-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tools.py
130 lines (106 loc) · 5.03 KB
/
train_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2022/4/7 17:20
# @Author : guoyankai
# @Email : [email protected]
# @File : train_tools.py
# @software: PyCharm
import os
from models.models import PNet
import torch
from core.image_reader import LanMarkDataset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, random_split
from core.logger import Train_Logger, LossAverage, AccAverage
from tqdm import tqdm
from models.LossFn import LossFn
from collections import OrderedDict
def val_pnet(net, val_loader, criterion, device):
net.eval()
val_loss = LossAverage()
val_acc = AccAverage()
with torch.no_grad():
for idx, batch in tqdm(enumerate(val_loader), total=len(val_loader)):
image_tensor = batch[0]["image"].to(device, dtype=torch.float32)
gt_label = batch[1]["label"].to(device, dtype=torch.float32)
gt_bbox = batch[1]["bbox_target"].to(device, dtype=torch.float32)
# 训练Pnet不需要关键点
# gt_landmark = batch[1]["landmark_target"].to(device,dtype=torch.float32)
cls_prod, box_offset_prod = net(image_tensor)
cls_loss = criterion.cls_loss(cls_prod, gt_label)
box_offset_loss = criterion.box_loss(box_offset_prod, gt_label, gt_bbox)
all_loss = cls_loss * 1.0 + box_offset_loss * 0.5
val_loss.update(all_loss.item(), image_tensor.size(0))
val_acc.update(cls_prod, gt_label)
val_log = OrderedDict({"Val_Loss": val_loss.avg})
val_log.update({"Val_acc": val_acc.avg})
return val_log
def train_pnet(model_store_path, end_epoch, imdb,
batch_size, base_lr=0.01, use_cuda=True):
device = torch.device("cuda:1")
os.makedirs(model_store_path, exist_ok=True)
net = PNet(is_train=True, use_cuda=use_cuda).to(device)
net.train()
criterion = LossFn()
optimizer = torch.optim.SGD(net.parameters(), lr=base_lr, momentum=0.9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=15, verbose=True)
dataset = LanMarkDataset(imdb)
n_val = int(len(dataset) * 0.2)
n_train = len(dataset) - n_val
train, val = random_split(dataset, [n_train, n_val])
train_loader = DataLoader(train, batch_size=batch_size, num_workers=0,
pin_memory=True, shuffle=False)
val_loader = DataLoader(val, batch_size=batch_size, num_workers=0,
pin_memory=True, shuffle=False)
log = Train_Logger(model_store_path, "train_Pnet_log")
best = [0, float("inf"), float("inf")]
trigger = 0
for cur_epoch in range(1, end_epoch + 1):
train_loss = LossAverage()
train_acc = AccAverage()
print("=====Epoch:{}======lr:{}".format(cur_epoch, optimizer.state_dict()["param_groups"][0]["lr"]))
for idx, batch in tqdm(enumerate(train_loader), total=len(train_loader)):
optimizer.zero_grad()
image_tensor = batch[0]["image"].to(device, dtype=torch.float32)
gt_label = batch[1]["label"].to(device, dtype=torch.float32)
gt_bbox = batch[1]["bbox_target"].to(device, dtype=torch.float32)
# 训练Pnet不需要关键点
# gt_landmark = batch[1]["landmark_target"].to(device,dtype=torch.float32)
# print("image_tensor:", image_tensor)
# print("gt_label:", gt_label, gt_label.shape)
# print("gt_bbox:", gt_bbox, gt_bbox.shape)
# print("gt_landmark:", gt_landmark)
cls_pred, box_offset_pred = net(image_tensor)
cls_loss = criterion.cls_loss(cls_pred, gt_label)
box_offset_loss = criterion.box_loss(box_offset_pred, gt_label, gt_bbox)
all_loss = cls_loss * 1.0 + box_offset_loss * 0.5
all_loss.backward()
optimizer.step()
train_loss.update(all_loss.item(), cls_pred.shape[0])
train_acc.update(cls_pred, gt_label)
train_log = OrderedDict({"Train_Loss": train_loss.avg})
train_log.update({"Train_acc": train_acc.avg})
train_log.update({"lr": optimizer.state_dict()["param_groups"][0]["lr"]})
# 验证过程
val_log = val_pnet(net, val_loader, criterion, device)
scheduler.step(val_log["Val_Loss"])
log.update(cur_epoch, train_log, val_log)
# save checkpoints
state = {"net": net.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": cur_epoch}
torch.save(state, os.path.join(model_store_path, "latest_model.pth"))
trigger += 1
if val_log["Val_Loss"] < best[1]:
print("save best model")
torch.save(state, os.path.join(model_store_path, "best_model.pth"))
best[0] = cur_epoch
best[1] = val_log["Val_Loss"]
best[2] = val_log["Val_acc"]
trigger = 0
print("Best Performance at Epoch:{}|{}".format(best[0], best[1]))
# 早停
if trigger >= 20:
print("=>early stopping")
break
torch.cuda.empty_cache()