-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdepth_estimator.py
96 lines (79 loc) · 2.55 KB
/
depth_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# coding: utf-8
"""
depth_estimator.py: Code about the depth estimation on top of the I2I translation
"""
from utils.data_structure import *
from utils.custom_dataset import CustomDataset
def optim_simple():
import depth_simple_optim_lr
depth_simple_optim_lr.main()
def optim_add_text():
import depth_add_text_optim_lr
depth_add_text_optim_lr.main()
def train_simple(lr):
import depth_simple_train
depth_simple_train.main(lr)
def train_add_text(lr):
import depth_add_text_train
depth_add_text_train.main(lr)
def train_add_text_ignoretext(lr):
import depth_add_text_ignoretext_train
depth_add_text_ignoretext_train.main(lr)
def optimize_lr(model):
if model == "simple":
optim_simple()
elif model == "add_text":
optim_add_text()
else:
raise NotImplementedError
def train(model, lr):
if model == "simple":
train_simple(lr)
elif model == "add_text":
train_add_text(lr)
elif model == "add_text_ignoretext":
train_add_text_ignoretext(lr)
else:
raise NotImplementedError
def generate_depth_images(model, lr):
if model == "simple":
import depth_simple_generatedeptheval
depth_simple_generatedeptheval.main(lr)
elif model == "add_text":
import depth_add_text_generatedeptheval
depth_add_text_generatedeptheval.main(lr)
elif model == "add_text_ignoretext":
import depth_add_text_ignoretext_generatedeptheval
depth_add_text_ignoretext_generatedeptheval.main(lr)
else:
raise NotImplementedError
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("model",
type=str,
help="which model to use (simple, add_text, add_text_ignoretext)")
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--train",
help="training the model",
action="store_true"
)
group.add_argument(
"--optimize_lr",
help="optimizing the learning rate",
action="store_true"
)
group.add_argument(
"--generate_depth_images",
help="generating depth images (trained depth estimator on comics)",
action="store_true"
)
args = parser.parse_args()
if args.optimize_lr:
optimize_lr(args.model)
if args.train:
train(args.model, lr=1e-6)
if args.generate_depth_images:
generate_depth_images(args.model, lr=1e-6)