KeF0L8CjgupbyrdCEaGhpQKpXOlkq9JDQ0lIdfeYWc8+epqKtDHxlJbGwsjY2NuLW1dTijHft7eXHZYLjB2bonNi6OoNdeIy83F6vFwtyoqG5rR0tKSlAZjUyIiurYpvf1ZYTBwKWLF0lKTr6l1ziQDFdnFBzzIC+vTGpqjPj6OuYlTU3VqNWXiY/vnQhgf2hra8NisaDVaklOSiZpQlJHi7Obpdu6uroSEXE1iePImSOEpoR22ic4NpgjWUfueIdUq9XipnCjpakFN60bSpWSiPAILly8QOIox3zUbrdTkVvBwxMfHmJrh47eOKSt7fUml9sHuBKg98UEToYEDw8Pnly7lqZVq2hra8PX13dIc/GFEL1amVy5alWHY9qbcz7w2GPkJSWRc+YMSpWKx5KSKCoqon7v3i6vVy8EleXl0A+HtK6uGaWyq1Pv6xuNEEcpKfmW4OBk7HYrpaUHiI+nU7uagWTDho2sWbMOk2k9MBODIYM1a1YDsGrVSubPn8XRo+spLGxFp4unvr6A48ffY+LEl9HrpyKlnXPnDvOf//kRv/jFC8N60O0rERER/OZff0NBQQEWi4Xo6Gjc3NyQUvKHv/6Bcp/yjr6ozXXN/OmTP/Hr4F8PudM3YsQIEkMSOZV5isDRjtvslewrTAie4OzRdu9ilVK+1teDpJTbge3Xbeu2hYyUMu3WTBtaysvLObB5M5aSEmxC4DN6NGnLlnUSv3PSPTqdjuTrWq95eHhgUipptVhwvWa8vtLQgNct3H88PT2ZmHTzQJ/JZMK7m7HHW62m5i7KCpFSUlXlKAP39/cfsPmYSqXi6acXsmHDbgwGLUKocHev5nvfmzmoGVCtra3s/GYnJy+dxIaNMJ8wls1fRnh4+C2J8tjsNoSi83uiUCiw2W9cc3ynoFQqWTh9IZ8e/BS/eD/cde74B/jjneWN0leJ0W7EXm9nUuQkkpOGPgAzVPTGIX0FcMfRq+zfgbnA04NplJOBQ6vVDlnKy+1ACMHIkSM7pYW0tLRwtpsaWqOUjAsO7u40vSY+PpKtW48j5ZSOc1utrahUBtate4Gvvz7MsWN7UKkUzJ07mkceeWrQAgHr1r3R7oxe1SU2mdazbt0PWbVqJZ6envz852s4fPgYFy4co7q6iLa2R4mNnQaAEErCw2dgMFwgPz+/29SaOxmVStUljdloNGJsMhI59aoaoIe3BzVhNRw+dpiHlw1tdFKhUPDC6hdI35/O/uP7AVg1eRVps9PuqoCBkz6xr11UaCudU3Z7buJ7F9Pc3MzX69czW6EgMjISu93OucuX2bFhA4+tXXvXiKHcTjQaDfFz5vDNjh3MCglB5+pKUW0tJ+x2Fk2bNijXDAwM5IiUWG02VNfoShja2hh5lwholZeXs2nTPioqHFPuoCArjz8+h+B+zke+IygoiFdeeZKysjJsNhuhoaGoVIOb+vn5ts8513iO8OnhKFVKasprWP/Zel5++uVbyriaNHoSx/KOETHq6qppWV4ZM0bf3jKzwSI5KRkPNw/2H9tPTW4NiRGJvPSblzCbzTQ2NuLn5zdg34c7ld6o7B5r/28TjvpRJ06GHS0tLXyzfTvn9+3DZrNR2tbGZ7m5LNLrUSoUfFtaSm1kJAkJCf26TkJCAklJxzlxYiNeXslYrW00Nx9i+fJERowYwfPPj2DNGhtCCJqamti6dQ+HD1/G1VXN/PmJpKXNHLCBwmjMhm50iR3bHXh4eDBvXhrz5sHmzdsoLu5O1MqfhoaGAbFpuNPS0oJw6TpRVburaWgeHu+Bi4sLixYuYtHCRR3bLBYLJ0+epKSshED/QBITE+9Zafh7kO9qP392zbae2r7c9Vy6eJEYk4nI9l6aCoWC8aGh5BsMFBcXd0oHvNOx2WwYjUZaWloIDg7uc1sUu92OyWTCxcWlx0yllFmzOOniwhfp6ZivXME3Opq0RYv6pLLbF7y9vdGnprJ9714m+vigVirJrqmhNS7ursgKaWtr4/33vwbSiIx0ONg1NUbef/9rXnttxYDpFygUii71uYNFTU0N54rOoZ+p7wj8+Ab7UlRbxOmzp5k9q6tGSE/MTZ2L4R8GCk8UotQqsTXYCNOEMXtG3881XBk9evSAtFW6W7nhzFgIsZVrZOKvR0o5vLSvhwF2u528vDwqKirw9fUlPj7+nm5ye7uQUvLRH/9IyLlzPN8uYnSwuZltJhMXa2oQwOh583h62bJ+t81QKpW88MJTHDt2gqNHD+PqqmbWrFmdHF2lUklrayu//e17lJaOJSjon7FaW/ngg30YjZ/xgx880c9X7ECvH43BkAHX6RLr9d3f8EaMCMdiyeq0umuzWYB8wsPvjihkT0RERKBsVNJmasPF3aHcJ6WkpbiF8Q8OTwXbxsZG3vzTmxgsBpQ+SmxZNgJ3BfLTF3961zcRdwJSyuie97r3aK6rw7ub4J63EDQ3N/d4vMViwWq13la18VuhpqaGnR9+iOeVK3gKwUkp0aelMWv+/JuuAm/csIE32vUY9F5eLJk9m8kTJzJy5kympaXdcG6iUChInjqVSSkOMZ/bMYdJXbiQi3o9p44cwdrWhj41lRkTJ94V86f8/HwaGsKIirq62uvrq6ewMJS8vLw70kFpampC4abo8v1z1blSVd+X7lRX0Wq1PP/08+Tl5VFdU42/nz8xMTGDvtLrZPhws0/6zfa/j+CQhP+o/fFKoHAQbbojaW1t5aM//hH7uXNEC8FRKfkmMpKnf/zju1LJdDiRl5eH/fx5lkZFddwgF8fEUF1YyLgXXuiXiFF3qNVqpk+fyvTpU2+4z6lTpykpCSMq6moxvrv74xw8+HuWLq3osTF4b3jjjXWsWbO6o4YUMnB3X80bb7zR7f5jxowhIeEI589vxs9vMjabmdragyxZMmLQot/DDQ8PD566/yn+tv1vuES5oHJR0WhoJCkwiXHjxg21ed2y/evtGNVGoqZGdWwrPl/Mp19+ynP/1L3gl5M7HyHEXCnlXiHEI909L6XcfLttGk4E6fXkmM2MvWab1WajWEoSb3J/NZvNHNqzh8KjRxEWC1q9nukPPEBoaOgNjxlK9m3ezKT6euLbV4KtNhtfffMNlyMjiYuL6/aYjRs2sO5axfq6Olbv2MEUb29MLS1kSsms+fNvel3R7tjnXrqEubUVfUzMoL1HQoi7dvWotbUV6K5sStf+3J2Hv78/mMBitqDWXA3ym6pMRCfdevxMpVLdcms4i8XC8ZPHOXH+BAhIHpNMclKy06G9g7jhJyWl3A8ghPh3KeW1TXG2CiEODLpldxjpX3+N/5kzPBgd3eEUpRcVsePTT3li9eohtu7uprKyEr0QXaJ1kQMgYnSrFBaWo9F0vjErFEoUikgqKgbGIV21aiV2u42f/nQt5eV5BAWN4De/eb1DZfd6VCoVr7zyNBkZ35KZuQONRsVTT40nOXlSv225k5idOpuI8AgOHT1Ec0szSUuSmDhx4rAduA6dOkTQ1M7fl5D4EI5uP8qztmfvilUEJ90yG4e67gPdPCeBe9ohjYmJ4Vx8PHtzckjw9cVis3GqtpbwOXPw8fG54XHfbNmCx6lTrAoPR61UYqypYc+777Ls5VurfRtMamtraSsoIO6aWkqVUkmipyfZJ07c0CF9Y9061ptM16gLwHqzmR9u3cqJX/2KjRkZpKSm3jRdNPfyZTI/+ohYqxUXIciw2wmYNYu0++5z1uf2AYdQXjp2ezIKheNebbfbgAJCQtI67Wu326msrEQIQUBAwLB9n93d3ZmfPJ/tx7fjO8IXjauGSmMlIYQwJmHMbbdHSsknn3/ChfoLBMQEIKXki6wvKCgqYMUjK4bt+zgQ2GwO0ae7YR7QmxlYgBAiRkqZD9De1+z29w4Z5lzYv5+ng4M7ffGnhYTwfzIzsT799LCd7N4N+Pv7cw66iBgVSUnCADh+t0JIiC9mcylw1dmTUmKzleLrmzIg12hubqagoJ4FC36OUhmD3V7K+fNFVFdX3zCV08XFpb2mNG1AbBhK7HY7ra2tuLq69lnwJyYmZtDUjwcalUqF3da528d3/cru5oH2XkdK+cv2v07thm5QKpUsffJJzmZlkZmVhUqjYeSyZTddZaurq6M6K4tFen3HPSPSz4+EoiIunD7N9G76Yw8ldrsdJXT5nSsVCuxW6w2PyzYau1EXgOyaGlzUalytVlpaWm7okJrNZg794x8s8/bGp72VznibjS8OHMCYkNBRtzvcMJvNHD+exYkThSgUgsmTY0hKShzS+VdwcDDTpweQkfEVOp0jC6ex8SyzZgV2ErEpLS1l06Z0Kisdn0lQkGVAhY8GmtSZqQQFBJF5KpPm8mYWxS5i8qTJuLi43HZbioqKuHDlAlFTr2bJaZO0nMk8w6ySWYSHh992mwab5uZmdqfv5uTFk0gkibGJLExbeEdnZPbmV/oqkC6EyG9/HAWsHTSL7lCud4ag6yDiZHAYMWIEe+Pj2XXxIrNCQ1EqFBwuLaUyPJwxY25/tA4gOXkiX3zxZ8rKwggKSsRmM1NSspfERI8BEx7YuXMf+fkjiI6+r2NbSclh/vGPHbzwwlMDco3hiJSSg4cOsvnrzdSZ6vDV+vLYfY8xNWVqr39zGz7ewLrX12HMM6IfoeeN199g1ZO9azd0u5mbMpdNpzYRPc2RfSGlpPRcKfOS5zmVd53c02g0GiZNmcKkKVN6tX9jYyO+CkWX342fmxuXKysHw8R+4evriz0wkOLaWsLbV32llFyoqyNq6dIbHjdaryfDYLhOXQBG+/pSZzJh0eluqr5fWlpKQEsLPteUcqiUSka7uFB48eKwdEjtdjuffLKd7GwvAgLmIqVk8+ZTFBZ+zeOPLxlS25YunUtc3GWysi4BMGHC6E4K8K2trbz//h6UyrlERjqcp8EQPhpIhBCMGjWKUaNGDbUpjlVlr85ZckIIFF4Kqqqq7jqH1G638+F/f0iJsoTQmY40+jP5ZyjdVMoLz7xwxy6A9UZld6cQIhb47lt3UUrZdrNj7kVGz5pF5hdfdKpjPFJayoiUlDv2y3GnoFAo+N6PfsTXW7bwn+np2O12RqWm8szDD/dbxOhW0Wq1/M//+RSffLKT06e3o1IJFixI4JFHVlJZWcnWrfs4c8aIt7cHixcnk5Iyuc8BjEOHcggK+kGnbcHBkzh+fA8Wi2XIXvtg8+3hb3l3x7uETAkhyiuKppom3t7yNi4aF5J66HkHDmd0zatrMC02wQowGA2seXUNwLB0ShfOW0hBUQEndp9A4aNANkji/eJ5+P57t4G2Eye3gp+fH5WA2WpFc824XNTUhP8wdLKEEMx+7DH2Ux5WkQAAIABJREFUvPce0QYDngoFBVYrqgkTGH0Txfh1b7zB6mtrSIEfqNW8Mm8eO8vLmfTUUzdN8VMoFHTX/dEmJcpr3reKigoKLl9GoVAQExfnqC0cZC5dukRmZjaNjW0kJISSkjIBrVaLwWAgO1sQHX3VDddqF5CV9SkzZ5YOaY2wEIK4uLgbpljn5eXR1BRBVNRVx8nXV4/BEEp+fv6wcPqGMzqdDlq6bpct8q5se2gwGCgyFRE55eo9KzwunMLjheTn59/wezbc6dFTEkK4A68BkVLKZ4UQsUKIeCnlV4Nv3p3DnPvu4+85ObyXnU2MEJQAVWFhfP+xx4batHsCd3d3Hlq5kgdXrACGx+p0cHAwr7zyDBaLBYVCgVKppKamhl//+gNMplkEBCyhoaGWP/5xF7W1jSxePK/nk16DUqnAbu+ctiWlDYUCiouLOX/+ElJKxo8fjV6vHxbvyUDwxe4vCEwKxN3LHQCtrxZropUte7b0yiFd9/o6hzP6XYlvNJgWm1j3+rph6ZBqNBpeevYljEYjV65cwdfXl5iYmLvm83Ti5Hbh7u5O7Ny57Ni5k8l+frhrNFyuqqI4MJCHx47t+QRDQGhoKMtffZVLOTmYmpqYEBGB/pqU4+5YucpxH/thu8pudEAADyxaxIiF/z975x0e5XHt/8+stEWr3vtKQkKAkOggegdjsHHHxrhcN9xS73Xi5PreJL8k3JSbxM5NHNuJcQXjhgtgU0xH9N4ECNVFvZdV2Tq/P1YIhASSQGIl8X6ehwd29p15z0rLO3NmzvmeuSRPnkxsbOw17xkZGckOX18Kq6uJaM6rbbJaOW21Mr3ZET6wezeZ33zDYJUKB7Dxm29IuvtuRo4d2y2fuz327j3IV18Z8fcfi1brxdatmZw8uYZnn72HkpIy3Nxal/oRQiBENOXl5b1WtAqcJ6RCtHWcpPTss8JHN5MBAwYQvD2YoqwiQuNCQUJxTjFh7mHExfU/kfLa2lrQt20XnoKampqbb1A30Zmju3eBw8DFqsj5wGeA4pBehoeHB0//5CecO3eOkuJikgMDSUpK6renVL0VVy/S6+vrychwhuUkJibi6enZ6juwY8c+TKbRGAxOhV6t1hsPj8V8+eXfmT59YpdKEMyYkczHH+8kLu7ellDOgoI0AgIc/PrXXyPEKECwevVXPPBAEgsWzOnWz+oKHA4HpZWlxATEUF9Vj6nShIePB14BXhQdLurUGMYsIzx0RaMBjB8au9/gbkIIQUxMTK8MlVPoWYQQLwIrpZTVza/9gcVSyn+41rK+yYTp00kPDmbf3r2YTSYip01j4YQJvbr8i16vZ8TIkV3qs3jJkhbHtKu4ubkx65FH2PzBB4Tm5aEFjCoVQ++6i/DwcCoqKjj/7bfcHxmJtnl+S7JY+PzrrxmQmIivr+913fdaNDU1sXHjaaKjH0Sjcf6uPD3HkZdn4fjx0/j6eiNlQTs9K/Dyco2WRGeJiIhAyp04HKNahI/sdhuQQ0TEbAoKCqitrSUgIKBbBBH7G+7u7jyx6Am+3fIt6TvTAUiOS2b+ovltIgEqKyvJzMoEIH5AfJ8snRYQEICsa1uV01Hj6JOf5yKdcUjjpZQPCiEWA0gpG4WrV/29FDc3N5KSklrVpFS4dTh27ARvvPEtFksCAGr1Rp57bh6jRo1ouSYjoxgfn5mt+mk0XtjtAVRWVnYpv3T27GlkZa3i8OHXcWqNFRIeXsOFC24YDEtRq51baFbrGD7//A1Gj05pJZBgt9sxmUzo9fpu3Tipq6tjw3cb2H1sNxq1hlmps5g5Y+YN36Ouro66ujoigiPYs3oPZXVlCD+BrJV44cXtybd3ahxDvIE8Y96lE1IAo7NdQaEX8oyU8vWLL6SUVUKIZwDFIb0OhBAMTU5maC89Ee0tREREsPg//oO8vDysViujo6KcoZE4QwYTpGxxRgH0Gg1xDgdGo7FHSmhVVlZitwe0OKMX8fY2kJ19ivvvn01AwGGKitIJDR0MSIqKThERYerwRLinWLlyFa+8sgyj8QwGwxCWLXulXRX88PBwJk4MahY+SkZKicl0kgkTAvnmmzTOn5eoVME4HMcZMcKHe++dq6SCXYGfnx8P3/dw82mzaFdc6dCRQ3y18yukvwQBpMFdU+5i3JjO5aD3FqKiohgSMoT0o+mEJoQihKAku4QEvwSXfde7g858oy1CCA+cMvMIIeIBJYdUQeEyamtr+cc/1uPr+xSenk4R6oaGct54Yzl/+lNcy46xwRDA+fOF+PnFtvS12cwIUdXlXWWNRsP3vvcYRqOR4uJiAgISKSkp4e23a1ucUQC12gMpk8nIyCAsLAwpJbt37+ezz3ZhMrmh01m5886xzJ07/YZFciwWC396/U/kqfMIGxeGzWJjxb4V5OTn8NyT11cz02KxsOrzVew8uhOpk2SfyiajPIPwu8Lx8PGgsa6RkgMleGg6d8Kx7FfLLuWQGgAj6NfrWfZq+/VbFRRcjEoIIaSUF+dgN6D3qZwo9DvUajUJCQlt2lUqFbZ2ziVsQvRY+QkvLy8cjhocDkereaqhoZLgYC80Gg1PPrmAdet2ce7cAUCSkhLK/PkLXCL+tnLlKpYufaWlTnheXhpLlzpLALbnlF4UPjpxIhMhBMOHp3D2bB6ZmRHExjojqqSUHDmyhaioI0yc2LecqJuFTqdrt72mpoavdnxF2LgwNDrn49PSZOHrXV8zMH7gNUtF9TaEEDx494PsP7if/Sf3I6VkTtIcJqRO6NNCh51xSH8JbACihRArgUnAv/WkUQoKfY309HQsliEtziiAXh9ESUkSp0+fZuLEiQBMn57Ktm0rKC8PJDAwEYuljoKCb5k/f/B1Jd9fGcpZVVVF+/tFFtzdneMfPXqMf/7zCGFhT+DvH0RTUw0rV65Go0lj5sypzbuzJrRabSt1v8bGRvbvP8Tp0xcIDvZm8uTRbfJyTpw4QZ4tj9jxsS1tnpM92btxL3Eb4ygoK0Cv0zN+zPhO7+R9seYLtuRuIWZuDG5qN9Lt6ejP69EWarGZbIR4hTD+nvGcOXwGu93e4YLoYp7oK796BeOHzSq7r/ZelV2FW56NwKdCiDdxbgw/h3NOVlBwCfHx8Xzp7k5yYyO+zaHOlfX1GLVaxvdQzp6Pjw+jRgVz+PBuoqJScXfXUF1diBAnGTnSGR3j7+/Po48uvOYp2c3ilVeWNTujl6rBNjQs55VXvt+uQ3ql8JHdbufDD3cSGflIq2tCQ0ezb996xSHtInl5eTj8HC3OKIBGp0H6S3Jzc/uUQwrOA4kpk6YwZdIUV5vSbXRGZfc7IcQRYDzOQ+4fSinLe9wyBYU+hLM4cXv/ndQthYvBGZrz8sv3smrVd2Rmfo5e78Z9941gwYLZ3WJHUlISOt02TKZivLyc4bn19aWo1acZOtR5Qrl27T4CAuaj1zsVEXU6X8LDF7JmzbsEBwfw0UdbKC62oNHYmDMnhbvuug2LxcLvf78cozEab+9RHD1awcaNH/HjH9/OkCGDm1UCTZxIP4F7QOufg0SSUZ7BX1f/FcM4A7ZaGxvf3MgTdzzB1MlTr/l5zGYzWw5sIXpWNG5qt4s/UnxSfPCq9mLidKej77A7uGC/0CmHFJxOqeKAKvQRXsZZau15nHPwJuBtl1qkcEvhcDjIycnhQkYG7hoNiSkpjF+8mC8//pio0lIkUKDVMnXJkh7Nxb3zzpnodGkcOPARNps7YWHuPPjg1DbqvleekpWWlpKRkY2UkoED425KbU+j8Qy0Uw3W2d4xzrrlsiWn9CJubu40NrangaxwLVQqFUK2k20o6dOniu0hpaS2tha1Wo1e3476US+ls0Ho03D+z5KAGviyxyxSULiMxsZGampq8Pf3d+luZ0cMGjQIlepdLJapaDTOk0iLpR6V6hSDBz/e6tr4+HheeWUAFosFtVrdrQ9DLy8vvv/9O/n739+jsjIGKQVabS7f//6ClpDg0tIa/PxCWvXz8AgkO7uYP/95Pf7+DxETE43FUs+aNd9gs32Lr68nRuMA4uLuaOlTWxvDm2++j5+fJwUFPkAAJaVHqI/MJnJIZIvAVGlpKaXFpYxbMg7/COcupDnGzIdrPmT0yNF4Nhdeb4+mpibswo5aeylXKSo0ijMFZ2hsuKTzXpJVwrDEYb2yXpuCwo0gpXQAbzT/UVC4qTgcDjZ99RXmgwdJ1Okw2+18t3Urwxct4sGXX+bChQsATI2J6fE5WqPRsGDBTObMsWCxWPD09OxQyHD//sOsWXMOlWowIFi/fhvz5w9g8uTUHrXVYBhCXl4aXFEN1mAY0qn+7u7upKSEc/bsWcLDL9VTLyk5zYwZsd1p6i1BXFwc7pvdaahrQO/tdNIaTY24V7szYMAAF1vXfeTn5/Plxi8pqSsBB6TEpXDH3Duuuc7qLXSm7Ms/gARgVXPTs0KI2VLKF3vUMoVbGofDwcavv+b4+vX42O3Uursz9u67mTlvnsuVdNsjKCiIJUtSWbHin8BFEaNjPPzwGIKDg9tc35PhREOHJvHqqwM4f/48AAkJd7XatR40KIL09POEhQ1vaauuzsFsNuHvPwNfX6d0vkbjicGwkM2bXyMy0ouAgIWt7uPjE8W33xYxaNAC4uOdIVOhoTP4eusDHI04Skh8CHabnXP7zxHkF4RfuF9LX62nFruPnby8vGuKgHl7exPiFUJNaQ2+IU6HemD8QDIOZaAyqyjKKMJSbcGnzofFL7YNg7qZmEwmsrKyWvKuFOdY4UYQQnwqpVwkhDhJs4bD5Ugph7nArFaUlZVxNC2NitxcfEJDGTZlCtHR0R13VOgz5Obm0nTwIAtjYlo2TxOamvj8yy9J+NnPXFLzUKPRdOr5Wl1dzdq16UREPIBa7Tw1tVqTWL/+M4YMSehRRdJly15h6dKnWnJIIQ29/imWLeu8VsFtt00kP38dubklqNXBWK0FREfXMHHinT1md3/F09OTh29/mFXfrqLMuwwEuNe689C8h1rEuvo6tbW1vPPFO2gTtBhGGHDYHZw6f4qGrxt44uEnXG1eh3TmhHQakHyZoML7wMketUrhlmfH5s2UffEFPzAY0KvV1JnNfPLRR+z38WH8pEmuNq9dZs2aSlLSQE6eTEdKSUrKQy6rfabT6a6qdHj33dM5deoTCgut+PnFUVdXQFPTd8TFRePu3jqUyd1dh5TeaDRgNte1eq++vo6qqmoiIydedl9fBkc+yrE1v8Y94AxCCNT1aqInR7fZSJAW2aFTrlKpeOSeR3h1xauYYkx4+ntSU1DD9PDpzJ86n8raSsITwxkzeoxLJ5W0PWm8/9X72P3sYANvizc/eupH/bIGmsJN44fNf99xzatcRGlpKRveeIMxUjLe35+ynBx2nT7NuH/7NxIGDnS1eQrdxIWMDBK12laRPF46HeE2G4WFhb36dMloNCLlgBZnFECt1iJlAnl5eT3qkF7ME33lle9fprK7rN380avh5+fH9773ABkZ56msrCU0NJaEhARFYfc6GTRoED+N/il5eXkAxMTE9KmQ1o44dfoUFn8LYaHOdZzKTUX04Ggy92RSUlLS60sGdeZbfQ6nFmVe8+to4ESPWaRwyyOl5OC6dTwdEYG+WVbeW6vl9uBgvvj2217rkIIzRzQ8PNzVZlwTg8HAL3/5MOvXp5GZuYfk5ABuv/0ejh5N59tvM/HxiWq5trGxCg+PehYsmMtf/rIdX18DWq03UjooKNhOUJAGrdan5XqLpZ7M8vVEzRnA9DnjEEJQWVDJpvc2ET8inuAI52lxSVYJ4drwTjlsycnJ/OrFX7EtbRtFZUXMHDyTqZOm4ufn12Hfm0FhYSHvfP0OIVND0Hk5Fz5VRVX89Z2/8r+/+F+lFrHCdSGlvFhY9wUp5cuXvyeE+APO3FKXcWTHDsYJweDm552PhweeNTVsX79ecUj7EWoPD5rsbXMWm6Ts9c82p56AtZ13rLi797wjsmTJYh588AEyMzMxGksJCPCivr6+S+GTWq2WlBSlRFF3odfrGTKkc2HTfY3K2kq0nm03+VU6FfX19S6wqGt0xiENBM4IIQ40vx4L7BVCrAGQUi68ak8FhevA4XDQVFuL3xWqZwEeHtRVVLjIqv5FZGQkTz/9YKs2Pz8/du5czoUL7gQGDqaxsZKamu94+unJDB8+nMceq+HTT1/Hbg/Dbq9k3Dh/oqKSqKzMJDDQuQAtLz9Lg1cho4fE4ebuFGMIMgSRODyRCxsu0BjfiLRKojyj+N7T3+t0/mx0dDSPLX6se38I3cSRY0cgnBZnFMA/3B/jeSOZmZn9dvJTuGnMoa3zeXs7bTeVsuxsplzxjA7z9aUxLw+z2dyrc/4VOs/ApCQ2fvcdA5ua8G4WC8opL8cUFNSlutmuIC4uDo3mECZTBV5eztPQ+voq1OpsBgy4r8fvbzab+fDDtWRne6HRGLBaK9m0aTVPPXVbrz+tUuh7xEXFsWf3Hoi51Gaz2pB1kpCQkKt37CV0xiH9RY9boaBwGW5uboQPHsy5CxcYcln+5ZnycgzDh1+jZ+ex2Wykp6dTWlREYEgIycnJvX63tz2klGRmZnLq1Hm0WjWjRw+77okuICCA//7vJ9iwYScnTx7GYPBm3rypLaG/s2dPY+LEsRQXF+Pl5UVISAi5ubn87/9+Sl7eUFSqAIqL1xMQaCU6OqrV2MGGYO6bfR+DEgeh1WqJiorqE8p2VVVVbN+1nXO554gIjmDmlJlERbX+bBarBaFum9cs3SRWa3u78woKHSOEeB54AYgXQlweleQN7HaNVZcZERxMZWkpnpc5nrWNjbh5efXJZ6lC+wQHBzPqoYdYvXo1YTYbTQ4H9UFBzH3kkV7/DNfr9Tz66BQ++mgdlZXhgECjKeCRRyZfV5m1rnLo0DGyskKIi7ukJl9WFsGaNWk880zPO8R9HbPZzKHDhzhy9ghqdzXjUsYxYviIG/rerfxopbPkW1Zzybdf9Z+Sb4mJicQejiX3WC4B0QHYrDaqsquYN2beTfm+3yiiOTW04wuF8OEyB1ZKWdnB9TpgJ6Bt7ve5lPKXQog44GMgADgCPCqltAghtMAHwGigAnhQSpnbPNbPgacAO/ADKeXGa917zJgx8tChQ536XAq9k+zsbFb/7ndMkZIoHx9ya2vZo1az5L/+64Z3ZU0mE+/9+c/45eRgEIJ8KSmLiuLxl17qNWGgnUFKyYcfrmbLljLc3YcjZRNCHGHp0umkpo65aXbU1tZy5MhxqqrqCAvz5+0v3iZ4WnDLiaHVbKVgawHLfrDsun53ZrOZxsZGfHx8buoCqLy8nN/89TfUBdbhG+6LqcKENEp+8sRPGDRoUMt158+f57fv/hbDTEPLqXCTqYnKXZW8+otX+4S63a2GEOKwlPLm/Se5DoQQvoA/8DvgZ5e9VdfR/NuTXJxfMzMzOfz228wJDSXA0xNTUxPbCgoIv+cexowf7yrzFHoIs9lMUVER7u7uRERE9Hpn9HIsFktzPqnEYDC0Or13OBzk5uZSXV2Nn58fsbGx3fbZXn/9M8zmGXh5XSpLI6XEaPyQ//zP+5S54RrY7Xbe+/g9MhszCY4Lxm6zU55VzgTDBO6+4+7rGnPlRytZ+uOlNNze4ExENIJ+vZ5/vvrPfuOUms1mjhw7womME3hoPUgdnkpiYuJNEwO9kbm1Q4dUCLEU+A3QCDhw1kGTUsprZrIL56f3lFKahBBqIA2nSMO/A19IKT9uLvR9XEr5hhDiBWCYlPI5IcRDwD1SygeFEEk4FX7HARHAZiBRSnnVQkyKQ9o/KCwsZN+WLVTk5RGSkMCEmTO7Jezgq1Wr8Ny0iTkxl+IadhiNlEyezKInn7zh8W8W586d43/+ZxsxMU+jUjn3ihobK6mu/ievvvoDlyXr7923l7e/fBt7iN35tCiBRTMXMf+2+V0ax2Kx8MWaL9iyfws2lY1gz2AevefRq4o1dTcfrPqAnRU7iUq+dCJaVViFj9GHX7/865YHvJSSVZ+tYuOxjbiFuzm3zYpg6b1LGZ+qLMx7I33BIb2IECIeyJdSmoUQ04FhwAdSympX2HP5/Jp+6hRH1q+HmhrsOh1JM2cyZsKEXqmErqBwJY2Njaxc+Q3Z2VqECEPKEgyGBh577I5umT//9a8vqKoaj5/fJXFDh8NOQcGHvPLKQ23qpSpc4vz587yz+R3ixl3SmXA4HFzYfYEfLflRu9ULOiI2MZa8iXlwuXRFDsTsiSE3I/fGjVa4obm1MyG7PwGGSinLuzJwsyqvqfmluvmPBGYCDze3vw/8Cmd9tbua/w3wOfD3Zqf2LuBjKaUZyBFCZOJ0Tvd2xR6FvkdERAT3Pvpot497Ni2NF68ojD0+IoI/7tmDfOKJPrOYOn48A7V6ZIszCuDhEUBZWQw5OTkMHTr0Gr17jgnjJ5AQn8DJUyex2+0MTRp6XWrDH6/+mC05W4iaHYVaq6a2rJZXV7zKL1/4JTGXbSb0FCcyThA4qrUKo1+4H3lH8mhoaGjZ3RZCsPiBxYwbNY6T6SfRarSMemjUTSm+rnBLsBoYI4RIAJYDa4CPgK7t8PQAScnJDE5KoqmpCa1W2ywio6DQN9i58wDZ2ZHExk5oaTMaD7Bt2z4WLJh5w+Onpg5k5cojeHuH4ObmnKcLCo4xbFgoOp2O4uJitm8/QnZ2GcHB3kyfnsJARRAMgMLiQtT+rUP/VSoVwldQVlZ2XQ6pMcsID13RaADjh8YbsFShu+iMQ5oFNFzP4EIIN+AwzjqmrzePVS2ltDVfkg9cjOGLBC4ASCltQoganIJKkcC+y4a9vM/l91oKLAWniqiCwtVQubnhuCIywC4log+FIAFote44HOZ23rG4XBY+ODiYmTOuf0I3mUzsOLoDwxwDbmrnItcn2AfTABNb07byREzP19Ty9/GntK4UD+9LNVytTVZ0bro2gi1CCBISEkhISOhxuxRuORzNc+K9wGtSyr8JIY662qiLqFSqflU6QaFvU11dTVZWNna7g7i4mGs6LocO5RARsahVW3j4cA4eXMGCBTduS3LyUKZNK2f37o8RIhIpK4mLk8yffzulpaW8+eYm3NzG4+8/g8rKSpYv383ixWaGD1dUdf18/LBn2DE3mikvcJ6HBYQFIBvkdedDGuIN5BmvOCE1OtsVXE9nVq0/B/YIIfYDLatfKeUPOurYHFY7QgjhB3wJtCc3edEzaO9YSl6j/cp7/RP4JzhDijqyTaF/YLfbyczMpKmpidjYWHx9fTvsM3T6dHZ+/TV3xMYihEBKya7CQobOnt1nTkcBxowZxldffYLZPKKl9EplZRb+/mXEx8e72Lobo66uDrS0OKMX8fTzpLik+KbYcPu023n181fR++rRemqxWWzkH87n7kl3u9zhV7ilsAohFgOPAXc2tymqQQoKV3DqVDqffHIIhyMRcAO+4/bb45k8ObULo3Tf8lGlUjF//gwmTKiirKwML69BhIeHI4Rg06bdCDGW0NBEADSaSDSaOWzc+A0pKUm9Jkc3MzOTrXu3UlRehCHMwKxJs3rs0EdKSWNjIxqNhkGDBtG0uokvDnyBLloHAkwbTUyNm0p0dPR1jb/sV8vazSFd9uqy7v0gCtdFZ1ZVbwFbgZM4c0i7jJSyWgixHRgP+Akh3JtPSaOAwubL8nHWOM0XQrgDvkDlZe0XubyPwi1McXExH736Kv6lpXgLwQZg7KJFzLjttms6ljNvv50VWVn8Mz2dGOCClNgTE3n07utLlHcVkZGRPPnkBN5//x84HPFI2YifXwk/+MGiPu8wBQYGorVpaaxrbHVCWV1QzfTE6TfFhpEjR/J49eN8vulzrGorwiyYN3Yed95+Z8edFRS6jyeA54BlUsqcZmHAFS62SUGhV9HQ0MBnnx0gOPg+dDpvAKzWYXz77WoSE+Pa1Z8YN24A27cfIyZmYktbUdFxJk68pkRKl/H398f/ihJJubkV+Pm11hjw9PTHaHTmtl4peJSdnc2mTUe4cKGS0FAfZs8eQVLS4G6180rOnTvHu+vfxX+QP8EDgykqK+Kt1W/x7H3PdrtTev78edZuW0tlfSUalYZxSeNADWGJYdRYaxAIEsYkYK2zUlNTc10ClBeFi1751SsYP2xW2X21/6js9nU6s2q1SSn/vasDCyGCAWuzM+oBzAb+AGwD7septPs48HVzlzXNr/c2v79VSimb651+JIT4C05Ro4HAARRuaaSUfPr668yprSWlOZ+wwWrlnVWriI6Pv2YehoeHB0+/9BJZWVmUlZUxIDCQhISEXrMj2RWmTJnAiBHJZGdno9FoSEhI6BclFzQaDQ/e/iDvrH8H7yHeeHh7UJFXgX+NP9MmT7spNgghmD1zNlMmTaGyshJvb+8+IZ2u0L+QUqYDP7jsdQ7we9dZpKDQ+zAajdhshhZnFECt1qJSJZKVlduuQzplyjjy8taRk7MGCANKiIlpYvr0bojX7YDwcF8yM0vx8PBpaWtqMuHhYW8jdpSbm8vbb+/D13caBkMEdXVlfPDBDh55xEFyclKX7ltaWorJZCIoKAgfH59rXrtx10aCkoLwCXReFxThVAvevnc7jxkew2w2U1JSglarJSQk5LojzPLz83nvm/fwH+qPIcCApcnCZ9s/o6muiRnzZ2CxWBBCoFaryTuVR1ZWFqNHj76uey15eInigPZSOuOQbmvOz1xL65DdjmTnw4H3m/NIVcCnUsp1Qoh04GMhxG+BozhFGmj++8Nm0aJKmlOPpZSnhRCfAumADXjxWgq7CrcGBQUFuOfnk3zZLp1erWa8VsuJPXs6FAboTzl/3t7eDO+m+qy9BbvdzuRJkwkMCGTTrk1UFFQwL3Eesx+bfdNL82i1WsLDw2/qPbsbk8lEU1MTAQEBfXLj5VZGCJFD+2kq3XuMo6DQh3E6Q22D+KR04OYklyWdAAAgAElEQVTW/jNPp9Px5JP3YjQaqaqqws8vmZiYmJvyjJw8eRgnT+6gulqPn18EjY01FBbu4J57hrYRB9u69Rg+PpPx93fKp/j4hKBSzeC77za1OKT19fWcPn2W8vI6oqICGTx4EBqNpmWMxsZGPv98E2fONOHmFoCUaUybFsvs2VPadSTtdjslVSXEjGwtIOgb5IvxoJHjJ47z1davsHnYcFgcGHwNPHTXQ51Km7qSvYf3oovR4RPgdHw1Og3hg8PZ+fVObFZbq88BzgMJhf5HZxzSi4q4P7+sTQLXnAyllCeAke20Z+NUyb2yvQl44CpjLQOUIG+FFqxWK1oh2jxItW5uWJuaXGSV63DWNjPS1NSEwWDAw8Oj4069EJPJxOo1q9l1ZBfSIUkdlsoTDz3RJtxJoXPU19ez8rOV7Du9D9whyCOIx+973GUKzArXxeUS+jqc82SAi2xRUOiVxMTEoNXuxWSqwMvLqY5uNtejUmWQkHB1QWqVSkVsbCyxsbE3yVInUVFRPPXUBNavTyMvrw5vbzX33ZfM2LFtls0UFlbj7x/aqs3LKwijsRGbzUZVVRX/+td6Ghri0WjCSUvLJzz8FE8+ubAl9HfDhl2cPRtKbKwzTNhut7F587eEhZ0mJSWZ6upqDh48QW5uBWFhPqSmphDoG4ip2oSX36XIoLrKOnRuOj7Z+glho8PQ6Z2nuUVZRXyy5hOWPrq0yz+L0spSPA2tQ5RDwkOQdkldZR3+oc7539JkgUoYMEDZi+uPdOiQSinjOrpGQeFmExUVRYWXF0V1dYR7O0N0HFJy2GRi2NixLrbu+snLy+OLL7Zx5kwBQUHe3HFHKhMmjLtmKEx5eTl/+9sqjEY1QnihVn/Jo49OZ/LkvlUD0+Fw8Npbr5FFFpFzIxFCcODsAXJfz+VXP/1Vm13S3kJJSQkHDx/E1GAieXAyQ4YM6TXlL5avWM5R01GibovCzd2NmtIaXv3wVX7zw9/0+VPfWwUpZcUVTa8JIdKAX7jCHoW+i9VqJT8/HyklUVFRvfaZej3odDoeeWQqK1aspaIiGnBHpcrlvvtGERDQO/dvBgwYwIsvDsBqteLu7n7VeT4qyp/CwiKCgmJb2mprSwkK0uPu7s633+7Bbp+AwXAxMmwQRuN+9u49wuzZU7BYLBw5UkBU1CXlezc3dwIDx7Bv3z4iIsJ5881vaGpKxtd3MIWFZRw8uJEpU1PYcmoLJIOXnxc15TXUnK8hMSCROm1dizMKEB4fTt7uvOsqyRIfHc+e0j2tHF+HxcGY+DHUnamjpqQGoRKIKsFdU+7qtb9PhRvjqg6pEGKmlHJrs9R8G6SUX/ScWQoK10atVrNg6VI+/OtfGVlZiY+bGyetVnQTJ/bZ8NWCggKWLfsUN7d5hIY+TH19GW+88Q2NjWZmzZrabh8pJa+//gnFxRMxGEYhhKCpqYa3336H6Ojwm1Kvs7s4f/48mTWZxM6MbWmLSokiNy2XU6dOMWrUKNcZdxWOHD3C65+8jgyTuOncWP/JelJjUnn2iWdd7pSWlZVxNPsohtsMCJVzoeMb4kttZC1pe9N44N52A1IUehlCiMu/+CqcJ6beV7lcQaFdjEYj21asILi+HpUQ7NLpmLJ4MQP6uCL75QwYMICf/jSC3NxcHA4HBsPoPpH335Huw8yZI3nrrV2oVCp8fSMwmcqoqNjJY4+NxGKxkJFRQXR0699jcPAQjh1by+zZYLPZkNINlar1nKRW62hstLJz52EsllFERzvLzfj4hFBZ6UN21n4emf0Iq9evJr0oncjQSB678zHSM9PRONpuZgi1wGKxdPnzjx8zniMrjlBwvoCA8ADqa+upzarlyUVPEmOIITs7G4fDQVxcXJ+KliouLqayshJfX18iIiL6VBUHV3CtE9JpONV125OUlIDikCq4lKHJyYT+7nccP3yYMpOJiUOGMHjw4D6bI7dx425gOqGhKQD4+ESi0Sziiy/eYurUCe1OWvn5+eTlCaKjR7U87HQ6X9zdJ7B377E+5ZBWVlYifNo+sIWPoKy8zAUWXRuz2czyz5YTMD4ATz9nuJFMlOzbsY+JJycyYsQIl9pXV1eHSq9qcUYv4uHrQWlVqYusUrgO/nzZv21ALrCo/UsVFNrS1NTEtg8+4HadjpAgpzBNZX09az/8kJCXXuoTTltn0el0DB7cs+qzNxuDwcDSpZPZvPkweXmbCA/3ZeHCkQwalIjNZsPdHRwOGyrVJSfRZjOj0znXDHq9nuhoPRUVea1OWcvLzzJ3bjR79mQSHDy51T0DAqLJydmId+AJzBozIckh2Cw2NuzawPiU8Rw8fpDgqEsnoY2mRnRWXbviUR3h5+fH80ueZ8+BPWRkZBDlE8XkhZNbQnNdPZd2FavVyuo1qzlZcBKVjwp7nZ2BgQNZfO/iNoJVCpe4qkMqpfxl8989X4FeQeE6CQoKYtZtt7najG4hO7sMX9/prdp0Oj/KynTU1dW1G6ZiNpsBfZudN7Xak7q6vpVLGxoaiqySSClbfR5ZJQkP63x4qdVq5fDhwxw6dQgvvReTxk7qUOTqerhw4QKN2kaC/S5NykIl0EfrOXzqsMsn0bCwMNwa3LA0WtB4XFqo1BXUMXSikkPaV5BSznC1DQp9m5ycHKIbG1s5CwGensSXl5OVldVno4puJWJiYnjqqbYbzO7u7owbF8uePQcxGCYihMDhsFNaepAHH0xsuW7hwkksX/4dRmMxWm0AjY1GoqIqGDduIenphZhMNWg0+pbrm5pMVNfkc6ysgfiJ8S1zclF2EWdyzjA0YCinD5zGK9wLS6MFR4mDh297+LpV/v39/Vlw2wIW0PMKxz3NvgP7OF55nNiJsS0/t8yTmWzduZX5c6+ez3yr07eLFSootENDQwOHDxygMCMDv4gIxkyYQGBgoKvN6pCYmEAOHbqAp+elRYPZXItW24S3d/sResHBwZjNGZSV5REUZEAIgZSS+vpjjBzZNTl4VxMXF8fwyOEc23eM0KRQVG4qis8WM0A/gKSkzn0Wm83G3/75N46VH8M71hubyca2d7bx6JxHmT1zdrfaq9FowNq23W6x4+HrelEpvV7PA3Mf4MMtH+Kd6I3WU0tlTiXRMppxY9voyin0UoQQvsAvgYtx+zuAX0spa1xnlUJfwmq1omlHmVQD2KztPMQU+hSzZk2kqmoT6emfoFIFIWURU6dGMmLEsJZrwsPD+eEP7+HUqbOUl+cTGxvGoEFT0Wg0TJs2lPff34tOdxtarSdWq5nCwjS8gpsIHhDcaoM4NDaU7LRsfvrUTxlTMIZzOefw8vVi2Kxh13U62h/Zf3I/oYNDW/3cIgZFcGDfAebNntdno/h6GsUhVehX1NTU8M7vfseA4mKS9XqK9+1j+bp1LPrZz266il5XmTdvEvv3f0J5uSeBgYk0NJRTVLSWRx4Z2+6u465de1m5cge1tWoOHPh/+PlNIiVlGDbbGUaNsjNiRN/a9RZC8MJTL7Bx80a2H9iO3WFnwcgFzL9tPu7unXtUnTx5kmNlx4ibFtcyGViiLXy84WPGjxvfraFpUVFRRHpGUppdSsgA50RsabRgNVqZcPuEbrvPjTB75mzCQ8PZsnsLNRU1zEqZxbQp09Dr9R13VugtvAOc4lKY7qPAu0C7+g4KCldiMBhYKwRjrFZ0zXOJxWYjU0rm9KG0DoX2cQo6LaS0tJS6ujoCA8e0Wx7N29ubCRPaij4mJQ3h3nsb2LjxM6xWL1QqE3PmJHC+IJY66lpde3FedXNzY8iQIQwZMqRnPlQvw2Kx0NjYiJeXV4f6EDabDY1b6xxblUqF3a5UrLwWikOq0K/YuWkTKSUlzG52PocCkeXlbFixgmdfeaVXJ5VHR0fzs5/dzaefbuX8+U8ICPDi6adTmTZtUptrMzMzefvtA4SHP0dYmB8JCfmcOLGShoYVvPzyv5GSktJpJ643odVqWbhgIQsXLLyu/qczTuMR6dHq96zx0ODwcWA0Gjt90toZVCoVLz7xIq+9/Rp5eXkIjUBVo+Lx+Y8TF9c7xMmFECQnJ5OcnOxqUxSun3gp5X2Xvf5/QohjLrNGoc/h5+fH4AUL+HLdOpLc3RHAGauVmLlzu6yI2lXKyso4tns3Fbm5+EZEMGzSJCIjI3v0nr0Ji8XC3r2HOHAgG4dDMmZMHJMmjemRXMKQkJDrPqVMTR3NqFHDqK2txdPTE51Oh+9hHZ8f+hyfQJ+WObUkr4SEsISWcjL9HbvdzvZd29l1dBc2NxteKi8WTF9ASnLKVfuMGjKKnTk7MQw1tLQV5xQzbOAw5XT0GnS4YhVCvAislFJWN7/2BxZLKf/R08YpKHSV7EOHWHLFBDsoMJCvMjNpaGjo9Q/RhIQE/vM/E9rkUV7Jrl1H0emmoNM5d0F9faOYPPknGI2vER0d3Sed0e7Ax8sHa1HbEDRplj1yKhgWFsayny8jJyeHpqYmYmNj+5VAiEKvoFEIMVlKmQYghJgENLrYJoU+xtiJE4mKiyP77Fmkw8GkQYOIiorq0XuWlJSw8Y03GAOM8/enLCODbcePM+npp3vNpl1PIqXk44+/5cwZf8LC7kQIFVu2nCAnZx1PPnlvr3NO1Gp1q/SmEcNHkJmbyfG9x1H5qZCNkkBHIAsXXd+G8dWoqqpCStkry7nsSNvBd2e/Izo1GrVWTUNdAys3r+RZz2ev+h2ePGEymZ9kknsoF3dfd2x1NoJlMHNvn3uTre9bdGbV+oyU8vWLL6SUVUKIZwDFIVXodWg9PamvrCToMufDbLfjcHe/7mR7V9DRSW51dSMaTeu8UiFUCOFFY2PvXatKKcnLy6OoqAg/Pz8SExO7tTxK6phUvt75NSaDCa8AL6SUFJ0rwuBpwGAwdDzAZZSVlVFVVUVoaCi+vr5Xvc7NzY2EhIQbNR1wilQdP36c/KJ8wkPCGTFiBB4ers9HVXApzwPvN+eSAlQB/+Y6cxT6KuHh4Te1/vDh7dsZ7+ZGYmgoAL4eHnhUVbF7/XriXnjhptnhKvLz8zl71kFc3LSWttjYSWRnryU3N7dFRba34u7uzoP3Psik/EmUlpbi6elJfHx8t62lysrK+Pybz8mvzgcgyi+K++bf12tyUW02G2nH0ogaE4Va26xY7K3HJ96HtENpV3VI9Xo9Sx9dSmZmJiVlJQT6B5KYmNiv6v72BJ1xSFVCCCGlMyNeCOGGMxdeQaHXMXLOHLb84x8s8fJC6+6OQ0q25OczeNasfvUwGDkyjqNHTxAYeEk9tr6+DE/PasLCwlxo2dWxWq386/1/cSD7ACJAgAkMOgM/fu7H7ea7XA+hoaH8cMkPefvTtzGqjEirJD4onueefq7Tu9Fms5l3V77L/nP7UXmpkLWSeRPmcf/d9/fojnZtbS1/+PsfyHfkow5QY0u3EbwpmJdffJmg5lINPYHJZOLAwQNkX8gmIiSCCakT+lStt/6OlPIYMFwI4dP8utbFJikodIqyrCxmXnHqFenvT11eXnO5kv4dyVNZWYkQEW3aVapIyssrer1DCs7N8ejoaKKjo7t1XIvFwrufvYs10kpMijOPuSy/jPc+f48fPf2jXrFeM5vNWKQFja61LXpvPRUlFdfs6+7uzuDBg/tdCaKepDNPg43Ap0KIN3HWH30O2NCjVikoXCdjU1MpLyzktW++IRIok5KgsWO5//77XW1atzJ+/FjS0t7h/PnP8PJKxmyuwW7fzfe+N6fXngRv37GdvUV7GTB7QEttzAsnL7Dqi1U8/+Tz3XafYcOG8echf6awsBCtVktoaGiXcoe/XPsle0r2EDs3FpWbCrvVzppdawgPCWfK5CndZueVrN2wliJ9EXEjLu26FqQX8Pnaz3nuied65J5VVVX8z9/+hzJtGfoQPXvS9/DNzm/4+Qs/7/FwPoXOIYT4H+CPV6TN/IeU8r9ca5mCwrXxCgqisrqaiMs2HGsaG1F7e3drZExvxdfXFynz2rQ7HKX4+fV+Z7Qnyc7Optq9mtio2Ja24Khg8krzyM7O7hWOnF6vJ0AfQF1VHd7+lyLSKosqSY1OdaFl/ZPObPe/DGzFGTb0IrAF+GlPGqWgcL2oVCoW3Hcfz736KuN+9jOW/OEPPPrii/0u7FGn0/GTnzzFM89EkpR0lNmzS/j1rxcxevRIV5t2VbYf2k5IUkiLMwoQMSSCg+kHaWrq3pqparWamJgYwsLCuuSM2mw2th7YSvTIaFRuzsejm9qNkJQQNu3e1K02XsneY3sJTQxt1RaWGMbBkwdxOBw9cs9vNn1DhV8FsamxhMSFYBhlwBHv4OOvPu6R+ylcF7dfdEbBmTYDKMXsFHo9KdOmsbuykuqGBgBMTU3sKCwkeebMXi0w2F0YDAYMhiaMxoPYbBbsdhv5+UcJD6/qE6ejPUljYyNo23lD6yzd1xsQQnDH9DuoPFVJibEEU7WJ/HP56Cp0TBw30dXm9Ts6PCGVUjqAN5r/KCj0CXx9fa+Z99cf0Gq1TJ48kcmT+8aD0WF3tFmEXKybKtupkecKbDYbFpsFd03rR6PGQ4OpwXTdYxYXF6PRaAgODr7qQkyj1mC3tpaFd9gcuLu799ji7eCpg4SOb+0Eh8SFcHrdaSwWS68Im1LATQihlVKaAYQQHrS/lFNQ6Dby8vI4e/AgZpOJiMGDSR4xosvKsImDBmFZvJi1GzagqqjAptUy9J57GDm2bemR/ohKpeKxx+5g8+Y9HD78IVLCiBFRzJlzR78PV+6IsLAw2AUOh6MlFcbhcCCr5U3Nc+6IxMREntc/z97Deym9UMqk6Emkzk/ttjQjhUtc9X+EEOJTKeUiIcRJnKG6rZBSDmunm4KCgkK7TBo1iU+PfYrneM8WB6v4fDHDBw7vNSfYOp2OwTGDMeYZCYm7JKxQmlnKnOQ5XR7v1KlTvP3J29RSi7RKBoUPYumjS9tVE5w5fiafHvmUuAlxCJXTUS84UcC8cfN6zCH10nvR1NiE1vOSf2M1W9G4a26JkLo+wgpgixDiXZxz8ZPAB641SaE/c+LIEc589hmj9Ho8tVoyMzL4+sgR7n7qKbTaru2FJA8fTlJKCg0NDeh0ulvOEdPr9SxcOJs77nBGufQ2ZV1XER4ezrgB49h7YC9+MU7nrjqvmgkDJvQqhxScNccfiHrA1Wb0e671ZPhh89933AxDFBQU+jezZ8zmdMZpzmw/0yJqFGQLYskLS1xtWisevudhfv/m7zFWG/Hw96C+pJ4QcwjzHp/XpXFKSkp47cPX8B3niyHQgJSS7LPZ/G353/jFS79o42TOnTWXvII8Dn53EJWfCketg5SIFO5acFd3frxWzJk4h+Vbl6OfrMdN7YbD7qDgWAELxi9QHNJegpTyj0KIE8BsQAC/kVJudLFZCv0Ui8XCkXXruD88HK/mE9EIPz+25+aSfuoUI0eP7vKYKpXqli+HpTiibVk4fyGJZxM5kn4EKSV3zbirV+SOKriGqzqkUsqi5n++IKV8+fL3hBB/wJlbqqDQ7yksLKSsrIzAwEAiIyNvidyXnkCn0/HS917i7Nmz5BfkExgQSEpKSpd33Hsag8HAb1/6LXv276GwtJCEcQmkjkvtcg3b/Yf2IyMk3oFOMQQhBOGDw8nZkoPRaCQmJqbV9RqNhheeeoGCggJKS0sJDAzEYDD06PdtyuQpFJcVs+m7TQgfgaPOwcTBE3vUCVboOlLKDTSLCQohJgkhXpdSvuhisxT6IeXl5QRYrS3O6EXivL1JP38ersMhVVBoD5VKRVJSEklJSa42RaEX0JnYiTm0dT5vb6dNQaFfYbFYeOedz9i/vxwhonE4djBypA/PPvtQl3NpblVyc3P5bsd3FJUXMSRuCLOmz2Lo0KEMHTrU1aa1i5SS9PR09h7Zi91uJ3VEKsOGDbuu3e3q2mrc9a0fsUIIVDoV9fX17fYRQhAVFdVG4VZKSVVVFQ6Hg8DAwG5zUt3c3Hjo/oe4bdZtlJaWEhAQQHBwcLeMrdB9CCFGAIuBB4Ec4AvXWqTQX9Hr9dQ5HEgpWz1napua8FDy5hRugKamJo4cO8KJjBN4aD1IHZ7KoEGDlE3+XkpBQQGbd20mqyCLQN9AZqTOYFhKz2VrXiuH9HngBSC+OVzoIt7A7h6zSEGhl7Bp03b27NESF/d9hFAhpeTIkbWsW7eZ++9XItk74uTJk/xl5V/QxGvwNHiy3rieXX/ZxS9+9IuWuppWq5V9+/eRdjgNlUrFlDFTSB2X6rJw0dVfrWbNoTXo4/QIlWD36t3MPDWTx5c83uVJM3lQMlvWbkEmXFrYWRotqGpVXarpVlpayvKPlpNRlAECDP4Gnn746W6tC+fv76/UHu1lCCESgYdwOqIVwCeAkFLOcKlhCv0aPz8/fJKSOHjmDGOiolCpVFSYTBy325kzsvequPckTU1NZGScp6qqjoiIYAYMGNDlOaqsrIytWw9y5kwRPj4eTJuWxKhRw28ZZ8xqtfLeJ+9htBsJiA6g2lLNu9+9y7zSecyY2r8eaRaLhYaGBrz7cHmjkpIS3vrsLbRxWsInh9NQ18DKbSsxW8yMHd0zomTXOiH9CFgP/A742WXtdVLKyh6xRkGhF7FlywnCw59ECOfpmBCCyMiZbN78f8yfPxMpZZfDOG8VHA4HK75agd8oP3xDnGrHPsE+XDh5gQ1bNvDIg4/gcDh48903OVh8EP+B/kiH5I2Nb5B+Pp2nHn3qpk/UxcXFrNu3jpjZMbipnZOII8bB9i3bmZY7jbi4uA5GaE1KSgrJu5M5ueskvnG+WM1WGrMaWTJ3Cd7e3h0PgFOh989v/pnqsGoM8wwAlBvL+dM//8Tvfv479Hp91z6kQl/iLLALuFNKmQkghPixa01SuBWYfe+9bFu7lhUnTuABNHl7M/6xxwgNDe2wb3+joqKC5cu/paYmGje3AKzWDBISTvDII3d0Ot2kurqat95aj8MxjtDQOTQ11fHpp3uorW1gxoy+oZJ/o5w7dw6j2Ujs6NiWNp9AH7bu3crYUWP7RY6x3W5n285tpB1Lw+Zmw1Plyfyp8xk+bLirTesyuw/uxj3aneAoZ8SUt7836hFqvtv7HaNGjOoRR/taOaQ1QI0Q4r+AYimlWQgxHRgmhPjg8rpoCgr9EbPZiodH6wnHam3k+PGTvPjia4CKoUODeeSRBU4Jc4UWTCYTZXVlGEIMrdoDDYGcPHUSgKysLA4ZDxE3M66lNqlfmB9pm9OYe2EuBoOhzbg9SU5ODgTR4owCzlqkIZCZldllh1StVvPDZ3/IwUMHOXjyIJ4enkz9t6kkJiZ2eoyzZ89SSikxiZfyTYNjgsktzOX48eNMmDChSzYp9Cnuw3lCuk0IsQH4GKeokYJCj+Lh4cH8RYswzZ9PU1MT/v7+ffak50ZZu3YXZnMqMTEXn9vDyMraycGDR5k8eXynxjh8+BQWSzJRUU7BHk/PAAyGOWzfvooJE0bdEilAOfk5eAS1VtN3V7uDlzMKqD84pDvSdrA5YzPR46NRa9Q0mhpZtXUV3l7efa7ubH5JPj7xPq3adJ46yuxlLae/3U1nEqNWA3YhRAKwHIjDeXqqoNCvGT9+IMXFh1peOxx2tmz5EyrVbURH/xSD4adkZo7ij39c4SzyrNCCTqdDjRpLo6VVe0NNA8G+zh03o9GICBItzig0O4CBkJ+ff1PtBWfulDC3s943g6f++k7CNRoNkyZO4kfP/ohnHnumy/kyJpMJ2qmII/SC2rra67JJoW8gpfxSSvkgMBjYDvwYCBVCvCGEmNtRfyHEPCHEOSFEphDiZ+28/+9CiHQhxAkhxBYhREx74yjcunh5eREUFHTLOqNNTU2cP19NcHBCq/agoKEcOZLX6XEuXKjCy6v1prVarcXh8KW29tZ4jgf4BGCuN7dpdzQ6+oUzarPZSDuWRlRyFGqNGgAPLw98E3xJO5jmYuu6TmRIJLUVrb+bTfVN6FS6HovM6oxD6pBS2oB7gdeklD8GeleRIAWFHmDhwtmEhBwhN3c1hYWHOHXqTSwWK5MmLUKlckcIFWFhI6msHMDx4yc6HvAWQqPRMHfiXPIP52Oz2ABorG2k9kwt86Y7y6f4+PhAO9o+olH0yO5bRwwePBhfsy/lxvKWturiavQ1elJSUm66PQDR0dHIConD7mhpkw6Jo8xBbEysS2xSuLlIKeullCullHcAUcAxWqfRtEEI4Qa8jlOAMAlYLIS4UsryKDCmuab458Afu914BYU+jEqlQqWSSOlo1e5w2FGrO++kR0b6YjKVtGqz2SwIUeOSuc4VpCSnoKnSUFVSBYDD7iD/bD4DgwcSEhLSQe9rU15ezsYtG1nx+Qr27t9LQ0NDd5jcJSwWCxaHBY1O06pd762norbipttzo0waOwnbBRvlheU4HA5M1SYKjhcwZ/ycHtug6oxDahVCLAYeA9Y1t6l7xBoFhV6En58fv/zlcyxdGsmsWYXcdpuGkSOnttkdUqlCKS9XItiv5K477mLBkAWUbC7hwncXaNjfwDN3PENycjIAycnJ+DX5UZJdgpQS6ZAUZRQRLINdUotMq9XyH0v/A2+jN8bNRoxbjLiddePfn/x3ly0aIiMjmTlsJjk7c6jIr6CqsIrsXdmMMYxh4MCBLrFJwXVIKSullG9JKWd2cOk4IFNKmS2ltOAM921Vy0dKuU1KeXHltg+ns6ug0CENDQ2cPHmSo0ePUl5e3nGHPopGo2H48HCKii5tODscDsrLjzBuXHynxxk9Ohl395OUlJzH4XDQ2FhDXt5mpk1LwMOjnRCYfoiPjw9P3vsknsWe5O3KIz8tnxSvFBbdteiGxs3NzeX/Vvwfe8r2kO+Rz7oz63hrxVvO6KKbiIeHB4GegdRWtj5VrCisINHQ+TSd3kJYWBhL719KuCmc/O35iCzB4qmLGTumZwSNwKnYd0qVjVIAACAASURBVO0LnLuqzwF7pZSrhBBxwINSyt/3mFU3yJgxY+ShQ4c6vlBBoQtcuHCB//7vLzEYXkSlcu4QSSnJzX2fn/xkTIuj5Upqa2vZsWMvx47lERjoyezZY7uUs9gTNDQ0YDKZ8Pf3R61uvZdVWFjI8lXLyS7NBgmDowbzxENP3PCO6Y3gcDgoKChASklkZKTLw9UcDgeHDh1i16Fd2B12Jo6cSOq41DY/S4XOI4Q4LKUc42o7egohxP3APCnl082vHwVSpZTfu8r1f8epFfHbq7y/FFgKYDAYRufldT5cUaF/kZuby44PPiDWbEYrJVlA3Ny5TJw+3dWm9Qgmk4kVK77lwgUNEICUBYwdG8jChbM6nBtyc3PZsOEQRmMlWq0dtVrS0KDGx0fH1KlDGDdu1HWVFOvLSCmpq6tDrVbfsDMupeRvy/+GOdqMb5BvS3ve6TxmGmYya/qsGzW3S5w/f5731r2HLkaHp68n1SXV6Cp1PL/k+VtGxf5G5tYOHdK+iOKQKvQEUkr+9a9V7NoFQUFTUKncKSvbz9Chpbz00lMud1zq6ur47W/fprQ0CX//oTQ2VtHQsI2lS1OZNCnVpbZdi4s1NlUqFX5KnTuFm8At4JA+ANx2hUM6Tkr5/XaufQT4HjBNStk2yesKlPn11uX/t3fn4XFUZ77Hv69akiVZli1Zsi1LluQNvBJvbCEsHjazgzEYAsSEzJCNTMIwuZOZ5OZmkjuZTHKTWTNJyARwQiDsxAkE2wHb2AYD3m1swKss76uwJVn7uX9U2W7JWlrqlqpb+n2epx5VV1effk91V5feqlPn1NXV8dSPfsQNaWnk+vf91dbX81JZGZ966CEKCgoCjrBrOOcoKyujoqKCvLy8iMZqLisr4+c/f5OsrMvJzi6kouIIBw4sYfbskUyZkni9rsajiooK/vmX/0zxZU1vf6/8uJLkncl85YGzfu663J49e3h71dscPHaQkYUjuXDqhb3q/5pojq1tDftyqvAdwFlZq3MusbqMEomSmfHAA3dyzjlvs3jxH6mra+Duu8cwffqMwJNRgKVLV3DgwBhKSq4FICurkJMnC3jqqV9y/vmTSU1NbaeEYJgZOTk5QYch0pPsBsIHqi0E9jZfycyuAr5JhMmo9G579uwhr7Ly9DjSAKnJyYxLTWX75s09NiE1sw73+r5kyToyMi4mO9trCZ+ZOZCkpL9g4cI/MGnSxF53ZbQrpKamkkwy9XX1Xo+9vpqTNeT0DeZ/ioKCAmYVzArkvRNduwkpEJ7ppgF3APrvUXql5ORkrrjiUq644tKgQznLhg1lDBjQ9Nay9PQcDh3qz+HDhxk6dGhAkSW++vp6Vq1axbvr3yWtTxqfOv9TjBkzptcMai4J5z1gtH+LzR684WM+Hb6CmU0GfoHXtPdg94coCamF37ye2NIuWnv3lpOV1XTc1oyMARw+3EhtbW2vGOqlq6WmpnLBuAtY/v5yiiYWkRRKora6lmNbj3H79bcHHZ50ULsJqXOuefdQ/2Zmy4Bvd01IItIZgwb1Y/v2IwwYUHJ6WWNjPXCcvn07N2yJeINd/+xXP+Pdfe+SNTyLhtoGlv1mGXdedic3zLgh6PBEzuKcqzezh4D5QAh4zDn3vpl9F1jpnJsH/AjIBJ7zT6zscs7dHFjQEvcKCgpYkpHBoRMnyPM7equtr2dzfT2fGjs24OjiS1FRDlu37mPQoDNDxlRWHqV//xB9+vRp45WJ5/jx4+zYsQPnHCUlJd3aRPXq6VdTM7+G1ctXQx9Irk1m5idnxqTTv+PHj3PkyBGysrIYOHBgDKKNjf3797Nx80ZO1pxkzMgxjBw5skdccY+kye6UsIdJeFdMe0c/1SIJZPr083nzzRepqCggM3MIDQ117No1n0svLaJ///7tFyAt2rx5Myv3rGTE9BGnr4jWDavjhddf4JKLLulV94dI4nDOvQq82mzZt8Pmr+r2oCShpaSkcMU99/Dq3LkUHTlCH2C7GaOuu67HNtftrMsum8TGja9z+HDIv4f0MIcPL+Xeeyf3qJY1G9/fyLMLn6W+fz1mhi02br3sVqZN6Z5b9FNTU5l500yuOn4VlZWV5OTkRJ3wNzY2suCNBSzbsAzLNBoqG5g4bCK333R74Lc+rV23lucWPUfykGRCKSGWz1/O1MKp3H7z7YEmpZWVlXzw4QdRlRFJk90fh83XAzuB6PppFpGYKykp4Stf+Qt+85snKStLAyq5/PLhfPrTtwYdWkL7YMsHpOanNvknIqVPCmRDaWmpElIR6TWKi4u58+tfZ/v27dTV1XF9UZH6AGjB0KFD+cIXpvPGG6vZsWMRgwb146abPsGYMecGHVrMVFRU8NzC58idkktaX68Jcm11LS8veZmRw0d2a8+yWVlZ3tjmMbB23VoWfbSIkk+WEEoO4Zxjw/oNDFgygOuuvi4m79EZ1dXVvPzGywyeNpi0DG97u2LH6ndWM3n7ZEaNGtVOCV1j3759PPb8Y1RlRjf+ayRNdqdH9Q4i0m2mTJnEJz4xkSNHjpCRkUGm3xOidF5WZhYNJxvOWu6q3Vlj0oqI9HTp6emMHz8+6DDiXmFhIZ/5TM8d3re0tJT6rPrTyShAaloqjTmNbN++nalTpwYYXee9tfYt8kbnEUr2Oqs0MwrGFvDOine45i+uCawTy3379lGfUX86GT0VW9rgNLbs2BJYQvrS/JdIGp5EcX5x+yu3od3ru2bW38x+YmYr/enHZqb2fyJxKhQKMWjQICWjMTJ1ylSSDyRz/JA34LVzjv1b9pOfms+IEepsXERE5LQE7+OquqaalNSm43wnpyRT11BHQ8PZJ6e7S0pKCq7h7I3bUNtAep/oxnTtrI8//pg95XsYmB/9PbaRNDh+DDiB10z3TuA48HjU7ywikgAGDhzIw/c/DBth1+u72LVgF0M/HsrDDz4cF8P9iIiIdLeSkhKSjydzsuLk6WU1J2tIKk9i5MiRAUYWnYmjJ3Jo16Emyw7tPsSoglExu4e0srKS9evX895777F///6IXjN06FAGpwzm0O4zsZ2sOEnjwUYmjJsQk7g6KhQKYc5obGyMuqxI7iEd6ZwL7z/5H81sbdTvLCKSIMaOHcuPvv0j9u7dS0pKCoMHD+5RHVOIiIh0RN++fZl97Wyemf8MdVl1YBAqD3H79NsTum+FSy68hA+e/oDStaWkD0yn5ngNaR+nccPs2PSqv3PnTub+fi41/WqwFMO95bhs/GVce+W1bf5fkZSUxD0z7+Gpl5+itKwUSzZSa1K5+5q7m4wN3J0yMzMZO2wsW7ZvYeio6IYWjCQhPWlmn3LOLQMws0uAk+28RkSkRwmFQgwbNizoMEREROLCuLHj+PqwrzcZ9iVWnQsFJTMzk8/f93k2f7CZsv1l5OXnMXH8xJjcBlVfX8/v/vg7Msdnkp+dD0BDfQNL3lnCmFFjKCkpafP1AwcO5KEHHmLfvn3U1dWRn58feM+/N197M08+/ySlK0qjKieShPSLwNyw+0aPAfdH9a4iIiIiIi2ora2lurqazMzMHjHGYk+WmZnJxIkTgw4jptLS0pg8aTKTmRzTcvft28eJ0AmKs890ABRKDpE2NI1NH21qNyEFryOjoUOjuxoZS/369ePzcz7Pnj17+P5D3+90OZH0srsW+ISZZfmPj3f63UREREREWtDQ0MDixW+zdOlW6uv70K9fPTfeOI3x48cGHVqv55xj7969HDp0iMzMTIYPH94j+1Goqqpi7969pKamUlhYGNMTImbWYqdPrtEl9G1ASUlJUbcgazchNbPvAz90zpX7j7OBR5xz34rqnUVEREREfIsXv83ChVUMG3YXKSlpVFYe5cknF/D5z6dHdPVIukZ9fT3P//551u9dj2UZ7qRjSGgIc+6cQ//+LQ+8UVlZyZEjR8jMzEyYsWpXrl7JvCXzaMxsxNU5cpNzuW/mfTG7RzM/P58BNoDyQ+UMyPPus62vq6dmXw0TLo6+Y6Ldu3ezav0qKk5WMHbEWCaMnxB4k95IRdJk9zrn3D+ceuCcO2Zm1wNKSEVEREQkanV1dSxbtvV0MgrQt28O/fpdyPLlG5WQBmj1mtWsObyGERePOH0lb+/Wvbzy51f49O2fbrKuc47FSxfzxqo3IAMaTzYyYdgEZt44kz59+gQRfkT27t3Li2++yNALhpKa5iVxh3Yf4qmXnuIrf/mVmFzBDIVC3HPLPcx9cS6lZaVeFlYOM6bNiPoK45q1a3huyXOkFaaRmpbKxpUbWf3+aubMnkNKSkr7BQQskoQ0ZGZ9nHM1AGaWDsTvN0pEREREEkpNTQ11dSmnk9FT0tMHcORIJc45Dh48SF1dHYMGDUqYKz89wXvvv0feiLwmSdmQEUPYtHQT1dXVpKWd+cw2bdrEa+teo/jiYpJTknHOsXHjRvq+3pebr785iPAjsmHzBlLyU04nowB5hXmUlpWyf/9+8vPzY/I+Q4cO5ZEHH2HHjh3U1tZSWFhIdnZ2VGXW1NQwb/E8hkwdQlqG91nkDMlh26ptbN68mfPOOy8WoXepSBLSJ4HXzexxvJbPDwC/7tKoRERERKTXyMjIIDsbKioOk5l5ponksWOlTJiQwS9+8RxlZUZSUjqpqYeZOfNC3VvaXRwRXyF8e+3b5IzKITnFSzHMjMKxhaxcvpIZV82I2xMJNbU1p2MOZyGjrq4upu+VmprKueeeG7PyDh06RH1a/elk9JTMwZlsKd2SEAlpu3fqOud+CPxfYCwwHviec+5fujowEREREekdkpKSuOGG8zl8eAEHD26lsvIou3evpU+fdezadZiDB8+juPgOhg27kays23j66VUcPHgw6LB7hanjp3Jo+yGcO9Mjz4GdBxhbNLbJ1VGAquoqUvs0TTpDySEaaKC+vr5b4u2MsaPGUrWvisbGxtPLqk5UkVaXFrOro10lLS2NxprGJp8PQO3JWvr17RdQVB0TUddRzrnXnHN/65x7BKgws592cVwiIiIi0ouMGXMOX/zipYwevYWUlNf55CfLmTXrIo4dy2LIkDGn10tP709S0gQ2bPgowGh7j6mTpzIhewKlK0rZuWknO1ftJOtYFjdcdcNZ604YOYHDZYebLDu6/yiFAwvJyMjorpA7bOTIkZxfdD6l75SyZ+seyjaXcXTtUe649o64vwczNzeX0YNGs2fLntNJaeXxShr2NzBpwqSAo4tMJE12MbNJwN3AbGAH8GJXBiUiIiIivc+wYcOYPftMBy+lpaV43Zc0lZKSQWXlke4MrddKSUnhnln3UFZWxsGDB+nXrx8jR44kOfnsNOKiCy5i49aNlK4tJSM3g5qKGkKHQ9w8K37vHwXvCv2tN9zK5NLJbNu5jfQ+6Yy9fmzC9BA866ZZvPjKi3y07CNIgb6uL/dddx+DBg0KOrSItJqQmtk5wF14iegR4BnAnHPTuyk2EREREenFBg8eTHLyIqqrK0hLywS8nlyrqrZw7rmjAo6uc5xzHDt2jKSkJAYMGBB0OBExM4qKiigqKmpzvYyMDB6890E2bd7Ejj07yCvO47wbzkuIeiYlJTF8+HCGDx8edCgdlpmZyWdmf4by8nKqq6vJzc1t8YRBvGor0g+ApcBNzrmtAGb2cLdEJSIiIiK9XlpaGrfeOpVnn51Haup5JCenUVn5ERMmNDBqVOIlpPv37+eFF5awb5/DuUaKi1O5/fbpDBw4MOjQYiYtLY0pk6cwZfKUoEPpdRIh8W9JWwnp7XhXSBeZ2WvA74DoB+EREREREYnQpEkTGTw4l/XrP6KyspZx40YwevRoQqFQ0KF1SHV1NY8/vgC4nKKiYgAOHNjCE0/8ia9+9a6EuqIlEkutfvOdcy8BL5lZX+BW4GFgsJn9DHjJObegm2IUERERkV4sPz8/7ns7bc/WrVs5cWIYJSXFp5cNHjya0tKt7Ny5MyGv+IrEQiTDvlQ6537rnLsRKATWAt9o73VmNszMFpnZZjN738y+6i/PMbOFZrbF/5vtLzcz+w8z22pm681sSlhZc/z1t5jZnE7XVkREREQkAJWVJzHLauGZ/lRVVXV7PNIxlZWVrF6zmiVLl7B9+/YmQ8RIdDrUNsA5dxT4hT+1px54xDm32sz6AavMbCFwP/C6c+4HZvYNvOT274DrgNH+dCHwM+BCM8sB/g8wDXB+OfOcc8c6EruIiIiISFCGDh1CY+O7NDZOJinJuybU2NiAc6Xk518VcHTSlr179/L4C49TlVlFckYytetrGT9oPHfdpqbWsRDROKSd4Zzb55xb7c+fADYDBcAtwFx/tbl4zYHxl//aeVYAA8wsH7gWWOicO+onoQuBGV0Vt4j0HMePH2fbtm0cPXo06FBERKSXKywsZMqUdHbseI2jR3dx+PBOdux4hUsuGUxeXl7Q4UkrnHO88KcXCI0IUXxeMQWjCii5sISNRzayfsP6oMPrEbolpTezEmAy8A4w2Dm3D7yk1cxODZBTAJSFvWy3v6y15SIiLWpsbOT5l5/ntbdfw/oZjRWNXHrepdw3+764H+BaRER6JjNj5sxrGTNmM2vXricpyZgyZTTnnntu0KFJG8rLyzlQcYCiIWeGvDEzsouzWffhOvUmHANdnpCaWSbwAvA159xxs1Y76m3pCdfG8ubv8yDwINDuGEki0rO9ufRN/rDuDxRfXUxyajKNDY0sXrGY7Neyue2m24IOT0REeqlQKMTEiROYOHFC0KFIhEKhEK7R4ZwjPI9pbGgkJVknuWOhy5rsAphZCl4y+lvn3Iv+4gN+U1z8vwf95buBYWEvLwT2trG8Cefco865ac65aWr2INK7zV82n0HnDSI51TvnlhRKomByAQuWL1AnBCIiIhKxrKwsRuePZv/2/aeXNdQ3UL6znGkTpgUYWc/RZQmpeacQfgVsds79JOypecCpnnLnAL8PW/4Zv7fdi4CP/aa984FrzCzb75H3Gn+ZiEiLTlSeoE9GnybLUtNSqa6pVkIqIiIiHXLbdbeRcyKH0ndK2bVuF7vf2s2VY69Uc+sY6comu5cA9wEbzGytv+wfgB8Az5rZ54BdwB3+c68C1wNbgSrgs+D17Gtm3wPe89f7rt/br4hIi6aMm8Jb29+icHzh6WUHdxxk/Kjx6g1PREREOqR///58+bNfpqysjKqqKoYMGUJ2dnbQYfUYXfafmXNuGS3f/wlwZQvrO+DLrZT1GPBY7KITkZ7s5hk3s/E/N1J6spS+g/pSdaSK9EPp3PWlu4IOTURERBJQUlISxcXFQYfRI+lSgYj0OLm5uXznke/w1oq32Fa2jaJzi7hkziXk5OQEHZqIiIiIhFFCKiI9UlZWFjOu0ZDFIiIiIvGsS3vZFREREREREWmNElIREREREREJhBJSERERERERCYQSUhEREREREQmEElIREREREREJhBJSERERERERCYQSUhEREREREQmEElIREREREREJhBJSERERERERCYQSUhEREREREQmEElIREREREREJhBJSERERERERCYQSUhEREREREQmEElIREREREREJhBJSERERERERCYQSUhEREREREQmEElIREREREREJhBJSERERERERCYQSUhERkR7GzGaY2YdmttXMvtHC833M7Bn/+XfMrKT7oxQRiY3KykpWvLuCF/7wAsuWL+P48eNBhyQdkBx0ACIiIhI7ZhYCfgpcDewG3jOzec65TWGrfQ445pwbZWZ3Af8CzO7+aEVEolNeXs4vn/4l5enl9M3py5pta1iyegkP3vUgeXl5QYcnEdAVUhERkZ7lAmCrc267c64W+B1wS7N1bgHm+vPPA1eamXVjjCIiMbHkrSVUZFdQPLGY3IJcisYX0VjQyPzF84MOTSKkhFRERKRnKQDKwh7v9pe1uI5zrh74GBjYLdGJiMTQhq0byBvW9Epo3rA8Pij9gMbGxoCiko7okU12V61aVWFmHwYdR5RygcNBBxEDPaEeqkN8UB3iQ0+ow7lBB9DFWrrS6Tqxjrei2YPAg/7DGjPbGEVsvVVP2G+Com3XOdpuwD99/Z868zJtu87p9LG1RyakwIfOuWlBBxENM1uZ6HWAnlEP1SE+qA7xoafUIegYuthuYFjY40Jgbyvr7DazZKA/cLSlwpxzjwKPQs/4/IOg7dZ52nado+3Wedp2nRPNsVVNdkVERHqW94DRZjbczFKBu4B5zdaZB8zx52cBbzjnWrxCKiIi0pV66hVSERGRXsk5V29mDwHzgRDwmHPufTP7LrDSOTcP+BXwGzPbindl9K7gIhYRkd6spyakjwYdQAz0hDpAz6iH6hAfVIf4oDokAOfcq8CrzZZ9O2y+GrijE0X3+G3XRbTdOk/brnO03TpP265zOr3dTC10REREREREJAi6h1REREREREQCkXAJqZnNMLMPzWyrmX2jhecvM7PVZlZvZrPClk8ys7fN7H0zW29ms7s38iYxdqoOYc9nmdkeM/uv7on4bNHUwcyKzGyBmW02s01mVtJdcTeLI5o6/ND/Lm02s/8IakD5COrwN/42Xm9mr5tZcdhzc8xsiz/Naf7a7tLZOiTYPt3q5+A/nwj7dFvfpbjYp/1YoqlHXOzXQYtgG/Yxs2f8598J8vOON9H+FvRW7W23sPVmmZkzM/WA6otk25nZnf737n0ze6q7Y4xXEeyvRWa2yMzW+Pvs9UHEGW/M7DEzO2itDAFmnv/wt+t6M5vSbqHOuYSZ8Dpn2AaMAFKBdcC4ZuuUAOcBvwZmhS0/Bxjtzw8F9gEDEqkOYc//O/AU8F+J9jn4zy0GrvbnM4GMRKoD8ElguV9GCHgbuCJO6zD91PYFvgg848/nANv9v9n+fHaC1SGR9ukW6xD2fCLs063WIR726Rh8n+Jivw56inAbfgn4uT9/V/Pvc2+dYvFb0BunSLabv14/4E1gBTAt6LjjYYrwOzcaWHPqGA8MCjrueJgi3HaPAl/058cBO4OOOx4m4DJgCrCxleevB/6EN971RcA77ZWZaFdILwC2Oue2O+dqgd8Bt4Sv4Jzb6ZxbDzQ2W/6Rc26LP78XOAjkdU/YTXS6DgBmNhUYDCzojmBb0ek6mNk4INk5t9Bfr8I5V9VNcYeL5nNwQBreD1gfIAU40PUhnyWSOiwK274r8MYjBLgWWOicO+qcOwYsBGZ0U9zhOl2HBNunW/scEmmfbrEOcbRPQ3SfRbzs10Frdxv6j+f6888DV/bWq8nNRPVb0ItF8p0D+B7wQ6C6O4OLc5Fsu78Cfuof63HOHezmGONVJNvOAVn+fH/OHs+5V3LOvUkr41b7bgF+7TwrgAFmlt9WmYmWkBYAZWGPd/vLOsTMLsD7p2NbjOLqiE7XwcySgB8DX++CuDoims/hHKDczF70m0D8yMxCMY+wfZ2ug3PubWAR3hW5fcB859zmmEfYvo7W4XN4Z6w689quEk0dTkuwffp0HRJ4nw7/HOJln4Yo6hFH+3XQItmGp9dxztUDHwMDuyW6+BaT37NeqN3tZmaTgWHOuT92Z2AJIJLv3DnAOWa23MxWmFkQJ5/jUSTb7jvAvWa2G6/X8q90T2gJr8P/YybasC8tnYHtUDfBfob+G2COc+6sK5DdIJo6fAl41TlXFvDJ6GjqkAxcCkwGdgHPAPfjjYnXnTpdBzMbBYzlzJnthWZ2mX/GqDtFXAczuxeYBlze0dd2sWjqcGp5wuzTLdQh4fbpFuoQL/s0RFGPONqvgxbJNoyX3494E/XvWS/V5nbzT9z9K97vijQVyXcuGa/Z7hV4v29LzWyCc668i2OLd5Fsu7uBJ5xzPzazi/HGbp4Q0P8aiaTDx4hEu0K6GxgW9riQDlw+N7Ms4BXgW/4l5CBEU4eLgYfMbCfw/4DPmNkPYhteRKKpw25gjd9Eoh54Ga8deneLpg63ASv8pokVeGe4L4pxfJGIqA5mdhXwTeBm51xNR17bDaKpQ0Lt063UIaH26Ta+S/GwT5+KpbP1iJf9OmiRbMPT65hZMl5Ttraab/UWUf2e9WLtbbd+wARgsf9beREwTx0bAZHvr793ztU553YAH+IlqL1dJNvuc8CzcLoVTRqQ2y3RJbaO/4/Z3k2m8TThneXZDgznzA3I41tZ9wmadkSTCrwOfC1R69DsufsJrgOUaD6HkL9+nv/4ceDLCVaH2cCf/TJS/O/VTfFYB7yrVtvwO/8JW54D7MDr0Cjbn89JsDokzD7dWh2arRPX+3Qbn0Nc7NMxqEdc7NdBTxFuwy/TtFOjZ4OOOx6mWP0W9LapI8djf/3FqFOjiLcdXv8Qc/35XLymlAODjj3oKcJt9yfgfn9+LF5SZUHHHg8TXsefrXVqdANNOzV6t93ygq5QJzbA9cBH/g/6N/1l38U70whwPl5mXgkcAd73l98L1AFrw6ZJiVSHZmXcT0D/vEZbB+BqYD2wAS/ZS02kOuD9A/4LYDOwCfhJHH8Of8brmOXUd35e2GsfALb602cTrQ4Jtk+3+jmElRHv+3Rb36W42Kej/D7FzX4d9BTBNkwDnvN/O94FRgQdc7xMsfgt6I1Te9ut2bqLUUIa8bbDSwp+4v+ubQDuCjrmeJki2Hbj8HpfX+fvr9cEHXM8TMDTeH0t1OH9n/w54AvAF/znDfipv103RLK/mv9CERERERERkW6VaPeQioiIiIiISA+hhFREREREREQCoYRUREREREREAqGEVERERERERAKhhFREREREREQCoYRUpBPMrMHM1prZRjN7zswyuvC9vusPpI6Zfa2j72WeN8wsy3/812a22cx+G4PY7jezoWGP/8fMxnWyrIfM7LPRxiQiIvEpkY+dQTOzxWY2zZ9/1cwGRFneFWb2R3/+RjP7x1jEKdIZSkhFOuekc26Sc24CUIs3/lK7/ANch/Y759y3nXN/9h9+DejoAfx6YJ1z7rj/+EvA9c65e5rFLcCZDgAABgNJREFUltzBcsEbO/N0Quqc+0vn3KZOlAPwGPDXnXytiIjEv0Q+dnZaJ4+vrXLOXe+cK49hka8AN3flCQKRtighFYneUmAUgJn9jX/md6OZfc1fVuJfkfxvYDUwzMzuNrMN/nr/4q8XMrMn/GUbzOxhf/kTZjbLzP4aL/lbZGaLzOxzZvavp4Iws78ys5+0EN89wO/9dX4OjADmmdnDZvYdM3vUzBYAv/ZjXWpmq/3pk2Hl/y8/rnVm9gMzmwVMA37rn/FOb3YG96w6+ssrzOyf/HJWmNlgAOdcFbDTzC6IyaciIiLxLJGOnadi+aWZvW9mC8ws3X9ukn8sW29mL5lZtr98sZl938yWAF/14/mZH8N2M7vczB7zy30iLJ6fmdlK/31avGppZjvNLNfMvuAff9ea2Q4zW+Q/f42Zve0fx58zs0x/+Qwz+8DMlgEzT5XnnHPAYuDGDn6GIrHhnNOkSVMHJ6DC/5uMd8D6IjAV2AD0BTKB94HJQAnQCFzkv2YosAvI81//BnCr//qFYe8xwP/7BDDLn98J5PrzfYFtQIr/+C1gYguxlgL9wh6Hl/EdYBWQ7j/OANL8+dHASn/+Or/8DP9xjv93MTAtrOzFeElqi3X013HATf78D4Fvhb3+m8AjQX++mjRp0qQp9lOiHjv9WOqBSf7jZ4F7/fn1wOX+/HeBf/PnFwP/HVbeE8DvAANuAY4DE/EuDq0KK/vU8TXkl3FeWHnTmtfHf5yCl+DfBOQCbwJ9/ef+Dvg2kAaU4R3bza/DH8PKuAf4z6C/I5p656QrpCKdk25ma4GVeAfIXwGfAl5yzlU65yqAF4FL/fVLnXMr/PnzgcXOuUPOuXrgt8BlwHZghJn9p5nNwDtYtco5V4l3QL7RzMbgHVw3tLBqjnPuRBtFzXPOnfTnU4BfmtkG4Dng1P2gVwGPO+8qJs65o23F1kYdwWum9Ud/fhXegf6Ug4Q1ARYRkR4lkY+dO5xza/35VUCJmfXHS4CX+MvncuZYB/BMszL/4JxzeAn4AefcBudcI14SXuKvc6eZrQbWAOM5cxxuy78Dbzjn/gBc5L9mub+t5wDFwBi/Dlv8GJ5sVoaOvxKYmLZpF+lFTjrnJoUvMDNrY/3K8FVbWsE5d8zMPgFcC3wZuBN4oJ04/gf4B+AD4PFW1qk3syT/oNdebA8DB4BP4J21rQ6L2bUTS7i2tkWdfzAEaKDp71AacPLsl4iISA+QyMfOmrDnGoD0dt4DmsYfXkZjs/IagWQzGw78LXC+X68n8I6LrTKz+/ESzodOLcK7Ynx3s/Um0fZxXMdfCYyukIrEzpvArWaWYWZ9gdvwmtA09w5wuX//Rwi4G1hiZrlAknPuBeB/A1NaeO0JoN+pB865d4BhwKeBp1uJ60O8+0Yj0R/Y5x+A78NrMgSwAHjA/A4PzCynpXjaq2ME738OsDHCWEVEJPEl7LHTOfcxcMzMTl3RvY/IjnWtycJLYj/2+1e4rq2VzWwqXgJ7b1jivAK4xMxO3Z+bYWbn4CXfw81spL/e3c2K0/FXAqMrpCIx4pxb7Z/NfNdf9D/OuTVmVtJsvX1m9vfAIrwzma86537vn+F93M70JPj3LbzNo8CfzGyfc266v+xZvHtPjrUS2ivAFcDWCKrx38ALZnaHH1+lH/Nr/tnVlWZWC7yKd3b5CeDnZnYSuLi9Okbw/pcA6npeRKSX6AHHzjl4x8EMvObDnR6+zDm3zszW4DXh3Q4sb+clDwE5eB02gdfvw1/6V02fNrM+/nrfcs59ZGYPAq+Y2WFgGTAhrKzptLztRLqcnWk5JyKJyLxxxP7VOfd6K8/nA792zl3dvZF1jJlNBv7GOXdf0LGIiEjP1lOOnbHgX419yjl3ZdCxSO+kJrsiCcrMBpjZR3j35LR4QAXvrDJeR0VxMbh3G3LxmluJiIh0iR547IyFIuCRoIOQ3ktXSEVERERERCQQukIqIiIiIiIigVBCKiIiIiIiIoFQQioiIiIiIiKBUEIqIiIiIiIigVBCKiIiIiIiIoFQQioiIiIiIiKB+P8yfTWJi0e5dAAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFdCAYAAAAUvaAlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hc1bX4/e+a0Uga9d6be++9YuMCBgOm19BDSYGUm3Zz701+ySXJfdMbIZTQwTgkgDG2scEdV7n3gq1mS7J6rzP7/WPGsmRLsmxLGpX1eR49mtmnrRmNzp59zt5rizEGpZRSSimllFKqs1k8HYBSSimllFJKqd5JG6RKKaWUUkoppTxCG6RKKaWUUkoppTxCG6RKKaWUUkoppTxCG6RKKaWUUkoppTxCG6RKKaWUUkoppTxCG6QKABG5X0RWeTqOKyUiKSJiRMTL07H0ZCLynyLyclc6pog8LCKb2uE45SLStx3281MReetq96OUunwisk5EHnc/bvd6rbvXNVrXq7bQur5N+9G6vh1pg7STuSvLIhHx8WAMF53QjTFvG2PmX8G+XhOR/23fCFVLRCRNRKrcJ9RcEXlVRAI66/jGmF8YY8592euULwbtfcwL3sNzP3HGmABjzMn2i7zZY88SEaf7mGUiclREHrnCfV1W5dxelbnq3dz/P7ki4t+o7HERWefBsJp1pfVae9C6Xl0Nreu1rm+0r15R12uDtBOJSAowAzDAzZ6NRnVjNxljAoCxwATgvy5nY72yDLjfw0Y/Zzrx2Gfcf78g4AfASyIy9MKV9O+kujAv4Nmr3Ym49LjvIVrXq3aidf3V07q+m+hxFUEX9yCwFXgNeKjxAhFJFJF/i0ieiBSIyF/c5RYR+S8RSReRsyLyhogEu5fNEpGsC/aTJiJz3Y8nikiqiJS6r7D9zr3aBvfvYvfVmykXXlERkWEislpECt3b/uelXlyjK1qPiEim++rwUyIyQUT2iUjxudflXv9hEflCRP4sIiUickRE5jRaHiwir4hItoicFpH/FRGre5lVRH4jIvkichK48YJYWtv2YRHZ5N6+SEROiciCRtuGua9GnnEv/7DRsoUissf9WjaLyMgW3osXROQ3F5R9JCLfcT/+gTuuc1fO5jS3n9YYY04DK4Dh7n3eLCIH3bGtE5EhjY6d5j7mPqBCRLwusX6z8UnTLioXfo6ucX9eRjTaT5S4rlBGNvMepYvIOPfjB9yfnaHu54+fe98vccwpjfbX7N+zrdzH7+9+/JqI/FVEPnG/B9tEpF+jdf/o/oyXishOEZlxucczLh8CRcDQRv8PvxeRQuCn7s/xG+I6L6SL61xgcf+tXgCmuN+HYndcbV5fXP+XudKoMhSR20Vkj/vxT0XkfRF5z/0e7BKRUY3WjRORf7mPdUpEnmm0rKVzj+oZfg38h4iENLdQRKaKyA5xndd3iMjURsvWichzIvIFUAn0df/vfU1Ejrs/az8XkX4issX9GVoiIt7u7UNFZJn7c1fkfpzQQhwN9ZqIfF+a3impE5HX3MuuuK5pgdb1WtdrXX9+WbpoXf8hWtdf8o3Sn076AU4AXwPGAXVAtLvcCuwFfg/4A77AdPeyR93b9QUCgH8Db7qXzQKyLjhGGjDX/XgL8BX34wBgsvtxCq4rt16NtnsY2OR+HAhkA991xxIITGrhNb0G/O8F+33Bvd18oBr4EIgC4oGzwDWNjlkPfBuwAXcDJUCYe/mHwN/d70kUsB140r3sKeAIkAiEAWsbv6ZLbPuw+/3/qvu9fxo4A4h7+SfAe0CoO65z8Y51xz/Jvd1D7vfbp5n3ZSaQ2WifoUAVEAcMci+La/S+9WvjZ6jx3zcROAj8HBgIVADz3DF/H9fnxrvRdnvc29hbW7+1+ICfAm+18jl6Hvi/Rs+fBT5u4bW8AXzX/fhF4Evg6UbLvt3GY7b692ztPbyg3AD9G32uC4GJuO4GvQ0sbrTuA0C4e9l3gRzA98J4mznGLNz/s7guCN7qjn0Q5/8fvuner939PnyE638wBTgGPHbh/+wF7+nlrH8IWNDo+QeN/iY/dcd2B67PyH8Ap9yPLcBO4H9wfWb6AieB61o79+hP9/859/+Dqy46d+5/HFjnfhyG64vXV9yf43vdz8Pdy9cBGcAw93Kb+39vKa47CcOAGuBz9+cq2P05fci9fThwO+Dn/pz/E/iwUXzrgMfdjy/6zLvLE3GdI25wP/+QK6xrWniPtK7Xul7r+vPLtK7Xuv7Sn/kr3VB/LvONhunuP3iE+/mRRv+EU4A8mqngcFXKX2v0fJB7P15cupLaAPy/c8dstE4KrVdS9wK72/i6XuPiSiq+0fIC4O5Gz/8FfKvRMZucTHBVJl8BonF9KbE3WnYvsNb9eA3wVKNl88+9pjZs+zBwotEyP/e2MUAs4ARCm3mtfwN+fkHZUdyV2AXlgutL10z3868Ca9yP++Oq7OYCtsv8HKUB5UAxkI6rUrAD/w0sabSeBTgNzGq03aONlre4fmvxcekKYxKuCs7ifp4K3NXCa3kMWOp+fBjXl9rF7ufpwNg2HrPFv2cb3sNi3F9mubiSernRNjcAR1r5uxQBoy6Mt5n1Zrk/X8W4KsE9wD2NXkdGo3WtuD7HQxuVPcn5L/4P06jSudz13WU/AN52Pw7DdccqttHr2HrBZyQbV1fESY1jdS//EfCqaeXcoz/d/4fzDdLhuBoVkTRtkH4F2H7BNluAh92P1wE/u2C5AaY1er4T+EGj578F/tBCPKOBokbP19FKgxTX+bJh/1xFXdNCPFrXG63r3Y+1rjda16N1fZt+tMtu53kIWGWMyXc/f4fzXXkSgXRjTH0z28Xh+oc9J53zJ+JLeQzX1bEj4uo2tbCNsSbiuoJ1pXIbPa5q5nnjgfmnjftT7ZaO6zUn47o6k+3uclCM6ypolHu9OFwnw8bbnXOpbcF1lQsAY0yl+2EArtdeaIwpauZ1JQPfPbdP934T3bE04X5Ni3FVjgD34bryhjHmBPAtXCeBsyKyWEQu2kcrFhljQowxycaYrxljzl2NbXgPjDFOXO9PfKPtGr9fLa5/NfEZY7bhuhp7jYgMxlXhLW1h9fXADBGJwXWCfQ+YJq7xV8G4TuBt1dLfsyXn3sMQY8yiS+0T18m7YX8i8l0ROSyu7mfF7ngj2hjrGfdxw4wxo40xixsta/w3isB1RfLC///Gf9PGLnd9gLeAm8SVLOMuYKMxJru5eNyfkSzO/3/GXfC/8J+cPy9d6blHdRPGmAPAMuCHFyy6sM6Ciz+HmVysTfWGiPiJyN/d3dRKcX0hChF3N802eAU4aoz5P/fzq6lrmqN1/fnnWtdrXQ9a12td3wbaIO0EImLH9QG4RkRyRCQHV9eVUe5+2plAkjQ/sPkMrg/EOUm4bvXn4joZ+DU6jhXX1WoAjDHHjTH34jo5/x/wvrgyIzauFJqTCfS7xDrtJV5EpNHzJFyvORPXFaCIRieTIGPMMPd62bgqiMbbnXOpbVuTCYRJ82OjMoHnGu0zxBjjZ4x5t4V9vQvcISLJuK4y/evcAmPMO8aY6bj+tgbX3+dqNPmcuN/TRFxXQhsO29b12xhfS5+j13F1c/kK8L4xprq5ldyVYSXwDLDBGFOGq2J4AtfVPedlHLPTuMeQ/ADX/3SoMSYE150iaW27Nmr8+vJx3SG58P//dDPrXsn6GNfYpC24uhN9BXjzglUa/sfElXwmgfP/n6cu+F8INMbc4N5vS+ce1bP8BNcdocZfhC6ss6Dp5xCu7v/4u7juHk4yxgTh6jIJbfj/E5Efurd9rFHx1dQ1F+5f6/qWaV2vdb3W9edpXX8BbZB2jkWAAxiKq3vRaGAIsBFX8oPtuE66vxIRfxHxFZFp7m3fBb4tIn3cVzZ+AbznvsJ6DPAVkRtFxIYrA1tDinlxDR6PdP+zF7uLHbi6DDlx9QVvzjIgRkS+JSI+IhIoIpPa4X1oThTwjIjYROROXO/LcveVm1XAb0UkSFyDtfuJyDXu7Za4t0sQkVAaXaVvw7Ytcm+7AnheXMkzbCJy7gvPS8BTIjJJXPzd731gC/vajeu9fhn41BhTDCAig0TkWnFNB1CN60qy47LetYstAW4UkTnuz8J3cVXUmy93/cuIr6XP0Zu4TnoP4Brn0Jr1wDfcv8HV3a7x87YeszMF4vqimAd4icj/4Br71q6MMQ5cf6fn3P+DycB3cF3pBNcX1QRxJ3u53PUbeQPXuKIRuMaVNDZORG5zf4H+Fq7PyFZc56xScSXEsIsr8chwEZkArZ57VA/i/qL5Hq4vmucsBwaKyH3iSqhyN666b1k7HTYQ1zmpWETCcDWKL0lcyU+ewXXHpKrRa7jiuqYZi9C6viVa12tdr3V9M7Sud9EGaed4CFd/6wxjTM65H+AvwP24rrbchKvLQwauW+V3u7f9B65/+g24BhlX4xoIjTGmBFfihJdxXRmpcG97zvXAQREpB/6Iq/96tbubw3PAF+K6BT+5cbDuq1fz3DHlAMeB2e34fjS2DRiA64rPc8AdxpgC97IHcXVLOISr3/77uMZ9gKvC+BRXgohduBJANNbatpfyFVxXn47gGl/xLQBjTCquuwF/ce/zBK6++q15F9f4jHcalfkAv8L1mnNwVdT/CSCuScsPtjHOBsaYo7gqhT+793sTrnTntVewfovxXbCPZj9HxpgsXH8Tg+uLWGvW4zrpb2jheZuO2ck+xfVF5hiubjLVNN8FsT18E9f/9UlgE67P0T/cy9bgSnSRIyL5V7g+uCqmZOADY0zFBcf/CNe5qAjX/8Vtxpg6d4V4E64v3KdwfVZextWdCVo491z526C6sJ/hSigDgPv8vRDXF98CXF+AFprzXViv1h9wjaXLx/WFaWUbt7sb113Fw3I+0+4L7mVXU9c0pnV9y7Su17pe6/qW9fq6/lxWMKU6nYg8jCv5xHRPx6Lal4j8A9f4icuaN015hoh8iSsz5WeNyn6KK/HDAx4LTCnV7Wld33NpXd+9dOW6XidjVUq1K3ElKrgNGOPhUFQbiMjtuK5wr/F0LEoppboHreu7l65e12uXXaVUuxGRnwMHgF8bY055Oh7VOhFZh2uKg6+3kFhCdVMi8g8ROSsiB1pYLiLyJxE5ISL7RGRsZ8eolOqetK7vXrpDXa9ddpVSSqkexp2gpRx4wxgzvJnlN+Aah3QDrsygfzTGdFRCG6WUUqpFeodUKaWU6mGMMRtwTcjekltwNVaNMWYrrrk825oMRimllGo32iBVSimlep94mmaMzKL1idWVUkqpDtFjkxpFRESYlJQUT4ehlFKqi9m5c2e+MSbS03F4WHOTuzc7hkdEnsA1iT3+/v7jBg8e3JFxdZrs7AKs1lBc88C7OJ0OoITo6DDPBaaUUt3UldavPbZBmpKSQmpqqqfDUEop1cWISLqnY+gCsoDERs8TgDPNrWiMeRF4EWD8+PGmp9StGzduZdmyMvr0uRaLxYrDUU96+mcsWhTB5MnjPR2eUkp1O1dav/bYBqlSSimlWrQU+IaILMaV1KjEGJPt4Zg61ZQp4ykuXse2be8gEo4x+cycmcjEiZpwWCmlOpM2SJVSSqkeRkTeBWYBESKSBfwEsAEYY14AluPKsHsCqAQe8UyknuPl5cVNN83lmmtKKSkpISQkhMDAQE+HpZRSvY42SJVSSqkexhhz7yWWG+DrnRROlxYUFERQUJCnw1BKqV5Ls+wqpZRSSimllPIIbZAqpZRSSimllPIIbZAqpZRSSimllPIIbZAqpZRSSimllPIIbZAqpZRSSimllPIIbZAqpZRSSimllPIIbZAqpZRSSimllPIInYdUKaWUUu2iqqqK48ePU1lZTVxcDImJiYiIp8NSSinVhWmDtJcwxlBZWYnNZsPb29vT4SillOphsrOzefXV1VRUJCMSiMOxg3HjDnLrrfOxWq2eDk8ppVQXpQ3SXiA9PZ0331zBiRPFeHk5mTlzIHfeeSN2u93ToSmllOoBjDH885/rsFhmk5ycCIDTOZrU1BUMHXqUoUOHejhCpZRSXZWOIe3hCgsL+dWv3iM7+xqSk39ATMx3WLPGj5deWuLp0JRSSvUQBQUFnD1rJSwssaHMYrEQHDyc3btPeTAypZRSXZ02SHu4rVt3UlMzhsjIIYgIXl6+JCdfz+7dReTk5Hg6PKWUUj2AxWIBnBeVG+PEatWvGkoppVqmtUQPl51djI9PTJMyEQsWSxTFxcWeCUoppVSPEhYWRmKilbNnTzSUORz1lJTsZezYfh6MTCmlVFenDdIern//WKqqTjQpczhqMSaLmJiYFrZSSimlLs8dd1yL3b6V9PQVpKdvIitrCbNnhzBgwABPh6aUUqoL06RGPdzEieP49NO/k5a2mqioMdTWVpCfv4ZbbhlCSEiIp8NTSinVQ4SHh/Pss/eQlpZGVVUVsbHziYiI8HRYSimlujhtkPZwdrudH/7wUVav3sD27W8TFubDXXeNZvLkiZ4OTSmlVA/j5eVF//79PR2GUkqpbkQbpL1AUFAQt9++kNtv93QkSimllFJKKXWejiFVSimllFJKKeUR2iBVSimllFJKKeUR2iBVSimllFJKKeURHdogFZEQEXlfRI6IyGERmSIiYSKyWkSOu3+HNlr/RyJyQkSOish1jcrHich+97I/iYh0ZNxKKaWUUkoppTpeR98h/SOw0hgzGBgFHAZ+CHxujBkAfO5+jogMBe4BhgHXA8+LiNW9n78BTwAD3D/Xd3DcSimllFJKKaU6WIc1SEUkCJgJvAJgjKk1xhQDtwCvu1d7HVjkfnwLsNgYU2OMOQWcACaKSCwQZIzZYowxwBuNtunS6uvrOXz4MDt27CAnJ8fT4SillFJKKaVUl9KR0770BfKAV0VkFLATeBaINsZkAxhjskUkyr1+PLC10fZZ7rI69+MLy7u0/Px8fve7t8jODgXCMGYj8+f34Z57bsFi0aG7SimllFJKKdWRLSMvYCzwN2PMGKACd/fcFjQ3LtS0Un7xDkSeEJFUEUnNy8u73Hjb1SuvfEB+/nSSkx8iOfkmEhO/yYoVRezatdujcSmllFJKKaVUV9GRDdIsIMsYs839/H1cDdRcdzdc3L/PNlo/sdH2CcAZd3lCM+UXMca8aIwZb4wZHxkZ2W4v5HIVFhZy5EgpsbHjGsqsVhshIdPZsGG/x+JSSimllFJKqa6kwxqkxpgcIFNEBrmL5gCHgKXAQ+6yh4CP3I+XAveIiI+I9MGVvGi7u3tvmYhMdmfXfbDRNl2Sw+EArBeVWyxe1NY6Oj8gpZRSSimllOqCOnIMKcA3gbdFxBs4CTyCqxG8REQeAzKAOwGMMQdFZAmuRms98HVjzLnW29PAa4AdWOH+6bIiIiJISLBSUHCMiAhXe9wYQ1HRdu64Y7CHo1NKKaWUUkqprqFDG6TGmD3A+GYWzWlh/eeA55opTwWGt2twHUhE+OpXb+H/+/8Wk5Y2GIslDIfjCOPGWZk8eaKnw1NKKaWUUkqpLqGj75D2WklJSfzqV19j7959FBWV0a/fNAYNGqQZdpVSSimllFLK7ZINUhEZD8wA4oAq4ADwmTGmsINj6/YCAgKYNm2qp8NQSimllFJKqS6pxdt1IvKwiOwCfoRr7OZRXBlxpwOrReR1EUnqnDCVUkop1RUVFhaSk5PjTuinlFJKXZ7W7pD6A9OMMVXNLRSR0bgy4WZ0QFxKKaWU6sJKS0v55z8/4+TJGkR88fcv4447pjJgQH9Ph6aUUqobabFBaoz5a2sbuhMWKaWUUqqXMcbw7rufkp09hKSkYYgI5eUFvPnmcp59NpTw8HBPh6iUUqqbaK3LrojIXSJyp/vxHBH5k4h8TUQ0M49SSinVS+Xm5pKRIcTFDcc1RTgEBIRjzDD27z/q4eiUUkp1J6112f0rEAV4A7cAPsDHwA3AIODZDo9OKaWUUl1OdXU1FkvAReXe3gGUlRV3fkBKKaW6rdYapDOMMSNExAbkALHGmFoReQfY3TnhKaWUUqqriY6OxmJZR21tJd7efg3llZUnGDCgrwcjU0op1d201iCtBzDG1InIDmNMrft5vYhoKj2llFKql7Lb7SxcOIp///tj7PZR2Gx2SkqOMnRoLf37a1IjpZRSbddagzRHRAKMMeXGmOvPFYpIDFDb8aEppZRSqquaMGEM0dHh7N59jMrKWoYNS2To0CF4eV1yinPlAbm5uZw+fRpvb2/69euH3W73dEhKKQW0nmV3QQuLyoCFHROOUkoppbqLpKQkkpJ0SvKuzBjDp5+uZ8OGHET6AqXY7Tt5+OE5JCQkeDo8pZRqOctuS4wxFcaYsx0RjFJKKaWUaj+nTp1i/fpCEhPvIDl5IsnJs/Dxmc/ixetwOp2eDk8ppVrtsouIeAEvGmMe7aR4lFJKKaXaVVpaGlu2HKKkpIrBg2MZP34kAQEXZwnuiQ4cOIXdPgyr9fxXvuDgWNLTA8jJySEuLs6D0SmlVOvzkAbgmuZlR+eFo5RSSinVfvbs2c8LL2zl5MlBVFTM5LPPrLz44kdUVFR4OrROZC4qcU8fq5RSHtfaHdJ1wOvGmL91UizdnsPhYMuWbaxdu5+amnqmTh3I7NnTNXGAUkop5QH19fV88skuYmNvxW4PAiAwMJL0dCe7d+9n+vTJHo6w440Y0ZctW3bhcPRvuEtaXHyG0NByYmJiPBydUkq13iANBjI7K5Ce4O23P2T16grCw6/HavVm8eId7N79Gt///uPYbDZPh6eUUkr1KsXFxVRXBxAZGdSkPCQkhWPHtjN9uocC60DV1dUcOnSE7OwiYmJCGDJkEHPmRLJ27RKM6QNUEhBwmgcemIvFctmpRJRSqt211iCdCXwgIsYY81FnBdRd5ebmsmZNOn36PIPF4npbAwJu4tixtzlw4ABjxozxcIRKKaVU7+LqoVSBw1HfZAxlZWUxAwf6ey6wDlJSUsLLL39MYWEivr7xVFfnEhLyb7761YWMHj2UrKwsfHxC6Nt3Oj4+Pp4OVymlgFbGkBpjsoF5wOOdF073dfr0aSyWvg2NUQARwdt7ICdPnvFgZEoppVTv5O/vz7hxsWRmbsbhqAOgvDyf2tpdTJw4zMPRtb+1a7dTUjKC5ORriI4eSHLyDCoqRvPZZ1uJiIhg9OjRDBkyRBujSqkupdW+GsaYMuDWToqlWwsJCaG52XDq63OJiAj2QERKKaWUuuGGa5g6tY4zZ94mI2MxDsdKHnpoIrGxsZ4Ord3t3ZtJdPTgJmXR0YPZty/LQxEppdSltTrtC4Axpr4zAunu+vTpQ79+Dk6dWkd8/HRErOTlHSQw8Ajjxj3t6fC6rerqaioqKggJCcFqtXo6HKWUUt2Mt7c3CxfOYe7caqqrqwkKCuqxYyd9fW3U19dgs52/A1pfX4OPzyW/7imllMe0eIYSkWDgR8AiINJdfBb4CPiVMaa4o4PrTkSEZ565n7ff/pgdO36NMVYGDAjmoYfu6zVznbWn+vp6PvxwJatWHaC+3k5gYC333juLyZMneDo0pZTqFkTkeuCPgBV42RjzqwuWBwNvAUm4vg/8xhjzaqcH2kl8fX3x9fX1dBgdaurUAXzyyXZSUq7FYrHgdDo5c2Yb11030NOhKaVUi1q7ZLYEWAPMMsbkAIhIDPAQ8E9c40tVI0FBQTz99P089FAlDoeDgIAARCf6uiJLl65i6dJyEhOfwWbzo6Iij+eff5fg4ACGDBni6fCUUqpLExEr8FdcdXUWsENElhpjDjVa7evAIWPMTSISCRwVkbeNMbUeCFm1gylTxpOX9zk7d76LxRKN03mWsWNDmTZthqdDU0qpFrXWIE0xxvxf4wJ3w/T/ROTRjg2re/Pz8/PYsWtqali//gs2bDiEiHDNNUOZOXMa3t7eHovpctXW1vLpp/tISPgmNpvrvfT3jyQwcB4rVmzTBqlSSl3aROCEMeYkgIgsBm4BGjdIDRAoriunAUAhoMN0ujEvLy9uu+06Zs0qpKioiJCQMYSHh3s6LKWUalVrgyjSReT7IhJ9rkBEokXkB+j8pF2S0+nk+eff5q23iqiqup3Kylt54418XnjhHYwxng6vzaqqqqirs+Ht3TQlv59fBHl5ZR6KSimlupV4mtbVWe6yxv4CDAHOAPuBZ40xzgt3JCJPiEiqiKTm5eV1VLyqHYWFhdGvXz9tjCqluoXWGqR3A+HAehEpFJFCYB0QBtzVCbGpy3TixAn27KmnT5/bCAyMJTAwjj597mDXrmpOnjzp6fDapLS0lKqqKkJCDGVlTafLKSo6xrBhF36fUkop1YzmxotceGXyOmAPEAeMBv4iIkEXbWTMi8aY8caY8ZGRkRcuVkoppa5Ki112jTFFwA/cP6obOHPmDNC/ybhV1+N+nDlzhn79+nkstkuprKzkzTc/ZNu2TET8qak5S2np74mP/wr+/lEUFR3Hz28r1133sKdDVUqp7iALSGz0PAHXndDGHsGVpNAAJ0TkFDAY2N45IapzampqyMnJwcfHh+joaM0/oZTqVa4oD7iIPNKTM/F1VyEhIYgcbmZJLsHBIzs9nsvx6qv/IjU1isTEu7BYvCgry6a6+m8kJKyjutqLcePimDfvESIiIjwdqlJKdQc7gAEi0gc4DdwD3HfBOhnAHGCje3jOIKB7dKfpQfbs2c+HH+6kvj4KYypJTHRyzz3zCQkJ8XRoSinVKa50Yqr/B2iDtIsZOnQoMTFrOXNmOzEx4wDIzt5BXFx+l04EVFBQQGrqWRIT78Nicc01GhgYS0jIDaSkZHP//bd6OEKllOpejDH1IvIN4FNc0778wxhzUESeci9/Afg58JqI7MfVxfcHxph8jwXdC2VnZ7NkyX5iYu7A19c1RVxOzhEWL17Fk0/eqXdKlVK9QmvzkO5raREQ3cIy5UHe3t78x398hbfeWsbevZ8DMGZMPA888CA2m83D0bWsvLwciyWkoTF6jt0eTn7+cQ9FpZRSXYOIhOIa51kFpDWXeKg5xpjlwPILyl5o9PgMML8dQ1WXad++Y9hsIxsaowAxMYNJT99PXl4eUVFRHoxOKaU6R2t3SKNxJTwouqBcgM0dFpG6KhEREXzrWw9TWVmJiGC32z0d0iVFR0djs+VRXV2Cr29wQ3lZ2WGGD09sZUullOqZRCQY1zyh9wLeQB7gC0SLyFbgeWPMWg+GqNpBRUUtNpvvReUivtTW6nSwSqneobUG6TIgwBiz58IFIrKuowJS7cOTc6FeLl9fX+69dwavvPIG/v6z8PUNprBwPwkJp5gy5aueDk8ppTzhfeANYIYxprjxAhEZB3xFRPoaY17xRHCqfQwZksD27ceIjOzX0D23qqoEX99CoqO1M5pSqndoLcvuY60suzAxglJX5ZprphEdHc7nn++kuLiSefNSmDnzsW7VsFZKqfZijJnXyrKdwM5ODEd1kIEDBzJixHH271+Ov/8A6uoqcTgOcP/9k7r0UBullGpPV5rUSKl2N3jwYAYPHuzpMJRSyuNEZGxry40xuzorFtVxrFYr99xzI+PGHefYsUz8/X0YMWK+jh1VSvUq2iBV7aqgoIATJ07g4+PD4MGD8fW9eGyMUkqpS/qt+7cvMB7YiyuHw0hgGzDdQ3Gpdma1WvWCrFKqV9MGqWoXxhhWrlzDP/+5C6dzMCJVBASs4tvfvoO+fft6OjyllOpWjDGzAURkMfCEMWa/+/lw4D88GZtSSinVniyXWkFEhjZTNqsjglHdV1paGu+9d5DY2K+TknITycl3YbXezZ///C/q6+s9HZ5SSnVXg881RgGMMQeA0Z4LRymllGpfl2yQAktE5AfiYheRPwO/7OjAVPeSmnoAL68J2GznkxCFhCRTUhLJqVOnPBiZUkp1a4dF5GURmSUi14jIS8BhTwellFJKtZe2NEgnAYm45h7dAZwBpnVkUKr7cTiciFibWWLF4XB0ejxKKdVDPAIcBJ4FvgUccpcppZRSPUJbxpDWAVWAHVdyhVPGGGeHRqW6nTFjBrNixRocjjFYra5U9eXlOdjtZ+jTp4+Ho1NKqe7JGFMtIi8Ay40xRz0dT3srLS1l3brt7NmTgbe3F1OnDmDKlPE65YlSSvUibblDugNXg3QCrqx+94rI+x0alep2Bg4cyIIFcWRm/o20tLWkpS2npOR1nn56IT4+Pp4OTymluiURuRnYA6x0Px8tIks9GlQ7qamp4ZVXPiY1NZzw8Pvx87uVFSuq+OCD1Z4OTSmlVCdqyx3Sx4wxqe7HOcAtIvKVDoxJdUMiwt1338yUKRkcPXoCuz2IESOeJCQkxNOhKaVUd/YTYCKwDsAYs0dEUjwZUHs5evQYeXmxpKSMAcBm8yElZTZ79ixm9uw8IiMjPRxh7+FwOMjMzKSmpobY2FiCgoI8HZJSqhe5ZIO0UWO0cdmbHROO6s5EhOTkZJKTkz0dilJK9RT1xpgSEfF0HO0uJ6cIH5/YJmUigsUSTVFRUYc1SCsqKsjLy8PPz4+oqKgOOUZ3UlBQwBtvrCQ/PxjwR2Qb1103kBkzJns6NKVUL6HzkCqllFJd1wERuQ+wisgA4BlcSQa7vaioEGprc4EhDWXGGJzOs4SEDO+QY27atI1PPz0CRONwlDBwoDd33XUdfn5+l9y2JzLGsGTJ51RUTCI5uT8A9fW1LF++lMTENFJSUjwboFKqV2jLGFLVSYwxng5BKaVU1/JNYBhQA7wDlODKttvtDR48kLCwLE6f3ofDUUdtbSVpaesZOTKgQ+5cHj9+nGXLThMTcw+JideTknI3X36ZyLJl69r9WN1FQUEBWVkQFdW/oczLyxs/v5Hs2XPcg5F1nJqaGs6ePUtVVZWnQ1FKuV3yDqmI+ANVxhiniAwEBgMrjDF1HR5dL1BbW8uKFWtYvXoPVVW1TJjQn9tvn6djZ5RSSgGMA/7HGPPjcwUiMhbY5bmQ2oevry+PP34Tn3++lT17tuPtbWXu3AHMmDG/Q463bdtRgoLGYrOdT7QXHz+GffveZuHCyl55l7S+vp7mvgpaLF7U1vasKduMMXzxxXY+++wwDkcQUMqMGX2ZM2caVmtz09YppTpLW7rsbgBmiEgo8DmQCtwN3N+RgfUWr776Pl984UNc3NOEhtpJTd3FsWOv87OfPUVAQICnw1NKKeVZnwI7ROQuY0yuu+xlYKwHY2o3wcHB3Hbbddx2W8cfq7KyFpvNt0mZxWIFbNTW1vbKBmlUVBTBwRWUlp4lKMh1V9oYQ1nZYUaM6Ovh6NrXvn0H+PjjHBIT78bb2059fS1r1qzFzy+V6dMneTo8pXq1tnTZFWNMJXAb8GdjzK3A0I4Nq3fIzc1ly5Yc+vS5FV/fYKxWbxISJlNYOIgdO7r9xe8OYYxh7969/P73r/Pzn7/IypWfU1lZ6emwlFKqoxwFfg2sE5Gp7rKel+GoE4wYkUhR0bEmZcXFZ4iIcDWMeyOLxcLdd8+komIlGRlbyMraR1raR4wdKwwcONDT4bWrjRsPExk5BW9vO+DqmhwXN4316w/rkCmlPKwtd0hFRKbguiP62GVspy4hPz8fqzUBkabXBXx9k8jM/PKq9l1WVsann65j69YT2O025swZxYwZU7t9t5Tlyz/jvfdOEhR0DTabP+++u4dt2/7BD3/4VZ3vVCnVExljzDIROQq8JyL/APTb8xUYO3Yke/d+xKlTq/H370NtbTEWyyHuuWcW7Z3FuLCwkMrKSiIiIvD19b30Bh0sLy+PkyfTEBEGDOhHaGhow7Lk5GS+/e1FHD16nPLyMlJSRpGcnIzF0rPSjJSWVhEUFNikzMfHn9zcehwOB15e+tVWKU9py3/ft4AfAR8YYw6KSF9gbYdG1UtERkbidGbhdDrc3YZcqqvTSUq68jGk1dXV/N///YPTp4cSFfUQFRVVvPLKWjIyzvLgg7e3R+geUVZWxgcf7CIx8RlsNtcVzuDgRE6eXMKuXbuZMqVrp6g3xlBaWoqvr682npVSbSUAxpjjIjIDeBUY6dmQuicfHx8efXQRR48e49SpdEJC/Bg58uZ2nS+7qqqKf/1rNYcOlWO1BmOx5LFgwXAmTx7fbse4XF98sZ3ly08gMhBjHIgs4847xzBq1PlMxkFBQUyYMM5jMXaGIUNi2bv3JHFxwxrKCgrS6ds3XBujSnlYi/+BIvIjYKUxZj2w/ly5MeYkrrTzlyQiaUAZ4MA1l9p4EQkD3gNSgDTgLmNMUaNjPuZe/xljzKfu8nHAa4AdWA48a3pA/4qoqCimTYtj/fp/Exc3B5vNj5ycXYSHH2fChKeueL+7du0hKyuelJR5ANjtEBBwD2vX/oEFC7rvZOOnT5/G6UxoaIye4+c3hEOHjnTpBunBg4d4883V5ObW4eVVx5w5Q7nttgV4e3t7OjSlVBdmjBnT6HEFcJeIJHkwpG7N29ubESOGM2JEx0wrs2zZOo4ciSE5eQIiQm1tFR999AmRkaH069evQ44JUFxczObNuzl2LJfwcH+mTx9Onz59yMvLY/nyE8TF3d6QzKm6ehj/+te/6NcvpVflqrjmmvEcPryMzMwqgoLiKS8/i8heFiyY6+nQlOr1WrskdAp4VkRGAXuBFcCqc43HyzDbGJPf6PkPgc+NMb8SkR+6n/9ARIYC9+BKbx8HfCYiA40xDuBvwBPAVlwN0uvd8XR7Dz10OzExa/nss1coKqph8uQB3Hrrw/j7+1/xPk+dysHHp2nFZ7F4YbEkk5ub220bpIGBgTidBRhjmnSvqqnJJzIysJUtPSsjI4Pf/nYFwcF3kpycRF1dFStWrKC29uNufcdaKdVxROT7xpj/T0T+1MIqbbowrDpPRUUFe/eeJSFhfkMd5e1tJyBgLNu3H+mwBmlxcTHPP7+U6upRhIWNITOzmBdf3MZ991W6cywMaJJZ2Nc3AIcjmYyMDIYO7T0pQcLCwvj6129h584DZGTsYOTIYMaPv5Hw8HBPh6ZUr9dig9QYsxhYDCAiY3A1Av8tIlbgM1x3T7dfwTFvAWa5H78OrAN+4C5fbIypAU6JyAlgovsua5AxZos7ljeARfSQBqnNZmPhwvksXNh+ae5jYkKorc0GGi6suycbzyEkZEq7HaczOJ1ORAQRIS4ujmHD/Dh8eC0JCTMRsVJSko6XVypTpjzs6VBbtGbNdry8ZhIc7LqpYbPZSUpayPr1v+fWW8sIDOy6jWmllMccdv/e6dEoVJvV1tYCPk2G4AB4e/tRXl7TYcfdtm0v1dUjSEgYBYCfXwh+fiF88slSZs8eDDgv2kbE2ePGiLZFcHAw1147zdNhKKUu0KZO88aY3cBu4JciEgTMAx4HLtUgNcAqETHA340xLwLRxphs936zReTc7NfxuO6AnpPlLqtzP76w/CIi8gSuO6kkJfXeHk0TJozlww//Tm5uAlFRw3E4asnKWsvIkf7Exzf71rXKGMPu3XtYv34fNTX1TJ48kKlTJ3Vod9O0tDTee+8zDh8+TUiIHzfcMJ65c6/hqafu5s03PyI19beAD9HRwte+dkuXvuubk1OCn1/TSd6tVm8gmLIybZAqpS5mjPnY/ft1T8ei2iY4OJjQUAelpbkEBUU3lBcVHWfatMuve9vqyy/zCAkZ1qTMzy+E/HxvYmKiEVlPdfUwfH1ddU1FRSHe3pmkpExtbndKKdXpLtkgdd8RvRHXmM+G9Y0xT7Rh/9OMMWfcjc7VInKktUM1U2ZaKb+40NXgfRFg/Pjx3X6M6ZUKCgrihz+8j3feWcmhQ8vw8oJrrx3EHXfcc0WZBJcs+Zhly84SHDwDq9WbV17Zwc6db/Ktbz3cLll7s7Ky2LPnIAAjRw7BZrPxi1/8E5vtRpKTB1NdXcybby6jouJTbr11AV/72gOUlZVRU1NDeHh4u2dHbG9Dh8Zz9OhxQkKSG8qqq4vx8SkhIiLCg5EppboqEfmYVrLpGmNu7sRwVBtYLBZuu20qr766itLS4fj6hlBWdorExDzGjr2lw44bGRnAkSNFBAScr0/q6mrw8qomNjaWu+8ex/vv/5v6+mTAgY9PJvffP7NLZP9VSilo2x3Sj4FqYD/n+320qbFnjDnj/n1WRD4AJgK5IhLrvjsaC5x1r54FJDbaPAE44y5PaKZctSI+Pp7vfe8xqqursVqt2Gy2K9pPXl4eK1ceIyXlGfddPQgJSWHfvtc4dOgQI0aMuKo4V69ex9tv78ZiGQsI77//AZGRJRgzj8hI19gWuz2MpKQ7WL78T1x//SzsdjuBgYHd5s7izJmTWbfuZTIyvAgPH0ZVVSElJZ/x2GPTNKmRUqolv/F0AOry9enTh2efDWLPnsMUF+fRt280Q4dO69DM6lOmDGfPng2UlYUQGBhJbW0VWVkbmTu3nzuJ0zD69k0hIyMDESElZZo2RpVSXUpbGqQJxpjLTjEvIv6AxRhT5n48H/gZsBR4CPiV+/dH7k2WAu+IyO9wJTUaAGw3xjhEpExEJgPbgAeBP19uPL3V1VY6mZmZiPRvaIwCiAg22xCOH8+4qgZpfn4+776bSlzc03h7u5I41dVNYMWKpxk/PrTJujabH05nMMXFxdjt9uZ212WFhITwX//1KKtXb2LPnsWkpARw3XUzGT68Y7I8KqW6P3eGe9UNhYeHM2fO9E47XkJCAg89NIFly1aTkeHEZqtn/vwBXHPN+czz/v7+DBkypNNiUkqpy9GWBukKEZlvjFl1mfuOBj5wd6f0At4xxqwUkR3AEhF5DMgA7gRwz3G6BDgE1ANfd2fYBXia89O+rKCHJDTqDgIDAzGm4KJyh6OA0NCru0N57NgxnM6hDY1RcCX8CQzsy+nT+4mLG9xQXltbjpdXSZPJvLuTsLAw7r77Zu6+29ORKKW6ExEZAPwSGAo0XGE0xvT1WFCqyxk4cADf/nZ/Kisr8fHx0Xk1lVLdSlvOWFtxNSwtuBIMCWCMMUGtbeSer3RUM+UFwJwWtnkOeK6Z8lRAbyd5QL9+/UhIWMGZM9uIjZ0ACIWFJ7DbDzJu3JXPlQrg5eWFSO1F5TExfamt3Ux2dn8iI4dQVVVIbu4K7r13nHYzUkr1Nq8CPwF+D8wGHqH53AqqlxORq5oyTimlPKUtOb9/C0wB/IwxQcaYwEs1RlXPYbFY+Pa3H2DAgP1kZPyOzMw/ERS0gu99706Cgq7uYzB06FB8fI5SXp7TUFZRkUdQ0Gl+8YsnGDHiAHl5v8Xb+32eemooN9ygk1crpXoduzHmc0CMMenGmJ8C13o4JtXLOZ1OjOm1uSOVUu2sLXdIjwMHjJ55eq2wsDC+973HKSoqor6+noiIiHbJbBsQEMA3v3kTf/3r6xQUJAOCj88pvvGNGxgyZIiOd1FKKah291A6LiLfAE4DUZfYRqkOUVxczKpVW9i//zReXhYmT+7HrFmTOzRpk1Kq52tLgzQbWCciK4CGmZ2NMb/rsKhUl9QR4zeHDRvK737Xl+PHj2OMYcCAm7td0iKllOpA3wL8gGeAn+O6O/qQJwPqaPn5+eTm5pKcnExAQICnw+lWTp8+zY4dh8jPr2DgwGjGjRvZbt14q6ureeWVZZSVjSYubh5OZz3r16dy9uxKvvKVjpvWRinV87WlQXrK/ePt/lGqXfn6+l719DEXKikpoaCggPDwcIKDg9t130op1VmMMTvcD8txjR/tsaqrq/nlL//GmjWZQCReXjncf/94Hn/8Ky1uU1BQQGrqAXJySklJCWfs2BHdZkqw9nb06DHeeCMVH5+x2O0hrFqVRmrqhzzxxC3t0rA/evQYhYUJJCe7UnpYrV6kpEznyJEl5OTkEBMTc9XHUEr1TpdskBpj/l9nBKJUSUkJFRUVREREXPH8nA6HgyVLPmb16qOIxGBMDvPmDeKuu27CarW2c8RKKdWxRGQ88GMgmUZ19pVMx9YeCgpKOHDgIEOHDsFiaUsairb7859fZdWqIFJSfonV6kNNTREvvfQCcXHLueGGGy5aPysri5dfXoMxo/D3H8CJE6fZuvVDnnhiYbfNyH6lnE4nH320jYiIG/H3DwMgODiGjAwhNXUfs2ZNvepj5OWVYLNd3FtcJIqSkhJtkCqlrpjmBe9Cqqureffd91ixYhc+Pl7ceec1LFy48KJK3xhDRkYG5eXlJCQkdPs7gNXV1bz11ods3pyBSBC+viXcd98spk2bdNn7Wr16HcuXV5KS8m2sVm8cjlqWL3+fsLD1XHed5gFRSnU7bwPfA/YDTg/HQl2dnTffPMW0aWe4+eZ57bbf6upqPvnkMImJz2G1usYj+viEEhZ2M++9t7jZBuny5dvw8bmG8PBkAEJC4jh92oeNG3dy881tT4LncDiwWCztkhvBU0pLSykttZGUFNakPCSkD0ePbmLWrKs/RkxMGLW1Z3DNQORijMHpzCYsbNjVH0Ap1Wtpg/QqVFRUsH//fsrKKujbN4W+fftecYVWX1/PV77yXXbujMTP7y6czmq++OIjduw4yM9//qOG9YqLi/nLX97hyy8FkVBElnHbbWO54Ya53bYyffvtj9i4MYDk5O9gsXhRVVXIiy++RWRkKAMHDrysfa1cuYvY2EexWl13WK1Wb2Jjr2Plyle1QaqU6o7yjDFLPR3EOVarN3363MDWrUuYNCmX6OjodtlvdXU1dXVWvL2bdre12yMoKqq6aP3a2lrS00tISkpqUh4R0Y/Dh/dy882XPmZGRgYrV+4gPb2IwEBvZs0aysSJY9v9zm9n8PX1RaQah6MOq9XWUF5dXUpSUvvkZRg4cACxsfvIyNhBTMww6utryclJZfz4ECIjI9vlGEqp3umKGqQi4m2MuXgCyV4kLS2N3/xmCeXlA4EQYBVTpwbz2GN3X1HX0OXLl7NrVwAJCf+NxeLavr5+EosXP83DD39Jv379APjHP/5NWtpIkpKmISLU1VXx3nuvk5wcy/DhLU/V6nQ6cTqdXW6y7PLycjZvTiMpydUYBbDbw/Dzm8Xnn6dedoO0rKyKuLim09H4+ARSUFDZbjErpVQn+omIvAx8TtPEgv/2VECuu4nJ5OTktFuDNCQkhIQEbwoKDhAefr4uy8/fxZw5CRet7+Xlhd1uoa6uCm9vv4by6uoygoIu3QDLzc3l5ZfX4+d3DUlJiVRXl/HBBxuord3OzJmT2+U1dSZfX18mTUpk8+YtJCZOxWr1oqqqhIqKVCZNmtIux/D29uaRR25i48Yd7N79T7y9vbjppv5MmjSuXfavlOq9Ltk6EZF1wMPGmDT384nAS8CoDo2sC3M6nfz97x8icispKQPcZTPYuPEtxozZzYQJ4y97n5s27cHLa1pDYxTAyysAGMP27dvp168fRUVF7N9fSFLS1Ia7oTabnYCAGaxbt7vZBmltbS3Llq1m9ep9VFfXM3x4AvfcM5/4+Pgre/HtrLKyEvBvckUXwNc3lPz88sve35gxfdi3bx9xcecryNzc/Ywd2/dqQ1VKKU94BBgM2DjfZdcAHmuQupTg5xfRrnv81rcW8YMfvEZl5XX4+ydQUnKY4OANPPLIdy5a12KxMG3aQD799AuSk2dhtdqora0iP38rCxZcesqwLVv2YbWOJyzMdYfVbg8iMXEOa9e+x+TJY684j4EnzZ8/A6dzAzt2vA34Y7dXct9940hOTm63YwQEBLBgwWwWLGi3XSqlVJvukP4SWCkifwLigQX08Ex/l5Kbm0tOjhfJyQMayiwWK8HBk9i8eccVNUgjIgJxOvMuKjcmj5AQV+VaU1ODiC+uKenOs9nsVFQ0f8P6jTf+zYYNNuLjv4HN5sfx4wf45S/f5uc//2qXSPoQHh5OYGA15eW5BAScv9JeXHyIOXMuvxK9/fa5HD36FhkZRfj7J1FRkYG//25uv73lLI1KKdWFjTLGtG8a8quUm3uMsLB8+vRp+zjNtpgyZQp//3sI77+/ivT0LSxYEMvtt3+fuLi4ZtefOXMS1dUb2bz5HSAYq7WYm28eyrBhQ5tdv7EzZ0oIDBzTpMzb205dnZ3Kyspu2SD19vbm5pvnMnduJZWVlYSEhHS5XlFKKdWctmTZ/VREngJWA/nAGGNMTodH1oW57k46McY0GbdpjBMvrysbe3LnnYt49dUfU1IymeDgYTidTvLzPyciIo05c1yJjqOioggPr6WkJIPg4CT3MQ1FRbu59dYBF+2zoKCAL77IIiXl2w13XmNiRpGRcZbNm1O58cb2S0hxpaxWKw8+OJc///kdyspmYreHU1x8mOjoI1xzzeOXvb/Y2Fh+9rPH+eKL7aSl7SAlJYJp0x7vEo1vpZS6AltFZKgx5pCnAwGorS0kNnY/t912Q4c0doYMGcJ///el73CCq/5YsGAW11xTSXl5OcHBwfj4+LRp2+TkMLZvP0NAwPm7vNXV5fj6Vnf7uU/9/Pzw8/O79IpKKdVFtKXL7n8DdwEzgZHAOhH5rjHmk44OrquKjo4mKclCXt5BoqJc3WQdjjpKSzczbdrl3x0F6NOnD7/73Vf4r//6OadPxwLVxMdX8pe//LjhSq3FYuHxx2/kt799j5KSsdhsYVRVHWLo0HKmTFl40T4LCgqwWGKadAMGsNvjycrad0VxdoSxY0fzk5+EsHbtDs6e3cv8+YnMmPH4Fc8lFxoaysKF17VzlEop5RHTgYdE5BSuMaQCGE9N+xITE8zjj9/uiUO36EoaYJMnj2Lnzk/IyfEmPDyFyspi8vM3c/vtI/SuolJKdbK2nHUjgInGmCpgi4isBF4Gem2DVER48snb+O1v3yEtbR+upEZHWbAghZEjr/w7woIFC5gzZw67d+/Gx8eHkSNHXpTtb9CgQfziF4+wbdtuCgvTGDJkMKNGjcRms120v6ioKIw5g8NR25B1FqCy8hR9+7ZPIor2kpKSwiOPpHg6DKWU6jLE1QXnSSDd07Gc01Pmcw4PD+epp65n3bqdHDu2lfBwf264YVibuvsqpXqfqqoq9h/Yz6nTp4gIiWDMyDGEhYVdekPVJmKM8XQMHWL8+PEmNTW1Q49RW1vLkSNHqKioIDk5ucVxLp60ePFHfPJJKVFRc/HxCSQ3dw8hIdv46U+fuOI7kEr1NkVFRWzZtoWs3Cz6JfZj0sRJ3b5bX28mIjuNMVfWnaWTuWPtMmlMO6Nu7c7efvtdfvzj58jIOExS0hCee+7H3H//vZ4OSyl1FcrLy3n53ZfJ88rDP8KfqtIqrPlWHrvtMRITEz0dXpdypfVr95tsqwvx9vZm5MiRTJkypUs2RgHuvHMhjz6ajM22hNLSvzJzZg7/+Z8PX1Zj9O233yUlZTgWi5WUlOG8/fa7HRixUl1LVlYW//2b/+b9Q++zx7mHt1Lf4qe/+SmFhYWeDk31DltFZIKng1CX9vbb7/LEEz8mPf3PGFNNevqfeeKJH2udqVQ3ty11G3k+eSSPTCYiLoLEwYnYB9j5+POPPR1aj6EDJXo4q9XK7NkzmT175hVtf66Crax8BZhOevomnnjiMQC96qt6hcUfLsbR10FSP1ciMfpA5v5Mln26jAfvfdCzwaneYDbwlIikARV4eAypatmPf/ycu66c7S6ZTWXlK/z4x9/U+lKpbuzglweJ6Nt0mqvQ6FDSj6RTUVGBv7+/hyLrOfQOqWpV0wrWxvkK9jkPR6ZUx6urq+PgyYNE9YlqUh7VN4qdh3Z6KCrVyywA+gLXAjcBC92/VReTkXEYVw6qxqa7y5VS3VWAXwC1VU2nV6yvq8cq1mZzuKjL1+IdUncyhTtxTcD9Pq7K8BbgCPCCMcbZ0raq5+jqFWxpaSn79u2noqKK/v370Ldv3yZT8Sh1NSwWC942b+pq6vC2n08MVltVi79dr4iqjmeMSReRUcAMd9FGY8xeT8akmpeUNIT09E2cv0MKsImkpLZNY9NVGGM4evQo27Ydo7q6npEjExk7dmSbp9RRqqeZOmYqr65+lYCQAGw+NpxOJ1mHspg2dFq3nLO4K2rtDulfcU338hXgTeApIBXX9C+/7/jQVFfgqkg3XVDaNSrY48eP84MfvMDLLxexeLGNn/3sU159dQlOp14rUe3DarUyb/I8Tu8+jdPh+lw56hycPXCW+dPmezg61RuIyLPA20CU++ctEfmmZ6NSzXnuuR/j5/cYsBaoA9bi5/cYzz33Yw9HdnnWrPmCV189Qnb2aMrKprF0aQVvvvkx9fX1ng5NKY8YPHgwN427ibPbzpK5I5PMTZmMCR/DvNnzPB1aj9HaGNIZxpgRImIDcoBYY0ytiLwD7O6c8JSnPffcj3niiccaxpDCJncF69kuuw6Hg7/97SN8fe8hOto1ts/pnM66da8zduw+Ro8e7dH4VM9x0w03UVBcwNZVW7EEWjClhhsn3sjMGVc2Llupy/QYMMkYUwEgIv8HbAH+fKkNReR64I+AFXjZGPOrZtaZBfwB15iMfGPMNe0VeG9zbpzoj3/8zUZZdp/rVuNHS0tLWbv2JCkp92K1uroiBgVF8+WXKzl+/DhDhnj+YrRSnjB96nTGjRlHQUEBAQEBhISEeDqkHqW1Bmk9gDGmTkR2GGNq3c/rRcTRKdEpj+uqFWxWVhbFxUEkJSU1lFksVvz9J7Bt20FtkKp24+Pjw5OPPMltebdRVFREVFSUVkSqMwnQuM51uMta30jEiqun0zwgC9ghIkuNMYcarRMCPA9cb4zJEJGoZnem2uz+++/1eP14NfLy8oC4hsboOXZ7CmlpOdogVb2a3W4nISHB02H0SK01SHNEJMAYU26Muf5coYjEALWtbKd6iOzsbDZtSqW42PDaa39j0qTx2O12T4cFnJuc/eLrIsY48PLSXF2q/UVGRhIZGenpMFTv8yqwTUQ+cD9fBLzShu0mAieMMScBRGQxrjwQhxqtcx/wb2NMBoAx5mx7Bd3b1NTUkJeXh4+PT7c+T/j5+WFM8UXltbXFhITouHmlVMdosUFqjFnQwqIyXFn+VA928OAhfv/75RgzGbt9ANu3H+bzz1/ihz98rFPSWxcXF1NZWUlUVBReXk0/pk6nE5vNRkhICfn5R4iIGAxAfX0NlZVbmDJFe5wppXoGY8zvRGQ9MA3XndFHjDFtGTYTD2Q2ep4FTLpgnYGATUTWAYHAH40xb1x91L3L7t37WLp0F3V1ETid5fTv781dd80nICDA06FdtpiYGPr0ETIydhEXNxqLxUJRURY+PscYNmyRp8NTSvVQlz0PqXscS0UHxKK6CKfTyWuvrSQo6B6CglxdEyIiBnPq1Cds2LCFBQvmXvUxjDEcOHCALVsO4nQaJk8ewsiRI6mqquK11/7Nzp05QAABAWU89NA8xo0bA7gSGb3yyiecPStUVFRx9uwviIubibd3DHCURYsGa5cipVRPswfIxl1ni0jSubuarWiuW6+54LkXMA6YA9iBLSKy1RhzrMmORJ4AngCaDJNQruEj//znIWJi7sDX19UATUvbw/vvf8bDDy/ybHC4xoSePHmS+noHKSnJRERENLtefn4+WVlZeHt7c+uts1i9eisHDuwHbMTEWHnggTkEBQV1auxKqd6j1QapiHgBLxpjHu2keFQXUFBQQEGBF0lJTfvJh4WNJDV1BQtaund+Gd57bynLl+fi7z8ZEQubN2/n2muPUVZWxe7dcSQk3IfFYqWi4ix/+ctb/PSnYQQEBPCb33yIr+8dJCX1wel04Oe3nsDA9dx333D69p1IVJQOgVJK9RzujLo/AXI5P37UACMvsWkWkNjoeQJwppl18s9daBaRDcAooEmD1BjzIvAiwPjx4y9s1PZqO3cewdd3dENjFCA+fhTHjx+iqKiI0NDQDjt2fX0927fvYvPm49TW1jN6dBIzZ05ouDN7+PBRFi/eRl1dP1z5KT9lwYL+TJ/e9Eb5Z59tZO3aTIzpg0gh/v6pPPTQHG6+OZT6+noCAwN1OjWlVIdqbR7SAOCfwNLOC0d1Bb6+vkAVTmc9FRVVnDyZSWFhBVZrNrNmVV/1/rOzs1m58iTJyV/HanXN3xQRMYQVK36D01nF0KFfQcQ1DtTfP4ri4uls2LCTsLBA6urGEhvbB3AlMUpKmk1GxmHi4+O1MaqU6omeBQYZYwouc7sdwAAR6QOcBu7BNWa0sY+Av7gvPnvj6tKr07pdhoqKWmy2prkVRAQROzU1NR167KVLP2fbNguxsTfi6+vN5s2HOHFiKU89dQcOh4P33ttCWNit2O3BANTVjWL58n8zYEAK0dHRAKSlpfH557kkJd3ZkMiopCSbd975jO9+934sFs3JoJTqeK2dadYBy40xf+ukWFQXERgYyKRJiRw+vJS1a/eQnh5EVVUCmZl72Ls3nZMnT17V/k+dOgUMbmiMgqtxWV+fRHm5paExeo6vbyj5+eUUFJTh7R3eZJmIYLGEU1ZWdlUxeYLT6eTUqVMcPXqU6uqrb+hfrbq6OnJzc6mo0B75SnUhmUDJ5W5kjKkHvgF8ChwGlhhjDorIUyLylHudw8BKYB+wHdfUMAfaLfJeYMiQeEpLjwNQXl7G4cPH2bx5MyUlRzu0i2t+fj6pqQX06TMHP78QvL39SEoaT05ONEePHiMzM5O6uoSGxiiAzeaDxTKI48dPNZQdPHgSu314k6y6wcGxFBcHkp2d3WHxK6VUY6112Q2maUIE1Ys88MAtfPrpf1BREY6fX38cjhwmT55JYGAUS5Z8zg9/2PeK9+3n54fIxR8tPz8vjCmiqqoIu/18N6fS0kOMGpVMQIAfn39+BGNGNXQfqq+vBtKJj2+HfsQdpLa2lj27d5O2fz9+ISGMnToVi8XC4j/9Cb/sbOwifODtzdxHHmH8pAtzjnSOrZs2sWHxYgKqqigFBs6axcK778bb2/uS2yqlOtRJYJ2IfAI03HIzxvzuUhsaY5YDyy8oe+GC578Gft0+ofY+w4cPZdeupezY8R5Hj3rhcPhjsZxgwIBY3nhjGQ8/fLO711H7KiwsxGKJuegOpo9PHNnZefTpE4tIc72rnU2635oWO2BrF12lVOdprUE6E/hARIwx5qPOCkh1Df7+/kREJHDDDQ/idNYREBCDzeaHMU6OHv0nxpgrHlMyZMgQgoNXk59/lIiIQQAUFZ0iKOgUDz10M2+++Qa+vjPx8QmmpGQ/SUnpTJ48Dy8vLwYOTOXYsY8IDR1DXV0lpaUbuPPO0QQHB1/iqJ5RU1PDa7//PUGHDjHc35+S2lre+uQTCkV4wNeX4cnJABRWVfHq3/9OXGIicXFxnRrj4cOH2fHSSzweE0NYRAQ19fV88tlnLPfyYtG93Xc+PaV6iAz3j7f7R3UhNpuNBx5YyMGDvyMpqT+hoX4kJNxFUFAUaWkb2LPnAJMnj2/344aEhOB07r6oLq6tPUtkZAhJSUl4e39BeXkBAQHh7mWVGHOEQYMaZvJj2LA+fPHFLhyO/litrq+EJSU5BAeXEhMT0+5xe1p1dTVVVVUEBQW5p49zJVncv3cvRzZtorqsjLhhwxg/c2aXn2+6srKS/bt3k3v8OH6hoQydMKHTvz8o1V5am/YlW0TmAe/gGmeiepmIiECqqy2Ehp6/G1pZWUBoaMBVJTjw8fHhu9+9h7/97V9kZHwOWAgPr+TZZ++gb9++xMVF89e/vsOOHekEBtoYMWIKpaWuyvE733mYL77YyrZtq/D392b27MmMHHmp3B6ek7p9O6GHDnFnnz4N75ktK4t3Nm9m6B13NKwXZrczQYS927cTt2hRp8a4/dNPmRMQQJh7jlkfLy9uSEzk92vWcP2tt3bI1X2lVNsYY/6fp2NQrauoqMDPrx+DB9/ZpDw0dAAHD27rkAZpVFQUw4f7ceDAJuLjJ2C12sjNPUJISCZDhkzCx8eHBx6YyVtvLaOgIAnwQuQUt946skmm3ZSUFGbPzmDdun8CfRGpwm5P56GHrm1osPUEdXV1bFy1ioytW7EbQ21gIBNuuonBQ4eyZd068leuZFZkJAGBgRxPTeXjI0e49Wtf67JT91RWVvLhSy+RfPYs44ODKUlPZ+327Yx/4AEG6UwDqhtqNcuuMaZMRG7trGB6k5qaGrKzs/Hz8+uyyXhuvHEiL7ywHG/vu/D1DaampoycnGU8+ujEq953YmIi//u/z3DmzBmMMcTHxzd0Pfrii72UlY1h1qzvY7P5cfz4Xn7xizf5+c+fIDg4mLlzZzN37uwrPnZVVRXHj7vG/AwYMAC73X6JLa7cyV27mBQc3KQBH+jjQ3BdHWVlZU3u7PpbrRR6YPxmeX4+4Re8B75eXvg6HFRVVWmDVCkPEJEXgT8bY/Y3s8wfuBuoMca83enBqSZcQxuqcTqdTbrQ1tZWEhTUcefPO+64joiIrWzZ8g719U6GD49j/vwbG87Zffv25Xvfi+XUqVOUlZURGTn9oml7RIT5869h9OizZGVl4eMTQN++kzq0XvSEjatWYdm0ifuTkrBZrRRVVLDyrbewPvIIx9au5d6kJHxsrnG0oxISqMrI4ODevUyaNs3DkTdv386dpJw9y1R3L6u4kBCiKyr4ZOlS+g8c2KMuJqje4ZLzkLoTI6h29MUX23jrrXXU1ETgdJYyYkQQX/3qnV1ujq+pUydRXl7FRx+9QF6eHzZbBffeO55rrmmfE7TFYiEhoenUMnl5eWzefIaUlG9hsbhOqLGx40hPz2Pbtp3Mn3/tVR1z//4D/PWvy6ipSQHAx2c5X//6QkaMGH5V+22JT2AgFbW1TcqSgoL4UoQKh4NzzVGnMeytrmaCB+72Jo4cyaEVK4hudCX4TFkZJiysy3aFVqoXeB74bxEZARwA8gBfYAAQBPwD0MZoFxAQEMDIkRHs37+ThITxiAi1tZWUl+9k/PgJHXZcb29v5s+fybx5MzDGNJsRV0Q4dCiDPXvOIpKF3b6JW26ZwLBhTe+iRUVFddmL41erurqajK1bGxqjAKH+/owvL2f7mjWEQ0Nj9Jz4gAD2p6dDF22QZh85wtQLphQK8/fHp6CAkpISwsLCPBSZUlfmkg1SEVkI/BxIdq8vgDHGdK3WUzdx8uRJXnppC9HRT2C3h2KMk0OHNvDyy+/zne90releRYTrrpvN7NnTKC0tJTAwEB8fnw49ZkFBARZLbENj9By7PYHMzMNXte/S0lL+8pdPCAp6lJgYV8Xrmuf0VX7966QOuSAwZsYMVqxfT7+aGoJ8fDDGsDcvj+S5c3mvrIxJlZXYrVb2VFXhPWUKQ4cObfcYLmXGvHm8snUrzowMBgYHk1dZybraWuY++6ym/FfKQ4wxe4C73FOwjQdigSrgsDHmqCdju1oOh4PKykrsdjteXpf8GtItLFw4i9razzh8+F1EgvDyyufWW0fSp0+fDj+2a5qZ5ofRfPzxWvbsCSExcR4Wi5XKymLefns5X/96EPHx8R0aV1lZGcXFxYSEhBAYGNihx2pNVVUVftDQGD0n2G6H6mqKnE7qHQ68Gi3Pq6wkyD01TldkDwmhNCeH6EbfW+odDqpEtFeT6pbaUhP8AbgN2G9My/nYVNts2LALb+/pDVlkRSwkJMxk//5d5OfnNxnb0VV4e3u3KS5jDKdPn+bYseNUVVUyaNAg+vXrd1njTaOionA6T+N01mOxnP94VlWl0afP1V29PXToEDU1Q/D3P78ff/8o8vKGcOjQISZPnnxV+2/OgAEDyH3kEZ5/5x3iHQ5KnE68Bgzg+1/7GmVlZezZupXaykrGjRnDsGHDPNLNJjQ0lMf/53/YvHYtKw8eJGjYMG6dM6dTvkgppVpnjCnHNQ1bj5CauodVq/ZRWemFr28dc+cOY9KkcVeVl6Ar8PPz44EHbqawsJDKykoiIiI83jAoLy9n7948EhPnN1zk9fMLwdd3LKmphzusQepwOFi5cj1btmQhEoEx+UyZksD111/jkTouKCiImoAAiioqCPX3byhPKy4mZc4cqsrLWffFF0xNSMBus3EqP58DXl7cPG5cp8faVkMnTWLz7t1EV1URZLfjcDrZmplJ7IQJ+Pn5eTo8pS5bWxqkmcABbYy2j6KiSnx8mnaDFLEgEkhlZaWHorp6xhjef38Z7767h6NHA6iursbL611mzUriP//zSZLd4xwuJSwsjNmz+7J69RJiYubh7e1Pbu5uwsKOMnHik03Wra6uZteuPWRmniUuLpxx48a0eiKur6+n+SSV3u5lHWP6rFmMnTiR06dP4+fnR1xcHCJCSEgIiYmJHXbcyxESEsINt94Kt+qQcaVUxzhw4BD//OdJ4uIWERERRHV1OR988Dne3jbGjh3l6fDaRVhYWJfpLllVVQX4X9TjyNc3iKKijvu+sW3bTjZurCM5+T6sVi8cjno2bvyc0NCdTJ169TkoLpfVamX8woWsfPttxpeXE2y3k1ZczLGQEBZNmICvry/b/P1574svcFZXE9avH/MWLOjSWXaTkpIovecePvj4YwLy8qgAosePZ9YNN3g6NKWuSFsapN8HlovIei5zDjR1sTFj+rB79z7Cwwc0lFVW5uPtfZacnByOHj1OXFwMgwcP7laD0vft28dvfrOOkyfHY8xwfHyCCQurYsuW1/nVr97hN795Bv9GVyZbc999txAbu5FPP32TwsIapk7tx803P9Qk211xcTG/+tWr5OQk4e2dTF1dFh9++Dd++MMHiYyMbHa/AwcOROQN6upmYrO5Gq51dZWIHGDgwAev/k1ohZ+fHwMGDLj0ikop1UOtW7efyMjZ2O2uboa+vgHExMxgzZrlPaZB2pWEhobi51dBZWUxfn4hDeXFxSeZMSO2w467ceNRYmNvaZhGxmr1IjZ2Cps2feSRBinAkGHDCHj6aQ5u3UplYSHR48axaMKEhu8V0669limzZuFwOLBdMJ60qxo+ciSDhw6lqKgIu93eZTMCK9UWbWmQPgeU40qmoHOgXaXJkyewadM/OHbsfYKCRlBTU0xFxWpstlKef/4krmFCOxg4cCPf/vZD3SbT3R//+CY5OSOxWIZit4/A4aglLy+XsLBkcnMd7Nu3nylT2tYl1svLi3nzZjNvXsuZdJcu/ZyzZ8eQkjLLXTKerKytvP/+Kp5++v5mt4mKiuLuu8fy3nsvIjIWAGN2cdddY3psMgelVM8gIv7GmM5Pw92OCgoqiIpqmojFzy+U9PTKq5rbursrKytj69bd7N6dRkVFMQMHRjF16iSSk5Ovahy/l5cXN988nnfeWYGv7xh8fYMoLj5JbGwmo0cvar8XcIGKihqCgpr2VvL29qOgoKaFLTpHYmJiq72SLBZLt8ub4OXl1eJFeKW6k7Y0SMOMMfM7PJJewtfXl//4j0fZsWMne/emEhrqx8mTgWRkzCE+fgoAxszk6NFPWLVqHbfcssDDEV9aUVERJ08W4eMTSk2NqxKyWr2prw+moqISiKKsrH2/R23bdpyYmOualMXGjmPHjlU8+aSzxUrl+uuvZdiwAezdewiAUaNu7zLdZpVS6kIiMhV4GQgAkkRkFPCkMeZrno3s8vXtG0lGRgaRkf0ayoqKMunbN6LXNkYrKyt58