Skip to content

Commit 4de0e62

Browse files
committed
Merge pull request #1 from EvolvingLMMs-Lab/py/dev
fix resampler bug & Add pos skipping (cherry picked from commit acba85f26cfdac1947f24d535643c9dc62752ab5)
1 parent dc8af20 commit 4de0e62

File tree

2 files changed

+28
-8
lines changed

2 files changed

+28
-8
lines changed

llava/model/llava_arch.py

+8-2
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@
2828

2929
from llava.mm_utils import get_anyres_image_grid_shape
3030
from llava.utils import rank0_print
31-
31+
import random
3232

3333
class LlavaMetaModel:
3434

@@ -421,7 +421,13 @@ def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attentio
421421

422422
if _position_ids is None:
423423
position_ids = None
424-
424+
if getattr(self.config, "use_pos_skipping", False) and self.training:
425+
position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
426+
split_position = random.randint(0, new_input_embeds.size(1))
427+
left_add = random.randint(0, self.config.pos_skipping_range)
428+
right_add = random.randint(left_add, self.config.pos_skipping_range)
429+
position_ids[:, :split_position] += left_add
430+
position_ids[:, split_position:] += right_add
425431
# import pdb; pdb.set_trace()
426432
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
427433

llava/train/train.py

+20-6
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,9 @@ class ModelArguments:
106106

107107
s2: Optional[bool] = field(default=False)
108108
s2_scales: Optional[str] = field(default="336,672,1008")
109-
109+
110+
use_pos_skipping: Optional[bool] = field(default=False)
111+
pos_skipping_range: Optional[int] = field(default=4096)
110112

111113
@dataclass
112114
class DataArguments:
@@ -1222,11 +1224,24 @@ def get_model(model_args, training_args, bnb_model_from_pretrained_args):
12221224

12231225
customized_kwargs = dict()
12241226
customized_kwargs.update(bnb_model_from_pretrained_args)
1225-
1226-
overwrite_config = {}
12271227
cfg_pretrained = None
1228-
if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None:
1228+
1229+
overwrite_config = {}
1230+
if any([
1231+
model_args.rope_scaling_factor is not None,
1232+
model_args.rope_scaling_type is not None,
1233+
model_args.mm_spatial_pool_stride is not None,
1234+
model_args.mm_spatial_pool_out_channels is not None,
1235+
model_args.mm_spatial_pool_mode is not None,
1236+
model_args.mm_resampler_type is not None
1237+
]):
12291238
cfg_pretrained = AutoConfig.from_pretrained(model_args.model_name_or_path)
1239+
1240+
if model_args.use_pos_skipping is not None and model_args.pos_skipping_range is not None:
1241+
overwrite_config["use_pos_skipping"] = model_args.use_pos_skipping
1242+
overwrite_config["pos_skipping_range"] = model_args.pos_skipping_range
1243+
1244+
if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None:
12301245
overwrite_config["rope_scaling"] = {
12311246
"factor": model_args.rope_scaling_factor,
12321247
"type": model_args.rope_scaling_type,
@@ -1247,8 +1262,7 @@ def get_model(model_args, training_args, bnb_model_from_pretrained_args):
12471262
overwrite_config["mm_spatial_pool_mode"] = model_args.mm_spatial_pool_mode
12481263

12491264
if overwrite_config:
1250-
if cfg_pretrained is None:
1251-
cfg_pretrained = AutoConfig.from_pretrained(model_args.model_name_or_path)
1265+
assert cfg_pretrained is not None, "cfg_pretrained is None"
12521266

12531267
rank0_print(f"Overwriting config with {overwrite_config}")
12541268
for k, v in overwrite_config.items():

0 commit comments

Comments
 (0)