-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
254 lines (210 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import os
import sys
import csv
import time
from collections import deque
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from data_loader import define_dataloader, load_embedding, load_data_split
from utils import str2bool, timeSince, get_performance_batchiter, print_performance, write_blackbox_output_batchiter
import data_io_tf
# Constants
PRINT_EVERY_EPOCH = 1
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch in train_loader:
x_pep, x_tcr, y = batch.X_pep.to(
device), batch.X_tcr.to(device), batch.y.to(device)
optimizer.zero_grad()
yhat = model(x_pep, x_tcr)
y = y.unsqueeze(-1).expand_as(yhat)
loss = F.binary_cross_entropy(yhat, y)
loss.backward()
optimizer.step()
if epoch % PRINT_EVERY_EPOCH == 1:
print('[TRAIN] Epoch {} Loss {:.4f}'.format(epoch, loss.item()))
def main():
parser = argparse.ArgumentParser(description='Prediction of TCR binding to peptide-MHC complexes')
parser.add_argument('--infile', type=str,
help='Input file for training')
parser.add_argument('--indepfile', type=str, default=None,
help='Independent test data file')
parser.add_argument('--blosum', type=str, default=None,
help='File containing BLOSUM matrix to initialize embeddings')
parser.add_argument('--batch_size', type=int, default=32, metavar='N',
help='Training batch size')
parser.add_argument('--model_name', type=str, default='original.ckpt',
help = 'Model name to be saved/loaded for training/independent testing respectively')
parser.add_argument('--epoch', type=int, default=200, metavar='N',
help='The maximum number of epochs to train')
parser.add_argument('--min_epoch', type=int, default=30,
help='The minimum number of epochs to train, early stopping will not be applied until this epoch')
parser.add_argument('--early_stop', type=str2bool, default=True,
help='Use early stopping method')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate')
parser.add_argument('--cuda', type=str2bool, default=True,
help = 'enable cuda')
parser.add_argument('--seed', type=int, default=1039,
help='random seed')
parser.add_argument('--mode', type=str, default='train',
help = 'train or test')
parser.add_argument('--save_model', type=str2bool, default=True,
help = 'save model')
parser.add_argument('--model', type=str, default='attention',
help='Model to import')
parser.add_argument('--drop_rate', type=float, default=0.25,
help='dropout rate')
parser.add_argument('--lin_size', type=int, default=1024,
help='size of linear transformations')
parser.add_argument('--padding', type=str, default='mid',
help='front, end, mid, alignment')
parser.add_argument('--heads', type=int, default=5,
help='Multihead attention head')
parser.add_argument('--max_len_tcr', type=int, default=20,
help='maximum TCR length allowed')
parser.add_argument('--max_len_pep', type=int, default=22,
help='maximum peptide length allowed')
parser.add_argument('--n_fold', type=int, default=5,
help='number of cross-validation folds')
parser.add_argument('--idx_test_fold', type=int, default=0,
help='fold index for test set (0, ..., n_fold-1)')
parser.add_argument('--idx_val_fold', type=int, default=-1,
help='fold index for validation set (-1, 0, ..., n_fold-1). \
If -1, the option will be ignored \
If >= 0, the test set will be set aside and the validation set is used as test set')
parser.add_argument('--split_type', type=str, default='random',
help='how to split the dataset (random, tcr, epitope)')
args = parser.parse_args()
if args.mode == 'test':
assert args.indepfile is not None, '--indepfile is missing!'
