1
+ <!DOCTYPE html>
2
+ < html lang ="en ">
3
+
4
+ < head >
5
+ < meta charset ="UTF-8 ">
6
+ < meta name ="viewport " content ="width=device-width, initial-scale=1.0 ">
7
+ < title > SegRap2025 Challenge</ title >
8
+ < link rel ="stylesheet " href ="shared.css ">
9
+ < style >
10
+ .task-section {
11
+ margin-bottom : 60px ;
12
+ }
13
+
14
+ .task-content {
15
+ background : white;
16
+ border-radius : 12px ;
17
+ padding : 20px ;
18
+ margin-bottom : 20px ;
19
+ }
20
+
21
+ .task-content li {
22
+ color : # 064b43 ;
23
+ margin-bottom : 0.3em ;
24
+ line-height : 1.5 ;
25
+ }
26
+
27
+ .task-overview {
28
+ margin-bottom : 40px ;
29
+ line-height : 1.6 ;
30
+ }
31
+
32
+ .evaluation-metrics {
33
+ margin-top : 20px ;
34
+ }
35
+
36
+ .metric-item {
37
+ margin-bottom : 20px ;
38
+ }
39
+
40
+ .metric-name {
41
+ font-weight : 500 ;
42
+ color : var (--text-primary );
43
+ font-size : 20px ;
44
+ margin-bottom : 8px ;
45
+ margin-top : 0px ;
46
+ }
47
+
48
+ .metric-description {
49
+ color : var (--text-secondary );
50
+ font-size : 0.95em ;
51
+ line-height : 1.5 ;
52
+ }
53
+
54
+ .news-list {
55
+ list-style : none;
56
+ padding : 0 ;
57
+ margin : 0 ;
58
+ }
59
+
60
+ .news-list li {
61
+ position : relative;
62
+ padding-left : 25px ;
63
+ margin-top : 1% ;
64
+ margin-bottom : 20px ;
65
+ line-height : 1.3 ;
66
+ color : # 000000 ;
67
+ font-size : 0.95em ;
68
+ font-weight : 400 ;
69
+ }
70
+
71
+ .news-list li ::before {
72
+ content : "•" ;
73
+ position : absolute;
74
+ left : 10px ;
75
+ color : # 00bfa5 ;
76
+ }
77
+
78
+ .news-list a {
79
+ color : # 00bfa5 ;
80
+ text-decoration : none;
81
+ font-weight : 500 ;
82
+ transition : color 0.2s ease;
83
+ }
84
+
85
+ .news-list a : hover {
86
+ color : # 00897b ;
87
+ }
88
+ </ style >
89
+ </ head >
90
+
91
+ < body >
92
+ < div class ="site-header ">
93
+ < div class ="header-image " style ="text-align: center; ">
94
+ < img src ="logo_web.png " alt ="SegRap Logo " style ="width: 50%; height: auto; ">
95
+ </ div >
96
+ < div class ="header-container ">
97
+ < div class ="content-section ">
98
+ < nav class ="nav-links ">
99
+ < a href ="index.html "> Home</ a >
100
+ < a href ="tasks.html "> Tasks</ a >
101
+ < a href ="dataset.html " class ="active "> Dataset</ a >
102
+ < a href ="evaluate.html "> Evaluate</ a >
103
+ < a href ="prizes.html "> Prizes</ a >
104
+ < a href ="leaderboard.html "> Leaderboard</ a >
105
+ < a href ="organizing.html "> Organizing</ a >
106
+ < a href ="contact.html "> Contact</ a >
107
+ </ nav >
108
+ </ div >
109
+ </ div >
110
+ </ div >
111
+
112
+ < main class ="main-content ">
113
+ <!-- Overview Section -->
114
+ < section id ="overview " class ="task-section ">
115
+ < h1 class ="section-title "> Description</ h1 >
116
+ < div class ="metric-name "> Task01: GTV segmentation</ div >
117
+ < p class ="metric-description ">
118
+ SegRap2025 Dataset will consist of CT images collected by Siemens CT scanners with the following
119
+ scanning conditions:
120
+ bulb voltage, 120 kV; current, 300 mA; scan thickness, 3.0 mm; resolution, 1024 × 1024 or 512
121
+ × 512; injected contrast
122
+ agent, iohexol (volume, 60~80 mL; rate, 2 mL/s; without delay). The dataset consists of clinically
123
+ required non-contrast
124
+ CT images (ncCT) and contrast CT images (ceCT) from patients with nasopharyngeal cancer before
125
+ treatment.
