From bd4cd25177df743cd638909e2aaf93691b4b43e5 Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 00:49:35 +0530 Subject: [PATCH 01/11] Created using Colaboratory --- intro_to_pandas.ipynb | 1703 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1703 insertions(+) create mode 100644 intro_to_pandas.ipynb diff --git a/intro_to_pandas.ipynb b/intro_to_pandas.ipynb new file mode 100644 index 0000000..ff51cb4 --- /dev/null +++ b/intro_to_pandas.ipynb @@ -0,0 +1,1703 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_pandas.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "YHIWvc9Ms-Ll", + "TJffr5_Jwqvd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "rHLcriKWLRe4" + }, + "cell_type": "markdown", + "source": [ + "# Intro to pandas" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "QvJBqX8_Bctk" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Gain an introduction to the `DataFrame` and `Series` data structures of the *pandas* library\n", + " * Access and manipulate data within a `DataFrame` and `Series`\n", + " * Import CSV data into a *pandas* `DataFrame`\n", + " * Reindex a `DataFrame` to shuffle data" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TIFJ83ZTBctl" + }, + "cell_type": "markdown", + "source": [ + "[*pandas*](http://pandas.pydata.org/) is a column-oriented data analysis API. It's a great tool for handling and analyzing input data, and many ML frameworks support *pandas* data structures as inputs.\n", + "Although a comprehensive introduction to the *pandas* API would span many pages, the core concepts are fairly straightforward, and we'll present them below. For a more complete reference, the [*pandas* docs site](http://pandas.pydata.org/pandas-docs/stable/index.html) contains extensive documentation and many tutorials." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "s_JOISVgmn9v" + }, + "cell_type": "markdown", + "source": [ + "## Basic Concepts\n", + "\n", + "The following line imports the *pandas* API and prints the API version:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "aSRYu62xUi3g", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "f9150d94-c624-42d0-bb81-d9157301669b" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import pandas as pd\n", + "pd.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "u'0.22.0'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "daQreKXIUslr" + }, + "cell_type": "markdown", + "source": [ + "The primary data structures in *pandas* are implemented as two classes:\n", + "\n", + " * **`DataFrame`**, which you can imagine as a relational data table, with rows and named columns.\n", + " * **`Series`**, which is a single column. A `DataFrame` contains one or more `Series` and a name for each `Series`.\n", + "\n", + "The data frame is a commonly used abstraction for data manipulation. Similar implementations exist in [Spark](https://spark.apache.org/) and [R](https://www.r-project.org/about.html)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fjnAk1xcU0yc" + }, + "cell_type": "markdown", + "source": [ + "One way to create a `Series` is to construct a `Series` object. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "DFZ42Uq7UFDj", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "outputId": "496ca2d2-d6ae-430d-a4e0-a22cc0cc9efa" + }, + "cell_type": "code", + "source": [ + "pd.Series(['San Francisco', 'San Jose', 'Sacramento'])" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "U5ouUp1cU6pC" + }, + "cell_type": "markdown", + "source": [ + "`DataFrame` objects can be created by passing a `dict` mapping `string` column names to their respective `Series`. If the `Series` don't match in length, missing values are filled with special [NA/NaN](http://pandas.pydata.org/pandas-docs/stable/missing_data.html) values. Example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "avgr6GfiUh8t", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "2f464ab4-7c3a-4418-e9ea-a3052978dc19" + }, + "cell_type": "code", + "source": [ + "city_names = pd.Series(['San Francisco', 'San Jose', 'Sacramento'])\n", + "population = pd.Series([852469, 1015785, 485199])\n", + "\n", + "pd.DataFrame({ 'City name': city_names, 'Population': population })" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
2Sacramento485199
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785\n", + "2 Sacramento 485199" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "oa5wfZT7VHJl" + }, + "cell_type": "markdown", + "source": [ + "But most of the time, you load an entire file into a `DataFrame`. The following example loads a file with California housing data. Run the following cell to load the data and create feature definitions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "av6RYOraVG1V", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "e642f750-9c67-47fa-caff-72ef6ad609da" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "california_housing_dataframe.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.00000017000.000000
mean-119.56210835.62522528.5893532643.664412539.4108241429.573941501.2219413.883578207300.912353
std2.0051662.13734012.5869372179.947071421.4994521147.852959384.5208411.908157115983.764387
min-124.35000032.5400001.0000002.0000001.0000003.0000001.0000000.49990014999.000000
25%-121.79000033.93000018.0000001462.000000297.000000790.000000282.0000002.566375119400.000000
50%-118.49000034.25000029.0000002127.000000434.0000001167.000000409.0000003.544600180400.000000
75%-118.00000037.72000037.0000003151.250000648.2500001721.000000605.2500004.767000265000.000000
max-114.31000041.95000052.00000037937.0000006445.00000035682.0000006082.00000015.000100500001.000000
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean -119.562108 35.625225 28.589353 2643.664412 \n", + "std 2.005166 2.137340 12.586937 2179.947071 \n", + "min -124.350000 32.540000 1.000000 2.000000 \n", + "25% -121.790000 33.930000 18.000000 1462.000000 \n", + "50% -118.490000 34.250000 29.000000 2127.000000 \n", + "75% -118.000000 37.720000 37.000000 3151.250000 \n", + "max -114.310000 41.950000 52.000000 37937.000000 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "count 17000.000000 17000.000000 17000.000000 17000.000000 \n", + "mean 539.410824 1429.573941 501.221941 3.883578 \n", + "std 421.499452 1147.852959 384.520841 1.908157 \n", + "min 1.000000 3.000000 1.000000 0.499900 \n", + "25% 297.000000 790.000000 282.000000 2.566375 \n", + "50% 434.000000 1167.000000 409.000000 3.544600 \n", + "75% 648.250000 1721.000000 605.250000 4.767000 \n", + "max 6445.000000 35682.000000 6082.000000 15.000100 \n", + "\n", + " median_house_value \n", + "count 17000.000000 \n", + "mean 207300.912353 \n", + "std 115983.764387 \n", + "min 14999.000000 \n", + "25% 119400.000000 \n", + "50% 180400.000000 \n", + "75% 265000.000000 \n", + "max 500001.000000 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "WrkBjfz5kEQu" + }, + "cell_type": "markdown", + "source": [ + "The example above used `DataFrame.describe` to show interesting statistics about a `DataFrame`. Another useful function is `DataFrame.head`, which displays the first few records of a `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "s3ND3bgOkB5k", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 204 + }, + "outputId": "733e3c19-f322-415e-8a51-82ffb43f9790" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.head()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
0-114.3134.1915.05612.01283.01015.0472.01.493666900.0
1-114.4734.4019.07650.01901.01129.0463.01.820080100.0
2-114.5633.6917.0720.0174.0333.0117.01.650985700.0
3-114.5733.6414.01501.0337.0515.0226.03.191773400.0
4-114.5733.5720.01454.0326.0624.0262.01.925065500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "0 -114.31 34.19 15.0 5612.0 1283.0 \n", + "1 -114.47 34.40 19.0 7650.0 1901.0 \n", + "2 -114.56 33.69 17.0 720.0 174.0 \n", + "3 -114.57 33.64 14.0 1501.0 337.0 \n", + "4 -114.57 33.57 20.0 1454.0 326.0 \n", + "\n", + " population households median_income median_house_value \n", + "0 1015.0 472.0 1.4936 66900.0 \n", + "1 1129.0 463.0 1.8200 80100.0 \n", + "2 333.0 117.0 1.6509 85700.0 \n", + "3 515.0 226.0 3.1917 73400.0 \n", + "4 624.0 262.0 1.9250 65500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "w9-Es5Y6laGd" + }, + "cell_type": "markdown", + "source": [ + "Another powerful feature of *pandas* is graphing. For example, `DataFrame.hist` lets you quickly study the distribution of values in a column:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "nqndFVXVlbPN", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 398 + }, + "outputId": "6c7569e1-b319-457f-e487-96b97ed75545" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.hist('housing_median_age')" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[]],\n", + " dtype=object)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFZCAYAAABXM2zhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X1UlHX+//HXMDAH0UEEGTfLarf0\naEmaa5l4U0Iokp7IVRPWdU3q6Iqtlql499WTlajRmmZZmunRU7GNtofcAjJxyyRanT0uuu0p2VOr\neTejKCqgSPP7o9Os/FRguP1Az8dfcTEz1+d6H+3pdQ1zYfF6vV4BAAAjBTT3AgAAwPURagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaogVo6cuSI7rjjjkbdxz//+U+lpKQ06j4a0h133KEjR47o448/\n1ty5c5t7OUCrZOFz1EDtHDlyREOHDtW//vWv5l6KMe644w7l5ubqpptuau6lAK0WZ9SAn5xOp0aO\nHKn7779f27dv1w8//KA//elPio+PV3x8vNLS0lRaWipJiomJ0d69e33P/enry5cva/78+Ro2bJji\n4uI0bdo0nT9/XgUFBYqLi5MkrV69Ws8++6xSU1MVGxur0aNH6+TJk5KkgwcPaujQoRo6dKheeeUV\njRw5UgUFBdWue/Xq1Vq0aJEmT56sgQMHatasWcrLy9OoUaM0cOBA5eXlSZIuXbqk5557TsOGDVNM\nTIzWrl3re42//e1viouL0/Dhw7V+/Xrf9m3btmnixImSJI/Ho5SUFMXHxysmJkZvvfVWleN/9913\nNXr0aA0cOFDp6ek1zrusrEwzZszwrWfZsmW+71U3hx07dmjkyJGKjY3VpEmTdPr06Rr3BZiIUAN+\n+OGHH1RRUaEPPvhAc+fO1cqVK/XRRx/p008/1bZt2/TXv/5VJSUl2rhxY7Wvs3v3bh05ckTZ2dnK\nzc3V7bffrn/84x9XPS47O1vz5s3Tjh07FBERoa1bt0qSFi5cqIkTJyo3N1ft2rXTt99+W6v179q1\nSy+88II++OADZWdn+9Y9ZcoUrVu3TpK0bt06HTp0SB988IG2b9+unJwc5eXlqbKyUvPnz9eiRYv0\n0UcfKSAgQJWVlVft47XXXtNNN92k7Oxsbdq0SRkZGTp27Jjv+3//+9+VmZmprVu3asuWLTp+/Hi1\na37nnXd04cIFZWdn6/3339e2bdt8//i53hwOHz6s2bNnKyMjQ5988on69eunxYsX12pGgGkINeAH\nr9erxMREST9e9j1+/Lh27dqlxMREhYSEyGq1atSoUfr888+rfZ3w8HAVFRXp448/9p0xDho06KrH\n9e3bVzfeeKMsFot69OihY8eOqby8XAcPHtSIESMkSb/97W9V23ew7r77bkVERKhDhw6KjIzU4MGD\nJUndunXzna3n5eUpOTlZNptNISEhevjhh5Wbm6tvv/1Wly5d0sCBAyVJjzzyyDX3sWDBAi1cuFCS\n1KVLF0VGRurIkSO+748cOVJWq1WdOnVSRERElYhfy6RJk/Tqq6/KYrGoffv26tq1q44cOVLtHD79\n9FPde++96tatmyRp3Lhx2rlz5zX/YQGYLrC5FwC0JFarVW3atJEkBQQE6IcfftDp06fVvn1732Pa\nt2+vU6dOVfs6d911lxYsWKDNmzdrzpw5iomJ0aJFi656nN1ur7LvyspKnT17VhaLRaGhoZKkoKAg\nRURE1Gr9bdu2rfJ6ISEhVY5Fks6dO6elS5fqpZdekvTjpfC77rpLZ8+eVbt27aoc57UUFhb6zqID\nAgLkdrt9ry2pymv8dEzV+fbbb5Wenq7//Oc/CggI0PHjxzVq1Khq53Du3Dnt3btX8fHxVfZ75syZ\nWs8KMAWhBuqpY8eOOnPmjO/rM2fOqGPHjpKqBlCSzp496/vvn97TPnPmjObNm6c333xT0dHRNe6v\nXbt28nq9KisrU5s2bXT58uUGff/V4XBo0qRJGjJkSJXtRUVFOn/+vO/r6+1z1qxZ+v3vf6+kpCRZ\nLJZrXinwx7PPPqs777xTa9askdVq1bhx4yRVPweHw6Ho6GitWrWqXvsGTMClb6CeHnjgAWVlZams\nrEyXL1+W0+nU/fffL0mKjIzUv//9b0nShx9+qIsXL0qStm7dqjVr1kiSwsLC9Ktf/arW+2vbtq1u\nu+02ffTRR5KkzMxMWSyWBjue2NhYvffee6qsrJTX69Wrr76qTz/9VDfffLOsVqvvh7W2bdt2zf2e\nOnVKPXv2lMVi0fvvv6+ysjLfD9fVxalTp9SjRw9ZrVZ9/vnn+u6771RaWlrtHAYOHKi9e/fq8OHD\nkn782Ntzzz1X5zUAzYlQA/UUHx+vwYMHa9SoURoxYoR+8YtfaMKECZKkqVOnauPGjRoxYoSKiop0\n++23S/oxhj/9xPLw4cN16NAhPfbYY7Xe56JFi7R27Vo99NBDKi0tVadOnRos1snJyercubMeeugh\nxcfHq6ioSL/+9a8VFBSkJUuWaN68eRo+fLgsFovv0vmVpk+frtTUVI0cOVKlpaV69NFHtXDhQv33\nv/+t03r+8Ic/aNmyZRoxYoS+/PJLTZs2TatXr9a+ffuuOweHw6ElS5YoNTVVw4cP17PPPquEhIT6\njgZoFnyOGmihvF6vL8733XefNm7cqO7duzfzqpoec0Brxxk10AL98Y9/9H2cKj8/X16vV7feemvz\nLqoZMAf8HHBGDbRARUVFmjt3rs6ePaugoCDNmjVLN910k1JTU6/5+Ntuu833nrhpioqK6rzua83h\np58PAFoLQg0AgMG49A0AgMEINQAABjPyhidu9zm/Ht+hQ4iKi+v+Oc2fO+ZXd8yufphf3TG7+jFt\nfpGR9ut+r1WcUQcGWpt7CS0a86s7Zlc/zK/umF39tKT5tYpQAwDQWhFqAAAMRqgBADBYjT9MVlZW\nprS0NJ06dUoXL17U1KlT1b17d82ePVuVlZWKjIzUihUrZLPZlJWVpU2bNikgIEBjx47VmDFjVFFR\nobS0NB09elRWq1VLly5Vly5dmuLYAABo8Wo8o87Ly1PPnj21ZcsWrVy5Uunp6Vq1apWSk5P19ttv\n65ZbbpHT6VRpaanWrFmjjRs3avPmzdq0aZPOnDmj7du3KzQ0VO+8846mTJmijIyMpjguAABahRpD\nnZCQoCeeeEKSdOzYMXXq1EkFBQWKjY2VJA0ZMkT5+fnav3+/oqKiZLfbFRwcrD59+sjlcik/P19x\ncXGSpOjoaLlcrkY8HAAAWpdaf4563LhxOn78uNauXavHHntMNptNkhQRESG32y2Px6Pw8HDf48PD\nw6/aHhAQIIvFokuXLvmeDwAArq/WoX733Xf11VdfadasWbry9uDXu1W4v9uv1KFDiN+fcavuw+Ko\nGfOrO2ZXP8yv7phd/bSU+dUY6gMHDigiIkI33HCDevToocrKSrVt21bl5eUKDg7WiRMn5HA45HA4\n5PF4fM87efKkevfuLYfDIbfbre7du6uiokJer7fGs2l/7xYTGWn3+25m+B/mV3fMrn6YX90xu/ox\nbX71ujPZ3r17tWHDBkmSx+NRaWmpoqOjlZOTI0nKzc3VoEGD1KtXLxUWFqqkpEQXLlyQy+VS3759\nNWDAAGVnZ0v68QfT+vXr1xDHBADAz0KNZ9Tjxo3T/PnzlZycrPLycv3f//2fevbsqTlz5igzM1Od\nO3dWYmKigoKCNHPmTKWkpMhisSg1NVV2u10JCQnas2ePkpKSZLPZlJ6e3hTHBQBAq2Dk76P293KE\naZcwWhrmV3fMrn6YX90xu/oxbX7VXfo28rdnAcC1TErf2dxLqNGGtJjmXgJaGW4hCgCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QA\nABiMUAMAYDBCDQCAwQg1AAAGC6zNg5YvX659+/bp8uXLmjx5snbu3KmDBw8qLCxMkpSSkqIHHnhA\nWVlZ2rRpkwICAjR27FiNGTNGFRUVSktL09GjR2W1WrV06VJ16dKlUQ8KAIDWosZQf/HFF/rmm2+U\nmZmp4uJiPfLII7rvvvv09NNPa8iQIb7HlZaWas2aNXI6nQoKCtLo0aMVFxenvLw8hYaGKiMjQ7t3\n71ZGRoZWrlzZqAcFAEBrUeOl73vuuUcvv/yyJCk0NFRlZWWqrKy86nH79+9XVFSU7Ha7goOD1adP\nH7lcLuXn5ysuLk6SFB0dLZfL1cCHAABA61VjqK1Wq0JCQiRJTqdTgwcPltVq1ZYtWzRhwgQ99dRT\nOn36tDwej8LDw33PCw8Pl9vtrrI9ICBAFotFly5daqTDAQCgdanVe9SStGPHDjmdTm3YsEEHDhxQ\nWFiYevTooTfeeEOvvPKK7r777iqP93q913yd622/UocOIQoMtNZ2aZKkyEi7X49HVcyv7phd/bS2\n+TXl8bS22TW1ljK/WoX6s88+09q1a7V+/XrZ7Xb179/f972YmBgtXrxYw4YNk8fj8W0/efKkevfu\nLYfDIbfbre7du6uiokJer1c2m63a/RUXl/p1EJGRdrnd5/x6Dv6H+dUds6uf1ji/pjqe1ji7pmTa\n/Kr7R0ONl77PnTun5cuX6/XXX/f9lPeTTz6pw4cPS5IKCgrUtWtX9erVS4WFhSopKdGFCxfkcrnU\nt29fDRgwQNnZ2ZKkvLw89evXryGOCQCAn4Uaz6g//PBDFRcXa8aMGb5to0aN0owZM9SmTRuFhIRo\n6dKlCg4O1syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArYnFW5s3jZuYv5cj\nTLuE0dIwv7pjdvXj7/wmpe9sxNU0jA1pMU2yH/7s1Y9p86vXpW8AANB8CDUAAAYj1AAAGIxQAwBg\nMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAA\nGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYLbO4FAA1lUvrO5l5CtTakxTT3\nEgC0QJxRAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAYj1AAAGIxQAwBgMEINAIDB\nCDUAAAYj1AAAGIxQAwBgMEINAIDBCDUAAAbj91EDTcT035ct8TuzARNxRg0AgMFqdUa9fPly7du3\nT5cvX9bkyZMVFRWl2bNnq7KyUpGRkVqxYoVsNpuysrK0adMmBQQEaOzYsRozZowqKiqUlpamo0eP\nymq1aunSperSpUtjHxcAAK1CjaH+4osv9M033ygzM1PFxcV65JFH1L9/fyUnJ2v48OF66aWX5HQ6\nlZiYqDVr1sjpdCooKEijR49WXFyc8vLyFBoaqoyMDO3evVsZGRlauXJlUxwbAAAtXo2Xvu+55x69\n/PLLkqTQ0FCVlZWpoKBAsbGxkqQhQ4YoPz9f+/fvV1RUlOx2u4KDg9WnTx+5XC7l5+crLi5OkhQd\nHS2Xy9WIhwMAQOtS4xm11WpVSEiIJMnpdGrw4MHavXu3bDabJCkiIkJut1sej0fh4eG+54WHh1+1\nPSAgQBaLRZcuXfI9/1o6dAhRYKDVrwOJjLT79XhUxfwgNc+fg9b2Z68pj6e1za6ptZT51fqnvnfs\n2CGn06kNGzZo6NChvu1er/eaj/d3+5WKi0truyxJPw7b7T7n13PwP8wPP2nqPwet8c9eUx1Pa5xd\nUzJtftX9o6FWP/X92Wefae3atVq3bp3sdrtCQkJUXl4uSTpx4oQcDoccDoc8Ho/vOSdPnvRtd7vd\nkqSKigp5vd5qz6YBAMD/1Bjqc+fOafny5Xr99dcVFhYm6cf3mnNyciRJubm5GjRokHr16qXCwkKV\nlJTowoULcrlc6tu3rwYMGKDs7GxJUl5envr169eIhwMAQOtS46XvDz/8UMXFxZoxY4ZvW3p6uhYs\nWKDMzEx17txZiYmJCgoK0syZM5WSkiKLxaLU1FTZ7XYlJCRoz549SkpKks1mU3p6eqMeEAAArUmN\noX700Uf16KOPXrX9rbfeumpbfHy84uPjq2z76bPTAADAf9xCFIBPS7jNKfBzwy1EAQAwGKEGAMBg\nhBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGHcmQ61wxyoAaB6cUQMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssLkXAADAlSal72zuJdRoQ1pM\nk+2LM2oAAAxGqAEAMBihBgDAYIQaAACDEWoAAAxGqAEAMBihBgDAYLX6HPXXX3+tqVOnauLEiRo/\nfrzS0tJ08OBBhYWFSZJSUlL0wAMPKCsrS5s2bVJAQIDGjh2rMWPGqKKiQmlpaTp69KisVquWLl2q\nLl26NOpBAUBz4TPAaGg1hrq0tFRLlixR//79q2x/+umnNWTIkCqPW7NmjZxOp4KCgjR69GjFxcUp\nLy9PoaGhysjI0O7du5WRkaGVK1c2/JEAANAK1Xjp22azad26dXI4HNU+bv/+/YqKipLdbldwcLD6\n9Okjl8ul/Px8xcXFSZKio6PlcrkaZuUAAPwM1BjqwMBABQcHX7V9y5YtmjBhgp566imdPn1aHo9H\n4eHhvu+Hh4fL7XZX2R4QECCLxaJLly414CEAANB61ele3w8//LDCwsLUo0cPvfHGG3rllVd09913\nV3mM1+u95nOvt/1KHTqEKDDQ6teaIiPtfj0eVTE/4OeDv+/115QzrFOor3y/OiYmRosXL9awYcPk\n8Xh820+ePKnevXvL4XDI7Xare/fuqqiokNfrlc1mq/b1i4tL/VpPZKRdbvc5/w4CPswP+Hnh73v9\nNfQMqwt/nT6e9eSTT+rw4cOSpIKCAnXt2lW9evVSYWGhSkpKdOHCBblcLvXt21cDBgxQdna2JCkv\nL0/9+vWryy4BAPhZqvGM+sCBA1q2bJm+//57BQYGKicnR+PHj9eMGTPUpk0bhYSEaOnSpQoODtbM\nmTOVkpIii8Wi1NRU2e12JSQkaM+ePUpKSpLNZlN6enpTHBcAAK1CjaHu2bOnNm/efNX2YcOGXbUt\nPj5e8fHxVbb99NlpAADgP+5MBgCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMA\nYDBCDQCAwQg1AAAGI9QAABiMUAMAYLA6/T5qAEDLNSl9Z3MvAX7gjBoAAIMRagAADEaoAQAwGKEG\nAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMR\nagAADFarUH/99dd68MEHtWXLFknSsWPH9Lvf/U7JycmaPn26Ll26JEnKysrSb37zG40ZM0bvvfee\nJKmiokIzZ85UUlKSxo8fr8OHDzfSoQAA0PrUGOrS0lItWbJE/fv3921btWqVkpOT9fbbb+uWW26R\n0+lUaWmp1qxZo40bN2rz5s3atGmTzpw5o+3btys0NFTvvPOOpkyZooyMjEY9IAAAWpMaQ22z2bRu\n3To5HA7ftoKCAsXGxkqShgwZovz8fO3fv19RUVGy2+0KDg5Wnz595HK5lJ+fr7i4OElSdHS0XC5X\nIx0KAACtT42hDgwMVHBwcJVtZWVlstlskqSIiAi53W55PB6Fh4f7HhMeHn7V9oCAAFksFt+lcgAA\nUL3A+r6A1+ttkO1X6tAhRIGBVr/WERlp9+vxqIr5AUDtNeX/M+sU6pCQEJWXlys4OFgnTpyQw+GQ\nw+GQx+PxPebkyZPq3bu3HA6H3G63unfvroqKCnm9Xt/Z+PUUF5f6tZ7ISLvc7nN1ORSI+QGAvxr6\n/5nVhb9OH8+Kjo5WTk6OJCk3N1eDBg1Sr169VFhYqJKSEl24cEEul0t9+/bVgAEDlJ2dLUnKy8tT\nv3796rJLAAB+lmo8oz5w4ICWLVum77//XoGBgcrJydGLL76otLQ0ZWZmqnPnzkpMTFRQUJBmzpyp\nlJQUWSwWpaamym63KyEhQXv27FFSUpJsNpvS09Ob4rgAAGgVLN7avGncxPy9pMCl2/qpzfwmpe9s\notUAgPk2pMU06Os1+KVvAADQNOr9U99oGJyxAgCuhTNqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAM\nRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAA\ngxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYA\nwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMFtjcC2gKk9J3NvcSAACoE86oAQAwGKEG\nAMBghBoAAIMRagAADFanHyYrKCjQ9OnT1bVrV0lSt27d9Pjjj2v27NmqrKxUZGSkVqxYIZvNpqys\nLG3atEkBAQEaO3asxowZ06AHAABAa1bnn/q+9957tWrVKt/Xc+fOVXJysoYPH66XXnpJTqdTiYmJ\nWrNmjZxOp4KCgjR69GjFxcUpLCysQRYPAEBr12CXvgsKChQbGytJGjJkiPLz87V//35FRUXJbrcr\nODhYffr0kcvlaqhdAgDQ6tX5jPrQoUOaMmWKzp49q2nTpqmsrEw2m02SFBERIbfbLY/Ho/DwcN9z\nwsPD5Xa7a3ztDh1CFBho9Ws9kZF2/w4AAIA6asrm1CnUt956q6ZNm6bhw4fr8OHDmjBhgiorK33f\n93q913ze9bb//4qLS/1aT2SkXW73Ob+eAwBAXTV0c6oLf50ufXfq1EkJCQmyWCy6+eab1bFjR509\ne1bl5eWSpBMnTsjhcMjhcMjj8fied/LkSTkcjrrsEgCAn6U6hTorK0tvvvmmJMntduvUqVMaNWqU\ncnJyJEm5ubkaNGiQevXqpcLCQpWUlOjChQtyuVzq27dvw60eAIBWrk6XvmNiYvTMM8/ok08+UUVF\nhRYvXqwePXpozpw5yszMVOfOnZWYmKigoCDNnDlTKSkpslgsSk1Nld3Oe8kAANSWxVvbN46bkL/X\n/mt6j5pfygEAaEgb0mIa9PUa/D1qAADQNAg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiM\nUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCA\nwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABgssCl2\n8sILL2j//v2yWCyaN2+e7rrrrqbYLQAALV6jh/rLL7/Ud999p8zMTBUVFWnevHnKzMxs7N0CANAq\nNPql7/z8fD344IOSpNtuu01nz57V+fPnG3u3AAC0Co0eao/How4dOvi+Dg8Pl9vtbuzdAgDQKjTJ\ne9RX8nq9NT4mMtLu9+tW95wPMh72+/UAADBBo59ROxwOeTwe39cnT55UZGRkY+8WAIBWodFDPWDA\nAOXk5EiSDh48KIfDoXbt2jX2bgEAaBUa/dJ3nz59dOedd2rcuHGyWCxatGhRY+8SAIBWw+KtzZvG\nAACgWXBnMgAADEaoAQAwWJN/PKuhcXtS/3399deaOnWqJk6cqPHjx+vYsWOaPXu2KisrFRkZqRUr\nVshmszX3Mo20fPly7du3T5cvX9bkyZMVFRXF7GqhrKxMaWlpOnXqlC5evKipU6eqe/fuzM5P5eXl\nGjFihKZOnar+/fszv1oqKCjQ9OnT1bVrV0lSt27d9Pjjj7eY+bXoM+orb0/6/PPP6/nnn2/uJRmv\ntLRUS5YsUf/+/X3bVq1apeTkZL399tu65ZZb5HQ6m3GF5vriiy/0zTffKDMzU+vXr9cLL7zA7Gop\nLy9PPXv21JYtW7Ry5Uqlp6czuzp47bXX1L59e0n8vfXXvffeq82bN2vz5s1auHBhi5pfiw41tyf1\nn81m07p16+RwOHzbCgoKFBsbK0kaMmSI8vPzm2t5Rrvnnnv08ssvS5JCQ0NVVlbG7GopISFBTzzx\nhCTp2LFj6tSpE7PzU1FRkQ4dOqQHHnhAEn9v66slza9Fh5rbk/ovMDBQwcHBVbaVlZX5LvlEREQw\nw+uwWq0KCQmRJDmdTg0ePJjZ+WncuHF65plnNG/ePGbnp2XLliktLc33NfPzz6FDhzRlyhQlJSXp\n888/b1Hza/HvUV+JT5rVHzOs2Y4dO+R0OrVhwwYNHTrUt53Z1ezdd9/VV199pVmzZlWZF7Or3l/+\n8hf17t1bXbp0ueb3mV/1br31Vk2bNk3Dhw/X4cOHNWHCBFVWVvq+b/r8WnSouT1pwwgJCVF5ebmC\ng4N14sSJKpfFUdVnn32mtWvXav369bLb7cyulg4cOKCIiAjdcMMN6tGjhyorK9W2bVtmV0u7du3S\n4cOHtWvXLh0/flw2m40/e37o1KmTEhISJEk333yzOnbsqMLCwhYzvxZ96ZvbkzaM6Oho3xxzc3M1\naNCgZl6Rmc6dO6fly5fr9ddfV1hYmCRmV1t79+7Vhg0bJP34llVpaSmz88PKlSu1detW/fnPf9aY\nMWM0depU5ueHrKwsvfnmm5Ikt9utU6dOadSoUS1mfi3+zmQvvvii9u7d67s9affu3Zt7SUY7cOCA\nli1bpu+//16BgYHq1KmTXnytKYqYAAAArElEQVTxRaWlpenixYvq3Lmzli5dqqCgoOZeqnEyMzO1\nevVq/fKXv/RtS09P14IFC5hdDcrLyzV//nwdO3ZM5eXlmjZtmnr27Kk5c+YwOz+tXr1aN954owYO\nHMj8aun8+fN65plnVFJSooqKCk2bNk09evRoMfNr8aEGAKA1a9GXvgEAaO0INQAABiPUAAAYjFAD\nAGAwQg0AgMEINQAABiPUAAAYjFADAGCw/wdkB5RjykY3PgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "XtYZ7114n3b-" + }, + "cell_type": "markdown", + "source": [ + "## Accessing Data\n", + "\n", + "You can access `DataFrame` data using familiar Python dict/list operations:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "_TFm7-looBFF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 107 + }, + "outputId": "5278046d-0384-4160-8a6c-07b1abb8ffda" + }, + "cell_type": "code", + "source": [ + "cities = pd.DataFrame({ 'City name': city_names, 'Population': population })\n", + "print(type(cities['City name']))\n", + "cities['City name']" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 San Francisco\n", + "1 San Jose\n", + "2 Sacramento\n", + "Name: City name, dtype: object" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "V5L6xacLoxyv", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 + }, + "outputId": "c78c3308-97b6-4d92-e2a7-e417b7eb0f85" + }, + "cell_type": "code", + "source": [ + "print(type(cities['City name'][1]))\n", + "cities['City name'][1]" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'San Jose'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "gcYX1tBPugZl", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 129 + }, + "outputId": "5148e228-277c-4836-8235-b54829faf304" + }, + "cell_type": "code", + "source": [ + "print(type(cities[0:2]))\n", + "cities[0:2]" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulation
0San Francisco852469
1San Jose1015785
\n", + "
" + ], + "text/plain": [ + " City name Population\n", + "0 San Francisco 852469\n", + "1 San Jose 1015785" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "65g1ZdGVjXsQ" + }, + "cell_type": "markdown", + "source": [ + "In addition, *pandas* provides an extremely rich API for advanced [indexing and selection](http://pandas.pydata.org/pandas-docs/stable/indexing.html) that is too extensive to be covered here." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "RM1iaD-ka3Y1" + }, + "cell_type": "markdown", + "source": [ + "## Manipulating Data\n", + "\n", + "You may apply Python's basic arithmetic operations to `Series`. For example:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "XWmyCFJ5bOv-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "outputId": "22cebb04-d9a5-424e-e87f-1595b61199ac" + }, + "cell_type": "code", + "source": [ + "population / 1000." + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 852.469\n", + "1 1015.785\n", + "2 485.199\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TQzIVnbnmWGM" + }, + "cell_type": "markdown", + "source": [ + "[NumPy](http://www.numpy.org/) is a popular toolkit for scientific computing. *pandas* `Series` can be used as arguments to most NumPy functions:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "ko6pLK6JmkYP", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "outputId": "9a762c80-011c-4bf2-b60d-5cb17416943e" + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "\n", + "np.log(population)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 13.655892\n", + "1 13.831172\n", + "2 13.092314\n", + "dtype: float64" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "xmxFuQmurr6d" + }, + "cell_type": "markdown", + "source": [ + "For more complex single-column transformations, you can use `Series.apply`. Like the Python [map function](https://docs.python.org/2/library/functions.html#map), \n", + "`Series.apply` accepts as an argument a [lambda function](https://docs.python.org/2/tutorial/controlflow.html#lambda-expressions), which is applied to each value.\n", + "\n", + "The example below creates a new `Series` that indicates whether `population` is over one million:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Fc1DvPAbstjI", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "outputId": "e62e1c6e-07f8-4d4d-9c34-ae6bd8001dc4" + }, + "cell_type": "code", + "source": [ + "population.apply(lambda val: val > 1000000)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 False\n", + "1 True\n", + "2 False\n", + "dtype: bool" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "ZeYYLoV9b9fB" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Modifying `DataFrames` is also straightforward. For example, the following code adds two `Series` to an existing `DataFrame`:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "0gCEX99Hb8LR", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "a03fbb06-6cbc-468f-c601-5d71eb491a86" + }, + "cell_type": "code", + "source": [ + "cities['Area square miles'] = pd.Series([46.87, 176.53, 97.92])\n", + "cities['Population density'] = cities['Population'] / cities['Area square miles']\n", + "cities" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation density
0San Francisco85246946.8718187.945381
1San Jose1015785176.535754.177760
2Sacramento48519997.924955.055147
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density\n", + "0 San Francisco 852469 46.87 18187.945381\n", + "1 San Jose 1015785 176.53 5754.177760\n", + "2 Sacramento 485199 97.92 4955.055147" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "6qh63m-ayb-c" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #1\n", + "\n", + "Modify the `cities` table by adding a new boolean column that is True if and only if *both* of the following are True:\n", + "\n", + " * The city is named after a saint.\n", + " * The city has an area greater than 50 square miles.\n", + "\n", + "**Note:** Boolean `Series` are combined using the bitwise, rather than the traditional boolean, operators. For example, when performing *logical and*, use `&` instead of `and`.\n", + "\n", + "**Hint:** \"San\" in Spanish means \"saint.\"" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "zCOn8ftSyddH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "19c212af-cdfb-4b88-db56-0155001eee8f" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities['Is wide and has saint name'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
0San Francisco85246946.8718187.945381False
1San Jose1015785176.535754.177760True
2Sacramento48519997.924955.055147False
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "\n", + " Is wide and has saint name \n", + "0 False \n", + "1 True \n", + "2 False " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "YHIWvc9Ms-Ll" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5OlrqtdtCIb", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cities['Is wide and has saint name'] = (cities['Area square miles'] > 50) & cities['City name'].apply(lambda name: name.startswith('San'))\n", + "cities" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "f-xAOJeMiXFB" + }, + "cell_type": "markdown", + "source": [ + "## Indexes\n", + "Both `Series` and `DataFrame` objects also define an `index` property that assigns an identifier value to each `Series` item or `DataFrame` row. \n", + "\n", + "By default, at construction, *pandas* assigns index values that reflect the ordering of the source data. Once created, the index values are stable; that is, they do not change when data is reordered." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "2684gsWNinq9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "86257f88-2859-4aad-f353-8e5a1f90d77c" + }, + "cell_type": "code", + "source": [ + "city_names.index" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "F_qPe2TBjfWd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "e7cc6faf-4648-4009-e389-5ab482f91957" + }, + "cell_type": "code", + "source": [ + "cities.index" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=3, step=1)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "hp2oWY9Slo_h" + }, + "cell_type": "markdown", + "source": [ + "Call `DataFrame.reindex` to manually reorder the rows. For example, the following has the same effect as sorting by city name:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "sN0zUzSAj-U1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "20b32782-700a-4da2-c018-30c86e7bbf7f" + }, + "cell_type": "code", + "source": [ + "cities.reindex([2, 0, 1])" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
2Sacramento48519997.924955.055147False
0San Francisco85246946.8718187.945381False
1San Jose1015785176.535754.177760True
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "\n", + " Is wide and has saint name \n", + "2 False \n", + "0 False \n", + "1 True " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "-GQFz8NZuS06" + }, + "cell_type": "markdown", + "source": [ + "Reindexing is a great way to shuffle (randomize) a `DataFrame`. In the example below, we take the index, which is array-like, and pass it to NumPy's `random.permutation` function, which shuffles its values in place. Calling `reindex` with this shuffled array causes the `DataFrame` rows to be shuffled in the same way.\n", + "Try running the following cell multiple times!" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "mF8GC0k8uYhz", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 142 + }, + "outputId": "55402571-b383-42b0-d3f9-7803f81af85a" + }, + "cell_type": "code", + "source": [ + "cities.reindex(np.random.permutation(cities.index))" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
2Sacramento48519997.924955.055147False
0San Francisco85246946.8718187.945381False
1San Jose1015785176.535754.177760True
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "2 Sacramento 485199 97.92 4955.055147 \n", + "0 San Francisco 852469 46.87 18187.945381 \n", + "1 San Jose 1015785 176.53 5754.177760 \n", + "\n", + " Is wide and has saint name \n", + "2 False \n", + "0 False \n", + "1 True " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "fSso35fQmGKb" + }, + "cell_type": "markdown", + "source": [ + "For more information, see the [Index documentation](http://pandas.pydata.org/pandas-docs/stable/indexing.html#index-objects)." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8UngIdVhz8C0" + }, + "cell_type": "markdown", + "source": [ + "## Exercise #2\n", + "\n", + "The `reindex` method allows index values that are not in the original `DataFrame`'s index values. Try it and see what happens if you use such values! Why do you think this is allowed?" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "PN55GrDX0jzO", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 173 + }, + "outputId": "9a6f0d46-1bdc-4ad8-a899-085133ac8116" + }, + "cell_type": "code", + "source": [ + "# Your code here\n", + "cities.reindex([0, 1, 5, 3])" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City namePopulationArea square milesPopulation densityIs wide and has saint name
0San Francisco852469.046.8718187.945381False
1San Jose1015785.0176.535754.177760True
5NaNNaNNaNNaNNaN
3NaNNaNNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " City name Population Area square miles Population density \\\n", + "0 San Francisco 852469.0 46.87 18187.945381 \n", + "1 San Jose 1015785.0 176.53 5754.177760 \n", + "5 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "\n", + " Is wide and has saint name \n", + "0 False \n", + "1 True \n", + "5 NaN \n", + "3 NaN " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "TJffr5_Jwqvd" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "8oSvi2QWwuDH" + }, + "cell_type": "markdown", + "source": [ + "If your `reindex` input array includes values not in the original `DataFrame` index values, `reindex` will add new rows for these \"missing\" indices and populate all corresponding columns with `NaN` values:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yBdkucKCwy4x", + "colab": {} + }, + "cell_type": "code", + "source": [ + "cities.reindex([0, 4, 5, 2])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "2l82PhPbwz7g" + }, + "cell_type": "markdown", + "source": [ + "This behavior is desirable because indexes are often strings pulled from the actual data (see the [*pandas* reindex\n", + "documentation](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html) for an example\n", + "in which the index values are browser names).\n", + "\n", + "In this case, allowing \"missing\" indices makes it easy to reindex using an external list, as you don't have to worry about\n", + "sanitizing the input." + ] + } + ] +} \ No newline at end of file From e35d05a090d087e5a6685ec099cbd216fd559959 Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 01:06:36 +0530 Subject: [PATCH 02/11] Created using Colaboratory --- first_steps_with_tensor_flow.ipynb | 1764 ++++++++++++++++++++++++++++ 1 file changed, 1764 insertions(+) create mode 100644 first_steps_with_tensor_flow.ipynb diff --git a/first_steps_with_tensor_flow.ipynb b/first_steps_with_tensor_flow.ipynb new file mode 100644 index 0000000..f1bd9f2 --- /dev/null +++ b/first_steps_with_tensor_flow.ipynb @@ -0,0 +1,1764 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "first_steps_with_tensor_flow.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ajVM7rkoYXeL", + "ci1ISxxrZ7v0" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# First Steps with TensorFlow" + ] + }, + { + "metadata": { + "id": "Bd2Zkk1LE2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Learn fundamental TensorFlow concepts\n", + " * Use the `LinearRegressor` class in TensorFlow to predict median housing price, at the granularity of city blocks, based on one input feature\n", + " * Evaluate the accuracy of a model's predictions using Root Mean Squared Error (RMSE)\n", + " * Improve the accuracy of a model by tuning its hyperparameters" + ] + }, + { + "metadata": { + "id": "MxiIKhP4E2Zr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The [data](https://developers.google.com/machine-learning/crash-course/california-housing-data-description) is based on 1990 census data from California." + ] + }, + { + "metadata": { + "id": "6TjLjL9IU80G", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "In this first cell, we'll load the necessary libraries." + ] + }, + { + "metadata": { + "id": "rVFf5asKE2Zt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ipRyUHjhU80Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll load our data set." + ] + }, + { + "metadata": { + "id": "9ivCDWnwE2Zx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vVk_qlG6U80j", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We'll randomize the data, just to be sure not to get any pathological ordering effects that might harm the performance of Stochastic Gradient Descent. Additionally, we'll scale `median_house_value` to be in units of thousands, so it can be learned a little more easily with learning rates in a range that we usually use." + ] + }, + { + "metadata": { + "id": "r0eVyguIU80m", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "outputId": "27720739-976f-4efe-edfc-48e077a2d608" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
3984-118.033.723.02622.0445.01103.0407.04.7289.6
4366-118.034.036.01681.0329.0964.0311.04.1181.2
15009-122.237.536.02021.0433.01117.0432.03.9303.1
13929-122.037.425.03095.0514.01251.0507.05.5352.1
6191-118.234.119.02870.01021.03325.0978.01.7162.5
..............................
