|
1 | 1 | import math |
2 | | -from typing import List |
| 2 | +from typing import Dict, List |
3 | 3 |
|
4 | 4 | from graphgen.bases.datatypes import Token |
5 | 5 |
|
@@ -49,16 +49,105 @@ def yes_no_loss(tokens_list: List[List[Token]], ground_truth: List[str]) -> floa |
49 | 49 | return sum(losses) / len(losses) |
50 | 50 |
|
51 | 51 |
|
| 52 | +def _normalize_yes_no(tokens: List[Token]) -> Dict[str, float]: |
| 53 | + """ |
| 54 | + Mapping yes/no synonyms to their probabilities and normalizing. |
| 55 | + For example, given tokens with probabilities: |
| 56 | + - "yes" (0.6) |
| 57 | + - "yeah" (0.2) |
| 58 | + - "no" (0.1) |
| 59 | + - "nope" (0.1) |
| 60 | + The function will return: |
| 61 | + {"yes": 0.8, "no": 0.2} |
| 62 | + Among them, "yes" and "yeah" are synonyms for "yes", |
| 63 | + while "no" and "nope" are synonyms for "no". |
| 64 | + If neither "yes" nor "no" synonyms are present, it returns: |
| 65 | + {"yes": 0.5, "no": 0.5} |
| 66 | + """ |
| 67 | + yes_syno = { |
| 68 | + # English yes synonyms |
| 69 | + "yes", |
| 70 | + "yeah", |
| 71 | + "yea", |
| 72 | + "yep", |
| 73 | + "yup", |
| 74 | + "yay", |
| 75 | + "ya", |
| 76 | + "yah", |
| 77 | + "sure", |
| 78 | + "certainly", |
| 79 | + "absolutely", |
| 80 | + "definitely", |
| 81 | + "exactly", |
| 82 | + "indeed", |
| 83 | + "right", |
| 84 | + "correct", |
| 85 | + "true", |
| 86 | + "t", |
| 87 | + "1", |
| 88 | + # Chinese yes synonyms |
| 89 | + "是", |
| 90 | + "对", |
| 91 | + "好的", |
| 92 | + "行", |
| 93 | + "可以", |
| 94 | + "没错", |
| 95 | + "当然", |
| 96 | + "确实", |
| 97 | + "正确", |
| 98 | + "真", |
| 99 | + "对的", |
| 100 | + } |
| 101 | + no_syno = { |
| 102 | + # English no synonyms |
| 103 | + "no", |
| 104 | + "nope", |
| 105 | + "nop", |
| 106 | + "nah", |
| 107 | + "naw", |
| 108 | + "na", |
| 109 | + "negative", |
| 110 | + "never", |
| 111 | + "not", |
| 112 | + "false", |
| 113 | + "f", |
| 114 | + "0", |
| 115 | + # Chinese no synonyms |
| 116 | + "不", |
| 117 | + "不是", |
| 118 | + "没有", |
| 119 | + "错", |
| 120 | + "不对", |
| 121 | + "不行", |
| 122 | + "不能", |
| 123 | + "否", |
| 124 | + "假的", |
| 125 | + } |
| 126 | + |
| 127 | + yes_prob = 0.0 |
| 128 | + no_prob = 0.0 |
| 129 | + for tok in tokens: |
| 130 | + t = tok.text.lower().strip() |
| 131 | + if t in yes_syno: |
| 132 | + yes_prob += tok.prob |
| 133 | + elif t in no_syno: |
| 134 | + no_prob += tok.prob |
| 135 | + |
| 136 | + total = yes_prob + no_prob |
| 137 | + if total == 0: |
| 138 | + return {"yes": 0.5, "no": 0.5} |
| 139 | + return {"yes": yes_prob / total, "no": no_prob / total} |
| 140 | + |
| 141 | + |
52 | 142 | def yes_no_loss_entropy( |
53 | 143 | tokens_list: List[List[Token]], ground_truth: List[str] |
54 | 144 | ) -> float: |
55 | 145 | """Calculate the loss for yes/no question using entropy.""" |
56 | 146 | losses = [] |
57 | | - for i, tokens in enumerate(tokens_list): |
58 | | - token = tokens[0] |
59 | | - assert token.text.lower() in ["yes", "no"] |
60 | | - if token.text == ground_truth[i]: |
61 | | - losses.append(-math.log(token.prob)) |
62 | | - else: |
63 | | - losses.append(-math.log(1 - token.prob)) |
| 147 | + for toks, gt in zip(tokens_list, ground_truth): |
| 148 | + dist = _normalize_yes_no(toks) |
| 149 | + gt = gt.lower() |
| 150 | + assert gt in {"yes", "no"} |
| 151 | + prob_correct = dist[gt] |
| 152 | + losses.append(-math.log(prob_correct)) |
64 | 153 | return sum(losses) / len(losses) |
0 commit comments