@@ -181,7 +181,7 @@ class Analyze : TestBase() {
181
181
// SampleStart
182
182
df.min() // min of values per every comparable column
183
183
df.min { age and weight } // min of all values in `age` and `weight`
184
- df.minFor(skipNaN = true ) { age and weight } // min of values per `age` and `weight ` separately
184
+ df.minFor(skipNaN = true ) { age and name.firstName } // min of values per `age` and `firstName ` separately
185
185
df.minOf { (weight ? : 0 ) / age } // min of expression evaluated for every row
186
186
df.minBy { age } // DataRow with minimal `age`
187
187
// SampleEnd
@@ -205,7 +205,7 @@ class Analyze : TestBase() {
205
205
// SampleStart
206
206
df.median() // median of values per every comparable column
207
207
df.median { age and weight } // median of all values in `age` and `weight`
208
- df.medianFor(skipNaN = true ) { age and weight } // median of values per `age` and `weight ` separately
208
+ df.medianFor(skipNaN = true ) { age and name.firstName } // median of values per `age` and `firstName ` separately
209
209
df.medianOf { (weight ? : 0 ) / age } // median of expression evaluated for every row
210
210
df.medianBy { age } // DataRow where the median age lies (lower-median for an even number of values)
211
211
// SampleEnd
@@ -229,7 +229,7 @@ class Analyze : TestBase() {
229
229
// SampleStart
230
230
df.percentile(25.0 ) // 25th percentile of values per every comparable column
231
231
df.percentile(75.0 ) { age and weight } // 75th percentile of all values in `age` and `weight`
232
- df.percentileFor(50.0 , skipNaN = true ) { age and weight } // 50th percentile of values per `age` and `weight ` separately
232
+ df.percentileFor(50.0 , skipNaN = true ) { age and name.firstName } // 50th percentile of values per `age` and `firstName ` separately
233
233
df.percentileOf(75.0 ) { (weight ? : 0 ) / age } // 75th percentile of expression evaluated for every row
234
234
df.percentileBy(25.0 ) { age } // DataRow where the 25th percentile of `age` lies (index rounded using R3)
235
235
// SampleEnd
@@ -438,7 +438,7 @@ class Analyze : TestBase() {
438
438
fun columnsFor_properties () {
439
439
// SampleStart
440
440
df.minFor { colsOf<Int >() }
441
- df.maxFor { name.firstName and name.lastName }
441
+ df.maxFor { name.firstName and age }
442
442
df.sumFor { age and weight }
443
443
df.meanFor { cols(1 , 3 ).asNumbers() }
444
444
df.medianFor { name.allCols().asComparable() }
@@ -457,7 +457,7 @@ class Analyze : TestBase() {
457
457
458
458
df.minFor { colsOf<Int >() }
459
459
460
- df.maxFor { firstName and lastName }
460
+ df.maxFor { firstName and age }
461
461
// or
462
462
df.maxFor(firstName, lastName)
463
463
@@ -475,7 +475,7 @@ class Analyze : TestBase() {
475
475
fun columnsFor_strings () {
476
476
// SampleStart
477
477
df.minFor { colsOf<Int >() }
478
- df.maxFor { " name" [" firstName" ].asComparable() and " name " [ " lastName " ].asComparable () }
478
+ df.maxFor { " name" [" firstName" ].asComparable() and " age " < Int > () }
479
479
480
480
df.sumFor(" age" , " weight" )
481
481
// or
0 commit comments