8154-118.434.045.01740.0311.0788.0306.05.2373.6
3529-117.933.716.01917.0317.01324.0351.06.2252.0
13851-122.037.443.01261.0317.0836.0333.04.1224.6
3051-117.833.538.01757.0464.0821.0426.04.1433.3
8162-118.434.037.01340.0358.01008.0340.03.8314.3
\n", + "

17000 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "3984 -118.0 33.7 23.0 2622.0 445.0 \n", + "4366 -118.0 34.0 36.0 1681.0 329.0 \n", + "15009 -122.2 37.5 36.0 2021.0 433.0 \n", + "13929 -122.0 37.4 25.0 3095.0 514.0 \n", + "6191 -118.2 34.1 19.0 2870.0 1021.0 \n", + "... ... ... ... ... ... \n", + "8154 -118.4 34.0 45.0 1740.0 311.0 \n", + "3529 -117.9 33.7 16.0 1917.0 317.0 \n", + "13851 -122.0 37.4 43.0 1261.0 317.0 \n", + "3051 -117.8 33.5 38.0 1757.0 464.0 \n", + "8162 -118.4 34.0 37.0 1340.0 358.0 \n", + "\n", + " population households median_income median_house_value \n", + "3984 1103.0 407.0 4.7 289.6 \n", + "4366 964.0 311.0 4.1 181.2 \n", + "15009 1117.0 432.0 3.9 303.1 \n", + "13929 1251.0 507.0 5.5 352.1 \n", + "6191 3325.0 978.0 1.7 162.5 \n", + "... ... ... ... ... \n", + "8154 788.0 306.0 5.2 373.6 \n", + "3529 1324.0 351.0 6.2 252.0 \n", + "13851 836.0 333.0 4.1 224.6 \n", + "3051 821.0 426.0 4.1 433.3 \n", + "8162 1008.0 340.0 3.8 314.3 \n", + "\n", + "[17000 rows x 9 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "HzzlSs3PtTmt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Examine the Data\n", + "\n", + "It's a good idea to get to know your data a little bit before you work with it.\n", + "\n", + "We'll print out a quick summary of a few useful statistics on each column: count of examples, mean, standard deviation, max, min, and various quantiles." + ] + }, + { + "metadata": { + "id": "gzb10yoVrydW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "63067c6f-f2cb-442c-a629-d2cca0440b5f" + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count17000.017000.017000.017000.017000.017000.017000.017000.017000.0
mean-119.635.628.62643.7539.41429.6501.23.9207.3
std2.02.112.62179.9421.51147.9384.51.9116.0
min-124.332.51.02.01.03.01.00.515.0
25%-121.833.918.01462.0297.0790.0282.02.6119.4
50%-118.534.229.02127.0434.01167.0409.03.5180.4
75%-118.037.737.03151.2648.21721.0605.24.8265.0
max-114.342.052.037937.06445.035682.06082.015.0500.0
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "count 17000.0 17000.0 17000.0 17000.0 17000.0 \n", + "mean -119.6 35.6 28.6 2643.7 539.4 \n", + "std 2.0 2.1 12.6 2179.9 421.5 \n", + "min -124.3 32.5 1.0 2.0 1.0 \n", + "25% -121.8 33.9 18.0 1462.0 297.0 \n", + "50% -118.5 34.2 29.0 2127.0 434.0 \n", + "75% -118.0 37.7 37.0 3151.2 648.2 \n", + "max -114.3 42.0 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income median_house_value \n", + "count 17000.0 17000.0 17000.0 17000.0 \n", + "mean 1429.6 501.2 3.9 207.3 \n", + "std 1147.9 384.5 1.9 116.0 \n", + "min 3.0 1.0 0.5 15.0 \n", + "25% 790.0 282.0 2.6 119.4 \n", + "50% 1167.0 409.0 3.5 180.4 \n", + "75% 1721.0 605.2 4.8 265.0 \n", + "max 35682.0 6082.0 15.0 500.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "Lr6wYl2bt2Ep", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Build the First Model\n", + "\n", + "In this exercise, we'll try to predict `median_house_value`, which will be our label (sometimes also called a target). We'll use `total_rooms` as our input feature.\n", + "\n", + "**NOTE:** Our data is at the city block level, so this feature represents the total number of rooms in that block.\n", + "\n", + "To train our model, we'll use the [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor) interface provided by the TensorFlow [Estimator](https://www.tensorflow.org/get_started/estimator) API. This API takes care of a lot of the low-level model plumbing, and exposes convenient methods for performing model training, evaluation, and inference." + ] + }, + { + "metadata": { + "id": "0cpcsieFhsNI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 1: Define Features and Configure Feature Columns" + ] + }, + { + "metadata": { + "id": "EL8-9d4ZJNR7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In order to import our training data into TensorFlow, we need to specify what type of data each feature contains. There are two main types of data we'll use in this and future exercises:\n", + "\n", + "* **Categorical Data**: Data that is textual. In this exercise, our housing data set does not contain any categorical features, but examples you might see would be the home style, the words in a real-estate ad.\n", + "\n", + "* **Numerical Data**: Data that is a number (integer or float) and that you want to treat as a number. As we will discuss more later sometimes you might want to treat numerical data (e.g., a postal code) as if it were categorical.\n", + "\n", + "In TensorFlow, we indicate a feature's data type using a construct called a **feature column**. Feature columns store only a description of the feature data; they do not contain the feature data itself.\n", + "\n", + "To start, we're going to use just one numeric input feature, `total_rooms`. The following code pulls the `total_rooms` data from our `california_housing_dataframe` and defines the feature column using `numeric_column`, which specifies its data is numeric:" + ] + }, + { + "metadata": { + "id": "rhEbFCZ86cDZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the input feature: total_rooms.\n", + "my_feature = california_housing_dataframe[[\"total_rooms\"]]\n", + "\n", + "# Configure a numeric feature column for total_rooms.\n", + "feature_columns = [tf.feature_column.numeric_column(\"total_rooms\")]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "K_3S8teX7Rd2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** The shape of our `total_rooms` data is a one-dimensional array (a list of the total number of rooms for each block). This is the default shape for `numeric_column`, so we don't have to pass it as an argument." + ] + }, + { + "metadata": { + "id": "UMl3qrU5MGV6", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 2: Define the Target" + ] + }, + { + "metadata": { + "id": "cw4nrfcB7kyk", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll define our target, which is `median_house_value`. Again, we can pull it from our `california_housing_dataframe`:" + ] + }, + { + "metadata": { + "id": "l1NvvNkH8Kbt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Define the label.\n", + "targets = california_housing_dataframe[\"median_house_value\"]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4M-rTFHL2UkA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 3: Configure the LinearRegressor" + ] + }, + { + "metadata": { + "id": "fUfGQUNp7jdL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll configure a linear regression model using LinearRegressor. We'll train this model using the `GradientDescentOptimizer`, which implements Mini-Batch Stochastic Gradient Descent (SGD). The `learning_rate` argument controls the size of the gradient step.\n", + "\n", + "**NOTE:** To be safe, we also apply [gradient clipping](https://developers.google.com/machine-learning/glossary/#gradient_clipping) to our optimizer via `clip_gradients_by_norm`. Gradient clipping ensures the magnitude of the gradients do not become too large during training, which can cause gradient descent to fail. " + ] + }, + { + "metadata": { + "id": "ubhtW-NGU802", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "outputId": "3884b076-3587-4f6c-8150-7564729b6bce" + }, + "cell_type": "code", + "source": [ + "# Use gradient descent as the optimizer for training the model.\n", + "my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001)\n", + "my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + "\n", + "# Configure the linear regression model with our feature columns and optimizer.\n", + "# Set a learning rate of 0.0000001 for Gradient Descent.\n", + "linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + ")" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "-0IztwdK2f3F", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 4: Define the Input Function" + ] + }, + { + "metadata": { + "id": "S5M5j6xSCHxx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To import our California housing data into our `LinearRegressor`, we need to define an input function, which instructs TensorFlow how to preprocess\n", + "the data, as well as how to batch, shuffle, and repeat it during model training.\n", + "\n", + "First, we'll convert our *pandas* feature data into a dict of NumPy arrays. We can then use the TensorFlow [Dataset API](https://www.tensorflow.org/programmers_guide/datasets) to construct a dataset object from our data, and then break\n", + "our data into batches of `batch_size`, to be repeated for the specified number of epochs (num_epochs). \n", + "\n", + "**NOTE:** When the default value of `num_epochs=None` is passed to `repeat()`, the input data will be repeated indefinitely.\n", + "\n", + "Next, if `shuffle` is set to `True`, we'll shuffle the data so that it's passed to the model randomly during training. The `buffer_size` argument specifies\n", + "the size of the dataset from which `shuffle` will randomly sample.\n", + "\n", + "Finally, our input function constructs an iterator for the dataset and returns the next batch of data to the LinearRegressor." + ] + }, + { + "metadata": { + "id": "RKZ9zNcHJtwc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wwa6UeA1V5F_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** We'll continue to use this same input function in later exercises. For more\n", + "detailed documentation of input functions and the `Dataset` API, see the [TensorFlow Programmer's Guide](https://www.tensorflow.org/programmers_guide/datasets)." + ] + }, + { + "metadata": { + "id": "4YS50CQb2ooO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 5: Train the Model" + ] + }, + { + "metadata": { + "id": "yP92XkzhU803", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We can now call `train()` on our `linear_regressor` to train the model. We'll wrap `my_input_fn` in a `lambda`\n", + "so we can pass in `my_feature` and `target` as arguments (see this [TensorFlow input function tutorial](https://www.tensorflow.org/get_started/input_fn#passing_input_fn_data_to_your_model) for more details), and to start, we'll\n", + "train for 100 steps." + ] + }, + { + "metadata": { + "id": "5M-Kt6w8U803", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = linear_regressor.train(\n", + " input_fn = lambda:my_input_fn(my_feature, targets),\n", + " steps=100\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7Nwxqxlx2sOv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Step 6: Evaluate the Model" + ] + }, + { + "metadata": { + "id": "KoDaF2dlJQG5", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's make predictions on that training data, to see how well our model fit it during training.