diff --git a/My_Numpy_Exercises.ipynb b/My_Numpy_Exercises.ipynb
new file mode 100644
index 0000000..fc92803
--- /dev/null
+++ b/My_Numpy_Exercises.ipynb
@@ -0,0 +1,390 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "Numpy_Exercises.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "collapsed_sections": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "a_4UupTr9fbX",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Numpy Exercises\n",
+ "\n",
+ "1) Create a uniform subdivision of the interval -1.3 to 2.5 with 64 subdivisions"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "LIP5u4zi0Nmg",
+ "colab_type": "code",
+ "outputId": "2578a466-c03f-4ecc-a1d8-fa2c615e9b2c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 208
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "import numpy as np #import numpy\n",
+ "a = np.linspace(1.3,2.5,64)\n",
+ "print (a)"
+ ],
+ "execution_count": 76,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[1.3 1.31904762 1.33809524 1.35714286 1.37619048 1.3952381\n",
+ " 1.41428571 1.43333333 1.45238095 1.47142857 1.49047619 1.50952381\n",
+ " 1.52857143 1.54761905 1.56666667 1.58571429 1.6047619 1.62380952\n",
+ " 1.64285714 1.66190476 1.68095238 1.7 1.71904762 1.73809524\n",
+ " 1.75714286 1.77619048 1.7952381 1.81428571 1.83333333 1.85238095\n",
+ " 1.87142857 1.89047619 1.90952381 1.92857143 1.94761905 1.96666667\n",
+ " 1.98571429 2.0047619 2.02380952 2.04285714 2.06190476 2.08095238\n",
+ " 2.1 2.11904762 2.13809524 2.15714286 2.17619048 2.1952381\n",
+ " 2.21428571 2.23333333 2.25238095 2.27142857 2.29047619 2.30952381\n",
+ " 2.32857143 2.34761905 2.36666667 2.38571429 2.4047619 2.42380952\n",
+ " 2.44285714 2.46190476 2.48095238 2.5 ]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "dBoH_A7M9jjL",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "2) Generate an array of length 3n filled with the cyclic pattern 1, 2, 3"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4TxT66309n1o",
+ "colab_type": "code",
+ "outputId": "9f25b496-8c58-4735-c710-04686c30e58c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "a = np.array([1,2,3])\n",
+ "\n",
+ "x = np.resize(a,12)\n",
+ "print(x)"
+ ],
+ "execution_count": 77,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[1 2 3 1 2 3 1 2 3 1 2 3]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Vh-UKizx9oTp",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "3) Create an array of the first 10 odd integers."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ebhEUZq29r32",
+ "colab_type": "code",
+ "outputId": "160c78ce-9337-467b-9609-9bab72eda317",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "a = np.arange(20)\n",
+ "\n",
+ "i = a%2!=0\n",
+ "\n",
+ "b = a[i]\n",
+ "print (b)"
+ ],
+ "execution_count": 78,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[ 1 3 5 7 9 11 13 15 17 19]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "QfJRdMat90f4",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "4) Find intersection of a and b"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "gOlfuJCo-JwF",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "5daaadcc-4767-4f76-9c53-2bc2cdb504d7"
+ },
+ "cell_type": "code",
+ "source": [
+ "#expected output array([2, 4])\n",
+ "a = np.array([1,2,3,2,3,4,3,4,5,6])\n",
+ "b = np.array([7,2,10,2,7,4,9,4,9,8])\n",
+ "c = list()\n",
+ "k=0\n",
+ "for value in a:\n",
+ " for values in b:\n",
+ " if value == values and value not in c:\n",
+ " c.append(value)\n",
+ " break\n",
+ " \n",
+ "x = np.asarray(a)\n",
+ "x"
+ ],
+ "execution_count": 79,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([1, 2, 3, 2, 3, 4, 3, 4, 5, 6])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 79