126
+ </ p >
127
+ < br >
128
+ < p class ="metric-description ">
129
+ The dataset consists of clinically required < strong > non-contrast CT images (ncCT)</ strong > and
130
+ < strong > contrast CT images (ceCT)</ strong > from patients with nasopharyngeal cancer before
131
+ treatment.
132
+ </ p >
133
+ < ul class ="news-list ">
134
+ < li > Training data will consist of CT images from < strong > 120 patients</ strong > with a
135
+ corresponding
136
+ label map, as well as < strong > 500 unlabeled cases</ strong > .</ li >
137
+ < li > Validation data will consist of CT images from < strong > 20 patients</ strong > .</ li >
138
+ < li > Testing data will consist of CT images from two cohorts: < strong > 60 patients from internal testing
139
+ cohort</ strong > , and < strong > 60 patients from external testing cohort</ strong > .
140
+ </ li >
141
+ </ ul >
142
+ <!-- <br> -->
143
+ < p class ="metric-description ">
144
+ < em > Note:</ em > All GTVs were annotated individually by oncologists using MIM Software and ITKSNAP,
145
+ the annotation of each organ was also stored individually. The expected output from your algorithm
146
+ should be a set of label maps.
147
+ </ p >
148
+ < br >
149
+
150
+ < div class ="metric-name "> Task02: LN CTV Segmentation</ div >
151
+ < p class ="metric-description ">
152
+ SegRap2025 Dataset will consists of CT images from Sichuan Cancer Hospital are collected by a
153
+ Brilliance CT Big Bore
154
+ system from Philips Healthcare (Philips Healthcare, Best, the Netherlands), with the following
155
+ scanning conditions: bulb
156
+ voltage at 120 kV, current ranging from 275 to 375 mA, slice thickness of 3.0 mm, and full
157
+ resolution of 512 × 512. An
158
+ injected contrast agent, iohexol, was used during the ceCT examination. Similarly, CT images from
159
+ Sichuan Provincial
160
+ People's Hospital, The First Affiliated Hospital of University of Science and Technology of China
161
+ and Southern Medical
162
+ University were acquired using a Somatom Definition AS 40 system from Siemens Healthcare (Siemens
163
+ Healthcare, Forcheim,
164
+ Germany), with the following conditions: bulb voltage ranging from 120 to140 kV, current ranging
165
+ from 280 to 380 mA,
166
+ slice thickness of 3.0 mm, and full resolution of 512 × 512. CT images from Daguan Hospital of
167
+ Chengdu Jinjiang were
168
+ acquired using a Somatom Definition AS 40 system from Siemens Healthcare (Siemens Healthcare,
169
+ Forcheim, Germany), with
170
+ the following conditions: bulb voltage 120 kV, current ranging from 200 to 250 mA, slice thickness
171
+ of 2.5 mm, and full
172
+ resolution of 512 × 512.
173
+ </ p >
174
+ < br >
175
+ < p class ="metric-description ">
176
+ The dataset consists of clinically required < strong > non-contrast CT images (ncCT)</ strong > and/or
177
+ < strong > contrast CT images (ceCT)</ strong > from patients with nasopharyngeal cancer before
178
+ treatment.
179
+ </ p >
180
+ < ul class ="news-list ">
181
+
182
+ < li > Training data will consist of CT images from < strong > 262 patients from five cohorts</ strong >
183
+ (150 paired CT, 32 ncCT and 80 ceCT) with
184
+ a corresponding label map, as well as < strong > 500 unlabeled cases</ strong > .</ li >
185
+ < li > Validation data will consist of < strong > 40 patients from external testing
186
+ cohort</ strong > : < em > 20 with paired CT</ em > , < em > 10 with only ncCT</ em > , and < em > 10 with
187
+ only ceCT</ em > .
