diff --git a/src/solvers/cholmod.jl b/src/solvers/cholmod.jl index 8fca80b6..cf3df3f1 100644 --- a/src/solvers/cholmod.jl +++ b/src/solvers/cholmod.jl @@ -1504,8 +1504,8 @@ end Compute the Cholesky (``LL'``) factorization of `A`, reusing the symbolic factorization `F`. `A` must be a [`SparseMatrixCSC`](@ref) or a [`Symmetric`](@ref)/ -[`Hermitian`](@ref) view of a `SparseMatrixCSC`. Note that even if `A` doesn't -have the type tag, it must still be symmetric or Hermitian. +[`Hermitian`](@ref) view of a `SparseMatrixCSC`. Note that if `A` doesn't +have the type tag, it must itself be symmetric or Hermitian. See also [`cholesky`](@ref). @@ -1540,8 +1540,8 @@ end Compute the Cholesky factorization of a sparse positive definite matrix `A`. `A` must be a [`SparseMatrixCSC`](@ref) or a [`Symmetric`](@ref)/[`Hermitian`](@ref) -view of a `SparseMatrixCSC`. Note that even if `A` doesn't -have the type tag, it must still be symmetric or Hermitian. +view of a `SparseMatrixCSC`. Note that if `A` doesn't +have the type tag, it must itself be symmetric or Hermitian. If `perm` is not given, a fill-reducing permutation is used. `F = cholesky(A)` is most frequently used to solve systems of equations with `F\\b`, but also the methods [`diag`](@ref), [`det`](@ref), and @@ -1674,8 +1674,8 @@ end Compute the ``LDL'`` factorization of `A`, reusing the symbolic factorization `F`. `A` must be a [`SparseMatrixCSC`](@ref) or a [`Symmetric`](@ref)/[`Hermitian`](@ref) -view of a `SparseMatrixCSC`. Note that even if `A` doesn't -have the type tag, it must still be symmetric or Hermitian. +view of a `SparseMatrixCSC`. Note that if `A` doesn't +have the type tag, it must itself be symmetric or Hermitian. See also [`ldlt`](@ref). @@ -1716,8 +1716,8 @@ end Compute the ``LDL'`` factorization of a sparse matrix `A`. `A` must be a [`SparseMatrixCSC`](@ref) or a [`Symmetric`](@ref)/[`Hermitian`](@ref) -view of a `SparseMatrixCSC`. Note that even if `A` doesn't -have the type tag, it must still be symmetric or Hermitian. +view of a `SparseMatrixCSC`. Note that if `A` doesn't +have the type tag, it must itself be symmetric or Hermitian. A fill-reducing permutation is used. `F = ldlt(A)` is most frequently used to solve systems of equations `A*x = b` with `F\\b`. The returned factorization object `F` also supports the methods [`diag`](@ref),