\n", + "\n", + "**NOTE:** Training error measures how well your model fits the training data, but it **_does not_** measure how well your model **_generalizes to new data_**. In later exercises, you'll explore how to split your data to evaluate your model's ability to generalize.\n" + ] + }, + { + "metadata": { + "id": "pDIxp6vcU809", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 + }, + "outputId": "93c81944-3447-4729-bf28-a2a6c72796bd" + }, + "cell_type": "code", + "source": [ + "# Create an input function for predictions.\n", + "# Note: Since we're making just one prediction for each example, we don't \n", + "# need to repeat or shuffle the data here.\n", + "prediction_input_fn =lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False)\n", + "\n", + "# Call predict() on the linear_regressor to make predictions.\n", + "predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + "\n", + "# Format predictions as a NumPy array, so we can calculate error metrics.\n", + "predictions = np.array([item['predictions'][0] for item in predictions])\n", + "\n", + "# Print Mean Squared Error and Root Mean Squared Error.\n", + "mean_squared_error = metrics.mean_squared_error(predictions, targets)\n", + "root_mean_squared_error = math.sqrt(mean_squared_error)\n", + "print(\"Mean Squared Error (on training data): %0.3f\" % mean_squared_error)\n", + "print(\"Root Mean Squared Error (on training data): %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Mean Squared Error (on training data): 56367.025\n", + "Root Mean Squared Error (on training data): 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "AKWstXXPzOVz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Is this a good model? How would you judge how large this error is?\n", + "\n", + "Mean Squared Error (MSE) can be hard to interpret, so we often look at Root Mean Squared Error (RMSE)\n", + "instead. A nice property of RMSE is that it can be interpreted on the same scale as the original targets.\n", + "\n", + "Let's compare the RMSE to the difference of the min and max of our targets:" + ] + }, + { + "metadata": { + "id": "7UwqGbbxP53O", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "outputId": "748444c5-5bb8-48da-cb8f-ac7d13942118" + }, + "cell_type": "code", + "source": [ + "min_house_value = california_housing_dataframe[\"median_house_value\"].min()\n", + "max_house_value = california_housing_dataframe[\"median_house_value\"].max()\n", + "min_max_difference = max_house_value - min_house_value\n", + "\n", + "print(\"Min. Median House Value: %0.3f\" % min_house_value)\n", + "print(\"Max. Median House Value: %0.3f\" % max_house_value)\n", + "print(\"Difference between Min. and Max.: %0.3f\" % min_max_difference)\n", + "print(\"Root Mean Squared Error: %0.3f\" % root_mean_squared_error)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Min. Median House Value: 14.999\n", + "Max. Median House Value: 500.001\n", + "Difference between Min. and Max.: 485.002\n", + "Root Mean Squared Error: 237.417\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "JigJr0C7Pzit", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our error spans nearly half the range of the target values. Can we do better?\n", + "\n", + "This is the question that nags at every model developer. Let's develop some basic strategies to reduce model error.\n", + "\n", + "The first thing we can do is take a look at how well our predictions match our targets, in terms of overall summary statistics." + ] + }, + { + "metadata": { + "id": "941nclxbzqGH", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "537af436-f081-41f0-f6a8-a3c883d09f85" + }, + "cell_type": "code", + "source": [ + "calibration_data = pd.DataFrame()\n", + "calibration_data[\"predictions\"] = pd.Series(predictions)\n", + "calibration_data[\"targets\"] = pd.Series(targets)\n", + "calibration_data.describe()" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean0.1207.3
std0.1116.0
min0.015.0
25%0.1119.4
50%0.1180.4
75%0.2265.0
max1.9500.0
\n", + "
" + ], + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 0.1 207.3\n", + "std 0.1 116.0\n", + "min 0.0 15.0\n", + "25% 0.1 119.4\n", + "50% 0.1 180.4\n", + "75% 0.2 265.0\n", + "max 1.9 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] + }, + { + "metadata": { + "id": "E2-bf8Hq36y8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Okay, maybe this information is helpful. How does the mean value compare to the model's RMSE? How about the various quantiles?\n", + "\n", + "We can also visualize the data and the line we've learned. Recall that linear regression on a single feature can be drawn as a line mapping input *x* to output *y*.\n", + "\n", + "First, we'll get a uniform random sample of the data so we can make a readable scatter plot." + ] + }, + { + "metadata": { + "id": "SGRIi3mAU81H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "sample = california_housing_dataframe.sample(n=300)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "N-JwuJBKU81J", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll plot the line we've learned, drawing from the model's bias term and feature weight, together with the scatter plot. The line will show up red." + ] + }, + { + "metadata": { + "id": "7G12E76-339G", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 361 + }, + "outputId": "7d475ade-6ea6-408c-f0b9-416bb0b57ca1" + }, + "cell_type": "code", + "source": [ + "# Get the min and max total_rooms values.\n", + "x_0 = sample[\"total_rooms\"].min()\n", + "x_1 = sample[\"total_rooms\"].max()\n", + "\n", + "# Retrieve the final weight and bias generated during training.\n", + "weight = linear_regressor.get_variable_value('linear/linear_model/total_rooms/weights')[0]\n", + "bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + "# Get the predicted median_house_values for the min and max total_rooms values.\n", + "y_0 = weight * x_0 + bias \n", + "y_1 = weight * x_1 + bias\n", + "\n", + "# Plot our regression line from (x_0, y_0) to (x_1, y_1).\n", + "plt.plot([x_0, x_1], [y_0, y_1], c='r')\n", + "\n", + "# Label the graph axes.\n", + "plt.ylabel(\"median_house_value\")\n", + "plt.xlabel(\"total_rooms\")\n", + "\n", + "# Plot a scatter plot from our data sample.\n", + "plt.scatter(sample[\"total_rooms\"], sample[\"median_house_value\"])\n", + "\n", + "# Display graph.\n", + "plt.show()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt4VNW9B/zvnslcEjIhmWQi94IE\nsHIPARWLSAwC7avikUul6PGux8uxrT1oFatYW6scPR577OVB8YJyis3py0tbFYtAiwhYCQSwhQDa\nguGSSTK5kcwlM/v9I84wmey9Z89lz+yZfD/P06fMfe2ZuH97rfVbvyWIoiiCiIiIMpIh3Q0gIiKi\n+DGQExERZTAGciIiogzGQE5ERJTBGMiJiIgyGAM5ERFRBstJdwPi4XS2a/beRUV5cLk6NXv/dOPx\nZTYeX2bj8WW+dB2jw2GTfYw98gg5OcZ0N0FTPL7MxuPLbDy+zKfHY2QgJyIiymAM5ERERBmMgZyI\niCiDMZATERFlMAZyIiKiDMZATkRElMEYyImIiDIYA3maeHx+NLg64fH5Fe+L9ppUtTHVn51p+P1E\nx++ISBuaVXbbs2cPHnzwQYwZMwYAMHbsWNxxxx1YsWIF/H4/HA4HVq9eDbPZjE2bNuGNN96AwWDA\nkiVLsHjxYq2alXb+QAAbth7Dvjonmts8sBdYMHlMCQQA+482hu6bOtaBpZVlMBoMkq8Jf1zLNja1\neWA1GwAI8Hj9mn92pkn1b5OJ+B0RaUvTEq0zZszASy+9FLr9wx/+EMuWLcOCBQvwwgsvoLq6GgsX\nLsTLL7+M6upqmEwmLFq0CHPnzkVhYaGWTUubDVuPYcunX4ZuN7V5sHVvfa/nNLV5Qs9ZVjVW8jXh\nj2vdRrc3kLLPzjSp/m0yEb8jIm2l9HJ4z549uOqqqwAAc+bMwa5du1BbW4uJEyfCZrPBarWivLwc\nNTU1qWxWynh8fuyrc6p+/r66RrR3emVfs6+uMenDlGrbqMVnZxql74rfTw9+R0Ta07RHfuzYMdxz\nzz1obW3F/fffj66uLpjNZgBAcXExnE4nGhsbYbfbQ6+x2+1wOpUDSVFRnqb1bpWK0yfidOM5NLd7\nVD/f1e5Guzcg+xpXuxtGswmOkgExtUPp+NS2Md7PTgWtfr9ISt+Vlt9Pqo4vGeL5jjLp+OLB48t8\nejtGzQL5yJEjcf/992PBggU4efIkbr75Zvj956++RVGUfJ3c/eG03HnG4bBptrua3+eH3WZBU5u6\nYF5ks8JmNsi+pshmhd/ri6m90Y5PbRvj+exU0PL3i6T0XWn1/aTy+JIh1u8o044vVjy+zJeuY0zL\n7mcXXHABvvnNb0IQBIwYMQIlJSVobW2F2+0GAJw9exalpaUoLS1FY2Nj6HUNDQ0oLS3VqllpZTEZ\nMXWsQ/Xzp44tgS3PLPuaqWNLYDEld2RCbRu1+OxMo/Rd8fvpwe+ISHuaBfJNmzbh1VdfBQA4nU40\nNTXhX/7lX7B582YAwAcffIBZs2Zh8uTJOHjwINra2nDu3DnU1NSgoqJCq2al3dLKMlRVDENxgRUG\nASgusKJy2lBcNW1or/uqKoZhaWWZ7GvCH9eyjQIAq9kIq9mYks/ONKn+bTIRvyMibQmimrHsOHR0\ndOAHP/gB2tra4PP5cP/99+PrX/86Hn74YXg8HgwZMgTPPPMMTCYT3n//fbz66qsQBAHLly/Htdde\nq/jeWg5rpGrYxOPzo7XDg4H5llCvROq+aK+JVSzHF/55ABL+7FRI17BXMn4bNTJ56FLNd5TJx6cG\njy/z6XFoXbNArqVsCOTpwuPLbDy+zMbjy3x6DOSsxkBERJTBGMiJiIgyGAM5ERFRBmMgJyIiymAM\n5ERERBmMgZyIiCiDMZCTJO4dTUSUGTTdNIUyD/eOJiLKLAzk1Av3jiYiyizsYlEI944mIso8DOQ6\nlK756dYOD5plti91tbvR2qF+L3UiIkoNDq3rSLrnpwfmW2AvkN87Orh5ChER6Qd75DoSnJ9uavNA\nxPn56Q1bj6Xk87l3NBFR5mEg1wm9zE9z72gioszCoXWdUDM/XVqUp3k7jAYDllWNxQ2zR2fE/uNE\nRP0de+Q6EZyflpKO+WmLyYjSojwG8TixoA4RpQp75DoRnJ8OX8MdxPnpzJHuhEUi6n8YyHUkOA+9\nr64RrnY3imxWTB1bkvD8tMfnDw2Tk7ZYUIeIUo2BXEeSPT8t1Tu8fPJQXHPZCPYONRAtYfGG2aM5\nskJEScezuQ4la35aajnbph2fp2w5W3/DgjpElA4M5FlKL8vZ+hO9JSwSUf/AQJ6l2DtMPRbUIaJ0\n4Bx5lmK51fTQKmGRiEgOA3mW4nK29GBBHSJKNQbyLCbVO7x88hBcc9mINLcs+wUTFomItMZAnsWk\neofDhhTC6WxPd9OIiChJmOzWDyS73CrLjxIR6Qd75KQay48SEekPAzmpxvKjRET6w24UqaJUYObT\nww1o7/SmuEVERAQwkJNKSgVmWjq8eHLtX7F+Sx38gUCKW0ZE1L8xkJMqSuVHAcDV0TPMzjruRESp\nxUBOqiiVHw3HOu5ERKnFQE6qLa0sQ1XFMBTmm2WfwzruRESpxUBOqgULzKy6bQaKZGq1s447EVFq\nMZBTzGx5Zky7iLt8ERHpAdeRR+Hx+bn5hQTu8kVEpA8M5DJYxUwZd/kiItIHBnIZrGKmDnf5IiJK\nL3YtJShVMYtleRU3FyEiIq2xRy5BqYpZcHmVUi+Uw/JERJQqjCoSlKqYqVleFRyWb2rzQMT5YXlW\nPSMiomRjIJegVMUs2vKqZA3LExERqcGhdRnxLq9KdFieiIgoFgzkMuJdXhUclm+SCOasekZERMmm\n6dC62+1GVVUVfve73+H06dO46aabsGzZMjz44IPwenv2r960aRNuuOEGLF68GL/97W+1bE5cgsur\n1K6RTmRYXg+YaU9ElFk07ZH/8pe/xMCBAwEAL730EpYtW4YFCxbghRdeQHV1NRYuXIiXX34Z1dXV\nMJlMWLRoEebOnYvCwkItm6W5TKx6lspMe1bLIyJKHs0C+fHjx3Hs2DFceeWVAIA9e/Zg1apVAIA5\nc+Zg7dq1GDVqFCZOnAibzQYAKC8vR01NDSorK7VqVkpkYtWzVBTA4bI8IqLk0+zs+eyzz+KRRx4J\n3e7q6oLZ3LP9ZXFxMZxOJxobG2G320PPsdvtcDqlM74zUazD8umSqkx7LssjIko+TXrkGzduxJQp\nUzB8+HDJx0VRjOn+SEVFecjJ0S44Ohw2zd473dzebnQLBhQVWGA19/z8pxvPobldPtPeaDbBUTIg\n4c89cLxJ8rEDx5tw9w25ofYkSo+/n9vbDVebp9f3Hi89Hl8y8fgyW7YfH6C/Y9QkkG/fvh0nT57E\n9u3bcebMGZjNZuTl5cHtdsNqteLs2bMoLS1FaWkpGhsbQ69raGjAlClTor6/y9WpRbMB9PxATme7\nZu+fDPHMMQeHtQ8cb4LT1dVrWNvvF2G3yWfa+72+hL+TBlcnnK4uyccaW7pw/B9NSVmWp7ffL9nT\nCXo7vmTj8WW2bD8+IH3HqHTxoEkgf/HFF0P//vnPf46hQ4di37592Lx5M6677jp88MEHmDVrFiZP\nnoyVK1eira0NRqMRNTU1ePTRR7VoUlZIJChEmwOfMqYEH+6t7/O6KWOKkzI10F+X5XHzHSLSWsoy\njB544AFs3LgRy5YtQ0tLCxYuXAir1YqHHnoIt99+O2699Vbcd999ocQ36iveOWY1c+BykxrqJjui\ny/RlefFglT8iSgXNC8I88MADoX+/9tprfR6fP38+5s+fr3UzMl60oHDD7NGywTBatTlnSxdqjzZK\nPl57tAmLr/QnJdBm4rK8RLDKHxGlAiu7ZYhEgkK0YW2IYkoCTiYuy0tEf51OIKLU4uJdHZKqrpbI\njmw5RgF5VpPkY1PHlsBRlJfQbm+xypRleUrUVMDrj9MJRJR67JHriFIyWzAohCdOBUULChu2HsPJ\nho4+9xsNAkRRRI5RiPu9+5tYEw7723QCEaUeA7mORMtwjicoKM2t+wMiPtxbD0EQGHBUijULvb9N\nJxBR6jGQJ1EiNcTVJrPFGhSU5tYj358BR1kiCYfB6QQiomRjIE+CZBT9iCWZLZagoJRwJfX+DDjy\nmIVORHrEZLckSEYN8USS2ZQoJVwl4/37E61+IyKiRDCQJyhZRT/izXBWkz29tLIMVRXDYDVLvwcT\n2tRhFjoR6RGH1hOUzOHWWBLOYhnODyZcLZx1IX634wvU1jXA1e5hQlscmBRIRHrDQJ6gZBb9iCXD\nOZ4a3nmWHHzvxnJ8eaol9P4A0NTqZnKbSsxCJyK9YSBPUCLru5XeU6kXn0j2dPD9iwdak7orV3/D\npEAi0gsG8iRI9XBrMobzuSsXEVF2YCBPglQPtyY6nJ9oj56IiPSDY6hJlKoa4olmT6vp0RMRUWZg\njzxDJTKcz125iIiyBwN5hkpkOF+LBD0iIkoPBvIMF2/2NNdDExFlBwbyfkqLBL1ENo0hIqL4MJCn\nmVLwS0VgTMZ66FiqzDHYExElFwN5migFPwAZVaxFzZr0ZOwQR0REfTGQp4lS8AOQMcVa1K5JZwEa\nIiJtsCuUBsrBz4maIw0yj6nfTS1V1KxJT9YOcURE1BcDeRooBb/mdg+a272Sj+mxWIuaPbpZgIaI\nSDsM5GmgFPzsNgvsNrPkY3os1qKmypyaYE9ERPFhIE8D5eDnQPm4UpnHehdr8fj8aHB1pn1oemll\nGaoqhqG4wAqDABQXWFFVMSyUuJdoSVkiIpLHZLc0UVOQRe4xvWWAq1mTnu0FaLisjojSRRBFUVT7\n5Lq6Opw4cQJVVVVoa2tDQUGBlm2T5XS2a/beDodN0/ePpGYdea4lB12e7tBz1m+pkyyvWlUxLGoG\neKqPL5LWAS/Vx5fqi6p0/35a4/Fltmw/PiB9x+hw2GQfU90jf/311/GHP/wBXq8XVVVV+MUvfoGC\nggLce++9SWlkf6VUkCXHKGDL3i97BYlJo4tx4HiT5PMzYQvSRAvQ6K3ny2V1RJRuqrsMf/jDH/DO\nO+9g4MCBAIAVK1Zg+/btWrWLcD5INLV5IKInSGzbd0py1zJAfxngyZzD9wcCWL+lDivX7MYPf70b\nK9fsxvotdfAHAkloaXy4rI6I9EB1j3zAgAEwhA0VGgyGXrcpuZSChEEAAhITInrJANdiuFmPPV81\ny+oSLX9LRBSN6rPqiBEj8D//8z9oa2vDBx98gO9+97sYPXq0lm3r15SChFQQB/STAS41krDl0y+x\nYeuxuN5Prz1fLqsjIj1QHch/9KMfITc3FxdccAE2bdqEyZMn44knntCybf1atLXmc8qHyi73Sict\ngq5eC8pwWR0R6YHqoXWj0Yhbb70Vt956q5bt0YVUJVQpfU4wSEhlp5ePc2BZ1Vh45sTWTo/Pj9ON\n5+D3+aM+P97vQIvh5uBFjVRuQLp7vtm+rI6I9E91IL/44oshCELotiAIsNls2LNnjyYNSwd/IIA1\nGw9iZ229pkuJ1M4hRwsSajPAe31euwd2W8/nLZx1ITo6vb2CdaLz21oEXaWLmnT3fLXY152IKBaq\nA/nhw4dD//Z6vdi1axeOHDmiSaPSJVUJVWo/J1lBQu7zPjpwCh5voFewTvQ70Cro6r3nm4x93YmI\n4hFXZTez2YzZs2dj7dq1uOuuu5LdprRQux1nOj4nkSCh9Hlub8/SrWCw9vsDSVmjrkXQZc83PfS2\nbp+I+lIdyKurq3vdPnPmDM6ePZv0BqVLqpYSpXrJktLnRdp3tBGtHco7r6lpm5ZBlz3f1NBbGWAi\nkqc6kO/du7fX7fz8fLz44otJb1C6pCqhKtWJW0qfF6m1w4vCfAtcElng8bSNQTdz6XHdPhFJUx3I\nn3nmGS3bkXapSqiymIyYVFaCbTX1fR6bVFYMi8mY1OFMpeOKZC+wYlJZsWTb0p1URqmTqmkmIkqO\nqIF89uzZvbLVI2VTmdallWXIyzVjZ+0pTRKqgsOVtUd7TpLBCm3B/99f14BjX7ai0+1L6nDm0soy\nHDnRgpMNHYrPCx6r0SDoNqmMtMeKdUSxS2c+SdRAvn79etnH2traktqYdDMaDLhz4UQsmDFckx8k\ncrgyWKEt+P+uDh9cHb7Q48kazuz2i+h0+2Qft9ssKB93/oKBSWX9m57X7RPpjR7ySaJ+ytChQ0P/\n6+rqwqlTp3Dq1Cn84x//wPe///1UtDHlgnO7yQxgSsOV0SRahjRawtsDiyZhWdXYXn90WnwHlBlY\nsY5IvWSXpI6H6jnyp59+Gjt37kRjYyNGjBiBkydP4rbbbtOybVklluzxSIkOZ0ZLePvL/nrcNO+i\nuN6bspPe1+0T6YFe8klUB/KDBw/ivffew0033YR169bh0KFD+NOf/qRl27JKLNnjkRIdzlRKsAOA\nA8eb4VFRtpX6D06xEEWnl3wS1QP4ZrMZAODz+SCKIiZMmICamhrNGpZtlIYro4l3ODN8P/CqacNk\nn6e3fcxJPzjFQiRPLzsgqu6Rjxo1Cm+//TYqKipw6623YtSoUWhvb9eybVkncriyMN+CAbkmdLp9\ncLV7+tyOdzhTKvli/KgiFOab0SJR8CWbE5hYmYyItKKXfSBUB/KnnnoKLS0tKCgowB/+8Ac0Nzfj\n7rvvln1+V1cXHnnkETQ1NcHj8eDee+/FRRddhBUrVsDv98PhcGD16tUwm83YtGkT3njjDRgMBixZ\nsgSLFy9OysHpjdxwZWSwSST4eHx+vLX5CHYeOhO6r6nNg7/UnpF9TTYmMOkhk5SIsp8e8kkEURRF\nNU9csmQJrrvuOnzrW99CYWFh1Oe/++67qK+vx5133on6+nrcdtttKC8vxxVXXIEFCxbghRdewKBB\ng7Bw4UJcf/31qK6uhslkwqJFi/DWW28pfobTqd1IgMNh0/T94xUtuAcDV82RBjS3S5dZjVRcYA1b\nO54dwS34+63fUid5lVxVMSyjK5Pp9e8zWXh8mS3bjw+QP0atR/8cDpvsY6p75A8//DDee+89XH/9\n9bjoootw3XXXobKyMjR3Humb3/xm6N+nT5/GBRdcgD179mDVqlUAgDlz5mDt2rUYNWoUJk6cCJut\np5Hl5eWoqalBZWWl2qZlNbU9y8g16tEU5pvxo1sqYMuT/v0ymV4ySYmo/0hnSWrVgXzatGmYNm0a\nHnvsMXzyySfYtGkTnnzySezevVvxdd/+9rdx5swZ/OpXv8Ktt94aCvzFxcVwOp1obGyE3W4PPd9u\nt8PpVF5vXVSUh5wc7U7ESlc+qbZm40HJmtd5uWbcuXAiAMDt7UbtscaY3rftnBe5A6xwlAxIanv1\nwGg2obldPpPUaDZl9HHr6e9TCzy+zJbtxwfo7xhj2sa0ra0NW7Zswfvvv4+TJ09i6dKlUV/zm9/8\nBn//+9/xH//xHwgfxZcb0Vcz0u9ydapvdIz0NDTk8fmxs1Z6ydjO2lNYMGM4LCYjGlydcLa4Y3rv\nIpsVfq9PN8eaLA6HDX6vD3abfGWyTD5uPf19aoHHl9my/fiA9B1jUobWb7/9dhw9ehRz587FPffc\ng/LycsXnHzp0CMXFxRg8eDC+/vWvw+/3Y8CAAXC73bBarTh79ixKS0tRWlqKxsbzvcmGhgZMmTJF\nbbOyTvg8i9IaxeZ2N5wtXRjmyEeuJSdUr10tLRLc9JIhrpdMUiKiVFAdyG+++WZ84xvfgNHY9yS4\nZs0a3Hnnnb3u+/TTT1FfX4/HHnsMjY2N6OzsxKxZs7B582Zcd911+OCDDzBr1ixMnjwZK1euRFtb\nG4xGI2pqavDoo48mfmQpkqzgJTUXPml0sWwRGVEEXnxnP8rHlWLO1KGKQfzSi0tx9Ms2uNrdKCnM\nxaTRxUnNqNRjhrgeMkmJiFJBdda6kptvvhlvvvlmr/vcbjcee+wxnD59Gm63G/fffz8mTJiAhx9+\nGB6PB0OGDMEzzzwDk8mE999/H6+++ioEQcDy5ctx7bXXKn6eHrLWkx285LKsh5fmR921bE75UBw4\n1igZ8A0CMHvqUNwwezQ6Or0YPbIY7a1dMbdPiRYZ4vFeIEX+fnoZJUiWbB+65PFltmw/PiDDh9aV\nSF0LWK1WPP/8833uf+211/rcN3/+fMyfPz8ZTUmZyCzxRHYqU8qyPtflUwzUAHDgWBMmjS7Gtn2n\n+jwWEIFtNfUwGgQsqxoLqzkHyfwTTHaGeLIvkIKZpMEqd9kS0ImIgpISyJX2K89GyQ5erR0e2SDt\navdg3vThmDNlCH609q8yz3GjqmI4AODP+09JDrMH25Vsya41nMwLJECfw/5ERMnEM1kc1ASvWAzM\nt8Bqlv4pLGYjBuZb4CjKQ7FCTV97gRXzZoyA3ESJVvXUk1lrONoFUjxbuephi0EiIi0xkMdBm0L5\nyqMa0faIzjEK2PzJCcgNjmhVTz2Ze1cn+wJJiwsDIiK9SUogHzlyZDLeJmMkM3gBPQHM45UOKt6v\nkrWAnkzsqophKC6wwiD0lFitqhiGpZVl2LD1GLbtkx5Wj9au8F3S4iHVrjnlQzFn6tCY3jPZF0jN\nbW6FKQvu+EZE2UH1HHl9fT2effZZuFwurFu3Du+88w5mzJiBkSNH4qmnntKyjbqUzOVNSnuVF9ks\n8Pr8of3CpTZdae/04tPDDZLvHcxal2pXIvPHkdngN8wejSsmD4E/EMBf9p9C7VEnttXUw24zo3xc\nqar3TPb67y2fnpR9LJt3fCOi/kV1IH/88cfxne98J5R1PmrUKDz++ONYt26dZo3TM7mdzOKhFMDO\nuX14Yu1fewXZYCZ2p8eHV/5wBH/7ohkt56Q3ShFFYN704ZJBNJ7EssjgX1RgwQCrCee6vHC1e2E2\nG+DxBkLPb273YsunXyIgilg+d1zU7yJZF0genx8HjjfJPj6prJjZ60SUFVQHcp/Ph6uuugqvv/46\nAGD69OlatSmjJKtQfmQAM5uMcHv9cH8VFMODbHAo/aMDp+GWGZIPtc9sRH7YxihubzcaXJ3IteTE\nlXn/mw+P4sO958vGNrf1ntcOD+LhPj54BouvLIsaPJN1gaQ03w4AVdOGxfyeRER6FHOt9eBSs6NH\nj8Lj4RxjsoQHMGdLF158Z79kkN572Alvtx9/2X9a1fu6vX5s3PF5KPgfON4Ep6sLhfkWuGTmiOWW\njXl8fuw8KL+vebR2OF2dGFaqbrOBRC+QlKYrigt6svyJiLKB6kB+3333YcmSJXA6nbjmmmvgcrmw\nevVqLdvWL1lMRphzDHDJ7Cnu6vBgh8ogHlRzxImOTh92/+1sr/eRIzd/7GzpijoCoEgQUlZpjfXW\niai/UB3IL730UmzcuBF1dXUwm80YNWoULBYmC2lBqTcJALHW1G1u9/QK4tFIBTqPz4/m1th2WAtn\nMRmwbV89DhxrTFlhFtZb75FtZWqJqDfVgfzQoUNwOp2YM2cO/uu//gv79+/HAw88gIqKCi3bl9Xk\nTrBKvUktFOab0XbOKxnoIpPb4uUoysW2mvNz64lWbFMjmQmJmYhV7Yj6B9WB/Omnn8bPfvYzfPrp\npzh48CAef/xxPPXUU302S6Ho1Jxgg8F072Gn4jB4OKMB8Evnmskqyrfg0ZvK4Q+IkoEuMrlNjsVk\ngK87gCKbBXnBLPYOL+y2nl3c5DLI4ylpG6tkJSSmm8fnx+nGc/B/tRQxmmSXuyUifVIdyC0WC0aO\nHIkNGzZgyZIlKCsrg4FX9XFRc4I1GgxYWlkGb7cfO/aflhxONwg9w+x2mwVjhhVi7vRh+OjAaRw4\n3ozmNreqIXhXhwc/e7smdCERTm1y2/DSfDz8nano6PSFLgYi91XfLrGhCxBfPfb+pteFX7sHdlv0\nnnWy9wMgIv1SHYm7urrw3nvvYcuWLfjGN76BlpYWtLW1adm2rBRL2dANW4/hLzJBHABmTxmCp++4\nBJPKSnD0yxY8/cZeHDjehEllxfjRLRWytdkjydUfV5vc1unuhtFgQGlRXig4BHvBFpNRo5K2/Uev\nevGiunrxyS53S0T6pTqQf//738fvf/97fO9730N+fj7WrVuHW265RcOmZSe1J1ilgG8QgDlTh2DZ\n3LHYtq8e22rqe20Ksq2mHn85cFq2jKzZJF2QvU/9cZVb1UcLDMkuadufxFsvnhdPRP2H6qH1GTNm\nYMaMGQCAQCCA++67T7NGZTPlcqznT7BKAT8gAnOmDkW3X5Q9yf95Xz1mTRmMq6YNxf6jTaGs7clj\nHdgqU7o0cpjbUZQHq9kQKkojR01gYAZ5fOLdJpbL74j6D9WB/OKLL+6177ggCLDZbNizZ48mDctW\nak+w0Zag/Xf1AYwbUaQY7P+87zSqKobh6TsvCc1Xl5Tko7auIeqFRLCtMycOxtYoyW5qAkN/zSBP\ndOmX2gs/Kbx4IuofVAfyw4cPh/7t8/nw8ccf48iRI5o0Kp2CJUzjOfGqPWmrOcFGW4LW1ObBx4fO\nwGo2Ks5jBxObgr02qzknpp7ajVeNgUEQUHOkAc3tXlhMAgTBAK/PH1dgSHcGearWVCdr6VciPev+\nevFE1N/EVKI1yGQyYfbs2Vi7di3uuuuuZLcpLYIn3mAJ01hOvLGetNWeYIMBsuZIT7ayNOV5bKnh\n10R6agOsJkwuK0FVxfBQmdOmVrfug0Sq11Qnc+lXoj3rdF88EZG2VAfy6urqXrfPnDmDs2fVVwvT\nu0ROvPG+NtoJNhjwr5g8BD969RPJ57i9AVx68QX45O9nJfcilxp+jaWnFnlsze1ebNt3CoJBgEEQ\nEg6Mqeohp3JNdbKXfoX/XkazCX6vT9cXTUSUWqoD+d69e3vdzs/Px4svvpj0BqVDIifeVKzXHTjA\nDIMAyUBtEIAbq8Yg12LENom12krDr9EuJJSO7eODZ3oN6ccaGFPZQ071mup4E9SisZiMcJQMgNPZ\nnmgTiSiLqA7kzzzzDACgpaUFgiBg4MCBmjUq1RI58Wp10g7X5emWDOJAT3Dv8nRj2dyxMBoNSU1s\nUjo2uXl5tYExlT3kVPxG4RJJUCMiipXqQF5TU4MVK1bg3LlzEEURhYWFWL16NSZOnKhl+1IikRNv\nKk7aA/MtsNvMaJbYEc1us2DEMCPwAAAgAElEQVRgvkWTxKZomfNS1ATGVPeQUx1YufSLiFJJ9Rjm\n888/j1/84hfYtWsXdu/ejRdeeAE/+9nPtGxbyiRSsCQVxU4sJiPKx5VKPlY+ztFnw5XwCmuJfq7c\nsckp+urCQkmqq46loyDN0soyVFUMQ3GBFQahZw/0qophXPpFREmnukduMBgwduz5Ic+LL74YRmP2\n9CyCJ9gDx5vQ2NIV09B0MtbrRkv6WlpZhoAo9pqbtpqNEEUR/kBA061Aj5xowcmGDlXPv2hEUdTA\nmI6h51SvqebSLyJKlZgC+QcffICZM2cCAP7yl79kVSAPnnjvviEXx//RFNOJN/yk7WzpAkQRjqI8\nVcFVbdKX0WCAQRB6zU27vX58uLcegiBotptVt19Ep9un6rlWsxE3zo3ejnQMPacrsHLpFxFpTXUg\nX7VqFX784x/jsccegyAImDJlClatWqVl29LCas6J68TrDwTwf38+HnMWtlzSV6e7GzfNGxcKNuna\nzUppGDzS5RMHIc+i7k8qXVXH4gmsqVoiR0QUD9WBfOTIkXj11Ve1bEtGiycLW3F516EzOHLChalj\nHVg460L883SbbEBt1nAr0FgS3tRtsdIjE4aeU11EhogoHqoD+a5du/Dmm2+ivb0dYtiuWG+//bYm\nDcsk8faWWzs8igEyeDHw0YFTcHsDPfuPS0RLAcDmT070LEFLcoCJVio2XO3RJiy+0h9TQE506Nnj\n8/eazkimVC6RIyKKV0xD6/feey8GDRqkZXt0T2qYNd51yrmWHNlCL+GCu48prSXftu8UjEaDJgEm\nfBi8ud0tu7upFmuy5XR6urH+T3XYe6QBHl/P92M1G1A142u4bubXEr6gSddUBhFRrFQH8qFDh+La\na6/Vsi26pjTMGm8WtlKhl3hoFWAik/lefGe/5Jr2VBQ7Cf4OwVGKcG5vAH/46Au43b6EL2hSXUSG\niCheUbstJ0+exMmTJ1FRUYENGzbgiy++CN138qT0vtbZKDjM2tTmgYjzw6wbth5TXKecZ81BjlGQ\nfCxY6CVZmtvUrcH2+PxocHXC45PfNU2KxWTEMEe+7Jr2VBQ7Cf4OSnuk1xxxxnxskYIXZ1JYnY2I\n9CRqj/xf//VfIQhCaF7817/+degxQRDw4Ycfatc6nVAzzCq33vpkQwc2bD0m2UMMFnpRM/+shiAA\nm/96EsuqxkgOLfsDAazZeBA7a+sTSt5KV8a50u8QztXuSbjHzOpsRJQpogbyrVu3Rn2TjRs3YuHC\nhUlpkB6pGWYdmG+RXW+tNOTda/65zQ2Luec5Xp8fgiDAH8PYe0AEttXUw2iQXleerOStdGWcq10K\np6a6nBrpumAhIopFXPuRR/rd736X1YFczRx4vHOqUkERgOJcdDRSFw5aJG+lutiJ2qVwkWVr45UJ\nS+T0jmvwibSXlEAuyqUxZwk1w6zRgn2uJQcNrk7ZE1pkUDTnGOCKI4gD0hcOqUrekjtxJ+OEHm0p\nnNVsRNWMEbhu5tfien+lz2ViW2y4Bp8odZISyAVBOpkrm0QbZlUKMnnWHDz1+l9jOqFF630OLsmD\n1+tXnSk/MN+CIpkd1ArzEx+KljtxL7ryQlRv/zxpJ/Tzv4MTTW0eCOgpRFOQl4Np40pxx7UT0Nx8\nLqFjocRxDT5R6iQlkPcHaoZZpYJ9njWnVwKc2hNatN7n6cZODC/NlwzkUslYFpMRA3KlA/mAXFPC\nw55yJ+7IBMBET+jB38HvD2DbvlOhanJtnd3Ytu8UbPlWLLx8ZCKHQgniGnyi1OIYV4yUtgkNBpmn\n77wEP73rUvzolgrFBLhoS6SWVpZhTvlQGGQGPM51eTGnfKiqrTI9Pr9sWzrdvoSWaymduOud0rum\nqTl+pc87cLxJ8rHdh04nvPQslnbEs4wv26V6m1qi/i4pPfL8/PxkvE3WCAb7BldnQvPSRoMB86YP\nx7aaesnHm9u9mDd9OJbMKYs6L618ck1suZbSe8sl3ScyL6/0eY0tXZoXa+H8r7J0bFNL1J+pDuRO\npxPvvvsuWltbeyW3Pfjgg/jFL36hSeMyXTJOaEplXA1Cz+ORyVhSgWZSWYnsHHk8J9fwiwSl45Rr\neyIndKXPKynM1TxQcP5XGdfgE6WW6kB+9913Y9y4cRg6dKiW7ckqFpMRk8pKJHvUak9oSmVcA2LP\n47a83tXhpALNtpp6DC/NlwzksZxc5XqjU8aU4MO9fY9zqCO/T5GcWD8zklKguHTCYE0DBed/1eEa\nfKLUUR3I8/Ly8Mwzz2jZlqwSDHi1R3uf9A1CT3BbdOWFUd/D4/PD2x1AUb4Jro6+89t2icInSoGm\n0+3DN2eOxJ5DZ+I+ucr1RiunDUVVxbA+J+7zWet9T+iJLEmTCxS3XTNe06x11mBXh2vwiVJHdSCf\nPHkyjh8/jtGjR2vZnqwRGfCCAmJP2dbq7Z/3GoYND2o5RqFXrzdY7S2SVOETpUDT3O7BzElDMK9i\nGLo83TGfXJUuEmqPNuHpOy+RPHFHntBzjALW/6kO+442oqXDi+I45pjlAoXRqO0cNed/Y8M1+ETa\nUx3Id+zYgddffx1FRUXIycmBKIoQBAHbt2/XsHmZqdPTjY8OnFJ8TnAYNjJo2wssyLOaeg1Hu709\nWdFWsxFen1+xJ60UaAQAK3/1ca/AGQu1vVGpE3fwhO4PBPDU658mbUlaqgMF53+JSG9UB/Jf/vKX\nfe5ra2tTfM1zzz2HvXv3oru7G3fffTcmTpyIFStWwO/3w+FwYPXq1TCbzdi0aRPeeOMNGAwGLFmy\nBIsXL479SHTkf/9Up7g7F3A+8G3Z+2WfoWq5IjADrDl4dHk5HDLL3wDlQBOca483cCajN7p+y1HJ\nOXMgc+aYOf9LRHoS037kx44dg8vlAgB4vV48/fTTeO+99ySfv3v3bhw9ehQbNmyAy+XC9ddfj8su\nuwzLli3DggUL8MILL6C6uhoLFy7Eyy+/jOrqaphMJixatAhz585FYWFhco4wxTw+Pw6fcEV9XrBs\nq5rdvIKa2jwwGg1RA12vjVja3RAgnTkeHjjVzFcn2hv1+PzYX9co+3hwG1a9D8Vy/peI9ER1IH/6\n6aexc+dONDY2YsSIETh58iRuu+022edPnz4dkyZNAgAUFBSgq6sLe/bswapVqwAAc+bMwdq1azFq\n1ChMnDgRNpsNAFBeXo6amhpUVlYmclxpo3aHrqljS9Dl6Vb13HBb9n6Jm64ep/gco8GApZVl8PsD\n+PSIE+2d0oVgXO1uNLe5sW1fveo10bH0RiMvDlo7PGhRKAYyMN+cUXPMnP8lIj1QHcgPHjyI9957\nDzfddBPWrVuHQ4cO4U9/+pPs841GI/Lyek5y1dXVuOKKK/DRRx/BbO5ZKlVcXAyn04nGxkbY7fbQ\n6+x2O5xO5V5qUVEecnK06wE5HLa4X2sbmAtHUS4aXF2Sj5cMtGDG+MG4ZtaFsOWZFZ8r5bMvmmEb\nmAurWfmnW7PxILbtU56nLynMxc7PzkpmoeflmnHnwomSr3vwxmlwe7vhavOgqMDSpy1+fwBrf/8Z\ndh86DWdLFxyFubh0wmB8Z944xeOdOWkIhg1JfCQmkd8vE/D4MhuPL/Pp7RhVB/JgAPb5fBBFERMm\nTMCzzz4b9XVbtmxBdXU11q5di6uvvjp0v9yOaWp2UnO5OlW2OnYOhw1OZ3tC7zFpdLHk8PPM8RfA\nYsnBnkOn8d7H/4C9wIJca2zF9RpbunD8H02SPcFgDzjXkoOdtdLV4MKNH2XHnkOnJR/bWXsKC2YM\nVxwyzgHQ3tqFyG9r/Za6Xsff4OrCph2fo7PLK/vdDC/Nx/XfGJnwd5+M30/PeHyZjceX+dJ1jEoX\nD6qjyKhRo/D222+joqICt956K0aNGoX2duWD2bFjB371q1/hlVdegc1mQ15eHtxuN6xWK86ePYvS\n0lKUlpaisfH8vGlDQwOmTJmitlm6JDf8LIpir6IpTW0eIMahdbPJiPw8U6/7Iou0FOZb4FIYwi7K\nt2DaRQ7MmToU22XKv0ZbE620XalSwZRVt88I/bu53Y3CARZMGVuCZVVjWN6UiCgOqgP5qlWr0Nra\nioKCAvzxj39EU1MT7r77btnnt7e347nnnsPrr78eSlybOXMmNm/ejOuuuw4ffPABZs2ahcmTJ2Pl\nypVoa2uD0WhETU0NHn300cSPLEWkAlowGeqamSPxZUMHhpXmw2wyYuWa3Ql/ntvrx8YdX/TKNo9c\ns64UxO0FFjxxy3TY8szw+PwxZ6FHqzMebYlaR6c3qYliydjnnIgok0UN5H/7299w8cUXY/fu80Go\npKQEJSUl+OKLLzBo0CDJ17377rtwuVz47ne/G7rvZz/7GVauXIkNGzZgyJAhWLhwIUwmEx566CHc\nfvvtEAQB9913XyjxTc+CAa3mSAOa272w28woH1ca6o1HPnbR1+wxJ7bJ2VF7CgtnXYg8S45iD1jK\nNyYPDZV0jScLPVqdcbVL1GJNFIsM2HIXFPcvmar6PYmIskHUQL5x40ZcfPHFkhujCIKAyy67TPJ1\nS5cuxdKlS/vc/9prr/W5b/78+Zg/f76a9urG/354FFvDhsmb273Y8umX8Pn98PgC2H3obK/HPj50\nBhazAZ4o68vV8PgC+Mkbn+KpO2ZEzZIvzDej7ZxXtoRprFnochcNew87cc3MkbDlmZNaMEUuYEtN\nUwST9LgfORH1J1EDeXCYe926dZo3JlN4fH58fFA6SezP+6TvB4Du7sSDeNDp5k6s33IUS+aUyfaA\niwus+NEtFb3KsUaWMI1lTbTisHmHB0+s/QQVF5WG6sgno2CK3AiAVaZs7e5Dp6Mm6RERZZOogfym\nm26CIAiyj7/55ptJbVAmcLo6o1Zuk+IPAJdeXIqjX7Z9FeB6stadri54fD3vZzH1BNrgbSX76xqx\nZE6ZYg/YlmfuszuaFDVD3UrD5gDQ0uHtNcye6Dy40ghAsGxtpFTsR05EpCdRA/m9994LoGcZmSAI\nuPTSSxEIBPDxxx8jNzdX8wbqksKFTTTfvGwkHIW5aO3wYPMnJ/qs9fb4Ahhsz8Pp5uhL7FrOedDa\n4ZEdHl8460I0uDqTlgimNKceLrxiXCIBVW1xnXCp2I+ciEhPogby4Bz4q6++ildeeSV0/9VXX41/\n+7d/065lOuYozIXVbJTtFcqxmo1wFObCYjJiYL4FB443ST6vqU1dgRj7V8ljkcPj+XkmbNzxBZ54\ndU+fzPJYRSaZBd9j72GnbHZ8srbzVBoBkPv+td6PnIhIb1Qv3D1z5gy++OKL0O0TJ07g5MmTmjRK\nTzw+PxpcnfD4zgcNi8mIS8eXxvxel08cFAoySr1Nb3f0ojiAfPLY/20/ji2ffommNg9EnJ9X3rD1\nmOq2+gMBrN9Sh5VrduOHv96NlWt2Y/2WOgA9w+ZP3jYdhfnSQ/bJ2s4zOAIgZebEQaiqGIbiAisM\nQk8+QFXFMNx2zfiEPzdZpP52iIiSTfU68u9+97u45ZZb4PF4YDAYYDAYMmq9d6zksqUXXXkhqrd/\njoPHmwEABqFnQxKLySA7rx25bag/EMDmT05AEAAVhez6sJqNuHzioF7vt37LUeyva0RLh0d25H9f\nXSPc3m5VnxFtmZktz4yKi0o1385TKaveaDCkfD9yNaKttSciSibVgbyqqgpVVVVoaWmBKIooKirS\nsl1pJxfIjpxo6bUNZ3BXsUsnDILJaOgVcCaVFaNq2jDYC6y9AtuGrcei1kFXEhxSNhoMkvt7y10c\nuNrdcLV5ov7o0aqzBee/U7GdZ7Ssej1uXBLtIoiIKJlUB/L6+no8++yzcLlcWLduHX77299i+vTp\nGDlypIbNSw+lQFbvlN5L+9DxZjx95yVRM7WV3tsgAGaTQVVG/M6DZ7DoyjK8s1V+f+9IRTYrigos\naG9VnoOPVp0tOP+dyu089Riwpai9CCIiShbV43yPP/44rrvuutCmJiNHjsTjjz+uWcPSSSmQSe3r\nDZwPcMGAE89abFEEppRJzwlHcnv9OOXswL6j8vt7R5o6tiTqrmnA+SQzKVLz39GOuT9RcxFE+sE8\nBsoGqgO5z+fDVVddFVpTPn36dM0alW5KgcwgM/+sNsFL6b3tBVZUThuqup3tnT60dHhVPffyCYNU\nD3krJZlNHVsCADz5yYj1IojSQy6Z0x9IXtEmolSJKfOmra0tFMiPHj0Kjyc7exdKgWyoI1/yfrUJ\nXkrvnWfNwa//v89UtdFqNmLUkAIUywSNcHabBcvnjYsp0WppZVmfrPDKaUMhiiJPfgqiXQRly6hF\npvdkg3kMiazsINIL1XPk9913H5YsWQKn04lrrrkGLpcLq1ev1rJtaSWXyHXt5V/Dbz48jsP/dKGl\nw6M6wSt8PbbUe+dZc1TPdQM9y6+U6pqHKx/niDmASM1//9+fj6c0iStTdzZLRRJgumRDRj7zGCjb\nxLQf+fXXXw+fz4fDhw9j9uzZ2Lt3r+ymKZmub5EVMzbu+ByrXvs0dAK7bPwg3Dh3LPIs8l+j0okv\n+N5Gg4CfrNurum1WsxH/ckVPPfPwoNHU5g4thwN6pgGGOvJDtc/jEZz/Vjr5fXTgdGg3tkQEA3ew\noE2mBotUJgGmWjZk5KtN5iTKFKrPvHfeeSfGjx+PCy64AGVlPcGju1vdmuRMFgxk67fU9TmB7Tx0\nBrnWHMUTmNKJb2llGbbs/RJ7DztVz3UDgNfnR0enD3kWE7r9IqqmDcM1M0fina3HsPPQmdDzAiJw\nsqED1ds/T/gkq3Tyc3v9eGvzEdx1bXzFWCIvdiwRVdsyMVgAmZNpr1a29GTVbrVLlClUB/LCwkI8\n88wzWrZFt+I9gUV7nd8fiGs9eZHNivw8E9ZvqQsFvyKbGZ0e6flKNSfZ9k4vvmzowLDSfMlNVgbm\nW1BkM6O5XfqC45O/n0WuxYhlc8fG3GuOvNiRK32bScEiG2VLT1Zpz4BsymOg/kN1IJ87dy42bdqE\nqVOnwmg8/4c+ZMgQTRqmJ86WrrhOYEonvuZ2d0xLx8JNHVuCjTu+6HUikguw0dro7e7GT96sQb2z\nAwHx/HD8YzeXw5xz/s/DYjLioq/Z8XFYjz9cQAS27TsFo9EQU69Z6WInluMg7WVTTzab8xio/1Ed\nyI8cOYLf//73KCwsDN0nCAK2b9+uRbt0ITjkW3OkAXKVVOVOYMEyrHKvM+cYFIfTC/PNKB/ngABg\n/9EmNLe5MTDfjKljenY1e+LVPaqPQ+kk+5M3a/pUqjvZ0IGfvFmDVbfN6PXcZXPHoKbOqbhZTKy9\n5lh2OMu0YJFtsqknm815DNT/qA7ktbW1+Otf/wqzOfre1tkicshXitwJLFoZVp8/0CsxLVxRvgVP\n3jYdtjwz/IEAAiJCddQPHG+C1xeQ3RNcypQxxZJtbOlwy2bKf9nQgfZOb69h9jyLCd+YNFjxO4m1\n1xxtj/NwmRYsslG29WSzLY+B+ifVgXzChAnweDz9JpBHG/KN3AglltcCgNLS64tHFsH8VcDasPUY\nttXUhx4LJtkpbdISSW5U4K3NdYqv+bKhA18fae91/9LKMvgDIv68r17yIsRsMiJfYo5djlIvz2o2\nwuvzZ3ywyCbsyRLpj+pAfvbsWVRWVmL06NG95sjffvttTRqWbkpDvgKABxdNwrBSW5/HPD4/Pq9v\njanHHM5oAHYeOoPDJ1yYNLpYds9ytUEcAGqPNmHxlf5eJ1yPz4/PT7Uovq60KFeifQbcdPU4QBQl\nRxzcXj827ogtS16ul7dw1oXo6PQyWOgQe7JE+qE6kN9zzz1atkN3lIZ87QVWOCJOYpFLqOSGzaPx\nfxWfm9o8MWW0m3MM8HZLB3ep4e7WDg9azikvH/QrHMANV47Grs/OSs6XxzpPrtTLS3RtOhFRtlN9\nlpwxY0b0J2WRWBJ7PD4/1m0+0iujW24rUYvZAAFQtcMZANUXBPl5JkAUJbPXpZLEBuZbYFdYTmYv\nsCgmlnV0+uCRSXqLN7tcq15eplaIIyJSg90dBdESe8J74XJD6QahJ6gX2Sy46GtFWDZ3TJ+lY0rU\n9upd7R5MLStBc3vfJW1SSWIWkxHl40pl21E+tm9Z1/CAmAlLkbKhnCgRUTQM5AqiJfaoyWoXAfzg\n21Nw4dCBodcurSyD3x/An/efihqoha/eI9gzl+uhCwBqjjbCajYAEFQliS2tLENAFPHxwTOhIXKr\n2YjLJ/beKa3T48P6Px3F4X82w9XuDQXEKWNK8OHe+j7vG75DWjp7wdlQTpSIKBoG8ghub3efACQ1\n5Ku2kIndZu0VxEMEATlG+XntoGDMDgbvQSV5OOXs7PO84OPBIfuZEwbhpnnjFIOo0WDA8rnjsPjK\nMjhdnYAgwFGYG3pNsEf70YHTkiVTK6cNRVXFsF4jFpPHFId2SEtHLzj4++VacrKinCgRUTQM5F8J\nBq0Dx5vgdHVFDUBqC5mED2t7fH40t7nxy42H8KXzXJ/nGg09/W+/Qmw/09g3iEs5ckI5Iz2cxWSU\nzMCPNuJQe7QJT995SVp3SAuK/P0G5ptlC+6wQhwRZRMG8q/EOgwbrZCJ3WZB+TjHV+uuo8+lA0CO\nUYDHpzzWrn7OPLFgpWbEIfwzou2QpnUvOPL3U6qap5c5fCKiZGDGD6JvbuLx9c3ODma1S7l8wiD8\n5K5LsayqZwORYJCJtrY8lrXh0SQarFo7PFHbG/kZajbV0EIs9doBVogjouzCHjni39VJKas9OBwf\na5BJlkSClcfnR0eXN+rSt8jPSFcme7RpjvBEwUT3Zyci0hsGcsQfgKSy2gGgqdUdSpaLZVOQWMqu\nKhlemh9XOVO1UwBATzJd5Geka1ONaNMcwYuRZO7PnipcA09E0TCQI/EAZDEZUTzQKrlmeeGsUao2\nBRlemo8xwwdiq8Ryrlid6/Kh2y/CGOPEiZrldEDPBYfcvuPp2FRD6feTkglZ63Jr4O9fMjXdTSMi\nnWEg/0ow0Bw43oTGlq6YA5BSspxSkCn8amvSZXN7eogGQQgFwcJ8CwbkmuBs6VRdCQ7oKQ4Ta6Jb\nLFMAHl9Atp56ujbViPz9CgZkdta63N9TXq4ZCy8fmb6GEZHuMJB/JRiA7r4hF8f/0RRTAIqWLLfq\n9hmhfwd7qZNG21FVMRz2Amuvz5Eaqn/01x/HFMiLbMrlVaXEMgUARO/VpnpTjcjfL9eSg6de/6uu\nK8/JUfp72n3oNBbMGK7r0QQiSi0G8ghWc07MAShaslxHpzemXmp4EGxwdcLV4YupPeXj+pZXjSaW\nfcEB/fZqw3+/dMzXJ4PS31NjS5cuv/d0YP4AUQ8G8iRQmywXTy812uYm4axmI2ZO7JuEpkas88xq\nerXpPtEunHUhutzdOHzCBVe7J2P2NVf6eyopzNX1aEIqsIY+UW8M5EmQrGxtqcAXbXOTOVOHYE75\nMEAU4SjKSyhghieqNbe7UTjAggG5OZJV6JSOK90n2sjPL7KZcen4QVg2dwzyLCbNPz9RSn9Pl04Y\n3O97n6yhT9QbA3mSJJKtHS3wLZw1Ch1uH/YdcYaWpwU3N/n2VWOSFhyNBkNoQ5d9Rxvh6vBAEEQM\nL81Hp9unuleb7hNt5Oc3t3vx8aEzyLPmZMyJXu7v6bZrxqO5ue+FVX+RzuqBRHrFQJ4kiWRrywW+\ngCh+lcUeFuDHDMS8S76GQfaeIfrwNevJsGHrMWzbdyp0u7ndi+Z2L+ZMHYJ5M0ZE/ax0n2jd3u6s\nONHL/T0ZY11TmGXiLd5ElM0YyCNI7X4Wi1jnwT0+P2qONEg+tvPA6V4FYpraPGj6WwOslhz4fAEc\nPuFK6tC1UhA+cLwZSyrHRP1O0n2idbVl14k+1dn/epeu6oFEesZA/pVYdz9LltYOj2wim1yVt+1h\nPWbgfA/eHxAxb/rwuC9CkhGE032iLSrgiT6bpat6IJGeMZB/JV3zurmWnKg1zdX68756bKupR3Gc\nFyH5eWZYzAbJNetqg2C6T7RWcw5P9HFI9wqDWKSjeiCRnjGQI73zul2e7qQEceD8xUC8FyEbd3wu\nW3gmliCY7hNtuj8/k6R7hUE80lU9kEivGMiR3nndgfkWFMsMBVtlesdqxXIRonQxYzUbsXDWKNWf\nm+4Tbbo/P5Oke4VBIpg/QNRDn5fcKRac15Wi9byq0r7ml4y/AFZz/AFIag/wYDKfx+eHx+cP/Vvp\nYsbr86OjM7bqcsD5E226gmi6P1/voo1EeXz+FLeIiOLBHjnSP68rNxR8+cTB+Mu+03G/b/hFSHgy\nX4OrC1azAYAAj9cPe4EFk8pKUCRTQY5JYtkp3SsMiCg5NA3kdXV1uPfee3HLLbdg+fLlOH36NFas\nWAG/3w+Hw4HVq1fDbDZj06ZNeOONN2AwGLBkyRIsXrxYy2ZJinf3s2QkCUUOBefnmbBxxxf4eXUt\nlKbPi/LN+PpIO8wmAdslAn74RUjkEGr4kH1TmwfbauoxvDRfMpAzSSw7pXuFARElh2aBvLOzEz/+\n8Y9x2WWXhe576aWXsGzZMixYsAAvvPACqqursXDhQrz88suorq6GyWTCokWLMHfuXBQWFmrVNElK\nu59JBWstkoSCQ8Hrt9RFrXl++YRBWD5vHCwmI/yBAHKMRtnkLrVblHa6fZgzdQgOHG+WTRLLpOxm\nUpbukSgiSg7NArnZbMaaNWuwZs2a0H179uzBqlWrAABz5szB2rVrMWrUKEycOBE2mw0AUF5ejpqa\nGlRWVmrVNEXhu2cpBetkJgmFB0cAikFXamlZtOQutVuUuto9mDdjBJZUjknJhQslT7wXWMzwJ8p8\nmgXynJwc5OT0fvuuri6YzWYAQHFxMZxOJxobG2G320PPsdvtcDqj9x5TQS5Y+/0BHDjeJPmaWDLF\npYLjRSOKZLcSFQA8uGgShpXaet0ffhKPnNP0+Pzwdgdk57/DBYdTpbKBMzm7OZsleoHFDH+izJe2\nZDdRlJ79lbs/XFFRHujhHfoAABo5SURBVHJytDvZOBw2uL3dssG69ngTXO3ySUJGswm2AgtcbR4U\nFVhgNUt/zWs2HuwTHHceOoNcixFdnr4Zw46iXHx9TCms5hy4vd1obOnC73d8jk//fhbOli44CnNx\n6YTBuO2a8QCAtb//DLsPnYazpUu2DeEunzwEw4b0ndJQ+i4OHG/C3Tfkqnr/VHE4bNGflMHCj0/q\nb2jLp18iL9eMOxdOjOl9hyWthYnpT79fNsr24wP0d4wpPfvm5eXB7XbDarXi7NmzKC0tRWlpKRob\nG0PPaWhowJQpUxTfx+Xq1KyNDocNTmc7GlydcLq6pD+/zYPCfAtcHVJJQhb87/t/w4HjTYo9JI/P\nj5219ZLvL3ctM2l0MVpc50I9sMiee4OrC5t2fI7Orp6ed/gJvsvTDQDItRjh9vhhNhkgAvD5ArAX\n9AynXnPZCHx5qqVPz0zpu3C6uvBJbT0uHDpQFz254O+XrcKPT+lvaGftKSyYMVwXv0ks+tPvl42y\n/fiA9B2j0sVDSic3Z86cic2bNwMAPvjgA8yaNQuTJ0/GwYMH0dbWhnPnzqGmpgYVFRWpbJYkpbXl\n9gIrpowtkXwsz2rCtn2n0NTmgYjzPaQNW4/1ep7SvLXH50f5mBIUF1hgEIDiAiuqKob1mpuXG34H\neubY5TZiyc814ZKLS5Gfa4LPF0BhvgWTyoqx6MoLsWHrMaxcsxs//PVurFyzG+u31MEfCCh+F4IA\n/Odv9vd6PqWGmuVjRJT9NOuRHzp0CM8++yzq6+uRk5ODzZs34z//8z/xyCOPYMOGDRgyZAgWLlwI\nk8mEhx56CLfffjsEQcB9990XSnxLp2gZvQtnjYLH68fhf7rQ0tGzT/eksmLUHlVX6nVgvkW2rrko\nAjVHG2G3mXHp+EFYNncM8iwm1dnnzV9dREhxtrjhbHGHbrs6epaeHfuyFScbOkL3R86By30