-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_linear_classifier.py
151 lines (128 loc) · 4.78 KB
/
train_linear_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from pathlib import Path
import argparse
from torch.optim import Adam
from torch.cuda.amp import GradScaler
import time
from utils import get_parent_dir, get_config, get_elapsed_time, apply_seed
from model import LinearClassifier
from data.data_augmentation import get_train_transformer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_params", type=str, required=True)
parser.add_argument("--data_dir", type=str, required=True)
parser.add_argument("--n_epochs", type=int, required=True)
parser.add_argument("--batch_size", type=int, required=True)
parser.add_argument("--n_cpus", type=int, required=False, default=0)
args = parser.parse_args()
return args
def get_dls(data_dir, img_size, batch_size, n_cpus):
transformer = get_train_transformer(img_size=img_size)
train_ds = ImageFolder(Path(data_dir)/"train", transform=transformer)
train_dl = DataLoader(
train_ds,
batch_size=batch_size,
shuffle=True,
num_workers=n_cpus,
pin_memory=True,
drop_last=True,
)
val_ds = ImageFolder(Path(data_dir)/"val", transform=transformer)
val_dl = DataLoader(
val_ds,
batch_size=batch_size,
shuffle=False,
num_workers=n_cpus,
pin_memory=True,
drop_last=True,
)
return train_dl, val_dl
def train_single_step(model, image, gt, optim, scaler, device):
image = image.to(device)
gt = gt.to(device)
with torch.autocast(
device_type=device.type,
dtype=torch.float16 if device.type == "cuda" else torch.bfloat16,
enabled=True if device.type == "cuda" else False,
):
pred = model(image)
loss = model.get_loss(pred=pred, gt=gt)
optim.zero_grad()
if CONFIG["DEVICE"].type == "cuda" and scaler is not None:
scaler.scale(loss).backward()
scaler.step(optim)
scaler.update()
else:
loss.backward()
optim.step()
return loss.item()
@torch.no_grad()
def validate(val_dl, model, device):
model.eval()
batch_size = val_dl.batch_size
sum_corr = 0
for image, gt in val_dl:
image = image.to(device)
gt = gt.to(device)
pred = model(image)
acc = model.get_top_k_acc(pred=pred, gt=gt, k=5)
sum_corr += acc * batch_size
avg_acc = sum_corr / (batch_size * len(val_dl))
model.train()
return avg_acc
if __name__ == "__main__":
args = get_args()
PARENT_DIR = get_parent_dir()
CONFIG = get_config(config_path=PARENT_DIR/"configs/cifar100.yaml", args=args)
apply_seed(CONFIG["SEED"])
model = LinearClassifier(
img_size=CONFIG["ARCHITECTURE"]["IMG_ENC"]["IMG_SIZE"],
patch_size=CONFIG["ARCHITECTURE"]["IMG_ENC"]["PATCH_SIZE"],
n_layers=CONFIG["ARCHITECTURE"]["IMG_ENC"]["N_LAYERS"],
n_heads=CONFIG["ARCHITECTURE"]["IMG_ENC"]["N_HEADS"],
hidden_dim=CONFIG["ARCHITECTURE"]["IMG_ENC"]["HIDDEN_DIM"],
mlp_dim=CONFIG["ARCHITECTURE"]["IMG_ENC"]["MLP_DIM"],
embed_dim=CONFIG["ARCHITECTURE"]["EMBED_DIM"],
n_classes=CONFIG["IMAGENET1K"]["N_CLASSES"],
).to(CONFIG["DEVICE"])
state_dict = torch.load(CONFIG["CKPT_PATH"], map_location=CONFIG["DEVICE"])
model.img_enc.load_state_dict(state_dict["image_encoder"])
optim = Adam(
model.parameters(),
lr=CONFIG["TRAINING"]["LR"],
betas=(CONFIG["OPTIMIZER"]["BETA1"], CONFIG["OPTIMIZER"]["BETA2"]),
weight_decay=CONFIG["OPTIMIZER"]["WEIGHT_DECAY"],
)
scaler = GradScaler(enabled=True if CONFIG["DEVICE"].type == "cuda" else False)
train_dl, val_dl = get_dls(
data_dir=CONFIG["DATA_DIR"],
img_size=CONFIG["ARCHITECTURE"]["IMG_ENC"]["IMG_SIZE"],
batch_size=CONFIG["BATCH_SIZE"],
n_cpus=CONFIG["N_CPUS"],
)
best_avg_acc = 0
for epoch in range(1, CONFIG["N_EPOCHS"] + 1):
start_time = time.time()
cum_loss = 0
for step, (image, gt) in enumerate(train_dl, start=1):
loss = train_single_step(
model=model,
image=image,
gt=gt,
optim=optim,
scaler=scaler,
device=CONFIG["DEVICE"],
)
cum_loss += loss
avg_loss = cum_loss / len(train_dl)
avg_acc = validate(val_dl=val_dl, model=model, device=CONFIG["DEVICE"])
if avg_acc > best_avg_acc:
best_avg_acc = avg_acc
msg = f"[ {get_elapsed_time(start_time)} ]"
msg += f"""[ {epoch}/{CONFIG["N_EPOCHS"]} ]"""
msg += f"""[ Loss: {avg_loss:.4f} ]"""
msg += f"""[ Accuracy: {avg_acc:.4f} ]"""
msg += f"""[ Best accuracy: {best_avg_acc:.4f} ]"""
print(msg)