-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
65 lines (54 loc) · 1.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from pathlib import Path
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def create_path(path):
p = Path(path)
p.mkdir(parents=True, exist_ok=True)
return path
def load_model(model_path, model, device='cpu'):
checkpoint = torch.load(model_path+'.dat', map_location=device)
model.load_state_dict(checkpoint['model_state_dict'], strict = False)
return checkpoint
def save_model(model_path, model, epoch, save_best=False):
state = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
}
with open(model_path+'.dat', 'wb') as f:
torch.save(state, f)
if save_best:
with open(model_path + '_best' + '.dat', 'wb') as f:
torch.save(state, f)
def log_display(epoch, global_step, time_elapse, **kwargs):
display = 'epoch=' + str(epoch) + \
'\tglobal_step=' + str(global_step)
for key, value in kwargs.items():
if type(value) == str:
display = '\t' + key + '=' + value
else:
display += '\t' + str(key) + '=%.4f' % value
display += '\ttime=%.2fit/s' % (1. / time_elapse)
return display
def count_parameters_in_MB(model):
return sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary_head" not in name)/1e6
def setup_logger(name, log_file, level=logging.INFO):
"""To setup as many loggers as you want"""
formatter = logging.Formatter('%(asctime)s %(message)s')
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
def delete_logger(name, logger):
for handler in logger.handlers:
handler.close()
logger.handlers = []
logging.Logger.manager.loggerDict.pop(name, None)
logging.shutdown()