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "RtVCf0UoCeB8",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "5) Reshape 1d array a to 2d array of 2X5"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "2E8b55_2Cjx5",
+ "colab_type": "code",
+ "outputId": "929007aa-bb2d-4967-d57f-b454ef274315",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 69
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "a = np.arange(10)\n",
+ "print(a)\n",
+ "\n",
+ "print(a.reshape(2,5))"
+ ],
+ "execution_count": 80,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[0 1 2 3 4 5 6 7 8 9]\n",
+ "[[0 1 2 3 4]\n",
+ " [5 6 7 8 9]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "dVrSBW1zEjp2",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "6) Create a numpy array to list and vice versa"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "tcBCyhXPEp9C",
+ "colab_type": "code",
+ "outputId": "3d060203-be6f-4813-c1e6-d9c1764f591a",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 69
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])\n",
+ "print(a)\n",
+ "#converting to list\n",
+ "b = a.tolist()\n",
+ "print (b)\n",
+ "#again converting it to an array\n",
+ "c =np.asarray(b)\n",
+ "print (c)"
+ ],
+ "execution_count": 81,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[1 2 3 4 5 6 7 8 9]\n",
+ "[1, 2, 3, 4, 5, 6, 7, 8, 9]\n",
+ "[1 2 3 4 5 6 7 8 9]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "JNqX8wnz9sQJ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "7) Create a 10 x 10 arrays of zeros and then \"frame\" it with a border of ones."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4bjP3JAc9vRD",
+ "colab_type": "code",
+ "outputId": "054cba0e-5051-4b16-8b59-a3b5170aa2a7",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 191
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "a = np.zeros(shape = (10,10))\n",
+ "for i in range(0,10):\n",
+ " for j in range(0,10):\n",
+ " if i == 0 or i == 9 or j == 0 or j == 9:\n",
+ " a[i,j] = 1\n",
+ " \n",
+ "print (a)"
+ ],
+ "execution_count": 82,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n",
+ " [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "xaQgf8tT9v-n",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "8) Create an 8 x 8 array with a checkerboard pattern of zeros and ones using a slicing+striding approach."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "No7fx0Xy9zEh",
+ "colab_type": "code",
+ "outputId": "57a4dada-8e5a-4b13-8cd1-992ce702c7bd",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 156
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "a = np.zeros(shape = (8,8)) \n",
+ " # fill with 1 the alternate rows and columns \n",
+ " \n",
+ "a[1::2, ::2] = 1\n",
+ "a[::2, 1::2] = 1\n",
+ " \n",
+ "print (a)"
+ ],
+ "execution_count": 83,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[[0. 1. 0. 1. 0. 1. 0. 1.]\n",
+ " [1. 0. 1. 0. 1. 0. 1. 0.]\n",
+ " [0. 1. 0. 1. 0. 1. 0. 1.]\n",
+ " [1. 0. 1. 0. 1. 0. 1. 0.]\n",
+ " [0. 1. 0. 1. 0. 1. 0. 1.]\n",
+ " [1. 0. 1. 0. 1. 0. 1. 0.]\n",
+ " [0. 1. 0. 1. 0. 1. 0. 1.]\n",
+ " [1. 0. 1. 0. 1. 0. 1. 0.]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/NumpyExercises.ipynb b/NumpyExercises.ipynb
deleted file mode 100644
index 2649f6a..0000000
--- a/NumpyExercises.ipynb
+++ /dev/null
@@ -1,270 +0,0 @@
-{
- "nbformat": 4,
- "nbformat_minor": 0,
- "metadata": {
- "colab": {
- "name": "Copy of Numpy_Exercises.ipynb",
- "version": "0.3.2",
- "provenance": [],
- "include_colab_link": true
- },
- "kernelspec": {
- "name": "python3",
- "display_name": "Python 3"
- }
- },
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "view-in-github",
- "colab_type": "text"
- },
- "source": [
- "
"
- ]
- },
- {
- "metadata": {
- "id": "a_4UupTr9fbX",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "# Numpy Exercises\n",