XiZaF\npfhx+RgRARoG8gkTJmDdunV97n/ttdf63Dd//nzMnz9fq6bETSqjd/KYYoiiiCde/SQ0dH7Z+EG4\nce5YtH4VFKVIFdjwdSv3Xpvbvfj40BnkWXOwrGqs6uxzpSwDgwGQ6jTXOzv63ome3v0Ns0f3+i6a\n29wQZDZ6yaQ9vzMdl48REcDKboqkMnr/78/HpRPUrDnwK+x+EtlDcrZ0wa9yFDoYHJV6YGrJjXzL\nNb2pzYN1m4/g1m9eFPouPq9vxX/+Zr/k81kRLLW4fIyIGMhVCC7HUq5N7VTMuJ802t6rhxTLXHJz\n2/ngOKmsRLbXL8Ug9AzV2wusmDC6CJ/8rUEyI15pK9XwUQGLyYgLhw7kkK5OcPkYEbGSRwyUhrab\n2z2K67SrKob3uv2XWvU11AUB+H93fI43Nh8OzcEbBHWvFQHc/q2v40e3VMBklF7WBgBDHfmK7xO+\niYbSRi8c0k0PbhBD1H+xRx4DpaFtu80CURQlg3lxgRX2Ais8Pj+cLV3w+rpx4Fhjn+fJCYjAnr81\n9LkPACwmAzw++d69AOCVP/4ddpsZnTJB3Go24gc3TsU7Hx7FzkNnJJ8TOWTOIV0iIn1gII+BcnJR\nTw9V6rEpY4pRvf0Ydh48A7c3+taQApQT1sIpBXHgfMBXGi3w+vzocvuwpLIMh75oQuu5vluWRg6Z\nc0iXiEgfGMhjpKYnGvlYQBSxda+6eW1zjgBft9owLi+Wi4HCfDM2//UkDhxrlAzigPyQuVQ5VyIi\nSh0G8hhF64lGPgYAK9fsVv3+3X4xocx0u82Mm+ddhBerD6h+Tes5r2wCndVsxOUTB3HInIhIp5js\nFiel5KLwx9Su/Q4KiEDZ0IFxt8vV4QWEnoAuJddihMXc+2dXWgbn9vohCAJ3OCMi0imenTWmVN5U\nzj/PRK/jK5e1LgB48bcH0HpOek58zrThGGCJbSAmPGOdiIj0hYFcY0pLtaQYDMAZmQ1KDAJwxeRB\n+Mmdl2D21KGSzwkmt0n1soeX5uOaWRfCFWU700is201EpF8M5Eni8fnR4OqU7LkurSzDVdOGwmpO\nLKs7IALfvHQkBhcPwLKqMaiqGIbiAisEQd268k53N2x55phHCFjkhYhIv5jsFgOPz98nwc0fCIS2\nFZXbttRoMOA7c8fh+isuxFubj2BvnVMyMz3PYpRd6w30ZJcHA2p40t3n9a1YLVMyNZyr3Y1Od7fs\nEjqjQZAsMztuRN89yomISB8YyFWQCtYXjSjCjXPHYuOOz/vUXpfbBWzjji+w+2/S24sCkK26FjR1\nTN8lYMGSqcUqMt2LbFYUFVhkl9Bde/nX8JsPj+PwP11wtXtg+WoEYdehMzhywiW5rzoREaUXA7kK\nwT3Ag4Ibpeytkw/KkbuAqdmCVGnd92B7HpbNld4eVKlQTbipY0tgNecoLqG74/+5GB6fH29tPtKr\nyhu3KSUi0id2raJQCsBub0ByP3Ggb4JYrMvQIv3HsqmKPeGllWXn58zRs/7bajbCIPSUiK2qGNZn\nLbjSErrDJ1ySn8MMdiIifWGPPIp4A3BkgliiW5B6owRPqV42gLjKpyodM7cpJSLSF/bIo8i15KAw\njoztyJKmFpMRk8eUSD7XYjJgztQhskVc7DZLr4sCpQz58F52vDtiKa19ZwY7EZG+sEcuIzzBzRVl\nDbXVbESeJQctHR7FXcDkVohd8vULcNO8i2A01knOc5ePc8BiMsIfCGD9n+qw72gjWjq8KJbIkAek\ns+sjKT1HeXMYblNKRKQnDOQyIhPclHxj0uCou4B5fH7sPyq9delHB0/DaBSw9Cr5DVn8gQCeev1T\nnGzoCL0uMgFNzVI4vz+A9VvqFJ8DcJtSIqJMwUAuQSnBzWwyYIAlB63nvL2Cm9FgUJw3Vpp3DojA\ntn2nYDTKZ5Ov++BIryAeLpgh/39/Ph51Kdza33+markctyklIsoMDOQSlIJud3cA37t5Csw5hpiC\nm5pkt/Ala+EXBR6fH/vrpHvzANDc5oazpUv24iP4vgCw+9DpqJ8djtuUEhHpG5PdJERL9nIU5sac\nRKam5rpcTfPWDg9aFObpB+abAVGMmmne2uGBs0W6jjvrqRMRZSYGcglKQTeRZK+llWWYUz5Uti66\nVEa4PxDA5k9OQFCopT51TAkcRXlRM80H5lvgKMxV/dlERKR/DOQypDY6sZoNCIgi/AGFDbwVGA0G\n3HT1OMyeMkTycamLhA1bj2HbvlOQKIEOoGdHs2Vzx6q6+LCYjLh0wmDVn01ERPrHOXIZRoMBgiDA\n7T2/VtvtDWDr3noYBCGhMqXL5o6F0WiImhGulHQnCMAVk4dg+dVjQ9nmajLNb7tmPDq7vMxGJyLK\nEgzkMpSCqFximFpqM8IVq8qJwIJLRvRaMqbmfZUy44mIKPNwaF2GmjKliYpWeU0p6c5eID+nraai\nW7xV34iISF8YyGXooUypVkl3RESUPRjIZegliIbvaqa0kxkREfVPnCNXoIcypaywRkREShjIFegp\niLLCGhERSWEgV4FBlIiI9Ipz5ERERBmMgZyIiCiDMZATERFlMAZyIiKiDMZATkRElMEYyImIiDIY\nAzkREVEGYyAnIiLKYAzkREREGYyBnIiIKIMxkBMREWUwBnIiIqIMxkBORESUwRjIiYiIMphutjH9\n6U9/itraWgiCgEcffRSTJk1Kd5OIiIh0TxeB/JNPPsE///lPbNiwAcePH8ejjz6KDRs2pLtZRESJ\nE8Xz/w4Eev4XeX/kbTX/juc1Ea8XkNjr+zxm8EJobkf428bTZtl2Jaudiby+ZQCMzR197hcNRgRG\njgIEAammi0C+a9cuVFVVAQBGjx6N1tZWdHR0ID8/P/WNWbUKBXv3n7+d6B9AEv9DEeL6o42432zE\nQK9fvl1xtlNV25L6PUW+/Ks7cgwo9PklXyOoPU41bVHdTnWvkf/+er8cBsAeEJP++XH9tgl/TxLP\nEYBiUV3bBLm2KH5mir4nBQ5Vz8pcJeluQArYZe4/98hKdH5/RUrbAugkkDc2NmL8+PGh23a7HU6n\nUzaQFxXlISfHmPyGdHcDa9bAUl+f/PfWEXOy3ijyyjP8dqz/TuLrTWn4TE1fE/5vP2AM3hbCHxP0\n2+YYX2NQ+Tw9tblffWYmtjkVn2k0YsCNizHAYUOq6SKQRxKjXNm6XJ2afbbj+HE0fn6q9529fjS5\n+xP7AxKRmj9aR2kBnM72+Nuscw6H7fzxZSEeX2bj8WW+qMeo0fE7FC4QdBHIS0tL0djYGLrd0NAA\nhyNNA1AWC8SSLB4cysnp+R8REWUFXSw/u/zyy7F582YAwGeffYbS0tL0zI8TERFlGF10zcrLyzF+\n/Hh8+9vfhiAIeOKJJ9LdJCIiooygi0AOAD/4wQ/S3QQiIqKMo4uhdSIiIooPAzkREVEGYyAnIiLK\nYAzkREREGYyBnIiIKIMxkBMREWUwBnIiIqIMxkBORESUwQQx2g4lREREpFvskRMREWUwBnIiIqIM\nxkBORESUwRjIiYiIMhgDORERUQZjICciIspgutmPPN1++tOfora2FoIg4NFHH8WkSZPS3aSYPPfc\nc9i7dy+6u7tx9913Y+vWrfjss89QWFgIALj99ttx5ZVXYtOmTXjjjTdgMBiwZMkSLF68GD6fD488\n8ghOnToFo9GIZ555BsOHD0/zEZ23Z88ePPjggxgzZgwAYOzYsbjjjjuwYsUK+P1+OBwOrF69Gmaz\nOSOP77e//S02bdoUun3o0CFMmDABnZ2dyMvLAwA8/PDDmDBhAl555RW8//77EAQB999/P2bPno32\n9nY89NBDaG9vR15eHp5//vnQ755udXV1uPfee3HLLbdg+fLlOH36dMK/2+HDh/Hkk08CAMaNG4dV\nq1bp6vh++MMforu7Gzk5OVi9ejUcDgfGjx+P8vLy0Otef/11BAKBjDu+Rx55JOHzip6P79///d/h\ncrkAAC0tLZgyZQruvvtuXHPNNZgwYQIAoKioCC+99JLsf3cff/wxXnjhBRiNRlxxxRW47777tD8Q\nkcQ9e/aId911lyiKonjs2DFxyZIlaW5RbHbt2iXecccdoiiKYnNzszh79mzx4YcfFrdu3drreefO\nnROvvvpqsa2tTezq6hK/9a1viS6XS/zd734nPvnkk6IoiuKOHTvEBx98MOXHoGT37t3iAw880Ou+\nRx55RHz33XdFURTF559/Xnz77bcz9vjC7dmzR3zyySfF5cuXi0eOHOn12IkTJ8Trr79e9Hg8YlNT\nkzhv3jyxu7tb/PnPfy6uWbNGFEVR/M1vfiM+99xz6Wh6H+fOnROXL18urly5Uly3bp0oisn53ZYv\nXy7W1taKoiiK3//+98Xt27en4eikj2/FihXiH//4R1EURfGtt94Sn332WVEURXHGjBl9Xp+Jx5eM\n84qejy/cI488ItbW1oonT54Ur7/++j6Py/13t2DBAvHUqVOi3+8Xb7zxRvHo0aPaHogoihxaB7Br\n1y5UVVUBAEaPHo3W1lZ0dHSkuVXqTZ8+Hf/93/8NACgoKEBXVxf8fn+f59XW1mLixImw2WywWq0o\nLy9HTU0Ndu3ahblz5wIAZs6ciZqampS2Px579uzBVVddBQCYM2cOdu3alRXH9/LLL+Pee++VfGzP\nnj2YNWsWzGYz7HY7hg4dimPHjvU6vuB3oQdmsxlr1qxBaWlp6L5Efzev14v6+vrQiFk6j1fq+J54\n4gnMmzcPQE/PraWlRfb1mXh8UrLp9wv6/PPP0d7erjgyK/Xf3cmTJzFw4EAMHjwYBoMBs2fPTsnx\nMZADaGxsRFFRUei23W6H0+lMY4tiYzQaQ0Ow1dXVuOKKK2A0GvHWW2/h5ptvxve+9z00NzejsbER\ndrs99LrgcYbfbzAYIAgCvF5vWo5FzrFjx3DPPffgxhtvxM6dO9HV1QWz2QwAKC4u7nMcQGYdHwAc\nOHAAgwcPhsPhAAD8/+3df0xV9R/H8ecF7lVABYTuJWOUGOmdblBAXSLaYtGKCJfSBvPCSpdFA2Jp\nkIxpWxSg/FHQmBKkM3S2MTdxGrUaNidCElsjzLVCN7hs/HCTX03gXj79QZxvfEXLCLkn34//zrnn\nnvN53c/Oed/POXA/FRUVbNmyhd27d3P9+vW/lS8wMJD+/v5Faf//8/LyYunSpbPWzbffBgcHWbFi\nhbbtzD4Ww1z5fHx88PT0xOVycfToUV544QUAJiYm2LFjB2lpaRw8eBBAl/mAeV1X9JAP4PDhw9jt\ndm15cHCQ3Nxc0tLStMdgc513AwMDc34WC02ekc9B6fRXa7/++mvq6+v59NNP+fHHH/H398dqtVJd\nXc3HH3/Mww8/PGv7m+V0t/wPPPAA2dnZPPfcc3R3d5OZmTnrjsPt5nC3fDPq6+t58cUXAcjMzGTt\n2rWEhoayZ88ejhw5csP2c+Vw12xz+Tf6zR3zulwu8vPzsdlsxMbGApCfn09KSgoGgwG73U50dPQN\n79NDvo0bN/6r1xV3ywfTX7q+//577Tm+v78/b775JikpKYyMjPDSSy9hs9lmvWexc8iIHDCbzQwO\nDmrL/f392qhIL86ePcv+/fv55JNPWL58ObGxsVitVgASEhL4+eef58xpNpsxm83at8bJyUmUUtqo\nyR1YLBaSkpIwGAyEhoYSFBTE0NAQ169fB6Cvr0/Locd8M1pbW7WLYmJiIqGhocDN++/PuWfyzaxz\nVz4+PvPqt3vuuWfW7Wp3zLtr1y7uv/9+srOztXXp6en4+vri4+ODzWbT+lNv+eZ7XXH3fAAXLlyY\ndUt92bJlbN68GaPRyMqVK9mwYQNdXV1znnc3O0cXmhRyIC4uji+//BKAzs5OzGYzy5YtW+RW/X0j\nIyPs3buXAwcOaH9NmpOTQ3d3NzBdIMLDw4mIiKCjo4Ph4WHGxsZob28nOjqauLg4GhsbAWhqauKx\nxx5btCxzaWhooLa2FoCBgQGuXr3Kpk2btD776quviI+P120+mD7hfX19MZlMKKV4+eWXGR4eBv7X\nfzabjTNnzjAxMUFfXx/9/f08+OCDs/LNfBbu6vHHH59XvxmNRsLCwmhra5u1D3fR0NCA0WgkNzdX\nW9fV1cWOHTtQSuF0Omlvbyc8PFyX+eZ7XXH3fAAdHR2sW7dOW25paaGkpASA3377jUuXLrF69eo5\nz7uQkBBGR0fp6enB6XTS1NREXFzcgrdZZj/7Q3l5OW1tbRgMBvbs2TOrI93d559/TmVlJatXr9bW\nbdq0ibq6Ory9vfHx8aGkpITAwEAaGxupra3VbvGlpKTgcrkoKiriypUrmEwmSktLuffeexcx0Wyj\no6Ps3LmT4eFhJicnyc7Oxmq1UlBQwPj4OKtWraKkpASj0ajLfDD9L2cffvghNTU1AJw+fZqamhq8\nvb2xWCy8//77eHt789lnn3Hy5EkMBgN5eXnExsYyNjbG22+/zbVr11ixYgX79u1j+fLli5xoOlNZ\nWRkOhwMvLy8sFgvl5eW888478+q3X375hd27dzM1NUVERAS7du1ym3xXr15lyZIl2kBgzZo1vPvu\nu+zbt4+WlhY8PDxISEggKytLl/nsdjvV1dXzuq64c77KykoqKyuJiooiKSkJAKfTSVFREZcvX8bl\ncpGens7mzZtvet5duHCB8vJyAJ555hm2bdu24FmkkAshhBA6JrfWhRBCCB2TQi6EEELomBRyIYQQ\nQsekkAshhBA6JoVcCCGE0DEp5EIIIYSOSSEXQudOnDhxy9e//fbbW07eAZCRkUFzc/O/2SwhxB0i\nhVwIHXO5XFRVVd1ym0OHDjE0NHSHWiSEuNNk0hQhdKywsBCHw8HWrVtJSkri2LFjeHt7ExgYSHFx\nMQ0NDbS1tbFz505KSkq4fPkyNTU1mEwmXC4Xe/fuJSQk5C+P09PTQ1ZWFg899BDh4eG8+uqrfPDB\nB3R2dgJgs9nIy8sDoKqqijNnzuDl5UV4eDhFRUX09fXx2muvERcXR1tbGwEBAaSkpHDixAkcDgcf\nffQR69ato7y8nJaWFkwmExaLhbKyMrf8XXwh3MqCz3guhFgw3d3dKj4+XjkcDvXkk0+qkZERpZRS\npaWlqrKyUiml1FNPPaWuXLmilFKqvr5eORwOpZRS+/fvV6WlpUoppex2uzp37twtj2O1WtWvv/6q\nlFLq5MmTavv27Wpqako5nU6VmpqqWltbVXt7u9q4caOamJhQSimVk5Ojjh8/rr2/q6tLa9NM+yoq\nKlRxcbG6du2aioyMVE6nUyml1KlTp7S2CiFuTkbkQvwHXLx4kfXr12u/8f3oo49y7NixG7YLCgqi\noKAApRQDAwM3TEF5K35+foSFhQHwww8/EBsbi8FgwNPTk+joaDo6OvD09CQmJgaj0ai1o6Ojg5iY\nGAICArT5ACwWC4888ggAwcHB9Pb24ufnR3x8PHa7ncTERJKSkggODp7X5yLE3UCekQvxH6SUwmAw\nzFo3OTlJXl4e7733HnV1dWRkZNzWPmeKM3DDvmeOd7P1AJ6enrNe+/Oy+mPKh4qKCoqLiwGw2+38\n9NNPt9VGIe5GUsiF0DEPDw+cTicbNmygs7OT0dFRAJqbm4mIiACmi67T6WRsbAwPDw/uu+8+xsfH\n+eabb5iYmPhHx42MjKS5uVmbmvO7774jIiKCyMhIWltbmZycBOD8+fNaO/5Kd3c3hw4dYs2aNWzd\nupXExEQuXbr0j9onxN1Ebq0LoWNms5mgoCDeeOMNtm/fziuvvILJZCI4OJi33noLgCeeeILXX3+d\nsrIykpOTSU1NZdWqVWzbto38/Hy++OKL2z7us88+S3t7O+np6UxNTfH0008TFRUFwPPPP8+WLVvw\n8PBg/fr1JCcn09vb+5f7tFgsXLx4kdTUVHx9ffHz8yM7O/u22ybE3UamMRVCCCF0TEbkQghg+tZ2\nYWHhnK8VFhZitVrvcIuEEH+HjMiFEEIIHZM/dhNCCCF0TAq5EEIIoWNSyIUQQggdk0IuhBBC6JgU\nciGEEELHfgddfldB02T70QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "t0lRt4USU81L", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This initial line looks way off. See if you can look back at the summary stats and see the same information encoded there.\n", + "\n", + "Together, these initial sanity checks suggest we may be able to find a much better line." + ] + }, + { + "metadata": { + "id": "AZWF67uv0HTG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Tweak the Model Hyperparameters\n", + "For this exercise, we've put all the above code in a single function for convenience. You can call the function with different parameters to see the effect.\n", + "\n", + "In this function, we'll proceed in 10 evenly divided periods so that we can observe the model improvement at each period.\n", + "\n", + "For each period, we'll compute and graph training loss. This may help you judge when a model is converged, or if it needs more iterations.\n", + "\n", + "We'll also plot the feature weight and bias term values learned by the model over time. This is another way to see how things converge." + ] + }, + { + "metadata": { + "id": "wgSMeD5UU81N", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature=\"total_rooms\"):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]]\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label]\n", + "\n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda:my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " prediction_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=prediction_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + "\n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Output a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kg8A4ArBU81Q", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Achieve an RMSE of 180 or Below\n", + "\n", + "Tweak the model hyperparameters to improve loss and better match the target distribution.\n", + "If, after 5 minutes or so, you're having trouble beating a RMSE of 180, check the solution for a possible combination." + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 969 + }, + "outputId": "9722f72e-9b62-4bfe-85f6-a54cbdbc7846" + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00001,\n", + " steps=1000,\n", + " batch_size=5\n", + ")" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 225.63\n", + " period 01 : 214.42\n", + " period 02 : 204.04\n", + " period 03 : 195.33\n", + " period 04 : 187.55\n", + " period 05 : 180.94\n", + " period 06 : 175.88\n", + " period 07 : 171.99\n", + " period 08 : 169.53\n", + " period 09 : 167.70\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 114.2 207.3\n", + "std 94.2 116.0\n", + "min 0.1 15.0\n", + "25% 63.2 119.4\n", + "50% 91.9 180.4\n", + "75% 136.1 265.0\n", + "max 1638.9 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean114.2207.3