cUPOXIklFOngnE4klm16jDLl/+TG28cwl13LbiqxE/Dhw/la18LIjX1MMXFVcyYEcvo0Ytavdh98uRJtm07QklJFUOGxDJhwujLGpc4fHg8hw4dIy7ufJK+3NxjDB/esUmUlFLdV1vOcp+JyHxjzKoOj6aX8PX1ZcaMacyYMY26ujqefPL/iI8/P3G2iBAdPYWNG1/vFg3SiooKIiJSOHv2CMYEYUxfRKw4nTkYcxp/f2/69p3Ursf08bFRX1+Dt/f5LioORw02m/WSX2wudZVUKaW6kN8D1wFLAYwxe0VkpmdDujJz547nhRdWc+ZMDSEhcZSW5lJbu537759FfX09J0+eJD+/iPDwEPr169djMvC2Zs2a9SxfXk5ubiC1tX3x8/MnMXEYxcUfs3MnDBq0n3HjxlzVMRISEi6aYq0lqal7+Ne/jhEQMB4fnwBWrTrJnj0f8sQTt7a5x9bcuZM4efITMjJK8fOLobIyh4CA48yZo+MblVLNa8vZ/uvA90WkBqhDp31pdxaLAE1zRhnj6DZdR6KiooiMtDF4cB927vw3paV7sVr9qa/fRd++gUyf7vpy0Z7mzBnJ4sVr6Nv3dkQs7gy/a7jhhhG99kq7UqpnMsZkXnBec3gqlqsRGxvL179+PV98sYfMzP0MGxbCtGnzCAoK4sUX/0VWVhBWaywOxyni43fz0EMLe/S4uNraWt55ZwMWy+1APaGhI6ivryE9/TSxsSHY7fHs2pV21Q3Sy4ln+fI9xMbega+v630PCooiLa2ePXsOMGVK2+ZUDQsL4xvfuJV9+w5x+vRR4uNDGTny1h79t1RKXZ0WG6Qi4mWMqTfGeG7yqF7AZrMxeXI/tmzZTGLiLMCVsTY3dxP33DPMs8G1kbe3N/ffP4uXXtrONdfcQk7Obk6f3kRUlJOf/vQepk+f1u6NxPnzZ5GZuYRt2/6ESBJO52nGjg3kllvuadfjKKWUh2W6u+0aEfEGngGublJmD4qKiuLWW5uOAlq+fC2nT/chJeV8wpvMzJ2sWbOVm2+e29khdpq0tDREorFY6hrKvLx8qa72p6IiG5ttMF5enXdhurCwkLq6kIbG6DnBwSmcOLGHKVPavq+AgACPJTBSSnU/rd0h3SoiWcBKYKUxJq1zQup97rrrBk6ffoO0tFNAHMacZOxYX+bOXejp0Nps+vTJREWF8fnnqRQWBjNmzP3MnDmlw66I2mw2nnrqfm65JZvc3FwiIiYSHx+vd0eVUj3NU8AfgXggC1iFq+dSj7FzZxqxsU0vJsbGjmDnzje4+WYPBdUJ6urqiI4eQGnpcXx8IqiqysbHJ5zq6u2Eh/tRWXmSceP6dlo8fn5+GFOG09k0D0NVVTHh4W3Lkq+UUleixQapMWa8iCQDC4A/iEg8sAlYAaw3xng2XVoPEhQUxH/919McO3aMoqIiYmKuo0+fPt2ucTVw4EAGDhzYqceMjY0lNrbj0tcrpZQnGWPygeZTh/cQFotgjLNJmdPpwGrtHsNWrlR8fDx+fruYPHk6e/du4sCB31NZacXb20lCQh+mTvVm+PDO6ykVFBTE6NGR7Nq1mcTEyVitXpSWnsXh2MO4cfM6LQ6lVO/T6hhSY0w68ALwgojYgBnA9cD/ikieMebGToixV7BarQwZMsTTYXRL1dXVlJeXExwc3Oz8YdXV1aSnp2Oz2UhOTu5W87sqpXo3EXkdeNYYU+x+Hgr81hjzqEcDa0eTJvVjzZpdpKTMaCjLzt7NzJntm3ugqwkJCWHBgkF88skOhgwZS//+Qyko2MKoUX7cccdNHpmO7KabZuPltYGdO9/CGF9CQx089NAUoqOjOz0WpVTv0eYUdsaYOmCN+wf3HVOlPMbhcPDRR5+ycuU+HA5//PyquPPO6cyYMaXh7vKu1FRWvfwy8bW1VBtDeXQ0d33zm8TH68dXKdUtjDzXGAUwxhSJSOdkuekkM2ZM5PTpFRw79m8gBsilf3/DNdf0/Kys06ZNJDk5joMHv8TpNAwZchPJycke6yHl4+PDokXzuO66KmpqaggKCuo2CRaVUt3XJRukIrKfC1PAQgmQKiL/a4wp6JDIlLqEFSs+54MPikhKegabzY+qqkJeeuldgoL8GT16FDk5Oaz529/4ang44e451A7n5bH4j3/kW7/8pd4p7eaMcZ2WulvXdqUuk0VEQo0xRQAiEsZlXEzuDnx8fHjwwVs4ffo0RUVFhIQkkpCQ0Gv+ty9nWpbOYrfb2zzNi1JKXa22VGorcKWYf8f9/B5cU7+UAK8BN3VIZEq1wuFwsHz5LhISvobN5mps2u1hhIZex4oVaxk9ehR7U1MZb0xDYxRgSGQkWzMy+PLLLzt9vOvlqq2txWq1asP5AhUVFSxdvpT1O9ZjMEwbM41bF95KYKAmBFc90m+BzSLyvvv5ncBzHoynQ4hIl2yYKaWU6nhtaZBOM8ZMa/R8v4h8YYyZJiIPdFRgSrWmpqaGqiqIjGzaCPHziyAvrwyA2spKQptpzPm5t++qTp8+zafvvsuZgwex2GwMu/Zarlu0CF9fX0+H5nFOp5M//P0PnDAniJ0di1iEtYfWcvJvJ/mv7/wXXl496saRUhhj3hCRncBsXBeDbzPGHPJwWEoppVS7acu3twARmWSM2QYgIhOBc3N51F9qYxGxAqnAaWPMQnd3o/eAFCANuKtRV6QfAY/huiP7jDHmU3f5OFx3Y+3AclwJHi7sRqx6EbvdTny8PyUl6YSEpDSUFxQcZcoU1xX2fsOH88UnnzDO6cTqHgNTWlPDKauVG/v0ueJj19bWsnnjRo5s2oTFamX4rFlMmjKlXe5klpSU8M6vfsX8ujoeTkqiur6ez1as4J8FBXzl6z1qpocrcuzYMY4XHyd59vkxVsljkknfkM7hw4cZMWKEhyNUqkMcAYpw19kikmSMyfBsSKonKy0t5cCBI+Tnl5GcHMmQIYPx9vZudt2jR49yZPNmasrLiR8+nNETJ+Lvr9PEKKXari0j1R8HXhaRUyJyCngZ+KqI+AO/bMP2z9J0Eu8fAp8bYwYAn7ufIyJDcXUHHoYrk+/z7sYswN+AJ4AB7p/r23Bc1UWVl5ezbt1G3n33IzZv3kp1dfVl70NEuPfeOZSW/ovs7N2UlWWTmbkJb+8N3HDDTAAGDx5MwIwZvJaWxq7sbDZnZvJKdjYzHnjgiudHdTqdvPmXv5D/+ussLClhfn4+J//+d/756qu0xzWSndu2MaK8nFExMVhE8LPZWJiSQkFqKjk5OVe9/8tVUVHB8ePHyc7ObpfXd7Xy8/Mh+OJxoybIkJeX56GolOo4IvJNIBdYDSwDPnH/VqpDZGdn88c/fsjy5Ya9e5N47718Xnrp31RWVl607rZNmzj4j38wNjeXufX1WD/7jI9efvmK6nWlVO/Vljuk+4wxI0QkGBBjTLGIhBljKoAlrW0oIgnAjbjGu3zHXXwLMMv9+HVgHfADd/li9/ymp0TkBDBRRNKAIGPMFvc+3wAW4RrbqjpJbW0te/fu4/jx00REBDJx4lhCQkIuez85OTn86ldvUVIyCG/vRGpqThIXt5Uf/OARgoODL2tfw4YN5X/+x4/Vq7eSlbWV8eNjmTv3YSIjIwGwWCzc/eijHJw0ieN79uBtt3P7xIkkJSVd1nGMMeTk5FBWVkZpaSns3cvtjeaJTQwK4q+bNpF13XUkJiZe1r4vVHj6NAMv6JprESHGYnHPURtzVftvK2MM6z/7jK1LlhDvdFLodOI/dCh3P/VUu47VrKys5Msvv0REGDBgAD4+PoCrIXzmzBkCAwObvObIyEgoccXXpFFaQsPfXake5llgkCYQVJ1l6dIvsFpnkpSU4i4ZQFraFrZv38OsWVMb1quqquLw6tXck5SEr3vKtcn+/tSmpXFo/37GTpjQ+cGrHqW+vp66ujpNsNULtKVB+m8RucUYUwIgIjG4rtCOa8O2fwC+DzT+BhttjMkGMMZki8i5ibbiga2N1styl9W5H19YrjpJZWUlv/vdaxw/Hoqv7yBqa/P44IMX+cEP7iIlJeWy9vXee59SVTWb5ORzH5+xZGSsYfnytdx776LLji0lJYWvfrXlGCwWCyNGjLjirpzl5eUsefFFyvbvJ9xiYdvp0/RzOKDR67ZaLPQX4fTp01fdII3p25eT69czslFZncNBptPJ/E6cB+7w4cMcfPNNvpGQQIC3N8YY1h0+zAevvcaD3/xmuxxj957dvPDuC9QF1YET7FV2vvngN0nLTONfq/+FI8CBqTSMSBrBkw89ib+/PwMGDGBQ6CCOpB4hblgcIsLRbUcp3VfK74t/T3x0PDfPvZnx48b3mgydqsfLxJVEUKkOV1lZSWZmZaPGqEtk5CD27VvNrFnnywoKCohwOhsao+ckBQRw9NQp0AapukJ1dXV8vv5ztu7fSp2pIz4snpvm3HTV37FU19WWLrsfAu+LiFVEUoBVwI8utZGILATOGmN2tjGW5r49mlbKmzvmEyKSKiKpPbn7ntPpxOFwdNrx1q/fzLFj8URH30Jo6FCSk6/Dar2FV1/95LK6cdbV1bFnTybR0aOblEdFjWPr1uPtHHX7+OjNN0nav59nkpJ4IDGRZ2NiyD15kv1nzzZZLw8ICgq66uONnTCBU9HRrMvIoKS6mjNlZbyXlka/OXMICwu76v231e61a7kmIIAA95ghEWFmQgK5u3dTXFx81fsvKiri+XefJ3hqMEnTkkiakYTPGB9+8uuf8Prq14mcHUnSzCSSrktif/V+3nzvTcB1geHZJ5/lhr43ULKxhLSlaeTvzafP9X2IvzGe8r7l/Pnff2bz1s1XHaNSXcRJYJ2I/EhEvnPux9NBqZ7Jy8sLEQcOR12T8rq6auz2pg3PgIAAip1OnE5nk/LCqir8w8M7PNbOVFBQwIolS3j5f/6HN371K7Zv3typ38N6m2WfLmN92noiJ0eSfE0yZVFlvPLvVygsLPR0aKqDXLJBaox5CdfYlQ+Bj4GnjDGr2rDvacDN7i63i4FrReQtIFdEYgHcv899s88CGl/6SADOuMsTmilvLtYXjTHjjTHje2L3vaqqKt5990OeeuqXfPWrv+Avf3mzU8bNrVqVyvHjVlav3svKlTvZvHkXdnsCGRnVlJS0/cK9xWLBZhMcjqYZbuvrq/HxsbWwleeUlZWRtWMHsxITzyfQiY9nREAAy/buxRiDw+lk6+nTFMfFMWjQoKs+pp+fH4/86EcUz5vHS9XV/MvHh6RHH+WWe++96n1fjuqysobG6DlWiwW7Me0yNmj//v3URdThF3x+Sp6gyCBOlZzCEeXA236+IZw4KpHth7dTVubKnuzn58fdt9/N8798nsmjJzP0pqHEDoil6EwRX+77kjPlZ/jrq3+ltrb2knHU19dz8OBBtm3bxpkzzZ5WlPK0DFx1sDeu3kbnfpRqd97e3owbl0BWVmrDBWeHo46CglSmTGlax4WEhBA2ahRbMjOpczfOThcVccBqZeiYMR0SX3l5Obt37mTrpk1kZmZ2Sm6D8vJylr/0EimHD/NwbCyL7HaKly5l/cqVHX7s3qi0tJSdx3eSPDIZm7fru2FodCjOKCe79u7ycHSqo7TYZfeCK7CCq7G4B5gsIpONMb9rbcfGmB/hvpMqIrOA/zDGPCAivwYeAn7l/v2Re5OlwDsi8jsgDlfyou3GGIeIlInIZGAb8CDw58t8nd2eMYbnn3+HfftiSEj4NlarN3v37uLUqTf4+c+fxq/RXJvtqby8nG3bDlJRMYfQ0PEAFBScYcuW3fTvX4PN1vaGpNVqZfbsYXz66VqSk29ARHA6HeTmruHBB0d1SPxXo6amBl/Ay3L+uo3NZmPMpEmsPXWK32Rm4jSG6FGj+MqDD7bbfKEhISEsuvdeaMdGaH5+PocOHsQYw+AhQ4i+RPffvuPHs/fNN0lpNE74dGkpNWFhLY7VNMaQn59PXV0dMTExWCwtX++qratt9uxTV1+HxdZ0O4vVAl6uv8eF41dPnTlF8IRgTqSe4MDhA3gle2GJtnBq6yn++tJfefbpZ1uMIz8/n9+88BtyHbngB6bAcO3Ia3ngngdajf1qnTlzhi+//BIfHx+GDRum2ShVq4wx/8/TMaiuqaamBqfT2e7j666/fgbl5as4fPg9REKBXObN68OwYUMvWnfOLbew0deXt1NT8XI6scXEMOveezukR096ejrrX3uNfrW1+ImwzeHgyJQpzFm4sEPP2Qf37mVAeTlD3Pkngux2rk1O5p0tWyibOVPnwG5n5eXliK+46v5G/IL8OFt0toWtVHfX2hjSC//DPmih/HL9ClgiIo/huvJ7J4Ax5qCILAEO4ZpO5uvGmHP9IZ7m/LQvK+iFCY0yMzPZv7+alJQbGu7WxcdPJD39DLt27WH69KmX2MOV2b17L6Ghoykv348xo7BYvAkIiOPMmU+YM8f7sr9ML1p0Hbm5i9m79y9YLHE4HOnMmhXP7NkzOiT+qxEWFoaJiiK9uJjkRg2zL2tquPs732HitGlYLJYrztjbWbZu2sTGV19lpMOBBXhThIkPPMDMOXNa3GbytGn8Y/Nm/vnllwz196ewpoZtIiz41reabXgXFBTw0lsvcTT7KOIlhNvC+eq9X2XgwIHN7n/woMGwGupr6/Hydp2GaqtqifCOuGi0XEluCRH2iGa/4CTHJrM/bT+H9h0iaEYQVm8rddV1RIyJYHfObo4cOcLQoRd/iQJ45Z1XKIwsJHlQMgBOh5PV61czaMcgJk2a1OJ7c6WMMfzrw3+xbOsyiAJqwO8DP77z2Hfo379/ux9P9QwiEokrF8MwoCHjmTHmWo8FpTyqoqKC5cs3sG9fDk6n0L9/CDfdNJ2IiIh22b+vry8PPHAz+fn5lJWVERExtcVGl4+PD3Nvvpna66+ntrYWf3//Dhm/73A42LB4Mdf7+xMVGwvAKKeTjzdv5sshQxgwYEC7H/Oc4tOnGXTBRX8vq5UIEYqLi7tkgzQzM5Oju3ZRV1VF4rBhDB4ypNvM0x0WFoal2kJdTR22Rr3nyvLK6DPkyqfsU11bi5/O9rwqa4xZhyubLu5Mgc1+EzbGPIcrI++F5anA8PaKp7PV17uma72ak0FBQQEWS9xFJ3ovr3iys3OvKr7WlJSUExU1ET+/Yk6c+COQgjF5BAUdZdasRZe9P7vdzrPPPszp06cpLCwkOnr6Je/WeYrFYmHBI4+w5De/YWJZGRE+PhyuqCA7JYXHrrmmw+5Kt6eioiI2vPYaT0ZGEuzO3jultpYX3nqLwSNGEBUV1ex2drudx77/fXbv3MmBgwcJiIjggalTm83y63Q6+cOLf+Bs2FmSrktCRCjJLeG3//gtv/z+L5ttSCYkJLBo2iI+XPshljgLOMFkG559+Fl27NvBqS9OERAfQHVpNZYzFr778HebvQJ+07ybWPPzNdT41BBkC6KmsoaK7ArGDRiHtdzKkePNN0iLioo4knWEpOvPZ1y2WC2EDgplw44NHdIgPXr0KB/v+JikuUlYba5GfUluCX95/S/85ie/6TZfFlSnexvX3N0Lgadw9SzquUkSeoDa2lq2bEll+/aTOJ2G8eP7MG3aeHwvyKB+JYwxvP32crKy+hEXNw+LxUpW1gleeWUFzz57Z7sc45yIiIg2N3K9vb1bnKf0SlRWVnL82DGqysuJTUzEy8uLoLIyohplybdYLAz19yftwIEObZCGJiSQs28fKY3K6h0O8o25otkGOtruHTs4+u9/M9pux9fLi6N79nBi6FAW3ndfp9QzBQUF7D+4n7LKMgb2GUj//v0bLmQ7HA5OnjxJXn4eoSGh9O/f/6Kedr6+vsyfPJ+lqUsJ6x+Gj92HgtMFhFWHMXL4SIqLi/H29u4W38FU27XWZfdF4E/GmAPNLPMH7gZqjDFvd2B83VppaSn//OcKNm8+jjEwYUIf7r57wRV1ZYmOjsbpXI8xTkTOfzGvqzt1UTa89tSnTwJO5zaGDn2Evn2nUVp6GpttLCUlVQwZMuSK9ikiJCQkkJCQcOmVPWzQoEE89Nxz7Ny8mQNnz5I4dCgLx1/+Fwun00lpaSl2u71hapNLKSwsZOfWrZTk5hI3YABjr+C4R48eZUh9fUNjFCDA25sRTidHDh9usUEKrkphyrRpTJk2rdVjnDx5kqyqrIY7jQDB0cEURxaTujOV+fPmN7vdLQtvYdTwUew7uA+rxcro20eTkJDAnNlzSN2ZyqETh4hMjmTqXc03hAH69evH03c/zY9f+TElx0oI8A1gwqAJJMQnkLErg0D/5q9cO51OxCIXpUwTi1DvqG/19V6pHXt24JPs09AYBdf7lHEog/T0dPr169em/Rhj2L17NyvWr6CotIhRg0axYO6Cdrs7orqccGPMKyLyrDFmPbBeRNZ7OijVPGMMixcv5/DhUGJibkZE+PzzfZw6tYxHH73tqruWZmVlkZ7uRXLy2Iay6OgBpKef5ujRY4waNbKVrbuH7OxsVv/jH6RUVBBktbKrvp6KlBR8LkieBOAwButlDB26EkNHjuSDDRsIOnOGAdHRVNbWsjU7m4QZM7rc3dGqqir2LlvGXfHx+LkvEKRERLD88GFOnDjB4MGDO/T4x44d483lb0Ik2HxtbP58M8P2DeOeW++hrq6O15e8TkZVBtYgK45yB9Gbonnk7kcuSgo5bco0QoND2bx7M2UVZczoN4O4UXG8+PaLFFQXQD2M6jeKG+fdqA3THqK1SyXPA/8jIiOAA7iuyPriGtsZBPwD15Vb1QyHw8Ef/vAmaWlDiItbhIiFnTt3kJ7+Oj/72dcv+0piXFwckydH8sUX7xMTMxsvLx9ycnYQH5/N6NG3dNCrgMGDBzNq1FZ27/4n4eETsdnsFBVt4Lrr+nTInJh5eXls37iRwsxMovv1Y9KMGZc9P2l7i4qKYsGiRVe8/Z5du1jzzjtQWEitzcbwefO4ftGiVq9UpqWlseT//o8xNTUM9PHh+Pr1vPjppzz6gx9cVhdhi8XCxVU4OKHdulVVVFQg9ov35eXvRUFxAfX19c2+VhGhT58+9OnTtAuO3W5nxvQZzJjetm7c8+fPZ/3O9RTHFBPdLxoRoTSvFNtZG+PGNj87VVhYGMnhyZxNP0tkimtMrDGGouNF3D779ovWdzgcVFdX4+fn5/HpZD5b8xlvfP4GocNCsfezsy59HTv/tJOffPsnhIaGejQ21SHOpTvNFpEbcSX16/pX83qprKwsjhxxkpzsOn9ZLBZSUqZx8uTHpKWl0bdv36vaf3l5OSIXZ7D18gqnsLD0qvbdFRhjWP/++8y2Wkl0T682yhiWf/klB0RILygg2Z3Bt7a+nv1VVUy8wmnd2iogIIAbvvpVdqxZw+b9+/EJCGDQzTczrgN60lyt3NxcYpzOhsboOf39/Mg6frxDG6T19fW8/+n7hI0Kwz/IPZwrBQ7sOMDRo0fJzssmw2SQMiGlYZvTx0+zat0q7rj5jov2N3To0IYeToWFhfzxzT8SMDiApIgknA4ne4/upXpZNV+56ysd9ppU52mty+4e4C4RCQDGA7FAFXDYGHO0c8Lrvo4fP86pU3aSk88P80lImEpaWgYHDx5kzBVkoHvssbtITl7PmjVvUVFRx/z5A7nxxkfafMftSlitVr7xja+wefM2vvhiNd7eVh54YATjx7dlGtrLk56eznu//CWT6uoY6OfHqT17eOmzz3joxz9uMZHOpRhjOHHiBOknT+IfGMjIUaM6NYnMiRMnWPunP3FveDixSUlU1tXx8UcfscLp5Ka77mox5uWvv84tViuD3N2TRgIr09LY+PnnLLil+QsQxhiMMU2uwA8ePJi1NhvTKiuJcF9FLK6uZr+XF48NG9YurzEpKQmKmo4HrSqr4uDqg+QH5/PZ1s+YNGISdy26q0O6N1mtVr791W/z/GvPk3EyA7EKQQTxrYe+1WJvBBHhsXsf49d//zWnsk9h8bfgPOtkfOJ4pkye0rCe0+nkszWf8fHajymvLScyMJK7F97dYkO3NRNGT+CzNz7D0dfRpMtukDOI5OTkS2ztUl1dzfur3ifhmgR8/Fz/94kjEknflc6GLzZwy8KOuzilPOZ/RSQY+C6uhH5BwLc9G5LnVVdXs337bnbvTsfLy8rkyf0ZPXpkuyWXu1LZ2dmcPFnL/v1bcDqdxMWFMGxYPyyWePLzC666QRoZGYnTuRun09nkXF9bm0F8fMd1W+0sRUVFSG4uiY265ooII8LCKAkMZENlJZHp6fiJkA4MuOGGNp8/r0Z4eDjX33kn3Hlnhx/ravj6+lLezJ3k8tpafDv4bu7Zs2eptFYSEdS0t05gbCAHjx/k1JlTxIxoeiMjpk8Mezft5TZn670H9u7fizPCSXCE6wZFaWEpTpxs2LmBa6ddS3x8/GXH63A4GnqutWdXd3VlLtmZ3BhTjnv8p2o711xJcReVi8SRl3dl8yjZbDYWLJjLggVzrzK6y+Pt7c2sWTOYNatjEw+tevddbrRYGOae+HhAeDgBmZms/fhj7nr00cveX319PYtfeonyrVsZIkIu8NeAAO7+3vc6pQID2LZqFXPsdmLdFYGfzcbNSUn88bPPmHfzzc2eBMvLyylPS2NgowoZYExEBEu2boULGqQOh4N1q1ezc/lyqkpLSRg2jLl33UVycjJBQUHMfuwxnvvNb4ivqSEuMJBMPz+u/epXCW+neeJCQ0NZdM0i3l//Pv79/LFYLWx8byP2JDtDbx2KxWJh2+FtZDyfwU++95PLyszcVtHR0fz0+z/l4MGDlJSUMHr06EteeEhISOCXP/ole/fupaS0hJT5KQwcOLBJpfjZms94a8NbxE6OJTwwnLL8Mv605E/80P7Dy+6yPmjQIG6acBPLPnMlNZI6wV5i5zuPfafN43oKCgqo96lvaIyeExwXzJFTR7gFbZD2NMaYZe6HJcBsT8bSVdTX1/Pmm8s4dSqGyMj5VFXVs2TJLjIzP2fRouaHCHSWjRv3kJFRR3Ly7VgsFnJycigu3kefPvmEhDSf5O1yREREMGlSJFu2fEp4+BisVht5eQfp37+6zd3+uzKLxYKjmalcHE4nIWFhzH/ySdLT06mpqWFkXFyXHMN5tYx7ejVvb+/LvsASHR2NMzGRA2fOMCw2FhGhsKKCg8ANHXwn2dvbG1N/8d+urrYO/yB/LGLBOJsuN8ZgufQMlBSVFeEb4IvT6WTfln2cyj4FoVBaXsqfXv0T337825fVa+/AwQN8vPZjKpwVWBwWJg+bzPxr53s8l4PTPa+vp+PwhN73ijtJTEwMxrjmqjzXxc8Yg9N5kri48R6Oruupq6sj58gRhlzQUBwRFcWm3buvaJ+7du7EbN7ME337YnH/DY4XFPDhiy/yzP/+b6d0vSzJySHqgoaR3WbDXl9PRUVFsw1Sm82Gw2KhzunEu1FlVFlXh08zXTJXfPABxR99xONxcYSEhnLo1Cne+8UveOhnP6OyspJ177zDKF9fampq2Fleztx772XC5Mnt+jpvuuEm+ib3ZeP2jZw8cZL4PvGMv218Q2WaODKRtA1pHD58mJEj23+MU3l5Oa+89Qp70vZg8bXgvcyb+2+6n+lTp7e6nZ+fH1OmTGl2mcPh4OO1HxM7ORZ7oGtahcCIQGqG1rDs82WX3SAVEe649Q6mTpp6xdO+BAUFQRU46hxNxqKWF5YTF3nxBTDVfYnIn4EWJ1k0xjzTieF0KV9++SUnT/rTp8/5/++AgPls376Y6dPzPTaeOjs7m/z8YPr0EYqK9hAcPIrAwGgyMrbRr98p+va9vl2Oc9NNc0hM3Me2bZuor3eycGEy48cv9Pjd4fYQEhKCd3IyR3NyGORuYNQ7HOwtKWHI2LF4eXn1iIZ3S04cP86OTz6hLj8fp48Pg6+5honTp7d57LGIcP1997F6yRIOpKXhK0Kpnx9TH3ywTReha2trOXjoIIdPHibAHsDYEWPbnO8jIiKC5NBkck7lENPH9berra6l9kwto6aMIiggiOWHl5MyOqXh+9eZY2eYPGzyJV9f38S+pG5PxVHv4GTeScLHheN0OrEaK/4D/VmybAnffOybbfpel56ezjufvUPUqCjCA8Opr6tn4/6NyFphwbwFbXqt7a22tpa1G9eydd9W6hx1DEoaxPWzr7/i3oHdkTZIO0ifPn0YNcqH3bs/JDp6OhaLlZycLQwceOXJgHoyq9WKl91ORW0tgY26IJfW1OB3hWNIj2zezOSQkIbGKED/sDAsGRmucRYdMAb2QvFDh3Js9WpiGo37zKuooDYwsMUru76+vvSbNo21GzcyP8mVtbamvp61hYWMvu++JutWVFRwYOVKvpWcjK/7itrwqCiKs7L44vPP+XL7du6yWEhxTytSXlvLS//6F8NHjybRfSe6PYgIw4cPZ/jw4WzcuJG87XkXfTkyAcbdc6D9vfbua+yt2kvS/CTEIlSVVfHS0peIiYq54ilVampqqKitIDywaSUeEBbAmS/PXHGscXFxxMVdWeMxMDCQ2eNns2rbKhLGJWDztVGcXQwZcO0tOgtID5Pq/j0NGIor0y64pkrb6ZGIuogzZ/Lx9m56/rJYLO5usZ5rkJaUlODlFcOUKRM4fHgz6elvAhAX52TatBHtdtfDYrEwduxoxo4d3S7762quveMOVrz+OifS0wnCNT9g/OzZLU4j1lNkZWWx7dVXmRcWRlRSEpW1taxfvpytDgdTZ7e9c0RQUBC3P/44BQUF1NXVERER0abPXl1dHW8seYMvq74kOC6Ymooatr6/lbtm38XoUaPbdOy7brqLdz54h/Qt6YhNsFZaue2a20hISCA6OprM7EwObjmIBArOCid9g/ty7cxL111DhwwlcVcin67/FEkRKkorqMqvYnTf0cQkxZCemU5+fn6bGnBbdm7BP8Ufv0DXMCYvmxeJIxLZumUr1868tkOHwbXkg2UfsLdoL/GT4rHarKRlpvHSey/xzMPPdPmpBdtLm8+OIuJvjKnoyGB6EhHha1+7n9Wr17Nu3VvU1TlZtGgI1133UI+4itneLBYLo6+7jpX//jeLkpOxWa1U19ez6uxZxj755BXtU6xWHM1l5XMfrzNMmzuXVzdvRjIzGRQWRn5lJZ+VlTHra19r9XNw4913815JCX/at48oi4VMYxh6yy1MmDixyXpFRUWEGdPQGD0nISCAL3btIqakhJRGd50DvL0Zb7WyPzW1XRukjUVHR0MxF/UOkGLpkCl+ioqK2Hl8J4nXJboy5wL2QDu+/XxZt3ndFTdI7XY7kUGRlOaVEhR5PgNg0ZkixqRc/hjw9nL3bXfju8yX1etWU+usJTEika8/+vUrGkOjui5jzOsAIvIwMNsYU+d+/gKwyoOhtUllZSU1NTUEBwe3+/k2LCyQ+vqCi8qNKSAgwHN3z8LCwnA49mCz2Rk1ai4jRrjqn4yMz+jXT/NQtVVYWBj3PPMM6enpVFVVMSw29opmJ+hu9m/ezCQ/P6LcGWf9vL2ZlZDAexs3MmH69Mse7nK5w3IOHz7MyaqT9Bl7PtFgdXQ1S9ctZeiQoW1KxhkSEsLTDz9NTk4ONTU1REdHY7e7ehjZbDbuu+M+zpw5Q2FhIUFBQSQmJrbprqa3tzeP3PsI+fn5pJalEhEYQcqIlIaZAgRpc6+3wrJC7An2JmVeNi8cFlfyws5ukBYUFLA3Yy/J05MbXkN0cjTppekcOHSAyRPbt0dbV3XJBqmITAVeBgKAJBEZBTxpjPlaRwfX3fn4+LBw4XwWLvTsmJbuYu6NN7K0tJTfr1tHpAi5Ioy6/XYmX2LakZYMnzGDzamp9A8Lw+Zu/O0/exbvPn3adBWtuLiY/5+98w6P8rry/+dO08yoS6PeJSRQoSN6N6YZG3DFxr3FsWM7bZPNejebbNb785Yk3k1ix45rbNxtMKb33nsVINR77zOadn9/jCwkJFBBFd7P8+gRc/WWM0Lz3nvuOed7tq1ZQ/qhQ+j0ekbNncvUmTO7tMttMpl44te/ZvemTZw8cwbP+Hjmzp/fodKdu7s7T/z4xxQWFlJdXc2CkJB2I6p+fn5UqFQ02GwYW0xW2bW1eKakoG0nIqkVAoe9d1qbAAwZMoTkwGTOHDxDUKJL9bbofBGJfokMHTq0x+/X0NCAcBOo1K0XvXp3PZWVld2+rhCCBxY9wP9+/r9Yk6x4+HlQWVCJzJAs+tGiGzW722i1Wu5dei+LFy3GarUOCOVfhV4lFPAEvv8we9CeQMEAwWw2s2bNDk6eLAHc8PV1cPfdk9uoad8IQ4cm4OX1JUVFFwgMjEdKJwUFJ4iJcfbrxkxgYCCjR3tz9OhWgoPHoVZrKSo6S1hYBfHxSvlvV1Cr1TcsANUedrsdh8PRbafDZrNx/tw5Ci9exM3Tk2GjRvVYtlVtcTF+V5f46HTorFbMZnOv6C+05ELmBTyCWkfj9EY9Vp2V0tLSTn+2hBCEhIRc8+fdzRLS6/U8sPgB6jfVEz0yunnOLysoI9gjuNMOeEJUAjvzduLhc+W91lXV4a3z7pc2PjU1Najd1W3mcb23ntKKG285nZGRwZa9W8grySM0IJTbJt3Wq317u0tnVtZ/BOYBqwGklCeFENN71SqFWxKtVss9jz5K9eLFVFZWYjKZbihVYeTIkWTNn8+fN21iqBBUSElxQADLn322wwV8Q0MD77/2GqNLSnguKAizzcbWDz9kZV4e9z3+eLvnSCnJz88nMzMTg8FAUlISRqMRk8nE0qtSbTuDEKLDB7fRaGT0nXfy+ZdfMj8wEF+DgbMlJRzU63nw3ntZceEC5Q0N+Dcp7NocDo7bbNw2cmSX7eksKpWKF595kU1bN7Hz8E6klCwdt5R5c+b1SmQ6KCgID+lBfWU97r5XJvOqnCruGn/XDV17zOgx/MrwK9ZsWUNBRgGjo0az6EeLBkQPXa1W2+sLFIUBwWvAcSHE9qbXM4Df9J851+frrzeTlhZMePhcVCo1NTUlvP/+Rl56ybPHUmn1ej1PPbWAtWv3cunSflQqyejRocyfv7DfN2eWLr2dsLBj7Nu3FrPZwbRpkUybdme/fFZLSkpIP38ep8NBzNCht3QWhdVqZf/27WTs3w82G94xMUy6447rOk5XY7PZWP33v+OVnk6Cpyf1Vitbd+9m7PLlDGtqT3IjmGJjyTt0qJVTWtXQgMPTs0/SNr08vGgsa2w1JqVEWuWAUaGNj49netZ09uzbAz4grAJvuzf333t/pz/748eM5/j54+Scy8En2AdzrRlzjplH5j/SZ9lzLfHz88NZ58TpcLbaWLdUWAgbc2Of2czMTN5Z/Q7eCd6EDg2lpqKGd9e+y5MLnxxwKfBCtqNm1uoAIQ5KKScIIY5LKUc3jZ2UUvbeirYHGDdunDxy5EjHByrc9BQWFpKdnY27uzvDhg3r1MJg7+7dlLz7Lkub+qAB2J1OXs/N5bH/+q82EVYpJd9+9hnZmzaRKCW1wGVPT+776U97NDLQHk6nk/179nBk3TrqKiuJHjmS2UuXEhISwvGjR9ny5puMcjjQC8Epp5PQuXNZ8uCD/b5w60mOHjvKn7/4M5pIDXpPPTW5NUSro/nli79UmmYrtEEIcVRKOWjU5YQQwcD3TQ8PSimL+suW682tFRUV/P73G4iMbP18ycs7wfTptcyZ0/NK7RaLBZVK1eXe3jc7xw4dIu3bb0lUqVALQZrdTuhttzH1ttt65X7fZ6MM1F7IG77+GsORI0wMD0en0ZBdXs4uu527Xnqp00q9p06coOTzz5nTYk6vNptZVVfH8l/+8oZrhCsqKljz5puMsdmI9PWlsqGBA9XVpCxfTnIvK+SCq4fpnz79E6ZRJoyeRtcm+8V8wmxhJA9J5mzGWbzcvZgwakKvRK+7QklJCYWFhej1emJiYrr8+a+treXQ0UOk56bj7+3PxDETr7vRnJGRwb5j+6isqSQhKoFJqZNcIoM9xNqNa9l1eRdBQ4PQ6DSU5pTi3+DPc488d0ObAX/7+G9U+FXgG3Tlc1ldVo2xwMgLT7zQE6a3obvza2c+PblNabtSCKEDXgLOd/VGCgr9RUhISJd2QQGKMzOJveohoFGpiFSpKCkpaeOQnj17lpL163m+qf4VIKOykpVvvMHLr73Wqbrh4uJiDu/eTXVREWGJiaROnNgpBVaVSsWU6dOZMr1t4sLosWOJeO01Tp84QYPFwoKkJGJiYgaFM1pcXMylS5fQarUkJydfd4d47Jix/Nb0W3bu20lFTQUjJo9g4oSJzbUrCgqDFeH6sM4BYqWU/yaEiBRCjJdSHupv266moaEBlcqrbeqZ3pvKyuJeuedAidwMJGpqajjz3XfcFxKCoWmhnuhw8NXWrRSnpPRoLX9ZWRnbv/4aW04OAlCHhTHjnnt6RS+gu1RVVVF27BgPRUU1R8CiTSbK8vI4d/Ikk2fM6NR18tPSSLrKCfE2GPAuLaW0tPS66wyn00lmZiaFWVkYvLwYmpjYZk7z8/Nj0Q9/yLE9ezh16RIeoaGkPvBAnzl/QUFBPDTvIVZtXUW5qhxplUT7R1NVX8W6i+vwC/ejrKGMk6tPcs+0e0gdm9ondrVHYGBgc/1od/D09OS2mbdxGx1v0Jw4eYLPd3yOZ6wnhhgDewr2cOLjE/zw4R/2mFO64PYFBPoHsu/EPsyNZqYMncKUCVNu+PmWV5JHcHzrlHJvkzfZJ7Nb6XwMBDrjkD4H/C8QBuThElPoHbdaQeEaSCmbC+GDg4NvWAq7tLSUzMxMjEYjQ4cObRM19QsLI7+xkVEtxpxSUuB0Mq0dcYVzBw4wwWhsdkYBYn19cc/JIS8vr8O+pxcvXuTb//5vJjqdxBsMXDxyhLc3b+apf/qnG37gmUwmZs3p2961HWE2m9m9ZzcHTx/E4GZg1sRZjBkzBiEEUkrWbVzHV9u/QgZIcIB+pZ6XHn2JpOukRUVGRvJI5CN9+C4UFPqENwAnMBv4N6AW+Brov9XgNTCZTKhUZVitZnS6K5tBdXVZxMUNHAflZic3N5dop7PZGQXQqtXEC0F2ZmaPOYs2m40NH37IRLOZIU1zXFZZGRvff58HfvKTflErbY/a2lr8VKo26ZgmvZ6LpZ2v0XPz8KC+sW1Ka4OU132vdruddZ9/DmfOEKvTUWO3882GDcx+4olWUbnCwkJO7tlDZV4evhERjJw6tduK7N0lKTGJhPgEysrKcHNzI/1yOitPrSR6RLTrAD/w8vdi3e51jBw+sl8yE6SUZGZmcubCGdQqNSnDUnqtt7zdbmfd7nUEjwrG4OF6prl7uZNzLofDxw5z28yeyThQqVSkjksldVzPPtbDAsKoLK9sEyENMYUMKGcUOuGQSinLgOV9YIuCQruYzWY+e+stak+cIEStZpPTSeTMmdz98MNdViyWUrLh2285++23DAVqgA1+fjz405+2qq8ZO348f129mpDCQkYGBWGx29man49famrXoq0dpMQ32/Thh9xjNBLblO401GRiU1YWe7ZuZeHSpV16jwMdm83GH978AxcbL+IX64fdauf1la+zJHcJ9yy5h+zsbL7c+SVhs8PQurk2CmrLa/nLx3/hD//6hwGzyFFQ6CMmSCnHCCGOA0gpK5uylQYcer2ehQuHs3LlGjw9x6LTGamsvER4eAnJyZP727xbBo1Gg7WdcSug78Fa1szMTALKyxnSorQl2mQiIyuLy5cvX3cDsS/x8/OjFLDa7ehapNXmNTTgHxnZ6esMGzOGHfv2EWGx4KnXI6XkZH4+xvj466oAnzt7FrfTp5nbIjspuqqKHV99xYMvv4wQgry8PLa/9RYTdDqCvbwounCBradOMfMHP+g1RfxrodFomoWaLuVcwiuo9aa4m8ENu5udsrKyPneYAdZvXs+utF0Yw1xpxXu+3cO8UfOYOX1mj9+rpqYGszRj8mhd/+4T7MPlvMudirD2J3OmzOFvq/+GUAm8Td7UlNdQfr6cJxY80d+mtaEzKrsfAi9LKauaXvsCv5dSPtnLtikoALDhm28IPHGCx6Nckth2p5MvtmxhT0QEM2Z3rfdiWloaWd98w4uRkbg1TUznS0v56o03ePF3v2veQfX09OSRX/2KjZ9/ztoTJ1DrdKQsXMj9ixe3e92kiRPZt2sXSQ5Hq5TdepOpQwGcmpoarAUFxFw1MY40mfjyyBHoQ4e0oqKC7WvWkHH0KHoPD0bPncvkadN6tND/5MmTXKy7SPS0K82xvYO8WbN5DbOmz+L4qeOoQ9XNziiAp78nlYbKAbXI6YiGhgYuXbqElBKz2czeY3upN9eTmpLKjGkzOpWOraAA2IQQakACCCECcEVMByQTJowlIMCXgwfTqKtrZMqUMMaMWaxsJPUh0dHRHDAYKKmpaW4hUtXQQLpGw5IeVNc0m820l7/jBTTUD5wuge7u7gyZNYsNGzcy3mTCqNNxqayMbD8/7u5CbWZoaCgjli3j61Wr8LNaXZHR+Hhuv/fe656Xc+oUI318WkWkQn180OTkUF5ejslk4sjmzUwzGIhuEv7yMhhwKy/nyObNRDzZf8ttf29/LpRegBZZn06nE6fF2S9zWEFBAbvP7yZ60hWVXXu4nc37NzNy+Mger2E2Go0Iu8Bus6PRXnGZGmoaGOLbvZZyfUlsbCxPLXqKzXs3k3s6lxBTCHctuKtXOh7cKJ1J2R3xvTMKzbuz/deET+GWwm63c37nTn4SFtb8MNeoVMwKDOTLzZtJGj68uc4wKSmpwwfk6X37mGQ0NjujAIkBAWzPzqagoKCV8xgcHMxjL7+M3W5varp+bacsOTmZ9AULeGPjRpKkpEYILnt4cF8H/UbB1V/LplJhdTha2VXT2IjhBmokukpdXR3v/8d/kFpRwe1BQdRZLGz+29+oKCrirgce6LH7XMy8iFuQW6vJWaPToPJTkZ+ff91znU4nNpsNjUYz4NJNWnLq1Cne+OQNGj0bybmUQ25xLmPmjiE0KpQvTn3BwZMH+dXLv1Lq3xQ6w/8BK4EgIcSrwL3AP/evSdcnNja230VPbmXc3NyY9eijbFixgoDsbNRCUKDTMfmhh3pUiCU4OJjtwHinE3XT/Oh0OskCJnZRt6G3mTxrFmdNJvbs3UtjfT3hU6dy1+TJXdYZSBkxgoRhwygtLUWv13eq1Yhaq8XmcLQak1Jih2YhpLLMTCKuijZG+PqyMSOjS/b1NGNGjGHPij3U+Nfg5eeFw+4g73weI6NH4u3t3ef25OblovJTtVKj1Wg14AN5eXk97pDq9XomJk9k9+ndhKeEo9VpqamooTG3kfH3j+/4AgOAIUOGdLsfe1/SGYdUJYTwlVJWAggh/Dp5noLCDeN0OnHabOiucuoMWi1p58/z4S9/SZLTiQXYZjCw5OWXGXqdHp9Oux1NO46lRggcLSaMzMxMDm7ZQk1REaFJSUyZPfu6DzohBIuXLSN/2jQyMjKINBhYkJzcKYVXg8FA/PTpbNm+nfmRkaib+opuq6pi/BN9l1Zx5OBBhpaVMb0p/crLzY0HjUb+uHEjM+bP77HJx+Rjwp7Tug+qlBJnvRNPT09GDR/Ft/u/xT7UjkbnetTUltdSkV7BW5+8Ra25lqiQKB5Y9MCAjJbW1NTw5xV/xnuiN746X06mncR3gS+XSi4RkxRD9PhoMvdmcvTYUaZM7l6PXYVbBynlCiHEUWjODVsipVSEBRWuS2RkJA/+/Ofk5uYipWRGeHiPR6mDgoIwTZrEuj17GNEUATxTVYXH+PHdbjFTUlLCmcOHqSstxRQTw/AxY3qkN6QQgpQRI0gZMeKGr6XT6br0/oaMHcuJ48eJaNETPa24GH1MTLPCr4fJRHldXXNEG6CioQHPHmqV1F0CAgJ44q4nWLlpJTnnchAOwdj4sSy8fWG/2KN30yNtbUuhpO36dbw3wtzZc9Hs0rDvwD5s2PB39+fxOx7vl3Tlm5nOOJa/B/YJIb5qen0f8GrvmaSgcAWdTkfY8OGcunCB0S12XNddvoy+spLnk5MxNtXEFNTW8tGf/8yPf//7az6Yhk2YwKG9e0k0mZp3dHOrq6nx8WmOjp4+dYrNf/wjM3U6At3dubh2Le/u3s0T//Iv190NFUIQHh7erR6Vd9x/P1/X1/P64cOYVCoKVSrGPfggo0b3XTJCUXo6I66KMOvUasKEoLi4uMcc0tRxqXyz7Rsq8ivwDfVFOiX5Z/MZ4jekWZjg3un38vXWr12iRnYoPVuKMAr04/X4eftRVVjFf3/43/zzs/9MXFxcj9jVU5w7dw6rrxV3X3fKcsqQXhKDl4GqmipKSkqIiIjAGGIk7XKa4pAqdBYj8H3ariIdrdAptFptr0eqZ99xBxeGDOH00aMgJTGLFpGYlNStDJbs7Gx2vfsuo1UqEt3dyU1PZ9WBA9z13HNdmn9sNhtqtbpfekq2x5AhQyiZN49Pt24lApd2RUNwMAvuuaf5mOGzZrH744+Zo9XibTBQYzazq7iY4cv7X8IlNjaWnzz7E2pqatDpdP3aSm3IkCHod+ipqXBFbAEqiyvxsnoR3aKWuSfRaDTMnT2XmVNnYrVacXd3H9AZWoOVzoga/b1pd3YWIIC7pZTnet0yhWsipaSoqIjGxkbCwsL6peF2XzL/wQf5+LXXKMjOJlSnI6Oxkd1Scm9kZLMzChDq6UlYRcV16wyHDx/O+enTeXv3blJUKmqAs25uLPnpT1Gr1TidTrZ8/DEP+PoS1rRTGe7lhTonhz2bN7N42bJeeY8Gg4GHn3+esrIyampqCAoK6vP6DL+wMAoOHqTlb87hdFLsdF5XsKEr1NfXU1tby/MPPs/naz4n93QuOGH0kNE8+sCjzQ/5RQsWMW70OC5duoQQgo/KPsJnhg8GT9da3DfUF1ujjXVb1/Fi3Is9YltP4XA4kGrXDq6b0Q1ZL13NxYXE6XSV/jXWNBIQf2NK0Qq3BkKIX+PaCP4a1xz8vhDiSynlv/evZQoKLnXQxMREEhMTb/haB9es4TYPD0KbooYh3t7o8vI4tncvsxZ2HJHLzs7m0Lp11ObloXZ3J3HGDMZNmtTvjqkQgimzZ5MydixFRUXEGQyEh4e3sit5+HDs99/Pt5s3oyotxenuzoj77uuRiG5PoFKpOt2vtTdxd3fn8aWP88l3n5AtskGCn9qPh+55qNcVf3U6ndLvuBfpbOptGlD5/fFCiEgpZU6vWaVwTcrLy/nrX78kPd2KEO64u5fzxBNzGTNmVH+b1muEhITw3L//O8cOHya7sJCwmBjm5eWh37ixzbGqprYh10KtVrPsqae4PHMmGRcv4u3hwQ9GXqmFqKmpQZaVEXaVwFCivz9fnD4NveSQfo/JZMLUjRSdyspKzp93ZfElJiZ2q44idcoU/rZ+PUHFxSQHBmK22diUn0/o1KndsqklTqeTb9d+y9rda5EGCWaYkzqHl6a/hMFgaLeuKTg4mODgYGpra3nvu/eandHv8TR5knN84D2GEhISUH+rxmq24uHvQaBvIMVnikEH/v7+VBZUoi3WMmn5pP42VWFw8CAwWkppARBCvAYcAxSHVOGmwWw2Yy4oIPSq9h2x/v6sOX8eOnBIi4qK2PXOO8zy8CA8Koo6i4Vdq1dzwGpl8qxZvWl6p/H29r5upHfk2LEMHz0as9mMwWDod0d6oBIZGck/PPcPFBYWolKpCA4OVn5XNwGdUdl9EfhXoBhw4NqhlcDA2La5hZBS8uc/f0Z+fiqRkakIIaivL+XPf/6Qf//3wJs6n93T07OVom5mZiZr1q1jrN2OvkkUoLiujhw3N+7uIIVTCHHNIm+DwUCjWo3ZZsPQIvpa3tCAZzdrYnqbQ/v3s+Pdd0my2RBC8DeNhhlPPMGEKV1LB/X19eXBf/xHNn32Gd+ePYvKzY3hixZxzzWUhbvCnr17+PrQ10TdFoXWTYvdamf9gfV4eXpxx/w7rnuu0WjE282b+qp63H2uRI2rCqsYEzHmhm3raQICAnhw3oOs2LQCESIIDA6kdk8tXl5eVMgKgr2C+dGTP7rhXroKtwxZgB6wNL12Ay73mzUKCr2AVqtFurlhsdlataapsVgwduJZefrAAcZpNIQ3bcZ66PXMjozks507GTdlSrciW4WFhRzdto2S9HQ8AwIYPmsWw3ogEnw9VCrVLaHAnpOTw+nzp7HaraQkpBAXF9clp1KtVnerPEph4NKZCOnLwFApZXlvG6NwfXJzc8nKUjU7owDu7gFUVEzgwIHj3H33wHRIGxoa2L5hA+d37QIhSJ45k1nz5l1TYVRKyblz5zh/+DAASePHk5iY2CpnPzo6mvilS3lz5UqG41qpndXpWPTiizekXOrm5kbynDmsXbuWO5taw1SYzWypreW2uXO7fd3eoqKigh3vvsuzJhM+Te97isXC2++9R3xiYpdTbSMiInjqH/4Bq9WKWq3ucp/Xa7F+13qCRgU1t3LR6DSEjgll/a71LJy38Lr1GGq1mnsX3MtfV/8VvxF+ePh5UJFXgTPDycIX+kdYoSNuv+12koYlcer0KaSUjFg+Ah8fH6xWK76+vkr9iUJXaATOCiE249oMvh3YI4T4PwAp5UvXOlEIMR/4X1z1p+9IKV+7xnGpwAHgASnlV+0do3DzUVdXR1FREUajkZCQkB5/LkkpycvLo6qqCl9fX8JaqOVfjUajYciUKezZvJkZUVFo1WrqGxs5WFlJypIlHd6rpqiIgKvEj/RaLUaHg4aGhi47pMXFxWx+800m63TMDQigor6ePR98gHXZMkb0obbDYKKuro59B/dx6tIpjHojk0ZNYuSIkW0czb3797Lm0Br0YXpUahWHNh1ifNR4ltyxRJkbb2E645DmAtW9bYhCx5jNZoTwbPOB1Wq9qK4ubnN8cXExmzfv5dKlYiIi/Jg7dxKRXWgC3RM4HA4+fP11Ii9c4KngYCSw55tv+PjSJZ786U/bPKiklHz72WcUr1/P+CY59l3btpG+aBF33X9/83FCCOYvXsyI1FTSzp/HXFHB1NBQQnsgirng7rtZ63Dwx23b8JSSeqOR6c8+OyAVXdPS0ki225udUQAfvZ5kh4O0tDQmT+5eM/qerpOoqq3Cz721c+xmdKPIXITT6ezQ8Z08cTJGvZHVW1dTdLKIYdHDWPLDJddtGF5fX8/hI4fJLcwlMjSScWPH9enOc1hYWLeVJhUUWrCy6et7dnTmpKbepX/B5cDmAYeFEKuv1oBoOu4/gbY1EAo3LQd27+bCxo2EATVSYo+IYH4PtoWxWCys+/RTuHSJYCG4JCUiIYGFDz54TdHBiTNmsLuxkU/278cTqNFqGXH33Z3qmegfHU3evn2YPDyax+osFsxubni0GOssJ/bsYbxGw5Cm1mvB3t7M0WpZvXEjKSPbOlm3OhaLhXc+fYcyfRkBiQE0WBv4bO9nlFaUMnf2lc38mpoa1h9YT/hEVwsVAGe4k0MHDjE2d2yfr1EVBg6dcUgzgB1CiLW4dmoBkFL+odesUmiXiIgINJqVNDbW4ObmmjSklJjNpxk+vHUaSUFBAb/73cfYbFPx8ZnMoUP57N//Bb/4xZ192hD3woUL6C9eZGF0dLMjfWd0NH87c4bLly8Tf1WT7vz8fLI3buT5ph1SgGSHg7+sW0fB1Klt0pINBgPn9uxBm5WFEIK9UpJ8550sXLq02zttWq2WJQ89RMOSJdTV1eHr69st4ahPV6zg1Vde4XxODomRkbzy6qs82FeKeVI219I6nU7y8/ORUrYRUugrRg8bzeHMw4QlXnHQSrNLSY5N7lQUVgjB6NGjGd3JnemysjL+35//H+WGcvT+erbu38p3277jVy/+qlN94wYCdrsdi8WiKPrd4kgpP+zmqeOBdCllBoAQ4jNgMXC1KOGLuASTUrttpMKg4vLly+SvXcuyiAjcmua20wUFbPvmG5Y8/niP3OPQ7t0EpaczpYXy6Z6LFzm0ezfT5sxp9xyNRsOshQtpmDmT+vp6vL29O705OnLCBL47cgRdQQHRJhNVDQ3sLy9nxL33Nvf67AqVublMvKre08doRFVWhtlsHnBptXV1dZw7dYqakhL8wsJITEnpco/VG+Hc+XOUqkqJSnLVABsw4D7OnV37djEpdVJz656CggLwptkZBVeassakITM785ZwSO12e/O6Jz8/n+zcbIx6I/Hx8d3aPLlZ6MynNKfpS9f0pdBPGI1Gli+fxnvvvY+b2xS0Wndqa48zYoSFkSNbl/SuXr0Dh+M2wsPHAuDhEUxFhQ+ffbaRX/86oc8WuMVFRcRAq/sJIYjGFcG92iHNyMggScpmZxRcrUeScE2iVzukK99/nzG5uUxuEkJotNv5+6pVnIyNZdSoUTdku9Fo7JK8uZSSwwcPcnjtWnYfOMD+Xbv4wGplKrAnO5unnn0WoEed0mHDhvGOWs1UiwXvpihptcXCWY2GpxMTycnJ4es33kBfXIwAGkwmlj7/PDExMT1mQ2dYvGAxp/90mpzGHDwDPakrq0NboOX+H97f8cnd4Js131AdWE10UrRrYAjknclj1bpVPPXIU71yz57C6XSyYfMG1u5cS4OtgUCvQJbduYzRo5Q0sVsRIcQi4HdAFK45WwBSStlRKCsMV4bT9+QBE666dhiwFJiN4pDeMlw8coTRnp7NzihASkgIJy9dorq6ukdafF0+cIBlLVq1AYwJDeWLgwev6ZB+T1fnXnBpICx87jmO7tzJkYsXcffzI/nOO7td8+kdGkrJhQt4t3Dqai0WnEbjDZUF9QZlZWWse/tt4hsaiDEYKDh8mK937eKuZ57psYh3R+QU5mDwb+0AqzVqhIegvLy82SHV6XRIa1vhSWejE6Oh/9rJ9AV5eXms37GerKIs3DRuaOwaqrXVaE1anFYn+t16Hl/y+C3hlLdHZ9q+/LYvDFHoHDNmTCEiIoQ9e45TW9vIuHFDGDNmdJsI3tmzeZhMd7Ua8/WNJSurEpvN1mfS1X7+/pxpZ7xACCa0E6nS6/WUt+Ms1wH+V+32VVVVUX76NBNbfHjdNBqmeXlxaOfOG3ZIO6KiooKGhgaCgoLQarVs37iRyytWcJfJxBuHDvGB1cr32n6zgHcbGnjxlVd61CH18/NjxpNP8tZ775HicABwRq1m+hNPYDQaeec3v2GplMQ3OewZlZV8+fvf88J//mef7vAGBQXx25/+ll17d3E57zKR4ZHMWDaDwKZ0qJ5ESsnB0wcJnd968yI4IZiDmw/yFAPbIV2/aT2f7f+MsMlhBHgEUFNaw+ufvs4rxldISEjob/MU+p7XgbuB0/J6EuJtaW/X8erzXwd+KaV0XG+TUgjxLPAscMsulm4m7BYLuquihkIIdLh6eJaWlnJ0xw6KLlzA6OND0vTpXW4/4nQ4UF31N6USAmfTPNUeNpuN+vp6PDw8uhXVNJlMzGvR2/NGGDl1KttOnUJfUUG4ry9VDQ3sLCoi5Z57ekxboac4sHEjEx0OEpo+m3GAZ14eR3bvZvYd1xcN7CkCfQOxXLK0GpNS4qx3tnKKIyMj8cOPsoIyTKEu9f66qjq01VqGJgylpqaG3NxctFot0dHRN02blbKyMt75+h3c4tyIHBZJ7sVc1m1bx4QZE4gb5hLirCmv4bO1n/GzZ3824P7G+oLOqOwGAL8AknEp/QEgpZx9zZMUepXY2NgOm12bTJ5UVpah010J/1ssVXh4aLv1oO8uSUlJ7AgPZ1duLhNDQ5FSsreggLro6HYX18nJyexwdyerqoropp5XmZWVXPbwYGFycqtjbTYbOtquuvQaDY319Rw5dIh9q1ZRWVREcFwcM++9t0fSlevr6/n6/fcpOXoUL5WKKoOBqcuWcWjVKl4ID8fTzY20mhqmXnXeVOB8Ts+3KZkwZQrxiYnNbV+ebhIzOnbsGDG1tc3OKECsry/xWVmcPXuW8ePH97gt18PPz48ldy7pk3sZdAZsjTbU2isPdVujDb3bwNrZvhqbzcaaHWsInxaOm7urzsorwAvLMAvrt69XHNJbk1zgTBedUXBFRFsWWYcDBVcdMw74rMkZNQELhRB2KeWqlgdJKd8G3gYYN25cV+1QGGBEDB9OWlpasyItQFF1NTY/P4QQrHvzTcZLyUx/f2rMZvatWIG5ro7ULmgSRI8bx+mDBxnXos7/dGEh0ZPatruSUnJ43z7Ob9uGvrERi15P8pw5jJ0wod/KFUJDQ5n2zDMc2riRDdnZGHx8GP7AAwNO0MjhcFB0/jwLr1KcTQgM5MuTJ6GPHNLhKcPZfmQ7pXmlmMJM2G128s/nMzJyZCtxRY1Gw6P3PMqn335KdnY2Qi3wcHjw2F2Pce78OdbsW4P0lmAH90Z3Hl366E2hpnv4+GFkkMQ/xBWIKSspI2BkAJcLLhM/JB6dToeXvxc56TmUlJQQclV2wa1AZzyTFcDnwCLgOeAxoLQ3jVK4cRYtmsDrr69Hr38Qvd4Hq7WegoLvWL58XJ/WEGq1Wh77+c/Z8OWX/NeBAyAECVOn8ui997a7A+Tu7s49P/0pX73xBt5NzluNnx/3vvxym3oIf39/CAkhs6qK2KaJVUrJkYoK7LGxHP7zn7nbZCIkPJzLRUV899praP75n4nroC1MR3z9/vuEHDvG8ogI1CoV5Q0NvPXnP2N3OPAMDgYg0dubPdXVzRFSgD1AYi9FF/z8/JhyVZsXs9mMZztrWC+gorycsrIyfH19b7qdOCEEcybP4ZuT3xAzKQahEjgdTgpPFXL/lCspwjU1NZSWluLn59etvq29gdlsplE2Njuj3+Ph50HBmat9CYVbhF8A64QQO+majsNhIF4IEQPkA8uAh1oeIKVszt0XQnwArLnaGVW4+UgePpy1p0+zLi2NGL2eWpuNNK2WmU88wZkjRxhhszGsyQnQa7XM1ev5YssWRo4b1+mI1YSZM1mTnU1ZVhbBajVFTidVoaHcOXNmm2NPHjtG0erV3BcRgVGno76xkc0rV+JmMDB85MiefOtdIioqiqhnn8XpdA5YESOVSoXazQ2L3Y6xxf+NxWZD18W05xvB09OTp+9/mnXb1nF552XUQs204dO4bcZtbY4NCAjgxadepLi4GIfDQVBQEKWlpazev5qwCWHNavzVZdV8/O3H/PwHP+/TQEpvUFhWiIfflQCRSqVCIHBqnDQ2NjZ/rqRDDti/td6mM//D/lLKd4UQL0spdwI7myZGhQHMmDGjeeqpBr788i1KS41oNPXcd99o5s6d2ee2+Pj4sOyZZ3A8+SRAhw5QXFwcP/mv/yInJwchBBEREe2eo1KpWPTUU3z13//NyOxs/DQa0qxW6pOSqE5P58mgIAKb0lIT/P2Z53Cw57vviPvxj7v9XioqKig5erTZGQXwNxq5zWjkzfR0zAkJGLRaXrntNp767jvetdlcNaTAU0Yjr776arfv3VWio6P5ErjN4Wiuya23Wvk8PZ3ADz7gwpdfYvf1Ze5jjzG8i+lYA52F8xZSVFrEgY0HUPuocVQ5mJo4lXlz5uF0Ovly5ZdsOrAJPEHWSWaMmsFD9z3ULfGqnsTDwwMfgw91FXWtJq/K/EomR3dPMVlh0PMqrqoFPV3QcZBS2oUQP8KlnqsG3pNSnhVCPNf087/2hrH9gcViwWKx4OXldcsu5rqCVqvlzocfJj09naLMTAxeXixOTsbb25ujGzeSeFXdoVGnw8Nmo7a2ttOicB4eHtz7gx+QkZFBZVkZsSYTsbGx7ToWZ7ZvZ2FwcLND5e7mxpTAQLbu2NGvDun3DOS/KSEE8ZMnc3DLFmZERaFSqbA7HBwsKmLovff2+v2dTif19fUYDAaCgoJ44sEnsFqtLqGi6ziRQgiCmzbwAc5dOIcmSNPsjAJ4m7zJzsgmPz+fqBaZXoORqJAoMvMz8Ta56rPDY8JJ352O1kfbHGwpKygjyBDUK6VMg4HOOKS2pu+FQog7cKX8DP74+U2OEIKZM6cyZcoEqqur8fT0vKbUel/RlUicWq3ulPBOXFwcz/y//8eJo0cpLC8nJSGBIUOG8JeXXiLwqh6ckd7ebMjK6qrZrWhoaMBTiGZn9HtMHh4ExsTwdU4Od4SGsiwlhYLaWh7bv5/8+noSIyN5tS9VdnG1HYmeN4/3169ngtGISgj+euIEKWo1P4iPx02joaC2ls9efx2vf/3XQf/Ab4lOp+O5J59jSdESysrKCAgIICgoCIDtO7az5tQaoudGo9aqcTqcbNm3BZ+NPixetLhf7VapVDyw8AH+8s1fsCRZmnuuqnPVzF86v19tU+g3/KSU3WqCLKVcB6y7aqxdR1RK+Xh37tGfWK1WNmzYxeHDeUipx9vbzuLFE0hIiO/45FsctVrN0KFD25SxeIeGUpKfT2ALp9Ris1GnVndZAVSj0bjKDDooNWioqsLnqrRMX6OR+uK27ewGM7W1tdTX1+Pr69uj67EJ06eztaqKT44dw6RSUSIlETNmMGrs2B67R3ucOHmCDbs3UO+ox024MSt1FpMnTu5W3afT6USo2qZnC5XA6XT2hLn9yrjR4zh45iD56fkEhAeg1Wnxt/mjK9eRfzYfbODt9GbZPctuWVX9zjik/y6E8AZ+BvwJV8bfT3rVKoUeQ6vVYjKZ+tuMXsXX15dZLVT7nE4nWl9fSurrmyOkADnV1QTcYA1eUFAQ1UYjZQ0NmFqkw5yprmbe8uXgcPD2unVYi4sJnDGD7W++ecMpwjfC4mXLODt8OGf376e+oQHPoiKeS05uFrQI9fRkWm0th7dvJ6qH5P4HEsHBwa12YQE27tlI0Mig5vpSlVpF+JhwNu3ZxF133NXvk8GE8RPw9PBk7ba1FGUUMSFuAgteXHBL1pQoALBFCDFXSrmpvw0ZaKxdu4PDh/VERCxHrdZSV1fG3/++kRde8FA+L91k+PjxbDh0CI+yMqL8/am1WNhTWEj83Lm9tqkdGBdHdmEhMS3WKlnl5QQOGdIr9+trbDYb29esoejoUbyFoFKtJmX+fMZNnNgj19dqtcy/5x4qZ8+murqayX5+va6ue/HiRT7b8RnBI4Px8/Sj0dzI6mOr0ag1TBg/oeMLXMXQIUPZdmYbjmgHak1TRldNPW4Wt5uin7e3tzfPPfQcO/ftJO14Gt4e3rzy1CuEh4eTn5+Pm5sb0dHRgz41+UbojMrumqZ/VkOrkjgFhQGDlJITx46x79tvqSwsxKrR8EZBAU/HxRHi4cHlyko2ms0sufPOG7qPVqtl9iOP8NGbbzJdp8NHr+dMdTXZUVE8PXUqRqOR2fPnY7fb0Wg0HNy3jw0ffEBDTQ3Ro0Yxc9EiAgICeuhdd4wQgpSUFFJSUsjPz8d26lQbdUWTwcDpm2wn+nrU1tfibWjd1kCr19JgacDpdA6ImtqkpCSSkpKaX0spycnJ4ey5s2g0GkaOGHnLpvXcgrwA/EII0YgrY6mzbV9uaurq6jh6tIjIyOWoVK7PrIeHiZqa0Rw+fI677rq5HNKysjJKSkpwd3cnIiKiy2mkZrMZKWWH7VQCAgKY9cwzHNqwgS2Zmeg8PUlcvJixE7ruZHSW1Llz2fb225gLCgjy8qKwpoZjwNwO2sMMFvZu2YLb4cMsj4xErVJhtlpZt3IlXn5+PSpU5+vr22d6CDsP7cQ3wRejp+vvyc3gRmhKKNsPbWd86vgub+xGRkYyO2U22w9sR/gJcIC2WsvyhctvGqVdPz8/li5a2mbcp0nA81bnmg6pEOJPtJWIb0ZK+VKvWDTIqaio4MKFC6hUKpKSkpp7Lyn0LocPHODwG29wp8lESHAwlysq+MDh4G2LBU1VFcFDhnDnvff2SLRy3IQJ+AcGcmTHDuorKogeNYqnJ01qnuiFEGi1WjauXk3+l1+yOCAAb6OR03v28MGJEzzz29/2ywMoICCAKjc3Ks1mfFsIRF2oqSFibrcyAgclY5LGsD9jP+HJV1LESjJLGB4/fEA4o1cjpeTbNd+ycu9K1CFqpEPy2ebPeHrp00ya2FaxUuHmQkqpTCLtYDabEcKj2Rn9HqPRh4qK9A7PdzqdWCwW3NzcBuTn/nucTifb1q6lZP9+IlQq0qVkf2goCx95pFNRsJqaGnatWUPZ2bMIIfAeMoTpd93VSvn0asLDwwl/+mkcDodLfKWXs0bCwsKY98ILnNq/n3P5+fjGx7Nw0qSbIrvLarWSeeAAy8PDm0t9DDod4319ObZ376BVTi+rKsMzpvWjyeBhoMRSgt1u75Yew+2zb2d40nCysrPQaXXEx8cra+hbiOtFSI80fZ8CJOFS2gW4Dzjam0YNVnbs2MNHH+3H6UxCSjs63Q6ef34Bo0bdXIIxAw2n08mer7/moaAggptqXIYFBPCwlBxNSOCxGxAxuhYxMTHXrXGtr6/n+Hff8XJkJIamB/PkiAjqc3I4uGcP8xYt6nGbOkKn0zH9wQf5+J13mO3ujq/BwNmKCs4FBPDM9Ol9bk9/cdf8uzj9p9Nkm7NxD3SnobwBQ6mB+5+/v+OT+4Hc3FxW7l1JxOwINDrXI9tSZ+G9le+RkpyiTNg3KUKIYVLKNCHEmPZ+LqU81tc2DSR8fHxwc6vFYqlFr7/yGaiuzmLKlKDrnnv27HnWrz9KVZUTg0Fy223JTJgwtt/T9dvj7JkzNO7ZwwMxMc0OzamCAnatWcOihx667rkOh4O1H35ISnk5CyMiEEJwMSeHde+9x/0vvdRh5ElKyYULF6gsKcHbZCI+Pr7XhN8CAwOZs7h/a/h7A5vNhsbhaJOZ5OHmhrm6up+sunHiwuNIK0ojOPpKSUxVaRWh/qE39DfSXplNZ8nMzGT3od2UVZcxJHwIUydOve7Gi8LA4poOqZTyQwAhxOPALCmlren1XwGlluUqioqK+PDDgwQHP4ebm2tyrK+fzJtvvssf/hCHe4taRoWepbGxkcbycoKvEuWJ8vZmQ2Zmv9hUVlZGgNPZ7Ix+T6yHB3svXerRe+Xl5XHh3DlUKhXJI0ZcN5Vz0rRp+JhMHNmyhbqyMqKmTuWp2bNvKacmICCA3/7st+w7sI+MvAwiEiKY+tjAnbjOnD2DKljV7IwC6D302H3sXLp0iTFj2vVXFAY/PwWeBX7fzs8kcEv3Atdqtdxxx2g+/3wdnp7j0Ou9qKzMwGTKZPTotmlx33P58mU++ugkgYELiIz0x2KpZeXK7QghmDChd0VgukP6wYNM8PdvJaSXEhzM8XPnaGhouG4KbnZ2Nl5FRQxvMTcODQ4mNyuL9PT0VmUBV1NfX893H3yAb34+IRoN+XY7J4KCWPTEE71en9iTfLpiBa++8grnc3JIjIzklT4WFzQajeiCgymoqiK0RWbU5fJyQttpgVNTU0NdXR1+fn7o9QO3b/bMyTM5/+l5Ch2FeAd6U1tZiyXLwn1L7usXe86cPcPHmz/GK84L92B3jhUd49THp3j+4ecH7NzeE0gpux2RHmh0pno2FPAEKppeezSNKbTg9OlzSDmq2RkFcHcPoKxsCBcuXFAWjb2Im5tbuyJGuTU1mPpJUMjX15dyKbG1aLkCUFBfj19ExHXO7Bqb167l7FdfMRKwS8nf1WqmPfkkE67qSdqSxMREEhMTe8yG/sRisaBWqzv1MF7xyQpe+c0r5FzOITIukld/8yovPPVCH1h5Y2g0mvaLJ5xdU65WGFxIKZ9t+q5oN1yD0aNH4Ovrxf7956iuNjNuXAjjxi25rpO2c+dpfHym4OHhal+i13sSGjqT7dtXkZo6esC1+HA6HG1U3YUQqKTsUH20rq6O9ioK/VQq6mtrr3vuoZ07iSssJDU6unnsRF4eB7ZuZe7Sazv8/U1GRgZndu+mvqKCM/n5fPLGG7xnNrvar2Vn89SzzwL0mVMqhGDSXXex9d13GVFfj7/RSE5NDRl+fixuUZdrtVrZtno1pceP461SUdHDwkc9TWBgIC8sf4G9h/aSfTmbof5DmXL/lH4RIHI6nazftZ6gEUG4e7vWgIYhBvJlPvsP7+eOeXf0uU29jZSSo8ePsvXAVmoaagjxC2H+9PkMGcRCYJ1xSF8Djgshtje9ngH8ptcsGqRIKa+R7jPwUoBuNlQqFVOWLuXrt99mcWAgIR4eZFRWsqG+njtvUMSou3h5eRE3cyYrN29mQXg47jodF8rK2K/R8HgPpcfm5eVx9quveC4sDH1TOtB4i4W/vv8+icOHD6pd7K6Sn5/Px998TFpWGhqVhmljpnHfkvua+3ldzYpPVvDsT56lYUEDLIPsnGye/YlrYbL8ob7bLe8OI0eM5LMtn2Gps6D3cO2Y15TWYKw3tmnZoKBwqxEdHU10C6epI0pLa5ud0e8xGLwoKXFgt9sHnIBK1KhRnP32W4JaPM8zysowRkd32IYlICCAtCbHtaWjneNwMCro+mnN2ceOcf9VqZPJISEcOX4cuWTJwExvPnWKM598wkRvb3yNRn7zzju8ZzY3q3HOAt5taODFV17p0yhpZGQkC158kbNHj5JXWkrAtGncPWpUq42T3Zs24X7sGHMjI1F9L3y0alWPCx/1JCaTicUL+z/Nur6+nurGaiK9I1uN+wT5cDnjcj9Z1bscPnqYrw98TUhKCFGeUVSXVfPemvd47u7niIyM7PgCA5DOqOy+L4RYD3y/lfOPUsqi3jVr8JGSkoiUn2G1TkCnc+3QNDSUo9FcIiFhXj9bd/MzcepU1BoNX3z7LdU5OQTGxLDgueeIj++/fnR3PfggW7y8+PPGjTjMZgITErj/oYfw9fVl26ZNnN62DXtjIwmTJzNz/vwup81eOHeOkdDsjAJ46/UkOBxcvHiRcePG9fA7GhhUV1fz2puvYY+xE3lHJA67g20ntlHxQQUvP/dyuwulV37zissZ/b7sNwYaFjTwym9eGfAOaVBQEE8teYr3V76P08+JdEgMdQZefvzlAZ3SpaAwEImJMZGWlktw8JXNnJqaYoKCDAPOGQUYMWYM6y5c4Lu0NCI1GqqcTnK8vJjXiXrLkJAQPMeMYfORI4z090clBKfLyhDJyR0uWlUaDY6rIrAOpxOVRtP8jDWbzVy8cIH66moCw8KIiYnp9ayNiooKju/bR1lGBp6BgQyfMoWIiAgcDgdH167lruBgfJocvfTqaqZedf5U4HxOTq/a2B4mk4kZ89pfCzY2NpJ7+DDLW6gnG3Q6Un18OLF//4B1SAcKBoMBndBhtVjR6a98hhtqGoj1je1Hy3oHp9PJ1gNbCR0eisHDtQnvbfLGFmtj16FdPBz5cD9b2D06dEiF68kzB4iVUv6bECJSCDFeSnmo980bPISGhvLQQ6P59NO/IuVwwIZWe5Yf/GBul5tJK3QdIQTjJ01i/KRJ14lW9y1arZYFS5Yw7667Wu28f/L226h372ZZUBA6nY7Da9fywZkz/OCVV7q0IFKpVNjbGbfjmuD27NxJVWkpIdHRjBg58qaoMQA4dPgQdT51RMW56qI0Og1RqVGc3HSSgoKCdlOGci7nwLKrBiMh56O+X5h0hymTpjA8eTiXLl1Co9EwdOhQxRlVUOgGM2eO5dy5DRQWOvH1Dae2tpT6+gM88cT4/jatXXQ6HXc98giZmZmU5Ofj6+3NhC58/ucuXcqpmBj2Hj6MlJLoadOYPmZMh6nJQyZO5OiGDcyIiWmeT48WFBA7bRoAJSUlbHj3XaLr6vDVaEizWjmVkMCi5b3XpqO8vJy1b77JKJuNMT4+lKens/vUKVIff5zAoCB09fX4+F+Jfif6+bGnoqJVv8I9QOIAiyDZbDY0dnur8h5wCR9Zamr6yarBg0ajYfro6Ww4tYHwEeHo9DpqK2upz6xn6j1Xb0kMfhobG6m31eN/VaaHh68HRWcHb7ywMym7bwBOXAIK/wbUAl8Dqb1o16Bk7txZjBqVTFpaGmq1O0lJz/RZTyiFK/SnM+p0OklPT6e6upqQkBDCwsJQqVTNE3RBQQEl+/bxUmwsqiY750ZHU5GVxamTJxmX2vmPVfKIEXz4ySeMt1jwblqcFNXVccrh4OKKFYwwmwnSaLhgtXIgLo7Hf/azm0Jcq7C0EDcfN+xWO5UFlQiVwDfUF5WniqqqqnYd0si4SLJzsq9ESAFyXOODBS8vL8aOHXiiKwq9ixBiKbBNSlnd9NoHmCmlXNWfdg1WAgMDef75+ezefZysrONER3sxbdrUAZ3mplKpiIuL61bbMrVazeixYxndxWfHuMmT2ZCfz1fnzhEiBMVSooqPZ0GTEM/ub79lqtNJbJNg0nBg24ULnDp2rNfqHo/v2cMYu52Upme8r7s7XjU1bFm7lnuefx6LRoPFZkPftPn6ypIlPPnRR7xns7lqSIGnjEZeffXVXrGvu7i7u6MJCmojfHSpvJzQ2bOpqamhoKAAnU5HZGSkS1dAoRXTp05HpVKx88hOGp2N+Ln78diCx4i4SrPDarVy6dIlqmqqCA4MJiYmZsDVjXeEXq/H1+BLXVUdHj5XAl5VJVUkhgxefZDO/FVPkFKOEUIcB5BSVgohBl5eywAhMDBQaVh/i1JdXc1Hr7+OPiuLICHY53QSOGUK9z3xRPMEUlRURLRK1eyMfk+sVktxTg50wSENDAxk+tNP89f33iPB4cAOZOj1aE0mFjU0MLJpoTAeWHv5Mru3bmX+XXe1ukZdXR0qlarDZuldQUrJwUMHWb9zPRXVFYwaNopFcxcR1EHNUkfY7XZKSkoI9AukYF8BR3Ydwe5pRzgF2gYt4brwa8rFv/qbV6/UkEYCOWBcb+TVPw6shYmCQjv8q5Ry5fcvpJRVQoh/BVb1n0mDm8DAQO65RymluR46nY67li+nsLCQiooKYnx8CA0NRQhBXV0dDVlZxFzlxKeYTOw6frzXHNKS9HTGX7XJH+jlhT0nB4fDwZBp09i5eTPTwsMx6nTclpjIwgULeP7oUS4WFJAYGcmrfayy2xmEEExavJit773HiPp6fA0GcmpryQkIIFxKVv3XfxEJNEjJXh8f5j32mLLOvAqVSsX0qdOZPHEyVqsVg8HQJjhRUVHB+1+8T7m6HLW7GvtxOwk+CSy/t/ei+r2BEIJ50+bx8eaPsSXYcPd2p7KkEnuunekPDt4Wfp1xSG1CCDVNOo9CiABcEVMFBYUWrPnkE0bk5DC9yRF0OJ18vmsX++Pjmda0q+zn58cBp7NNWnGB3U5gNxy2CZMnk5iSwsWLF1Gr1cyKiOBvP/95K5l/gNTAQD7bv7/ZIS0sLGTN3/9ORVoaTiB83DjuXL4cnxa7s91lw+YNrNi5goARAXh4enAg6wAn/nSC3/70t92WXz9y9AgffvMh9aKe+qp6ju05htftXvgO8cVpd1KZXkltfu01I8Df14m+8ptXyPmoSWX3j68O+PpRBQWgve17JUSi0CeEhIQQEhLSakylUuEUos08Znc60fTiwt7DZKKyoACvFuJ19Y2NON3ccHNzY9LMmRxUqfhi925UjY1oTCZ+8j//w1/6UUuis0RFRbHgxRc5d/w4+aWlBMbGkurvz7H33+f+sLDmqG92eTlbPvmEZS+9NOgie32BRqO5ZgR57Za11AfUtxJBu3j8IoePHGbK5Gt3JhiIpCSn8LTb0+w4uIOSjBKGhA5h1rJZN7zx3590ZlL7P2AlECSEeBW4F/jnXrVKQWGQYTabyTl8mAfCw5vH1CoV00wmvtu+vdkhjYqKQpuUxMZz55gZHo5GpeJEURHpvr7M7WZrIC8vr2YBo8bGRqRajd3pRNeiHsXqcKBpioI2NDSw4j//k9stFoZHRuKUkv3HjvFxaSnP//rXLoU/sxmn09nKwZNSkpaWxoFjB7Db7aSOTGXEiBGtJkWLxcKqrauInBmJzuBamIQlhZFjzeHrb7/Gx9uH6rpqRgwbwejRoztV15qVlcVfvvwLpokm/H38ycjIwK3ODbcSN6SHRKvWMnHURKS/y75Ro0a1e53lDy1XHFCFwcgRIcQfgL/g2hh+ETjavyYp3MoYjUb8k5I4feECI5vSZx1OJ8fKy4mbP7/X7psybRr7334bL70eX3d3GqxWduXnM+yOO5rFlCbPmsX4adOuGSUbyJhMJqbffnvz6x3r1zNcp2t2RgGi/P05lpNDUVERoaFKB8bOYrFYuJB3gfBp4a3GA2ICOHr+6KBzSAGGDBkyqNu8XE1nVHZXCCGOArc1DS2RUp7vXbMUFAYXTqcTIWWbVFytWo3DZmt+LYTgoRdeYMPXX/P73buRdjsRo0fz6LJlPZI26+bmRuzEiezev5/ZEREIIXA4newoLWVEkyrjyRMnGFJd3ZzSqxKCaRERXMzO5vjx45w/eJDcI0cQUmJKTGTRo48SHBzM6rWr+WbfN+hj9KjUKnZ/s5sZp2bw5CNPUlpaSl5eHvX19dh0tmZn9HvMKjNvffkWoxaOQmvUsmv9LoYfHM7LP3i5w1SZHft2oI3R4u7jco6d0olHggekwbQx0zB4unbLs4qysLX4XSso3CS8CPwL8DmuPmKbgIHfQFfhpqKiooK006dprKsjdMgQpi5cyMbqarKys/EVglynk+Bp00hOSek1G2JjY7E8/DBr161DZGdjc3Nj6IIFjL+q7/bVUTKz2czFtDRqKyowhYUxZMiQQVGH6bDZ0LSjWqwBHA5H3xs0iFGpVAgp2vT0djqdN2U/b7PZjNVqxcvLa9BsynT2E2kEvk/bbb/Rn4JCL+B0OikrK0On0/VIOmlv4e7ujikpiVOXLzOqqY5RSsnBkhKGLVvW5th7Hn0U+0MPIaXscfXbO5YtY0VpKZcuXSJICDKdTsJnz2bSVJfaXHV5OYHtpPqYgK/eeouFDgfLwsNRCcGpjAw+/q//4r6XX2bVrlVEzIlAo3M9NpxRTnZu3Untn2s5mXcSfMFWbePM0TP4pvri6eVqY+NwODh5/CSxw2MJT3HtTsoYyendpzl27BgTO6g3qqiuQO91RVHS5G9CZAmkTmI1WzF4GrCarajKVd0S/VBQGMhIKeuBf+xvOxRuXdIvXWL/Rx+RJCX+Wi3pe/ZwITmZpU89RVFREfX19SQHBuLv79/xxW6QpJQUhiUl0dDQgF6v79CxLCsrY/277xJVU4O/VkuW1crp6GjufPTRAa9UHpWUxJl9+xjSoo9seV0dle7ubdKoFa6PTqdjeNxwzlw+Q3iCax3idDopu1zGPePu6Wfreg6LxcL6Les5dvEYUi3xN/iz5PYlxMTEdHxyP9OZti+/Bu7DpawrgPeFEF9KKf+9t41TuLW5ePEia995B01ZGRYpCRg1iqWPP463t3d/m9Yuix55hI//8z/JzM4mSKXikt2OedgwHps1q93je2uH1tPTkx/86ldkZWVRVVXFpJCQVmI/oVFRHLfbmdSi/sfhdHKwqooQrZZpSUnNx44KDiYjK4utW7aAP83OKIBKraJKU8Xq/auZ8uQU1BrXLmN+eT47PtvBuAXjsGOnqqAKR56DoYuu9P0TQuAZ5cnRs0c7dEhHJIzg5JGT+IW56k+9vb2J8ooibW8aVUVV1BTX4Mx3snz+8m7XqPYEDoeDy5cvU19fT1RUVL/aojD4EUK8LqX8sRDiO9rs64OU8q52TutTrFYrR46c4NixLNRqFePGxTJ69IhBEX1S6Bx2u519X33FIl9f/JpKOIYCG86c4dKoUb0aEb0WKpWq0+309qxZwwSrlYSmjKBkYE9WFscPHWLS9IEtABMbG0vm5Ml8s38/QzQazE4nl7Rapj76qPIZ6wYL5yyk/Mtysg9mI4wCZ42TcVHjGDO6e+VSA5FV61ZxuuY04VPCUWvUVJdV8/637/PSwy9hMpn627zr0pm/6AeB0VJKC4AQ4jXgGKA4pAq9RmlpKd/+z/9wv9FIVGQkDqeTvadP89kbb/DsP/7jgExBCA4O5vlXX+XUyZNUlZUxOiqKpKSkfpk4hBDX3BFLSkpif2Ii354/zwSTCZvTye6yMoxJScQWFLQ5PkilosRsBmvbaxXmFRIRE9HsjAKk3pHKV//2FdsLt+PUOtE79OjVegzerZMrbGYbnt6eHb6XyZMms+PgDjIPZuIT6YOlzoJPuQ//9ty/odKo0Gg0jF08tl/bNpSWlvLHt/9IobUQYRDIcsmSGUu46467BuTfqsKg4KOm7//Tr1ZcA6fTySefrOXCBV8CAmbjdDr5+usTZGdv5t57F/S3eQo9RGlpKV719fhdFf0c6uXFhbNn+8Uh7SwWi4WqS5eIv2puSAoIYNPx4wPeIVWpVMy5805yR40iPzsbnV7PkqFD8fLy6m/TBiUeHh784LEfkJOTQ11dHSaT6ZrK/IORqqoqTuecJmJKRHNE3dvkTV1wHcdPHef22bd3cIX+pTMr5SxAD1iaXrsBl3vLIAUFgOMHDzLWbieqKU1XrVIxLSyM0xcvkpeX16a31EDBaDQycdKk/jbjumg0Gh778Y/Zs3073+zbh1qrJWXJEqZGR/Ptv/4rDqcTddPDTEpJutPJ+MmTufhtBmU5ZZgiXbts1SXViBJB0NTWqm5ph9JQJ6pZvGwxejc9Qi347vXvOLL1CBPmTkAIgaXOQmNWI1Of7bhptdFo5Fcv/4q9+/ZyPO04ft5+zHp61oAp5pdS8tbf36I8oJyoBNcuvN1q5+udXzMkZgjJycn9bKHCYERK+b1w0Sgp5f+2/JkQ4mVgZ99bdYWsrCwuXFATEzOzeczDYw7Hj3/F1KlFN9VC71ZGq9VikW0C9DTa7WgNA7uCS6VSIVUqHE5nq1pMu8OB2s2tz+woKioi48IFAGISErqUbiuEIDIyckD3yR1MqFSqViq7NxP19fUIN9FGfVnvoaeipqKfrOo8ndGMbgTOCiE+EEK8D5wB6oQQ/yeE+L/eNU/hVqW2rAz/q8RuhBD4CUFtbW0/WXXzoNfrmbNgAS/87nc89+tfM3XGDCIjIwmYMoXPMzPJra6mqK6O1ZmZWIYNY8SIEfzs2Z/hleNFzpYccrblwBn40QM/or6gHtm0YHE6nKSfTSd4SDBGdyNqrRqVSsWUe6dQd7rOde6uHCp3V/L0nU8TGxvbKXvd3d2Ze/tcfvniL3nm0WcGjDMKUFJSwuWyywTHX1mAa3Qa3OPc2X1odz9apnCT8Fg7Y4/3tRFXU1JShlrdemPQtRAKp7S0tH+MUuhxTCYTmuhozhUWNo+ZrVZOms0kjB7dj5Z1jE6nI2zMGI7n5zePOZ1OjpaWEt9LvVKv5vC+fWz/v//DuHUrxq1b2fmnP3FgtzIv9BUrPllBdEI0KrWK6IRoVnyyor9N6jX8/f3RWDRYLa3T2WqLa4mLGPj6Gp2JkK5s+vqeHb1jioLCFSKTkji3fTsjWtQ5mm02coTgjvDwDs7uHPn5+VxMS0Oj1ZKckjJoa/4qKio4eewYDTU1RA8dyrBhw7qlGieE4L4nnmB/fDxrduzAYbMxdNkyHps9G41GQ1hYGP/+T/9Ofn4+DoeD8PBwnE4nJW+XcHr7abTBWmzVNmSlZPTw0a1SVd193Ekdm8rPnvkZDQ0NREREYBjgu+vgqgs9cuQIe4/tdTnWY6YwduzYVjuQdrsdoRZtUnPVGjUWs+XqSyoodAohxIPAQ0CMEGJ1ix95AeX9Y1ULI7w8cDrbpvhLWY6HhyK4cjMx57772PjJJ6RlZ+MuBIUqFSOWLh2wmUotmTpvHuvLy8nNzMRPCAqkJGDyZEZcoz1YT1JZWcmFdeu4t0Uf0SS7nS83bCA+KalPRKAGO+np6ew9upfK2kqGRQ9jUuqkTuuIrPhkBc/+5FkaFjTAMsjOyebZnzwLcFO2gNPr9SyYsoCV+1fiFeuFTq+jMr+SEEJISR64qfXfI2Q7qRg9cmEh9MAuXCm+GuArKeW/CiH8cMnXR+NKB75fSlnZdM6vgKcAB/CSlHJj0/hY4ANcCr/rgJdlB4aPGzdOHjlypOffmEKfYLVaefe//5vgixcZ7etLg83Grtpa4h54gNvvuOOGri2lZOPq1aStWsVwKbECpzUa5j7/PKO62Qu0v0hLS2P1H/7AKJsNb7WaMzYbmnHjWP7DH/ZZ7arD4eDcuXOkZ6bj5+PHkVNHSFOlEZbk6k8npSTrcBZLhi1h6V1Lu3x9p9NJTU0NBoMBtz5Ms5JS8vYHb7Mnew8+Q3yQTkl1ejVzhs7h0YcevSII5XDwi9/9AmeiE+8g7+ZzM3Zl8Pzc55k0wFO4b0WEEEellOP6247rIYSIAmKA/0drld1a4JSU0t4fdn0/t1qtVv70py+orx9HYGACICksPENg4Hl++MP726SNKQxupJQUFhbS2NhIUFBQj7Qp6yuklBQUFFBbW0tAQEAbR7C8vJycnBw0Gg2xsbGt+m/fCCdPnqTu88+ZclWK6IGsLNzuu4/RAzzC3N8cPX6UL3d9ic8QH/TueioKKnCvcueHD/+wU3W00QnRZE/Odj1FvycTovZFkXUxq9fs7m/S09M5cOIAdQ11pMSlMGb0mD79vHZ3fu2Myu4i4HdAVNPxApBSyo7+GhqB2VLKOiGEFtgjhFgP3A1slVK+JoT4R1wT7S+FEEnAMlwiaKHAFiFEgpTSAbwJPAscwOWQzgfWd/XNKgwedDodT/zsZxzYu5ctBw/i5uHBlFmzSOkBAYXs7GwurlzJc+Hh6JucttSGBt556y0S/vjHQTPROhwO1rz9Ng95eBDe9HAeLyUfHzrE8QkTSB0/vk/sUKvVDB8+nOHDhwOQkpzCf/7lP8nem43wEjgrnMR7xDNvzrwuX/v4ieOsWLWCcks5WqeWuZPmsuTOJX3ibGdkZLA/fT+xt8UiVC7n0y/Mj22btzE7b3ZzdECtVvODh37A79/7PVWmKtRGNbYiG6lhqYwbN6B9HoUBjJQyG8gWQswBzFJKpxAiARgGnO5f65qe0U8sZM2aPVy4cAAhJMOHB7Fw4R2KM3oTIoQgNDS0v83oFkIIwsLC2v3ZwT17uLR+PXFSYgO+cnNj2sMPE9sDLcQ0Gg22dkTtrIDxJux92ZPY7XbW715P6OhQ9O6u9jzGoUZyz+dy9PhRZs1ov3tBS3Iu57i8ipZEQs5HOb1g8cBhyJAhA6qsqbN0ZlX3Oi4n8nRHUcmWNB1b1/RS2/QlgcXAzKbxD3GlAP+yafwzKWUjkCmESAfGCyGyAC8p5X4AIcTfgSUoDulNj16vZ+ZttzHzttt69Lppp08zWqVqdkYBTEYjMaWlpKenM2LEiB69X29RUFCAZ1UV4S3EDoQQjPPy4tihQ33mkF6Nv78/v/vl7zhz5gylZaWEhYaRmJjYZScyPT2d//30f/Ef70+UfxQ2i43VR1bjlE7uv/v+XrL+CtnZ2WCi2RkFV6sbYRLk5OS0SldLSEjgtV++xtFjR6mpqyFhegKJiYk3ZcNthT5nFzBNCOELbAWOAA8A/Z5z5ufnx6OP3oXFYkEI0acZDAoKN0phYSGZ69ZxX1gYbk0ptSn19az+5BPCf/lLdFfpWHSVmJgYjri5UVZXh6mpTU1FfT2ZOh33xsXR2NjI0QMHyDh0CIDY8eMZN2nSDd/3ZqCqqopGVWOzM/o93oHeXM6/zCw6dkgj4yLJzrkqQprjGlcYeHRmhZgLnOmKM/o9Qgg1cBQYAvxFSnlQCBEkpSwEkFIWCiECmw4PwxUB/Z68pjFb07+vHm/vfs/iiqQqimQK10SlUuFsZ9wp2qqTDWQ0Gg2NUiJb1NkCWB0ONP28MHRzc2Ps2LE3dI3Nuzejj9fj6e9qDaPVa4lIjWDz1s3ctfCuXm9q7uHhcUVbvAXCLNrtgefr68uc2+b0qk0KtyRCStkghHgK+JOU8r+EEMf726iW9PZnUUGhs9hsNi5fvkx1RQX+gYHExMRcc2Mw8+JFhmk0zc4ogJ+7OyFlZeTm5hJ3g1FSo9HI9EceYe2KFQSVlyOEoLApAmswGFj14YeYLl7kziZF6pMbNrA2M5Mljz12y7cLc3d3ByvYGm1UlVZhqbfg4eOBud5MvE98p67x6m9evVJDGgnkgHG9kVf/+GrvGq/QLTrjkP4CWCeE2IkrDRcAKeUfOjqxKd12lBDCB1gphLhevmV7nz55nfH27vc28Da46lw6sk/h5qCoqIiioiJ8fHyIiorq8EGePGoUn3/5JWOtVjyadiILamvJMRi4O75zD7qBQHBwMOroaE4WFjKqaUIz22zsNZuZNbXjdioDnaKyItxjW9fyaN20ODQO6uvre30RPHz4cLy/86Yspwz/CFfNUUlmCX52PxITE3v13goKLRBCiEm4IqJPNY31fXNjBYUBTk1NDWvefx9TcTGBajUX7HaOx8Rw56OPdmm+6MnFY0xMDGG/+AW5ubkAzIqIQKfTkZWVhfrSJaa36Bc+PSaGVRcvkpOTQ1RUVA9a0X2qq6vZuXcnp9JPYdAZmDJmCqljU3st+6exsREpJQaDgVFxo3jr3bcQwQK1pxrLYQte1V489dunOr4QV4SLXvnNK+R8lENkXCSv/vHVm1LQ6GagM5Paq7hSb/VAt/IIpJRVQogduGo/i4UQIU3R0RCgpOmwPKClZFs4UNA0Ht7OuMItjt1u55uPPiJ/506iVSoKnU40iYks/9GPritKEBYWxrhHH+WNjz8mUUoapeSywcDil14aVClnQgju++EP+eT11zmWnY23EFwGRt13H8OGDetv826YpNgkNuZtbI6QAtRX1eOp9uy0yt6NYDAY+PmzP+ftFW+Tcz4HJMSYYnjmuWeUlCqFvuTHwK+AlVLKs0KIWGB7/5qkoDDw2LdpEymVlYxoEhEaBezLzubI3r1Mbaf0J3boULZv3EiizdYcJS2vq6PYYGB2DyoI63S6NtHWiooKQtvZPA8VgoqKijYOaW1tLQe2biX72DFUGg1DJk1iwvTpvbpmMZvNvPPpO1R7VxM0Lghro5VVx1ZRVlHGovmLevReNTU1rNuyjjOZZ5BCMix8GNZGK4FxgVRrqnFIB/5R/vhb/cnNy+20wvPyh5YrDuggoTMOqZ+Ucm5XLyyECABsTc6oAZgD/CewGldftdeavn/bdMpq4BMhxB9wiRrFA4eklA4hRK0QYiJwEHgU+FNX7VG4+di7axf2bdt4KSYGtUqFlJLNaWms++IL7nviieueO332bFJGjeLSpUtoNBoWJiYOGjGjlgQGBvLi737H5cuXaWhoYHZUFL6+vv1tVo8wZ+Yc9r2+j9zTufiF+9FQ3UBdWh0/XNp3CsIRERH82y//jdLSUoQQmEymWz6VSqFvkVLuBHa2eJ0BvNR/FikoDDwcDgf5J08y5yrhpeFBQaw6cqRdhzQ4OJi4O+7gy/XriW1S3M/W6Zj2yCO9vuno5eXFxXYq4UqBYVcpyNpsNr577z0Sy8uZERyMw+nk6PbtrC8sZMmjj3bpvg0NDRQVFWEwGAgODr7ufHbm7Bkq3CqISnA5x1o3LdFjotm/dz/TJk3Dy8uL4uJirFYrwcHB3f6dORwO/v7V3ylzLyN8WjgISM9MZ++6vSx+YTEanQa73Y5Op6OhpoFDZw4xedLkbt1LYeDSmVXdFiHEXCnlpi5eOwT4sKmOVAV8IaVcI4TYD3zRVA+TA9wH0LTz+wVwDrADLzSl/AL8kCttX9ajCBopAKe3buXuwEDUTXWfQghmhIXxP3v3Yl2+vMOHo5+fHxMmTOgLU3sVtVpNQkJCf5vRo0gp8fLy4p9f+me27NjCmbQzhPmGMf/x+X0e/RVCEBgY2PGBAxibzUZVVRWenp5Kvd8gQwixnXayCKWUs/vBHAWFAYkQAlQqnFc5eQ6nE9V10kvHT5lCfFIS2dnZeGk0jI+N7ZPN6ZiYGI6EhXE8L4/hISFI4HRBAbWhoURf1Sbm0qVLBBQXM7rF+NToaL5KS6OgoIDQ0FCcTieXL18mPz0dN3d3hrbTW/3AwQOs3bsWPMHZ6CTCM4KHlj50zRYqBaUFGHxb9wtXqVWo3FVkZWWx99he8uvyEVqBrlHHPbffQ3JScpd/F9nZ2RQ0FhA98sr7C44Oxmw0U5ZfRtiQsCspwgKcsj0VEIXBTmcc0heAXwghGnEJDHWq7YuU8hTQpsmSlLIcaFc2VUr5Kq4U4avHjwADv6urQp9ia2zE7aqJRqNSIRwOnM5b74FVWVlJcXExvr6+BAUF9bc53UJKye69u/l2y7eUV5cTHhjOA4se4MH7Huxv0wYlUkp27d7Flxu/xIwZtV3N3IlzWXrXUkUBePDw8xb/1gP34Nq0VVBQaEKlUhE1diwnDh1ifJOopZSS48XFxHXQu9zX17fPM4vUajWLHnuMfZs38+GxYyAEEWPGsOj229s8m6tKSwlqJysoSKWiqqqKoKAg1n/5Jc4TJ4g3GGiw21m7ZQsTH36Y+KbN6uzsbL498C3hE8PRurnSkwvSC/jqu694cvmT2O12zpw9w4m0E6hVasYmjyXQNxBzmrlVMZ3T6cRZ72TTrk1YwixEjXBFT811Zj7d9CkvB7xMQEBAl34XdXV1CEPrSK1arSYwNJD89HzChlzRMS25XMLC5IVdur7C4KBDh1RK6dnRMQoK/UHC5MkcXr2a+S12DU+VlBCckjJoo0Bms5mta9dydscOpJQMmzqVOXfe2a6q6/c4nU5Wf/45FzdtIkKtpsjhwDRuHPc99dSg+z3s2r2Ldza+Q/C4YKJ8oqguruZ/Pv4f/unJf2Lo0KH9bV67WCwWjh0/RmZuJqGBoYwbOw5Pz4Hx2Dx58iTvbniXkEkhmDxN2Cw2vj34LTqdjrvuuKu/zVPoBFLKo1cN7W0SGVRQ6DJFRUXU1dXh7+9/05R3fM/kOXNYV1JCQUYGgSoVBVLiNnw4UwdoJpSHhwdzly7FcZfrWXytTUK/oCBy7HZaNqSTUlIkJUN8fbl48SLixAnujIlpTsGNqa/nu6++IuYXv0Cj0XDszDGMEcZmZxQgJC6Ey3suU15ezuYdmzlRegLfSF+klJzZdobxEePxrPekMLOQoMggbFYbBecLiPWLJas2q1Wdq8HDgCpIxamzp7htZtda9ZlMJmRN244BsX6xuFvcyTqahTAKnNVOhvoNZULqwPz/VLgxrumQCiGGSSnThBBj2vu5lPJY75mloNAxM+bO5f2TJ6nKyiJOq6XQZuOCjw+PLB+cBexOp5OP/u//CD13judCQlAJwf6NG/nw0iV+8E//dM26yX27d1Ozbh0/iY5Gq1bjlJI1hw6x0d+fxcuu7go9cHE6nazcvJKQ8SEYvV0pUz7BPtiT7Xy3+bsB6ZDW1NTw2p9eo4AC3ALcsGZZWbV1Ff/4/D8SEhLS3+axfsd6fJJ9MHi60q60ei3h48JZv3s9C+ct7LNaXIXuI4RomXenAsYCwf1kjsIgxWKxsOHzz7FeuIC/SsUBKQmdPJmZCxYMqnZn18NoNHL3k0+Sl5dHdXU1k/39Cb2qpnQg0lG2SlxcHCdCQzmSm0tKcDB2h4OjhYW4JScTEhLC6X37GObp2cqZ83N3x7e8nOLiYsLCwjA3mtHoWj/vhRCotCoyMzM5WXiSmIlXHFqfAB+O7jvK4wsfZ++Rvez/cj9ajZYF0xcwdMhQPtz2YRs7NToNZou5y+8/NDSUUZGjOHbkGKY4EyqVipKMEkaGjmTZ0mVkZWVRXV1NQEAAkZGRg+bvtaGhgZycHNRqNVFRUYoYYgdcbzXyU1w9PX/fzs8koNSvKPQrHh4e/OCVVzh18iRFWVn4BQbyw7FjrxtNHMikp6cjzp/njujo5klhbnQ0RRkZpKWlkZLSftb68U2buCcwEG3TpKYSgjnh4by+bRt33HvvoHE6GhsbqTZXE+XdWl3Q0+RJXnreNc7qX9ZtWkehsZDo0dHNY0WXivjs28/4yXM/6T/DmiirKsM4pHU9lM6ow2K3YLVaB83fxi3OUa60QLMDmVxp/6Kg0Cn2bNpE8KVLTGzKKHI4nWzctYtTISGMGtNu3GFQolKpbro+9FqtlkWPP86hnTv59HuV3blzmT9lCgAavZ5Gm63NeY1Som1SD06OS+bUgVP4h/g3/7yuqg4P4YHZYkbtq27l0KrUKlQ+Ks6nnSerJAv/of6o1CoOpR0iwD8AjVmDpcGC3ujKwpJS0lDUQMLt3dOzuHvR3cSciOHQmUNIp2TxiMWMHT0WnU43KDUyTp0+xddbv8bh4UA6JQaLgUcWPzJg2vkMRK65GpFSPtv0fVbfmaOg0DV0Oh3jUlMhNbW/TblhSktLiYI2qndRQElxMVzDIW2sr8d4VWquXqNB2mw4HI5B43To9XoCvAKoLa9t1eqlqrCKxPCu9f3MzMxkz8E9VNVWMTppNKnjUntFHv/AqQMEjW9drxsYG8iptaewWq39viOaEp/C3py9hCdd6ZxVXVxNmH8YBoPhOmcqDBSklDEdH6WgcG1sNhs5R47wSNiVWjy1SsW4gAB2HjhwUzmkNyseHh7MvuMOaKceNmHkSPbs3Uu01Yqxac65WFyMDA9vrudMTk4mKS2J84fOYwg0YDPbUJWreOzOx6ivr8dpbqu70VjVyNbMrcTNjsPg4ZovLA0Wvtv7HfNS57HhyAY0wRo0bhrqC+oZFTyKIUOGdOv9aTQaUselkjpu8K/lKioq+GLLFwSOC2x22Gsra/no24/4xXO/6Pd1wUBlcKxUFRS6gJSS8+fPc/7wYYRKRVJqKkOHDh3w7Tr8/f1JgzZ1FLnAiGuIBEgp8YuPZ/eOHSwcNqw59edMSQnBSUmDrq/qvQvu5c9f/xn7CDse/h5UFlRivWjlrh92vt5x/4H9vL3qbbTRWnRGHUd2HGHXoV387Pmf9fjvw+BmwGZtvTPtsDvQqDUDQjRo4ZyFHP3TUXIdufiE+FBXUYftso1nHn1mwH8eFFwIIbS4lOanNw3tAN6SUrYNiSgotIPT6UQ4HGiuSnXUaTTYLJZ+skqhpwgPD2fo0qV88d13hDqdNEiJOTiY+cuWNT/nNRoNy+9dTnp6OulZ6XgFe5G8MBk/Pz8sFgseOz0oKyjDFGpCSklxdjHqKjXuEe7NziiA3qjH6evEw92DF5e9yKlzp2iwNJA4J5EhQ4YMmnTa3uTipYtIf9nsjAJ4+npSoa8gOzub+Pj4frRu4KI4pAo3FVJKVn/+OYXr1jHeYEBKybYtW7i8eDF33H13f5t3XRISEtgeH8/mS5eYGhbmqiEtKKAiMpKkpKQ2xxcXF/PlG29gvnSJnWlpnDxzhmkjRtDo7s5Jo5EHHxx8yrTjU8fzc7efs3rLagpOFxAfGc+S55a0kcG/Fo2NjXy46kMCpwQ21036R/hzYe8Fjhw9wpTJU3rU3jmT5vDB7g8wTjWiUrt64eadzGNu6twB4ZAGBQXxmx//hi07tnAh+wKJAYnc/vztStrQ4OJNQAu80fT6kaaxp/vNIoVBhZubG77x8aTn5hLfQoH9fEkJkXPm9KNlCj3F6NRUhiYnU1RUhE6nIzQ0tI1zqFarGTp0aBs9Br1ez5P3Psk3G74hJyMH6ZTEBsYy7PZhrL2w9pr3DA4OJjj41ihnl1JSU1ODm5tbh2KRdocdoW674StUAofD0c4ZCqA4pAo3GXl5eWRt2MDzUVHNNZUpdjt/Wb2asZMnD+iHp0ql4tEf/5iNK1fyh127XCq706fz+N13t0m7dTgcfPL668yuqmJEfDzmmBg2XbrE3wsLueOFF3hm3jx8fHz6543cICNGjGDEiBEdH9gOBQUF2Ay2ZmcUXJFXjwgPTpw/0eMO6YzpM8gtzGXHxh2ofFXIGsnoyNHcfefA2fwwmUwsu3fwiFsptCFVSjmyxettQoiT/WaNwqBkyh13sP6ddyjOzsbk5kauxUJ5WBh3TZzYq/e1Wq2cOHKErGPHUGs0xI0fz/CRIwfEhl1fcenSJU5t305tSQmm2FjGzprVK6J3RqOR2NjYbp0bHBzM848/T1VVFSqVCi8vL+rq6thwaAOWegt6d5cTZrVYUVWpiIm5dSoJMjIyWLVlFRUNFQinIHVYKvPnzL9m6u2Q2CE4Dzux2+xotK61m6XBgqr25qtv7kk6dEiFEEuBbVLK6qbXPsBMKeWq3jVNQaHrZGRkkCxlszMK4KbRkARcvnx5QDukAO7u7tz98MMsbVIKvlZaZUZGBt5FRYxsinQZtVqWJCXh4e4OXl6D1hm9UQwGA06Ls03as7Xeim9Az7c40Gg0PL78cRbevrC5B2xYWJiSDqvQkziEEHFSyssAQohYQNlmV+gSAQEB3Pvyy6SdPUtxeTmh4eHMSEjo1Xo2h8PBmhUr8Lt4kdkBATgsFo59/jkl2dnMXbq01+47kDh35gxnVqxgio8P/r6+5GVksCUtjduff35Arkdarh08PDx4YO4DfLHpCxy+DiQSVZWKpTOW9ugao6Ghgfr6enx8fJpFmAYKJSUlvL/6fbyTvIn0j8Rhd3Dg7AFsG2zcc9c97Z4THBzMnFFz2HJwCyqTCumQiArB/XPux2g0tnuOQucipP8qpVz5/QspZZUQ4l+BVb1mlYJCN3Fzc6OqHWegDggYRD05O3JozGYznu0c46XRUFxb21tm9Qg1NTVcuHABIQRDhw7t0Z6dQUFBJIYkcuHMBcJTwhFC0FDdgD3bztRFU7t0LYvFQm5uLnq9nvDw8Ov+nwQGBhIYGHij5iOlJDMzk7Pnz6JRaxg9avSAXLQo9Cn/AGwXQmTgUtqNAp7oX5MUBiNGo5ExfSgAmJmZie7SJWa2iKbN8/Dg88OHKZkypUeemQMZKSXH1q9nYWAgfu7uAAwJDMRZXMzxXbtYcP/9/Wxhx6QkpxAZEUlGRgYA0dHRPeaM2u12Nm7dyIFzB0ALOqeO+VPmkzp24AgbHT15FFWICi9/LwDUGjWRKZEc33ucubVzr7l+mT1jNklDk0jPSEej1pAQn4Cfn1+7xyq46IxD2l6FspLqqzAgSUlJYafBwOjqaiK9vQHIqqoiw8ODO9qpwxysREVFsV4IGmw2jE07ik4pOd3YyIQB/D4PHjrI377+Gw5fV4BH+6WW55Y9x5jRPaPyKITgB4/9gLc+fIvzG8+j0qvQW/X88N4fdilVZu/+vfx91d+xuduQjZIY3xheeOIF/P39Oz65m0gp+WrlV6w9shZViAppl3yx7QueXvo0Uyb1bKpxS5xOJ+fOnePo6aNo1BrGjx7PkCFDlCjvAEFKuVUIEQ8MxeWQpkkpG/vZLAWFDiktLCTiqtRclUpFuBCUlZXd9A6pxWLBWV2N31VzT6i3N4dzcvrJqq7j5eXFqFGjevy623ZtY0/OHiInR6LWqLE0WPh6z9f4ePkMGOGf8upyjJ6to5oqtQrcoL6+/rob6rdSjW1P0BnH8ogQ4g/AX3D1QnsRV180BYUBh4eHB3f/9Kd8/pe/4JeTg5SSKj8/7n3ppZuqzYW3tzep993Hu59+ymQ3N/QaDUfr6tBOmEBiYtdapPQVFRUVvP3V25immZprPBuqG3jzszf5fdzv8fLy6pH7eHt78w8v/gOlpaU0NDQQGhrapbS07Oxs/rbqbwRPC0bvoXcJFV3I44333+Cff/bPveaoZWVlsfbIWiJmRaDWuhZxlngL7698nxEpI3o0kvw9Uko+/vxjtpzdgiHKgNPhZNN7m7h/xv3cMb9tewGFvkcI8QKwQkp5qum1rxDiKSnlGx2cqqDQr3h4e1PWjohLhZRENkUMb2bc3NzA3Z0asxmvFuuPktpavG9xYTmbzca+U/sIHx+OWuOa7/RGPT5DfNh7dO+AcUjjIuI4d+4cvkFXSn4azY3obDol4tnDdMYhfRH4F+BzXLuzm4AXetMoBYUbIT4+np/8z/+Q07QDGRUVdVMKKMyaN4+IuDhO7duH1Wwmedw4Ro4aNWDf67lz53AEOFoJDhm9jZT4lZCWlsb48eN77F5CiG7vvu89tBdNlAa9h775WiFDQ8jYnEFBQQFhLXr59SRnz59FFaxqdkYB9B56HD4O0tPTGT16dI/fMzMzk62ntxJ9W7Rr1xewxdj4euvXTEyd2KsRYYVO84yU8i/fv5BSVgohnuGK6q6CwoAkPiGBEz4+XCwuJj4w0JXFU1CAJSKCiIiI/jav11GpVAyfM4dtX33FjOBgfN3dKaiqYn99PdOmT+/4AjcxVqsVu7SjdWtdM6p311NVWNU/RrXDyOEjOXjqINlnsvEP98dSb6Ems4Z7pt6j9BPtYTp0SKWU9cA/9oEtCgo9hkaj6bba3GBBCEF8fPyA2UnsCIfD4drSagens21T7v6itr4WnaH1RCOEQLgJLN3s2VdWVobZbCY4OPiaog1ajRbpkG1/4KCNynJPcfHSRVRBqmZnFEDrpkX6SzIyMhSHdGCgEkIIKaUEEEKoAWUlpNCr1NTUcProUcoyM/EMCiIlNbXLm3x6vZ4FTz7JnjVr2J+ejhSCwJQU7rjjjlumX+WoceNQqdWs3bqVxpwcPENCmHTPPbe82qrRaCTQM5Dqsmq8Td7N4+X55UyJ7r0Sla5iNBp55qFnOHz0MOcyzxHoHsikRZOIi4vrb9NuOq65yhFCvC6l/LEQ4jtcqbqtkFJ2vlO9goLCLU9iYiJircBqtjY7fI31jajL1W36ovUno5NGs3f9XgKiA5rTc801ZtzMboSHh3fpWjU1Nbzz8Tuczj6NcBO4O9x5/J7HGTtmbJtjR40cxedbP8dSZ2mOzlaXVONudichIeHG31g7GAwGpLUdJ9jalG6mMBDYCHwhhPgrrrn4OWBD/5qkcDNTVVXFd2+9xbDaWiZ4e1Oem8umgweZ+uSTne4J/T0mk4kljz9OQ0MDKpWqwx6ONxtCCEaOGcOI0aNxOBy9trk42BBCcOdtd/Let+/RENqA0dtIdUk13nXeTL5zcn+b1wp3d3dmTp/JzOkz+9uUm5rrfTI+avr+P31hiIKCws1NYGAgDy94mI83fIwMdDlBqmIVTyx+Al/fnm/J0l1Gjx7NyMMjObnzJO6R7tjMNhy5Dp67+7kuOWlSSt768C3SZBqR8yIRKkF9VT1/+eIv/Dbgt21S1oKCgnhm6TO898172H3sCIfA3eLOj5/8ca85hyNHjMRtnRu15bV4+rtqVCvyK/C2ejNs2LBeuadCl/kl8CzwQ66UzfytXy1SuKk5tncvw+vrGdUUxQv29sa3qorda9YQ9cIL3aqjv9XbXQghFGf0KmJiYvjRgz/i8PHDlFSUMD56PGNHj8XDw6O/TVPoB6756ZBSfi9cNEpK+b8tfyaEeBnY2ZuGKSgMFOrr68nIyECj0TBkyJAB1ydrMHHbrNtISUrh7LmzCCFISU4hICCgv81qhVar5aVnX+LEiROcPH8SrxAvJt01qcs1T8XFxZwrOEfk3MjmBZy7jzuVEZXsPbiXZRHL2pwzaeIkhqcMJz09HY1GQ3x8fK9GKn18fHj50Zf56yd/JUeTA07wV/vz4jMvKvUxAwQppRP4a9MXQoipwJ9QtBwUeomitDTGXZWuH+rjgyU7G4vFclMJBCr0L0FBQSyav6i/zVAYAHRmu+Yx4H+vGnu8nTEFhZuOIwcPsuXdd4mx27ECa7y8uPfll4lp0VdN4drU1dWxY/cOjp8/jq+nL7dNvY3ExESCgoL627RrUlpayu79u8kvySchMoHJkyZ3S+G2oaEB4SbaRBPcPNwory6/5nkeHh7tSuw3NDRQW1uLr69vjzqLSUlJ/P5ff092djZqtZrIyMgBK4x1qyKEGAU8CDwAZALf9KtBCjc1Rl9fakpLWynDmq1WpJubsiGrcENcunSJAycOUNtQS0pcCuPGjLvlo+cDFYvFws69Ozl89jBSSlKTU5kxZUavbUhdr4b0QeAhIEYIsbrFj7yAa6+mFBRuEoqLi9nx1lv8ICAA36YPYGZlJV++/jo//u//ViJIHVBfX89/vP4fFLgV4BftR2FdIYf/fpgnFzzJjOkzmo+7fPkyW3ZtoaiiiJS4FGbPmN1vKbyZmZm89tZr2EPtGH2NHDt1jE37NvHKS690WeI9NDQUnUXXqiYUoC6vjpEzR3b6Og6Hg29Wf8Om/Ztw6py4Ody4Z+49zJ45u8da0Gi1WoYMGdIj11LoGYQQCcAyXI5oOU1K91LKWf1qmMJNT9LUqRx4910WGI24u7lhczjYm5fHkNtvvyXTTqWU5OTkUJCTg95oJH7o0C6nldpsNo7s38+lffuwW61EjRnD+BkzeqWd10DlwMEDrDywEu9Yb9x83diYvpGTF07yzPJnbqraYqfTSW1tLW5uboP2fTmdTlZ8vYIMWwYhY0MA2J2+m5wvc3j64ad7RZTsek+WfUAhYAJ+32K8FjjV45YoKAwwTh8/zhhodkYBYnx9Cc3O5vz588TExODu7q5Ek67Bvv37yNfmE5PqiiZ7BXhhCbDw6bpPmTB+Anq9nmPHj/F/n/0f+ng97lHurM1ay+5ju/n1j3/d5z2+pJSsWLUCbZKWkEjXA9g/wp+cUzms37Ke5fcv79L19Ho9y+9czjvfvYNbjBtu7m5UZ1eT4JZA6rjUTl9n3cZ1rD61msjbItG6abHUWfhg8wf4ePkwdmxbcSSFm4Y0YDdwp5QyHUAI8ZP+NUnhViAhIYG6e+7hyw0b8LTZqBOCqBkzmDhjRscn32Q4nU42fvMN5qNHidNoqHM6+UavZ+Zjj3VJKXfTN99gPHGCpSEhaD09OXfwIN9dvsy9P/zhLbG5bbFYWL9vPRHjI9DpXe/X09eTrBNZnDl7hnFjx/WzhT1DRkYGq7asosJcgXAIxg4dy4I5CwadSGBOTg6Xqy4TPTG6eSwqJYqsQ1lkZWX1SheL69WQZgPZQog5gFlK6WzasR0GnO5xSxQUBhi2xka8ropAOaXkcn4+J/7jPwhxd0d6eTHtvvuYMGXgyJQPFM6kn8E73LvVmN5Dj9XNSklJCWFhYXz87cf4j/dvFtTxNHmScyKHLdu3cP899/epvRaLhfS8dKJGtW5YHhgbyNHDR1lO1xxSgGlTphEaHMquA7uoqq1i9NTRTJwwsdOTk8PhYP3u9YRPDW/u16b30OM33I+1O9YqDunNzT24IqTbhRAbgM+4ZuMkBYWeZcz48QwfPZrq6mrc3d1v2brRCxcu4Dh8mCUxMc1RobjqarZ8+SUP/eQnnYoUlZSUUHvyJAujo5uzWsZERFCZlcXFCxdIGT68V9/DQKC8vBynwdnsjH6PR6AHl3Mv3xQOaUlJCe+vfh/vZG8i/SJx2B0cPn8Y2wYb9y2+r7/N6xJVVVUIj3amGw+orKzslXt2Jua6C9ALIcKArcATwAe9Yo2CwgAiPjmZE3Y7NoejeWzDxYtUZ2Twi9BQfhYZyWNaLYf/+ldOnTzZj5YOTAL9Ammobmg15nQ4weyqk6yurqaqsarZGf0ev0g/Tqf3/Z6XVqvFTeOGzWJrNd5Y34iXh1e3rxsXF8cTy5/gJ8/9hJkzZnYphcdms2G2mtEZW0/iRi8jFdUV3bZJYeAjpVwppXwA1ybwDuAnQJAQ4k0hxNzOXEMIMV8IcUEIkS6EaNNPXAixXAhxqulrnxCi87nkCjc9Wq0Wk8l0yzqjANmnTpHk5dXK8Qz29sZQWUlpaWmnrlFZWUmwStWmxCJEp6OyuLhH7R2ouLu747Q42/Qct9RZ8Pe5OfpdHz15FFWICi8/13pBrVETkRzBiYwT1NTU9LN1XcPHxwdZ305LuDrXz3qDzjikQkrZANwN/ElKuRRI6hVrFBQGEHFxcYTOm8ffcnLYn5vL9uxs/n7yJI+nphLo7Yr8Bbi7s9DPj/3ffdfP1g48pk+ajjPbSW1ZLQAOu4OcYzmMGzoOPz8/jEYjaocau9Xe6ryG6gYCfbvWgL0n0Gg03DbhNvKO57kcZ8DWaKP0dCnzps3rc3vA1Qs0MiiSyoLWO5Jl2WUMj7/5d9UVQEpZL6VcIaVcBIQDJ4A2zuXVCCHUwF+ABbjm7AeFEFfP3ZnADCnlCOB3wNs9abuCwmBHpdXiuMqJAnBAp8t1fHx8KHY6kbL1Ar/IasUnsO/nuv7Ax8eHEZEjyD2bi8Pu2uSvLqtGlAhGDx99Q9dubGzk6LGjfPLNJ6zduJbCwsKeMLnLVNRUYPBovXmjUqlQualoaGi4xlkDk8jISGK9Ysk+k42t0Yat0UbOuRwijZFd7kXcWTpTnS6EEJOA5cBTXThPQWFQI4RgyYMPkp6aysXTp3EKQVxDA8MTElodF+TuTlVRUT9ZOXCJiIjgx8t/zIfffEiuLResMHX4VJbf50p91ev13Db+NtYdXkdkaiQanYaG6gbqL9Qz94lOBYB6nCWLllBbX8vejXsR7gJRL7h3+r1MnDCxX+wRQrB8yXL+673/wlJrwcPfg+rCagwlBha9qEjl32pIKSuAt5q+OmI8kC6lzAAQQnwGLAbOtbjevhbHH8Dl8CooXBen00lWVhaVlZX4+PgQHR1902opDBk1iuOHDhFlt6NrEnRKLymBsDD8/TsX2QsMDMSQnMzus2cZFxqKVq3mXFERhQEBTBk6tDfNH1AsXrgY3RYdx/YeQ6olJncTTyx+otO/x/ZobGzk/U/fJ8eeg1eIF5ZqC/s+28fy+ctJSuzb2FlcRBxnz5zFL/iK/kWjuRGNVdPnmhg3ikqlYvk9y9m5dyeHDh7CiZNJSZOYNW1Wr33WxdU7Nm0OEGIG8DNgr5TyP4UQscCPpZQv9YpFPcS4cePkkSNH+tsMhZsIKSV/+fWvWVRbS3SLlIUTRUWcGT6ch1/o/7aATqeT48eOcXrXLuyNjSRMnMjEKVP6VTTB4XBQUVGBwWBoo0xos9n4ctWXbDu8DafGiafakwcXPdhvDuD3VFZWUlVVRUBAwIBo0p2bm8vW3VvJK85jaNRQZk2fhclk6m+zBi1CiKNSysFftHQdhBD3AvOllE83vX4EmCCl/NE1jv85MOz746/62bPAswCRkZFjs7Oze89whQGN2Wxmzccfo8/MJEQIiqSkITKSRY8+etO279i3fTuXt2whEqgDKv39mf/oox0+g+vq6jiwdStZR4/ikBKrwYCbxYIKiBw9mgmzZ+Pt7X3da9yMWCwWrFYrnp6eN6wUf/jIYb458Q0xo6+04muobcB8xsw/PPcPfaoKbTabefvjtynWFuMf7k9jQyO1mbXcPfVuUsd2XshwsNPd+bVDh3SwojikCr3B2TNn2Pj733O7Xk+YlxcZlZVsB5b9y78QERHR3+bx7WefUbZ2LdN8fNCp1RyuqKB6xAie+MlPBvQOdkNDA/X19fj6+t6SbQUU+pZbxCG9D5h3lUM6Xkr5YjvHzgLeAKZKKa/b1k2ZW29tdm7ciG7nTia1SNs7lJND3aRJzL7jjv4zrJepqqqisLAQNzc3oqKiOpxP7XY7X731FglFRaSEhCCl5HhBAXkxMdzz1FM91rLrVuejLz+iwL0A36DWreJyD+Ty4n0vEtjHKdENDQ0cOXaEcxnn8HL3YuLoib2iSDuQ6e782uHKTwixHWjjtUopZ3f1ZgoKg53klBT0//zP7Fu3jm15eQSlpvLQwoWEhYX1t2mUlpZyaeNGXo6ORts0WUZ5e/Ph6dOcO3eO4QNYyc9oNN60u+sKCv1EHtBylywcKLj6ICHECOAdYEFHzqiCQuaRI9wfGtpqbGRICB8fPgw3sUPq4+PTJTGXjIwMfPLzGdPCcZ8YFcWqjAxyc3O71DJG4dp4uXuRac5sNeZ0OpE22S89QI1GI9OnTmf61Ol9fu/BTmdCET9v8W89Lil6+zWOVVC46YmLiyPuxTZBhn4nNzeXIUI0O6PgqkEcptWSe+nSgHZIBwNZWVnsPrCbipoKRiSMYOKEibe0+qTCgOcwEC+EiAHycbWQeajlAUKISOAb4BEp5cW+N1HhZuDmzLO7MaoqKghspyVMkBBUVVUpDmkPMXbEWA5+dRCzyYzBw4DT6ST/Qj7JEcl4eXVfHV+h7+nQIZVSHr1qaK8QYmcv2aOgoNBNPD09KW8nBb/c4cDT17edMxQ6y+Ejh/nLl39BG61F76Hn2P5j7Dq0i1+8+AvFKVUYkEgp7UKIHwEbATXwnpTyrBDiuaaf/xX4NeAPvNGUQmi/2VOZFW6M2PHjObFjB5OjrvRrPllYSOzkyf1o1cDDz2TiQjvqvIVSknqTzcd2u52MjAxqa2sxmUxERkb2WUpyeHg4y25bxurtqynVlCIbJcmRySxesPiGr2232ykoKEAIQWho6IApe2poaODsubPkl+QTbApmePJw3N3d+9usG6YzKbstpaFUwFgguNcsUlBQ6BZxcXGsj4jgQH4+40NDEcCligrOGo08N3Zsf5s3aLHZbPx95d8JnByI0duVVuwf4U/G/gz2H9jP7FlK9YLCwERKuQ5Yd9XYX1v8+2mgjYiRgsK1GD9tGmtzcvj28uVmUaPG6GjumDmzv00bUMTExHAsMpID2dmMCAlxCQ4WFaEaOpTw8JtHzLqmpoYPPv+AYmcxGEHWSIaZhrFs6bI+E1McMXwEicMSKS8vR6/X90ifzMzMTD5d8yn1mnoAvPFm+V3L+708q6qqinc+fYdKfSUGXwOHzx1m5+GdPL3s6RtSK75RnE4nGRkZZOd1X/CuMym7R3FlZAhcqbqZXGn/oqCgMEBQqVQ8/OMfs/L999l95gxaIVCHhXH/U08pqSs3QHFxMQ3qBvy9Wz/svSO9OZF2QnFIFRQUbhn0ej1Ln3iCnJwcKisrGe7jQ1RUFKp20lNvZdRqNYsefZTDe/bwxeHDqNRqYufMYcGUKTeVoNH6reup8KogasiViPn54+c5fOQwUyZP6TM7tFotwcE9Eyurq6vj76v/jmeKJyYfl5JyVWkVH678kJ8/+/N+7VqwY+8Oan1riYpv+n1HQGFmIVt2beGBpQ/0i012u51Pv/mUc2Xn0Pl3/3fTmZTdmI6OUVBQGBj4+fnx1M9+RlVVFXa7HX9//5tq8usPDAYDzkYn0ikRqiu/S0udBV+vmyv1SkFBQaEjVCoV0dHRRLcQ7FFoi9FoZMbcucyY2z99tXsbm83G6YzThE9rHfENjA3k8Lm+dUh7kkuXLtHo1UiIT0jzmE+AD9k52WRmZjK0H3vHnr50msDxrZWDgyKDOL3rNPfL+/tlvXfq9CnOVp4ldsKNqQl3uKUlhNAKIV4SQnzV9PUjIYT2hu6qoKDQq/j4+GAymRRntAfw9/dnVMwock/lIp2uGl1zjRlrppUZk2b0s3UKCgoKCgr9R3vtIwWDd+1htVkRmrb2C53AZrP1g0VX0LvpsVlb22Cz2jDoDP223jt54SS+kTe+Od+ZHIs3cdWNvtH0NbZpTEFBQeGW4KmHn2KkfiQ5G3PI2Z5D7f5afrDkB7dcfzEFBQUFBQVwpcmOiBtBUWZR85iUkuLLxaSmpPajZTdGVGQUslLisDuax2xWG7JS9lj9r9Pp5PLlyxw4eIALFy5gt3euecnUMVMpSivC6XA2X6fgfAFTRvVfNFqn1bX6XXWXztSQpkopR7Z4vU0IcfKG76ygoKAwSPDw8ODl516mrKyM+vp6goODcXNz62+zFBQUFBQU+o0Fty2g+Itisg9nN4sapQSlkDp28DqkwcHBTE+azs6DO3ELcUM6JdYiK3dMuKNHBJMsFgsff/UxGbUZqLxUOOudBO8O5okHnsDT0/O6544fN57yynL2792Pyt11bmp8KlMnT71hu7rLuJRxnNp0Ct9AX9Sa7isRd8YhdQgh4qSUlwGEELHw/9u79yipyjPf49+nL9DQQHNruTVNE7FRQW2Vm6JRUEfjqGjU0TFqNI6uTMyMcY6ZOJkzOcnMcpazzqwkxyTqeJJI9HjBSRA1XqLxhqIgIPeLoDSNgCj3SzfQdNdz/tgbLJq+VFdV167q/n3WqtVVb+29+3nfql1vPbXf/W5ST4VFRHLMwIEDGThwYNRhiIiIRK53795855bvUF1dzb59+xgwYABlZWU5f7rQxRdczImjTmTV2lXk5eUxZvKYtB0dnTN3DtUN1VRMqDhStnHNRl576zW+fvnXW103Pz+fyy65jHPPOpedO3dSUlJCv4gvI1RZWclFmy/izffexEqSf90TSUi/D7xpZusIZtodAdya9H8UEREREWmBu7N37166d++u0ShZLj8/n1GjRkUdRlqZWYdN3LVg5QIGjR10VNmQrwxh8buLuTJ2ZUIzVpeUlFBSUpL22JJhZlw45ULGnT6OLVu2cB/3JbWdRGbZfd3Ma6OE6wAAGpJJREFUTgBGEySkq939YFL/TURERESkBevWrWPuc8/B9u3U5+VRPnEi51x0UaSX25DA3r17Wb9+PRBca7VXr17RBtQBYrEYGzdupL6+nqFDh9KzZ8+0bj/P8o6ZCMrdc3oiKAgm00xlSHObCamZ3Qk84e5Lw8f9zOw2d38w6f8qIiIiIhLniy++4L1HH+WikhIGlZdzqLGR9+fM4a36ev7iqquiDq9LW75iOTNenUGsbzChTt6f87juL65j7JixzS7f2NjIli3BhEeDBw8mPz/58wszZdu2bTw+83G2NW7DCg3bY1xx3hVpPSd24ikTeWn1S3zl9C8nRdy8djMTTpqQ8vV89+3bx6Ili1i/eT2DBwzmzKoz6d+/f6ohZ0QiQ3Zvd/dfHX7g7jvN7HaCGXdFRERERFK2YsECqvLzGdSnDwCF+flMLi/niYUL2XfRRZ3yiFwu2LNnD8+8+gylZ5ZSVFwEwIHaA8x4dQYjykccMxnPxo0befKFJ9njewDoY3244fIb0nYeZkdwd5567inqBtUxomwEAPUH6nn23WcZOngow4YNS8v/mTRhEjWba1j13iqst0EdjOg1ggvPvzCl7e7atYtHnnyEPcV76F3am7Wfr2XO43O4/Zrb0xZ7R0okIc0zM/Pw+LKZ5QMaNyEiIiIiaVO7fTuVPXocVZafl0dvoLa2FoAdO3Zk1Tl0XcH69etp6NtwJBkFKCouorGkkerqak499dQj5QcOHGD6zOl0H92d8oHlAOzetpvpM6dzzx33UFRUdMz2s8Hnn3/Olv1bjiSjAN2KulE4uJClK5emLanr1q0bN157I5s2bWLHjh306dOH8vLylI+Ozpk3h31991E+OmjzfoP6sb33dl5840XuuOmOdITeoRJJSP8EPGNmDwMOfBt4pUOjEhEREZEu5bjjj6dm9WqGxc0cWnvwIDsLCli2YAGb585lILA9FmPQuHFMvfxyCgoS+SorqWh6zuMRzZz2uG7dOup61HHcwOOOlJUMLKHm0xo++eQTxowZ00FRpqahoQHLP7ZCBd0KqD9Un9b/ZWaUlZWl9YjxinUrGDj26KsA9B/cn5qPaqivr8/6c7ATScd/ALwO/C1wZ3j/+x0ZlIiIiIh0LWOrqqgeOJAPamrYvm8f67dt46VNm+gxciT1s2dzw9ChXDp8ON8YPpyCDz5g3uzZUYfcJVRUVJC/K5+D+7+c0/RA3QHyd+UfMxPtwYMHmx1H6YVOfX16E7t0GjRoED0aelC7p/ZIWSwWo3ZTLSeNOinCyBLTu7g3B+uOnnP20MFDFBUU5cT5u20mpO4ec/eH3f0ad78aWAH8ouNDExEREZGuomfPnky7/XbqL7iAN7p3Z3l5OWfcfju2axcTBw2iIPxinZeXx6Rhw1gzZ07LR+8kbUpKSrh66tV8Pv9zapbVULOshq0LtnL11KvpE57ve1hZWRnshMaGxiNljQ2NsJOsPoe0sLCQay++lp1LdrJh5QY2f7KZmnk1jBs+Licua3PuGeeybc02Dh08BARtvmnlJs4+7eycSEgTGudgZlXAXwPXAdXAzA6MSURERES6oF69enHO1KkwdeqRsndra+nRJPEpKiig8cABYrFYTnzhznVVp1UxsmIk1dXVQHDZl+bO4y0tLWXqaVN5fd7r9BgWnA+8f9N+pp46ldLS0ozG3F6VlZXcXXo3K1etpPZALaPGjaKioiLl8zszYcyYMVy+53Jem/case4xOAjnnHwO551zXtShJaTFhNTMKoHrCRLR7cAMwNx9SoZiExEREZEubtjYsaxdsIDT4o6wfbJ1K8eNHp2zyWhdXR11dXX07ds3Z86DLSkpoaqqqs3lLpxyIaNGjmL56uUAjL1iLCNGjGhjrezQr18/Jp89Oeow2s3MOOfscxh3xjh27dpFr169cmpW6tb2gNXAO8Dl7v4xgJndnZGoRERERESA8eedxwsffcS+DRsY2rMnW/fvZ3VREZdccknUobXboUOHePvll9k0fz7F7tQWFXHGZZdxSgKJXi6pqKg45vxS6XhFRUUMHjw46jDarbWE9GqCI6RvmtkrwNM0O5+WiIiIiEjHKCkp4et33snKpUtZu2kTJYMHc+Uppxxz/mIueOfVVymcOzeYmCk/nz379/PyjBn07ttXCZx0WS0mpO7+LPCsmRUDVwJ3A4PM7CHgWXd/NTMhioiIiEhX1rNnT8ZNmhR1GCk5ePAgG+bNO5KMAvTp0YPxvXqx8v33lZBKl5XILLu17v6Eu18GlAGLgXvbWs/MhpvZm2a2ysxWmNldYXl/M3vNzNaGf/vFrfNPZvaxmX1kZhfHlZ9pZsvC5x4wMx2pFREREZGcceDAAbrHYhQ2Oe+1T48e1O3cGVFUkqhYLMYnn3zC2++8zYeLPqSuri7qkDqNdp1F7e47gP8Kb21pAP6Hu39oZr2BhWb2GnAL8Lq7329m9xIktz8ws5MJhgiPAYYCfzazSndvBB4C7gDmAi8BlwAvtyd2EREREZGo9O7dm8aSErbt28fAuAln1m3fzuALLogwMmnLoUOHeGrmU6zavopuA7rRUNdA8ZxivnXNt3LynM1s02HzGLv7Z+7+YXh/L7AKGAZMA34XLvY7guHAhOVPu/tBd68GPgYmmNkQoI+7v+/BxaYei1tHRKRFDQ0NVFdXs2HDBmKxWNThiIhIF5aXl8fEadP40/btrPrsM7bs3s3cmhrW9O9P1YQJUYcnrViydAkrd69k5MSRDBs1jBGnjoARMPMVXQkzHTIyz7SZVQCnA/OAQe7+GQRJq5kdFy42jOAI6GEbw7JD4f2m5SIiLVq9ejUPP/Ewe2wPHnOGFA3hzlvvZNgwfXyIiEg0TqispNd3v8uKDz5gzbZtHDdxIledeSbFxcVRhyatWLR6EQNGDDiqbODQgdR8XMPu3bubvSarJK7DE1Iz6wX8Afieu+9p5fTP5p7wVsqb+193EAztpby8vP3BikinsGvXLn42/WcUn1lMeWnwWbC1Zis/feSn3P8/76ewsDDiCEVEpKsaMmQIQ6ZNizoMaYduBd1obGg8qiwWi4GTs9fCzSYdNmQXwMwKCZLRJ9z98DHtz8NhuIR/vwjLNwLD41YvAzaH5WXNlB/D3R9x93HuPq60tDR9FRGRnLJo8SLqB9bTp/TLSwKUjihlR/4O1qxZE2FkIiIikmvGnzKendU7j0pKt6zbwollJ9Ir7nxgSU6HJaThTLi/AVa5+0/jnnoe+GZ4/5vAc3Hl15tZdzMbCZwAfBAO791rZpPCbd4ct46IyDFq62qx7s0MrugO+/fvz3xAIiIikrNOOukkppw4hY3vbWTDkg3UzKuhtLaUaZfoSHc6dOSQ3cnATcAyM1sclv0QuB94xsxuAzYA1wK4+wozewZYSTBD753hDLsAfwtMB3oQzK6rGXZFpEWVoyppnNNI7OQYefnB724N9Q3YdmPkyJERRyciIiK5xMy45MJLmHDGBD7//HOKi4spKysjL69DB5t2GR2WkLr7uzR//idAs3Nbu/t9wH3NlC8AxqYvOhHpzE444QTOrTyX2W/PpnhEMbHGGAeqD3DtlGsZMGBA2xsQERERaaJ///70798/6jA6nYzMsisikklmxq033sq4ZeOYv2Q+hT0KOeuWs6isrIw6NBERERGJo4RURDql/Px8qqqqqKqqijoUEREREWmBBj6LiIiIiIhIJJSQioiIiIiISCSUkIqIiIiIiEgklJCKiIiIiIhIJJSQioiIiIiISCSUkIqIiIiIiEgklJCKiIiIiIhIJJSQioiIiIiISCSUkIqIiIiIiEgklJCKiIiIiIhIJJSQioiIiIiISCSUkIqIiIiIiEgklJCKiIiIiIhIJJSQioiIiIiISCSUkIqIiIiIiEgklJCKiIiIiIhIJJSQioiIiIiISCSUkIqIiIiIiEgklJCKiIh0QmZ2iZl9ZGYfm9m9zTxvZvZA+PxSMzsjijhFRFIVi8VYu3Yts16axYt/epENGzZEHZK0Q0HUAYiIiEh6mVk+8CvgImAjMN/Mnnf3lXGLfQ04IbxNBB4K/4qI5Ax35/mXnmfu+rkUDysm1hjj3Wff5bIJlzH5rMlRhycJUEIqIiLS+UwAPnb3dQBm9jQwDYhPSKcBj7m7A3PNrK+ZDXH3zzIfrohIcj799FPmVc+jYlIFeXnB4M9Dww7x8tyXOWXMKfTp0yfiCKUtGrIrIiLS+QwDPo17vDEsa+8yIiJZbX3NegoGFhxJRgEKuxXifZzNmzdHGJkkqtMeIV24cOE+M/so6jhSNBDYFnUQKVIdsoPqkB1Uh+wwOuoAMsCaKfMklsHM7gDuCB8eNLPlKcbWVXWGfScKarfkdfm2+3f+PZnVuny7pSCp/rXTJqTAR+4+LuogUmFmC1SH6KkO2UF1yA6dpQ5Rx5ABG4HhcY/LgKaHChJZBnd/BHgEOsfrHxW1XXLUbslT2yVH7Za8ZPtXDdkVERHpfOYDJ5jZSDPrBlwPPN9kmeeBm8PZdicBu3X+qIiIZFpnPkIqIiLSJbl7g5l9F/gTkA/81t1XmNm3w+cfBl4CLgU+BuqAW6OKV0REuq7OnJA+EnUAaaA6ZAfVITuoDtlBdcgR7v4SQdIZX/Zw3H0H7mznZrtE23UQtV1y1G7JU9slR+2WvKTazoL+SERERERERCSzdA6piIiIiIiIRCLnElIzu8TMPjKzj83s3maeP9HM3jezg2Z2T1z5cDN708xWmdkKM7srs5EfFWNSdYh7Pt/MFpnZHzMT8bFSqUN48fXfm9nq8PU4K3ORHxVHKnW4O3wfLTezp8ysKHORHxNnW/X4hpktDW/vmdlpia6bKcnWIcf26xZfh/D5XNivW3sv5cp+3Vodsma/jloC7Whm9kD4/FIzOyOKOLNNqp8DXVmi/ZGZjTezRjO7JpPxZatE2s3MzjezxeHn29uZjjFbJbC/lpjZC2a2JGw7nWcPmNlvzewLa+ESYEn1D+6eMzeCiRk+Ab4CdAOWACc3WeY4YDxwH3BPXPkQ4Izwfm9gTdN1s70Occ//A/Ak8Mdcex3C534H/E14vxvQN5fqQHDh+GqgR/j4GeCWLH4tzgb6hfe/BsxLdN0cqEMu7dfN1iHu+VzYr1usQw7t1y29l7Jmv476lmA7Xgq8THAt00lN389d8ZaOz4Gueku0PwqXe4Pg3Ohroo476luC77m+wEqgPHx8XNRxZ8Mtwbb7IfAf4f1SYAfQLerYo74BXwXOAJa38Hy7+4dcO0I6AfjY3de5ez3wNDAtfgF3/8Ld5wOHmpR/5u4fhvf3AqsIvoBkWtJ1ADCzMuAvgV9nItgWJF0HM+tD8Eb+TbhcvbvvykjUR0vpdSCYEKyHmRUAPWnm2n0Zkkg93nP3neHDuQTXGkxo3QxJug45tl+39Drk0n7dbB1ybL9u8XUge/brqCXy2TANeMwDc4G+ZjYk04FmmVTff11Zov3R3wF/AL7IZHBZLJF2uwGY6e4bIPhuk+EYs1UibedAbzMzoBdBQtqQ2TCzj7vPJmiLlrS7f8i1hHQY8Gnc440k8eXTzCqA04F56QmrXVKtw8+BfwRiaYypvVKpw1eArcCj4fDEX5tZcboDTEDSdXD3TcB/AhuAzwiu3fdq2iNMTHvrcRvBr1bJrNtRUqnDETm2Xzetw8/Jvf06vg65ul8fqUOW7ddRS6Qds+XzI5uk5bOsi2qz7cxsGHAV8DByWCLvuUqgn5m9ZWYLzezmjEWX3RJpu18CJxH8OLkMuMvdo+ync0W7+4dcS0itmbJ2TRNsZr0Ifl37nrvvSUtU7ZN0HczsMuALd1+Y3pDaLZXXoYDgMP9D7n46UAtEce5iKq9DP4Jff0YCQ4FiM7sxjbG1R8L1MLMpBF+AftDedTtYKnU4XJ4z+3XTOuTift3M65Bz+3Uzr0M27ddRS6Qds+XzI5uk/FnWhSXSdj8HfuDujR0fTs5IpN0KgDMJRuFcDPyLmVV2dGA5IJG2uxhYTNAnVAG/DEcESeva3T/kWkK6ERge97iMdgypMrNCgi+tT7j7zDTHlqhU6jAZuMLM1hMMLZhqZv8vveElJJU6bAQ2uvvho1i/J/gim2mp1OFCoNrdt7r7IWAmwXlBUUioHmZ2KsFw0Gnuvr0962ZAKnXIqf26hTrk1H7dynspZ/brFuqQTft11BJpx2z5/MgmKX2WdXGJtN044Onws/Ia4EEzuzIj0WWvRPfVV9y91t23AbMBTaaVWNvdSjDc2d39Y4J5Bk7MUHy5rN39Q64lpPOBE8xspJl1A64Hnk9kxXD892+AVe7+0w6MsS1J18Hd/8ndy9y9IlzvDXeP4hf8VOqwBfjUzEaHRRcQnGyfaUnXgWBI3yQz6xm+ry4gOHcxCm3Ww8zKCb5c3+Tua9qzboYkXYdc2q9bqkMu7det1CFn9utW9ods2q+jlshnw/PAzeFsipMIhjh/lulAs0wq77+urs22c/eR7l4Rflb+HviOu8/KeKTZJZF99TngXDMrMLOewES67mdbvETabgNBX4CZDQJGA+syGmVuan//4FkwW1N7bgQzN60hmBnrn8OybwPfDu8PJsjM9wC7wvt9gHMIDhcvJTj8vhi4NJfq0GQb5xPRbJyp1oFg2MOC8LWYRTjjYI7V4SfAamA58DjQPYtfi18DO+Pe9wtaWzeX6pBj+3WLr0PcNrJ9v27tvZQr+3Vrdcia/TrqWwLtaMCvwueXAeOijjkbbun4HOiqt7barsmy09Esuwm3G/B9gh8JlxOc2hJ53NlwS2B/HQq8Gn7GLQdujDrmbLgBTxHMtXCI4Lvxban2DxauKCIiIiIiIpJRuTZkV0RERERERDoJJaQiIiIiIiISCSWkIiIiIiIiEgklpCIiIiIiIhIJJaQiIiIiIiISCSWkIkkys0YzW2xmy83sv8Pre3XE/xlnZg+E9883s7OT2Mb3zOzm8P6JYdyLzOz4FGOrMrNL4x5fYWb3JrmtUjN7JZV4REQke+Vqvxk1M/uxmd0T3v9XM7swDdvcF/5V3yuRU0Iqkrz97l7l7mOBeoJrMLXJzAra80/cfYG7/3348HygXR1r+P++BTwZFl0JPOfup7v7J3HLmZm19zOhiuA6Xodjfd7d72/nNg6vuxX4zMwmJ7O+iIhkvVztN5PW3tjb4u4/cvc/p3F76nslckpIRdLjHWCUmfU3s1lmttTM5prZqXDk181HzOxV4DEzG2Fmr4fLvW5m5eFy14a/HC8xs9lh2flm9kczqyDovO8Of2E+18yqzawwXK6Pma0//DjOVOBDd28Ij2Z+D/gbM3vTzCrMbJWZPQh8CAw3s4fMbIGZrTCznxzeiJmNN7P3wtg+MLMS4F+B68J4rjOzW8zsl+HyLdVxupk9EG5rnZldExfrLOAbaXxdREQkO+VEvxku95aZ/UfY960xs3PD8iIze9TMllkw6mhKWH5LeAT4BeDV8PEsM3sh/P/fNbN/CNeZa2b9w/VuN7P5YV3+YM0cQQ770GssOAq8OLwtMzMPnz/ezF4xs4Vm9o6ZnRiWjzSz98Pt/1uTzc5Cfa9ESAmpSIos+PXza8Ay4CfAInc/Ffgh8FjcomcC09z9BuCXwGPhck8AD4TL/Ai42N1PA66I/z/uvh54GPhZ+AvzO8BbwF+Gi1wP/MHdDzUJcTKwMNzGS3HbmBI+PzqM5XR3rwH+2d3HAacC55nZqWbWDZgB3BXGdiFQG8Y7I4xnRpP/21IdAYYA5wCXAfFHVBcA5yIiIp1WLvWbcQrcfQLBj7r/Kyy7M/w/pwB/DfzOzIrC584CvunuU8PHY4EbgAnAfUCdu58OvA8cHho8093Hh3VZBdx2bOsdqduCsE5VwCvAf4ZPPQL8nbufCdwDPBiW/x/gIXcfD2xpsjn1vRIpJaQiyethZosJPsg3AL8hSLIeB3D3N4AB4ZFEgOfdfX94/yy+HAr0eLgewBxgupndDuQnEMOvgVvD+7cCjzazzBBgayvbqHH3uXGP/8rMPgQWAWOAkwmS1s/cfX5Ytz2HfzluRUt1BJjl7jF3XwkMiiv/AhjaxnZFRCQ35XK/OTP8uxCoCO/Hx74aqAEqw+dec/cdceu/6e57wyGyu4EXwvJlcdsbGx7VXEZwxHJMW5Uxs78CzgDuNbNeBMOT/zts5/8K6wJBkv1UeP/xJptR3yuRSuu4dpEuZn/4y+QRZmbNLOfh39pWtuUA7v5tM5tI8OvtYjOramUd3H1OOOz2PCDf3Zc3FydQ1Ez5YUfiMrORBL+ojnf3nWY2PVzX4uqRrPj1D8bdj2+zojBeERHpfHK53zzcbzXy5ffn5mI/rGns8f1eLO5xLG5704Er3X2Jmd1CcP5ri8xsDMER5q+6e6MF80DsatrGcVrqx9X3SqR0hFQkvWYTnodhZucD29x9TzPLvUcwVIhw+XfDdY5393nu/iNgGzC8yXp7gd5Nyh4j+NWzuV95IRj2MyrB+PsQdKK7zWwQwZAqgNXAUDMbH8bZOxxy1Vw8hzVbxzZUAs19ORARkc4pl/vN+NgrgXLgowTWa0lvggmGCmnjnM7wKPLTwM3hUVfCdqs2s2vDZczMTgtXmcPR7RdPfa9ESgmpSHr9GBhnZksJzo38ZgvL/T1wa7jcTcBdYfn/DicnWE7Q0S1pst4LwFWHJ2cIy54A+vHlUJymXga+mkjw7r6EYKjuCuC3BB0Y7l4PXAf8wsyWAK8R/KL6JnByGM91CdaxNVOAFxOJVUREOoUfk7v95oNAfjjEdgZwi7sfbGOd1vwLMI+gj13dxrJXAiOA/3t4cqOw/BvAbWFfvQKYFpbfBdxpZvOBkibbUt8rkTL3VEfhiUiULJildpq739TKMs8C/+juazMXWftZMEPiNHffGXUsIiLSOXWmfjMd1PdK1JSQiuQwM/sFwbDaS919TSvLjQYGufvsjAXXTmZWCkx291lRxyIiIp1TZ+o300F9r2QDJaQiIiIiIiISCZ1DKiIiIiIiIpFQQioiIiIiIiKRUEIqIiIiIiIikVBCKiIiIiIiIpFQQioiIiIiIiKRUEIqIiIiIiIikfj/GjRDGJwYL9UAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
"source": [
"# Continue until all assigned categories don't change any more (code modified from Ben Keen, http://benalexkeen.com/k-means-clustering-in-python/)\n",
"\n",
+ "iteration = 2\n",
+ "print('Iteration:')\n",
"while True:\n",
+ " print(iteration, end =\" \")\n",
" closest_centroids = df['closest'].copy(deep=True)\n",
" centroids = update(centroids,pormin,pormax,AImin,AImax)\n",
" df = assignment(df, centroids)\n",
" if closest_centroids.equals(df['closest']):\n",
" break\n",
- "\n",
+ " iteration = iteration + 1\n",
+ " \n",
"plt.subplot(121) # plot the assigned training data and K prototypes\n",
"plt.scatter(df['Porosity'], df['AI'], color=df['color'], alpha=0.5, edgecolor='k')\n",
"for i in centroids.keys():\n",
- " plt.scatter(centroids.get(i)[0], centroids.get(i)[1], color=colmap[i],linewidths=1.0, verts=None, edgecolors=\"black\")\n",
+ " plt.scatter(centroids.get(i)[0], centroids.get(i)[1], color=colmap[i],linewidths=1.0, edgecolors=\"black\")\n",
"plt.title('Acoustic Impedence vs. Porosity with Final Prototypes'); plt.xlabel('Porosity (fraction)'); plt.ylabel('Acoustic impedance (kg/m^3 x m/s x 10^3)')\n",
"plt.xlim(por_min, por_max)\n",
"plt.ylim(AI_min, AI_max)\n",
"\n",
"plt.subplot(122) # plot the training data and K prototypes\n",
- "plt.scatter(df_subset['Norm_Porosity'], df['Norm_AI'], c=df['color'], alpha = 0.4, linewidths=1.0, verts=None, edgecolors=\"black\")\n",
+ "plt.scatter(df_subset['Norm_Porosity'], df['Norm_AI'], c=df['color'], alpha = 0.4, linewidths=1.0, edgecolors=\"black\")\n",
"for i in centroids.keys():\n",
- " plt.scatter(centroids.get(i)[2], centroids.get(i)[3], color=colmap[i],linewidths=1.0, verts=None, edgecolors=\"black\")\n",
+ " plt.scatter(centroids.get(i)[2], centroids.get(i)[3], color=colmap[i],linewidths=1.0, edgecolors=\"black\")\n",
"plt.title('Normalized Acoustic Impedence vs. Porosity with Final Prototypes'); plt.xlabel('Porosity (normalized)'); plt.ylabel('Acoustic impedance (normalized)')\n",
"plt.xlim(0, 1)\n",
"plt.ylim(0, 1)\n",
@@ -1065,141 +1118,85 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Now that we have demonstrated k-means clustering by-hand, let's try out the scikit-learn implimentation.\n",
+ "#### Clustering with scikit-learn function\n",
"\n",
- "* we have the typical instantiate, fit and predict steps. In this case we will stop with fit and use the claster labels assigned at the sample data locations."