assert args.idx_test_fold < args.n_fold, '--idx_test_fold should be smaller than --n_fold'
assert args.idx_val_fold < args.n_fold, '--idx_val_fold should be smaller than --n_fold'
assert args.idx_val_fold != args.idx_test_fold, '--idx_val_fold and --idx_test_fold should not be equal to each other'
# Set Cuda
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = torch.device('cuda' if args.cuda else 'cpu')
# Set random seed
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load embedding matrix
embedding_matrix = load_embedding(args.blosum)
# Read data
x_pep, x_tcr, y = data_io_tf.read_pTCR(args.infile)
y = np.array(y)
# Shuffle data into folds for cross validation
idx_train, idx_test, idx_test_remove = load_data_split(x_pep, x_tcr, args)
# Define dataloader
train_loader = define_dataloader(x_pep[idx_train], x_tcr[idx_train], y[idx_train],
args.max_len_pep, args.max_len_tcr,
padding=args.padding,
batch_size=args.batch_size, device=device)
test_loader = define_dataloader(x_pep[idx_test], x_tcr[idx_test], y[idx_test],
maxlen_pep=train_loader['pep_length'],
maxlen_tcr=train_loader['tcr_length'],
padding=args.padding,
batch_size=args.batch_size, device=device)
if args.indepfile is not None:
x_indep_pep, x_indep_tcr, y_indep = data_io_tf.read_pTCR(args.indepfile)
y_indep = np.array(y_indep)
indep_loader = define_dataloader(x_indep_pep, x_indep_tcr, y_indep,
maxlen_pep=train_loader['pep_length'],
maxlen_tcr=train_loader['tcr_length'],
padding=args.padding,
batch_size=args.batch_size, device=device)
args.pep_length = train_loader['pep_length']
args.tcr_length = train_loader['tcr_length']
# Define model
if args.model == 'attention':
from attention import Net
else:
raise ValueError('unknown model name')
model = Net(embedding_matrix, args).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Create Required Directories
if 'models' not in os.listdir('.'):
os.mkdir('models')
if 'result' not in os.listdir('.'):
os.mkdir('result')
# eax1it model
if args.mode == 'train':
wf_open = open(
'result/perf_' + os.path.splitext(os.path.basename(args.model_name))[0] + '.csv', 'w')
wf_colnames = ['loss', 'accuracy',
'precision1', 'precision0',
'recall1', 'recall0',
'f1macro', 'f1micro', 'auc']
wf = csv.DictWriter(wf_open, wf_colnames, delimiter='\t')
t0 = time.time()
lossArraySize = 10
lossArray = deque([sys.maxsize], maxlen=lossArraySize)
for epoch in range(1, args.epoch + 1):
train(model, device, train_loader['loader'], optimizer, epoch)
perf_test = get_performance_batchiter(
test_loader['loader'], model, device)
# Print performance
if epoch % PRINT_EVERY_EPOCH == 0:
print('[TEST ] {} ----------------'.format(epoch))
print_performance(perf_test, printif=False,
writeif=True, wf=wf)
# Check for early stopping
lossArray.append(perf_test['loss'])
average_loss_change = sum(np.abs(np.diff(lossArray))) / lossArraySize
if epoch > args.min_epoch and average_loss_change < 10 and args.early_stop:
print('Early stopping at epoch {}'.format(epoch))
break
print(os.path.splitext(os.path.basename(args.model_name))[0])
print(timeSince(t0))
# evaluate and print independent-test-set performance
if args.indepfile is not None:
print('[INDEP] {} ----------------')
perf_indep = get_performance_batchiter(
indep_loader['loader'], model, device)
wf_open = open('result/perf_' + os.path.splitext(os.path.basename(args.model_name))[0] + '_' +
os.path.basename(args.indepfile), 'w')
wf = csv.DictWriter(wf_open, wf_colnames, delimiter='\t')
print_performance(perf_indep, writeif=True, wf=wf)
wf_open1 = open('data/pred_' + os.path.splitext(os.path.basename(args.model_name))[0] + '_' +
os.path.basename(args.indepfile), 'w')
wf1 = csv.writer(wf_open1, delimiter='\t')
write_blackbox_output_batchiter(
indep_loader, model, wf1, device, ifscore=True)
# evaluate and print test-set performance
print('[TEST ] {} ----------------'.format(epoch))
perf_test = get_performance_batchiter(
test_loader['loader'], model, device)
print_performance(perf_test)
if args.save_model:
wf_open1 = open(
'result/pred_' + os.path.splitext(os.path.basename(args.model_name))[0] + '.csv', 'w')
wf1 = csv.writer(wf_open1, delimiter='\t')
write_blackbox_output_batchiter(
test_loader, model, wf1, device, ifscore=True)
model_name = './models/' + \
os.path.splitext(os.path.basename(args.model_name))[0] + '.ckpt'
torch.save(model.state_dict(), model_name)
elif args.mode == 'test':
model_name = args.model_name
assert model_name in os.listdir('./models')
model_name = './models/' + model_name
model.load_state_dict(torch.load(model_name, map_location=torch.device('cpu')))
# evaluate and print independent-test-set performance
print('[INDEP] {} ----------------')
perf_indep = get_performance_batchiter(
indep_loader['loader'], model, device)
print_performance(perf_indep)
# write blackbox output
wf_bb_open1 = open('result/pred_' + os.path.splitext(os.path.basename(model_name))[0] + '_' +
os.path.basename(args.indepfile), 'w')
wf_bb1 = csv.writer(wf_bb_open1, delimiter='\t')
write_blackbox_output_batchiter(
indep_loader, model, wf_bb1, device, ifscore=True)
else:
print('\nError: "--mode train" or "--mode test" expected')
if __name__ == '__main__':
main()