|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "%load_ext autoreload\n", |
| 10 | + "%autoreload 2\n", |
| 11 | + "\n", |
| 12 | + "import numpy as np\n", |
| 13 | + "import matplotlib.pyplot as plt\n", |
| 14 | + "import plotly.express as px\n", |
| 15 | + "import networkx\n", |
| 16 | + "from loguru import logger\n", |
| 17 | + "from tqdm.notebook import tqdm\n", |
| 18 | + "\n", |
| 19 | + "from pim.models.network import Network\n", |
| 20 | + "from pim.models.new.stone import StoneExperiment, StoneResults\n", |
| 21 | + "from pim.models.new.stone.rate import CXRatePontin, CPU4PontinLayer\n", |
| 22 | + "\n", |
| 23 | + "from pim.models.stone import analysis\n", |
| 24 | + "\n", |
| 25 | + "logger.remove()\n" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": null, |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "x = np.linspace(0, 1, 100)\n", |
| 35 | + "bins = np.linspace(0, 1, 10, endpoint=False)\n", |
| 36 | + "print(bins)\n", |
| 37 | + "y = (np.digitize(x, bins)-1) / 10\n", |
| 38 | + "plt.plot(x, x)\n", |
| 39 | + "plt.plot(x, y)" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": null, |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "def create_quantized_layer(N):\n", |
| 49 | + " def closure(*args, **kwargs):\n", |
| 50 | + " return QuantizedCPU4PontinLayer(N, *args, **kwargs)\n", |
| 51 | + " return closure\n", |
| 52 | + "\n", |
| 53 | + "class QuantizedCPU4PontinLayer(CPU4PontinLayer):\n", |
| 54 | + " def __init__(self, N, *args, **kwargs):\n", |
| 55 | + " super().__init__(*args, **kwargs)\n", |
| 56 | + " self.N = N\n", |
| 57 | + " self.bins = np.linspace(0, 1, self.N, endpoint = False)\n", |
| 58 | + " \n", |
| 59 | + " def step(self, network: Network, dt: float):\n", |
| 60 | + " \"\"\"Memory neurons update.\n", |
| 61 | + " cpu4[0-7] store optic flow peaking at left 45 deg\n", |
| 62 | + " cpu[8-15] store optic flow peaking at right 45 deg.\"\"\"\n", |
| 63 | + " tb1 = network.output(self.TB1)\n", |
| 64 | + " tn1 = network.output(self.TN1) * dt\n", |
| 65 | + " tn2 = network.output(self.TN2) * dt\n", |
| 66 | + "\n", |
| 67 | + " mem_update = np.dot(self.W_TN, tn2)\n", |
| 68 | + " mem_update -= np.dot(self.W_TB1, tb1)\n", |
| 69 | + " mem_update = np.clip(mem_update, 0, 1)\n", |
| 70 | + " mem_update *= self.gain\n", |
| 71 | + " self.memory += mem_update\n", |
| 72 | + " self.memory -= 0.125 * self.gain * dt\n", |
| 73 | + " self.memory = np.clip((np.digitize(self.memory, self.bins) - 1) / self.N, 0.0, 1.0)" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "parameters = {\n", |
| 83 | + " \"model\": \"stone\",\n", |
| 84 | + " \"T_outbound\": 1500,\n", |
| 85 | + " \"T_inbound\": 1000,\n", |
| 86 | + " \"time_subdivision\": 1,\n", |
| 87 | + " \"noise\": 0.1,\n", |
| 88 | + " \"cx\": \"pontin\"\n", |
| 89 | + "}\n", |
| 90 | + "\n", |
| 91 | + "def create_experiment(cpu4):\n", |
| 92 | + " cx = CXRatePontin(CPU4LayerClass=cpu4, noise = parameters[\"noise\"])\n", |
| 93 | + " cx.setup()\n", |
| 94 | + " experiment = StoneExperiment(parameters)\n", |
| 95 | + " experiment.cx = cx\n", |
| 96 | + " return experiment\n", |
| 97 | + "\n", |
| 98 | + "def run_experiment(cpu4, N = 0, ts = 1, report = False):\n", |
| 99 | + " experiment = create_experiment(cpu4)\n", |
| 100 | + " experiment.parameters[\"time_subdivision\"] = ts\n", |
| 101 | + " results = experiment.run(\"test\")\n", |
| 102 | + " if report:\n", |
| 103 | + " results.report()\n", |
| 104 | + " return np.linalg.norm(results.closest_position())\n" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "run_experiment(CPU4PontinLayer, N=1, ts=10, report=True)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": null, |
| 119 | + "metadata": {}, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "mean_benchmark = np.mean([run_experiment(CPU4PontinLayer) for i in tqdm(range(0, 10))])\n", |
| 123 | + "print(f\"Benchmark mean: {mean_benchmark}\")" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": null, |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [], |
| 131 | + "source": [ |
| 132 | + "Ns = range(10, 10000, 10)\n", |
| 133 | + "results1 = [run_experiment(create_quantized_layer(N), ts=1) for N in tqdm(Ns)]\n", |
| 134 | + "results2 = [run_experiment(create_quantized_layer(N), ts=2) for N in tqdm(Ns)]\n", |
| 135 | + "results10 = [run_experiment(create_quantized_layer(N), ts=10) for N in tqdm(Ns)]" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": null, |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [], |
| 143 | + "source": [ |
| 144 | + "px.scatter(x=Ns, y=results1, labels={\"x\": \"resolution\", \"y\": \"smallest distance from nest\"})" |
| 145 | + ] |
| 146 | + } |
| 147 | + ], |
| 148 | + "metadata": { |
| 149 | + "kernelspec": { |
| 150 | + "display_name": "pim", |
| 151 | + "language": "python", |
| 152 | + "name": "pim" |
| 153 | + }, |
| 154 | + "language_info": { |
| 155 | + "codemirror_mode": { |
| 156 | + "name": "ipython", |
| 157 | + "version": 3 |
| 158 | + }, |
| 159 | + "file_extension": ".py", |
| 160 | + "mimetype": "text/x-python", |
| 161 | + "name": "python", |
| 162 | + "nbconvert_exporter": "python", |
| 163 | + "pygments_lexer": "ipython3", |
| 164 | + "version": "3.10.4" |
| 165 | + } |
| 166 | + }, |
| 167 | + "nbformat": 4, |
| 168 | + "nbformat_minor": 4 |
| 169 | +} |
0 commit comments