- "\n",
- "1) Create a uniform subdivision of the interval -1.3 to 2.5 with 64 subdivisions"
- ]
- },
- {
- "metadata": {
- "id": "LIP5u4zi0Nmg",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 752
- },
- "outputId": "9a616a02-c5cb-40b3-dc3d-894c2a224f2c"
- },
- "cell_type": "code",
- "source": [
- "import numpy as np #import numpy\n",
- "def frange(start, stop, step):\n",
- " x = start\n",
- " while x < stop:\n",
- " yield x\n",
- " x += step\n",
- "\n",
- "for i in frange(-1.3,2.6,0.1):\n",
- " a = np.array(i)\n",
- " print (a)\n",
- " \n",
- "print(np.true_divide(a,64))"
- ],
- "execution_count": 10,
- "outputs": []
- },
- {
- "metadata": {
- "id": "dBoH_A7M9jjL",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "2) Generate an array of length 3n filled with the cyclic pattern 1, 2, 3"
- ]
- },
- {
- "metadata": {
- "id": "4TxT66309n1o",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "a = np.array([1, 2, 3])\n",
- "\n",
- "a = np.resize(a,12)\n",
- "print (a)\n"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "Vh-UKizx9oTp",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "3) Create an array of the first 10 odd integers."
- ]
- },
- {
- "metadata": {
- "id": "ebhEUZq29r32",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "b = np.arange(20)\n",
- "\n",
- "i = b%2!=0\n",
- "\n",
- "print(b[i])\n"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "QfJRdMat90f4",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "4) Find intersection of a and b"
- ]
- },
- {
- "metadata": {
- "id": "gOlfuJCo-JwF",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "#expected output array([2, 4])\n",
- "a = np.array([1,2,3,2,3,4,3,4,5,6])\n",
- "b = np.array([7,2,10,2,7,4,9,4,9,8])\n",
- "\n",
- "x = np.intersect1d(a,b)\n",
- "print (x)"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "RtVCf0UoCeB8",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "5) Reshape 1d array a to 2d array of 2X5"
- ]
- },
- {
- "metadata": {
- "id": "2E8b55_2Cjx5",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "a = np.arange(10)\n",
- "print (a)\n",
- "\n",
- "a = np.arange(10).reshape(2,5)\n",
- "print (a)"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "dVrSBW1zEjp2",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "6) Create a numpy array to list and vice versa"
- ]
- },
- {
- "metadata": {
- "id": "tcBCyhXPEp9C",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "a = [1, 2, 3, 4, 5, 6, 7, 8, 9]\n",
- "a= np.arange(9).reshape(3, 3)\n",
- "\n",
- "print(\"Original array elements:\")\n",
- "print(a)\n",
- "\n",
- "print(\"Array to list:\")\n",
- "x = a.tolist()\n",
- "print (x)\n",
- "\n",
- "print (\"list to Array\")\n",
- "y = np.array(x)\n",
- "print(y)"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "JNqX8wnz9sQJ",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "\n",
- "7) Create a 10 x 10 arrays of zeros and then \"frame\" it with a border of ones."
- ]
- },
- {
- "metadata": {
- "id": "4bjP3JAc9vRD",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "a = np.ones((10,10))\n",
- "print(\"1 on the border and 0 inside in the array\")\n",
- "a[1:-1,1:-1] = 0\n",
- "print(a)\n"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "xaQgf8tT9v-n",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "8\n",
- ") Create an 8 x 8 array with a checkerboard pattern of zeros and ones using a slicing+striding approach."
- ]
- },
- {
- "metadata": {
- "id": "No7fx0Xy9zEh",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "x = np.ones((3,3))\n",
- "print(\"Checkerboard pattern:\")\n",
- "\n",
- "x = np.zeros((8,8))\n",
- "\n",
- "x[1::2,::2] = 1\n",
- "x[::2,1::2] = 1\n",
- "\n",
- "print(x)\n"
- ],
- "execution_count": 0,
- "outputs": []
- }
- ]
-}