188
+ </ li >
189
+ < li > Testing data will consist of < strong > 100 patients from external testing
190
+ cohort</ strong > : < em > 40 with paired CT</ em > , < em > 30 with only ncCT</ em > , and < em > 30 with
191
+ only ceCT</ em > .</ li >
192
+ </ ul >
193
+ <!-- <br> -->
194
+ < p class ="metric-description ">
195
+ < em > Note:</ em > All LN CTVs were annotated individually by oncologists using MIM Software and
196
+ ITKSNAP, the annotation of each organ was
197
+ also stored individually. The expected output from your algorithm should be a set of label maps.
198
+ </ p >
199
+ < br >
200
+
201
+ < h2 class ="section-title "> Download</ h2 >
202
+ < div class ="task-content ">
203
+ < div class ="metric-name "> Task01: GTV Segmentation</ div >
204
+ < p class ="metric-description ">
205
+ The training data (with labels) and validation data (without lables) can be downloaded at: < a
206
+ href ="https://drive.google.com/drive/folders/115mzmNlZRIewnSR2QFDwW_-RkNM0LC9D "> GoogleDrive</ a >
207
+ and < a
208
+ href ="https://pan.baidu.com/s/1KYH4j5CQO_qx7wg7GkkR7Q?pwd=2023#list/path=%2F "> BaiduNetDisk</ a > .
209
+ The unzipped password is < em > segrap2023@uestc</ em > .
210
+ </ p >
211
+ < br >
212
+
213
+ < div class ="metric-name "> Task02: LN CTV Segmentation</ div >
214
+ < p class ="metric-description ">
215
+ The training data (with labels) can be downloaded at: < a
216
+ href ="https://figshare.com/articles/dataset/LNCTVSeg-DataSet_zip/26793622?file=48684664 "> here</ a > ,
217
+ and the unzipped passowrd is < em > lnctvseg@uestc</ em > .
218
+ < br >
219
+ The validation data (without labels) can be
220
+ downloaded at: < a
221
+ href ="https://drive.google.com/file/d/1vcEX4aLnwi32c10ronFbdxMy49JDhjtQ/view?usp=sharing "> GoogleDrive</ a >
222
+ and < a href ="https://pan.baidu.com/s/18ZKqRBOWR0BWFQ9Z6HXv2w?pwd=2025 "> BaiduNetDisk</ a > .
223
+ < br >
224
+ </ p >
225
+ < br >
226
+
227
+ < div class ="metric-name "> Supplementary unlabeled data</ div >
228
+ < p class ="metric-description ">
229
+ A total of 500 < strong > unlabeled images</ strong > are provided at: < a
230
+ href ="https://drive.google.com/file/d/1pfYGXHg62gV-77LYv-U-9_hdQh81KYHb/view?usp=sharing "> GoogleDrive</ a >
231
+ and < a href ="https://pan.baidu.com/s/1JzayTGV-EBuXYeiLhGlfew?pwd=2025 "> BaiduNetDisk</ a > .
232
+ Participants
233
+ may explore
234
+ self-supervised or semi-supervised learning strategies to enhance model generalizability.
235
+ </ p >
236
+ < br >
237
+
238
+ < div class ="metric-name "> Note</ div >
239
+ < ul class ="news-list ">
240
+ < li > Please fill out the < a
241
+ href ="https://drive.google.com/file/d/1KvEB41N4PvYyAAha--xDrCbvUEWg9Ljm/view?usp=sharing "> EndUserAgreement</ a > ,
242
+ and email a scan of the signed document to
< em > [email protected] </ em > . Then, we will provide
243
+ you with the unzipped password for the Task02 validation set and Supplementary unlabeled data.
244
+ </ li >
245
+ < li > SegRap2025 focuses on the GTV and LN CTV segmentation. Participants are encouraged to leverage
246
+ < strong > OAR anatomical information</ strong > to support GTV segmentation, but segmentation of
247
+ OARs are not necessary.
248
+ </ li >
249
+ < li > The use of < strong > foundation models</ strong > is permitted, but additional external data are not
250
+ allowed.
251
+ </ li >
252
+ </ ul >
253
+ < br >
254
+ </ div >
255
+
256
+ </ section >
257
+
258
+
259
+ </ main >
260
+ </ body >
261
+
262
+ </ html >
0 commit comments