-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
71 lines (59 loc) · 1.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# exploralytics/main.py
import pandas as pd
import numpy as np
from src.visualize import Visualizer
def create_sample_data():
"""Create sample data for demonstration."""
np.random.seed(42)
# Create a dataset with different types of distributions
n_samples = 1000
df = pd.DataFrame({
'normal': np.random.normal(0, 1, n_samples),
'uniform': np.random.uniform(-3, 3, n_samples),
'exponential': np.random.exponential(2, n_samples),
'sales': np.random.normal(100, 15, n_samples),
'date': pd.date_range('2023-01-01', periods=n_samples)
})
# Add some correlations
df['correlated'] = df['normal'] * 0.7 + np.random.normal(0, 0.3, n_samples)
return df
def main():
"""Main function to demonstrate visualizations."""
# Create sample data
df = create_sample_data()
# Initialize visualizer
viz = Visualizer(color='#006400')
# 1. Distribution plots
dist_fig = viz.plot_histograms(
df,
title='Distribution Analysis',
num_cols=3,
subtitle='Looking at different variable distributions'
)
dist_fig.show()
# # 2. Correlation analysis
# corr_fig = viz.plot_correlation(
# df[['normal', 'uniform', 'exponential', 'correlated']],
# title='Correlation Analysis'
# )
# corr_fig.show()
# # 3. Time series analysis
# time_fig = viz.plot_time_series(
# df,
# date_column='date',
# value_column='sales',
# title='Sales Over Time'
# )
# time_fig.show()
# Custom styling example
viz.update_style(font_size=14, title_x=1)
custom_fig = viz.plot_histograms(
df,
title='Custom Styled Plot',
columns=['normal', 'uniform'],
num_cols=2,
subtitle='With larger font size'
)
custom_fig.show()
if __name__ == "__main__":
main()