From 62b07b83ce6968fff68e6e6970707b9330377660 Mon Sep 17 00:00:00 2001 From: Barry Trager Date: Fri, 24 Jan 2025 16:12:28 -0500 Subject: [PATCH] cleanup --- coq/QLearn/jaakkola_vector.v | 96 ------------------------------------ 1 file changed, 96 deletions(-) diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index 5c593639..95c8ace7 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -3037,102 +3037,6 @@ Section jaakola_vector2. lra. Qed. - Lemma condexp_sqr_bounded (XF : Ts -> R) (C : R) - {dom2 : SigmaAlgebra Ts} - (sa_sub2 : sa_sub dom2 dom) - {rvXF : RandomVariable dom borel_sa XF} : - almostR2 prts Rle (rvsqr XF) (const C) -> - almostR2 (prob_space_sa_sub prts sa_sub2) Rbar_le (ConditionalExpectation prts sa_sub2 (rvsqr XF)) (const C). - Proof. - intros. - generalize (Condexp_const prts sa_sub2 C); intros. - assert (IsFiniteExpectation prts (rvsqr XF)). - { - apply (IsFiniteExpectation_abs_bound_almost prts (rvsqr XF) (const C)). - - revert H. - apply almost_impl. - unfold const, rvsqr, rvabs. - apply all_almost; intros ??. - now rewrite <- Rabs_sqr. - - apply IsFiniteExpectation_const. - } - generalize (Condexp_ale prts sa_sub2 (rvsqr XF) (const C)); intros. - rewrite Condexp_const in H2. - now apply H2. - Qed. - - Lemma condexp_sqr_bounded_prts (XF : Ts -> R) (C : R) - {dom2 : SigmaAlgebra Ts} - (sa_sub2 : sa_sub dom2 dom) - {rvXF : RandomVariable dom borel_sa XF} : - almostR2 prts Rle (rvsqr XF) (const C) -> - almostR2 prts Rbar_le (ConditionalExpectation prts sa_sub2 (rvsqr XF)) (const C). - Proof. - intros. - apply (almost_prob_space_sa_sub_lift prts sa_sub2). - now apply condexp_sqr_bounded. - Qed. - - Lemma condexp_square_bounded (XF : Ts -> R) (C : R) - {dom2 : SigmaAlgebra Ts} - (sa_sub2 : sa_sub dom2 dom) - {rvXF : RandomVariable dom borel_sa XF} - {isfe : IsFiniteExpectation prts XF} - {rv3 : RandomVariable dom borel_sa (FiniteConditionalExpectation prts sa_sub2 XF)} : - (forall ω, Rabs (XF ω) <= C) -> - almostR2 prts Rbar_le - (ConditionalExpectation - prts sa_sub2 - (rvsqr (rvminus XF - (FiniteConditionalExpectation prts sa_sub2 XF)))) - (const (Rsqr (2 * C))). - Proof. - intros. - apply condexp_sqr_bounded_prts. - assert (almostR2 prts Rle (FiniteConditionalExpectation prts sa_sub2 XF) (const C)). - { - generalize (FiniteCondexp_ale prts sa_sub2 XF (const C)); intros. - apply (almost_prob_space_sa_sub_lift prts sa_sub2). - rewrite FiniteCondexp_const in H0. - apply H0. - apply all_almost; intros ?. - unfold const. - specialize (H x). - now rewrite Rabs_le_both in H. - } - assert (almostR2 prts Rle (const (- C)) (FiniteConditionalExpectation prts sa_sub2 XF)). - { - generalize (FiniteCondexp_ale prts sa_sub2 (const (- C)) XF ); intros. - apply (almost_prob_space_sa_sub_lift prts sa_sub2). - rewrite FiniteCondexp_const in H1. - apply H1. - apply all_almost; intros ?. - unfold const. - specialize (H x). - now rewrite Rabs_le_both in H. - } - revert H0; apply almost_impl. - revert H1; apply almost_impl. - unfold const, rvsqr, rvminus, rvplus, rvopp, rvscale. - apply all_almost; intros ???. - apply Rsqr_le_abs_1. - eapply Rle_trans. - apply Rabs_triang. - repeat rewrite Rabs_mult. - rewrite Rabs_m1, Rmult_1_l. - rewrite (Rabs_right 2); try lra. - assert (0 <= C). - { - eapply Rle_trans; cycle 1. - apply (H x). - apply Rabs_pos. - } - rewrite (Rabs_right C); try lra. - replace (2 * C) with (C + C) by lra. - apply Rplus_le_compat; trivial. - now rewrite Rabs_le_both. - Qed. - Lemma LimSup_pos_0 (f : nat -> R) : (forall n, 0 <= f n) -> LimSup_seq f = 0->