diff --git a/TopasOpt/Optimisers.py b/TopasOpt/Optimisers.py index 21623f4..713403b 100755 --- a/TopasOpt/Optimisers.py +++ b/TopasOpt/Optimisers.py @@ -3,27 +3,30 @@ This module contains the specific optimisation algorithms for TopasOpt. Most functionality is defined in TopasOptBaseClass, which other optimisers inherit from. """ -import subprocess -import jsonpickle -from matplotlib import pyplot as plt +import logging +import os # matplotlib.use('Agg') # if having trouble with generating figures through ssh, this resolves... import shutil -from scipy.optimize import minimize -from scipy import stats +import stat +import subprocess +import sys +from abc import abstractmethod from pathlib import Path + +import jsonpickle import numpy as np -import sys, os from bayes_opt import BayesianOptimization from bayes_opt import acquisition +from bayes_opt.event import Events from bayes_opt.logger import JSONLogger from bayes_opt.util import load_logs, NotUniqueError -from bayes_opt.event import Events +from matplotlib import pyplot as plt +from scipy import stats +from scipy.optimize import minimize +from scipy.optimize import rosen from sklearn.gaussian_process.kernels import Matern -import logging + from .utilities import bcolors, FigureSpecs, newJSONLogger, ReadInLogFile, PlotLogFile -import stat -from scipy.optimize import rosen -from abc import abstractmethod ch = logging.StreamHandler() formatter = logging.Formatter('[%(filename)s: line %(lineno)d %(levelname)8s] %(message)s') diff --git a/pyproject.toml b/pyproject.toml index 148b1c0..72f8d67 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "topasopt" -version = "1.0.0" +version = "1.0.1" description = "" authors = ["brendan whelan"] license = "MIT" diff --git a/tests/test_optimisers.py b/tests/test_optimisers.py index 8b401d5..5a4f768 100644 --- a/tests/test_optimisers.py +++ b/tests/test_optimisers.py @@ -73,7 +73,7 @@ def test_Nelder_Mead_UserDefinedSimplex(): def test_Bayesian(): ## Test Bayesian - optimisation_params['Nitterations'] = 50 + optimisation_params['Nitterations'] = 100 optimisation_params['Suggestions'] = np.array([0.7, 0.7]) Optimiser = to.BayesianOptimiser(optimisation_params=optimisation_params, BaseDirectory=BaseDirectory,