+ "Let's repeat with the scikit-learn function."
]
},
{
"cell_type": "code",
- "execution_count": 51,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
Porosity
\n",
- "
AI
\n",
- "
Norm_Porosity
\n",
- "
Norm_AI
\n",
- "
clusters
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
0
\n",
- "
0.139637
\n",
- "
4747.274043
\n",
- "
0.067289
\n",
- "
0.658089
\n",
- "
2
\n",
- "
\n",
- "
\n",
- "
1
\n",
- "
0.170732
\n",
- "
4535.625583
\n",
- "
0.316164
\n",
- "
0.608089
\n",
- "
2
\n",
- "
\n",
- "
\n",
- "
2
\n",
- "
0.244345
\n",
- "
2696.102930
\n",
- "
0.905345
\n",
- "
0.173519
\n",
- "
0
\n",
- "
\n",
- "
\n",
- "
3
\n",
- "
0.167125
\n",
- "
5500.997419
\n",
- "
0.287294
\n",
- "
0.836149
\n",
- "
2
\n",
- "
\n",
- "
\n",
- "
4
\n",
- "
0.216253
\n",
- "
3959.934912
\n",
- "
0.680501
\n",
- "
0.472088
\n",
- "
0
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAF6CAYAAAA5yXBHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACVQklEQVR4nOz9d3xUV5rg/39OValUKuWcs5BAIgqRwYANtsFgjBMO7bZ7Os/0TPfs7M7Md8PM7M7M/mZ3dtJO6N6ejm67nbPBxhiTswQoIJBQRjnHUqnS+f1RhZBAggJUqpJ03q8XL1S37q37VHzuPfec5wgpJYqiKIqi+C6NtwNQFEVRFOX2VLJWFEVRFB+nkrWiKIqi+DiVrBVFURTFx6lkrSiKoig+TiVrRVEURfFxKln7OCHEYSHEt1x/vyiE+GKKHz9NCCGFELqpfNzp4onXZDrN9Nd/phBC/GchxM98aZ9CiFeEEMenYD+DQoiMKXicvxBCvHa/j6N4xpxP1kKIOiFEmxAicMyybwkhDnsxrAlJKV+XUj7sjX27Dhp6hBD+3ti/K4ZbEtu9viZCiF8JIf5qaiNUJuP6ng27EkubEOKXQoig6dq/lPJ/SimvH/ROywHSVO/zptfw+r8EKWWQlLJm6iKfcN+bhBAO1z4HhBAVQohv3ONj3dVBylQd1Mx0cz5Zu+iAH97vgwinWfeaCiHSgA2ABB73bjTKDLZTShkE5AMrgP96Nxur1gfA9RqO+dc8jftudr1/IcCfAP8uhMi9eSX1PnnGrEss9+hvgf8ohAib6E4hxFohxDkhRJ/r/7Vj7jsshPhrIcQJwARkuI6gf1cIcdV1FPqXQohMIcQpIUS/EOJtIYTetX24EOJTIUSH68z1UyFE0iRxjB5hCiH++KYjbKsQ4leu+0KFED8XQrQIIZqEEH8lhNC67tMKIf6PEKJTCFEDPObG6/N14DTwK+Dlm2JKFkK874q/SwjxL67lGiHEfxVC1Ash2oUQrwohQl33bRJCNN70OHVCiC2uv1cKIQpdr1WbEOLvXasddf3f63rOa24+6hZC5AkhDgghul3b/uc7PbkxZz3fEEJcc70P3xNCrBBClAgheq8/rzHvwwkhxD+7PhNXhBAPjbn/nl//O2z7ihDiuGv7HiFErRBi25htI4TzjLXZdf+HY+7bIYS46HouJ4UQiyd5LX4ihPg/Ny37SAjxH1x//4krrutnVw9N9Di3I6VsAj4DFroe83EhxCVXbIeFEAvG7LvOtc8SYEgIobvD+hPGJ8Y38d78Odro+rwsGvM4McJ5Fhs9wWtUL4RY7vr7a67PTq7r9reuv+532OeaMY834fvpLtf+s1x//0oI8a9CiL2u1+CMECJzzLr/5PqM9wshioQQG+52f9LpQ6AHyB3zffgHIUQ38Beuz/Grwvm7UC+cvwUa13v1E2CN63XodcXl9vrC+b1sE2MOCoQQTwkhLrr+/gshxLtCiLdcr8F5IcSSMesmCCHec+2rVgjxB2Pum+y3x/uklHP6H1AHbAHeB/7KtexbwGHX3xE4P5Qv4TwDf951O9J1/2GgAchz3e+H8wz0Y5xHoHnACHAQyABCgXLgZdf2kcBTgBEIBt4BPhwT32HgW66/XwGOT/AckoFmYLvr9ofA/wMCgRjgLPBd133fA664tokADrni1d3mNaoCfhdYDliBWNdyLVAM/INrXwZgveu+33FtlwEEuV7f37ju2wQ0TvQ+uP4+Bbzk+jsIWO36O+3mWMe+Jq7XrwX4I1cswcCqSZ7Tr8a839cf9yeu7R4GzK7XMQZIBNqBjWP2aQP+0PV+7wH6gIj7ff3vsO0rrtf/267X/vuu91247t8LvAWEu+K6Hm++K/5Vru1edr3e/hO8Lg8A18Y8ZjgwDCQAOa77Esa8bpl38z0b83m9BPwlkA0MAVtdMf8xzs+Nfsx2F13bBNxu/dvFB/wF8NptPkf/BvyvMbd/CHwyyXN5Ffgj198/BaqB74+57w/d3Odt38/bvYY3LZdA1pjPdTewEufv0evAm2PW/RrO3xwdzu9JK2C4Od4J9rEJ13cW50neblfsOdz4Pvy+63EDXK/DRzi/g2lAJfDNyX7H7mH9cmDbmNsfjHlP/sIV29M4PyP/Eah1/a0BioA/w/mZyQBqgEdu99vjC/+8HoC3/3EjWS/E+YMbzfhk/RJw9qZtTgGvuP4+DPyPm+6XwLoxt4uAPxlz+++Af5wknqVAz5jbh7lNsnZ9MUYfH4jFeXAQMGad54FDrr+/Ar435r6HuU2yBta7PvhRrttXuPFjtAbomGhbnAcnvzvmdo7rcXTcOVkfBf779X2OWSft5lgZn6yfBy64+b7/iluTdeKY+7uAPWNuvwf8aMw+x/2o4kyqL93P6+/Gtq8AVWPuM7q2jQPiAQcQPsFz/THwlzctq8CVzG9aLnAefD7guv1t4CvX31k4k/4WwO8evmeDQC9QjzM5BgD/DXh7zHoaoAnYNGa73xlz/6Tr3y4+7pw4V+FM9BrX7ULg2UmeyzeBj11/X8b5e/Gm63Y9kO/mPid9P914DXtxHdRza7L+2ZhttgNXbvO+9ABLbo53gvU2uT5fvTgPBi4Cz415Hg1j1tXi/Bznjln2XW78pr7CmN+xu13ftexPgNddf0fgbNWMH/M8Tt/0GWnBeSlv1dhYXff/f8Av5W1+e3zhn2oGd5FSlgGfAn96010JOL+AY9XjPNu67toED9k25u/hCW4HAQghjEKI/+dq+unH+WEJE66mTzf8HKiQUv4v1+1UnEeQLa4mo16cZ2oxY57P2Hhvfm43exn4QkrZ6br9W240hScD9VJK2wTb3fy61XMjId3JN3GeQV0RzssOO9zY5no81W6uOxG33jOXJun6drvU43zO9/P632lbcJ4JASClNLn+DML53LullD0TPK9U4I+uP6brcZNdsYzjek5v4jxIAHgB59kZUsoq4Ec4fwzbhRBvCiFueYzbeEJKGSalTJVS/q6U8voZ++hrIKV04Hx9Jvt+Tbr+/cQnpTyD84x9oxBiPs7E//Ekqx8BNggh4nAmmreAdcLZtyMUZyJz12Tv52Suv4ZhUson7vSYOJPY6OMJIf5ICHFZOC/f9LrijXIz1mbXfiOklEullG+OuW/sexSF86z15u//2Pd0rLtdH+A1YKdwdlJ8FjgmpWyZKB7XZ6SRG9/PhJu+C/+ZG79L9/rb43EqWY/35zjPJMZ+SJpxvsFjpeA8mr9Ocu/+COdZ5yopZQjOZkhwnuHclhDiT13bfnPM4ms4j1KjxnypQ6SUea77W3D+UF+XcpvHD8D5RdgohGgVQrTibPpd4roGdA1IERN3KLn5dUvB2VTWhvNH0ThmP1qcLRoASCmvSimfx5mk/hfwrnD21r/T63wNyLzDOlMlUQgx9j1Kwfmc7+f1v9O2t3MNiBAT97u4Bvz1mMcMk1IapZRvTPJYbwBPCyFScZ6JvHf9Dinlb6WU63G+txLn+3M/xn1OXK9pMpN/v267vpvxTfY5+jXOZuKXgHellOaJVnIdFJiAPwCOSikHcCbI7+A8A3TcxT6njev69J/g/E6HSynDcLYm3vG3xg1jn18nzla0m7//TROsey/rI539Hk7hbI5/CfjNTauMfseEs9NvEje+n7U3fReCpZTbXY872W+P16lkPYbrS/gWzi/hdfuAbCHEC8LZuWUPkIvzLHwqBOM8a+sVQkTgPGC4I1dHlD/AeaQ9POY5tABfAH8nhAhxddLIFEJsdK3yNvAHQogkIUQ4t7YkjPUEYMf5fJe6/i0AjuHsdHYWZ/L5GyFEoBDCIIRY59r2DeAPhRDprqPf/wm85ToLrwQMQojHhBB+OHsFjw4JE85OO9GuH71e12I7ziZ3B87rTBP5FIgTQvxICOEvhAgWQqy6zfO7HzE4X0c/IcQzOF+Xfffz+rux7aRc234G/Jtwdlr0E0JcP/D7d+B7QohVwinQ9doHT/JYF3C+1j8D9kspewGEEDlCiAeFc/ieGefn1n5Xr9qt3gYeE0I85Pos/BHOA5aTd7v+XcQ32efoNzh//L+G8xrq7RwBfuD6H5yXq8bednef0ykY5wFzB6ATQvwZzn41U0pKacf5Pv216zuYCvwHnGfD4DxgTxKuTrZ3u/4Yr+Lss7AI5zXrsZYLIZ50nUj8COdn5DTO36x+4eyIGCCcHT4XCiFWwG1/e7xOJetb/Q+cnXsAkFJ2ATtw/ih04fxw7BjTLHy//hHntbtOnB+mz93cbg/Os9HL4kaP8J+47vs6zmalcpzXpN7FeU0TnD/c+3F2DDuPs+PXZF7GeS2nQUrZev0f8C/AiziPyHfibDJswNnUtMe17S9w/vgdxdm5w4yzAwpSyj6cHdZ+hvPoeci17XWPApeEEIPAP+G8NmZ2NRP+NXDC1YS1emywrjOcra6YWoGrwObbvor37gwwD+f79tfA067PCtzf63+7be/kJZxnKFdwXrv9EYCUshBni9G/uB6zCud1wNt5A+e139+OWeYP/A3O59yK84DlP8NocZpLbsY5SkpZgTM5/rPrcXfiHJ5kuYf1J43vpseY8HMkpWzE+Z5InAekt3MEZ/I7Osltt/Y5zfbjPKCrxNnMbGbiS3hT4fdxfq9rgOM4P0e/cN33Fc4Ohq1CiM57XB+cCToV+EBKOXTT/j/C+VvUg/N78aSU0uo6MNiJ88SjFudn5Wc4LwfAJL899/4yTJ3rPT4VRXGTEOIVnJ3+1ns7FmVqCSF+gfPa7F2NAVe8QwhRjXO0xJdjlv0Fzg53X/NaYB6gBq8riqIwWvznSWCZl0NR3CCEeApnK8hX3o5lOnisGVwI8QvhLIZRNsn9Qgjxf4UQVcJZeCLfU7EoiqLcjhDiL4Ey4G+llLXejke5PeEsB/1j4Pcm6dA363isGdzVuWUQeFVKuXCC+7fjvE6xHWeP03+SUnqqM5CiKIqizFgeO7OWUh7FOXh+MrtwJnIppTyNc2yxux1pFEVRFGXO8GZv8ETG90Rs5PaD4BVFURRlTvJmB7OJBuJP2CYvhPgOzoIDBAYGLp8/f74n4/Iqi8VCV38f/oHjixhZRswYtTpCgiccGqsoiqL4uKKiok4p5S2Tw7jDm8m6kfGVnK5XmLmFlPKnOAvmU1BQIAsLCz0fnZfYbDb+4ac/JThvAaGRkc5lVitVJ07xrV27SE5OvsMjKIqiKL5ICHGn8s6T8may/hj4gRDiTZwdzPpuqu06J+l0Ovbs2MFrH31EZ2gw6HRYO7vYvHSZStSKoihzlMeStRDiDZwztUQJ59zFf45zkgKklD/BWcZzO85qSibgG56KZaZJSUnhD7/1LWpqarBYLCQnJxMV5W6tfUVRFGW28ViydhVDv939Evg9T+1/pgsICCAvz535GxRFUZTZTtUGVxRFURQfp5K1oiiKovg4lawVRVEUxcepZK0oiqIoPk4la0VRFEXxcSpZK4qiKIqPU8laURRFUXycStaKoiiK4uNUslYURVEUH+fN2uAeMzAwwMWSEhrb2oiPimLZkiWEhoZ6OyxFURRFuSez7sy6u7ubn7z2Gkcb6ugMDuRUSzM/fu03tLe3ezs0RVEURbknsy5ZHz5xHOJjyVi0iKj4eNLyctGnpnDg6FFvh6YoiqIo92TWJevymlriUlPHLYtNSaGyvh7n3CGKoiiKMrPMumQdbDRiNpnGLRsZHibQYEAI4aWoFEVRFOXezbpkvXbZMhovXcJmtQJgt9loKLvE2mXLvByZoiiKotybWdcbfHl+Pn2DA5w8egyN0Yh9eJhVC3JZs2qVt0NTFEVRlHsy65K1RqNhy6bNrF25it7eXkJCQggKCvJ2WIqiKIpyz2Zdsr7OaDRiNBq9HYaiKIqi3LdZd81aURRFUWYblawVRVEUxcepZK0oiqIoPk4la0VRFEXxcSpZK4qiKIqPU8laURRFUXycStaKoiiK4uNUslYURVEUH6eStaIoiqL4OJWsFUVRFMXHqWStKIqiKD5OJWtFURRF8XEqWSuKoiiKj1PJWlEURVF8nErWiqIoiuLjVLJWFEVRFB+nkrWiKIqi+DiVrBVFURTFx+m8HcD9Gh4e5vDx4xSVl4OULFuwgM0bNmA0Gr0dmqIoiqJMiRl9Zu1wOPjtu+9S1NFG8vq1pDywnuKeLl579x3sdru3w1MURVGUKTGjk3VDQwONpiEyFy9G7++Pn15P+sKFtIyMUFdX5+3wFEVRFGVKzOhk3dvbizYk+JblupBgent7pz8gRVEURfGAGZ2sw8LCsPcN3LLc1jdAeHi4FyJSFEVRlKk3o5N1SkoKySHBVBeXMDI8zMjwMNUlJSQGBJCWlubt8BRFURRlSszo3uAajYYXnnyK46dOUnjmLBJYuSCXDWvXotHM6OMQRVEURRk1o5M1gMFgYMvmB9my+UFvh6JMoaGhIa5UVNA/MEByYiIZGRnqAExRlDlrxidrZfZpaWnh1++/hy00FD+jkSNXrpBZVMRzTz6Jn5+ft8NTFEWZdipZKz5FSsmH+z8nMHseUfHxzoXZ86g8e46S0lKW5+d7N0BFURQvUO2KXjQwMMCpM2f47MABysvLsdls3g7J6/r6+mgfHLyRqF2i01IpqajwUlSKoijepc6svaS5uZlfv/8+jshw/AODOHvqJIlFRbz07LP4+/t7Ozyv0Wq1SLsDKSVCiNHldrsdvV41gSuKMjepM2sv+fjAFwTlzCNj0SISM9LJXrWSFhwUXbjg7dC8Kjg4mMz4eJqqqkaX2W02OqqrWZ630IuRKYqieI9K1l4wMDBAa1/frU29KSmUXb3qpai8x2azMTAwMFrPfdejjxLU28/VEyepPn+BqqPHWD8vh5ycHC9HqiiK4h2qGdwLdDodQkocdjsarXZ0uc1qJXiONfWePXeOr86eYcQh8dcIHly1mpUFBXz35ZdpbGzEZDIRGxurKtIpijKnqWTtBQEBAeSmplFVUUla7gLAmajbq6p4aONmL0c3fYpLSvi08BzpKwowGI0MDw3x6bkzGPz9WbxoESkpKd4OUVEUxSeoZnAv2b51K3F2O5VHjlFTWET10WM8MH8B8+fP93Zo0+bImTMkLszD4Jp7PCAwkMSFCzly9oyXI1MURfEt6szaSwIDA/nG8y/Q2trK0NAQ0dHRhISEeDusadXd38+80NBxy4JCQqjq6/dSRIqiKL5JJWsvi4uL83YIXpOemEhXSwvRiYmjyzqaW0hPSrzNVoqiKHOPR5vBhRCPCiEqhBBVQog/neD+UCHEJ0KIYiHEJSHENzwZj+JbtmzYQG9lJU01tQz199NUU8NAVRUPrVvv7dAURVF8iseStRBCC/wrsA3IBZ4XQuTetNrvAeVSyiXAJuDvhBB6T8Wk+JbExES+++xzZGq0jFRcJVOj4zvP7iExUZ1ZK4qijOXJZvCVQJWUsgZACPEmsAsoH7OOBIKFs1RVENANqJqbc0hsbCy7d+zwdhiKoig+zZPN4InAtTG3G13LxvoXYAHQDJQCP5RSOm5+ICHEd4QQhUKIwo6ODk/FqyiKoig+yZPJWkywTN50+xHgIpAALAX+RQhxS5doKeVPpZQFUsqC6OjoqY5TURRFUXyaJ5N1I5A85nYSzjPosb4BvC+dqoBaYO4MNFYURVEUN3jymvU5YJ4QIh1oAp4DXrhpnQbgIeCYECIWyAFqPBiTco8sFgvFJSVcrq7GGGCgYPES0tLSvB2WoijKnOCxZC2ltAkhfgDsB7TAL6SUl4QQ33Pd/xPgL4FfCSFKcTab/4mUstNTMSn3xmq18pu336bRZiUqOYmukRFKP/2E7atWs2rFCm+HpyiKMut5tCiKlHIfsO+mZT8Z83cz8LAnY1Du3+XLl2m0jJC98kZijoiJ4YsTJ1myaBEGg8GL0SmKosx+qja4ckc1164RGj++0preYEAEGWlvb/dSVIqiKHOHStbKHYUEBmIeHBy3TEqJbdiM0TUJh6IoiuI5Klkrd7Rk0SIsra30d3cD4HA4aLhyhfSoaKKiorwcnaIoyuynJvJQ7igyMpKvPbaTDw98QZvdjsNqIycxkcd3bvN2aIqiKHOCStaKWzIyMvjRt79Dd3c3er1+zk3nqSiK4k0qWStu02g0qtlbURTFC9Q1a0VRFEXxcW6dWQshwnHW7x4G6iaabENRFEVRFM+YNFkLIUJxzjf9PKAHOgADECuEOA38m5Ty0LREqSiKoihz2O3OrN8FXgU2SCl7x94hhFgOvCSEyJBS/tyD8SmKoijKnDdpspZSbr3NfUVAkUci8rLh4WEGBwcJDQ1Fr9d7OxxFURRFuW0zeP7tNpRSnp/6cLzHZrPx5eHDnL1UhsZgQFgsbF29hpVqogpFURTFy27XDP53rv8NQAFQjHNmrMXAGWC9Z0ObXkePH+dMQz0ZD2xA5+eH2WRi77kzhIaEkJOT4+3wFEVRlDls0qFbUsrNUsrNQD2QL6UskFIuB5YBVdMV4HSw2+2cKi0hbfEidH5+ABiMRqKzczhRNCtb+2eFjo4Orl69SmenmlVVUZTZzZ2hW/OllKXXb0gpy4QQSz0X0vSzWq1YbHb0N031GBAUSH9t7bTF0dfXhxBCVQe7A6vVygeffkp5UyO64GBs/f0sTEnhicd2oNOpOj+Kosw+7vyyXRZC/Ax4DZDA14DLHo1qmhkMBuLDw+luayMiNnZ0eUdjI4tSUj2+/46ODj7a/zmNrokyUqOi2PXoNiIiIjy+75no+MmTXOnvJXvjAwghkFJSXlhEzOnTPLB+Vl2dURRFAdyrYPYN4BLwQ+BHQLlr2ayybfNmusrLabx6ld7OTmrLLqHr6GLdqlUe3a/FYuHV995lMDKCnAc3k715Ez0hwbz6zjvYbDaP7numOlNaQvKCBQghABBCkJS7gLMlJV6OTFEUxTPueGYtpTQLIX4C7JNSVkxDTF6RmprK9/Y8z7kLF+hobWd+fALLtz/m8Sbpqqoqhgz+zEtOBpyJJz4tjatt7dTW1jJv3jyP7n8mslito30LrtP5+WG2Wr0U0fTr7u7m5Nmz1DQ1EhkaxrqCAtLS0rwdlqIoHnLHZC2EeBz4W5xVzNJd16v/h5TycQ/HNu1iYmJ47JFHpnWfQ0NDaAMCblmuCTBgMpmmNZaZYuG8bK7W1JKSkz26rKWmhsVz5MCmu7ubn77xWzTx8UTmLqCrv59ffvIJzz70EHm5ud4OT1EUD3CnGfzPgZVAL4CU8iKQ5rGI5pj4+HisXT1IKUeXORwObN29xI65fq7c8NCGDeg7u6g+f56mmlqqis5j6Oll0xy5Xn3q3DlEXBzJ2fMwBgcTnZhIUv5S9h87isOhyvYrymzkTgczm5Sy7/r1QWVqJSYmsjAxgdLTp4lOzwAknTW1LEtPJy4uztvh+aTQ0FC+//LLXKmooL2ri5jUNBbMn4+/v7+3Q5sWtU1NRIxpVQAICg2l2WJhaGiI4OBgL0WmKIqnuJOsy4QQLwBaIcQ84A+Ak54Na+4QQrB7x07mlZVRfOUKQgg2rllLXl6ex/bZ29vL1aoqHA4H6WlpxMTEeGxf96KxsZFTRYV09vaRkZjIqoICwsLCxq1jMBhYumSJdwL0sujwMFr6+wgKvdGfwmI2o8P5uiiKMvuIsc2vE64ghBH4L8DDrkX7gb+SUpo9HNuECgoKZGFhoTd2PSuUXbrEewe/RBsViUarZaS9gy35y9mwbp23QwOgoqKCN77YT2hmBkGhoXS3tEB7B995/gXCw8O9HZ5PaGho4OcffkjCsiWEhIczMjxMXXExm7Lns+mBB7wdnqIokxBCFEkpC+5lW3fOrJcDfyal/C9jdpgPzKra4HOByWTi/S+/JHn1SgICAwGwZVs5ePwE2VlZ03aNvKS0lKPnztLd10d6UhIPrVtPQkICUko+O3KE+CWLCXGNMQ8KDaVBCE6ePTvtnf98VUpKCi888gifHz1K6/AwfgI2L13mMwdciqJMPXeS9X7gnBDiWSllm2vZz4DbTvSh+J6GhgY0YSGjiRqcQ570MTFU1dRMS7I+V1TEJ2dOkbhwIRkhIXS2tPLz997lO8/uISgoiD6zmdibisFExsdTc/mKx2ObSXJycsjOzsZkMuHv768qtynKLOdOb/AKnEO3Dgsh1rqWqd5mM5BGo0FO0FtYSgdajTsfhftjt9s5dOY0acuXExIRgVanIzY5iYDUFE6eO+dMOsJ5/XUs08AAkWGqCfxmQggCAwNVolaUOcCdX2gppfwUeBz4FyHED3CWHVVmmNTUVHRDJvp7ekaXmU0mbO2dzMvK8vj+TSYTw3bHuDN7gLCoKJra29HpdKxdvITai8VYRkYAGOzrp7PyKmvyVUOOoihzlzuH5AJASnlVCLEB+CXOaTKVGcbf35/nd+zkjU8+oT04EKHR4OjpZdemzURGRnp8/0ajEX+NwGwyYTAaR5f3dnaRERMNwAPr1yOl5OSJk9g1GgK1Op598CHS09M9Hp+iKIqvumNv8Ak3EiJFStnggXjuSPUGv39ms5m6ujocDgcpKSkEBQVN277PnjvHp4XnSFq0kMCQELpaWuitrOQ7z+wZN67cYrFgNpsJCgpCMw1N9IqiKJ7mkd7gQog/llL+byHE/51klT+4lx0q3mcwGJg/f75X9r2ioAA/Pz+OnjtHU18f6UmJPLn7qVsKwOj1evR6vVdiVBRF8TW3awa/Pg1m0XQEoswNQgiWLV3KsqVLvR2KoijKjDFpspZSfuL6/9fTF46iKIqiKDe7XTP4J9ym1/dsnHVLURRFUXzR7ZrB/8+0RaEo08BkMmGxWAgNDUVNTKMoykxyu2bwI9MZiKJ4itlsZt+XX1JaXYXQ6QjT+/P41q2kpaV5OzRFURS33HGctWumrf8fkAuMTukjpczwYFw+o7u7m76+PpKTk1WlqClWXV1NYUkxQ+YRcjMzWbZkiUemufxw316qR8xkbnwArU5HX2cXv/nkY77//AtERUVN+f4URVGmmjvZ55fAnwP/AGwGvsEcKDfa39/P//rHf+T0lXKEv4EgCd9//nkeucNkEiaTibJLl2jt7CQuKoqFeXkYxxQAUZxOnj7N/qJCwjMy0IeFcuBKOWUVFXx9z54pHbLV09NDRVMT8zZtHG36Do2KpC8+jotlpWzZtHnK9qUoiuIp7lSbCJBSHsRZQKVeSvkXwIOeDWtyAwMD1NbW4pigxvVU+uu//3uKhgbJe+F5Fj33LGGbH+B/v/4aJSUlk27T09PDj1/9NV9UXKFa2vmi4go/fvXX9Iwp76k4D2i+PHOajNWriE1OIjw6mqz8fJptFioqKqZ0X0NDQ2gDDLdcow4IDqanr29K96UoiuIp7iRrsxBCA1wVQvxACLEbiPFwXJMastv49f7P+eDTTz2WsFtbWzl3tZLsDevQ+vkBEB4XR0jeAt7fu3fS7Q4dP4YjNobMpUuIS0khc+kSHLExHDpx3CNxzlQdHR1ogoPQ39TkHRwbS821a1O6r6ioKOTQ8C2Tg/S1tpGRnDKl+1IURfEUd5L1jwAjzoply4GXgJc9GNNt6f0NzFu7hpKWZqqqqjyyj66uLnSBxtFEfV1gWBht3V2TbldWVUXcTZ2W4tLSKLt69a73/9Xhw3y0bx9lZWXYbLa72t7XGY1GbKbhW5aPDA0ROsWlTw0GA1tXr6bmzFnaGxvp6+qi+mIxUQ4HC/PypnRfiqIonnLHa9ZSynOuPwdxXq/2Oo1GQ2hSIuVXr5KdnT3lj5+eno7WNMxQby+BYWGjy7tq69gwf8Gk2wX4G7BaLOjGJHnLyAhGf8Ok29ysqqqK3+7biz4+Dv/AQC6eOU1ySTFfe/qZWVN+Mzo6mozoGGovlZO6YD4ajYa+zi6srW0sfmjrlO9v9apVREdFcba4mMGubjZnZJK/bJlHOrMpiqJ4gju9wQuA/wKkjl1fSunVmbfsNhv6gMA7r3gPjEYjX9/5OP/++T4iFy/GGBZKx9Uqgjq7eeo/7pp0u9VLlvDVpXKyCpaj0WhwOBxcu1TOQ0uWuLVfu93OhwcOELtsKSHhzvmb41JSuHqukLJLl8hftmxKnp8veHrnTj7Z/zmXDx1G6HSE+ul5aefjREREeGR/mZmZZGZmeuSxFUVRPM2d3uCvA/8JKAU826vLTZaREYYaGlm8e7fH9vH8nj0kJyby3mef0V1bx7b5C9jzo/9w26E+a1atoqevj/OHj6ALDsI2MEh+1jzWrFrl1j67u7sxIUl0JerrIpKTuFxdPauStdFoZM/uJxkcHMRisRAWFqZm11IURZmEO8m6Q0r5sccjcdOIaYj64yfYtmYtSUlJHt3X+vXrWb9+vdvr63Q6Ht++nQd6e+nt7SUsLIywMc3od+Ln54fDakVKOa73ssVsxmhwvyl9JpnO6TkVRVFmKneS9Z8LIX4GHARGri+UUr7vsahuIyIomD/61rcJDPRME/hUuNskPXa7zLh4rlVUkOKawnJkeJi+ugbyd+6c4igVRVGUmcKdZP0NYD7gx41mcAl4JVn7+/v7dKK+X7u3b+ftjz+i8shRNAZ/GDTx2Lp1pKamejs0RVEUxUvcSdZLpJSLPB6JAjibhX/nhRdpb29neHiY2NhYDLO0CVxRlJlDSkltbS3VVaVIKcnIXEhmZqaaFGeauJOsTwshcqWU5R6PRhkVE+O1ujOKoii3OHr0IJ0tx1m4IBQhoPT8RerrVvLQlu3eDm1OcCdZrwdeFkLU4rxmLQDp7aFbiqIoyvTo7Oykse4Ez+6eh06nBSAjPZZ3PzpHa2s+cXFxXo5w9rttshbO9o3vAvXTE46iKIria5qamkhP8RtN1ABarYaMVD+amppUsp4Gt03WUkophPgHKeXy6QpIURRF8S3+/v60m24tszFkchAdrioBTgd3qlCcFkKs8HgkinKfhoeHqa2tpbm5GSmlt8NRlFkjIyOD5nZ/rjXemBuhuaWbhiY/srKyvBjZ3OHONevNwPeEEHXAEOqateKDigqL+OKTg/jZ/bBJO5GJYTzzwtP3NN5dUZTx9Ho9j2x7iS+/eAuDvhIhwGQOYcsjX1OjVaaJuNMZiBBiwgG+UkqvXMcuKCiQhYWF3ti14qMaGxt59d9eJychF4Pe+cPR2HoNXazgm9/1iblnFGVWcDgctLe3A84RK6pE8N0RQhRJKQvuZds7vtKupBwG7HT9C3M3UQshHhVCVAghqoQQfzrJOpuEEBeFEJeEEEfuInZFAaC0uJRwfeRoogZIikumvaGDjo4OL0amKLOLRqMhLi6OuLg4lain2R1fbSHED3FO5hHj+veaEOL33dhOC/wrsA3IBZ4XQuTetE4Y8G/A41LKPOCZu30CijI8bEbvd+v0oVqhxWq1eiEiRVGUqeXOodE3gVVSyj+TUv4ZsBr4thvbrQSqpJQ1UkoL8CZw8/ySLwDvSykbAKSU7e6HrrjL4XBw7do1ampqMJvN3g5nys3PzaFzoH1cp7LBoQG0RqGKyyiKMiu408FMAPYxt+2uZXeSCFwbc7sRuHmuyGzATwhxGAgG/klK+aobj624qbOzk7d+8zaDnSbnmabWyvYnH2GJm3NszwTZ2dmkLiqlrKyE8IAIRqwWhujjya89gU7nzkdcURTFt7nzS/ZL4IwQ4gPX7SeAn7ux3UQJ/ebebDpgOfAQEACcEkKcllJWjnsgIb4DfAcgJSXFjV0r4Dyjfvv1dzAMB5GWOg+AYfMwe9/+jLi4OGJjY70c4XgOh4PGxkaGhoaIjY0lIiJi0nWtViuNjY1IKUlKSuKZ556murqa6qs1BAYZyVuYR2Rk5DRGryiK4jl3TNZSyr93dfxahzMBf0NKecGNx24EksfcTgKaJ1inU0o5BAwJIY4CS4BxyVpK+VPgp+DsDe7GvhWgpaWFgXYTqak3xkEGGAII0YZTXlY+rcm6r6+P84XnaaxvJCY+luUr8omKihq9v7+/nzd/8xY9zf3o8MMshyjYkM/Djz58y0QB9fX1vPv6e9iHBBoBGBw8+cJusrOzyc7OnrbnpCiKMl3cbSO8CLRcX18IkXL9OvNtnAPmCSHSgSbgOZzXqMf6CPgXIYQO0ONsJv8HN2NS7sBqtaIRt3ZL0Ol0jIyMTLCFZ3R3d/PLn/wav2EDESERVNXXcfFMMS9+63mSkpIA+PSjvdg6YGGqc/i+3W7n/OFiklOTyc290S/RbDbz9qvvkmhMITQqDICBoX7efvU9fv8//e6snj5VUZS5y53e4L8PtAEHgE+Bva7/b0tKaQN+AOwHLgNvSykvCSG+J4T4nmudy8DnQAlwFviZlLLsHp+LcpP4+Hgcehum4SHAmQA7u7po7LxGVvb0VR06fuQ4hpFAMpOzCA+NIC0xnRj/eL787CAAg4OD1F6pJznuxiUOrVZLfHgiF85dHPdYNTU1aMxaQoPDRpcFB4bgZ/Gnurp6Op6OoijKtHPnzPqHQI6UsuuOa95ESrkP2HfTsp/cdPtvgb+928dW7szf358dT23nozc+ZaTbSvWVGgbNA4TGB3Hgs4OEvxA+Ldd1q65Ukxo9/uAgOiKGi3WFWK1W7HY7AnHLuE2dVofVMr4FwGazIdByM4EGm8029cEriqL4AHeGbl0D+jwdiOIZeXl5PP313bQONJI6L5Wdj+3k6a3Poevz5+3X38HhuLU4/1QLDg1heNg0bpl5xIx/gD9arZbQ0FCiEyNp62wdt05zVxMLl40bmk9KSgrDDGG1WkaXWW1WzGKQ5ORkFBgZGaGmpoaGhgbsdvudN/BRUkp6e3sZHBz0diiK4nXunFnXAIeFEHtxzmcNODueeSwqZUq1tbaRm7aErOQbZ7cJMYmU1ZfQ3Nw8et3YU9Y8sIqPf7OPgAAjBr0Bq81KdfNV1j22avRseueTO3j9F2/QW9+LXqtn0DpAcm7CLUPMwsLC2Lz9AQ7tPUqoLhyAfmsP6x5ZS3R0tEefh68wm81UV1djMpmIj48nMTFxtBPepfJLfHbsM/QReuxWB/oRP57a9tSMm8KwubmZI4c/xGHtwO6A0PAsNj+4k5CQEG+Hpihe4U6ybnD907v+KTOMaWgYf92tb51Oo8VisUywxdRauHAhA7sGOHrgOMImsAs7Kx5czpq1a0bXiYuL4/s/+i5XrlxhcGCQhMQEMjIyJixpuHbdWtIz0qm4Uol0OMien01iYqLHn4cvaG1t5a1P30ITpcXP6Mdg+SDzorLYuW0nvb297D2+j9wteQQGOzvatTe1886+d/n+1783Y8acDw4OcuDzV9m8PpjkpBwcDgdll5r4bN+bPLvn27eMDlCUucCdoVv/fToCUTwnc14G548WkySTR3/ozBYzFs0I8fHx0xLDmrVrWF6wnL6+PoKCgggICLhlHaPRSH5+Pr29vXR0dNDW1jZpfPHx8dMWu6+QUvLJgU+IWRZHXLLzTNmx2EHxoYtcvnyZ3v5eQtPDRhM1QExiDC0VzTQ2NpKWlualyO9ORcUVstIcJCc5+1NoNBoWL0qmpv4qTU1NHm8JUhRfNGmyFkL8FPhnKWXpBPcFAnuAESnl6x6MT5kCGRkZZC/LpOxCCRHGKKw2C33WHh59auuESdNT9Hr9bZuqHQ4HX37xJeeOnccgArBKCwlZcTy95ymMRuO0xemrenp66LX2kZV8Yyy5RqMhPjuBS1cvER0Rg87v1q+0Vj+zaqSbTP2Eh/jdsjw0RMvQ0JAXIlIU77vdmfW/Af9NCLEIKAM6AAMwDwgBfoFzgo8ZS0qJxWLBz89vVs8go9Fo2P30E1QtraKivBJDgD8LF+/0uTPTS5cuUXSomEVpS9FqnT2+q2qusn/fF+x++olpi8Nms9HZ2Ym/vz/h4eHTtl+3TDSlrZRoNFoyUtMpOlyEPSd19PUbHhpmuH14Rl0miItL5krpMfLG9C202ew0tljJX+1bVfcUZbpMmqyllBeBZ4UQQUABEA8MA5ellBXTE57nVFZW8uW+r+jp6CEgyMC6B9eycuXKWXs9TKPR+HyFr8LT50mMTB5NNADpCRmUFRezfecI/v7+Ho+hvLycfR98jsMssTmspOWk8PiTjxMUFOTxfd9JREQEUcYommobSUx3NgXb7XaaK5p4bPljpKSkkBu3gIsHLhCRFonDZqO7poeH12ydUS0TGRkZlJakc/BwJbk50Vhtds4Xd5CasYGwsDBvh6coXuHONetB4LDnQ5k+9fX1vPOr90mLyCA1NRPT8BBfvX8EKSWrV6/2dnhzlsU8QohufFLUaDQgJTabzePJurW1lQ9f/4TM6GyCooOQUlJbVcOH737E11550aP7dtfOrTt565O36Grows/ox1DrIAuTF5KdnY0Qgm0PbyO3PperNVfR++lZ8PiCGTfzmFarZefjz1NSUsyZ4lJ0Wn8WLN5CTk6Ot0NTFK+ZGd1Dp9ipY6eJC0ogLMTZxGkMCGRe4nyOHzzJypUrZ3WTuC/LW5rLmc/OExJ0Y3hOW1cr8alx01JGtPhCCWF+EQQZnQcMQgjSEzMouXqBrq4un5gYJCoqiu++9F1qa2sZHh4mbkXcuGQshCAtLW3GdCabjJ+fH8uXF7B8eYG3Q1EUnzAnk3VHWydxQeN7lAYYArC0WxgZGZnWTlczSVtbG01NTeh0OhISEggPDx/XZH2/ClYUcOVSJZdqSwkxhDJsMeEwWnlx580l5T1jsH8Qg94wbpkQAj+Nn0/NA67T6Zg3b563w1AUZRq5nayFEIGu2bFmvOS0JFrLOjHG36hF3TfYR3B4MAaD4TZbzk1SSg7sP0Dh0Qv0tvRTW1uHmSGWrVrC40/vpGDF1Jz9GAwGXvnW16msrKTpWjOh4SHk5ua6db3YbDbT2tqKXq8nPj7+nvoeZM3PZP/Fr4iNulFAxGQ2gV7OmYIriqL4pjsmayHEWuBnQBCQIoRYAnxXSvm7ng7OU9ZuWMMvS38NrRAdHk3/0ADNvdd44qWds7aD2f2oqqris3cOYGm30VrfTlpiBvoAP5qvNPP5OwfQ++tZvHjxlOxLp9ORm5s7bqatO7l48SKff/gFOpsfNmkjPD6UZ154+rbzYU8kNzeXC5kXuFRdRnRoDCMjZrpHOnlsz6Po9aoekKIo3iPkRENBxq4gxBngaeBjKeUy17IyKeXCaYjvFgUFBbKwsPC+H6e9vZ3jR07QUHONyOgI1m1aS0ZGBg6Hg4sXL3L2xDmGTWbmL8xm3YZ1c7rM4X/9k/9K3clWzH0WAmUwdmknLCqEEeMQS1csQRMh+f4Pv+uV2FpaWvjFP/+anLhcAgzOyxdNbY2ISDvf+v437/rgy2KxUFZWRtWVaoxBRpYtXzqjhj0piuK7hBBFUsp7aop0qxlcSnntph+9mTs7gEtMTAxPPrP7luVfffkV5748T2psOlEB/lSdqefqlWq+/bvfnJPXspuammisbiEmPJZrvY0EBwYDgt6uboTWTqAxiOauO01t7jllJWWE+0WOJmqAxNgkSusv0tbWdtc1sfV6Pfn5+eTn5091qIqiKPfMrVm3XE3hUgihF0L8R5zzU886g4ODnD1WRG76IkKDwwgwBJCRlImtW1JaekshtzmhtbWVpJgU+iw9GAONDI+YEIDZasamsWC1WkjNTLnj43iKeXgEne7WaldaMbOqdimKotyOO8n6e8DvAYlAI7DUdXvW6e7uRo8/Ou34BodQYyhN15q9FJV3GY1GQkJDyJyfzkjAEHX9VVztuky7rZHk5BQ6Le1s2rLRa/HNm59F11AnYy/nDA0PgUESG6uqXSmKMju4UxSlE/CNihAeFhISgsVhxuFwjBtrPTg8SE5shhcj857MzEz04Roig+J4fEc6tY01lFWUESwMrHxkGes3rvPq9Ivz5s0jc2kqpReLiTBGYrFZGHD08cQLO1WnMEVRZg13eoP/GvihlLLXdTsc+Dsp5e94OLZpFxYWRm7+fCoKL5ORmIWfzo/WzhasAeYp6+080+j1el78xgt89O7H1DU2I4ywddeDPP7UTqKiorwdHlqtlqeffYrq5dVUVVYTYAwgb2GuGmqlKMqs4k5v8AvXe4Hfbtl0mare4JOxWq0cPXKUopPnsYxYSc9OY8ujD6kmVaC3txdA1WdWFEW5B57uDa4RQoRLKXtcO4twc7sZyc/Pj4e2PMTmBzdjt9vx87u189JcpZK0oiiKd7iTdP8OOCmEeNd1+xngrz0Xkm/QaDSqRriiKIriE9zpYPaqEKII2AwI4EkpZbnHI1MURVEUBXC/OfsK0HN9fSFEipTSe5UwFGUSdruzXo87E4w4HA7a29sRQhATE6NKzSqK4rPc6Q3++8CfA204K5cJQAJzs3u04pNMJhNffXmIksJSpJQsWDyfLY88NGmZ2MbGRt5/60NM3WZAEhITxFPPPak6EiqK4pPcuSj7QyBHSpknpVwspVwkpVSJWvEZDoeDN197i+qzdeTFL2FRwjJaLnXy2i9fn7CKmclk4s1fv024I4pFqUtYlLqUgOEQfvurN1XVM0VRfJJb5UaBPk8Hoij36tq1a3TUdZGVko1Oq0Or1ZKWkMZQm5nq6upb1q+urkYMaYkIjRxdFhMRg73fQW1t7XSGrijjSCnp6Oigo6ODOw2rVeYWd65Z1wCHhRB7gZHrC6WUf++xqBTlLvT396MX/rcs99cYRseGj2UymdBO8NHXoMNsNnsiRJ91c7U+xXtaW1s5eOAd/LQ9SAl2Inloy9Pq0owCuJesG1z/9K5/iuJTIiIiMMthpJTjOokNO0wTVllLTk7moDyM3WFHq3F2RLPZbZgZmhPTYTocDs4VneN08RlMw0OkxKWwae2mOfHcfZXZbGb/Z79h8zojyUnZANQ3dPD5vt/w/It/oErnKm4N3frv0xGIotyrhIQE0vNSuVxWTkpsKhohaGi7RmxGJOnp6ROuv2TtQopPlBIdFO1sehxqZ82WlURGRk6wh6nV1tZGR0cHRqOR1NRUt3quT6VjJ49TdK2QeZtyCAwOpLWhlTf2vsErT77iEyVk56KamhqS4kZITkoeXZaaEk1CdRU1NTXMnz/fi9EpvsCd3uDRwB8DeYDh+nIp5YMejEtR3CaE4Klnn+RM6hkunC3GYbeTv2Uxa9aunjQRbntsG9nzs7lUUo5Go2HLko0TJvap5HA42Lt/L5dbrhAUE8jIgIXA40b27NpDaGioR/d93cjICGcvnWXxtsXoDc5LB/Gp8YyYhim8UMijWx+dljiU8cxmM0GBtw4dDArUzLlLM8rE3GkGfx14C9iBc7rMl4EOTwalzB61tbWcOXGWnu5eMrPTWbl6pUfKlvr5+bF+/XrWr1/v1voajYZ58+Yxb968KY9lMiWlJVztq2L59oLR68R1l2v47ODnPPfknmmJYXBwEG2AdjRRXxcaFU77pfZpiWEqDA8PU19fj5SS1NRUjEajt0O6L/Hx8Rw5aGX5MgdarfOzYbc7qLtm5aHcBC9Hp/gCd5J1pJTy50KIH0opjwBHhBBHPB2Y4lnNzc3U1tSi99eTnZ3tkTO74uJi9r75GXHBiUQERFNxsoZLxZf5ne+9Mm1nkt5kNpux2WwEBQUBUFJZQnJuyrgOXSk5aRR9dA6TyTQtCSc4OBjHsAOzyYzBONpQRndbF6lRKR7f/1SorKzk5LF3SU5wAHDmJKxa+yQLFuR6JZ7u7m4sFgtRUVHodLf+pFosFiwWC4GBgZMW3omPjycypoC9+wtZuCAcKaG0vJuYhNXExMR4+ikoM4A7yfr6wNMWIcRjQDOQ5LmQFE+SUnJg/wEKj14gSBOCXdr5UnuIJ1/cRU5OzpTtx263c3DfV2TG5hBkdCaroMBgqq5VUXSuiAe3zN6rKCaTiS8OfUHFtUqEVhAVGMW2zY8iHRKNZvyPtRACKZxN5NNBr9ezdskaThw7SWZ+FoEhgbQ2tNBf3c/yp5ZPSwz3Y2hoiJPH3mbXtnjCwgIB6O838eG+90lKSiY4OHjaYunv7+fAF+8zYqrHYNAwMGRgzbpdZGc7O4hZLBaOHT1AQ/15dFqJzi+Stet3kJqaOuHjPbRlO1VV2VRWFQOCvKXbyMrKoqqqiuqqUkCSkbmIrKwsVW1vDnInWf+VECIU+CPgn4EQ4A89GpXiMdeuXaPwyAUWpiwZvZ47aBrko7c+4Ud/mj5lvU77+/uxDNkIigwatzw6PJraqjrYMiW78Unvf/o+Q+HDLN9VgFarpfVaK298+ibLc/K5UFFMeHTE6I9tc10TCWHxo2ff02HNqjUEGgM5e+EsNYPVpCemsW3Xo0RERExbDPeqtraWtGRGEzVASIiRjBRBTU0NS5YsmZY4pJTs//xtctJ6WZiXjRCC7u5B9h54k4iI3yUqKoqDX35KoL6cF55KR6/X0dzSzcGvfsP2nd+bsCOfRqMhOzt7NNkDHDq0n572kyxcEIYQgrILxdTXrWTL1sem5XkqvsOd3uCfuv7swzmZhzIJh8NBT08Pfn5+k5a59LbKK5UYRRBdXd1otVrCw8MIMgah6dTS1NQ0ZZ2sjEYjUiux2qz46W5MMzo4NEBMqud7XHtLa2srraY2lm+6MWVtXHIcvW09+On9iBexXDhwnuD4EEb6zdAteX7X89MaoxCCJYuXsGTx9CS2qeRwONBqbj2r1Gqnr3UCoL29HWlrYtHCG61RERFBLMzx58qVMhYvzqejrZSHn5k3etkjIT6CxQsGuXTpIhs33vlotaOjg+aGkzy7OxudznlgnZ4Ww7sfnaO1dTlxcXGeeXKKT5o0WQsh/hlnDfAJSSn/wCMRzVB1dXV8/O6nmHpNOJCkz09l5xM7pvWMyR01NTWcPn6GuOAEHFLiF6hlxeoCHFJOaXEMf39/VqzL5/yhUuYlZaP309M30EunuY3HVj88ZfvxNUNDQ/iHGG5Zbgw1Mjg0yDNPPENDQwOtba0ExwWTlZWFv/+tBV2UiaWmpvJhoY38pSMYjc7XbXjYQnW9nR1L06YtDmfv7VtHGgQF6eluG2BwcJDQYO0t36nwcCNNlZ1u7aO5uZn0FP1ooq6qbqWispbmpiYOHjzAM8/sueeWsN7eXpqbmzEYDKSkpEx4rV3xLbd7hwpd/68DcnH2CAfnfNZFngxqpunp6eHNX75NUnAamSnhOBwO6ipreffN93jlWy97O7xRra2t1JTXozfoiQyJwk+nZ2CwnyOHj5C9Ln3Ki2JsenATQiMoPF6E3eogJDKYp19+clYX34iOjma4Ywib1YbO78bXq7ellxW5zl7gaWlppKWleS9IL7HZbHR2dhIQEHDPHQxDQ0NZvOwx3v90H9kZfgghqaiykLt4O+Hh4VMc8eRiY2P5qhNMphsHDQBVNf2k52QRERFBd5/zQCIg4EZCbWjsIyauYKKHvIW/vz/tJuf50qkzV2huLGfZ4lCCA6Cl8xwff2Tjid0v3XWiPX78ELVVx0hJ1DE4ZOfEsWC2PfY1nxpjL6Wkt7cXrVbrs62U023Sd1lK+WsAIcQrwGYppdV1+yfAF9MS3QxRVlpGgCOI8BDnj4VGoyEjKZPi2gu0tbX5TLnA8rJyksNTiVseT3FJKQYZgAMHrcNNfHPL3X/p70Sn0/HQlod4YOMDjIyMYDQaZ31py5CQEArmF3Dh8AWS81Lw0+tpqm4kxBo8rcPEfE3ZpTIOnDgARrAO20iPSeOxrY/dUw/4ZcsKSE3NoLq6Cikl23Zm3lWicTgcXLp0iauV57DbraSmLWbp0uV3dZZqMBhYmv8oH3/2KUsXBhMQoKfiag9mezrz5s1Dp9OxcPEW9n3xGSvyowkKNFBV00FDczC717g3D1JGRgZnTvlz+UoTFRWXeW53AsPDI7S1h/DkrpUcPFzD1atXWbBggdtx19TU0HrtMHt2z8PPdTBZXdPGlwfeZc9z3/WJjmvNzc0cOfQBOLqw2SVBIRk8+NDjc2IEye248+ucAAQD3a7bQa5liktfbx8B+lt/dPTCj+HhYS9ENDGLxeKc5CI9h6T4FDp7OtBqtXQNpXj0qNrPzw8/P787rzhLbH5gM7HlsVwov8CgbYBlaUtZvnX5nHoNxmpqamLfqX0seDCPoJAgHA4HVSVX2XtgL8/seuaeHjMiIoKIiJX3tO2hrz7H1HeWVUtj0Gm1lFd8yScfV/LE7q/dVTW5ZcsKiIqK5crli1gsJpJTN7JgwYLRg94VK1YTGhrBxfIzmIcHSEhaxa7dK90+QNHr9Tyy7SXeeP3HYO3j0hU9VlsAC/JW4eenIz01iObm2rtK1lcri1mcFzaaqAEyM2IpKq6kq6vL62fXQ0NDHPj8VTavDyY5KRspJeWXm9i397fsee67s/5g/3bcSdZ/A1wQQhxy3d4I/IXHIppi0zFRQXpmOuWnKknkRvOuxWrBqrH41BjJeTnzuHCslERHEgGGAJLjUxgaHqLH0UlCgjr+mipCCPLy8sjLy/N2KD6h+FIxMfPjCApx9t/QaDRkLZ5H0SeF9PX1TesZU3d3Ny2N53juqezR4iMxMaHs3V9JTU3NXbd+JCcnk5ycPOn9N/fuvltxcXE898L32L/XzLycLIKDg0bPfvv6RzAG3t1r53DYRp/3WFqtwG6333OcU6Wi4goZqXaSk5ydUIUQ5OUmUV13lcbGRlJSZkYtAE9wpzf4L4UQnwGrXIv+VErZ6tmw7l9VVRVf7T9MW3Mb4ZFhbNz6AIsWLfLIvnJycijMKuJSVRmxYXFYbRbaB1vZvPMBn6qslJ6eTt6q+ZSeKSZUH4bNYcPEAE+88LiaKGCOstvt1NbW0tvbS0REBGlpaVN+cDtgGiAgOmDcMo1Gg1+Ac5az6UzW7e3tJCX43ZKwUpMCaGtr9MlLFXFxcQSG5FBT28niRc7CKi0tPVypcrDrybs7IExLX0j55UukpUaPvs+trb0MjwQTHR3tifDvisk0QGjwrS1QIcEaTCbTlO2ns7OT4otn6O1tJiwsgSVLV3m9VeFO3KkNLnCOis2QUv4PIUSKEGKllPKs58O7N3V1dbz1i3dJCU8jPzWVvsE+Pn5tL44XHB4Zh6nT6Xj+pecoKSnhSlkFwcZgHizYQEZGxpTv635oNBp27trB4qWLqKmqwRBgYP6C+T4xvlZKSXt7OxaLhdjYWHXwMAkpJZWVlZy/dAGLdYTstGzyl+bfU4/ywcFB3vzwTQb9hgiICMB01UTE2Qie3fUMAQEBd34AN2UmZ3Kq4TQxiTdamQb7B8HEtEycMlZgYCA9vbZblvf0WQiO9M1rokIItm1/lq8OfkzpO1fR+wnsMozNW16669K9OTk51NUu4cNPS8hI9WfQZKemXsODW7/mE03M8fHJlF04zMK8GzPo2Wx2GltsLF05NX1/Wlpa+OKzX5C/yJ9F80Joa7/M3o8v8PC2bxIfHz8l+/AEcacJzoUQPwYcwINSygVCiHDgCynliukI8GYFBQWysLDwtuv85hevYWsXxETc+HEYGOqn3d7C7//R7/lEJwrlht7eXt598z06rnWhEzocejuPPbmNhQsXejs0n3Pk+FHO1pwleWEKen89zdVNBA0F8uLTL971NfG9+/fSqGkme8mNZtrL5y6RE5jDQ5semrKYR0ZGeP291xkKNBGTEotp0ERHZTvbV29jYd70vsdSSt5+69/JTu1l8aIkhBDU1rVz/MwIzzz3A/r7++nq6iIkJISkpCSf+60YGBjAarUSHh5+z7FJKbl27RpNTQ0YDIFkZ2cTGBh4x22ampro7OwkNDSU1NRUjyR3h8PBxx+9gdGvmtz5UVitdi6WdhIRu8Gtsenu+OjD18jL6iIz40byr65p41JVJLue+NqU7GMyQogiKaV7wwFu4s4161VSynwhxAUAKWWPEMKnT3vaW9vJCB1fOjM4MISqhkpsNtuc7ejji6SUvPvme9jaYXHqMgBMw0N8/MZeov8g2mM96UdGRigpKaHqSjXBIUEsXb6UpCTfrqI7ODjI6bLTLNuRj5/e+RkOjw6n+GgxFRUVd3VwI6WkrKqMZbvGlxhNy82g9MvSu0rWIyMjaLXaSUcT+Pv78+JTL1JaVkpNQw2xAdE8sm2rV/pJCCF4bMcLHD60l4tvXkarFQQEJrLlkac59NU+BvsukRDnR0WZjdMiicd2POdTl7KmopyqEIKUlBS3r/9aLBb27X0H+0gVCXF+XKuxceZ0LDt2vjjldSQ0Gg07du6htLSEwtJStBo/cpc8fF/X/W/W3lbDYw9ljVuWlhrNV8evTtk+PMGt2uBCCC2uAimuKTOnr1TQPUhITqC7oYu46BtNGr39PUREhatE7WPa2trovNbNotSlo8uMAYGE6sIpLSklduvUJ+uRkRF+88vX6K0fIDoshsbaNkrOvM6O57axeLF7w2q8ob29HWO0cTRRXxeRGMG1lmt33RIhNBpubVmTbp+xtbW1ceDoARo7G9EKLYuzFrP5gc0TXsIYGRkhNiaWnOycaa3fPZGgoCB27NzD8PAwdrudoKAgzpw5iV6U88wT2aPP/2xhLSeOH2Trwzu9Gu9YDocDi8WCv7//tJ31FxWdIdRYw6ZHbpwAFV2o58Txgzzy6K4p359Op2PZsnyWLcuf8scGMBrD6O0dIjLyxuewr89EYOD0jdO/F+60Y/xf4AMgVgjx18Bx4H96NKr7tGHzetqGW2jrbMVqs9LZ00ltZw2bH9no7dCUm1gsFrTi1uEyej89w0Oemce3rKyM3oYBFqTnERUeTXJcCvNic9j/8QGsVuudH8BLAgMDnSVKbzLcP0Ro8N1dbxVCsDhrEXXlNeOW15bVsjj7zv06BgYG+O3Hv0Wkaln55GoWP7aUq8NVfPL5J+PWs9vtfPbFZ/z4jZ/w/qkP+PFvf8znBz73iZ7HAQEBo2eG1VcLyV+SMC4BLl2cTEP9RZ+IVUrJ2bOnePWXf8sbr/0Nb7z+L1RWVk7LvmuqzrN00fhWkMULE7nWUOwTr83dylu0nhNnmjCZRgBnYZvjpxvJXbjOy5Hdnju9wV8XQhQB19vFnpBSXvZsWPcnKSmJl777AkcOHqWi/hLR8dE899TTZGVl3XljZVrFxcXh0NsxmU0YDc7mRikl3UOdbJi/2iP7rK6oITJkfM9XY0AgsgO6urp8tuZybGwscYFxVBZXkrkwE61WS0dzO4MNgyzcc/fXfh9Y9wBvf/Q2F748jzHCyFCniVh9NGsfXnPHbUsvlRKQbCQhzfkjrvfXk7syj8JPz9Hd3T3aafH02dNc6atk+ePOSU3sNhulx0oIKwpj9UrPvL/3wuGwo9ONP3fRajVIaZ+g9WH6nTt3irZrX/DkjlSCgwNob+/jyyOvYzB80+PDmaR03HIW77wtfeK1uVtLlixjZGSYtz86jNFgx2TWkrtwK0uXeuZMfqq4W7LKCFxvCp+6bqIelJyczNdeedHbYSh3oNfr2b77UT55cy+hugj0fnq6hzpJXZjssWE0waFBdJobxy1zOBzYpA2D4da63r7kyR1P8vnBzyn6qBCNn4ZQfSh7tu25p5KMRqORr+/5Og0NDc6hW7kRJCcnu9W82t3XTVDE+OZsIQQBoQH09/ePJutzZefIfihntNiIVqcjK38ehccKfSpZp6Yvoaz8FGtXZ44uu1LRTHxCrtfrZtvtdspLj/LUzjSCgpyfz5iYUNasGKH44gmPJ+v0zHxKyo6xYd2Nk52yS00kJi3y+mtzL4QQrFq1jvz8lQwODhIUFDQjLo+6M3Trz3DWA38PEMAvhRDvSCn/ytPBKXPDokWLiI6OpqykjGGTmQ3zVzNv3ry7qiZ1N5bmL+XCyWIiTVEEGZ0VtWqaqsnMTb/roTDTzWg08uTOJzGZTFitVkJCQu7r2uX1WuV3KyEmgdqGOhLTbhQCslltDHeZxg3HMo+Y8TeMv4btH2DANOI7lf0ACgrW8MnH1ez7opKkeH86uqy0dASxc5f3J50ZGRlBoxkZTdTXRUYEMdDf7vH9FxSs5tNP6vh4XyWJ8To6Om10D0Sw8/GZPc+tn5/ftNaTv1/uHBY9DyyTUpoBhBB/A5wHVLJWpkxcXNy0NT/Hx8fzxIuP89mH+7F32bFJO1l56ezYteO+HldKSUVFBaUVpdjsdvKycsnLy/PIQYe3eyjnLsjlbMk5Ki9WkJiZxMjwCHUlteRn54/rQDYvdR6NNU2kZqeOLmusaSQndep6906FgIAAnnzqG9TU1NDZ2UZ8agQPbJnnE+P9DQYDQhNCV9fAuE5RjU3dREZ5voiLv78/u598ifr6ejo7O8lcEMrWjIwZeVY9k7kzzvoz4HkpZa/rdhjwmpTy/n7Z7pE746wVxR02m43u7m4MBsOUzOzzxcEvKG0pJWF+IhqtluarTST7J/Pkzt0+UXBiqg0ODnKm8AxXaq9g8DewPG85ixctHvdcu7q6+M37r+GfZCA0KpS+jl6sLRa+tvtrPlGMZ6YoL79EcdHbrF0ZTUR4ENcauzh3cYTtO7/tE5XHFPfczzhrd5L1h8AK4ADOa9ZbcfYIb4fpn9daJWvFF3V1dfHzD35O/vblaF1nHFJKzn9xnqc3POl2U7PJZOJs4VnKay6j9/MjPzefpUuWzuhkPzg4SElZCR3dHcRExrAob5HPzfM+E9TU1FBSfJyB/g6iY9JZXrBBJeoZxtNFUT5w/bvu8L3sSFFms9bWVgJjg0YTNTg7soQmhtDU0uRWsrZarbzxwRuMhFtIXpeM1WLjcOkR2jra2PbwNg9G71lBQUGsXb3W22HMeBkZGT5XwliZPu4M3fr1dASiKDNZQEAA1qFbx2iPDFoIinTvLLKiooJBwxCLC26Mcw7ZGELRp4Ws7ll9X51hrpeYrGuow+BvICc7Z87PDzydbDYbra2taLVaYmNjZ3RLieId7vQG3wH8JZDqWl8AUkp5x4t8QohHgX/COezrZ1LKv5lkvRXAaWCPlPJd98NXFN+QmpqK4Zg/DVUNJGc6hz+1N7VjbbMwb4t7nYBaO1oJjQ0bt0yr1RIYFUhnZ+c9J2uHw8He/XupaK8gLCUC64CFoxeOsmvzLp+cZWqmaG9vp6Ojg6CgIJKTkydNwLW1tRw9/C5hwSPY7A7MlnC2PrLHp6bPVXyfO83g/wg8CZTKuxgB7ypR+q84r3E3AueEEB9LKcsnWO9/AfvdfWxl7unt7eXcmXPUVzcQGRPJyjUrSExMvPOG92BoaIjT5047rxvr9OTnLiN/Wf5te3VrtVr2PL6HT774hKLLhSAgzC+U53bscbvndnhoOJXNt9YnNvcO31eJzpqaGio6K1n2yPLRhNKf0c+nh/by++k/UL1675LD4eDAF5/Q1X6B5EQ9VT02Tp2M5bEdL9zyPg0MDHD00G/ZviWaqCjn+U19Qwef73uNF772B+q1V9zmziflGlB2N4naZSVQJaWsARBCvAnsAspvWu/3cY7h9sosXorv6+np4Rc//hV6cwCRYVF0XO7h1xd+wzOvPDXlZ4YWi4Xfvv9b7DEOMjZlYh2xcLzkOO1d7Tz2yGO33TY8PJyv7/k6vb29OByOu54ZacH8BRy/cILGmkYS0hKw2+xUl1aREJx4X8PartZeJTozZtyZX0h4CCJE0NLSQnJy8j0/9lxUUlKM3XyBPU9mj76mxSUNHDm8jx0794xbt7Kygqw0RhM1QGpKNJFXrtLQ0KCuQStucydZ/zGwTwhxBBi5vlBK+fd32C4RZ6K/rhFYNXYFIUQisBt4EJWslUmcPnkaf7OR9CTnD1toUCiB/YF88ekBsn6UNaUTGlRUVDBsHGbRMtd14yAjizcupejTQtZ0r3FruNG9FlYxGo288PjzHDh6gHMXziCkhoWZeTy04/6mq9RqtNitt87h7LA5PFZ4ZioNDQ1x/NRxLlVfQqvVsmz+MlavXO21MdDVVedZmx837uBnYV4SF966gtlsHlcFb2RkGGPAra+xMUDDyMjILcvnCrPZTEdHBwEBAURFRVFRUcGVy2exjJhITF7AsmUrpnRO9dnAnWT918AgYADu5tsx0S/ozWfn/wj8iZTSfrsfXCHEd4DvAB4vraf4nprKOmIix08KHxYSTn1DLcPDw6PNzA6HA5vNdl8/4q0drYTGhY1bptFoMEYa6erq8vjY4OjoaF546oU7Tjt5N/Lm53FxfzGJ6YnoDf4AtF5rxWgP8Nk66NfZbDbe+OAN7DEOch9diN1up7ikmJa9LezZvefOD+ABdpsVrXb89WmNRqDROD+DYyUnp3H62EEWL3KMJveRESsNTTaWr/HMZRxfd/78OYov7Cc6QjAwaONak5XkRAdrVyZgDNBTWXWMDz+4xJNP/Q7+/v7eDtdnuPNLECGlvJeae43A2Pa1JKD5pnUKgDddiToK2C6EsEkpPxy7kpTyp8BPwTnO+h5iUWaw8MhQhpoGCQwIHF02YhlBq9eg1+ux2+2cOH6SM8fOYBm2EJsUy8OPbb2nA7uIsAgqmya4btw3fNvCKVJKenp6EEJMSQnDqfyRSkxM5IGFGzi67ygBsYHYR2zoTFqe3fGsz/dKrqqqYsjfxOKlN3rI561ZxPnPimhpaSE+Pv42W3tGWsYSyi4fYHP0jc9DVXUrwaGpt/RPSEpKIiQin08+O8+C7FBsNjtlVwaZn7eVkJAQzGYz1dXVmEwmEhISPNYPw1fU1dVx9fJent2VjtHoz9CQmX/6lzfJTJlPSnIU4LxkMHK0ivLySx6bJnMmcidZfymEeFhK+cVdPvY5YJ4QIh1oAp4DXhi7gpQy/frfQohfAZ/enKgVZfX61fz2p29jDAgkyBiE1WqhqrGCVQ+vQKfT8eUXX1L0VTFZidkYYgLo7Ong9Z+9yTd/8Mpd97hdMH8BJy6cpOFqPUmZydisNqpLqkgOSSY2duK5tVtbW/nkwCf0WvuQUhITGM3OrTvH1cj2ttUrV7MwdyFNTU3o9XqSk5NnROemjq4OAqPGD30TQmCMDKCnp8cryXrp0uV8+slVPvmsgpREA929VhpbA9i+49aijkIItj68g5qaXGprytFqdax9YBHJycm0tbXx+b5XSYobISRYcOKIlZDwpTz8yOM+fxB1r65cPs+yRaEYjc6D0a7uQRbnhWOzdjJsNhPguoSQmhxMdWM9oJL1de58W38P+GMhxAhgxc2hW1JKmxDiBzh7eWuBX0gpLwkhvue6/yf3F7oyV2RkZLDz+W0c3PcVlk4r6GDFluVs2LgBs9nMuRNFLEhZhJ/OOXNOVHg0JrOJonNFbHvs7oqJGI1GXnziBb48epCzF8+g02hZlLWITQ9tmnB9s9nMW5++RcyyOLKSnfWuG2saefPjt/juS9/xqYQYFBRETk6Ot8O4K5HhkZguX7hl+XCP2WvjxPV6PU/s/hq1tbW0t7cQlRDC2k3Zk87YptFoyMrKGjdFr5SSrw6+z8Y1BlJTnA2Q+Usd7Nt/kStXssnNzZ2W5zLdRkYGRxM1QKDRn74BB3HRzulTr+vpNRMYpMrRjuVOUZR7HjMipdwH7Ltp2YRJWkr5yr3uR5n9lixZwsKFCxkYGMBoNI5el+7p6UHj0I4m6uuCA0Nob+m8p31FRkayZ/ezWK1WNBrNbTthVVVVoYnSEpd849pvUkYSJde6qKurU3Oo36esrCyOnjtGdVkVqTlpOOx2qkuqiAuIIyEhwWtxaTQaMjMzyczMvPPKE+jp6QF7O6kpNw6eNBoNi/IiKassnrXJOil5AVerPycxwZmIIyODESKE86XtLMl3Huw0NXdzqcLK47sXezNUnzNpshZCzJdSXhFCTNgOIaU877mwZq7KykpOHjlFb3cfGdlprN2wlqioKG+HNStotdpbelqHhoYi/MA8MozB/0bv0e6+LhYuvb+zSHfmuB0yDaEPvLVDm5/RD5PJdF/7V5xnsS/sfp4jJ45w/sNCtBotS3KWsGHLhikdBXA7FouFCxcKqau5iBAaMuctZ+nS24+7d8+t8UsJYpY2gQMsXLiYjz4s5stDlWSkhdLfP4LZHo8+OJ/X36nBTyfR+kXx4NaXZ9T0ldPhdmfW/wFnD+y/m+A+iXO4lTLG+aLzfPbOAZLCU0g2ptFU3M6vLv2a3/ndb6gZhjzEz8+PjY9s4OAHR0iKSMFoMNLe1YY1wMzyFcs9vv/EhESOXT6OY0xvX7vdzlDrIPErp/966nRqaGjgZNFJOno6SYxJYG3BWo/0Lg8JCWHntp3skDumLUFf53A4+PSTNwkPqufBdbE4HJILJfvY39rA9seeuufHjYiIQOMXR3VNG5kZzr4QdruDkktd5CzcOlXh+xx/f3+e2P11Ll++TNW1agKMIezavZSoqCjMZjNWq5WgoKBpf59ngjvOuuVrfHXWLZvNxj/9738mJTAd45hey7VNtWStSuXR7Y94MbrZ7/Lly5w6dob+3n6y5meydr17Y6Lvl5SSD/d+SN1gHfHZiUiHg+aKJvJi8nh066Me37+3VFVV8f7h90lakkJYVCidrV20l7by4s4XvdLpy1NqamooPf8bHt9+o5XG4XDw7kdX2fjQd+/r4KSzs5PP9v6G6PBBQoI11DfaiI4r4MGHts3aDmZznadn3VLcMDg4iNVkxRgVOG55ZGgkjXWNXopqejU0NHDy2CnaW9pJSk1i7YY1d/1jZjabqaiooK+3j/iEeDIyMtxqblywYAELFiy419DvmRCCx7c9Tnl5OeXV5WiFlseWPzbjOnLdrUOnD5G5OouIGGeP9+RMIxqN4PjZ4zyz6xkvRzd12ttbSU4Yf5lDo9GQFO9HR0fHfSXrqKgonnvhB9TWOusFPJQXr+qFK5NSyXqKGI1GhA4sVgt6vxtf7v7BPuLS3JtzdmhoiPr6ejQaDampqTOqgk91dTVv/vwd4gITSAhOpfNKF78qe5WXv/eS22danZ2dvPbz17H3g7/WwCnrWeKzY3nuxT1eq1blDq1Wy6JFi1i0aJG3Q5kWVquVzr4usmKyxy2Pjo+mvPjmasIzW0hIGM119luWd/XYSMy493rt1/n5+ZGdnX3nFe/AZDIxPDxMaGioT41AUKaOeleniF6vZ/XGVZz8/BzzErMJMATQ1dtFl6WDx9fcefhQWVkZn76zFz9bAODAprfy5AtPzJhZkQ5+fojksDQiw5xnWomGJES74OihY+x54Vm3HmPfx59htISSmHqjMER5xSWKCotYs3aNW49RU1NDYUkhfYP9pCemsXL5ytsWM1Hunk6nI8gQyGDfAEGhNxJWX3cfEWGzq29GVlYWReeCuFLRRPa8eKSE0rJGhkZifKKaotVq5fChz2m6doFAo8A07M/yldtYuHBuHDjOJXe8MCKE2C2ECB1zO0wI8YRHo5qhNmzcwMbH11I3UMWF+nOYAwd54Vt77nhm2dfXx8dv7SUzcj7zUxcwPzWPtJBM3v/thzOiR7HNZqO9pX00UV8XFR5NQ821SbYaz2Qyca26kYSY8cNxEmOSKDlf6tZjFJcU8+7h97AlOohZEUuNvY5fv/NrBgYG3HsiiluEEKzNX0vF6QoG+wcB6Ovqpe58Hevy196yvsPhoL6+nvLycrq6uqY73Pui1+t5bOfXqayP5dU3K3n1zas0d6WxY+eLPnFd+eiRL9DJi7z4TCZP75rHrm1RlF54j/r6em+H5hVms5muri5stltr4c907pxZ/7mU8oPrN6SUvUKIPwc+9FhUM5RGo2HturWsXrP6rmpU19TUYHAYMRpulCoMCgxG16mnrq7O58dcarVagkODGDQNEmS8UW2qf7CfqFj3hq1pNBrQCBzSgVbcuEbtsNvxc6NZz2azcejMIXIfzCMw2NlvICQ8hEpHBecvnmfjho13+ay8p6GhgSNnjtDY1kRESARr89ewyMfOlPKX5iOl5MThE5htIwT7B/HY6u23jCvv7+/nrY/eZlA7iD5Iz9DJQZakLWHrg1t9Itm5IyIigl1PfA2z2YwQwmfqVZvNZhrqinjxmQx0Oud3JjTUyIpl4ZSVniE1NdXLEU4fm83GsaNfUldz1tXC4MeygodZsmT2VEBzJ1lP9I1Szee3odFo7uoaq91uR0w074kUt0wM4IuEEKzfvI797xxkXkI2xoBABob6aeyt59kn3RveYjAYyFk0j/qyOjKSnIUmHA4H1zqv8eiWO8861d/fj13vGE3U10UnxlB/aeacZTQ3N/PW/rdIyk9h5YZV9Hf38/m5/djtdpYuWert8EYJISjILyB/aT4WiwV/f/8Jh9vs+/IzdClali5YBjg/68WHLpJ0OYm8vLzpDvu+TFahzFvMZjMGf/DzG/9zHBIcwPBwr3eC8pKTJw9jN5/lxWcy8PPTMTAwzGcHPiIoKPSeC9f4GncObQuFEH8vhMgUQmQIIf4BKPJ0YHNJeno6wwxisVpGl5lHhrHohmfM0XH+8nwefvpBrplqKW4oot3WzK4Xd9zVNfdHtz9CQIKe0rqLVDRcoaThAgvXzmfJkiV33NZoNGIftmG7aSrIgd5+wkPGF1fo6+ujtLSU8vJyhoeH3Y5vqlRVVfHeJ+/x5gdvUVxcPK7J7lThKeIXJxCX7JyCMSwqjPlr53O08JhPHrhpNBoMBsOEiXpwcJD6jnpSctJGl2m1WpIWJFN8pXgao5ydQkJCsDmC6Ooaf5mntr6LuPj777Q2U1itVqqvnmHd6rTRA5fg4ABWFURRVnrKy9FNHXfOkH8f+G/AWzhL7nyBs164MkUiIyN5cOcmvvrkCAEEARKzGGLb048QHHz/PU6ngxCCghUF5C/PZ2RkZNIf8NsJCgrid77zCo2NjQwODhITE+N29TeDwcCSrCVcPltOTsF89P56ejt7abvcxtbtW0bXKzxfyFfnviIwIQiHXWI5/hm7t+wmIyPjrmK9V4ePHeFc7TkS5iei89PxVcUhrtRc4Zldz6DRaGjtbiNtYfq4bYJCgzHbhhkZGZlRIwQcDgdCK25p7tbqtIw4pv8gabbRaDSsXP0Y+796k/zFQYSFBlLX0E1VvZHdT93TUN4ZaWRkBJ3WjsEwvjUzNMSIaajHS1FNPXdqgw8BfzoNscxpq1evJisri5qaGoQQZGVlzchyexqN5r4Sikajuedetg9tegjtMS0X9l1EaiXBuiB2b3xitIZ0R0cHX50/xOJHl+If4Lzu2NfdxwcHPuQHr/yex69F9vb2cqb8DPk7lqNznQFEJ0Rz4cvz1NbWkpmZSVxELD0d3RiDbvRfGOwbwKAL8Jlrpe4KCQkhOjCK1oYW4lJudLJsrGxkfYazI5rD4cBqtc645+YrcnJyCA7+NmWl57hS201s3Hp2P5VPUFDQhOv39/czPDxMZGTkrBniFRgYiFYXTltbL7GxYaPLa2o7iEtY5r3AptjtaoP/o5TyR0KIT3CWFx1HSvm4RyObg6KiolQd8fug0+nYsnkLD6x7gJGREQIDA8ed1V2tvkpoSuhoogYIjQjFL9KPhoYGjw+Ta2trIzA2cDRRg7NFIjwpnIama2RmZrKmYA2v730drVZLdGIM/d39VBdWsbVgy4zpkDXW9ge388bHb9DV3I0h2EBfcy+JhgQWLVzE8ZPHOVt6Fqu0EhEUwdb1W0lLS/N2yDNOQkICCQm7brvO8PAwB7/8mJ6uCowBgsEhf1asfozc3JnVb2AiQghWrdnOgSOvs3zxEBHhgTQ09nCl2o9du1d7O7wpc7tDq9+4/v8/0xGIokwVvV4/YQc/KSVCM0HTvMZ5n6cFBARgNVlvWW4eNBMc5zwTSkhI4LlHn+Po6aMUnTlHeEg42woeZWHeQo/H5wmxsbF858XvUFlZSf9gP4mrE0lPT+fI8aNcbL3I/IdzCQgMoLO1k3cOvMNLO1/ySH3xue7LAx8RE1bLts1ZaDQaenuH2HfgXcLCwr06e9lUyczMxGj8NmWlhVTUdRAVvZonnlw+q2osTJqspZTXO5EtlVL+09j7hBA/BI54MjBFmWpZGVmc/PQklhwLen9nMh/sH8TSMTItBS6SkpIItBlpqKwneV4KQgg6WzsxNw8zf+P80fWSk5N5MflFj8czXYxGI0uXLh29bbFYKLxcyOJti9EbnK0cUXFRmHKHOHvhLI9vU412U6mvr4/e7gq2PzhvtHUmLCyQpQsDKb90flYka4D4+Hji43d6OwyPceeixcvAP9207JUJlimKT4uNjWVt7lpO7D9JUGIw2B2Ymk3s3LRzWoblaDQann38WT754hOKKgoRWkEggTy77dlJrzHORkNDQ2j8NaOJ+rrQiFC6rs2soikzgdlsJtCoveUySkhIADWNfV6KSrlbt7tm/TzwApAuhPh4zF0hgPpGKT5NSklpWSlnS87SP9hPRlIG61etZ92adeTMy6G+vh6tVkvmxsxp7XEfFhbGS8++RG9vLzabjcjISLd6zUspKS0t5Xz5eUYsI+Sk5bCyYCVGo/GO2/qa4OBgNBaBadA0riNdZ0snqTHeL+E520RGRtI/4Edfn4nQ0Buvd1VNNwlJK70Y2fTp6+ujpaUFf39/UlJSpmAu8ul3uzPrk0ALEMX4Oa0HgBJPBqUo9+vUmVOcvHqKjPxMkoNTaK5v4TcfvMY3nnnFJzryhYWF3dX6Xx35iovNxaQtTiPSX8/lqitcfe8qL+952acnOZmITqdj48qNHDx6kNSlaQSFBtHa0MpAdT8rnlnh7fBmHZ1Ox4rVj7H3i3dZtiiY4GAD1bU9tHXHsGajb1XG84RTp45RefkgKYl+DJnsHD8awrbHvub134C7dbtr1vVAvRBiCzAspXQIIbKB+YB7xZqnQVdXF4e+PETlpSqMQQGs2rCSVatWzcies8rUsFgsnCw+ycJHF4/2/E7LSaPKYuV88QUe3LjZyxHenf7+fooqisjfuRyta7jN/OULKDtRyuXLl90qGuNr8pfmE2QM4nTxGdoG2khPSOOJp3bd9UGM4p68vIWEhYVTfuk85mv9JCStZPUDi3yuKttUq6ur41rNlzz35Dz0eud3p6a2jQNfvMNzz3/vrmtBeJM716yPAhuEEOHAQaAQ2AN4vQfMwMAAv/p/rxJoDWFh/FLMFjNHPjxBf+8Aj2x72NvhKV7S19eH1qgbN0QLICI2guYrzV6K6t51dXUREGUcTdTXhcWH09zezBJmXrIGyM7OnpLpIRX3JCYmkpiYeOcVZ5GrlSUszgsdTdQAGemxFBVX0tHRMaPmD3fn9FNIKU3Ak8A/Syl3Az4xs0TxxWK0Jj3J8c5rEIEBgeSmLaTo5AUGBwe9HZ7iJcHBwViHLFgt44dJ9Xb0EhPu3tziviQoKAhz3/Atw8sGewYJCwnzSky9vb1cvHiRkpIS9V1TfJbdbh2d5GQsnU5gt986T7kvcytZCyHW4DyT3uta5hOlb1qb2wgNDB23TKvV4ocfvb293glK8TqDwUDBggIunSzDNGhCSklrQws9V7vJn4Gz8ERHR5MSlsKVwsvYrDaklLTUt2BuNLEwd/rHXxeeL+Snb/+Uk02nOF5/nB+//mMuX7k87XEoyp2kpedRXtEzrq5+e3sfgybjjDqrBveS7o+A/w/4QEp5SQiRARzyaFRuikuIpam0hJjI2NFldrsdK1Z17WuO27RhE4azBs4ePItpZJikmESef+z5Gdep5Lpd23dx8MhBLnx8HodwkBARz/M7n5/22vFdXV18VXSIxY/cKNk62D/Ip1/uJTUldUb2Tvc1vb29XLlSgcViIT09jaSkpBl1bdWXZGdnU1uzhA8/LSEzzcCQyU5VHWx66MUZ1yNcTEflpqlUUFAgCwsLAec165/+888ItIaQEJOI2WKmprmKZZsWq2vWCuAc8uRwOGbcF3MyVqsVm802af11h8Nx2ykr79fZc2cp6rrA/Pz545aXnShly/yHWLBgwZTvcy6pqKjgvQ8/xz8wCq3Wj6H+dpYuymT7tkdVwr5HUkoaGhpobKzDYAgkOzvHaxMkCSGKpJT3NMvKHc+shRCHmLg2+IP3ssOpFBwczMvfeYnDBw9TdukixqAANj6xjlWrVnk7NMVHCCFmTaIG8PPzw8/P75blUkrOFZ3j1MVTmG1mQgwhPLjmQXJycqY8hslyhkom98disfDhJ1+QOi+foCBnmUy7PYuLpafIXVBHenr6HR5BmYgQgtTU1Bkz3fBk3GkG/49j/jYATwG2SdaddlFRUTy952lvh6EoXnW28CzHK4+Ts3kBgcGB9HT08OHxj9jj/+yUTo6RmZHJ4YtHMOeYMRidw34G+wYwt5tJeeRGQZO+vj46OjoICgpStb7d1NzcDBrDaKIGZx+c0PB4Kq9WqWQ9x7kzRWbRTYtOCCFUXXBF8REOh4PTxadHEzVAeHQ4KUtSOHX+1JQm68jISB4qeJCD+w8SlBiEwwHDLSYe37QTo9GIw+Hg4OGDnK+6gDEqEHPfMAlB8Ty548kZNRe3N2i1WqR03LLc4XCg093amqLMLe40g0eMuakBlgPqUFlRPGRwcJCiC0VUN1YTEhhCweKC2yZci8WC2WYeTdTXhUaGUlNaM+XxLV+2nKyMLOrq6tBoNKQ/mD5a27ysrIyS1lKW77hRwKXywhW+PPwlO7f59iQLFouFwcFBAgMDvTK/dmJiIkZ/qKosp7+/j6EhE+ER4VhM3eQ+vm7a41F8izvN4EU4r1kLnM3ftcA3PRmUosxVQ0NDvPrOq2gTtMQujWNowMTbX73DIwUPs2TxxMVP/P39CTGE0NvZS1hU2OjyjuYOkmI8UwQjNDR0wsppFy5fIHVR2rgCLpmLsij6qIiHRx6eNAk6HA6Ghobw9/ef9vKpUkrOnDnLkWNncKAFaWPNqmU8sGG9xysh9vf3Mzg4SEREBAaDgWVLcvnbf/oZAcHJ+AcYqaouJDcrRo1uUdxqBlcXShRlmlwovoCI05K9zNnbOjQyjNDIUA4e/Iq83Dx0ulu/skIINq3exCcnPiV5aQqhEaF0tHTQcamdR3c9Mq3xj1gshOnHN9lqtFqEhkmLUJRfLuerU18xLM0IGyxfsJwH1j0wbR0DS0vL+PJIEdkLVuJvCMBiGeHkuQsY/P1ZvdoznVUtFgv7PvuCS5er0fkZcNjNbFy/krNFpTy95xtYrXbsdjthYVuoq77MxeIS1ngoFmVmcKcZ3A/4PvCAa9Fh4P9JKa2TbqQoyj2pb2kgOnt8lbXA4EAwOMffTjZOfMH8BRj8DZwqOkV1cRXJsUk8uuthYmNjJ1zfUxZkzKfkaim5K/NGl7XUtxAXHjfhGOyGhgY+PbmX7HU5hEaEYjGPUHymBE7A5gfuvoa7lJK2tjasViuxsbFunaWfOlNEcvoC/A3Oa+p6vT/pmQs5cbpoNFkPDQ3R29tLaGjolExn+uXBQ1TWdpK79AE0Gg0jI2Y+3X+UkeFBsnLHN3lHxyZQVVWnkvUc504z+I8BP+DfXLdfci37lqeCUpS5KiwolI6+LiJjI0eX2W02rCbrHTtopaene73HcEF+AVc/uErJsWLC4sIY6h1ipHmE53c+N+H6Zy+eJWFRIqERzkqEeoM/C1YtoOizItatXjeabM1mM1VVVQyZhkiIT5iwUEh3dzfvvPchXb1mNBodQo6wc/sWcnNvP/a7r3+AyPjxCTjAGIjJZMJms3Ho0BHOFpWi0xuxWYZZvmwBW7c8dM9n/haLheKSK8xbuG60md3f30BSag6HvvwIu90+7rGHh4dJiAqc7OGUOcKdZL1CSjn24tRXQohiTwWkKHNZ/uJ8frP3NcIiQwmNDMNmtVFRVMHC9DwCA33/BzsgIICXnnmJiooKmtuaCYsJI3dj7qRnoz39vcTkjD/71xv8kTpngtbr9bS3t/PGx2+gidKhD9Jz/MoJ0sPT2LV912hSczgcvPXOh6CPIm+Jczzt0NAAH35ygJiY6NEWiY6ODq5cqcDusJOVmUlSUhKZ6Sm0tjaRlHLjQKe9rZnkxHgKi85zrria+YvXo9P5YbfbOF92npDgs6xdu+aeXiOLxYJDcst4+ZCQMCLCQ6itLicjKw+NRoNpaJDu9np2bn3invalzB7uJGu7ECJTSlkN4Co3OrMqoCsz1vUKe3Ol4EZ8fDy7Nz7B/uNfcFVeRVocLM5czIMbvV6DyG1+fn4sXLiQhQvvXLc8NT6FhqZrhITfGFvc39NPgDCMJvhPDnxKzNJY4lLiAZCLJMWHL3Dp0iUWL14MQEtLC70DFnIX3yh8ERgYjDEklvLyyzzwwAaKzl/gsy+OEhQaBwiOnyphzcpFPLBhLb989S3qaiyERUTT39vNQG8jL7/4NO+8/wmpGXmjQ6e0Wh3pGbmcPnvhnpN1YGAgEeHBdHe1ExF5oz51e2sju3c+yuDQMJcuHEHn549G2Ni5bSPJycn3tC9l9nAnWf8n4JAQogZnj/BU4BsejUqZ8wYHBzl07BDlNeUIIViUtYiN6zfOidrT8+bNIzMzk4GBAfz9/Wf1nMMrl6/k8ruXqaaK6MQYBvoGaCptZOfaHWg0Gnp7e+ke6SYjJXN0GyEEiTlJlF29kawtFgta7a0/Z35+/piGzQwODvL5gSNk564evTZts2Vw6uwpchfk8O3feZHCwvM0XGskIzGalbtfIDo6GpNpGINh/OUHf0MAJtPwPT9nIQTbH32I3771EQP9vRgDQ+jpasOgM7N+/eMEBQXR39/P8PAwERERE1asU+Yed3qDHxRCzANycCbrK1LKEY9HpsxZNpuNNz54ExkP+U8UIKWk9lI1b3/0Nl/f83WPD6fxBRqNhtDQ0DuvOMOFhYXx8tMvc7boLPXnGggPCeP5rc+RkuKshiaEQDokUspxrSsOh0SrvfE5iI+Px24Zwmy+kVyllPR2t5C1aSvXrl1DbwgbTdQAOp0fgSEx1NTWkZ6WSnNLG00t7XR29xIYZGT9unBy5mXQ0tRAcuqNg4XW5mtkz7u/vgGpqal8+3de4OLFErp7eslblcOSxYtGD0ZDQkIICQm5w6P4vitXrnD02Gk6OrtJSIhl88Z1U1qkZy5xpzf47wGvSylLXLfDhRDflFL+2x02VZR7UlNTg8lgYvGYccXZy+Zz8csLNDQ0qC/7LBMWFsbDD0088U5oaCixwTE01jSSnOlsCrbb7TRdaWTb0kdH1zMYDDz68Eb27j9KSEQifn5+9HQ1k50ZR0ZGBtXV1Tgct169s9utDJtMvPrbd4mIyWJxQS6WETOnCi9hMg2zaeN6fvnqm1RVDhMaFkl/XzeOkW42P77nvp93VFQUW7bMnMsbd+vSpXLe/+RLktPyWJC0mO6uDl578yO+/sLu0YMxxX3uNIN/W0r5r9dvSCl7hBDf5kbvcEWZUr29vRjCb+35bAg30NfX54WIFG/auXUnb370FqWNxeiMfgy1DZGXmMv8+eNn/lq2bClxcbGUlZVjHhnhwbWbmTdvHhqNhtTUVDRymN6eLsLCnT3tTUODWExdDA+HYQiKJTbOWUDG3xBATu5SLhQf54EN6/jut75OcXEJza3t5KSmsGTJjllx1utph46cIC1zMSGh4QBEx8ThcNg5cuwUL72okvXdcidZa4QQQrp6+gghtMD0lhhS5pTIyEhM1UO3LDd1mIhYGDHBFspsFhERwXde+jZ1dXWYTCbiVsQRExMz4brx8fHEx8ffslyv1/P8s0/w5tsf0tbsj0SDwzrIEzsfpqS0nODg8HHra7U6dH4GBgYGiI+PZ/16Ve7zbthsNrp7+knOGv+6hkdEUVtR7aWoZjZ3kvV+4G0hxE9wlh39HvC5R6NS5rS0tDTCz4Zz+dwl0nLTkRJqyqqJN8aTlJTk7fAUF4fDgc1mm5byoDqdjqysrPt6jKSkJH74+9/l2rVrOBwOkpKSMBgMdHd3c+ZiLVHRN4aQWS0W7LZhVebTxW6309raihCCuLi4O/Yb0el0hIeF0N/XM3pmDdDT3Ul83MQHWsrtuZOs/wT4Ds4qZgL4Avh3TwalzG1arZbndu/hxOkTlB0sQwgNS7IXs2bVmmkdwlVRUcGJohN09HQQHx3PAysfUNfLcdXSPneGMyVnMFlMRIVE8eCaB8nMzLzzxl7m5+dHRkbGuGVLly7hXFEJ9bVXiYtPYnjYxLX6Ch5Yu1zNFAbU19fz3gd7sdids4IFGjQ8+/SuO059unnjWt7/5CCpGQsJCQ2nu6uD9uarvPT8E9MT+Cwjro9jdXsDIdYDz0spf88zId1eQUGBLCws9MaulTmk/HI5n57aS8aKTMKiwuhq7aK+qJY9W/fM+Ens79fJ0yc5VXOanFXzCQwOpLu9i+rT1bzw6PMztuWjt7eX4ydOUVFZQ1BQIKtX5rN48SKPHBxaLBZMJhNBQUET1nr3JUNDQ/zzv/2c+NRFhIU5L0F1drTR11HFD373W3dsVbl8+TJHjp2mvaOLpMQ4Nm9c5/Uqe94khCiSUhbcy7ZufVKEEEuB54E9OGfdev9edqYoM8XRs8fIWjWP8GhnE15MYgwOh4PjZ4/P6WRts9k4XXKaBVtzCQh0nnVGxEQyvGiYM+fPzNhkHRYWxo7HtrHjMc/tw+FwcOLkSU6cLMKBFj+tZNPGtawoWO65nd6nqqoqtPrQ0UQNEBUdS2f7Nerq6sjOzr7t9gsWLGDBgtuXe1XcM2myFkJkA8/hTNJdwFs4z8Tvvrq+oswgdrud7oFucqLH9zaOiIngUmGpl6LyDWazGZuwjybq60Ijw2iuaPRSVDPD2bPnOHqqjHkLVuPvb2DYNMTnX54iKNDoswlteNiMVnfrtKZanR6LxeKFiOau2/USuAI8BOyUUq6XUv4zqsyoMgdotVoigsPp7ewdt7yno4eYiLndOcZoNGLQGBjoHRi3vKO5g0QPzZ09G0gpOXG6iIysRfj7OyvSBRgDSUqdz4lT57wc3eRSUpIxDXaOm97UarViHuomMVG939Ppdsn6KaAVZ6nRfxdCPISzg5mizHobVmzg6pkKejp6kFLS0dJBw/k61q9Y7+3QvEqj0bBp5UaunCino7kds8lMw9V6eq50sWq5msJxMna7naGhYYyB4yc0CQwKpqe330tR3VlCQgLLl8yjvOQUTdfquNZQQ0XZaR5Yl094ePidH0CZMpM2g0spPwA+EEIEAk8AfwjECiF+DHwgpfxiekJUFPd1dXUxPDxMVFTUfdXUzsvNQyM0HC86zpWey8RHxfP0g0+r3uDA4kWLMQYYOXXhFC19zaTGp7LtiUeJjo6+88ZzlE6nIzEhho72VqJjbvSi7mhrITPdtwuEPPrIw2TPy+LylUq0Wi25W3fO6X4b3nJXvcGFEBHAM8AeKaVX6uSp3uDKREwmEx9/9jHXeq+hD/LH0mNh04qNrFi+wtuhKQoADQ0N/OaNDwiNTCE0LIKerg7MAy184+Xn1IHOHHE/vcHveuiWt6lkrUzk3Y/fpcvQzbwl2QghMJvMlB4q4ZlNT8/poSKKb2ltbeXsuSLa2p1DmVauWE5kZKS3w1KmiceHbimKLxscHKSmpYblu1aMjos1GA0k5CVysfyiStaKz4iLi+PxnR4cH6bMWrN/rkFl1rNYLGj8tbeUQDQEGBg03VpjXFEU5X45Ow0O4XA4pmV/6sxamfHCwsIwOPzp7ewlLCpsdHlrbSsr0ny34IQyuw0ODnL8xEkulV9Fr9dTsHwxK1cUoNVqvR2ach+klJw5c5ZjJ89isTgwBuh5cNM6lixZ7NH9qmStzHgajYbtm7bz3pfvE54VTkCQkc7GToLNgSxZtOTODzDHDAwMUFFZgcVqIS0ljYSEhHt6HIfDwZlzZzhbeg6T2URmUgab1m6adEasuWRkZIRf/+ZNRhyBJGUux2a1cvhECR3tHTz++A5vhzctRkZGkFLe16gMX3SusIgvj54nK6eAgAAjgwP9fLTvMAEBhjtWdLsfKlkrs0JGRgbfePIVSi6VMtDVT27GevJy86ZlRqiZpLq6mg8Ofogx0YjWX8eJ/SdZlLSQR7Y8ctd1sL868hUl7aVkb87BYDTQXNfM6x+9zjee+cacn62qoqKCoRENObm5zgWGAObnFVBy8Sjr13cTETF7p3odHBxk/xcHuVxRA0B6agLbHt06K56zlJITJ8+RMW8RAQFGAIKCQ0hKnc/xk2dVslYUd0RFRfHgRlUNdzJWq5WPD37MvI3ZhISHAGDPtXHhwAXm18+/qzHkJpOJ85UXWLYjH52f82ckOTOZ4cFhikuL2bhhoyeewozR2tZOYND45KTRaPAPCKG7e/Yma4fDwZtvvceg1UDu0o0IIWhurOfV19/m+9/5Bv7+t5YunUnsdjsDgyYyAoPHLQ8OCaOussKj+/ZoBzMhxKNCiAohRJUQ4k8nuP9FIUSJ699JIYRqs1QUD2lubkYTqhlN1ABanY6ojGgqqyvv6rH6+/vxC/YbTdTXhUeH0dbdNiXxzmRRkZEMDfWNWyalxGIeJCQkZJKtZr5r167R0WMmPWM+Wq2z02dSSjoWuz9Xr171dnj3TafTERcbSXdX+7jlHe2tpKV4dhIbjyVrIYQW+FdgG5ALPC+EyL1ptVpgo5RyMfCXwE89FY+izHVarRaH/da6Cg674647PYWEhGAbsGK1WMct7+3oJS7y9vMczwULFsxHL0xcq6/GbrdjsYxQebmYrPT4Kb2m39PTQ01NDV1dXVP2mPdjYGAAP3/jLcv1/oH09vluWdW7sfWhjTTVl9PS1IBpaJBrDTX0ddaxYf0aj+7Xk83gK4EqKWUNgBDiTWAXUH59BSnlyTHrnwZm5vx6ijIDxMfH4zfiR0dLB9HxzopZFvMIXTWdPPrIw3f1WEajkYIFBVw4doHM/HkYg4w01zUxVDfE0j1LPRD9zBIQEMDXv7aHr746wqULh9DpdBQsW8jGjRum5PHtdjufff4FF0sq0AeEYDEPMj87hV07H8PPz29K9nEvoqOjMQ/14nA4xg2lHB7qIT5udozMSE9P55WvPcWp0+doa7lMclIcax5/zuMdKz2ZrBOBa2NuNwK3q/T/TeCzie4QQnwH+A5ASopv19FVfNPAwABHTx6lvOYyfjod+QvyWbNqjVd/2KabVqvlqUef5O2979AS2oxWr8PUOsiGpRvuagal7u5umpqaiI+Jx1/vz4WTFxkyD5GZlMFju7fP6mbeuxEREcHTT+/GbrcjhLilDsD9OHuukNIrTeQt24hGo0FKScXlCxw7foIHN2+asv3crdjYWBbOT6P8UiGJyVloNBpaGmtIjA2eVcWJkpKSeObp6T239GSynqhr6YS1TYUQm3Em6wmnNJJS/hRXE3lBQcHMqo+qeJ3FYuH193+LNknL4h1LsNtsXCwupn1fO0/vetrb4U2r+Ph4fvfl71NXV4fVaiVpc9JdJdfDx45w5soZguOCsI3Ykb2SPTueJS5ONX1PxhPjqs8VFpOStmD0AEAIQXrGAs4VnmXzpo133bN/Ku3cuZ2kCxe5cLEMm93OuhXzWbGiYEoPVuYiTybrRiB5zO0koPnmlYQQi4GfAduklL5x4UWZVSoqKrAGW8hZ5Cpa4K9n4ZpFFO49R3t7+5wbF+zn58e8efPueru6ujrOVZ8jf/vy0Y5lbY1tfLj/Q77z0nfUj/E0Mo+M4HfTsESdnx6L1YqU0qvJWqvVUlCwnIKC2dHs7Ss8+e06B8wTQqQLIfTAc8DHY1cQQqQA7wMvSSnvrjuqorips6eTwKjxQy2EEARGBtLT0+OlqGae8spyYrJjx/UAj02KxaQZpr29/TZbKlMtb8E8mpvqxi1rbqpnfnaGOmiapTz2rkopbcAPgP3AZeBtKeUlIcT3hBDfc632Z0Ak8G9CiItCCDWdljLlosKjGOoaHLdMSomp2zTni3fcDYd0TJgIhIZpq4+sOG1YvxatvY+K8gs0NdZztaIE61ArDz04t8e3z2YeLYoipdwH7Ltp2U/G/P0t4FuejEFRsrOzOVZ4nOpL1aRmp2Kz2qgqvkpqeAqxsbHeDm/GmJ85nw9PfUR8avzoddju9i50Zt2ceR37+/upq6tzXiNOTycoKMgrcYSEhPDtb36d8vLLtLS2ERO9gLy8XIzGW4dN3SubzUZrays6nfP99WbT+u309PRQVnaJvr4BUlOTmD9//qzsOKrms1bmhP7+fo6cOEJ5TTk6rR/5ufmsW71WlSO9C1JKPj/wOWVNlwhJDMZqtjPSaubZbc+QnJx85weY4S5eLGbv54fxN4YjAetwD7t2bCUv7+byETPf1atX+fCT/dilHw6HjYjQAJ5+8nGioqK8Hdo49fX1/PatjzAExmAwGuntbicmwp+vvfCsT1VLGxkZoaamhtzcXDWftaLcTkhICDu37WQnO70dyowlhGDbw9tY0ryEa43XCDAEkLUla0rP5nxVb28vez8/TOaClaM1oU1Dg3z06QFSU1O8dobtCb29vfz/27v36CjrO4/j729uDAlISEIgiLlxCZIIiijUiLdeVDwKtrbVetTa2q5b29ru6Wl79px1u9uz57Rn95zd7e72Yru92K31ClaUopaCoAiCcg2ghEsgIXIJCQFCbjO//eN5CCEGMiQzmWfi53XOnMw88zzPfOeXZL7z+z3P8/09u2gJhaVXMPKiUQDUH9jPU88s5GsPPxSYY+LOORa//CoFheWMzvG+RIy/uIgd295l48ZNzJ59dYIj9Bw4cIAnn15ExAb2fxKMVheRpDF+/HhmXz2b6dOnfyQSNXhnwg/LyulK1ACZWSNIC2Wzd+/exAUWB9u27yCUNaYrUQMUjL+E4y2O2traBEZ2tqamJpqPt3Yl6tPGjitk+/u7EhTV2SKRCM8tXEzuuCmUTZs5oH0pWYuI9ME7XBjMY7axdqrlFGnpHx5CTk1Lp62tLQER9S49PZ2IC3/o5Mb29jYyQ8EYAv/ggw9oaXPk5A788lAlaxGRPpSUlNDW0kBr66muZadaTtLR2nhBs5Ulg5KSIo43HTwrCba3t9HR1tzvuc/70p9zp0aMGEHZxEJqdp+56re9vY1D9buZecX0WIY3ILE6LUzHrEVE+pCdnc28T13PkldeZ1hWDi7i6GhtZP5tnxxSx6sBiouLuXTyBLZtWUNu3gQ6OztoaqjlkzdVkpWVFdPXOnr0KMuXr2Tbe7sYNiyD2VfNoPKaa0hLiy41zZt3M88v/BNVG1eRlh6io+0EN869mkmTJsU0zv4aO3YswzMcRxsOk5M7ZkD70tngIiJRampqOuvSraFaBz0SiVBdXc3293aSkZ7OZRXTmDAhtrWwW1pa+MUvf0d65ljGTyiio6ODPdXbmFo6hgULLuxE0EOHDtHS0kJ+fn7gzqOora3lyacXQepIvvftB/t9NriStYiIDLq3317HyjXbmTx1RteySCRC1caVPPI39zN69OgERhdbra2tVFdXc9lll/U7WeuYtUgcnDhxgv3793Ps2LFEhyISSIcPN5A1MvusZSkpKWSERtDU1JSQmOIlFApRUVExoH3omLVIDEUiEZatWMaGnRsZNnoYrU2tlBdO45ZP3BL1cThJvIaGBnbt2k04HGbSpImMGTOw443J5MSJE+zbt4+UlBSKi4sJhUJxeZ38/Dy27doGFHUti0QitLeeGFK96ljRp4dIDL274V22HNrKzNtnkpqWRjgcpuqtKt5cs5rrr70u0eFJFN55dwNLX13J8BFjwIxlr6/lEzfMYc6c2efd7siRI3R0dJCfnx+XaTEHw6ZNm3l56XLSho0CIrjO1/jsp2+jtLQ05q9VUVHO6jXvULNnJ+MvLqK9o42a3duZUTE5ZjX7nXPs2rWLzVu20dnZSUX5VMrKypLy96NkLRJD67eup3T2RFL9XnRqaiqTr5jM+lfWcV3l3MDWVxZPc3MzS19dyeRpsxkWGg5Ae/tE/rJ8NVOmTCYnJ+dD2zQ2NrLwhZc4ePgYKalppKdGWHD7zUycOHGwwx+QxsZGXlq6nIlTz1Rpa25u4tmFL/Po178S8x728OHDeeC+z7Nq1Zts3baa4aFhXP+xGTGtPLZ8xeusfruKvPxCUlJDLHp5JVN37OTTd96RdP+LStYiMdTS2kJo+NkfasOGD6Oj88w8w+FwGDMLTNlGOaOmpoaMzNFdiRogI2MYoaw89u7d+6FkHYlEeOqZRbj0PMov967tbT7WyNPPv8TXvvpAUs3qtnNnNaGsvLOqtF10UTb1aVnU1NRQVlYW89fMzs7m9ttv4/Y4VAFubGxk9dpNXDq9krQ0b2KP/LHjqdq0mn379lFUVNTHHoJFyVokhsqKy6jbXUtp+ZleVd2eOkouLuH48eMsW7WM92t2YmZUTCznxrk3Bu5Sk4+ylJQUXC/TfTp6nx70wIEDNB1vZ9r0Mx/8F40aTSgrn6qqbVRWXhPXeGMpEolg1ssUqJZCOBxOQEQDU19fTyhzdFeiBq++febIXPbX1iVdstZXe5EYqpxdyak9LWxft436mnre37CDhq1HqLyqkj8sfJKmEceYdecsrrhjJvtdLc8tfq5f1ZskPkpKSoh0NHPieHPXspaTJ+hobez1uG1rayupaR+ejjEjYxgnW1riGmuslZaWcOr4YTra27uWnTrVQkfrsaRLbOCdgd3Z0fqh5eGONrIyh/eyRbCpZy0SQ9nZ2Xzp7i+xpWoL9YfqKRw9gemfn05tbS2dozopmeZ94KcCZTOnsuGVd6mrq4t5wQnpn8zMTD6z4FaeX7SElIyRgBFua2bB7Z/qtQBKQUEBHW3HaW9vIyPDq0ftnKO56RClJcEpeRmN/Px8bpg7ixWr3mL4yDwikQhtLQ3cMe/jMa9cNhiKiorICkF93T4KLi4E4GjDISIdzUyZMiXB0V04FUURGQRvrH6DHW3vMbH87DKI29/exvUl11FeXp6gyKQ3ra2tXbNpFRYWnvdQxZo1a3ltxVpy8gpJS0+n4XAtk4rGcNdnFiTleQmHDx9m9+49pKSkMGnSxKS+jKqhoYFFL7zEwSPNpKSkMCIznTvnz0vYl2Mz03zWIkGWn5fPug3roVtOds5x8vBJcmflJi4w6VUoFGLq1KlRrTtnzmzGjy9g85Yq2tramXvVXMrKypIyUQOMGTNmyFxXnpuby0NffoCGhgYikQi5ublJ+3tRshYZBKWlpYxafxHb11VRdGkJ4c4we7bupiSnmHHjxiU6vJg5evQodXV1ZGRkUFJSQkZGRqJDGhSFhYUUFhYmOgw5h9zc5P9CrGQtMgjS0tK45857WLNuLVtXbCU1JZVZZVcy+6rzF9pIJstXvM6bb20glJVDJNJBKsu49+5PD6kvIyKJomPWIjJge/fu5f+efompFXNIT/fOjj5y+CAtTXt55G8fStqhR5FYGsgxa/0HiciAbdv+HqNzJ3QlaoC8MWM5eSrMwYMHExiZyNCgYXARGbBwOIz11ns2I9JLkRFJXm1tbezZs4f29nYmTJjQawlWiT0laxEZsGmXlrGpainjCiZ0TZLQ1NhAKM3pmPUQUldXxx+fWUTEMklJSaf15F+ZWzmT66/TJDXxpmQtIgNWWlrKlTMm8c7GNxk+Mo9wZzuuo5l7Pjc/KWc4kg8Lh8M8+/yL5I6bSk6ud2lXR0cHq1a/RUlxsc6GjzMlaxEZMDPj1ltu5vIZ09m/fz+hUIhJkyap7vkQUl9fT2tHCiW5Z67BTk9PJzv3YrbveE/JOs6UrEUkZgoKCigoKEh0GBIH3qxxvTxhRiSSXFcVJSOdDS4iIn0qKCggLSVMU9PRrmXhcCfHjh7g0qnJV2s72ahnLSIifUpLS+OuO2/jqWf+xMH6UaSmptF68ihXz5yWlLNyJRslaxERiUpRURHfeOQhqquraW9v55JLLmHs2LGJDusjQclaRESilpmZyfTpyTX951CgY9YiIiIBp2QtIiIScErWIiIiAadkLSIiEnBK1iIiIgGnZC0iIhJwStYiIiIBp2QtIiIScErWIiIiAadkLSIiEnBK1iIiIgGnZC0iIhJwStYiIiIBp2QtIiIScErWIiIiAadkLSIiEnBK1iIiIgGnZC0iIhJwStYiIiIBp2QtIiIScErWIiIiAadkLSIiEnBK1iIiIgEX12RtZreY2XtmVm1m3+/leTOzn/jPbzazmfGMR0RkqHHOUV1dzeKXlrDkz69QU1OT6JAkDtLitWMzSwX+B/gkUAusM7MXnXPbuq12KzDZv80Gfub/FBGRPjjneHnJUjZW7SEnbwKRSBsbNi/m+soruPbaykSHJzEUt2QNXA1UO+d2A5jZU8B8oHuyng884ZxzwBozyzazAudcfRzjEhEZEurq6ti0dRflMypJSfEGSscVXMKKVW9QUVFOdnZ2YgOUmInnMPjFwP5uj2v9ZRe6joiI9KJm336Gj8jrStQA6enpDMscTV1dXQIjk1iLZ8/aelnm+rEOZvZV4Kv+wzYz2zrA2KR3ecCRRAcxBKld40Pteh7fHdjmatv4KOvvhvFM1rXAJd0eTwAO9GMdnHOPA48DmNl659ys2IYqoLaNF7VrfKhd40dtGx9mtr6/28ZzGHwdMNnMSswsA7gbeLHHOi8C9/tnhc8Bjul4tYiIyNni1rN2znWa2deBV4BU4NfOuSoze9h//ufAEmAeUA20AA/GKx4REZFkFc9hcJxzS/AScvdlP+923wGPXOBuH49BaNI7tW18qF3jQ+0aP2rb+Oh3u5qXL0VERCSoVG5UREQk4AKbrFWqND6iaNd7/fbcbGarzWxGIuJMRn21bbf1rjKzsJndNZjxJato2tXMbjCzjWZWZWavD3aMySiKz4JRZrbYzDb57apziqJgZr82s0PnusS437nLORe4G94JabuAUiAD2ARM67HOPODPeNdqzwHWJjruoN+ibNdrgNH+/VvVrrFr227r/RXvXI67Eh130G9R/s1m41VGLPQf5yc67qDfomzXvwd+7N8fAxwFMhIde9BvwHXATGDrOZ7vV+4Kas+6q1Spc64dOF2qtLuuUqXOuTVAtpkVDHagSabPdnXOrXbONfoP1+Bd+y59i+ZvFuAbwPPAocEMLolF065fABY65/YBOOfUtn2Lpl0dMNLMDBiBl6w7BzfM5OOcW4nXVufSr9wV1GStUqXxcaFt9mW8b4DStz7b1swuBu4Efo5EK5q/2SnAaDNbYWbvmNn9gxZd8oqmXf8buBSvUNUW4FHnXGRwwhvS+pW74nrp1gDErFSpnCXqNjOzG/GS9bVxjWjoiKZt/wP4nnMu7HVWJArRtGsacCXwcWA48JaZrXHOvR/v4JJYNO16M7ARuAmYCLxmZqucc81xjm2o61fuCmqyjlmpUjlLVG1mZtOBXwG3OucaBim2ZBdN284CnvITdR4wz8w6nXMvDEqEySnaz4IjzrmTwEkzWwnMAJSszy2adn0Q+JHzDrRWm9keYCrw9uCEOGT1K3cFdRhcpUrjo892NbNCYCFwn3omF6TPtnXOlTjnip1zxcBzwNeUqPsUzWfBn4C5ZpZmZpnAbGD7IMeZbKJp1314oxWY2Vi8SSh2D2qUQ1O/clcge9ZOpUrjIsp2fQzIBX7q9wA7nQr69ynKtpULFE27Oue2m9lSYDMQAX7lnNPMfOcR5d/rD4HfmtkWvKHb7znnNBNXH8zsj8ANQJ6Z1QL/CKTDwHKXKpiJiIgEXFCHwUVERMSnZC0iIhJwStYiIiIBp2QtIiIScErWIiIiAadkLTIA/uxZG81sq5k961/nG4/XmWVmP/Hv32Bm1/RjH98KSilOM/uBmX3Hv//PZvaJGOzzhP9zjH8pl8iQoWQtMjCnnHOXO+cqgHbg4Wg2MrMLqnHgnFvvnPum//AGvNnRoua/3peAJy9ku/PsK2acc4855/4Sw/0dBurNrDJW+xRJNCVrkdhZBUwysxwze8Gfq3aNX771dG/ycTN7FXjCzIrMbJm/3jK/ehxm9lm/p77JL515ujf9kpkV430h+Lbfo59rZnvMLN1f7yIz23v6cTc3Ae865zr99VaY2Y/N7G0ze9/M5vrLQ2b2GzPbYmYb/BrxmNkX/ZGDxcCr/uMXzJvveI+Zfd3M/s7fZo2Z5fjbfcXM1vnv5fneRh7M7Ldmdpc/erDRv20xM+c/P9HMlpo3SccqM5vqLy8xs7f8/f+wx25fAO4d0G9TJECUrEViwO9t3oo3O9E/ARucc9Px5gR+otuqVwLznXNfwJvV6Al/vT8AP/HXeQy42Tk3A7ij++s45/bizdr1736PfhWwArjNX+Vu4HnnXEePECuBd3osS3POXQ18C6/KEsAj/utcBtwD/M7MQv5zHwMecM7d5D+uwJue8mrgX4AW59wVwFvA6eH2hc65q/z3sh1vcphe+aMHlzvnLgeWAv/mP/U48A3n3JXAd4Cf+sv/E/iZc+4q4IMeu1sPzD3Xa4kkGyVrkYEZbmYb8ZLDPuB/8WYq+z2Ac+6vQK6ZjfLXf9E5d8q//zHODEv/njMznL2JV+bxK3ilIPvyK86ULHwQ+E0v6xQAh3ssW+j/fAco9u93j30HUIM3BSXAa8657vP0LnfOHfeHnY8Bi/3lW7rtr8LvDW/B6+mW9/VmzOxzwEzg+2Y2Am/I/1m/nX/hvxfwvoD80b//+x67OQSM7+u1RJJFIGuDiySRU35PsItZr/Nfnq7re/I8+3IAzrmHzWw2Xm95o5ldfp5tcM69aWbFZnY9kHqOutingFCPZW3+zzBnPgvON3dnz9jbut2PdHsc6ba/3wILnHObzOyLeMfbz8nMyvFGJq7zpxJNAZp6tnE356qXHMJ7zyJDgnrWIrG3Ev94qZndgDd9Y29zAK/GG7bGX/8Nf5uJzrm1zrnHgCOcPZ0ewHFgZI9lT+D1MnvrVYM3BD3pAmOfAhQC70Wx3bmMxDvZK50+jiH7ow9PAff7vXX8dttjZp/11zEzm+Fv8iZnt193UwBN5iFDhpK1SOz9AJhlZpuBHwEPnGO9bwIP+uvdBzzqL/9X/wSrrXjJc1OP7RYDd54+wcxf9gdgNGeGhXv6M3BdFLH/FEj1h62fBr7onGvrY5vz+QdgLfAasKOPdRcARcAvT59o5i+/F/iymW0CqoD5/vJHgUfMbB0wqse+bgReHkDcIoGiWbdEhgAzuwvvxLX7zrPOIuC7zrmdgxdZYvhn0c93zjUmOhaRWFCyFklyZvZfeGeiz3POvX+e9cqAsc65lYMWXAKY2Rig0jn3QqJjEYkVJWsREZGA0zFrERGRgFOyFhERCTglaxERkYBTshYREQk4JWsREZGAU7IWEREJuP8H7G4spnlm6/wAAAAASUVORK5CYII=\n",
"text/plain": [
- " Porosity AI Norm_Porosity Norm_AI clusters\n",
- "0 0.139637 4747.274043 0.067289 0.658089 2\n",
- "1 0.170732 4535.625583 0.316164 0.608089 2\n",
- "2 0.244345 2696.102930 0.905345 0.173519 0\n",
- "3 0.167125 5500.997419 0.287294 0.836149 2\n",
- "4 0.216253 3959.934912 0.680501 0.472088 0"
+ ""
]
},
- "execution_count": 51,
- "metadata": {},
- "output_type": "execute_result"
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
}
],
"source": [
- "import warnings # muted warnings due to the updating of a sliced DataFrame\n",
- "warnings.filterwarnings('ignore')\n",
- "\n",
- "from sklearn.cluster import KMeans # import the KMeans method from scikit-learn\n",
- "n_init = 10 # number of random initial centroids (best solution is picked)\n",
- "max_iter = 1000 # maximum number of interations to converge\n",
- "seed = 73075 # random number seed\n",
- "tol = 1e-6 # tolerance to determine solution has convereged\n",
- "kmeans_clustering = KMeans(n_clusters=3, random_state = seed, n_init = n_init, max_iter = max_iter, tol = tol)\n",
- "df_subset['clusters'] = kmeans_clustering.fit(df_subset[['Norm_Porosity','Norm_AI']]).labels_\n",
- "df_subset.head()"
+ "from sklearn.cluster import KMeans # k-means clustering\n",
+ "\n",
+ "K = 5\n",
+ "\n",
+ "kmeans = KMeans(n_clusters=K, random_state=14, n_init = 100).fit(df.loc[:,['Norm_Porosity','Norm_AI']].values)\n",
+ "df['kMeans'] = kmeans.labels_ + 1\n",
+ "\n",
+ "plt.subplot(111) # plot the training data and K prototypes\n",
+ "plt.scatter(df_subset['Norm_Porosity'], df['Norm_AI'], c=df['kMeans'], alpha = 0.4, linewidths=1.0, edgecolors=\"black\")\n",
+ "plt.title('Normalized Acoustic Impedence vs. Porosity with Final Prototypes'); plt.xlabel('Porosity (normalized)'); plt.ylabel('Acoustic impedance (normalized)')\n",
+ "plt.xlim(0, 1); plt.ylim(0, 1)\n",
+ "plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.1, wspace=0.2, hspace=0.2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Selecting the Optimum Number of Clusters\n",
+ "\n",
+ "One method to assist with selection of the optimum number of clusters is the elbow method.\n",
+ "\n",
+ "* calculate the loss function for a range of k = 1,...,K cases and look for an inflection point, rapid reduction in slope."
]
},
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAFdCAYAAABVWvdCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8FGeW6P3fkVotqZUTyhGEyDkaG2xsjCNO4+zJY8+87wTv7OzO7s6G63dm9+7uvbt3rvfemd3JyR6HcSA4EQwYTM45CZCEEAgJoRxb/bx/VCFaQkIN7lZL4nw/H33UlU9XV9Wpeuqpp8QYg1JKKaU+u5BgB6CUUkoNF5pUlVJKKT/RpKqUUkr5iSZVpZRSyk80qSqllFJ+oklVKaWU8hNNqgNMRF4SkVfszzki0igioX5eRomI3OXPeQ4kETkkIrcHO44bJSK/FZF/DHYcw52IPCsiqwbTMkXkdhEp99OyGkWkwA/z6TrmqMAbdknVTiiVIhLl1e9rIrI+iGH1yhhTZoyJNsZ0DvSy7R3NiMisgV52jziuSkDGmPHGmPXXOZ88+/s4/Bqg6pWIfElEOu0Df72I7BWRBwYyBmPMq8aYu71iMiIyaigtU0TWi0irvR4v/821lxVtjDnlj7ivsfzbRcRjL7dBRI6JyJc/w/yu64R+qF8A9GbYJVWbA3jxs85ELMNuHYmIAJ8HaoAvBjkcNXRtMcZEA/HAr4A3RSTxemagJ0EAfMtOoJf/tgzw8ivs3zEW+CvgFyIyrudI+lv5ZtglDNv/BP5CROJ7Gygit4jIDhGps//f4jVsvYj8k4hsApqBArvfP4rIZvuMboWIJInIq/ZZ+g4RyfOax8sicsYetktEbusjjq6rKxGZ2+NstVVESuzxQkTkr0XkpIhcFJFuBy8R+byIlNrD/taH9XMbkIF14vGUiDh7xPW8iByxz1wPi8g0u/9Ye13U2kW0S3qst695dX9JRD61P4uI/FhELtjrfL+ITBCRF4Bnge9fXq/2+F1nryISKiI/sL97g70+s/v7gvYV8E9F5EN73ptEJE1E/reIXBKRoyIy1Wv8EhH5G/v7XhKR34hIhNfwB8S6Gqu1t4NJXsOmishuO743gIgesVxr2hIR+Qt7ndSJyBs9lvuQPW29vQ7usfvHicivROSciJy1t8+rbiOISIaItPTYXqaKSLWIhInIKBH5xF52tR3/dTHGeIBfA5FAgb2M50WkWERqRGS5iGR4Ld+IyDdF5ARwwu53rX3ySyJyyl6/p0XkWa/+l7exDfbo++zf+0kROSgiD3rNJ8z+jlN6WU+fiMhj9udb7Rjvs7vvEpG9vizTa37fs7f3c3KDV37idRVsb88/EZH37fWwTURGeo3r0zHnWoxlKXAJGCdXjk9fFZEyYK29rCVi7f+1Yu33Y+3+fwBygBX2+vj+9Y5vf79v91gP+0XkYa918h17e6gWkf8pXhc+IvIVsY5dl0RkpYjk2v1FejkGXe868nVFDqs/oAS4C3gH+Ee739eA9fbnRKyN5vNYV7RP291J9vD1QBkw3h4eZvcrBkYCccBh4Li9HAfwe+A3XjE8ByTZw74HnAci7GEvAa/Yn/MAAzh6fIfLy/xnu/vPgK1AFhAO/Ax4zR42DmgE5tvD/hfgBu66xjr6FfCmvZyLwKNewx4HzgIzAQFGAbn2uMXADwAnsBBoAIq81tvXvObzJeBT+/NiYBfWFY0AY4F0e9hvL/9OPX9D+/NfAgeAInvayZd/qx7TdFuX9nyrgelYSW4tcBr4AhAK/COwrscyDwLZWNvIJq5sP9OAC8Bse9ov2uOH2+uiFPiuvY4+B3T4Mq3XcrdjneQkAkeAb9jDZgF1wCKsE+BMYIw9bKm9HUQBI+x5fL2P33st8LxX9/8E/sv+/Brwt/b8I4BbfdzPvH/fyyVDDVj7x0J73U+z19H/ATZ4TWuA1fb3jeQa+6T9/eq5sp2lA+N7xuA131Fe3d8H3vDqfgg40Mf3+SHwf+zPPwBOAv/qNexlH5d5O9b+90N7e7gP6+Q8oY/lrsdrv+kxrGveWNtzjb1NOIBXgdev95jTyzJuB8rtzyHAI1jbbxFX9qnf279DJDAaaMLaJsPsdVwMOHvuu3b39Y7/BLDNq3sy1jHK6bVO1tnbTA7Wcfhr9rCH7XmPtdfD3wGb+zsG+fsv6EnQ71/oSlKdgHVASqF7Uv08sL3HNFuAL3lt5D/sZcP/W6/ufwc+9Op+ENh7jZguAZN7buD0nVT/E3gfCLG7jwB3eg1Ptzd8B/APdN+5ooB2+kiqgAvrIPWw3f0zYJnX8JXAi71MdxvWjhri1e814CWvddRXUl1ob/xzvKe3h/2WayfVY8BDPvzu3dalPd9feA3/NnDEq3siUNtjmd/w6r4POOn1e/yox/KOAQuwTmYqAPEatpkrSbXPab2W+5zXsP/BlYT3M+DHvXzXVKANiPTq9zReJwk9xv8asNb+LMAZYL7d/Xvg50DWde5nX8JKHrVYCXSr12/2K+B/eI0bjbW95tndBljoNbzPfRJre64FHvP+vj23Ma/5eie4DKxEH2t3vwV8v4/vcyew3/78kb3Ottrdn2CfePqwzNuBFrz2aayTqjl9LHc9VtKttf929zZvrO35lz22z6PX+H16Peb0Mt7tgMdedg2wF3iqxz5V4DX+3wNvenWHYJ2E395z373B8cPtOArt7n8Dftpjndzj1f3/Ah/bnz8EvtpjWc1YFwV9HoP8/Tdci38xxhwE3gP+usegDKwrC2+lWFcBl53pZZaVXp9beumOvtxhF/0csYsZarHO3pN9iVtEvo61oT9jrGI1sDaKd+3ik1qsJNuJdXDN8I7XGNOEdWbXl0ewDoYf2N2vAveKSIrdnY11lt5TBnDGKya4er31yhizFvi/wE+AShH5uYjE9jddP/H4wuffzOb9u5difWew1v/3Lq9/+zfItodnAGeNvRd7TYsP01523utzs1dcfX33XKyz/nNe8/wZ1hVrb94C5tpFsPOxDkwb7WHfx0q02+0iuq/0MY/ebDXGxBtjko0xc4wxa+z+3fYxY0wj1jbZ1z7W5z5pb89PAt+wv+/7IjLGl+CMMRVYJQ6PiXUr6F6s7b03W4DRIpIKTME62cgWkWSsq8MNfUzXm4vGGLdXt/dv2pvv2Osx3hgz7Rrj9bWdfKZjDtY91XhjTKIxZoox5vUew/v8rezjwRn6Pg5c1/jGmDasUrTn7GLdp4E/XCOenvvpy177RA3Wtp35GY9B12XYJlXbfwOep/sPWIG18r3lYJ09XWa4Qfa9jL/CKsZIMMbEY10xi4/T/gjryqzOa9AZ4F6vHS/eGBNhjDkLnMM6+F6ehwurGKgvX8TaGctE5DzwJ6wD9NNeyxrZy3QVWAcZ723Ge701YV0FX5bmPbEx5j+MMdOxitVHYxXrQv/ruq94AsH7Xm0O1ne+HMM/9Vj/LmPMa1jrP1NEpMe0+DBtf/r67mewrlSTveYZa4wZ39tMjDG1wCqsbfIZrFsHxh523hjzvDEmA/g68FP57DVou+1jYtXET6Lvfeya+6QxZqUxZhFWCc1R4BfXEcvvsIpGH8eqWHW2t5GMMc1YxYMvAgeNMe1YJQ5/jlViUX0dyxxQn+WY46M+fyt7u8/mym/bc3++3vHB+s2exSo9aDZXV9y61n769R77WqQxZjNc8xjkV8M6qRpjioE3gO949f4A64z0GbEqCD2JdV/yPT8tNgbrSrAKcIjIP2DVqrsmsSrfvAF8wRhzvMfg/wL+yeume4qIPGQPewt4wK5c4cS6l9Pr7yoimVgb6gNYZ+NTsO5Z/CtXagH/EquS13T75v4oe7nbsBLn98Wq8HE7VrH35bPavcCjIuKyD8pf9VruTBGZLSJh9jxasa60wbp6vNazeL8EfiQihXY8k0TkWicNn8U3RSRLrEo9P8D6PcA6iH/D/g4iIlEicr+IxGBd4biB79jb06NYVzb4MG1/fgV8WUTuFKuyWqaIjDHGnMNKkv8uIrH2sJEisuAa8/oj1v3kx+zPAIjI4yKSZXdewjrIfdZHvP5oxz1FRMKB/451n6ykj/H73CdFJFWsii5RWCcSjdeIr7dtaSnWvd0Xsa4+r+UT4Fv2f7CKZr27fV3mQLuhY84NehO4394mw7Du37ZhnYDA1evjesfHTqIerNtsPa9SAf5SRBLsY+aLXNlP/wv4GxEZD12V+R63P1/rGORXwzqp2n6IdV8GAGPMRayk8j2sIqnvAw/48Ux0JVbZ/nGsoolWei9O7ulOrKu7t+RKDeBD9rCXgeXAKhFpwLp/Ndv+PoeAb2IdyM5hHRj7evj881j3flfZVyjnjTHngf8AJonIBGPMn4B/sufXgHVQSrTP3JdgFaFVAz/FOgE4as/7x1j3ciuxzjS9i9lisZLLJXudXMS6VwJW4hhnF9ks7SXm/4W1Y67Cuhf8K6wKE4HwR3s5p+y/fwQwxuzEKvH4v/Z3KMa6t4a9Xh61uy9hFVW+c3mG15q2P8aY7cCXsdZtHdbB/fJZ/xewKkkdtuf7FtaVXF+WA4VApTFmn1f/mcA2EWm0x3nRGHMauhrheNaXWHvE/THWvbS3sbbJkcBT1xj/WvtkiN2/Aqs4bwHWfbTevAT8zt6WnrDn3WLHkY/X79KHT7AS1IY+un1aZhDc6DHnuhljjmFd+f8frOPAg8CD9n4A8M/A39nr4y+ud3yvRf0eq95Db41WLMMqVdiLVffkV3Zs72JdILwuIvVYFQ/vtae51jHIr6T7rSClbk5iPb70Na/7gmqYsK/cRhtjngt2LMo3IvIF4AVjzK09+husSkzFwYmsf/owr1Jq2LKL8r+KVUqjhgC7Xsj/i1UaNuQErPhXRH4t1oO2B/sYLiLyH2I9IL5f7AYGlFLKH0Tkeaxi0A+NMddTe1cFiYgsxro3XInXvf+hJGDFvyIyH6tSwe+NMVe1XCFWayXfxnreajbWw9WzAxKMUkopNQACdqVqnxnWXGOUh7ASrjHGbAXiReRaFS2UUkqpQS2YtX8z6V5DrRwfGhJQSimlBqtgVlTq7cHkXsuixWp4/QWAqKio6WPG+NSgypDR2tpKe9slYmPCu/VvaGzDERZPZGSgniBRSinV065du6qNMSn9j3m1YCbVcrq3jJHFlZYxujHG/ByrfVJmzJhhdu7cGfjoBlB7ezuvvfoyC291kZVptWtQWVnLR2treOLpP8PlcvUzB6WUUv4iIj2bzfRZMJPqcuBbIvI6VkWlOrulmJuO0+nk7nue4+PVb+IKP46I0NAcxcJFz2lCVUqpISRgSVVEXsNqGD5ZRMqx2uENAzDG/BdW02T3YbUw04zVcsxNKz09nWee+zaVlZUYY0hNTSU09KrXYyqllBrEApZUjTFP9zPcYDWvp2whISGkp2sFaKWUGqpuhrZ/lVJKqQGhSVUppZTyE02qSimllJ9oUlVKKaX8RJOqUkop5SeaVJVSSik/0aSqlFJK+cmwfEn5uXPnKCsrxekMp7CwkOjo6GCHpJRS6iYwrJKqMYb161dReXYLo/LDaWzw8NZuw4KFz5Kfnx/s8JRSSg1zwyqplpaWcvH8Fh5bUojDYTXxN2Z0Pe+vfpPsL34Ph2NYfV2llFKDzLC6p3r61FHGjo7uSqgAycmxJCW0U1HR6wtwlFJKKb8ZVkk1JDQUj+fqV7J6PCDS2+tblVJKKf8ZVkl15MixHDrWRFtbR1e/inM11DVGkZGREcTIlFJK3QyG1U3GrKws8gsX8ebSNeRlO2hp8XC+OoJFi5/V16gppZQKuGGVVAFmz55HUdF4ysvLcTqd3LE4D6fTGeywlFJK3QSGXVIFiI+PJz4+PthhKKWUuskMq3uqSimlVDBpUlVKKaX8RJOqUkop5SeaVJVSSik/0aSqlFJK+YkmVaWUUspPNKkqpZRSfqJJVSmllPITTapKKaWUn2hSVUoppfxEk6pSSinlJ5pUlVJKKT/RpKqUUkr5iSZVpZRSyk80qSqllFJ+MiySaktLC+fOnaOpqSnYoSillLqJDemXlBtj2Lz5E44f2UBifAiX6jrJyZvFgtvvJjQ0NNjhKaWUuskM6aS6b99eLp5fzzOfG4XT6cDt7mTdhh1s2xbFLbfMD3Z4SimlbjJDuvj3yKFNzJmRgdNpnRs4HKHcMjuHY0e2YIwJcnRKKaVuNkM6qba1NhEdHdGtX2SkE7e7BY/HE6SolFJK3ayGdFJNzxxD8cnz3fqdLqkiOSVf76kqpZQacEP6nuqs2fNZsewEzS2nycyI5cKFRg4e62TxfU8GOzSllFI3oSGdVBMSEnjksa9z8OBe9h05Q1zCWB56dBrx8fHBDk35qLa2lpKSEkSE/Px8YmNjgx2SUkrdsCGdVAFiYmKYO/e2YIehbsC+fbvZu2sFo/IcGCO8u6uT6bMeZsKEicEOTSmlbsiQT6pqaKqtrWXf7vd47MFcoqKsymaTJ7by9op3yc3NIyYmJsgRKqXU9dOkOsBqamrYu2cbNTVniI1NY9LkWaSlpQU7rAF3+vRpRuWFdiVUgOjoCPJzQigpKWHiRL1aVUoNPUO69u9QU1VVxYqlPyMp+gALZkNWyglWf/QLysrKgh3agBMR+nqUWEQGNhillPITTaoDaOeOjcyc4mTSxBySk2MZOyaT2+clsm3rqmCHNuDy8/MpLumksbG1q199fTOnywx5eXnBC0wppT4DLf4dQBfOF7Ngdvei3qzMJOrWHsXtduNwDN+fo7m5mSNHDlFXW0ViUjpjxoxl2syHeOe95RTkhuDxGE6XGWbNfZTo6Ohgh6uUUjdk+B7FByFXdDy1tU1ERjq7+jU0tOAIcw3rxipqamp4b/mvyc9uJzM5korzu3lr/wYeeuQr5Oa+2PVIzfS5+ZpQlVJDmhb/DqDxE25l8/bzXUWera3tbNxcyrgJtw3r+4ibN61mxiTh1rkFjC5M5/bbRjF2ZAvbt20gNjaWSZMmMXHiRE2oSqkhT69UB9C4ceNobX2At1d8TER4Oy1toYweczszZswOdmgB4/F4OFdxhHtuH92t/5iidP607CBwf3ACU0qpANCkOsCmTZvJpElTaWxsxOVy4XQ6+59oCBMRQkLCaG93dyv2bmvrIMwZcY0plVJq6Alo8a+I3CMix0SkWET+upfhOSKyTkT2iMh+EbkvkPEMFg6Hg/j4+GGfUMFKqqNGz2b7rrKu1/F5PB527K5g9Jjhe4WulLo5BexKVURCgZ8Ai4ByYIeILDfGHPYa7e+AN40x/yki44APgLxAxaSCY+7c+axaWcPrbx8hJTmM85XtpGZMY9q0mcEOTSml/CqQxb+zgGJjzCkAEXkdeAjwTqoGuNyCehxQEcB4VJA4nU4eePAJqqurqaurY8bcRBISEoIdllJK+V0gk2omcMaruxzoWd73ErBKRL4NRAF39TYjEXkBeAEgJyfH74GqgZGcnExycnKww1BKqYAJ5D3V3p4R6dkw3dPAb40xWcB9wB9E5KqYjDE/N8bMMMbMSElJCUCoSiml1GcXyKRaDmR7dWdxdfHuV4E3AYwxW4AIQC9lBoH29nbKysqoqKjoqmCklFLq2gJZ/LsDKBSRfOAs8BTwTI9xyoA7gd+KyFispFoVwJiUD44cOczWzUtJSfTQ1u6hzZ3M4nueJCkpKdihKaXUoBawpGqMcYvIt4CVQCjwa2PMIRH5IbDTGLMc+B7wCxH5LlbR8JeMXhYFVXV1NTu3vcWj92cRG+sC4OSpSj764I88/ew3CQnRRriUUqov/SZVERkBzAMygBbgIFZS9PQ3rTHmA6zHZLz7/YPX58P2vNUgcezYIcYVOrsSKsDIglQOHD5BRUUFWVlZQYxOKaUGtz6TqojcAfw1kAjsAS5gFc8+DIwUkbeAfzfG1A9EoGpgtLe1kBAfdlX/yMgQ2tvbgxCRUkoNHde6Ur0PeN4Yc9UbtEXEATyA1bDD2wGKTQVBds4oDu7Zypgi09XIf1NTK+cuGG5flBHk6JRSanDrM6kaY/7yGsPcwNKARKSCqqCggGNHJ7Diw4OMKYyjtbWDg0dbmDZjCRER2lavUkpdy7WKf//8WhMaY/6X/8NRwRYSEsK99z3KyZOTKS05RpgzgjsXTyAtLa3/iZVS6iZ3reLfGPt/ETATWG53PwhsCGRQKrhCQkIoLCyksLAw2KEopdSQcq3i3/8PQERWAdOMMQ1290vAnwYkOqWUUmoI8eWhwxzAu9pnO/omGaWUUuoqvjT+8Adgu4i8i9VAwyPA7wMalVJKKTUE9ZtUjTH/JCIfArfZvb5sjNkT2LCUUkqpocfXZgpdQL0x5jcikiIi+caY04EMbCC1traybdunnCreBRjyCqYyZ858IiMjgx2aUkqpIaTfe6oi8t+AvwL+xu4VBrwSyKAGksfj4b0Vr+Ho3MYTD6XxxEPpRMguVix/FY+n35YYlVJKqS6+VFR6BFgCNAEYYyq48rjNkFdWVoaDM9wyZyQuVzguVzhzZhUQGVZBSUlJsMO76dXV1XH06FFKSkr0JEcpNej5UvzbbowxImIARCQqwDENqNraWtJGXL0a0kaEcunSpYAu2+PxUFFRgcfjISMjA4cjkG/iG3o2b97AiaNryc4Io7Gpk00bE7j3/mdJTEwMdmhKKdUrX47ib4rIz4B4EXke+Arwy8CGNXDi4+PZV+y+qn9lVSdjJ8UHbLnnzp1jzao3iHE1EBoKay85mX/H4xQUFARsmUPJqVOnOFvyMU89WojTaW2mx0+cY83qt3niyeeDHJ1SSvXOl9q//yYii4B6rNaV/sEYszrgkQ2QnJwctm/LZOv2U0yZlIWIsP9gOU1taeTl5QVkmR0dHaz66FUW3hpJVqbVatHFiw28v/o1UlK+Q0zMsCldv2Enju9j8oT4roQKMLownd37j3Hx4sVh/cJ0t9vNpUuXiIyMJDo6OtjhKKWugy/vU/174LfeiVREXjDG/DygkQ2QkJAQHlzyDFs2r+fVt3YBkF8wlQeX3EFoaGhAlllaWkpqcitZmVfeTZqUFMOovCqOHz/G9OkzArLcocTtbics7OrNMywshM7OziBENDAOHNjHru0fEhPtprGpk9T0Sdyx8D7Cw8ODHZpSyge+FP9+G3haRL5pjFln9/sGMCySKkBkZCQL77yXhXfeOyDLa29vJyJcruofES50dLQNSAyDXW7eeA4fPUJuTnLXK+jOn6+lpS2a5OTkIEcXGGVlZRzc+y6P3J9DbKyLzk4PW7YdZv26EBbf81Cww1NK+cCX2r9ngXuAfxGRy6+DuzojKJ9lZmZSWu6mtfVK64+dnR6KS9rIzs4LXmCDyNixYzGO8Sx7/xgHDpaxeespVq2vYcEdjxES4stmO/QcOrid6ZPjiI11ARAaGsKcWXmcO7uP5ubmIEenlPKFT9VNjTFlIrIA+E8R+ROgrSJ8BnFxcYwZfxfLPljN+KIoHI4QDh9rIDl1FpmZmX5fXnt7OxcuXMDpdDJixAi/z/9G1dbWUlx8gs5ON3l5BaSmpnYNCw0N5b77H6O0dAZnz5YSERvFo4+PGdb3m1ta6omN6b5rORyhREZYDZS4XK4gRaaU8pUvSXUngDGmFfiyiHwTmB7QqG4Cs2fPIzMzl+Liw3g63UybPTYgFaMOHTrI9q3LSYr30NLqISQsg7sXP05cXJzfl3U9jhw5zPYtbzG6wIHDAR+vXEnuyDuYN29B1zghISHk5+eTn58fxEgHTnpGIadKNpKaeqXWeU1NI20dLuLjA1cTXSnlP77U/n2+R/dPgJ8ELKKbSFZWFllZWf2PeIMqKyvZs+NtHr0/u6tI8fCRs6z86M0BeSyloqKCfXu3UHupgoTETKZOm0dqaiotLS1s3fwOj96f1RXXpAlu3lmxjoKC0aSnpwc8tsFo8uTpvPv2XjyeU+TnxVNX18Lu/Y3MnvvUsC3yVmq46XNPFZE37f8HRGR/z7+BC1HdqKNHDzBxbGRX4gIYNzYT467gwoULAV12WVkZH6/6JQWZZdy7MIrctNOs/OAXVFRUcObMGbLS6BaX0+mgaGQEp08XBzSuwczlcvHIY18lLPp2dh6I5mz1aBbe/TxFRUXBDk0p5aNrXam+aP9/YCACUf7X1tqIK9F5VX9XZAhtbYGtZbxj+2rmz00kJ9uqqRsX5yIsrJId29cyfsIcOjvNVdN0egwhjpv7iszlcjF79i3ALcEORSl1A/o8ghljztn/S3v7G7gQ1Y3Kyh7NiZN13fo1NLRQfSmkW6UgfzPGUF1VRnZW9wYacrKTqK4qIScnh/NVYVRV1XcNa2pq5WhxO6NG6VWZUmro6vNKVUQasF5KftUgwBhjYgMWlfKL0aNHc+zoSD5afYzCkfG0tHSw/3ATM2Y9gtN59RWsv4gIUVGJXLrURGLilRaBamoaiY5Owul0csddT/PBmtfITLuAwwGl5R6mzlgybJ9BVUrdHMSY3vLm4DVjxgyzc+fOYIcxZLjdbo4fP86ZsqM4w6MYO3YyaWlpAV/uvn17OHVsKXcuyCMmJpL6+mZWrytl7KTHGT9+AgBtbW2UlJTQ2dlJTk6ONsmnlBoURGSXMeaGmrbzOamKyAgg4nK3MabsRhb4WWlSHRqMMezevYOD+9YTEtKKx0QyeepCpkzRp7GUUoPbZ0mqvrT9uwT4dyADuADkAkeA8TeyQHVzEBGmT5/FlCnTaWlpweVy6WMhSqlhz5ej3I+AOcBxY0w+cCewKaBRqWEjNDSU6OhoTahKqZuCL0e6DmPMRSBERELsRvWnBDgupW6Ix+NhqNUTUEoNH740U1grItHABuBVEbkAXP1Wb6WCqLa2ls2bVnO2/DAhIQ5GFs5k7twF+so0pdSA8iWpPgS0At8FngXigB8GMqjBoLm5mdOnT5OUlDQgtWWHs9OnT3P0yC7a2hrJzBrDxIlTiIiI6H9CH7W2trJi2W+YMq6TRbeNwu3uZOfuHXz0YTUPPfyM35ajlFL98aXt3yYAEYkFVgQ8okHg7bff4JO1v2NEUieXat0kp87km9/+AbGxfT+ae/bsWQ4f2k1rSz3pmYVMmDDJr4ljqNq1aztzGZekAAAgAElEQVTFR99n2qQEolzhnDi1hmVL9/PIo1/y27Oyx44dJSutiQnjRwHWm13mzS3gT0uPc/78eT0pUkoNmH7vqYrI10WkEtiP9caaXfb/oKitvciePbtxuwNTAr1p0yb2bv85P/izHH7w5xP5738/kdzU/fz0J//S5zSHDh1k/Zqfk5VynCnjamm6tIql7/6O1tbWgMQ4VLS2trJ/72oeWFzAqJFppKcnMH/eKJLjKjl8+JDfllNXV82I5O4nMCJCSlIY9fX1fUyllFL+50tFpb8Axhtj8owxBcaYfGNMQaAD64sr0sOF8vd4/7038Xg8fp//hvXvct+iJEakWA0RhIU5eHTJaCortlNdXX3V+G63mx1b3+f+u3MZU5RJVmYS8+eNIi2pioMHr++9A8YYOjs7/fI9BoPq6mqSE8Dl6n5fMz83jvPnTvptOQkJqVSc734C4/F4OH+hncTERL8tRyml+uNLUj0JNAc6EF85w0JZtLAQ03GCkpISv8+/uamGpITuL4N2Oh1ERwl1dXVXjX/x4kViYzqIi+s+zcj8BM6dPeHTMjs6Oti4cS2/+dU/8+tf/ohlS1+lqqrqxr/EIOFyuWhodF9VG7eurhVXlP/eD1pUVERVbQI7d5+mubmN2tom1n5STELyJG32UCk1oHxJqn8DbBaRn4nIf1z+C3Rg1yIi5GVHcP78Wb/POzd/Orv3dX8tWtmZWhqaosjNzb1q/MjISJqaPVddNTc0tBLp8u1F4B+veZ/2xk958uFMvvLsaMbkX+CDFb+hoaHhxr/IIJCYmIgrZiQ7d5d2rZ+qqnoOHmtj3Dj/PZXldDpZ8tAXaWifyp+WV/L+mnpik+9i0d1L/LYMpZTyhS+1f38GrAUOAP4vb71BdQ0dxKXE+H2+Dz/yJP/9R59gzGEmjk+iqqqJlevquef+7+FwXL26YmNjSUgqYseuU8ycnktISAi1tU3sOdDIHYum9bu82tpaqir38cznCrsaSBhdmE7NpdMcPnzAfg3Y0HX34kdZt/Y9XnnzCBHhQrs7hltue8bvV5DR0dEsXHgPcI9f56uUUtfDl6TqNsb8ecAjuQ5lZ6opOePk8Xmj/T7v5ORkfvD3P2X58rd5+4O9RMcU8NQXHmHKlL6vrO68awkfr1nOq386SpQrlMYmJzPnfI6MjIx+l1dfX09SguOqFodGpLg4WR7YF4kPBJfLxf0PPEFjYyNtbW0kJCRo60pKqWHLl6S6TkRewHqcpuvN1saYmoBFdQ01l1rZsjuUu+/9PC6Xq/8JbkBycjJf+crXfR4/MjKSBx58kvr6elpbW0lMTOz1qrY3CQkJVF1043Z34nCEdvWvON9IYlL/SXmoiI6O1rfQKKWGvX7fUiMip3vpbYJVA3jq1Klm9+7diEgwFh8Q69atpLl2C7NnZBIZ6eT4ifMcPO7ksce/HrATB6WUUr0L2FtqRCQEeM4YM2ga0A8NDR1WCRVgwYJF7NmTyKpPttLeVkNWzniWPHybXxKqMabb+urZrZQa/s6dO8f+vQdoamyicMwoxo4d63Npmro+vlypbjHGzB2gePql71P13UsvvURtbS0//vGPERGMMXz3u98lPj6el156KdjhKaUGwP79+1nx+gfEhyUS4YyguqGKzDGpPPXcU5pY+/BZrlR9qTGySkQeE728GVKMMdTW1vLyyy/z3e9+tyuhvvzyy9TW1uqbXJS6CbS3t/Ph0pWMThtLXmY+aSnpTCiYRMWxCxw9ejTY4Q1Lvpym/DkQBXSKSAsgWPdU+24IVwWdiPDjH/8YgJdffpmXX34ZgBdffLHrylUpNbxduHCBkI5QXBHdbyUlRSdz4lgxEyZMCFJkw1e/V6rGmBhjTIgxJswYE2t3a0IdArwT62WaUJW6eYSHh9PReXU76W3tbURHRwUhouHPpwcGRWSJiPyb/fdAoINS/nG5yNfb5aLgoai1tZVt2zbz9lu/ZPnSVzl+/HiwQ1JqUEtJSSGjIJXSipKufk0tTdS6a5g4eWLwAhvGfHlLzb8ALwKH7b8X7X5qEPO+h/riiy/i8Xh48cUXu91jHUra29tZtvT3tNWv5dYZnUwaU8OB3a+yZcvGYIem1KD26BOP4Mpysq9kN4fK9lPacJKHnnlAX4kYIL7cU70PmGKM8QCIyO+APcBf9zehiNwDvAyEAr80xlyVjEXkCeAlwAD7jDH6Vmk/EBHi4+O73UO9XBQcHx8/5IqAjx07RmJMJbfNK+zql5Yaz+vvrGPSpGlERWlRllK9iY2N5Utf+yLV1dW0tbUxYsQIwsLCgh3WsOVrfep44HILSj61Ei8iocBPgEVAObBDRJYbYw57jVOI1WD/PGPMJREZ4XPkql8vvfRSt+dSLyfWoZZQASrPnyYvp3tbz+HhYaSmhFJVVaVJVal+6BubBoYvSfWfgT0isg6r5u98rETYn1lAsTHmFICIvA48hFWEfNnzwE+MMZcAjDFDv7HbQcAYQ2VlJZ2dnaSmpnZ7Fm0oJlSAqOgEauvauvUzxlBX36kJVSk1aPSbVI0xr4nIemAmVlL9K2PMeR/mnQmc8eouB2b3GGc0gIhswioifskY85EP81Z9qKqqYtVHrxMedokwRwi1DeHctuAxCgqC9l55vxg7diLL3tlARnoNGemJdHZ62L23jHBXPikpKcEOTymlAN+Lf0OAanv80SIy2hizoZ9persk6lk7xgEUArcDWcBGEZlgjKntNiOrQf8XAHJycnwM+ebjdrv56INXuXVWKHm51ht8qqvr+WDNayQnf5vY2MHxJFRjYyMnT56kvb2d3NxcRozovdS/o6ODU6dO0dLSQmpqKgsXfYENG5bjcR+jww0j0iaw+J57Bzh6pZTqW79JVUT+FXgSOMSV96kaoL+kWg5ke3VnARW9jLPVGNMBnBaRY1hJdof3SMaYnwM/B6uZwv5ivlmVlZWRGNdAXu6VyjzJybEU5ldz/PgxZsyYGfAY6urq2L5tA+VnDuN0RlI0djbTps3set3bqVOn2LDuj4zME8KdwpqP2snOn89tty3sNp/q6mo+fP8VRiQ2EBcbyoZD7cQlTuGJp75BY2MjYWFh+rIBpdSg48uV6sNAkTGmrd8xu9sBFIpIPnAWeAroWbN3KfA08FsRScYqDj51nctRtvb2diIjrn5KyhUZSlNbc8CX39zczPKlv2HC6DbmPZxOS0s723Z+yPq6GhbeeS/t7e1sWPcnHrg7laQkq9LRlElu3n3vE86cKSQ7+8o52Lq1S5k91VA4yjpBmDndw4er9nL48EgmTtTn65RSg5MvjT+cAq67/rUxxg18C1gJHAHeNMYcEpEfisgSe7SVwEUROQysA/7SGHPxepelLBkZGZypcNPW1oHb3cmZM2fYv38X6zYcISrKp0rbn8mRI4fIzWxiyuRcIiOdJCZGs2hhIWdKt1FfX09FRQUpSe1dCRUgLMzBuNHRnDp1rKtfXV0dbc1nGTXyynN0ISEhTJqQwqmTewP+PZRS6kb5cqXaDOwVkY/p/pLy7/Q3oTHmA+CDHv3+weuzwWpb+M99DVj1LTY2ljHj7+Lt5R8RSjFxUc1cqPYQ4Uxk3+5lxMbGBrTCUs3FCvIzur+I3OEIZURyGJcuXbLflHP1rXaPx3QVD18mcnVNZatTS/+VUoOXL0l1uf2nhoDZs+dx4UIVp46XkphUyNxbMhlZkMrFi42sXL+MvLwXr0pg/hIbl8KFqsOM9MrbHo+H6osdxMXFER0dzfq14VRW1pKaGg9AW1sHh483s+DOMV3TxMXF4YzM5OSpSkYWpHbNZ//BKgpGzQ9I7INFW1sbzc3NxMTEdHsUqrKykg1bt3D6bAVJcXHcNnMmo0ePDmKk1+fkyZPsPniQtvZ2xhcWMmH8eG2AQA1LvjxS87uBCET5j7vjEo8/PJf09ISufikpsTgd56mtrSUxMTEgyx0/fhJvv/kpiQkVFI5Ko7W1g607SklJm0x8vJVEF971FB+tepWs9IuEh8PpMjdF4xaRkZHRbV53LHyYD977PadLi4mNEUrLO4iJn8y4ceMCEnuwdXZ2sm7jBrbs248Jc+A0hkW3zGP61KlUVVXxyzffICIvj9RZM2isq+OVVSt5rLWVyZMmBTv0fm3ctIk1e/eQUJCPI8rFsl27OHjsGM987nOEhoYGOzyl/KrPpCoiK7Bq3H5k1871HlYAfAkoMcb8OqARqusWHh5Fc0t9t34ej4fWNoPT6QzYcqOjo7l/yVfYsnk1G7cdIzQ0nMKiW5k/57aucbKzs3n6ue9y+vRp6uvrueW2xF4fk0pOTuapZ77FqVOnaG5uZt6CVDIzMwMWe7Bt3LSJT4uLKbhtHmFOJ82NjSzb/Cmx0dEcPn4cZ042Gfl5ACRGRBAeGcnqTZuYOGFCwEoe/KGxsZG1O3cw8rZbCbO3vaS0VI5t3kJxcTFFRUVBjlAp/7rWlerzWPc6/7eI1ABVQASQDxQD/9cYsyzwIarrNXbcTLZv+i3pafG4XOEYY9i5u5TkEeOIjo7ud/rPIjk5mQeXPI3H40FEem3BKTQ0lLPlJzlTuouY6BA2fiJMmrKI6dNndRvP6XQyZsyYq6Yfbjo7O9m8bx95c2Z1JR5XdDQjiorYtHMnDc1NJI4b222aqNhYznZ00NzcHPDf9LM4f/48jri4ru91WXRaKiXl5ZpU1bDTZ1K1W036PvB9EckD0oEW4LgxJvDPZwSY2+2mpaUFl8s17Iqg8vPzqam5nzeXrSI5AeobOomOG8Wiu+8fsBiudfW0efN6TPsunn18JA5HKE1NrXy4+n1iYuIH5D5hZ2cnlZWVhISEMGLEiKBf6bW3t9Pe2Ul4ZGS3/q6YGGpPl5CRnMLZS5dwxVypNd3a3Ex4iBARETHQ4V6XyMhI3C2tV/Vva2oiZoS+JUUNPz61qGSMKQFKAhrJADHGsHPnVg7t/4QwRztuTySTpy5kypTpwQ7Nr6ZPn8X48ZOorq7G5XIF7D7q9XK73Zw8sY2nHsnD4bBOZqKiIpg9YwS7Dm4OeFItKSnhk3VvERfdSqfHQ2t7AosWP9lnq04DISIigpTYWC5VVZHg1eRiVflZxmfnMGXCBH717juER0SQMGIEzY2NlO3bx+IZM7tVZhqMMjIySI9ycfbECTJGjUJEqK2uxlRfZPx9+mpmNfwM7j0yAPbu3UVF6UoeezCP6OgI6uubWbV2OU5n5LCrBBMREUFWVlaww+imvb2dEHETEdG9ODA2JpKW5vo+pvKPhoYGPln7KvfemUJKirVeSsuq+OiDV3jmue8ELUGJCPfdcQe/X7GC5rxcYuLjuHS+Eqmu5panFpKYmMjn73+AVRs2cHTvfqIjIrh/1ixmTh/8J4IiwlMPP8LSDz/kxPpPkNBQYh1hfH7JQ8TFBf7ZaaUG2k2XVA/s+4QH784mOtoqNouNdXHrnHQ27tg47JLqYBQZGYkzPJmKc1bD+JedOl1FeuaUgC77+PFjjMoTUlKutIGcm5NC8rFiSktLGTlyZECXfy35+fm88PjjbNu9m6qycmZkZjDj7sVdtaYLCgr4RkEBHR0dOByOIfW2odjYWL7w5JPU1dXR0dFBYmJi0IvclQoUn5KqiEQCOcaYY/2OPIh5PB7a2hqIi+v++EZiYjSNDWVBimrwaWpqYvfubZSc2kdtbSMJSTnMmjWXkSNHfub7zyLC3Hn38/G63zN1QjNJiVGcOVvLsVNOHnpkjp++Qe/a21txRfbWjKPQ1na9rXD6X3p6Og/ff+373kP52U69MlU3g35PF0XkQWAv8JHdPUVEhmRjECEhIcQnZFF+tqZb/9KyKkakDu1Xo/lLW1sbS9/5DZcq3yMufCsTCvbSUvNHlr71T7z91m9oaWn5zMvIy8vjnvu/wYW6sew44MIdeguPPPbCNQ+67e3t7Ny5nXfe/jXLlv6ew4cPYzXI5busrFyKT7fi8Xi6+rW3uyktdw/rx3WUUgPHlyvVl7BeOL4ewBiz164NPCTNnnM3n6z9LbOmtjMiJZaKc5fYua+VxffdjjGGM2fOcO5cBS5XFKNGjSKyR43M4W7Tpo1UnVtFbHYLqSktJMTHMGlCDitW1ZEQVcqOHZuZP//Oz7ycESNGcOddvtVG7uzs5L0VrxPnKmHu1BF0uFvYs/9NKivncscdi31eZlZWFrGJU1nx4R7GFcXhdns4cKSe0WPv0qsopZRf+JJU3caYuqF0D+dacnJyuGvx8+zds5k9h86TmDSaex+YQ1JSEh+8/zatjYfIy3Zy8Vwnu3c4ufvez5Oenh7ssAeE2+1mzarXeGiRi9bWRqZOSsXt7uRsRRnJiXGkpcay++BuvyTV63Hq1CnCpISFC67UDE5Pi+f1t7dw6dIsEhISrjH1FSLCorsf5OTJcZScPkxIiIO5t03Ud/QqpfzGl6R6UESeAUJFpBD4DrA5sGEFVnp6Ounpj3Xrd+DAAeg4yMMPjO6qRFF2ppr1697lqaf/nyFVMeRGlZSUkJocirsz1G78HsKdDqKj4Ex5PePGOQkJ6RzwuCory8nL7l5i4HCEkpXhpLKy0uekCtYtgMLCQgoLC/sfWSmlrpMvVfC+DYzHekPNH4E64M8CGVQwlJw6wIRxyd1qJeZkJyOeai5duhTEyAZOR0cHo0amceI0tLRGUHqmnvZ2D7v31xEaFktpeT0jC2cMeFwuVyy19e1X9a+tcxMVFTXg8SilVF/6TarGmGZjzN8aY2baf39njLm6iZQhLiQ0FI/n6oovnZ3mprhKBcjMzKT6UigL5s/mYl06v3ilnr//l5Os29SBIZ36lpHMmBHYGrq9KSoaw6lSB6VlVYD9xpoDZ2jrHN7tASulhp5+i39FZDXwuDGm1u5OAF43xvheQ2QIGDlqMvsOvE5WZmJXSz8nis/hjMy8ruLFoSw2NpZxExezdedHTJxQRNHoArbuPI8zsoj77n+YjIyMoJxgREVFsfi+L/LJ+mV8uvUYnR5ISCrkvvsf0OcdlVKDivT3WIKI7DHGTO2v30CZMWOG2blzp9/na4xh3bqVnDuzjZwsBw2NHi7WxnDfA58nKSnJ78sbzM6ePUtx8WE63R3k5Y8hPz9/0Fyt19fXExoaqsW+SqmAEZFdxpgbutflS0Ulj4jkGGPK7IXlAtf3gOAQICIsXHgP1dUzOH/+PBl5keTm5g76tlUDITMzc9AWq8bGxvY/klJKBYkvGeNvgU9F5BO7ez7wQuBCCq7k5GSSk5ODHYZSSqkhqN+kaoz5SESmAXMAAb5rjKkOeGRKKaXUEONr2WY4UGOPP856htFsCFxYSvWuoqKCEycO4+m07vfm5eX1eb+3vLyczTt2cOHSJfIyMpg7c+ZNd39cKTWwfKn9+6/Ak8Ah4HKjqQbQpKoG1I4dWyk++hHji1w4HKHs3raNk8UzuWvR1c0dnjhxglc+/ID4USOJGTOaw+crOfDaazz/1FNavK+UChhfrlQfBoqMMcF/jYe6adXX13P4wCqeeLig612sows9vLNiB+Xlk7u9N9YYw0cbPiF90iTikq0r06jYWMpDhE3btvFQP2+CUeqz6OjowO1233TthiuLL0n1FBCG1aKSUkFx9uxZcjJDu73cPDQ0hML8CM6cKemWVFtbW7nY0EhRcvei3qT0dE7t2z9gMaubS1tbGx+v/pi92w9gPIaMnDTueXDxTdN2uLL4klSbgb0i8jFeidUY852ARaVUD2FhYbS2Xf0kV0urB2dMeLd+TqeTCEcorc3NRLhcXf2b6utJiosPeKzBUlJSwsebNnHm/HlSEhK4fc4cxo8bF+ywbhrL3llG+cFKxmVOxBHq4EJ1Ja/88o98/cXn9VGwm4gvzdEsB36E1Yj+Lq8/pQZMbm4uFy5GUH72Yle/mppGTpz2MHp0UbdxQ0NDuXXadEr37aPNfv9rY109VceOc+vMmQGLsbOzk+LiYj7dtIkDBw4M6IvPz5w5w2+XL6MlNYXCRXcSOjKfN9Z+zIGDBwcshpvZxYsXKT54mtE5RYQ5whARUpPTcLZFWi/rUDcNXx6p+d1ABKKGPmMMzc3NhIeH+73RjLCwMBbf+xyrV75OjOsEDodQXRPGvPlP9noVcMucOXg8HjZu3YYbiHKE8fjtd1BQEJiX0be1tfHq229R1thIRFIi7SeOE715E196/AkSExMDskxvG7ZtI2F0IUlpaQDEJSUROnUKazZvZsL48YOmRazhqqGhAWdI+FXr2RXhoqbq5nghh7L4Uvu3EPhnYBwQcbm/MSYwRyc1JJ08eZJtWz7A3VFDp8fByMLZ3HLL7X5NrmlpaTz7+e9QUVGBx+MhPT2dsLCwXscNCQlh/q23csucObS2tuJyuQLaTvCOnTs52+mm6Ja5Xf3OnjrNBx9/zHOPPx6w5XYt68IFRuRO79YvOi6Os01NdHR04HQ6+5gyuDo7Ozl27BiHThwnzBHGlPHjycvLC3ZY1y05OZl22nB3unGEXtnm65prmZE7OYiRqYHmyxHvN8B/A34M3AF8GasRCDVElJeXs2vnemoulhMXn8qUqQv8esV27tw5Nm98hUULUklNLaK1tZ1Pt2zm00893H773X5bDljJ0rtSUn8cDgfR0dF+jaG9vZ0TJ05wqa6O1JQUCgoK2HP0KGljRncbLz0vlxNr19Ha2kpEREQfc/OPzBEjqL54kRFe66ahtpa4qKg+TzyCzePx8M6K5RyqqiIhO4tOt5vd769g0ZRp3DZv3oDFUV9fz4EDB6itqSMnL5uioqJuJyE1NTUUFxcDMHLkyF6fdY6Ojmb2ghlsW72L7OQcnGHhnKuuIDotknHjxlFfX4+IEBMTM2DfSwWHL0k10hjzsYiIMaYUeElENmIlWjXIlZeXs27Nr7llZhyZCzK5UFXPp5/+jo6OZygqKup/Bj44sH87MyZHk5pqVQKKiHAyf14Bf3xrK3PmzA94QhlItbW1/PaNN6gPD8MZE0PrwYPkbNsGHg+dbne3cY3Hg8CAvEln/uzZ/OrddwgJDSUxNZWGmktUHDrI4wvuGLRFvyUlJRw6f47R8+Z1xZickcHajZuYPHHigFTuOXv2LK/+6jXC211Ehrs4vOUYW7O38dyXniUyMpJdO3excukaXMY6MVvDWhY9dCczZ119b37hnQsZkTqCHZt30tByicl3jCOvII9XfvMqlWeqMBhyC7N54OH7iY8fvhXmbna+JNVWEQkBTojIt4CzwIjAhqX8ZdfO9dwyM47c3BRCQ0LIzkpi4W2hrNu8xm9JtbGxmsSi7leDTqeDKJfQ3Nw8rJLqyrVr6UhNoXDUqK5+xXv2MkKEcyeKiUlI6Eqi5SdOMHHkyAEpes3OzubLDz3Mx59+SvGBQ6QkJPD0wrsYO3ZswJd9o0rKynClpnZL+mFOJ6HxsZw7d25AkuoHyz4kxZnOiDTrkJZJJkdLjrBr1y4mTpzIyqWrKUobT4TT2obb2ttYvXwtowpHXfVKSBFh4sSJTJw4EbAe7frp//4v4joTmZw7DWMM5WVn+OPvXuPr33qB0NDQgH8/NfB8Sap/BriA72DVAl4IfDGQQQ0lNTU17N61mcrzxURFJzBh4jxGeR1wg+3E8X0kumo5W9ZMmNNFZvZosrOyaWo8itvt9ss9z5QR+ZSVb2fEiLiufvX1zTS3OIfVowQdHR0cLS1h1MI7uvVPH1lA/YFDTMrIYP+GjYTFx9PZ1ERapIu77x24hiZyc3P5Sm7ugC3vs4pyueg4d/aq/p629gE5EWtsbKTqbDWTe9yLTk/O4Mi+o8TGxhLucXUlVIBwZzgRHhelpaX9vme5uLgYTz2k5VnPqTa1NNHe3s6pA8UcPHiQyZNv7F5rZ2cn9fX1REZGDqsT1uHCl9q/O+yPjVj3U5WttraWFUt/yZTxMHNiMrV1DWzd+geamh5m8uSgvG62m9LSUqoqTxAfE8P4sek0NbVyvHgvtZeaiIiM91slosmTZ7D0nd04QsvIy02irr6ZbTurmTrjoWH16jzrikrweDyEeF1leDwewhwOHn3wQeZVVlJdXU1MTAxZWVnD+iXqxhhaWloIDw+/oauusWPGsGbbVuouXiTOvk95rqSEhNBQsrOz/R3uVRwOBybESlLe8Xd0tBORENHnb2cwPv2ul2sEA5wsLWbv3n1EGhcX6y7y2//8A1/5ZkjXVa2vDh48yKoVq2lvdmPEw7S5U7lz0cJBs5+53W5CQkKG9Xbfnz5/CRFZwTXem2qMWRKQiIaQvXu3M3GMYdJE6+ogNtZFfJyLpR+sZvz4iUHf0Pfu2ch9iyez/8gRkpOaSB0RRUqyi1//cRuPPvnPfltObGwsSx7+Grt3beHoumJcUfHMmHsfI0eO9NsyBgOHw8HkwkIOHztO/oTxgJVYzh0/wd0TJgCQmppKampqMMMcEIePHGHlxo3UtTQT4XCwYPoM5syefV33b2NjY3n2wSW8/dGHXAA8nZ1kxMTwuUce9fmgXFZWxv49+2luaqFo/GjGjRvnc8WsiIgIJkwdy+ndpxiVUwhAh7uDszXlPLLkQbKzs+kIa6WxuZFol3V7o7mliY6wVvLz8/udf3p6Ok2dG2loamDvnr3kxRXiCHUghDA5Zyor3vyAvLw8nysvlZaWsuzV9xiVWkR0UjQd7g72bThESIiwaPEin+YRKJWVlaz56GNOnyjB6Qxj5rwZ3Dr/1kFbSS6QrnXU/zf7/6NAGvCK3f00UBLAmIaM6qoSxs/uXgQUG+si3NlKY2Nj0Csj1NWe565bC0hLjWPd5kM0NV0kItxFqDOPoiL/3muLj49n4Z33+nWeg9HdCxdS/fbbnPh0M6HRUXTU1TEhK4uZ06f3P/EwcerUKd5Ys4aMKZNIS0igtbmZj/bsQUSYM3v2dc0rLy+P777wdS5cuIDD4biulx3s3LGTVe+sITEyhfCwcFbuXw09wnAAACAASURBVMOBMQd46rmnfD6hvfveu3mn4R32HdtDeKiTNtPKLYvnMGbMGESEh59ewrI3VuCoCgOEjrB2ljz5gE+JMCcnh5GT8ti06lNoDaE9so0LTZVkjcogJXkEF0suUlpaygT7hKw/2zfvIC06oyvBhznCGJ1dxM7Ne1hwx4KgPTZVX1/PH37xCvGSzOSs6XS4O9i5Zh8N9Q0seeTmu/bqc8szxnwCICI/MsbM9xq0QkQG/RtqjDHU1dURFhZGVFRUQJYRE5PCxZrTJCdfuW/Y1tZBS1vIoGhMOzEpm4pz5xhdmMHowgzc7k5qa5tY9UnroH1ucbBzuVx89bnnOHPmDA0NDSQlJZFmN7hws/h0xw6SigqJte8pRrhc5E6Zwic7dzBr5szrLvoLCQm57nX4/7P33vFRXVm+73dXkko555wQQYAQIudg44QTYLsd2t3tdofpGV/PnXl33ud93tx+8+67983cO8/jCT3T0W7bGLczwRiMTY5CQoBAKKCcs1SlymG/PySEhEAqCZUS9f18/LHr1NnnrJKrztp77bV+y2QyceTAUebE3k4iigiN5FrJFcrLy11O0NJqtbz4/RdpbW3FYDAQHh4+pAQrMzOThL9OoKamBujbt/YZJH052ud6ZuczOHDwzQfHUfjDwqwFxNzSAhb3DATela7OLvy1Q4VE1Co1OPqSoqbqN331ylXUZi3RCTFA375zZuJcigous37TegIDA0e5wuzClelcuBAiRUpZCSCESAbC3WvW/VFTU8Ppk3tR0I3VJgmLmMfGTY+5/GNwlayFy/num6sEBnQTFRWE0Wjh1Nlq0jLW4OXlNfoF3MySnLV8e/h3CCGIiw2hvUPP6fMtLFn63LQts5gJCCFISEhwy7UdDgc2m+2+ElBMJhNF165R09hAaGAQixcunFBVp7auTkKShyZEaX19MVptWK2Tk2TU2tqKyqEekkQEEOwbRkV5xZizniMi7l3Q4OPjM+4sapVKxaOPPkpVcS0Z4XPRevdNto0mAzaVeUxCFykZyVw/WU6A3+1JvK5Xh2+gdsJrscdCW0v7wOr5FgqFAo3QoNPp7tup2u12Lpy/QN7pfCxmC/MWZbJu47opjwTeC1ec6pvAcSFEZf/rJOAnbrPoPuns7OT4d+/z0IYwoqIycDqdXLpcweFDn/H0My9P6L1iYmJYtfYljp87hNVSilOqychcz4oVayf0PuMlJiaGLQ+/Rn7eMU5dqCMgMJylK16e0uzk1tZWbpSW4nA4yEhLG5OQw2zGbrdz6swZzl29gtXhICo4mEc3bhqz8zYYDPxhzx56vDQERIRT0dbC2Q8+4PtPPz1hyT/JsbFUNrcQm3J7X7Gno4NQf79Jm0x6eXlhl7Zhxy02M37TTGAhMDCQx3Zs46tPD+Ht9EEisalMbH/uiTE5w2XLl3H9cjE3a8sICwrHYDLQbm7h2VeentLEoJi4aKoK64gKu92Nx+6wY8Uyaoa0Kxzcf5CSCzdJjk5BHaCh/nID7918nx//4rVpERG8EyHl6CEIIYQXkNn/smQqe6suXbpU5ufn3/P9M2dO4MV5crJvz6SllPzp8zK2PvJnbmlQLaXEbDajVqunPDlpOpN/6RL7T59CGx2FUCgxNjWzbsECNm/Y4LZ76vV6LBYLISEh0zoj8dC333K+pobkRVlovL3paG6h80YxP33uhRFXUXdy9Phxzjc3kjxon66juQVVfQM/ffXVCbG1tbWV3/7pI7wSE/qEJrq66Cgr58WHt01Y7fNoSCn5w2/exdJkJyE6ESEEeoOOqq4Kntj1KBVllXS0dZCQEk/ustxpEYLU6/VUV1cjhCApKWlcq0udTkfBxQKqb1YTFBpM7oqlI05MjUYj+RfzuVFUgtZHS+7KpQP7xROF0Wjkd7/6A0KnJiY8GovVQk1rNblbstmydct9Xburq4t//1+/Jis+e8jvt7SmhLVPrSDXTQ0yhBAFUsql4xnrivavD/CXQKKU8sdCiHQhxBwp5YHx3NDdGA3dREQPnS0LIQgMUGEwGNziVIUQ03LGNJ3Q6/UcPH2K5JUr8Or/W9lTkjl1+izzMzMnfF/SaDSy79DXlNTVo1Cr8FMqeXLL1mmZkWwymcgrvk7q2jWo+rMlQ6MiMel1XCws5LGHH3b5WjeqKgnPSB9yLDQqktLrxRgMhlHzC3Q6HTdKSjCaTCQlJJCYmDhsMhIREcHrz7/A6QsXqLlaRHhwCE89+RSJk1gjK4Rg5wvP8uWneymqLESBErWvktx1S9i35ytCvMII8A3g+slyigqu8YOfvjrl4UJ/f/8xl9DcSUBAABs3b4TNo59rtVp5/53dGBrNRIfGYDVY+OLd/aze1sr6jevvy47B+Pj48Orrr3Dm1BluXC3Bx8+Hbc9vGXcd7mC6u7vxUgwvb/Lz9qe1qfW+r+8OXNX+LQBuKYXXA58A09KpRkYlU117lbTU2w9ps9lKS5uDDeHTeit4VlNXV4ciKHDAoQKo1Go0EeFUVlVNuFP9bP9+6pCkb1yPQqFA19XF7q8O8PPvveiWidX90Nvbi9BoBhzqLfyCg2lvaRvTtXy9tfSazPgNWpnZbTYUMGp5Q1VVFbv370eEh6Ly8uZ48XUWxsbx9OOPD3mo1dbWcvriRdq6ukiOiWX18uVT8jcNCAjglR++TGdnJ1arlbCwMH7zr78jMTiZoIC+sGOgfxCV9RWcP3uBbY+6PjlxBy0tLRRdLcLYayJtTioZGRlujWwVFxejqzcwL3n+wLFA/yDOHD1HTm7OhO7DBgQE8Mhjj/DIYxNbARAUFITFae6rDR/0HTRY9EREzx9h5NThSjwsVUr5D4ANQEppYhoL6mdmZtKpj+TkmXKam7upqm7lwKEK5mVtnvBEJQ+uo1KpcNodw4477fYJr2Xr6OigorWFpHlzB36IAcHBeMVEc2Ua9hcNDAxEYbMN9H69RVdzCwljnGysyM6mrbwMa38vV6fTSfW16+RkZo6YHepwOPjs668Jz15ESlYWCRnpZKxeRVFzI2VlZQPnlZWV8fsvv6TVR4vfgnmU2Sz85qM9tLe3j8nOiSQkJISoqCgsFgvd7T0DDvUWkaFRVJZV3mP05HDt2jV+/8/vUnq6kpbrHex/7yCf7PkU+x160RNJXXU9Qb5DV+dqlRoN3lP6/2ssBAcHMz9nLjeqr2Mym3A4HNQ0VqMIlMyfP3OdqlUIoaVfCEIIkQpM2Z7qaGg0Gp586hV8grZyrlBDcUUE2cteZvnyyet64WE4SUlJaEwmetpvNxk36vXIjg4y0tNHGDl2jEYjKq122L6Rl68fPb36Cb3XRKDRaNiyfAWVFy/S2dKCyWCgtrQUdVc3OdljU+bKzMxk66Jsak6fpeL8ecqPn2BeYCBbN24ccVxLSwtGpWKgTAb6MjiD4uMpvlkO9O1jHjpxgpjFC4mMj8PHz4+4tDTU8XGcOn9+7B98gvHy8kKpUWC1WYccNxh7CQyeuj1Vq9XKwc8PkR4xh6TYZGIiYlmQsoia6/VDJiwTTXBoEEaLccgxKSVWh2VKs4XHymPbH2Plo7nU9N7kWtNloheE88prL0/bRZIrsYf/ChwC4oUQu4HVwKvuNOp+8fb2Jjd3Bbm5K6baFA/9aDQaXtz+JB/t30+rRo1CqUDoe9n50MMTnkQSHh4ORiMWk2lIuFnX3Ezqkukp0rB82TIC/P05e+kSPYZK5icksuaFrePSTl6zahU52dl0dnbi6+vr0l6iSqVCOoZHEuw2O2p13wrXbDbTaTQw547ynNCoKKqvXB2znRONSqVi2eqlXDxSSEb8HNRqDUaTgUZdPc/vcn9P23vR2tqKsCnw0Q7dzw7zD6f0Rhnz5s1zy32zFmZx9th5WjtbiQiJwOFwUNFQQcq8pGm3BTISKpWKtevWsnbd9KiqGA1XtH+PCCEuASvoC/u+IaWcGbEDD9OK+Ph43nz9derq6nA4HMTHx7ulBMPb25uHVq3mq/PnCEpJxsvbm/a6OqKUqvvq2tLe3k7+5cu0dnQQFxlJTnb2hE4I5s6dO2FdZbRaLbGxsS6fHx4eToRWS0tdHZH9pTc2qxV9bS2Ltj8J9E2MvFUqzEYj3oNWCb09PYQF3X/pxESwbsM6HA4HF89cQjgFaq2Kx57bNqUJahqNBrtzeJjXarXi5+ceYRro21Z48UcvcHDv11yuKUAoBAty5vLQIxPb49jDUFwtqXkGWENfCPi0lPILdxt2L0YrqfHg4RbV1dXkX72C0WQmMyWFRQsXjtuJNzQ08M5nn6GOjcE/JJietnYU7e289tzzd21afS+klNhstmmpaNXe3s7uLz6nR0oUXhocPTq25C5j9cqVA+ecOXeOI0VXSVy8CG8fH/Td3dQXXuYHjz/hkh7uZGGxWDAajfj7+0+LMrff//odbM1O4qP76o6NZiPlLTf44Z+/OimKXL29vajV6mkhSjMTuJ+SmlGdqhDiV0AasKf/0HNAhZTyz8Zzw/vF41Q9TAV/2L2b3rAQwget/upv3iRNpeHpxx8fdbyUkoLCQo5fuIDeZCIiKIita9aQkZHhTrPHjMPhoK6uDovFQkxMzDCNW6fTybkLFzhVkI/Z4STA24tt69Yzbxr3bZ0O9PT08OlHn9Na245KKHFqHDz69Lb7LrHx4B7cWqcKrAcWyH7vK4T4I1A0npt58DATsdvt1DQ3MWfhUOHziLg4yi7kuXSN/EuX2J93gYRFC4kNCKCnvYMPDn3NDzWaMUnVuRulUjmiPQqFgtUrV7Ji2TIsFgve3vdukebhNoGBgfzoJz+gtbUVi8VCZGTktIxWeLh/XHGqpUACUNP/Oh6Y+qwEDx4mCaVSidbLC4vJNGQv0dRrIMB39CxKp9PJiQsXSMxehE//yi8wLBTrnAxO5eWN26lKKSm8fJmzhZfQ9RrITE5i/arVYwpHjxelUjltsy/dgdlspqioiLrqekLDQ1m0eOG4xCTGoo7lYWbiyhQzFLghhDguhDgOFNMnsr9PCLFvpIFCiG1CiFIhxE0hxN+McN4OIYQUQoxrue1h9mC326mpqaGyshKLxX2VWwaDgeLiYm7cuIHpjvrQOxFCsGZJDjVXr2K39enNWs1mGm7cYLULLd9sNhu9VsuAQ72Ff3AwrZ0d9xg1OidOnWJv3nnU6WnErVlFhdPB7/70ETqdbtzXfJAwGo0c++4Y//KP/8Z//MuvuXjxIo67ZED39vby+/94h5NfnKOrXM+V767zm7d/R2Nj4xRY7WG648pK9W/Hc2EhhBL4N2ArfSpMF4UQ+6SUxXec5w/8BXBhPPfxMHtoaGhgz769GFUqhFKBwmBkx0MPT7ie7LXr1/niu28RQYFIKVF8e4Rd2x4hfYR62VUrVmAymzl38hTCywthtbItdxlZLvTC1Gg0hPj6oevsJGBQOUpXayvx40xSMZvNnCosJHXtatT9YcS41FSqzBYKCgvZuH7iZOhmIzabjd3vfkhvvYnYyHjsNjvffXqC5sYWnnhy6B75hfMXsLU5yUy6vW/c2tnKof2H+eFPfjDZpnuY5rhSUnOrr2rA4POllJ2jDF0G3BzUMu4j4En6VrqD+b+BfwD+ynWzPcw2bDYbH+7di29mBrH9ITKDTsfHhw/xF1FRE1a60tPTw2fffUv88mVo+3Vwe3t0/Onrg/xl7I/vGdJUKBRs3bSJNStX0tvbS0BAgMuZlEIItqxZw0ffHsE2NxP/oCA6WlowVFWzbueucX8OtF4DDvUWQeFhNLRNT03UW9TW1nK9tBQpJfMyMkhMTJz0VoQ3b96kq17P/KTbk6L5PlkU5RWyas3KISH0kqJSosNjhoyPCIngcm0BJpPpgdL9vrWSVyqVGI1GysrKMPQaiIuPIyEhwdNSEtcE9V+nz/GZACd9taoSSBllaCxQN+h1PbD8jmtnA/FSygNCCI9TfYCpqanB7K0hbtCek29AACIslLLycnKXTszOQEVFBYqQkAGHCuAXGEBLUBDV1dWjFuJrtdpxPUTnzZ3Lq15enLxwgZaymyRFR7N2x85xl1P4+/sjzRbsNtsQzWBdRwcZ4dN33+7YiRMcv1aEX1wsQgguHPyKtXPnsmXjpkm1o6G+EX/N0HC8QqHAW+FLR0fHEKfq4+eLpcsypGeozW5DoRTTolxnMjAYDHz3zXdcKyxGSkl0QhRNdc14233RKDWctJ8hIzuNp559EqVSOdXmTimufCP+Gpg/DsGHu01ZBup3hBAK4C1cUGfqd+yvA25rDu1harHZbAjVcA1gpVqNxdonO3fjxg1O5l+ks7uH5NhYNqxaNWan5HQ6Ecq7pBIIgdPpHNE+g8GAn5/fuB+kKSkppKSMNhd1DR8fH1YuyOJMQQEJWVl4abW0NTTgbGklZ8v0LO7v6OjgxJXLpA3qxuNISOD0qdMsnL9gUpN4QkKDMdquDztucZqHlRHlrsxh3/sHCfALQK1S43Q6qagvJ3vNYtRqNS0tLbS1teHr63vXrj4zHafTyYfv7cHUaGN+zCKQsOeTDwnWhvDII4+iVCiQUnLt0lVuzLvBAhe2RGYzrjwdKgDjqGcNp56+TOFbxAGDd/b9gQX0NUAHiAL2CSG2SymHFKJKKX8D/Ab66lTHYYuHaU58fDzOI99gNZvReHsD4LDbsbS0kbJ6LYWXL/PFmVNEzZtH7Px5NDY18buPP+b1558f08M4OTkZ+9kzWC0WNP3hW7PRiLOz866ty5xOJ6fPnuXUpQIcShUa6WTTipUsm6CV8/2wecMGfLRaTudfwmg2kRofz/M7dk5IY2h3UF9fjyo0dMjKWqlSoQ4Lpb6+flKd6ty5czkZcIr65jpiImJxOB1UNVQSlx5NdHT0kHPnz59Px7YOzh47j1pqsDqtZGZnsGHTevZ9sY9rF2+gVfhglVaCov154ZXnxyUvOV2prq6ms76HBYkLAejp7cFX5Yfa5k1HezsREREIIYgMjOL6lWKPU3XhnP8dOCuEuMAgIX0p5V+MMu4ikC6ESAYagOeB7w0a3wMMCFD2Zxb/1Z0O1cODgZ+fH4+sXsOBs2fQRkehUCoxNDazqr/X6u4vvyRxyZKBDNroxETq7XbOXbzIk4895vJ9QkND2bZ8BYfOnEUdHoaUEkd7B09u2DhshQKQd/Ei312/RsqqlWi8vTEbjRzIO4+vVjvlXTJu1YyuXrlyWGus6YhGo0HabcOOS9vEdyoaDa1Wy8uvvcThr77hSmkBCqWChcuz2Lx1eBhaCMH6jevJXZ5LR0cH/v7+BAUFUVhYSPGFMrKSFg/87Wsaqzm4/2uef/G5Sf087kSn0+ElvAdeK4QAASqpGpI573Q6H/jQL7jmVH8NHKVP8OHe8bE7kFLahRC/AA4DSuAPUsrrQoi/A/KllCOW48xEDAYDDodjVs1SJ5PcnBwS4uIoLinBIZ1k5OQSHx+PwWDA6LATd4fTCw4Pp66kdMz3WbF8OelpaVRUVqIQgtRHUu+6upNScqqggIQliwdWz94+PkTPm8fpgvwpd6qDme4OFfqiBJpjR+lqayO4v7dxT0cHih7dpGnz2u12TCYTvr6+hIaG8r1XXsBqtaJQKEYN6/v4+AxJZLucf5XY0Lghf/v4qASu3ijEaDTOmjrekJAQzM7bwUp/3wACgv1oq2tlkW/fqtThcNCib2ZdztNTZea0wRWnapdS/uV4Li6lPAgcvOPYXUt0pJQbxnOP6YBer+fY0f10dZSjVIDaO4p167cPCyN5GJ3IyEgiIyOHHPP29sZLiGFC7rrOThLG2W0jNDR0VJEEp9NJr8lIrO9Q0XMff38aZ2ktqMPhoL29HbVaTcgd3WjuF29vb17c/iR/OrCf9rJyEAIfu4OXnnzS7Q5ISsm5s+c4c+wcdosDL18Nm7ZtYPHixeNWNpIOBwoxdDIjhADZd7/ZQnx8PPGZsdy4cZ34yEQUQhAcFkyXo4MWQyMdxnZMzl6Wb84lLS1tqs2dclxxqsf6E4X2MzT8O1pJzQOBlJKDX+1hTlI3j21OR6FQUFPbxjdf/5Edz/05vr7u60LxoKBSqdiQu4yDly6RsDAL34AAOppb0FdWs2rHDrfdV6lUEh8ZRUdzM2GDJkhtDY2kxcePMHJmUllZyeeHD2MU4LTbSAgO5dnHH5/QTjxxcXH8px+/TlNTEwBRUVGTkkF7Me8iJ/adISNuDt5eWnqNvXz10WG0Wu2466AXLFnA8c9PD2mK3tjaSHxq7Kz63Qsh2Pn8Di6cv8DlvCtIKVn/1Br+c+4btLS0YDKZiI6OnvBJ2EzFFUH9qrscllLKiUljHCPTTVC/vr6ei2f/wFOPDxVGP32uAt/gbSyZpv077xeLxUJNTQ1Op5OEhIRxrTTMZjMOh8OlB5CUkvxLlzh5MQ+dwUBcRCQPrVt31+SiiaS2tpZ3936BT2Ii/sHBdLe24Whq4rVdz80qybmuri7+9f33iMhePNCovKGiAr+uHn7y/e/P6PpDKSVv/f3bxGuThvQ07ejuwB5k5oevvzqu69psNj7e8wl1NxrwVfljcZhRBQle+uGLM6pfqYfhuFVQX0o5ffo5TUMMBgOBAcM354MCNHQbely6xi05vpnSlqm6upo9B/Zj9/UBhQJ5+DDPbNnCAhf3GI1GI4eOHuVaxU2cQGxIKE9s3TpieYwQgtycHHJzcnA4HJOWEJGQkMBPdj3Pufx8WqpqWBAZyYoXNk6Kvu5kcr24GGVk5IBDBYhNTaXs1BmampqIiYkZYfT0xm63Y9Qb8QkZOnnz8/Gjqr1p3NdVq9W88NLz1NTU0NTUREBAAOnp6TPmd+zBPdzTqQohNkkpj/b3Uh2GlPJz95k1c4iIiCDvrA273YFKdftBX1NvYs6CkUOEOp2Okye+prW5BIDwyDmsW//IhIbbJhqz2cyeA/sJWbRw4AFsMhj4/LtviYuNdUlk/JN9+2hAkrJ+HUqViraGBt797FN+8f1X8fMbXaDeYrFQWlqKwWgkLjaWhIQEtybqREZG8tQYMozHgpRyyCrwzteThd5oRHMXUQultwaz2Tzp9kwkarWayNgI2rvaCQu+vYJs62wlKfP+6t4VCgXJycnj7iVrNBrJu3CR4ivFeGu9Wboyh6ysrBkdGXjQGelJdEs89Im7/DN6A8kHhODgYOKTV3Hwm3Lq6jtobu7m6IkyLI7EEQv97XY7+/e9R3xEDa88n84rz6eTGFXHgX3vYbfbJ/ETjI2amhrsfr5DVjRaX18UYaGU37w56vjm5maqOzpIXjAfZf9eWnhsLI6gIK4X36lgOZzGxkb++Z0/8NW1Ik41NfDO1wf5bN/euwqhT3d++ctf8uabbw4ktUgpefPNN/nlL3856bakJibS29w85JjVYsGp0981gtDV1UVTUxM22/ASmenIlkc206CroaGlgV5jL7VNNXTLTtZuWDtlNlmtVt5/ZzeFR64SKiNR67R8tfsw3x35bspsmgpsNtusSuy650pVSvlf+//tUYwehfXrt1JSEk9hcT52u5XEpG2s3bx4xBBlVVUVwf5dLMy6LeKetSCehuZyqqqqRhR3n0qcTidCMfxzKZRKlyYDvb29qHyH7796+fvT2TNyuFxKyeeHvsZvzhxCo/oyhOUcyfXzF8gsLp72DZ+dTidXrl4lr+gqVquN68XFfPrJJwC89dZbvPnmm7z99tu88cYbk75iTU1NJf3yZUrPnyckIQGbxYquppZHVqwcsl9uMBj44quvuNnSjMJLg9pq4/ENG11qLDCVJCcn8/2fv8yFsxdoaWolfnEsK1Y/NaV7nyUlJegbDMxNur1tEugXRN7JfJatWDbrS/PKy8v57tBR2ps78Av0Ze2mNSzJWTLjV+kPhnClmxFCMHfuXObOnTv6yf3o9XpCg4c7p9BgJXq9fiLNm1ASEhJwHvlmSHmL3WbD0tJG6sbNo44PDw/H1qPDYbcPrFQBjO3tJK5YOeLYzs5OOswmMqJul9wIIQhNSuRqWem0d6oHv/mGi3U1RKdn4K1WkaVW0dXTw9tvv83bb78NwBtvvMFbb7016Q8WpVLJc888w40bN7heXo63lxfZTzwxLBHsi6++ol5IMjasRwiBsbeXT48dJTQkZNrvu8bGxvLMzrvuZk0JdTX1BGiHbvUolUq8hJb29vZZ7VRramr4+J3PSAxOJj4xhV5jL4c/+Q4pJUtzp16t7H7wONUpIjw8nLwyG7mDViRSSuoabOSumr6Zg76+vjy5YSNfHDuGOjIcIRRYW1vZlJ3tUjZsYGAgqxYs4MyFC0Smp6NUq2mtriFKpR51da5QKJCO4fojTocD1aA9VYvFQllZGZ3d3USGh5OWljYpZRsOh4PLV65QUHwd6ZQszsxkSXY2arWazs5O8stKyVi/DkV/BCN9STZOi4Xvvvlm4BpT4VBvoVKpyMrKuufkpKuri4qWZtL7HSqAj58ffgnxFBYVTXunOt0IDQuh3Dq0uEJKicVhdim3YCZz5sQZov1iCQ7sK8Px8/EjLSaDk9+dZknOkhkhZnIvPE51ioiLi+OSdzpHT5SzaEHfntXV682ovNOJn+Y1kIsWLiQ+Lo6y8nIcTidpGzYOE2wYia2bNhEdEcHFoiLMVisb09NZmpMzqlRdcHAw8cEhNFZVE5OcBPTpA3dWV/PIpi0AdHd388dPPkanUaPxD8BSVkr4uXN8/7nn3C4w8OVXX1HU2kJkWipCCA5dK6KipoYXduygra0NVWDggEOFvgfod/uGCou9+eabU+pYR8JisSA0mmG2efv4oNMbpsiqmcv8BfM5ffQszW1NRIZF4XA6qKyvIHle4qwq17obrc3txPsnDTnmq/XF1GrCarXi7e1994EzAFdav/0ZsFtK2d3/Ohh4QUr5K3cbN5sRQvDoYzspLMzn6JlCpJSkpG1lXfbSaflAvZOQkBBWLF8++ol3QQgx4oposwCoEwAAIABJREFUJJ5+9FF2f/4Z5c3NKLy9sXd1sTYra2CV++2JE1hCQ0nLuL3qrSwq4sz5c2zdNHp4erw0NjZSVFtL+ro1A7PsgJAQys+cpba2Fn9/fxzG21JvUkre/4f/yekDX/HCCy+we/fugT1VmNoV670ICwtDY7Nh1OsHNJgBuhoaWL0oG6PRSF1dHQqFgsTExHErFT0o+Pv789KPvsfX+w9xpeYSQiFYuHwBWx4a/j01mUyUl5fT29tLXFwc8fHx0+77MRbiEmPoKOsgNjJu4FhPbw+Boa73KZ6uuLJS/bGU8t9uvZBSdgkhfgx4nOp9olarWbZsJcuWjbyX6OE2ISEh/PwHP6S2thaTyURUVNSAkovT6eRaRQVpmzYMGROTmkph/iW3OtW2tjbUIUFDwlZCCFTBwbS2trJ06VLiAwOpunadhMw5KJRKnE4nazZu5Le//S1CCN566y0AgoKCpuUDU6VS8cSmzXz63bf4xMfh5eNDd0MjsSo1CoWCf/ztbxFBAUiHE9VhIy88/gRJSUlTbfa0Jioqih/8+FVMJhNKpfKuE5GmpiY+fOcjMChQCw0nHKdnfO/SNevX8G7xe4hWQVhwOLreHuq7ann6le3T8rs/FlxxqgohhJD9Oc9CCCXgmYJ6mDKUSuU96wJVSkVft4xBxxx2O2qVex8+fn5+OIymYcedJiN+fn4IIXj+qac5dPQoRcdP4JTwwuNP8OjmzQOKUrcc63R+qMyfN4+Q4GAKi4rQGwyszV5CbEwM//7RHuKW5+LTvxeo6+piz4H9/OWPX5/xK4/J4F6N76WU7P10H6GKCMITIwaOFRVcpXju9M94vxdRUVF8/6cvc+rYaSqrywiLDOX5HTsnrbGCO3HFqR4GPhZC/Ad9TcZ/Chxyq1UePIwDhUJBzrz5FNwoIXVRX+9HKSUNJWVsWeDeh09SUhIhQkF9eTkx/Q+Gpuoa/Cy2gQeFj48Pzzz+OI9brTgcjrs+SKezQ71FdPTQnqMX8/NRhoUOOFSAgOBgWv18qa6uHre2roe+jPfulh6yEm7XvAshiAqO5vrl6zPWqULf92jX93ZOtRkTjitO9b8APwF+BgjgG+B37jTKgwdXaW5uprikBKvdTkZKChvWrKFt715KT55C7e+PrUfH/LhYli9b5lY7lEolL+/YwVdHjlB29BgSSI2O4fGdO4eF9O58bTKZKCktpau7m9joaFJTUyclW3misNvtQxKwbiEUihkpyjGdUCgUSIYLIzidDhSq2RswdDqd6HQ6tFrtjIt0uKL96wT+vf8fDx6mDfmXLrH/zGl8YqJRqFScO3yI3KRkXtq1i+bmZnp6eggJCRlTZvL9EBgYyPd27MBkMiGldCnbuL29nXc/+QSzny8aP19O37xJTF4eL+3cOWMyIFNTUjh8MQ97hg1Vfwa32WjE2dVNQsL9yQA+6AQHBxOZEElDSwOxkbFAf+9SXQtrlmyfYuvcQ3FxMd/sP4JZb0EqJUtWZLN566YZM9EcSfv3YynlLiFEEQyfKkkpF7rVMhepqKjgWtFZjIZuIiJTWJKz6q4Npz3MLgwGAwdPnyJ55Qq8+sOozuRkLp4+w8L6ehISEqasbvJe+2N346tvv0WREEfqLZGFdLhZeJm8/HzWrVnjJgsnloiICDYuzubo6TN4R0YinU5srW1sX79h1tdbTgZP7djOnj9+xPWaItRCjUkaWLphCRkZGaMPnmHU1tby5Qf7SQlPwz8hAJvdxpWT1wF4+JGHptg61xjJ9b/R/+9pq/N79eplbhR9wfKcMIICfamuuc6+L67z5DOvuyTs7mHm0tDQgCIwYMChQl+ozCcykpuVlTNihWQ2m6lqbiJj/qYhx6NSkrlSUjpjnCrA+rVrmZOezs3KSpQKBRlbH5p1nXymipCQEH7y569TU1MzkPE+W1vL5V/IJ9wnEn/fPjUptUpNRvwcLp0vZP3GdTMiejOS9u+tnkg/l1L+l8HvCSH+nr691inD4XBQWHCEJ7clEhjYF2ZbtDABh6OaK1fyWb9+y1Sa58HNaDQanNbhYu4Om21G/PCgbxIg6FOEGizZ6LDZ0YwihDHRmEwmbpSU0NHVRUxkJBkZGaOKcdxJVFTUiO37PLjG3ToXqVSqWZEZOxqd7d34+gyVZ1Sr1AiHwGw2z4jftitaUFvvcuyRiTZkrOj1erzUpgGHeouE+BDaWiqnyCoPk0VcXBx+DiftTbf7YRr1euxtrcydIdmmGo2GrLR0akvLBo45nU6aysvIncSszs7OTn71x3c5eK2Iy/oePrtwnt998D7GQWIVHiaH6dS5aCpISU+irat1yDG9QYe3v9eM0UIeaU/1Z8DPgVQhxNVBb/kDZ9xt2GhotVpMFgUWiw0vr9sz6o7OXvzukL/yMPtQqVS8+PTT7PnyS25WVYNSidJoZNfWh2fUnvq2TZvo/vxzyk6dQenrg72nh9y0dBYvWjRpNhw+dgwZE03qrVaFqalUFBVx9sJ5tmzcNPJgD8O4efMmF87k0dPVQ/rcNJavXO6SQ5BS0t3dPURVayo7F00FS5ctpajwGjfrygkPjsBg7KXV2MzTL22fMXrA4l597IQQgUAw8D+Avxn0ll5K2TkJtt2VpUuXyvz8fABOnPgWs+4sa1clodVqaG3t4cjxZjY99GOPuPcDgtPppLGxEbvdTkxMzIyUxpNS0tjYiF6vJzw8fNhepNlsprKyErPZTGxs7IRmM9vtdv7bP79N+pbNQx5aJoOBrsLL/Oef/mzC7vUgUJBfwKFPvyUmKA4fbx9aOlqQAVZ+9LMfupS0dWtlesuxwtR1LpoqdDod+Xn5VJZXExwaSO6K3EnPkRBCFEgpx9Uu555OddDFU4F6KaVFCLEBWAi8d0sLeLIZ7FQdDgfnzp2kvPQsSoUdlTqE3OXbpm0vUg8exkpjYyPvf/kFFh8fFBo19o4uVmRm8vCWLRPykHU4HPz3f/lnEtetRT1oQqLv7sZSWs6f/+hH932PBwWbzcY//f0/kxyQjtb7dgLdzdpysrcuYN36dS5dR0o5ZILjdDofGIc6Xbgfp+pK4c9nwFIhRBrwe2Af8CHw6HhuOJEolUrWrNnIihVrsVqtaLVaz5fPw6zB6XTyyYED+M3JIKF/deqw2zl37hxpycmkpaXd9z2USiVL5s6jcJAKldPppLG0jG1Zfa87Ozs5efYsZbW1BPj4sConh6wFCzy/tTvo7u7GaZFDHCpASGAINRU1sH70a9xaqQ5mOncu8jAcV4LUTimlHXgG+Ccp5ZtA9ChjJhWVSoWPj4/nS+dh2mMwGLh8+TLnL1ygoaFhxHNbW1vpcToIGRTuVapUBCYkUFRSMmE2bV6/nkSVmrITp6gouET5iZMsjowiNycHnU7H7z7aQ5nNQkRuDiQl8snpU5w5d27C7j9b8PX1xYEDq81Kc1sTlXUVtHe1oTfoCY0YvQRmcOj3jTfewOl08sYbb/D2228PSV7yML1xZaVqE0K8ALwCPNF/bHLz/T14mAXU1tbywb69OAMDUXh5Ycm/yNLkFB7btm3MSRgTOYH09vbm5eeeo7m5GZ1OR2ho6MC+bkFhIfbQUJL7t1S8tFq0y3I5fuYsuTk5005CrqSkhNPHztDR2kl8chzrN68jNjbWrfc0Go2o1Wp8fHyYszCND3/7AQEiGG+lNz3mLmSgne2v/Y9RryOEICgoaMge6nTvXORhOK441R/QJ6L//0gpq4QQycAH7jXLg4fZhcPh4JODXxG8YD5B/YX7Tucc8s+eI7Oi4q55ABEREQQqlXQ0txAadTv821NbR9ZDD0+4jXerM61rbiYofOgqS+PlBV5e9PT0DGumbbfbOX32LOevXsFitbEgLY1Na9dOSkb2lStXOLDnEAmhicwJj6ajrp33fr2bV3/28pAGABNFfX09X+87RFtjOygE2csXYrXaiA9PwKZz4HRIosNj0YQoqautIy4ubtRr/vKXvxyS5TsTOhd5GIor2r/FwF8Mel0F/L/uNMqDh9lGa2srBgExg5RwFAoFQQnxXCstvatTVSgU7Hr8Cd7/4gs66+tQaDTYOzpZNXceKSkpw853B5GhoTR3dRE8yHnabTacFstds1n3ff0119rbiF+Wi1qjobKqipqP/8TPXvn+mOQboS9U3tLSglarJSoqakTH4nQ6OfHNSdIi0/Hz7WugHhUejaPFwdlTZ3l217N9NcBNTUgpiY6Ovq9epJ2dnez+3R6itLEsSsjBZrdx7VQpV8ovsWvL9wCw2x1oNBr0Bh2XL15l5SrX+ibf+Tk9DnVmMapTFUJUcXft38n5VXvwMAsQQoDzLt1GHE6Uynv/DKOjo3njRz+isrISi8VCTEzMsNWhO1manc3F3btp8/MjLCYGi8lETdE1Vs1fMKxhQGdnJ1erq0hfv24gnB2Xnk5Fr4HrxcUszckBoLe3l2vFxXT19BAfHc2cOXOGqTedO3uOY1+fxAsvrE4bEQlh7Hzh2XvWe1osFnp7DKQm+A85HhIYSkNtDY2NjXz64eeYuy0AqP1VPPvC0+Mu1bhSeAWtw5+w4PC+66nUpMVlcPzUUQxmAwG+AQNOW4i+rjIeHgxcCf8OTiv2BnYCIe4xx4OH2UlkZCTBGg1tjY2E99dQ2202dLW1ZD362Ihjvby8mDt37mSYOYzQ0FB+8OyzHD5+nNLrxXhrNGzOXsKqFSuGndvd3Y3a32/Y/rBPcBAt7e1AX6u+dz/7FEdwEN7+AVzMu0DUpQJe3rlrYCVbVVXFsf0nmRu3AI26r8ynurGafZ/v56VXXwSgpqaGgrwC9D0G0uamsHjxYrz9vDGYDPhqfW/bpO8iJC6UPe/+iXBVNKEJfXvFXbouPnr3Y37xVz93qZvQnXS2d+E36D4AGo2aiMhIKmsrWDw3e+B4XUsdKx8fV3WGhxmIK+HfjjsO/ZMQ4jTwt+4xycODRnd3N+3t7fj5+c1a7VghBLsef4IPvvicm/X1KDRe2Do72bBoMcnJyVNt3ojExsbywxdfxG63o1Qq7xmODAoKwtqjw+l0DnGsxq5uovubxB/49gg+aamE30oeSk7iZuFl8i9dYu3q1QAUFlwm3DdywKECJEYncrW8kO7ubqqqqvj648OE+0ah9dJy4eAlii5dY+W65Rzbe5KUqDT8fQNo72qj1djEqsQVNJe1Epp4W1QjOCCYlq4mKioqxtXoOz45juor54kMu/19tdmsJKTF4RvuRXH1NTRCg1maiM2MYpmb+/l6mD64Ev5dMuilgr6Vq/89TvfgwWWcTieHvv2WvJIbqAMDsOkNpIaHs2P79jHvv80EIiMj+YsfvUZ1dfVAKDckZOYEfUbrZxkSEkJ2ahpX8guImzcXtUZDU1UVvkYT8+bOxWAwUN/RQcaioV0jI5OTKCovG3CqFpMFtWpoOFgIgUIoMBgMHNn/HenRc/Hx7lthBgeGUFJdjEKpYNtzD3Hwy4M0X28hNjGW5364k97eXhQM3z9VoMJqtY7rb5GVlcXFswWU15QRHR6D2WKmvrOWLY9vZuWqFVRUVKDT6QgPDychIWHGSOzdwmw2U1tbi5SSxMTEGSFkP11wJfz7j4P+2w5UA7vcYo2HB4orV69yobqSjPXrUPTvP1UWFfHN0aM8+djIIdGZilqtntWKX49v20Z4Xh7nL1/BZLGSlZbGhucfwtvbG4vFgpByWFceu9WKt+Z2ac6c+Rl8e/044SG39467dV34BHr3rZJtYsCh3iI0IIzyGzdRa9Qo7WqSI9JwmO0cOfgt2554GDMG7A47qv79a4fDgUn2upSReze0Wi3ff+1l8s7nUXKtFN9QX55+4gnmzZvX9xlmSFOHu1FeXs7nH36J0qpGCIFdZeGpF56c0Z9pMnEl/LtxMgzx8OCRV3SV6Iw5Aw4VICEzkysnTvGozTbm1mMeph6VSsXqVatYvWrVsPe8vLzISkunpKSE5AULgL4SoZbycnasut07Nisri+KrxVwrvUKQNgSzzYxJ0cvzP9iFn58fNqdtWIjZZDFh7tBja5NkJS8eCFFXN1aTfyGfVZtXcO7IBYK9w0BAh7Gd3A3Z96Wj7Ofnx6Ytm9i0ZfY0HTAYDHy2+0uSA1MHsqh7jb188eFefvHXP/c0nXcBV8K/gcB/BW4JV54A/k5K2eNOwzzMfqxWK953OE6lSoUTicPh8DjVWcgjmzej37uX0hMnUfv6YuvpYU3WQhb0O1noW80//9Lz3Lx5k6qKavwD/Ji/YP5AreucRencvFJOanwaSoUSXa+OLlsHKpOSuIikIXu+8VHxFF27zPb/czvJqcncuH4Dp1Py8PxNJCUlTfbHn/ZUVVWhtmkGHCqAn48f6lZvKisrWbhw4QijPYBr4d8/ANe4HfJ9GXiHPtlCDx7GzYK0dM5UV+M3aI+tpa6OpMgozx7OLEWr1fL955+npaWF3t5ewsPD71omo1KpyMzMJDMzc9h7j29/jMOqw1wrvIJCCrSB3ux45WmOHjqGsN8liapf3i8xMZHExMQJ/0zTHbPZjNVqxd/ff9SaV4fDgbiLeq0CgdPpdJeJswpXnGqqlPLZQa//LyHEZXcZ5OHBYcWyZZRWVVF2IQ/f8HAseh3qHh2P7tg5KfdvbGzkbP5FmtraiIuMYvWyZZNaAzqd0Ov1nDx7lusVFXhrNCxftIjcnBy3JdhERkaOO/Tq7e3Nk888yZaHt2CxWAgKCkKhUNDR3sHp/ReY5zd/4Nz65joy5qfNyJaA94vFYuHI4W+5evEaQkJAqD+PPvXIiNnmiYmJmIURi9WCV/8+t9VmxaQwPpATkvHgSuu3c8BfSylP979eDfwvKaVr8iATzODWbx5mPjabjdLSUhpaWggJDGTe3Ln4+vqOPvA+qamp4d29e/FPSSIwNJSutnZM1TW8tnOnWyTtpjNms5lfv/8epsBAopKTsFmt1N+4wbL4RB57eOLlEN2FzWbj4z2fUHujHq3wxYYV30hvXnz1ewQGBk7ovbq6upBSTuvs7S8+/ZLKS7Wkx2egVCrp0nVRp6vmtT//AeHh4fccdzHvIkf2foev6Isg9Dp1bN6+gRV3qU2erbi7n+pi4I/ArW9lF/CqlPLKeG54v3icqoeJ4HcffIA5KoLQQXWxzbW1RJosfO/ZZ0cYOfu4VFjIwaKrpC65LVjgdDgoP36SN199dcIdkjuRUlJbW0t7ezv+/v6kpKSMWgo0Ftra2tj76T7aGtoBQVhMCE/u2D7tIhw6nY5/+ftfsTA+e0i0obqhioxVyWx9eOuI49vb2ykvLwcJaelpIzrh2Yhb+6lKKS8Di4Tom7ZIKXXjuZEHD9MFp9NJXUszcxYNLfoPi46m8uTpKbJq6mhsacEndOiKS6FUogrwp7Ozc0Y5VSGE2/ZOrVYrH76zBz9bEAsT+sr3m9ub+PDdPfz8P/1sWoWYDQYDGoVmWPjeV+tLV3vXqOPDwsIICxu9XZ2H4Yy6YSKE+O9CiCAppU5KqRNCBAsh/ttkGOfBgztQKBQE+vlh0OmHHO/t6SFsBjmQiSIsJART99Bkfikl9t7eGeVQ3U1lZSXWbidR4be3B6LCorF1SyoqKqbQsuGEhITgVNoxW81DjnfqO0lM9eyNuhNXshAekVJ233ohpewCHnWfSR48uJ/1ucuovXoVs9EIgFGvp+n6ddY9gHJyWfPno9Hpaayqxul0YjWbqSgsZEFCwrTeM5xsTCYTKjE8uKdChclkmgKL7o2XlxebHt1ISX0xLe3N9PT2UFZTineEioWLPGUx7sSVzQalEMJLSmkBEEJogenVmdjDA0NjYyMXCwvp0utJi48ne/HicSU2LcnOxm63c+xiHlanxFup5KnVawcUcR4kfH19+cHOnRw5cYKSb79Do1KzMmsB61avGX3wA0R0dDQmaRgiPOF0OjFhmJaa1bnLcgkJDeHiuXx6dT3kPLSQnKU5s1ICdDrhSqLS/wZsp682VQI/BPZLKf/e/eYNx5Oo9OBSWlrKR98cxjcxER9/P7qamvAzGHntey+OO2PY4XBgMpnw8fGZcfqs7sDhcPTp7Hr+FnflwL4DFJ0tISowCoSguauR+Ssz2f7UE1NtmocJxK3Zv/032AZsAQTwjZTy8HhuNhF4nOqDidPp5K3f/JqArAX4Ddrnq7h6lbXxiaxfu3YKrfPwoOB0OikpKeHqpSKQkoU5C8nMzPRMQmYZbs3+BZBSHgIO9d9stRDi36SUfzaeG3rwMB56enowOBzE3JE4ExYbS1ltDevxOFUP7kehUDBv3rwHcpvAg2u45FT7a1VfAJ4DqoDP3WmUBw934u3tjbTZcNjtQzqcmAwG4jwi3x7chE6nI+9CHtXlNQSHBpG7MpeEhISpNsuDi0gpKSws5Ozxc+i69aTMSWbD5vVu3QO/Z8xCCJEhhPhbIcQN4F+BevrCxRullP/iNos8eLgLWq2WJXMyqSoqwmG3A2Ds7aW7oopli7NHGT37sdlsFBcXc+LUKW7cuIHNZhvXdRoaGnjv4z/xd2/9f/zqnXe4dv36BFs6c9DpdPzh39+h+ORNfM1BdJbref8/PqS4uHiqTXMbTqeT7u5uzGbz6CfPAM6eOcvhP31LKFEsiF6MvsrEe7/+gI6ODrfdc6SVaglwCnhCSnkTQAjxptss8eBhFB7evBnnkSNcPnESodHgJSXPrF//wGuS6vV6/vjxx3QqwCsgEEt5GaHnzvH9XbvG1KqrubmZ33/+KQFp6aRs3EBvTw8fHz+GxWolJ/vBm7jkXchD9GpIjU8FIMAvAH+DP0e++nZW7qPevHmTr/ceprerFylgYe4CHtq2dVqJWowFq9XK6e/OMid+3oCOcUxELNYGK/l5BTz8yENuue9ITvVZ4HngmBDiEPARfYlKHjxMCRqNhicfe4wtBgMmk4mgoKAJlaCbqRw/fZpefz/S580dOFZ9vZgTZ86MSbv3TF4evknJRMb3Ne4ODA1FvSSbo+fOkb1o0axzIqNRXV5DRPBQ+UF/3wCqam+i1+tnlTBGS0sLn/zxMxICk0lJyMDhcFB6vgy7zcZTzz411eaNi97eXrAz4FBvEeQfRFNdo9vue89fiZTyCynlc0AmcBx4E4gUQvy7EMIlFy+E2CaEKBVC3BRC/M1d3v9LIUSxEOKqEOI7IcSDveTw4BK+vr6EhYV5HGo/l0tuEJueNuRYTFoql0tKxnSd+tZWgsKHStP5+PtjtNunnbjBZBAcGkSvcajqls1mBaWYdbWehQWFBCpDCAro61mrVCpJT8iguLAEvV4/yujpiZ+fHyglFqtlyPEefQ9RcVOwp3oLKaVBSrlbSvk4EAdcBoY5yDsRQiiBfwMeAeYBLwgh7kyZKwSWSikXAp8C/zBG+z14eOBRqlQD+8y3cDocY550xISH0dPePuSYsbcXrUo165yIK+SuzKXV2Ize0Cd3brNZKasrZemq7AkJidbU1HBg7wE++ehTioqKsN/x/3Ay6eroxlc7tNZbqVCiEmqM/apjMw2NRsOqTasorbtBr0GP0+mkqa0RvaKHpcvGVS3jEmOK50gpO6WUv5ZSbnLh9GXATSllpZTSSl/4+Mk7rndMSnnr/9h5+py2Bw/jwul0UlVVRUFBATdv3sThcEy1SZPCsgULqBu0KpVSUl9aSu78+SOMGs6qpbnoK6tpb2pCSom+u5uawkI2Ll/+wIV+ARISEnj6pe202Bu4WnuJG63Xyd6YxcbNG+/72ufPn2f3f3xEw5VW9JUmDu7+hk/2fDpl39mk1EQ6dEOTd0xmE1LtJDg4eEpsmgjWrF3N1h0baXE0cqW+AJ94Da+8/qJbmwW4M34WC9QNel0PLB/h/B8BX9/tDSHE68DrgCed3cNdMZvNfPjZp9T19qIKCsSh7yXi9Gle3rlzUvqzTiVrV62mee9eyk6eQuUfgE2nIyMigjWrVo06VkpJ/qVLnLyYR09vLwEaL6yl5ZReKSIkMJBnV69l0cIHVyt23rx5ZGZmotfr0Wq1E7JCNRqNHDt4grlxC9Co+64XGRbF1etXqKioICMj477vMVYWLV7EpbzLlNWUEhkSicliolnfyLZnZ26iEvR1LVqau5Slue5bmd6JO53q3ZKa7irfJIR4CVgKrL/b+1LK3wC/gT5FpYky0MPs4cz58zRIScbq246k6noxR0+e5IlHHplCy9yPl5cXL+3aRWNjI93d3QQHB7vcaP3s+fMcvnKZhIVZRPv7097YSE9ZOT976aVpqWc7FSgUiglNSmpubkbt9BpwqLcI9gmmqqJqSpyqj48Pr/74FQryCyi/cRO/aD9eWLGLlJSUSbdlpuNOp1oPxA96HQcMS7kSQmwB/g9g/S3Rfg8exsql4mLili4Zciw+I53LJ07y+LZtCDH7E9djYmKIiYlx+Xybzcbx/IukrFiOV/+eaXhsLBazmQsFBTz52GPuMvWBxtvbG7scXkdssVnw9Z+6qIqvry/r1q9j3fp1U2bDbMCdGyUXgXQhRLIQQkNfec6+wScIIbKBXwPbpZStbrTFgwcPd2AwGHAoFAMO9RaBoaE0u7E4/kEnOjqa0Nhg6ppqB4719PZgFL3MH+M+uIfph9ucqpTSDvwCOAzcAD6WUl4XQvydEGJ7/2n/E/ADPhFCXBZC7LvH5Tx4GJGcefOoLy0bcqyutIzszLkPxCp1PPj5+aGRcqCn7C162tqIjYi4x6iZj81mo7S0lIKCAmpra3GlqchEIoRg14s78Y5VcbXmEkU1V2i1NfDcqzsmLCmotbWV6upqDAbDhFxvIrFYLBQWFrL/ywOcPn2anp6eqTZpQnGpS810wtOlxsPdsFgs7Pn8c2p6ulEFBuDoNRDl5c1LO3bg4+Mz1eZNW/IuXuRAfh4x8+bhGxBAW2MjpsoqfvLC99yaITlVdHV18eG7ezC2WVALDWZpJHlBIs/uemZK6p6gXatwAAAUtElEQVQ7OzuxWq2Eh4ejVCrv+3pGo5HPPv6c+vJGNAoNFsys2bKadeunR8MJo9HI++/sRldvIMg3CKPZiEVj5KXXvjemrQt3YbFYKCsrY+HChe7tUuPBw3THy8uLV557jrq6Ojo7OwkMDCQpKemBLAUZC8tyc/H29uZUfj41Oh2pcXFs3LlrVjpUgK8PHEKp82JeUjrQl/1cfPUahemF5ObmTro9ISEhE3q9gwe+prNCx8LEPllJm93G6YNniYqOnJIEqDvJu3ARY4OZecm3w9ytHS0c2n+YH/7kB1NoWV8nrA/+sBtTm/W+ruNxqh5mDQqFgsTExAdeC3isLMzKYmFW1lSb4XZMJhPVpTVkxd3WMRZCEBsWx5X8oilxqhOJ0Wik9Go5WXGLB46pVWqig2K5lFc4LZxqSVEJ0eFDV6QRoZFcrinAYDBMafnbsW+PQ7eKuf0TrvHimcZ78ODhgeFu210zawPs3litVoTsU0IajFqtwWSYHqpIWh8t1js6KNkddhRKgVqtniKr+iMWV24QH3X/Oggep+rBg4cHAq1WS8rcZOpbbmvSSClpaK9j0dKZv1IPDAwkKCKIju6hmdstnU3MXTj3HqPGR2dnJwUFBRQUFNDd3e3yuKUrc6jvqMVm73OsUkoq6yvIypk/pSITQgiUKiV2x/1LRXrCvx48eHhgeOTxbXz4xz0U11xDhRrz/9/evUdHWd95HH9/c4EEISCGBIKBAQkBggqovWy16nqpUkFtXcTWbd1a7WVt1+5uz7bb3e6ue87u6e7purs9vSxtre22WrWiUMSttQUVERQFwl1tuApDQEICCRCS+e4fzwOGXMiQPJOZCZ/XOXPyzDO/eeabX2bynd9z+f68iQnTxzO9H0xtZ2bM+thHeeShx6g7dIDCAYM4eKSO4WOGMm36tO43kKRVr63iuQW/ozARnAD4XM7z3HjbR5g2rfvXmDJlCrXX1/LKkpUMsAKaW48xfkqMaz9ybWTx9dQlH5zO2iUbmBRrX6L+zOjsXxE5q7S0tLB161YaGxsZMWIEZWVl/eqyq4MHD7J+3XrqDzYwJlbOpEmTItu1WldXx/e/PY/KkVMoGFAAwNFjR3hz3ybu++oXGTJkSFLbOXz4MPv372fw4MEZc1LcsWPHeOqJp6nZuI1v/OvXenz2r5KqSA8cOnSIvLN09hY5e61evZqlTyxjYmzSKeu3bN/MdXOv4sJ+cMJbPB5n1KhRuqRGpC/s3r2bhb99jnh9PSQSXHTBBdxwzbW6FjZDxeNx4vE4gwYNYty4cWk9GaYv1NbWUl9fz7nnnpuSEaCZ4Z0M6p1Evxnt97bmtZKqSJIaGhp4eP6TDKmcSOUlM0i0trJ502YaFizgrjvuSHd40kYikWDxosVUr9hIoQ2ixY8zcHg+n7hrbpfJxt2pra3l2LFjlJaWMnDgwD6Ouueam5t5ev4C3q6uYWBOIUcTTUyZUcmsW2ZFWtRi/PjxPJv7G5qONjGoIPgi2XikkeN5xxg3blyvt+/uvPXWW6xfsx6AqourqKioyKrrzZVURZK0fuNG/LzhFIczwOTk5jJuahVbXniRvXv3UlpamuYI5YTNmzezbvlmLoxdfPIf8u7ad1jw5ELu/txnOrSvr6/nV7+cT+2O/eRZLon8Vm645Xouvvjivg69R15+6WV2rH2Hi2LTMTMSiQSbVm1gRekKLr/i8shep6ioiFlzPsqiJ54hvyU4pno8v5mb586K5BrTZ5/5P9YsW0/pkOCz9OTrC5h2xVRm3jSz19vuK0qqIkk62NBAweCOJ2LknzOIxsZGWlpa2Lt3Lzk5OZSWlmbVt+v+pvr1akYOG3XK36CsZDRrtweXgAwbNuyU9vMff4rmeCsXjQ3OYD1y9AiLHnuWkpKSpKfRS6fXlr/OBaMrT+6CzcnJYdyo8axa/nqkSRVg6tSpxGIxtm/fDkAsFoskocbjcdYsr2Zq7OKT19qOOK+ENcurmXHpjKyZilBJVSRJY8rKeG3lChgXO7mu5fhxWuoP0djYyIPz5nE0L5dEIsHw/HxunzWbkn5cmD6TdXX6pZl1KACxb98+4ttqT5b2AygsKGRY/nCq16zL+KTq7rQcbyE/99TjxXl5+TQ3967kXlcGDx4c+Yw6e/bsodDOOaV4RW5OLgUMYs+ePVmTVPVVWiRJlZWVjMofwNurV9Nw4ADvxvfy1sqVXFJRwYKlSyi6sIoJf/RBJl7+Ifz80fx8/nxaWnp/MbmcuanTqojX7SaRSJxcF9+/hxGjizvMBNPc3EyudRxfFAwooKkpMyoRnY6ZMfmiSeyK7zxl/a69O5k6PXumkgvmme34eUnQQkFBQRoi6hklVZEk5efn86k5c/jjCypg2w6GvPsud1x5NaUlJTB8OEVt/lmPGD2aw3m57Nix4zRblFSpqqpi8vsrWLd9DW9tf5NN2zZwKLeO2R+f1aFtSUkJVuA0Hjl1mrT9h/YxcVLv6sD2lauvvYqWomNs3r6RnXt2sGnbBnKGO5d/ONpdv6k0fvx4coug9sB7U2vXHqglpyh4LFvoOlWRXnpp2TKWxXcTm3TqtXt/eGM1H7/sfUyeHG2JOEneO++8Qzwep7CwkAkTJnRZCm/Dhg0seHQRQ3PPZUD+AA4c3s/5U8q4/RNz0jIlXE8cPXqUTZs2sb/2XUpHlVBZWZlVZzAD7N27l6cee5qDtQ0ADC0Zwq1zbunzXb9mputURdJl7JgxPL92DYmJE0+eGHO8uZmWujpGjx6d5uh6r66uDiCyCbT70ujRo5P6G1RVVTHiyyOoXlvNkcajXF75fioqKrImoUKw+zTbyy2WlpbyuS/dy/79+wEoLi7Ouutfs+cdI5KhysvLmREbxxvLX2Ho+aNpbW3l8M53uO6y91FUVJTu8Hps3759zF+8mPihYNQwqmgot954IyNGjEhzZKlRUlLCtdelvwbt2c7Msvo9pt2/IhFIJBLU1NSw4c03yc/L48LJkykvL093WD3W3NzMdx76Mbljx1Jafj4Ae3fupHX7Dr70mbvTOqOISKpp969ImuXk5DBhwgQmTJiQ7lAiUVNTQ+PAAVSECRWgtLyct+JxampqmNTu+LGIBJRURaSDpqYmcju5jCFn4ECOHDmShoiktxobG9myZQuHDx3m/PLzicViKlCSAkqqItLByJEjOb58OYlE4uQ/3kQiQUvdway5CF/es3v3bh75yS/JacpnYN5AljevJFY1htvmfjyrTsbKBupNEemgrKyMabEYq19ZQfH4oFD6/pqtzIiNy/gKQ3Iqd+fXTy7ivNxSSsaWnFy3Yf06qqurmTFjRpoj7F809heRTs2eOZM5l1/B8IZDDG84xO1XfJhZN96Y7rDkDB08eJADe+soGf5eyUwzY+S5ZWxYuzGNkfVPGqmKSKdycnKoqqqKvMar9K3c3FzcHXc/5ZrPRKKVgf18ftl00EhVRKQfKyoqYkxFOTvj75XMbG1tZc/B3Uy7NDumtssmSqoiIv3crFtvIue8BOu3V7Nlx2bW71rDZddMp7KyMt2h9Tva/Ssi0s8NHTqUe774WXbu3ElTUxMjR47MyrKT2UBJVUTkLJCTk8PYsWPTHUa/p92/IiIiEVFSFRERiYiSqoiISESUVEVERCKipCoiIhIRJVUREZGIKKmKiIhERElVREQkIkqqIiIiEVFSFRERiYiSqoiISESUVEVERCKipCoiIhIRJVUREZGIKKmKiIhERElVREQkIkqqIiIiEVFSFRERiYiSqoiISESUVEVERCKS0qRqZjeY2RYze9vMvtbJ4wPN7LHw8ZVmFktlPCIimaahoYFlLy3jqSef5tVXX6WpqSndIUkv5KVqw2aWC3wXuA7YBbxmZgvdfWObZncDde4+wczmAt8Cbk9VTCIimSQej/PzH/2C/GOFDC4czNY3drLipVe5655PUVRUlO7wpAdSOVJ9H/C2u9e4ezPwS+Dmdm1uBn4aLv8KuMbMLIUxiYhkjN8++zzDrJgJ5RWMLB5F5dhJcDCP5cteSXdo0kOpTKqjgZ1t7u8K13Xaxt1bgHrgvBTGJCKSEY4fP872P+xkZPGoU9aXjShj87rNaYpKeitlu3+Bzkac3oM2mNm9wL3h3WNmtr6XsQkUA/vTHUQ/oH6Mhvqxna987f6ePE39GI3Knj4xlUl1F1De5v75wO4u2uwyszxgKHCg/YbcfR4wD8DMVrn7pSmJ+CyifoyG+jEa6sdoqB+jYWarevrcVO7+fQ2oMLNxZjYAmAssbNdmIfDpcPk24Pfu3mGkKiIikg1SNlJ19xYzuw/4DZALPOTuG8zsAWCVuy8Efgz8r5m9TTBCnZuqeERERFItlbt/cffFwOJ2677ZZvko8CdnuNl5EYQm6seoqB+joX6MhvoxGj3uR9PeVhERkWioTKGIiEhEMjapqsRhNJLox780s41mVm1mvzOzsemIM9N1149t2t1mZm5mOgOzE8n0o5nNCd+TG8zskb6OMRsk8bkeY2ZLzGx1+NmemY44M52ZPWRmtV1dpmmB/w77udrMZnS7UXfPuBvBiU1/AMYDA4C1wJR2bb4I/CBcngs8lu64M+2WZD9eDQwKl7+gfuxZP4bthgAvAiuAS9Mdd6bdknw/VgCrgXPD+yXpjjvTbkn24zzgC+HyFGBbuuPOxBvwYWAGsL6Lx2cCzxLUVPgAsLK7bWbqSFUlDqPRbT+6+xJ3P1HBewXB9cRyqmTejwD/DPwbcLQvg8siyfTjPcB33b0OwN1r+zjGbJBMPzpwonjwUDrWCBDA3V+kk9oIbdwM/MwDK4BhZjbqNO0zNqmqxGE0kunHtu4m+FYmp+q2H81sOlDu7ov6MrAsk8z7cSIw0cxeNrMVZnZDn0WXPZLpx38E7jSzXQRXYHypb0Lrd870f2hqL6nphchKHJ7lku4jM7sTuBS4MqURZafT9qOZ5QAPAnf1VUBZKpn3Yx7BLuCrCPaavGRmU939YIpjyybJ9OMdwMPu/m0z+yBBPYCp7p5IfXj9yhnnmUwdqZ5JiUNOV+LwLJdMP2Jm1wLfAGa7+7E+ii2bdNePQ4CpwFIz20Zw7GWhTlbqINnP9QJ3P+7uW4EtBElW3pNMP94NPA7g7q8ABQR1geXMJPU/tK1MTaoqcRiNbvsx3G35PwQJVcevOnfafnT3encvdveYu8cIjk3Pdvce1w/tp5L5XD9NcPIcZlZMsDu4pk+jzHzJ9OMO4BoAM5tMkFT39WmU/cNC4FPhWcAfAOrdfc/pnpCRu39dJQ4jkWQ//jswGHgiPM9rh7vPTlvQGSjJfpRuJNmPvwGuN7ONQCvwVXd/N31RZ54k+/GvgB+a2VcIdlfepUFHR2b2KMGhhuLw+PM/APkA7v4DguPRM4G3gSbgz7rdpvpZREQkGpm6+1dERCTrKKmKiIhERElVREQkIkqqIiIiEVFSFRERiYiSqkg7ZtZqZmvMbL2ZPWFmg1L4Wg+ExTcws/vP9LXC6+d+b2ZF3bdOPTNbeqLohZktNrNhvdzeVWa2KFy+ycz+KYo4RVJFSVWkoyPuPs3dpwLNwOeTeVKY4M7oM+Xu33T358O79wNnmsBnAmvdveEMn9dBWJksMu4+M+Lygs8As1P5JUekt5RURU7vJWACnJx7dn14uz9cFzOzTWb2PeANoNzM7jCzdWG7b4Xtcs3s4XDduvCifMJ1t5nZl4EyYEk4D+bdZvbgiSDM7B4z+49O4vsksKBdLD+0YC7S58ysMHxsWligvtrMnjKzc8P1S83sX8zsBeAvwni+H8ZQY2ZXWjDn5CYze7hNPN83s1Xh63Q6ejSzbWZWbGafD0f+a8xsq5ktCR+/3sxeMbM3wj0Cg8P1N5jZZjNbBnzsxPbC4gVLgZvO8G8o0nfSPZ+dbrpl2g04HP7MI0hYXwAuAdYB5xBUoNoATAdiQAL4QPicMoIScSPC5/8euCV8/m/bvMaw8OfDwG3h8jagOFw+h2DOzPzw/nLgwk5i3Q4MCZdjQAswLbz/OHBnuFwNXBkuPwD8Z7i8FPhem+09TDCVmBFMe9UAXEjwBfz1NtseHv7MDbdxUZvtXdr+9wnv5xN8SZlFUIf2ReCc8LG/Ab5JUE5vJ0G9Xwt/h0VttvFJ4Dvpfo/opltXN41URToqNLM1wCqCBPlj4HLgKXdvdPfDwHzgirD9dg/mWgS4DFjq7vs8mJLwFwQTIdcA483sOxZMZ3ba3bXu3kiQkG8ys0kEyXVdJ02Hu/uhNve3uvuacPl1IGZmQwmS+Avh+p+GMZ3wWLtt/trdneBLxF53X+fB7CYbCBI3wBwze4NgQvEqgomwu/NfBDW6f00w6cAU4OWwrz8NjAUmhb/DW2EMP2+3jVqCLy4iGSkja/+KpNkRd5/WdoWFhZG70Ni2aWcN3L3OzC4GPgL8OTAH+Ew3cfwI+FtgM/CTLtq0mFmOvzelV9tZhlqBwm5eA06Nv+02Eu22lwDyzGwc8NfAZeHv9TDBCLNLZnYXQdK878QqgpH7He3aTeP0U2sVAEdO91oi6aSRqkhyXgRuMbNBZnYOcCvBrsz2VgJXhscScwnmtXzBghlXctz9SeDvgRmdPPcQwTRyALj7SoJppz4BPNpFXFuA8acL3N3rgTozOzGy/lPghdM8pTtFBIm43sxKgRtP19jMLiFIwne2Sf4rgA+Z2Ynj1YPMbCLBF4hxZnZB2O6OdpubCKzvRewiKaWRqkgS3P2NcET2arjqR+6+2sxi7drtMbOvA0sIRmOL3X1BOEr9SZuzg7/eycvMA541sz3ufnW47nGC45h1XYT2DMEsG2938yt8GvhBeOZsDUnMttEVd19rZqsJdgfXAC9385T7gOEEJ2FBMJPKZ8PR66NmNjBs93fu/qaZ3Qs8Y2b7gWUEc9WecDWd951IRtAsNSIZLLxG80F3/10Xj48Cfubu1/VtZH0vHBU/4u7XpDsWka5o969IBjKzYWb2JsHx3U4TKgQjY4J5MzOi+EOKjSGYJ1QkY2mkKiIiEhGNVEVERCKipCoiIhIRJVUREZGIKKmKiIhERElVREQkIkqqIiIiEfl/bor8bydM6RcAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAF6CAYAAADBKYuwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1A0lEQVR4nO3dfZyc873/8dcnt7JJJIgsIbtxLxKlpFFEs3FXxVGnp06bbo+qVOivTSmlZagoU6W0tPT0hK2bI1m0OOquOGRpWpTgaNimRbNB3MTNJpKNyM3n98d1bYzJzuzsZq65rpl5Px+PeczOdfu5vjM7n/l+r+/3uszdERERkdLqE3cAIiIi1UgJWEREJAZKwCIiIjFQAhYREYmBErCIiEgMlIBFRERioAScIGa2yMwOjTuOUjOzMWbmZtYvAbH82szOizuOKJhZnZmtMLO+cccSl/BztnNM+97NzJ4xs/fN7Du9WP8EM5sXRWwSDyXgMmVmM8Mvk+9kTT8tnD4zptC6ZGa7mtlvzextM1tmZs+Z2enFTAZm1mJm39iUbbj7Ke5+YbFi6tTTHxnFSBTZP+jcfbG7D3H3dZuy3WIxs4bwOK/Omj7PzE6IKawonQW0uPtQd/9FVwuY2WfN7NEwSS81s0fM7JhiBhHnjxD5OCXg8vZ34GtZ044PpyeGme0EPAG8Auzp7sOA44AJwNA4Y8tUKTXDJLQk9MBK4HgzGxN3ID3RyzKuB57Ps80vAr8FbgS2B2qBHwL/0psYo1Bmn63EUwJOKDPb3cz+aWZfzrPYk0CNmY0L1xkHDAqnZ27raDN71szazezPZvaJjHk/MLOXwl/cL5jZv2bMOyGsjVxmZu+F8Xwua/7L4br/NLPGHHFeAPzZ3U9399cB3H2hu3/F3du7OPaP1dzC2v5N4d+bmdlNZvZOeDxPmlmtmaWBg4CrwmbWqzLK8UEze9fMFprZv2ds93oz+08zu9fMVgJTwmkXhfMbzOxVMzvDzN4ys9fN7OsZ629lZneZ2fIwjosKbSIM93O1md0Tlt8T4Q8VzOzRcLH/C4/lSwW8j4vM7Ptm9hyw0syagTrgrnAbZ2XXws3s62bWGu7/ZTM7OUesA8N9js+YtrWZrTKzkWY2wszuDpd518z+aGaFfre0A9cD5+fY94b3PnydfQwtYbn/OTzOu8L3ZXbG+zIma7NHhsf7tpn9NDNWMzsxLJP3zOx+M6vPmOdm9i0z+wfwjxzxHmNmz4dl0WJmY8PpDwNT+OjzuWvWegb8DLjQ3a9192Xuvt7dH3H3k7rYz0YtKpbRAmRmO1tQe14WHuct4fRifLb6ha9fCz87C83skK7KQ7rh7nok5AEsAg4F9gEWA0fnWXYmcBNwDnBJOO1S4Oxw+sxw2j7AW8B+QF+CGvMiYGA4/zhgFMGPsS8R1Ei2DeedAKwBTgrX/SawBDBgMLAc2C1cdltgXI5Y3wC+nudYxgAO9Mssh+xjDf8+GbgLqAlj2hfYPJzXAnwjY73BBLXurwP9wrJ4uzNOgi/+ZcCB4fFvFk67KJzfAKwFfgT0B44EOoAtwvk3h48aYI9wX/MKPMbrgXeBiWFss4GbM5Z3YOeM1929j4uAZ4HRwKAc5Zgdw1HATuH7OTk8tn1yxP8bIJ3x+lvAH8K/LwZ+HZZRf4IfQlbA570BeBXYho9/luYBJ2S/9zmOoQV4MTyOYcALBC1Ah4bleiNwXVa5zgW2JPiB8nfCzwxwbLitseG65xL8cMxc98Fw3UFdHM+uBP8/h4XlcFa4vQFdfT6z1t093P4OecrrBMLPV3Y5ZG8faAZSfPS5nlSszxawG8FnfVRGLDuV+vuyEh6qASfPQcDvga+5+90FLH8TMNXM+gNfDl9nOgn4L3d/wt3XufsNwGrg0wDu/lt3X+LBr+1bCH7ZT8xYv83dr/HgvOENBIm2Npy3HhhvZoPc/XV3z9W8thXwegHHUog14fZ2Do9nvrsvz7Hs0cAid7/O3de6+9PAbcAXM5a5093/FB7/Bzn29yN3X+Pu9wIrgN0saK7+N+B8d+9w9xcIyqcnbnf3v7j7WoIEvHeeZfO+j6FfuPsr7r6qkJ27+z3u/pIHHgEeIPj8dWUOMDXj9VfCaRCU0bZAfVhOf/Twm7nAON4gSOA/KnSdLNeFx7EMuA94yd3/NyzX3wKfzFr+End/190XA1fw0XGdDFzs7q3huj8G9s6sBYfz381Rxl8C7nH3B919DXAZQcI6oIBj2Cp8Lub/ST1BkvzA3fO1zPT0s7UOGAjsYWb93X2Ru79UpLirihJw8pxC8Kt7bucEM2sMm4tWmNl9mQuHXyIvEnxZ/MPdX8naXj1wRti01G5m7QS/ZEeF2z4+o+mpHRgPjMhY/42MfXWEfw5x95UEXzinAK+HTam75zimdwi+oIvhv4H7gZvNbImZXRr++OhKPbBf1rE3EtS4OmWXV7Z3wi/jTh3AEGBrglpS5vrdbSvbGxl/d243l7zvY2/2b2afM7PHw2bjdoIa/ogciz8MDDKz/cKEtDdwRzjvpwSfwQfCpt0f9CSO0CXAZ81sr16s+2bG36u6eJ1drpnl1MZHZVgPXJlRvu8StA5sl2PdbKPC7QHg7uvD5bfLucZH3gmfi/V/chZB7H8Jm8RPzLNsjz5b7v4icBpB68RbZnazmWUuKwVSAk6eU4A6M/t55wR3n+1B79Uh7v65Lta5ETgjfM72CkHT4fCMR427N4dfpNcA3wa2cvfhwAKCf9xuufv97n4YwZfG38JtdeV/CWqLhVpJ0KzbaUPCDGtYF7j7HgQ1i6MJOp5B0LSW6RXgkaxjH+Lu38w8jB7ElWkpQfP09hnTRvdyW4XI+T5mLJN9LDmPzcwGErQGXAbUhu/9veR478NkcitBbfErwN3u/n447313P8PddyToMHR6T88Juvs7BLXR7B7oOT8LmyDzfaojOK0CQRmfnFXGg9z9z5mh5tnuEoJkBmw4rzsaeK2AmBaG+y/0/2Rl+Jzr/+QNdz/J3UcR1Ox/Zbl7Pvf4s+Xuc9x9EsHxOsEPKOkhJeDkeR84AviMmf2kwHVuAQ4n+ILMdg1wSlhzMTMbbGZHmdlQgnOkTpBMsKCD0fgutrERCzo+HWNmgwmaq1YQNE115XzggLDDyzbh+jtb0JlqeBfLPwt82cz6m9kEMpqMzWyKme0ZNgEvJ2hq69zvm8COGdu5G9jVzP4j3FZ/M/tUZ8eYTRE2yd8OzDSzmrD2f3w3q/VE9rHkex8L3UamAQTNiEuBtRZ0rju8m5jmELR6NPJR83NnB56dw4SznOD96M1Qp58R/KjKfH+eJfhfqDOzYQR9HDbVmWa2hZmNBk4l+P+BoBn8bPuoU+MwMzuuB9u9FTjKzA4JW2XOIPjf+HP+1SBssj8dOM+CznGbm1kfM5tkZrO6WH4pQWL/qpn1DWu4O3XON7PjzKzzx+F7BP/nuf5PevTZsmA888Hhj7gPCFoZEjG0rdwoASeQBz2DDwM+Z2bdjkl191XhOa+Nzku5+1ME53iuIvhHfJGgMwfhecvLgccI/in3BP5UYJh9CL5glhA01U0G/l+O+F4C9iforPG8mS0jqH09RfCDI9t5BF8m7xH0oJ6TMW8b4HcEX/StwCN8dN77SuCLFvRg/UVYQzuc4Nz4EoIm30sIEk8xfJug488bBE3jzQRfuMUwE7ghbBL893zvYx4XA+eG2/he5oywbL5DkDTeI6jV/j7fxtz9CYKa1yiCc62ddiFo5VhB8Fn6lbu3AJjZfWZ2TncHG25/OUFHwi0zpj1IkCCfA+YT/KjaVHeG23oWuAdoCvd1B8Hn42YzW07QGtRVi1Ou+BcCXwV+SdDZ71+Af3H3Dwtc/3cEP3BOJPi8vglcFMbblZOAMwmar8fx8UT/KeAJM1tB8L6e6u7/DOfNZNM+WwOBn4TH+AYwkqAzqPSQ9aCvhIjkYWaXANu4e/bYbBGRjagGLNJLFowx/kTYbDcRmMZHHZNERPLSVU1Eem8oQbPzKIJxlJeTu7lQRORj1AQtIiISAzVBi4iIxEAJWEREJAaJOgc8YsQIHzNmTNxhJNbKlSsZPHhw3GFUPJVzaaicS0PlXBrz589/29237sk6iUrAY8aM4amnnoo7jMRqaWmhoaEh7jAqnsq5NFTOpaFyLg0za+t+qY9TE7SIiEgMlIBFRERioAQsIiISAyVgERGRGESagM1suJn9zsz+ZmatZrZ/lPsTEREpF1H3gr4S+IO7f9HMBvDxe1eKiIhUrcgSsJltDnyGj2599yFQ0G25REREKl2UTdA7Etzs+zoze8bMrg1v3i4iIlL1IrsZg5lNAB4HDnT3J8zsSmC5u5+Xtdx0YDpAbW3tvjfffHMk8VSCFStWMGTIkLjDqHgq59JQOZeGyrk0pkyZMt/dJ/RknSgT8DbA4+4+Jnx9EPADdz8q1zoTJkxwXQkrN13RpjRUzqWhci4NlXNpmFmPE3BkTdDu/gbwipntFk46BHgh3zpPz5/P+DFjaJ49O6qwREREEiHqXtAzgNlhD+iXga/nW3g1MK+tjWnTpwMwtbEx4vBERETiEek4YHd/1t0nuPsn3P1Yd38v3/L9gSlAU0cH6VQqytBERERilcgrYU0CWhcvjjuMqtXQ0KBzRiIiEUtkAp4HjK2rizsMERGRyCTqfsBrCJLvtJoa0ul03OGIiIhEJlEJeCCwR3096XRaHbBERKSiJSoB7zN0KE8tWhR3GCIiIpFL1jngUaPijkBERKQkkpWAdbk0ERGpEslKwO3tsG5d3FGIiIhELlkJ+KWXYOnSuKMQERGJXLISMMBbb8UdgYiISOSSl4DffDPuCERERCKXvASsGrCIiFQBJWAREZEYJCsB77ILfOlLcUchIiISuWQl4M0318U4RESkKiQrAb//Ptx9d9xRiIiIRC5ZCfiNN2DmzLijEBERiVyyEnD//uqEJSIiVSFZCbhfvyABu8cdiYiISKSSlYD794fVq2H58rgjERERiVTyEjCoGVpERCpeshLwsGHwwgtQXx93JCIiIpHqF3cAH9O3L4wdG3cUIiIikUtWDdgdrrwSnngi7khEREQilawEDHDaaXDffXFHISIiEqlkJWAz2GordcISEZGKl6wEDFBbq3sCi4hIxUteAh45UglYREQqXvIScG2tmqBFRKTiJWsYEsDVV8OAAXFHISIiEqnkJeCttoo7AhERkcglrwn6uefgzDPh7bfjjkRERCQyyUvAixbBZZcFzyIiIhUqeQl45MjgWR2xRESkgiUvAdfWBs8aiiQiIhUseQlYNWAREakCyUvAgwcHj3ffjTsSERGRyCRvGBLAO+/AwIFxRyEiIhKZ5NWAQclXREQqXjITcFMTfP/7cUchIiISmWQm4CeegBtuiDsKERGRyCQzAY8cCUuXwvr1cUciIiISiUg7YZnZIuB9YB2w1t0nFLRibW2QfN95B7beOsIIRURE4lGKXtBT3L1nF3bOHAusBCwiIhUomU3QtbWw5Zbw/vtxRyIiIhKJqGvADjxgZg78l7vPKmithoag+VlERKRCRZ2AD3T3JWY2EnjQzP7m7o9mLmBm04HpALW1tbS0tEQcUvlasWJFScqnvb0doGrfi1KVc7VTOZeGyjm5Ik3A7r4kfH7LzO4AJgKPZi0zC5gFMGHCBG9oaAhmfOUrcPDB8I1vRBliWWlpaWFD+URo+PDhACXZVxKVqpyrncq5NFTOyRXZOWAzG2xmQzv/Bg4HFhS8gZYWePzxaIITERGJWZQ14FrgDjPr3M8cd/9DwWuPHKk7IomISMWKLAG7+8vAXr3eQG2t7gksIiIVK5nDkEA1YBERqWjJTcC77hrUgkVERCpQchPweeepE5aIiFSs5CZgERGRCpbcBPz003DAAfDMM3FHIiIiUnTJTcDu8Nhj0NYWdyQiIiJFl9wE3NkBSz2hRUSkAiU3AWfeklBERKTCJDcBDxgAw4frYhwiIlKRkpuAIbgZw6hRcUchIiJSdFHfjnDT3HZb3BGIiIhEItk1YBERkQqV7AR86aWwV+/v5yAiIpJUyU7AH3wAzz0Ha9bEHYmIiEhRJTsBdw5FWro03jhERESKLNkJuPNiHBqKJCIiFSbZCbizBqwELCIiFSbZCbiuDo45BoYNizsSERGRokr2OODRo+HOO+OOQkREpOiSXQMWERGpUMlPwBMnwrRpcUchIiJSVMlPwACvvRZ3BCIiIkWV/AQ8cqRuSSgiIhUn+Qm4tlbDkEREpOIkPwF31oDd445ERESkaJI9DAlg0iRYvhw+/BAGDow7GhERkaJIfgI+6qjgISIiUkGS3wQNsHat7ogkIiIVJfkJ+IUXoH9/uOOOuCMREREpmuQn4BEjgmcNRRIRkQqS/AS81VbQp48SsIiIVJTkJ+C+fYNasMYCi4hIBUl+AobgYhyqAYuISAVJ/jAkgJNPhqFD445CRESkaMojAX/rW3FHICIiUlTl0QS9ejW88krcUYiIiBRNeSTgn/0M6uqgoyPuSERERIqiPBJwbW3wrI5YIiJSIcojAY8cGTwrAYuISIUojwTcWQPWWGAREakQ5ZGAVQMWEZEKUx4JeJtt4NJLYeLEuCMREREpisjHAZtZX+Ap4DV3P7pXGxk4EM48s6hxiYiIxKkUNeBTgdZN3srixfCPf2x6NCIiIgkQaQI2s+2Bo4BrN3ljX/kKnHLKJm9GREQkCaKuAV8BnAWs3+QtjRypXtAiIlIxIjsHbGZHA2+5+3wza8iz3HRgOkBtbS0tLS1dL3jssfDee5BrfhVYsWJF7vIpovb2doCS7CuJSlXO1U7lXBoq5+SKshPWgcAxZnYksBmwuZnd5O5fzVzI3WcBswAmTJjgDQ0NXW/t/PPhwgthzZrgHsFVqKWlhZzlU0TDhw8HKMm+kqhU5VztVM6loXJOrsiaoN39bHff3t3HAF8GHs5Ovj3R3NbGeHf69u/P+DFjaJ49u2ixioiIlFpZ3I6wefZsUrfcQhMwyZ15bW1Mmz4dgKmNjfEGJyIi0gsluRCHu7f0egwwkE6laPrgA6YA/YEpQFNHB+lUqmgxioiIlFJZXAmrdfFiJmVNmxROFxERKUdlkYDH1tUxL2vavHC6iIhIOSqLBJxKp5lWU8NcYA0wF5hWU0MqnY45MhERkd4pi05YnR2tZpx6Kq3vvMPYbbYhfdll6oAlIiJlqywSMARJeGpDA2y/PXzve6DkKyIiZawsmqA32G472GUXePTRuCMRERHZJGVTA97grrtAna9ERKTMlV8C3m23uCMQERHZZOXVBA2wfj2cey7MmRN3JCIiIr1Wfgm4Tx+44w648ca4IxEREem18kvAAFOmwLx5wZ2RREREylD5JuCVK+HJJ+OOREREpFfKMwFPnhw8z50bbxwiIiK9VJ4JeMQI+Mxn4IMP4o5ERESkV8pvGFKnRx6JOwIREZFeK88acCb3uCMQERHpsfJNwGvWwN57w49+FHckIiIiPVa+Cbh/f+jXDx5+OO5IREREeqx8EzAEw5Eefxw6OuKOREREpEfKPwF/+CH8+c9xRyIiItIj5Z2ADzoI+vbVeGARESk75TsMCWDoUDj7bJg4Me5IREREeqS8EzDAhRfGHYGIiEiPlXcTNATjgF9+GV59Ne5IREREClb+CXjVKth9d7jqqrgjERERKVj5J+CaGthvP40HFhGRslL+CRiC4Ujz58OyZXFHIiIiUpDKScDr18Mf/xh3JCIiIgUpuBe0mR0FjAM265zm7sm4EPP++8PAgcF44KOPjjsaERGRbhWUgM3s10ANMAW4Fvgi8JcI4+qZzTaDe+6B8ePjjkRERKQghTZBH+DuxwPvufsFwP7A6OjC6oVDDoHa2rijEBERKUihCXhV+NxhZqOANcAO0YTUSytXwhVXwGOPxR2JiIhItwpNwHeb2XDgp8DTwCLg5ohi6p3+/SGVgubmuCMRERHpVkEJ2N0vdPd2d78NqAd2d/fzog2thwYMoHnHHRn/61/Tt08fxo8ZQ/Ps2XFHJSIi0qW8nbDM7GB3f9jMvtDFPNz99uhC65nm2bNJLVxI05o1TALmtbUxbfp0AKY2NsYbnIiISJbuasCTw+d/6eKRqPE+6VSKpjVrmAL0J+iu3dTRQTqVijkyERGRjeWtAbv7+eGfP3L3f2bOM7NEdcJqXbyYSVnTJoXTRUREkqbQTli3dTHtd8UMZFONratjXta0eeF0ERGRpOnuHPDuBFe/GpZ1HnhzMq6IlQSpdJpp06fT1NERnAMGptXUkE6n4w5NRERkI91dCWs3gnO9wwnO+3Z6Hzgpoph6pbOj1YxzzqF18WLGbrEF6V/+Uh2wREQkkbo7B3ynmd0NfN/df1yimHptamNjkHD33DO4KpaSr4iIJFS354DdfR1wWAliKZ4jjgjujLRiRdyRiIiIdKnQTlh/NrOrzOwgM9un85FvBTPbzMz+Ymb/Z2bPm9kFRYi3MEccAR9+CC0tJduliIhITxR6O8IDwufM2w86cHCedVYDB7v7CjPrD8wzs/vc/fFexNkzkyZBTQ384Q+6PaGIiCRSQQnY3af0dMPu7kBnG3D/8OE93U6vDBwIp50GO+5Ykt2JiIj0VKH3A64FfgyMcvfPmdkewP7u3tTNen2B+cDOwNXu/sSmBlwwDT8SEZEEK7QJ+nrgOqDzuo5/B24B8ibgsAPX3uGdlO4ws/HuviBzGTObDkwHqK2tpaWY523XrQseAwYUb5sxWrFiRXHLJ4f29naAkuwriUpVztVO5VwaKufkKjQBj3D3W83sbAB3X2tm6wrdibu3m1kLcASwIGveLGAWwIQJE7yhoaHQzXZv991hl13grruKt80YtbS0UNTyyWH48OEAJdlXEpWqnKudyrk0VM7JVWgv6JVmthXhOVwz+zSwLN8KZrZ1WPPFzAYBhwJ/632ovXDoofDww7B6dUl3KyIi0p1CE/DpwO+BnczsT8CNwIxu1tkWmGtmzwFPAg+6+929jrQ3jjgCOjpgXvZVokVEROJVaC/op81sMsGlKQ1Y6O5rulnnOeCTmx7iJmhogP79g+FIhxwSaygiIiKZCq0BA0wE9gL2Aaaa2fHRhFREQ4bAQQcFCVhERCRBCh2G9N/ATsCzQGfnKydoik62Sy6BwYPjjkJERORjCu0FPQHYI7y4RnmZMCHuCERERDZSaBP0AmCbKAOJ1F13wdVXxx2FiIjIBgWPAwZeMLO/EFzjGQB3PyaSqIrtf/4Hbr8dTj4Z+hV6yCIiItEpNBvNjDKIyH32s/Cb38CTT8L++8cdjYiISMHDkB6JOpBIHXoo9OkT9IZWAhYRkQTIew7YzN43s+VdPN43s+WlCnKTbbkl7LefhiOJiEhi5E3A7j7U3Tfv4jHU3TcvVZBFccQR0N6uy1KKiEgi9ORCHOXtnHNg4cLgXsEiIiIxq54E3Nn7uQyHMouISOWpngQMcNVVsOeesH593JGIiEiVq64EPHQoPP88PPdc3JGIiEiVq64EfPjhwbN6Q4uISMyqKwFvuy3NdXWMnzmTvn36MH7MGJpnz447KhERqUJVdV3G5tmzSS1ZQtPatUwC5rW1MW36dACmNjbGG5yIiFSVqqoBp1MpmtauZQrQH5gCNHV0kE6lYo5MRESqTVUl4NbFi5mUNW1SOF1ERKSUqioBj62rY17WtHnhdBERkVKqqgScSqeZVlPDXGANMBeYVlNDKp2OOTIREak2VdUJq7Oj1YxUita2NsYC6XPPVQcsEREpuaqqAUOQhBcsWsS6d99lwZAhTH3hhbhDEhGRKlR1CXiDLbaA6dOhuRna2uKORkREqkz1JmCA006DUaPgxRfjjkRERKpMVZ0D3sjo0fDPf0LfvnFHIiIiVaa6a8AQJN+1a4ObNIiIiJSIEjDASSfBlCmwalXckYiISJVQAgY44QRYuhSuvz7uSEREpEooAQN85jOw335w2WWwbl3c0YiISBVQAgYwg7POgpdfhttvjzsaERGpAkrAnT7/edhlFyVgEREpieoehpSpb1946CHYbru4IxERkSqgGnCm0aOhTx/44IO4IxERkQqnBJztkUdo3morxo8aRd8+fRg/ZgzNs2fHHZWIiFQYNUFnaV64kFRHB00dHUwC5rW1MW36dADdNUlERIpGNeAs6R//mCZgCtA/fG7q6CCdSsUbmIiIVBQl4CytixczKWvapHC6iIhIsSgBZxlbV8e8rGnzwukiIiLFogScJZVOM62mhrnAGmAuMK2mhlQ6HXNkIiJSSdQJK0tnR6sZqRStixcztq6OdDqtDlgiIlJUqgF3YWpjIwsWLWLd2rUs+Oxnmfryy3GHJCIiFUYJOJ8+feCdd+Dyy2HZsrijERGRCqIE3J1UKki+V18ddyQiIlJBIkvAZjbazOaaWauZPW9mp0a1r0h98pNw5JHw85/DypVxRyMiIhUiyhrwWuAMdx8LfBr4lpntEeH+opNKwdtvw6xZcUciIiIVIrIE7O6vu/vT4d/vA61Aed5q6IADgvPAxx4bdyQiIlIhSjIMyczGAJ8Enuhi3nRgOkBtbS0tLS2lCKnn9tkH2tqCR0xWrFhRkvJpb28HSO57EbFSlXO1UzmXhso5uSJPwGY2BLgNOM3dl2fPd/dZwCyACRMmeENDQ9Qh9d4zz8AvfhE0RffvX/Ldt7S0UIryGT58OEBJ9pVEpSrnaqdyLg2Vc3JF2gvazPoTJN/Z7n57lPsqiddeg+uvhzlz4o5ERETKXJS9oA1oAlrd/WdR7aekjjoK9toLLr4Y1q2LOxoRESljUdaADwT+AzjYzJ4NH0dGuL/omQU9ohcuhNtuizsaEREpY5GdA3b3eYBFtf3YfOELsNtu8OMfw3HHBUlZRESkh3QlrJ7q2xcuuojmnXdm/Jgx9O3Th/FjxtA8e3bckYmISBnR3ZB6oXn1alL33UdTRweTgHltbUybPh1Ad00SEZGCqAbcC+lUiqaODqYA/YEpQFNHB+lUKubIRESkXCgB90Lr4sVMypo2KZwuIiJSCCXgXhhbV8e8rGnzwukiIiKFUALuhVQ6zbSaGuYCa4C5wLQBA0il0zFHJiIi5UKdsHqhs6PVjFSK1sWLGTtgAGlg6mGHxRuYiIiUDSXgXpra2PhRj+e2NnjsMRg5Mt6gRESkbCgBF0N9ffAAWLYMhg2LNx4REUk8nQMupvvug7q64K5JIiIieSgBF9N++8HgwdDYCKtWxR2NiIgkmBJwMW25ZXC7wtZWOPvsuKMREZEEUwIutsMPhxkz4Mor4cEH445GREQSSgk4CpdcAuPG0XzNNbphg4iIdEm9oKMwaBDNZ5xB6tvf1g0bRESkS6oBRyR9wQW6YYOIiOSkBBwR3bBBRETyUQKOiG7YICIi+SgBR6TLGzYAqdNOizUuERFJBnXCishGN2zYZhvSy5YxdcmSmCMTEZEkUAKO0Mdu2ADw4ouw447xBSQiIomhJuhS2nln6NMnuHvSOefA+vVxRyQiIjFRDTgOd94JF18M7sGziIhUHdWA4zBjBpxyCvzkJzSfeKKuliUiUoVUA46DGfzylzQ//jip666jCXS1LBGRKqMacFz69SP9zjs0ga6WJSJShZSAY9T66qu6WpaISJVSAo5RzqtljR4dRzgiIlJCSsAxynm1rKFD4b334g1OREQipQQco6mNjaRnzWJGfT2bmTGjvp70SScx9e9/h/32g4UL4w5RREQiogQcs6mNjSxYtIh169ezYNEips6aBXPnQns7HHccrF9P8+zZjB8zhkMOPlhDlUREKoSGISXRgQfCk0/C8uU0NzeTmj6dpo4ODVUSEakgqgEnVX097Lkn6VSKpo4ODVUSEakwSsAJ17p4sYYqiYhUICXghMs5VKmuLo5wRESkSJSAEy7nUKUf/CDewEREZJOoE1bCdXa0mpFK0bp4MWO33570iScy9ZRTgrspvfsubLVVzFGKiEhPqQZcBjqHKj308MMsWLyYqTNnBjOuuw522w3uu2/DUCXdVUlEpDyoBlzOJk2C7baj+cgjSfXrR9PatRqqJCJSJlQDLme77gqPP056yBCa1q7VUCURkTKiBFzuBg2ideVKDVUSESkzSsAVIOdQpWHDYPXqOEISEZFuRJaAzew3ZvaWmS2Iah8S6HKoUt++pNrbYffd4ZZbwF0dtUREEiTKGvD1wBERbl9CXd5V6YYbmPrAA7D55vDlL9O8yy6kvvENftnWxgfu/LKtjdT06UrCIiIxiSwBu/ujwLtRbV8+bqO7KjU2wmGHwdNPw29+Q3rRIpo++EAdtUREEkLngCtd377w9a/Tun69OmqJiCRI7OOAzWw6MB2gtraWlpaWeANKsBUrVvS6fHYYOZJ5b77JlIxp84Adtt56o222t7cDVO17sSnlLIVTOZeGyjm5Yk/A7j4LmAUwYcIEb2hoiDegBGtpaaG35XPh5ZczLfO+wgTXlE6vXUuDGUyevGHZ4cOHA/R6X+VuU8pZCqdyLg2Vc3KpCbpKdNlRa+ZMpm65Jfzbv8GKFXGHKCJSVaIchtQMPAbsZmavmtm0qPYlhdmoo9b558Mzz8C998KQIbB+Pc0//znPP/44jz7yiIYqiYhEKLImaHefGtW2pYiGDIGJEwFoPvFEUjfcwK2ga0qLiERMTdCyQfqhh2gCDVUSESkBJWDZoPW11/IPVXIH0BW1RESKIPZe0JIcY+vqmNfWttFQpbF1dfDWWzBpEs177UXqnntoWrVKzdQiIptANWDZoMtrStfUkEqn4d13ob6e9O9+R9OqVd02U6uWLCKSn2rAskFnDfbfp03jndWr2aO+nnQ6/VHN9sEHae3Th0lhU3SnDc3Up50GEyfS/OabpM4996Mxx6oli4hsRDVg+ZipjY2M+/Sn+czkyR9dUzpDzlsfbr45zJoFjY2kTz+dpo4O1ZJFRPJQApYeydlMffXVsHw5PPssrdB1Z662NvjZz+DZZ2m+6SZS06fr7kwiUrXUBC090lkjnpFK0bp4MWPr6j7eTL3XXoytr++6M1e/fnDGGQCk+/Shaf36Dct01pJnpFJqphaRqqAasPRYl7c+zJCzlnz99fDKK3DjjfnvzpRxjlnN1CJSqVQDlqLrtpb8H//B2PPO67qW7A677w7/+q80jxpF6uyz1ZlLRCqSasASiV7VkgcNInXCCVBfD5dfTvqSS9SZS0QqlmrAEotua8nLltG6xRb5O3N997s0z5lDKvM2i6oli0iZUA1YYpO3ljxsWO4hT337wq9/DWakUynVkkWkLCkBS2Ll7Mx1ww3w9NNA0GkrZy051Dx7toY8iUjiKAFLYk1tbCQ9axYz6uvZzIwZ9fWkZ80KaspDhgB5LgwyfHjwYvVq0l/7WkG1ZBGRUlIClkTr9ZCnq64KFnj/fVrXrevRkKdDDj44ZzO1mrJFpFjUCUvKWreduUaMyH1hkLo6uO8+OPNMmuvqSM2dS9Pq1Tk7c3U2ZavDl4gUg2rAUvZ6XUtOp2HQINh+e9J/+ANNq1dv3Ez97W/DJz4Bn/oU6WnT1JQtIkWjBCwVL++55ClT4P77aTXrupm6vR122gm23prWsHa80TJtbfD66xumqZlaRAqhBCxVobtacs7OXPX1cMcdcO+9QVN2V8sAbLcdNDTQfMIJpE46qdse10rSIqIELEI3zdTdLXPJJXD++bB0KekbbqBp1aqNm6lPPRUefDC4E9S11xY0LEpJWqTCuXtiHvvuu69LbnPnzi3JfiZPnuyTJ08uyb6SZM5NN/m4+nrvY+bj6ut9zk039XiZPmb+YdC3esPjQ/A+Ga/HbbmlP5y1zMPhdH/oIff33vM5N93kO9TU+MPh+g+D71BTs9H+Cok5qUr1ea52KufSAJ7yHua82JNu5kMJOD8l4NLYlHIeV1/fdXIdNcr90Ufdb7ut+yR99925t7P11u7t7e7uBSfppFJiKA2Vc2n0JgGrCVqkiHI2U196KRx0EHzhC7nPN2+3HTz0EOy/f+4rfC1dCosXA5D+zne67pV9zjkfW09N2SLJpAQsUkR5e1yH8p5LPvhg2HLL3El6m21gl10AaH3vva6T9CuvBC+am2k+9lhSJ55YlPPNSuQiRdbTKnOUDzVB56cm6NIoRTl3d+62kOblnM3U9fXBAjNm+LhwWpfLzJ3r3tLic666qtt9RdHcrabR0lA5lwY6B1zZlIBLIylfWMVI0jnPN5u5T5zoDrmT9Oabu3/zm+5nnOHjhg3Ln+wLjLnQZaR4kvJ5rnRKwBVOCbg0yukLq7tklreW3Nbm/sAD3idMyl12Ctt6a/fBg/Mvc8wx7mee6XOmTfMdNtusKDVpJeniKafPczlTAq5wSsClUUlfWEVpynb3cXV1XS8zaJD7uHHuAwbkrkmbuW+7rfsOO/i4Lbboepna2uAHwdq1StJFVkmf5yRTAq5wSsClUWlfWMVoyu52mbVr8w+vOukk969+tfshWFddlfsHwejRPYq5kGOvBpX2eU4qJeAKpwRcGtX4hVWMc7cF1aRzLTNypPt//Zd7a2v+JH3ffcF2tt02f5J+4w2fc+GF3TaJF+vYk6waP89xUAKucErApaEvrN4pSk3a8yTpYcPcFy92d899Ttos2MgVV+TvAX7XXe7f/a7PmTrVdxgwYON4/vu/exRz53LFSOTFTvb6PJeGEnCFUwIuDX1h9V4xEswmJenOGvBLL+XvAX7RRe41NbmT9JAh7gMHuo8Y4eP69ct96dDf/c79j3/0OZdd5jsMGrTJPz403Kt8KQFXOCXg0tAXVmnkK+eSjJNevz5/kj7rLPdTTsnfAzx85Ezk/fq577uv+6RJPm7IkNw1+5/8xP2WWwpqxi+kfIq5jBRGCbjCKQGXhhJwaWxqOZckSedbZrvt3J99tvuhXEce6T5lSveJfPLk/Oe/f/jDj45r4MCPH9egQT5n1qwg4PXrfc411xSlRl5IORe6TKVTAq5wSsCloQRcGuVyxbHIE3ldnXtHh/uyZbmXGTRoQwLOOSRsyJBgR2vW5D//3dHhfvzxPm7o0NzxfPBBUcunkPei0GWSSgm4wikBl4YScGkkpZxLdd66WMvkbTZ3D4aE5aptm7m/+ab76NH5lwH3oUNzn/8eOtT9+993P/98Hzd8eO6e7Q8/7P6nPwU90rNr5IMG+ZxrrnFftaro47/jaKJXAq5wSsClkZTEUOkqrZxL9aW/SbXtQpbZfvugk9qpp+ZvNh8wwD38u9fnyDOXqa3tepnBg91PP919yZIgSWcn8s028zkXXeT+4YdB+f3qVxsPPxs0KLIOcZ3vl4G7EnDlUgIujUpLDEmlcu6dUta2u03k69b5uNGju15mm23cW1rc778//7ntiy92v+CC/MsMGuT+0ku54wH3118PYs513fLOHvKplI/r0yf3cc2Z437mmbm3M2qU+/z57q2tPufKKz/2g8CVgCuXEnBpKDGUhsq590pV207EOfJCe62vWuXuBTTR//a3+Zvfv/lN90GDelezVwKuXErApaHEUBoq59KIurd5IcskKpEXukyuzm7bbut+553uzc0bJ2kl4MqlBFwaSgyloXIujaSUc5ISeWQ/CJKUgIEjgIXAi8APulteCTg/JeDSSMoXVqVTOZdGpZVzknpBZydp72GO7EdEzKwvcDVwGPAq8KSZ/d7dX4hqnyIiUtmmNjYytbExEct0zpuRSvFCWxvr825tY316uHxPTARedPeX3f1D4Gbg8xHuT0REpKSmNjayYNEiHOb3dN0oE/B2wCsZr18Np4mIiFS9yJqgAetimm+0kNl0YHr4coWZLYwwpnI3Ani7VDsz6+otrAolLecqpnIuDZVzaezW0xWiTMCvAqMzXm8PLMleyN1nAbMijKNimNlT7j4h7jgqncq5NFTOpaFyLg0ze6qn60TZBP0ksIuZ7WBmA4AvA7+PcH8iIiJlI7IasLuvNbNvA/cDfYHfuPvzUe1PRESknETZBI273wvcG+U+qoya6ktD5VwaKufSUDmXRo/L2dw36hclIiIiEYvyHLCIiIjkoAScQGb2GzN7y8wWZEzb0sweNLN/hM9bxBljJTCz0WY218xazex5Mzs1nK6yLiIz28zM/mJm/xeW8wXhdJVzBMysr5k9Y2Z3h69VzkVmZovM7K9m9mxn7+felLMScDJdT3Ad7Uw/AB5y912Ah8LXsmnWAme4+1jg08C3zGwPVNbFtho42N33AvYGjjCzT6NyjsqpQGvGa5VzNKa4+94ZQ7x6XM5KwAnk7o8C72ZN/jxwQ/j3DcCxpYypErn76+7+dPj3+wRfWtuhsi6q8Lr1K8KX/cOHo3IuOjPbHjgKuDZjssq5NHpczkrA5aPW3V+HIHEAI2OOp6KY2Rjgk8ATqKyLLmwWfRZ4C3jQ3VXO0bgCOAs+dl8AlXPxOfCAmc0Pr+YIvSjnSIchiZQDMxsC3Aac5u7Lq/gSnJFx93XA3mY2HLjDzMbHHFLFMbOjgbfcfb6ZNcQcTqU70N2XmNlI4EEz+1tvNqIacPl408y2BQif34o5nopgZv0Jku9sd789nKyyjoi7twMtBH0cVM7FdSBwjJktIrj73MFmdhMq56Jz9yXh81vAHQR3/+txOSsBl4/fA18L//4acGeMsVQEC6q6TUCru/8sY5bKuojMbOuw5ouZDQIOBf6Gyrmo3P1sd9/e3ccQXPr3YXf/KirnojKzwWY2tPNv4HBgAb0oZ12II4HMrBloILiLyZvA+cD/ALcCdcBi4Dh3z+6oJT1gZpOAPwJ/5aNzZucQnAdWWReJmX2CoFNKX4If/be6+4/MbCtUzpEIm6C/5+5Hq5yLy8x2JKj1QnAad467p3tTzkrAIiIiMVATtIiISAyUgEVERGKgBCwiIhIDJWAREZEYKAGLiIjEQAlYpEBm5mZ2ecbr75nZzCJt+3oz+2IxttXNfo4L7/40t4t5u5rZvWb2YrjMrWZWa2YNnXfW6cX+TjOzmk2PXKTyKAGLFG418AUzGxF3IJnMrG8PFp8G/D93n5K1jc2Ae4D/dPedwztE/Sew9SaGdxrQowTcw+MRKVtKwCKFWwvMAr6bPSO7BmtmK8LnBjN7JKxN/t3MfmJmjeH9cf9qZjtlbOZQM/tjuNzR4fp9zeynZvakmT1nZidnbHeumc0huJBIdjxTw+0vMLNLwmk/BCYBvzazn2at8hXgMXe/q3OCu8919wWZC5nZTDP7XsbrBWY2Jrw60D0W3PN3gZl9ycy+A4wC5nbWuM3scDN7zMyeNrPfhtfh7ry/6g/NbB5wnJl9x8xeCI/55m7eF5GypJsxiPTM1cBzZnZpD9bZCxhLcIvJl4Fr3X2imZ0KzCCoJQKMASYDOxEkrZ2B44Fl7v4pMxsI/MnMHgiXnwiMd/d/Zu7MzEYBlwD7Au8R3LXl2PDqUwcTXCHpqawYxwPze3BM2Y4Alrj7UWEMw9x9mZmdTnDf1LfDloNzgUPdfaWZfR84HfhRuI0P3H1SuP4SYAd3X915GUuRSqMasEgPuPty4EbgOz1Y7cnw3sOrgZeAzgT6V4Kk2+lWd1/v7v8gSNS7E1xn9ngLbuX3BLAVsEu4/F+yk2/oU0CLuy9197XAbOAzPYi3N/5KUIO/xMwOcvdlXSzzaWAPgh8RzxJcL7c+Y/4tGX8/B8w2s68StDyIVBwlYJGeu4LgXOrgjGlrCf+fwps8DMiYtzrj7/UZr9fz8Vao7OvCOmDADHffO3zs4O6dCXxljvh6cz/F5wlqzN3ZcJyhzQDc/e/h+n8FLg6bu7uK68GMY9nD3adlzM88nqMIWhv2BeabmVrrpOIoAYv0UHiB9VsJknCnRXyUwD4P9O/Fpo8zsz7heeEdgYXA/cA3LbhtYmdP5cH5NkJQU55sZiPCDk1TgUe6WWcOcICZHdU5wcyOMLM9s5ZbBOwTzt8H2CH8exTQ4e43AZd1LgO8DwwN/34cODBsWsfMasxs1+xAzKwPMNrd5xLcXH44MKSb+EXKjn5VivTO5cC3M15fA9xpZn8BHiJ37TSfhQSJshY4xd0/MLNrCZqpnw5r1kuBY/NtxN1fN7OzgbkEtc573T3vrdHcfVXY8esKM7sCWEPQDHwqQbN3p9v4qEn8SeDv4fQ9gZ+a2fpw3W+G02cB95nZ6+4+xcxOAJrD89kQnBPu3EanvsBNZjYsjP/n4X2ERSqK7oYkIiISAzVBi4iIxEAJWEREJAZKwCIiIjFQAhYREYmBErCIiEgMlIBFRERioAQsIiISAyVgERGRGPx/gYerTnWtDuYAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
"source": [
- "plt.subplot(111) # plot the training data and K prototypes\n",
- "plt.scatter(df_subset['Norm_Porosity'], df_subset['Norm_AI'], c=df_subset['clusters'], alpha = 0.4, linewidths=1.0, verts=None, edgecolors=\"black\")\n",
- "plt.scatter(kmeans_clustering.cluster_centers_[:,0],kmeans_clustering.cluster_centers_[:,1], marker='x', c=['black'])\n",
- "plt.title('Normalized Acoustic Impedence vs. Porosity with Final Prototypes'); plt.xlabel('Porosity (normalized)'); plt.ylabel('Acoustic impedance (normalized)')\n",
- "plt.xlim(0, 1)\n",
- "plt.ylim(0, 1)\n",
- "plt.subplots_adjust(left=0.0, bottom=0.0, right=0.95, top=1.0, wspace=0.2, hspace=0.2)"
+ "max_K = 50 # maximum number of clusters, k\n",
+ "inertia = []\n",
+ "for k in range(2,max_K+1):\n",
+ " kmeans_iter = KMeans(n_clusters=k, random_state=14, n_init = 10).fit(df.loc[:,['Norm_Porosity','Norm_AI']].values)\n",
+ " inertia.append(kmeans_iter.inertia_)\n",
+ "\n",
+ "plt.scatter(range(2,max_K+1),inertia,c='red',edgecolor='black',zorder=10)\n",
+ "plt.plot(range(2,max_K+1),inertia,c='red',ls='--',zorder=1)\n",
+ "plt.xlim(2,max_K); plt.xlabel('Number of Clusters'); plt.ylabel('Inertia'); plt.ylim(bottom=0)\n",
+ "plt.vlines(13,0,np.max(inertia),color='black'); plt.grid(True); plt.title('k-Means Clustering Intertia vs. Number of Clusters')\n",
+ "plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.1, wspace=0.2, hspace=0.2)"
]
},
{
@@ -1274,7 +1271,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -1288,7 +1285,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.5"
+ "version": "3.9.12"
}
},
"nbformat": 4,
diff --git a/SubsurfaceDataAnalytics_Confidence_Hypothesis.ipynb b/SubsurfaceDataAnalytics_Confidence_Hypothesis.ipynb
index e456518..ebd5a30 100644
--- a/SubsurfaceDataAnalytics_Confidence_Hypothesis.ipynb
+++ b/SubsurfaceDataAnalytics_Confidence_Hypothesis.ipynb
@@ -102,7 +102,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_ConvolutionalNeuralNetworks_Percolation_Threshold.ipynb b/SubsurfaceDataAnalytics_ConvolutionalNeuralNetworks_Percolation_Threshold.ipynb
index 757678e..bd666b3 100644
--- a/SubsurfaceDataAnalytics_ConvolutionalNeuralNetworks_Percolation_Threshold.ipynb
+++ b/SubsurfaceDataAnalytics_ConvolutionalNeuralNetworks_Percolation_Threshold.ipynb
@@ -126,7 +126,7 @@
"import scipy\n",
"from scipy.ndimage import gaussian_filter # Gaussian filter for smoothing our images\n",
"from sklearn.preprocessing import OneHotEncoder # one hot encoder for our response feature\n",
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python \n",
"import random # pseudo-random values\n",
"\n",
diff --git a/SubsurfaceDataAnalytics_Feature_Imputation.ipynb b/SubsurfaceDataAnalytics_Feature_Imputation.ipynb
index 8112780..87ac649 100644
--- a/SubsurfaceDataAnalytics_Feature_Imputation.ipynb
+++ b/SubsurfaceDataAnalytics_Feature_Imputation.ipynb
@@ -73,7 +73,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_Feature_Ranking.ipynb b/SubsurfaceDataAnalytics_Feature_Ranking.ipynb
index 01168ff..1c78cd3 100644
--- a/SubsurfaceDataAnalytics_Feature_Ranking.ipynb
+++ b/SubsurfaceDataAnalytics_Feature_Ranking.ipynb
@@ -85,7 +85,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_Feature_Transformations.ipynb b/SubsurfaceDataAnalytics_Feature_Transformations.ipynb
index b131a6e..d657c02 100644
--- a/SubsurfaceDataAnalytics_Feature_Transformations.ipynb
+++ b/SubsurfaceDataAnalytics_Feature_Transformations.ipynb
@@ -82,7 +82,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_Gridded_Data.ipynb b/SubsurfaceDataAnalytics_Gridded_Data.ipynb
index f4ee74e..88d9443 100644
--- a/SubsurfaceDataAnalytics_Gridded_Data.ipynb
+++ b/SubsurfaceDataAnalytics_Gridded_Data.ipynb
@@ -292,7 +292,7 @@
"\n",
"Let's look at the dataset that we loaded. \n",
"\n",
- "* Instead of working with the MatPlotLib package directly (common data visualization package for Python) we use *pixelplt* reimplimentation from our set of functions from my effort to bring GSLIB to Python\n",
+ "* Instead of working with the MatPlotLib package directly (common data visualization package for Python) we use *pixelplt* reimplementation from our set of functions from my effort to bring GSLIB to Python\n",
"\n",
"This function uses MatPlotLib with the function parameters to build a nice figure, so we can procastinate learning MatPlotLib for now! \n",
"\n",
diff --git a/SubsurfaceDataAnalytics_Multidimensional_Scaling.ipynb b/SubsurfaceDataAnalytics_Multidimensional_Scaling.ipynb
index 3bc1a93..fa21882 100644
--- a/SubsurfaceDataAnalytics_Multidimensional_Scaling.ipynb
+++ b/SubsurfaceDataAnalytics_Multidimensional_Scaling.ipynb
@@ -159,7 +159,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_Multivariate.ipynb b/SubsurfaceDataAnalytics_Multivariate.ipynb
index a6400a9..6750704 100644
--- a/SubsurfaceDataAnalytics_Multivariate.ipynb
+++ b/SubsurfaceDataAnalytics_Multivariate.ipynb
@@ -124,7 +124,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_NaiveBayes.ipynb b/SubsurfaceDataAnalytics_NaiveBayes.ipynb
index b01cf24..d030be2 100644
--- a/SubsurfaceDataAnalytics_NaiveBayes.ipynb
+++ b/SubsurfaceDataAnalytics_NaiveBayes.ipynb
@@ -141,7 +141,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_NeuralNet_Map.ipynb b/SubsurfaceDataAnalytics_NeuralNet_Map.ipynb
index 3abe5d6..ffec854 100644
--- a/SubsurfaceDataAnalytics_NeuralNet_Map.ipynb
+++ b/SubsurfaceDataAnalytics_NeuralNet_Map.ipynb
@@ -139,7 +139,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_PolynomialRegression.ipynb b/SubsurfaceDataAnalytics_PolynomialRegression.ipynb
index a563504..21305a8 100644
--- a/SubsurfaceDataAnalytics_PolynomialRegression.ipynb
+++ b/SubsurfaceDataAnalytics_PolynomialRegression.ipynb
@@ -1564,7 +1564,7 @@
"\n",
"# functions taken (without modification) from http://davmre.github.io/blog/python/2013/12/15/orthogonal_poly\n",
"# appreciation to Dave Moore for the great blog post on titled 'Orthogonal polynomial regression in Python'\n",
- "# functions are Dave's reimplimentation of poly() from R\n",
+ "# functions are Dave's reimplementation of poly() from R\n",
"\n",
"def ortho_poly_fit(x, degree = 1):\n",
" n = degree + 1\n",
diff --git a/SubsurfaceDataAnalytics_Spatial_Bootstrap.ipynb b/SubsurfaceDataAnalytics_Spatial_Bootstrap.ipynb
index 2115ce6..8f58baa 100644
--- a/SubsurfaceDataAnalytics_Spatial_Bootstrap.ipynb
+++ b/SubsurfaceDataAnalytics_Spatial_Bootstrap.ipynb
@@ -41,7 +41,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -78,7 +78,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
diff --git a/SubsurfaceDataAnalytics_TimeSeries.ipynb b/SubsurfaceDataAnalytics_TimeSeries.ipynb
index 07453ba..c3ee9c2 100644
--- a/SubsurfaceDataAnalytics_TimeSeries.ipynb
+++ b/SubsurfaceDataAnalytics_TimeSeries.ipynb
@@ -90,7 +90,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_advanced_clustering.ipynb b/SubsurfaceDataAnalytics_advanced_clustering.ipynb
index 574127f..61ed993 100644
--- a/SubsurfaceDataAnalytics_advanced_clustering.ipynb
+++ b/SubsurfaceDataAnalytics_advanced_clustering.ipynb
@@ -57,7 +57,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SubsurfaceDataAnalytics_bootstrap.ipynb b/SubsurfaceDataAnalytics_bootstrap.ipynb
index 48756a2..3877530 100644
--- a/SubsurfaceDataAnalytics_bootstrap.ipynb
+++ b/SubsurfaceDataAnalytics_bootstrap.ipynb
@@ -41,7 +41,7 @@
"**Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement.\n",
"\n",
"Assumptions\n",
- "* sufficient, representative sampling, identical, idependent samples\n",
+ "* sufficient, representative sampling, identical, independent samples\n",
"\n",
"Limitations\n",
"1. assumes the samples are representative \n",
@@ -78,7 +78,7 @@
"\n",
" * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). \n",
"\n",
- "6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
+ "6. Calculate a realization of the summary statistic of interest from the $n$ samples, e.g. $m^\\ell$, $\\sigma^2_{\\ell}$. Return to 3 for another realization.\n",
"\n",
"7. Compile and summarize the $L$ realizations of the statistic of interest.\n",
"\n",
@@ -112,7 +112,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
@@ -681,9 +681,9 @@
"source": [
"##### A Couple of Bootstrap Realizations\n",
"\n",
- "We will attempt boostrap by-hand and manually loop over $L$ realizations and draw $n$ samples to calculate the summary statistics of interest, mean and variance. The choice function from the random package simplifies sampling with replacement from a set of samples with weights.\n",
+ "We will attempt bootstrap by-hand and manually loop over $L$ realizations and draw $n$ samples to calculate the summary statistics of interest, mean and variance. The choice function from the random package simplifies sampling with replacement from a set of samples with weights.\n",
"\n",
- "This command returns a ndarray with k samples with replacment from the 'Porosity' column of our DataFrame (df) accounting for the data weights in column 'Wts'.\n",
+ "This command returns a ndarray with k samples with replacement from the 'Porosity' column of our DataFrame (df) accounting for the data weights in column 'Wts'.\n",
"```p\n",
"samples1 = random.choices(df['Porosity'].values, weights=df['Wts'].values, cum_weights=None, k=len(df))\n",
"```\n",
diff --git a/SubsurfaceDataAnalytics_clustering.ipynb b/SubsurfaceDataAnalytics_clustering.ipynb
index 2e48c1d..fcb2755 100644
--- a/SubsurfaceDataAnalytics_clustering.ipynb
+++ b/SubsurfaceDataAnalytics_clustering.ipynb
@@ -83,7 +83,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper\n",
+ "import geostatspy.GSLIB as GSLIB # GSLIB utilities, visualization and wrapper\n",
"import geostatspy.geostats as geostats # GSLIB methods convert to Python "
]
},
diff --git a/SuportVectorMachines.ipynb b/SuportVectorMachines.ipynb
index 9d4cda1..9767755 100644
--- a/SuportVectorMachines.ipynb
+++ b/SuportVectorMachines.ipynb
@@ -12,11 +12,11 @@
"\n",
"#### Contacts: [Twitter/@GeostatsGuy](https://twitter.com/geostatsguy) | [GitHub/GeostatsGuy](https://github.com/GeostatsGuy) | [www.michaelpyrcz.com](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446)\n",
"\n",
- "This is a tutorial for / demonstration of **support vector machine modeling in Python**. We have included in our workflow some simple wrappers and reimplementations of GSLIB: Geostatistical Library methods** (Deutsch and Journel, 1997). Support vector machines are a powerful method for machine learning classification. The support vector machine is a generalization of the maximal margin classifier that deals with cateogries that cannot be separated linearly. \n",
+ "This is a tutorial for / demonstration of **support vector machine modeling in Python**. We have included in our workflow some simple wrappers and reimplementations of GSLIB: Geostatistical Library methods** (Deutsch and Journel, 1997). Support vector machines are a powerful method for machine learning classification. The support vector machine is a generalization of the maximal margin classifier that deals with categories that cannot be separated linearly. \n",
"\n",
- "This exercise demonstrates the support vector machine approach in Python with wrappers and reimplimentation of GSLIB methods. The steps include:\n",
+ "This exercise demonstrates the support vector machine approach in Python with wrappers and reimplementation of GSLIB methods. The steps include:\n",
"\n",
- "1. generate a 2D sequential Guassian simulation using a wrapper of GSLIB's sgsim method\n",
+ "1. generate a 2D sequential Gaussian simulation using a wrapper of GSLIB's sgsim method\n",
"2. add a trend (to simplify the segmentation problem) and truncate to build a categorical, exhaustive truth model\n",
"3. extract random samples from the truth model\n",
"4. separate into training and testing (20%) datasets\n",
@@ -67,7 +67,7 @@
"import pandas as pd # DataFrames\n",
"import matplotlib.pyplot as plt # plotting\n",
"from sklearn.model_selection import train_test_split # training and testing datasets\n",
- "from sklearn.metrics import confusion_matrix # for sumarizing model performance\n",
+ "from sklearn.metrics import confusion_matrix # for summarizing model performance\n",
"import itertools # assist with iteration used in plot_confusion_matrix"
]
},
@@ -97,7 +97,7 @@
"14. plot_svc_decision_function - visualize the model with margins included\n",
"15. plot_confusion_matrix - plot confusion matrix\n",
"\n",
- "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the precense of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
+ "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the presence of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
]
},
{
diff --git a/Variogram.ipynb b/Variogram.ipynb
index 03510f4..ef756e6 100644
--- a/Variogram.ipynb
+++ b/Variogram.ipynb
@@ -12,23 +12,23 @@
"\n",
"#### Contacts: [Twitter/@GeostatsGuy](https://twitter.com/geostatsguy) | [GitHub/GeostatsGuy](https://github.com/GeostatsGuy) | [www.michaelpyrcz.com](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446)\n",
"\n",
- "This is a tutorial for / demonstration of **spatial variogram calculation in Python with simple wrappers and reimplementations of GSLIB: Geostatistical Library methods** (Deutsch and Journel, 1997). Variogram calculation is a valuable method for quantifying spaital continuity. We can interpret the resulting experimental variograms and then infer valid variogram models for use with spatial estimation and simulation. \n",
+ "This is a tutorial for / demonstration of **spatial variogram calculation in Python with simple wrappers and reimplementations of GSLIB: Geostatistical Library methods** (Deutsch and Journel, 1997). Variogram calculation is a valuable method for quantifying spatial continuity. We can interpret the resulting experimental variograms and then infer valid variogram models for use with spatial estimation and simulation. \n",
"\n",
"We will demonstration calculation of variograms on regular and irregular spaced data. \n",
"\n",
- "This exercise demonstrates the cell-based declustering approach in Python with wrappers and reimplimentation of GSLIB methods. The steps include:\n",
+ "This exercise demonstrates the cell-based declustering approach in Python with wrappers and reimplementation of GSLIB methods. The steps include:\n",
"\n",
"1. generate a 2D sequential Guassian simulation using a wrapper of GSLIB's sgsim method\n",
"2. calculatate the variogram map and anisotropic experimental variograms in the x and y directions with gam\n",
"3. visualize the experimental variograms\n",
"4. fit a positive definite variogram model with nested know licit variogram structures\n",
- "5. resample to form a nonuniformaly sampled dataset\n",
+ "5. resample to form a nonuniformly sampled dataset\n",
"6. calculate the variogram map, isotropic and directional experimental variograms with gamv\n",
"7. fit a positive definite variogram model with nested know licit variogram structures\n",
"\n",
"To accomplish this I have provide wrappers or reimplementation in Python for the following GSLIB methods:\n",
"\n",
- "1. sgsim - sequantial Gaussian simulation limited to 2D and unconditional\n",
+ "1. sgsim - sequential Gaussian simulation limited to 2D and unconditional\n",
"2. hist - histograms plots reimplemented with GSLIB parameters using python methods\n",
"3. locmap - location maps reimplemented with GSLIB parameters using python methods\n",
"4. pixelplt - pixel plots reimplemented with GSLIB parameters using python methods\n",
@@ -50,7 +50,7 @@
"\n",
"The GSLIB source and executables are available at http://www.statios.com/Quick/gslib.html. For the reference on using GSLIB check out the User Guide, GSLIB: Geostatistical Software Library and User's Guide by Clayton V. Deutsch and Andre G. Journel.\n",
"\n",
- "I did this to allow people to use these GSLIB functions that are extremely robust in Python. Also this should be a bridge to allow so many familar with GSLIB to work in Python as a kept the parameterization and displays consistent with GSLIB. The wrappers are simple functions declared below that write the parameter files, run the GSLIB executable in the working directory and load and visualize the output in Python. This will be included on GitHub for anyone to try it out https://github.com/GeostatsGuy/. \n",
+ "I did this to allow people to use these GSLIB functions that are extremely robust in Python. Also this should be a bridge to allow so many familiar with GSLIB to work in Python as a kept the parameterization and displays consistent with GSLIB. The wrappers are simple functions declared below that write the parameter files, run the GSLIB executable in the working directory and load and visualize the output in Python. This will be included on GitHub for anyone to try it out https://github.com/GeostatsGuy/. \n",
"\n",
"I used this tutorial in my Introduction to Geostatistics undergraduate class (PGE337 at UT Austin) as part of a first introduction to geostatistics and Python for the engineering undergraduate students. It is assumed that students have no previous Python, geostatistics nor machine learning experience; therefore, all steps of the code and workflow are explored and described. This tutorial is augmented with course notes in my class. The Python code and markdown was developed and tested in Jupyter. \n",
"\n",
@@ -94,7 +94,7 @@
"11. vmodel\n",
"12. sgsim\n",
"\n",
- "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the precense of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
+ "For now we embed the functions in the workflow below. In the future this will be turned into a proper Python package. Warning, there has been no attempt to make these functions robust in the presence of bad inputs. If you get a crazy error check the inputs. Are the arrays empty and are they the same size when they should be? Are the arrays the correct dimension? Is the parameter order mixed up? Make sure the inputs are consistent with the descriptions in this document."
]
},
{
@@ -198,7 +198,7 @@
" plt.show()\n",
" return\n",
" \n",
- "# pixel plot, reimplemention in Python of GSLIB pixelplt with MatPlotLib methods\n",
+ "# pixel plot, reimplementation in Python of GSLIB pixelplt with MatPlotLib methods\n",
"def pixelplt(array,xmin,xmax,ymin,ymax,step,vmin,vmax,title,xlabel,ylabel,vlabel,cmap):\n",
" xx, yy = np.meshgrid(np.arange(xmin, xmax, step),np.arange(ymax, ymin, -1*step))\n",
" plt.figure(figsize=(8,6))\n",
diff --git a/make_nonlinear_MV_spatial_data.ipynb b/make_nonlinear_MV_spatial_data.ipynb
index 6bf4b5d..99d80c5 100644
--- a/make_nonlinear_MV_spatial_data.ipynb
+++ b/make_nonlinear_MV_spatial_data.ipynb
@@ -32,7 +32,7 @@
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
- "import geostatspy.geostats as geostats # reimplimentation of GSLIB algorithms in Python\n",
+ "import geostatspy.geostats as geostats # reimplementation of GSLIB algorithms in Python\n",
"import geostatspy.GSLIB as GSLIB # GSLIB visualization, subroutines and algorithm wrappers\n",
"cmap = plt.cm.inferno # color map\n",
"import seaborn as sns\n",
diff --git a/make_nonlinear_MV_spatial_data_v3.ipynb b/make_nonlinear_MV_spatial_data_v3.ipynb
index 29e6f9f..5d9bd42 100644
--- a/make_nonlinear_MV_spatial_data_v3.ipynb
+++ b/make_nonlinear_MV_spatial_data_v3.ipynb
@@ -32,7 +32,7 @@
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
- "import geostatspy.geostats as geostats # reimplimentation of GSLIB algorithms in Python\n",
+ "import geostatspy.geostats as geostats # reimplementation of GSLIB algorithms in Python\n",
"import geostatspy.GSLIB as GSLIB # GSLIB visualization, subroutines and algorithm wrappers\n",
"cmap = plt.cm.inferno # color map\n",
"import seaborn as sns\n",
diff --git a/make_nonlinear_MV_spatial_data_v7.ipynb b/make_nonlinear_MV_spatial_data_v7.ipynb
index 10cc89e..f20a121 100644
--- a/make_nonlinear_MV_spatial_data_v7.ipynb
+++ b/make_nonlinear_MV_spatial_data_v7.ipynb
@@ -32,7 +32,7 @@
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
- "import geostatspy.geostats as geostats # reimplimentation of GSLIB algorithms in Python\n",
+ "import geostatspy.geostats as geostats # reimplementation of GSLIB algorithms in Python\n",
"import geostatspy.GSLIB as GSLIB # GSLIB visualization, subroutines and algorithm wrappers\n",
"cmap = plt.cm.inferno # color map\n",
"import seaborn as sns\n",
diff --git a/make_planview2D_spatial_data.ipynb b/make_planview2D_spatial_data.ipynb
index 4c85ef3..8c4fd8c 100644
--- a/make_planview2D_spatial_data.ipynb
+++ b/make_planview2D_spatial_data.ipynb
@@ -63,7 +63,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import geostatspy.geostats as geostats # reimplimentation of GSLIB algorithms in Python\n",
+ "import geostatspy.geostats as geostats # reimplementation of GSLIB algorithms in Python\n",
"import geostatspy.GSLIB as GSLIB # GSLIB visualization, subroutines and algorithm wrappers\n",
"import numpy as np # ndarrys for gridded data\n",
"import pandas as pd # DataFrames for tabular data\n",
diff --git a/make_univariate_data_for_variograms.ipynb b/make_univariate_data_for_variograms.ipynb
index 2b0b6d4..4dac97b 100644
--- a/make_univariate_data_for_variograms.ipynb
+++ b/make_univariate_data_for_variograms.ipynb
@@ -33,7 +33,7 @@
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import pyvista as pv\n",
- "import geostatspy.geostats as geostats # reimplimentation of GSLIB algorithms in Python\n",
+ "import geostatspy.geostats as geostats # reimplementation of GSLIB algorithms in Python\n",
"import geostatspy.GSLIB as GSLIB # GSLIB visualization, subroutines and algorithm wrappers\n",
"cmap = plt.cm.inferno # color map\n",
"import seaborn as sns\n",