-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
43 lines (37 loc) · 1.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
from torchvision import transforms, datasets, models
from model import mymodel
from torch.autograd import Variable
import os
from PIL import Image
import time
data_dir = './data/test_imgs' #change the dir path to your images
weights_path ='./data/weights'
class_path = './data/pytorch'
classes = os.listdir(class_path)
classes.sort()
use_gpu = torch.cuda.is_available()
transforms_op = [
transforms.Resize((400,200), interpolation=3),
# transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
data_transforms = transforms.Compose(transforms_op)
model = mymodel(len(classes))
model.load_state_dict(torch.load(os.path.join(weights_path,'net_23.pth')))
if use_gpu:
model.cuda()
model.train(False)
for name in os.listdir(data_dir):
img = Image.open(os.path.join(data_dir,name))
img = img.convert('RGB')
img = data_transforms(img)
img = img.unsqueeze(0)
if use_gpu:
img = Variable(img.cuda())
else:
img = Variable(img)
output = model(img)
_, preds = torch.max(output.data, 1)
print('The pic {} is {}.'.format(name, classes[preds.data[0]][10:]))