std94.2116.0
min0.115.0
25%63.2119.4
50%91.9180.4
75%136.1265.0
max1638.9500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 167.70\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4U/X3wPF3RpN008kom9KC7KGC\niGxalqIyHAz314GAqHwFcaAI7oWAOFBwgaKyt8BXRETKEgEpLaul0L3bpBn390dtfqClTWnTpO15\nPY/PQ5rce0/ujcm9537O+agURVEQQgghhBBCCCGEqGZqVwcghBBCCCGEEEKIukmSEkIIIYQQQggh\nhHAJSUoIIYQQQgghhBDCJSQpIYQQQgghhBBCCJeQpIQQQgghhBBCCCFcQpISQgghhBBCCCGEcAlJ\nSgjhQpGRkVy8eNHVYZTpnnvu4YcffvjX3+fPn8+zzz77r78nJyczfPjwKtv++PHjWb169VUvP3/+\nfLp37050dDTR0dFERUXxwgsvUFhYWOF1RUdHk5aWVqFlrrT/hBBC1AyRkZEMGjTI/jsyaNAgZs6c\nSUFBQaXW++2335b69x9++IHIyEh27Nhx2d+NRiNdu3blmWeeqdR2HXXu3DkefvhhoqKiiIqKYuTI\nkWzbtq1atl0RCxcuLHWf7N27l/bt29uP26X/1RSJiYlERkZedg5z9913c+zYsQqv66233uKbb76p\n0DKrV69m/PjxFd6WEBWldXUAQojapX79+qxbt87VYVwmKiqKV155BYCioiKmTp3KggULeOqppyq0\nnk2bNjkjPCGEEG7uiy++oEGDBkDx78gTTzzB4sWLeeKJJ65qfampqXzyySeMGTOm1OcbNmzIunXr\n6Nevn/1vO3bswM/P76q2dzWeeuopbrnlFj788EMADh8+zMSJE9m4cSMNGzastjgqo2HDhjX+t1uj\n0Vz2HjZs2MBjjz3G5s2b0el0Dq/nySefdEZ4QlQJGSkhhBsqKipizpw5REVF0b9/f/sJAcDBgwe5\n7bbbiI6OZujQofz6669AcTb9xhtvZO7cuYwbNw4ovruzatUqRo4cyY033sjnn39uX8+KFSuIjo6m\nf//+TJs2DaPRCEBCQgKjR49m4MCBPPnkk1it1grFnpiYyDXXXAMU3+2ZPHkyM2fOJCoqiqFDh3Ly\n5EkAcnJyePrpp4mKimLAgAF8//33V1xnbGwso0aNok+fPsyaNQur1crkyZP59NNPL3tNjx49sFgs\nZcan0+kYO3Ysu3fvLjeOyMhIFi9eTFRUFFar9bKRLcuWLWPo0KFER0fzyCOPkJGRUSX7TwghhHvT\n6XT07t2b48ePA2AymXj++eeJiopiyJAhvPrqq/bv/r/++os77riD6OhobrnlFnbt2gXAHXfcQVJS\nEtHR0RQVFf1rG127dmXv3r2XjerbsGEDvXr1sj+uzLnCsmXLGDFiBL1792bDhg2lvs/Y2Fg6depk\nf9ypUyc2b95sT8588MEH9OnTh5EjR/LRRx/Rv39/AJ555hkWLlxoX+7SxxU5h9m/fz+33347gwYN\nYsyYMSQkJADFI0amTp1Kv379GDdu3FWPOP3hhx+YNGkSEydO5PXXX2fv3r3ccccdTJkyxX4Bv3Hj\nRoYPH050dDQTJkzg3LlzQPEozFmzZjFq1KjLzq0ApkyZwpIlS+yPjx8/zo033ojNZuOdd96xjzyZ\nMGECycnJFY576NChGI1GTp06BVz5fO6ZZ55h3rx5jBgxgo0bN152HK70ubTZbLz00kv07duXUaNG\n8ddff9m3+/vvv3PrrbcydOhQhgwZwsaNGyscuxBXIkkJIdzQxx9/TFxcHGvXrmXdunVs3rzZPozz\n+eef5/7772fTpk089NBDvPDCC/blsrKyaNu2LV9++aX9b3FxcaxatYqFCxfy9ttvY7VaiYmJ4b33\n3mPp0qVs374dHx8f3nvvPQDefPNNevbsybZt25g4cSIHDhyo1Hv5+eefueuuu9i8eTPXX389S5cu\nBeDVV19FrVazceNGvvvuO+bPn09sbGyp69i7dy9ffPEFmzZtYt++fezYsYPhw4dfNiJj69atDB48\nGK22/AFgZrPZfnehvDgURWHz5s1oNBr73w4dOsSnn35qj6lRo0a89dZbQNXvPyGEEO4lOzubdevW\n0aVLFwCWLl3KxYsXWb9+PT/++CMxMTGsW7cOm83GtGnTGDduHJs2bWLOnDk8+eST5OXlMXfuXPtd\n/NLudut0Onr27MlPP/0EQF5eHsePH7dvE67+XCEzMxO1Ws3atWuZOXMm7777bqnv86abbmLy5Mks\nW7aM+Ph4oHg0pEqlIjY2lqVLl7Jy5UpWrlzJoUOHHNp3jp7D5OXl8cgjjzBt2jS2bt3KhAkTmDJl\nCgDff/89aWlpbN26lfnz5/PLL784tO3S7N69m9mzZzN9+nQAjh07xh133MFbb71FUlISzz33HAsW\nLGDTpk307duX559/3r7s//73Pz766CPuueeey9YZFRXF9u3b7Y+3bt1KdHQ08fHxbNq0yX6sBg0a\nxJ49e64qbqvVik6nK/N8DmDPnj2sXLmSIUOG2P9W1udy165d7N69m/Xr1/Pll18SExNjX+61115j\nxowZbNiwgUWLFrllKY+ouSQpIYQb2rFjB3fddRc6nQ4vLy9uueUWtmzZAsCqVavsPy7dunWz3zmA\n4ovtQYMGXbauW265BYB27dphMplIT09n+/btDB06lPr16wNw55132tcfExPD0KFDAejYsSMtW7as\n1Htp1aoV7du3B+Caa67hwoUL9vc4YcIE1Go1gYGBDBo0yB7DP0VFReHp6Ymnpyd9+vTh0KFD9OnT\nh3PnztnvFGzbts0ed1ny8vL4+uuv7fupvDj69u37r3Xs3LmTqKgogoKCABg9erR95EVV7z8hhBCu\nN378eKKjoxkwYAADBgygR48ePPjgg0Dxb8KYMWPQarUYDAZGjBjB7t27SUxMJC0tjWHDhgHQoUMH\nGjVqxJEjRxza5rBhw+zJ923bttGvXz/U6v8/db/acwWLxcJtt90GFJ8bJCUllbr9N954g7vvvpu1\na9cyfPhw+vfvb+9JsH//fq699lpCQkLQarUO95Jy9Bxm//791K9f3z4yZPjw4Zw7d46kpCRiYmIY\nNGgQWq2WgICAy0pc/unChQv/6ifx6quv2p9v3rw5zZs3tz82GAz07NkTKE5YXH/99TRr1gwo/q3f\nu3evfURmp06dCAwM/Nc2+/bty7Fjx8jKygL+Pynh5+dHRkYGa9euJTs7m/HjxzNy5EiH9lsJRVFY\nsWIF9evXp3nz5mWezwH07NkTvV5/2TrK+lzu27ePPn364O3tjcFguCyZERQUxKpVq4iPj6d58+b2\nmzFCVAXpKSGEG8rNzWXevHm8/fbbQPEQzY4dOwKwdu1ali1bRn5+PjabDUVR7MtpNBp8fHwuW5ev\nr6/9OSjOkOfm5rJ161b73QVFUTCbzUDxHaBL11HZ+tWS7ZfEUDKkNTc3l6lTp9rjMplMV2w+demP\nvq+vL6mpqej1egYNGsS6desYNWoUqampXHfddaUuv3nzZvbv3w+Ah4cHgwYNst/ZKC+OevXq/Wt9\nGRkZhIaG2h/7+fmRnp4OVP3+E0II4XolPSUyMjLspQclI/MyMjLw9/e3v9bf35/09HQyMjLw9fVF\npVLZnyu5MA0ODi53m7169WLWrFlkZWWxfv16Hn30UU6fPm1/vjLnCl5eXgCo1WpsNlup29fr9dx/\n//3cf//95OTksGnTJubOnUvjxo3Jzs6+7PetJElfHkfPYXJyckhISLjs91in05GRkUF2dvZl5xZ+\nfn7k5+eXur3yekpcetz++TgzM/Oy9+jr64uiKGRmZpa6bAkvLy9uuOEGdu7cSbdu3cjJyaFbt26o\nVCrmz5/PkiVLePnll7n22muZPXt2uf05rFarfT8oikJ4eDgLFy5ErVaXeT53pRjL+lxmZ2f/6/ym\nxNy5c1m0aBH33nsvBoOBadOm1aimocK9SVJCCDcUGhrKfffd96/sf3JyMrNmzeK7776jbdu2nDlz\nhqioqKta/6233sp///vffz3n5+dHXl6e/XFJr4SqFhoayoIFC4iIiCj3tdnZ2Zf9u+RHdtiwYcyb\nNw9fX1+ioqIuu4N0qUsbXVYmjhLBwcH2OyBQPOS05ASzuvafEEKI6hcYGMj48eN54403WLRoEXDl\n34SgoCCys7NRFMV+AZiVleXwBbyHhwf9+vVj1apVnD17li5dulyWlHDmuUJGRgbHjx+3j1Tw8/Nj\nzJgx7Nq1i9jYWHx9fcnNzb3s9SX+mego+Q2vSFyhoaG0bNmy1Nmr/Pz8rrjtqhQUFMTBgwftj7Oz\ns1Gr1QQEBJS7bFRUFFu3biUzM5OoqCj78e/Rowc9evSgoKCA1157jTfffLPcEQf/bHR5qbLO58p6\nX1f6XJa1b4ODg3nuued47rnn+OWXX3j88cfp3bs33t7eDm9biCuR8g0h3NCAAQP47rvvsFqtKIrC\nwoUL+fnnn8nIyMDLy4uWLVtisVhYsWIFwBXvEFxJ//792bJli/3HZtu2bXz00UcAdO7cma1btwJw\n4MABe1Onqta/f3+WL18OFA8lnTt3LkePHi31tVu2bMFkMlFQUMCuXbvo3r07ADfccANZWVl88cUX\nlw0xdFYcJfr27Ws/2QBYvnw5ffr0Aapv/wkhhHCNe++9l4MHD/L7778Dxb8JK1euxGq1UlBQwOrV\nq+nTpw+NGzemQYMG9kaSBw4cIC0tjY4dO6LVaikoKCi3OfOwYcP4+OOPGThw4L+ec+a5gtFoZPLk\nyfYGiABnz57l8OHDdO/enS5duhATE0NGRgYWi4VVq1bZXxcSEmJvkJiQkGDvrVSRuDp16kRqaiqH\nDx+2r+fpp59GURQ6d+7M9u3bsVqtZGRk8PPPPzv8viqiV69exMTE2EtMli9fTq9evRzqXdWvXz8O\nHjzItm3b7Ocnv/zyC7Nnz8Zms+Hl5UWbNm0uG61wNco6n7uSsj6XXbp04ZdffqGwsJDCwkJ7MsRs\nNjN+/HhSUlKA4rIfrVZ7xZtBQlSUjJQQwsXGjx9/WRPFOXPmcNddd5GYmMiwYcNQFIX27dszceJE\nvLy8uOmmm+z9DJ555hkOHDjA+PHjef/99x3eZrt27Xj44YcZP348NpuNoKAgZs+eDcDTTz/Nk08+\nyerVq+nUqRM33HDDFddzaVkEQNu2bR2ecmrq1KnMnj3bfpekd+/eREZGlvraG264wd6lum/fvvTu\n3RsovnsQHR3NTz/9RLdu3RzabmXiKNGxY0ceeugh7r77bmw2G23btuXFF18EKrb/hBBC1Dw+Pj48\n9NBDvPbaa6xcuZLx48eTkJDAsGHDUKlUREdHM2TIEFQqFW+//TYvvPACH3zwAZ6enrz33nt4eXkR\nGRmJv78/vXr14scff6RRo0albuu6665DpVKV2jPJmecKjRo1YtGiRbz//vvMmTMHRVHw8fFhxowZ\n9hk5xo4dy6233kpAQACDBw+2z641ZswYJk2axODBg7nmmmvsv69t2rRxOC6DwcD777/Pyy+/TH5+\nPh4eHkyZMgWVSsWYMWOIiYlh4MCBNGrUiIEDB152d/9SJT0l/un1118vdx80aNCAOXPm8Oijj2I2\nm2ncuDEvv/yyQ/vPx8eHdu3aceLECTp37gzAtddey/r164mKikKn0xEYGMjcuXMBmD59un0GjYoo\n63zuSsr6XPbr14+dO3cSHR1NcHAwffr0ISYmBg8PD0aNGmUvfVWr1cyaNQtPT88KxSvElaiUS4u5\nhBCihvn444/JzMy0d84WQgghRPWKiYlh+vTpl806IYQQjpIxN0KIGisjI4Nvv/2WO++809WhCCGE\nEEIIIa6CJCWEEDXS8uXLuf3223nwwQdp0qSJq8MRQgghhBBCXAUp3xBCCCGEEEIIIYRLyEgJIYQQ\nQgghhBBCuIQkJYQQQgghhBBCCOESNXJK0NTU0qf9qYyAAC8yMwuqfL21heyfssn+KZvsn7LJ/imb\n7J+yVff+CQnxrbZtOYMzziFAPqfuQI6B68kxcD05Bq4nx6B0ZZ0/yEiJv2m1GleH4NZk/5RN9k/Z\nZP+UTfZP2WT/lE32j3uQ4+B6cgxcT46B68kxcD05BhUnSQkhhBBCCCGEEEK4hCQlhBBCCCGEEEII\n4RKSlBBCCCGEEEIIIYRLSFJCCCGEEEIIIYQQLiFJCSGEEEIIIYQQQriEJCWEEEIIIYQQQgjhEpKU\nEEIIIYQQQgghhEtIUkIIIYQQQgghhBAuIUkJIYQQQgghhBBCuIQkJYQQQgghhBBCCOESWlcH4M5M\nZivZeSb8ffToPTQVXj63oIjElDwah/rg66Wzr89qtXH6Qi4tGvqi0aj/tf5/brfksadeS6HJUmo8\nly4DVCjuyr7P6lSTYhVCCCGEEEIIUTanJSX27t3LlClTaN26NQARERE88MADTJ8+HavVSkhICG+8\n8QY6nY41a9awdOlS1Go1Y8aMYfTo0c4KyyFWm40V2+M4GJtKRo6JQD89XSJCGNs/HI26/MElRRYL\nryw7wPnUPGwKqFXgZdCiVUNWvuVfrw/w8aBbm/qM6tuSlTtP2bcb4KvD21NHfmERGblFqFVgUyDo\nkniAy2LV6zSAgrHIdtnrSou7su+zOtWkWIUQQgghhBBCOMapIyWuu+463n//ffvjGTNmcNdddzFk\nyBDefvttVq5cyciRI1mwYAErV67Ew8ODUaNGMWjQIOrVq+fM0Mq0Ynsc22IS7Y/Tc0z2x3cNjCh3\n+VeWHSAhJc/+2KZAXuG/kxElMvPMbItJ5MS5rMuWy8gtTkZcup5/xgNc9m9jkdXhuCv7PqtTTYpV\nCCGEEEIIIYRjqvUW8969exkwYAAA/fr1Y8+ePRw+fJgOHTrg6+uLwWCga9euHDhwoDrDuozJbOVg\nbGqpzx2MTcNktpb6XIncgiLOp+aV+ZorqehyB06kXjHWS5UWd2XfZ3WqSbFWJUVRODf7HVK++L5i\nCxYZ0e76FlXy6avbsLkQshLAduVE2tWy2OBYsp6MAteMbvkppoiNe0wu2XZlZGSZeXPRKY7FXt13\nS23154lcXv0gnvTMovJfLISTpGUV8v7KPzidlO3qUIQQQogayakjJeLi4nj44YfJzs5m0qRJFBYW\notPpAAgKCiI1NZW0tDQCAwPtywQGBpKaWvaFdkCAF1pt1fcTCAnx5UJaPhm5pV+0ZOYa0eg8CAn2\nvuI6kk6m2kc0VFRFl8u8Qpz/ft2/476a9xkS4luxAKtIZY9Jdanq/ZO6ZRcXF39F2F03EzLtHoeX\nM/68g6IzR/AOb4OugjEpNhuZ8aewFhkJDGiJRmeoYNRXFhLiS8wpGyl50CjYg5AQVZWt2xG/Hi5k\nw695RDbXueyzXJYrxZSXb2HeyyeIO51P3xvru2Xs1eGf7/unXSnMeTsOBZh0v4GQENd/B7hSXf1c\nuIN8o4VDcWnM/fx3Zo3vhpfBw9UhCSGEEDWK05ISzZs3Z9KkSQwZMoSEhAQmTJiA1fr/d7QVpfQr\n8Cv9/VKZmQVVFmeJkBBfUlNzsZqtBPrqSc/590VwgK8Ba5GZ1NTcK67HV6e2936oqIouF+CrR6Wi\n1Fgvf92/467o+yzZP65Q2WNSHap6/yiKwrFZ7wAQcO8djq87LwvdgZ/B25/s0LZQ0Zjy06DICJ4B\nZGSbAXPFlr+CkBBf/jpbwOkUA946K35qI+XkHqvUxXQbS1YVYNDBrTdpXf55+acrfX6KzDZeejuO\nuNP5RPcLplt7L7eLvTr8c/+s3ZLCkuWJeBrUPPN4K3w8bXVyv5So7u9nSYBcrlkDX4b1bMb6PWf5\ndP1xJt3WAZWqepOuQgghRE3mtDHU9evXZ+jQoahUKpo2bUpwcDDZ2dkYjUYAkpOTCQ0NJTQ0lLS0\nNPtyKSkphIaGOiuscuk9NHSJCCn1uS4RweXO+ODrpSMsxOeqtl3R5bpGhlwx1kuVFndl32d1qkmx\nVpXsn3aTf/AoAcMH4NXO8Z4Z2kNbUdksWDoPBE0F79ZZzVCQCioNeFft/4NFFoUTKTpUKLQJLW7a\nWl1MRQpLNxRSZIGxAw2E1KsZjVGtNoV3PjrD0RN59OxejwfublLnL3RsNoXPVySyZHkiAf4evPJM\nBB3bygWycL2RvVvQMTyYgyfT2PT7OVeHI4QQQtQoTjs7X7NmDZ9++ikAqamppKenc9ttt7F582YA\ntmzZQu/evenUqRNHjhwhJyeH/Px8Dhw4QPfu3Z0VlkPG9g9nYPfGBPkZUKsgyM/AwO6N7bNdlOfZ\nCV1pEupjv/BSq8DHU0s979IHpgT4eDCwe2OendD1su0G+uppEupDoK/Ovh4onn2jJJ5/xmrQaTDo\nNKgoP+7Kvs/qVJNirSxFUUh840NQqQib9qDDy6nSz6M5/Qe2wEbYWnSs+IbzkkFRwCcU1FWb6Dl8\nVqHIqqZZgBlfva1K110WRVH4druJlEyFPl086BheM2ZBVhSFj75M4Lf9WbRv48MTDzZHU52ZHDdk\nNtt49+MzrN6cQlhDPa8+G0GLpl6uDksIADRqNU+N64a/j47vd57ixLlMV4ckhBBC1BgqxZF6iauQ\nl5fHU089RU5ODmazmUmTJtG2bVv++9//YjKZaNSoEfPmzcPDw4NNmzbx6aefolKpGDduHDfffHOZ\n63bGMNXShr+azFay80z4++iv6m58bkERiSl5NA71wddLZ1+f1Wrj9IVcWjT0RaNR/2v9/9xuyWNP\nvZZCk6XUeC5dBqhQ3I68T1eWb1yqssfEWapy/2Ru3MnJ+58i8JbBhC+a69hCioLH1s9QJ5+maOC9\nKA1bVmyjRfmQdRa0BghoAVV4Rz49X8ORiwZ8dFa6NjZW6yiJ3X+Y+WGnieYN1Tx6mycajXte2P/z\n87N8VRIr1lykRVNP5vw3Ai9P9/msu4KnlydPz/6DI8dzaRPuzczJrfD1qRkJpuog5RsV46x9FRLi\ny+4DCbz+9UF8vTx48d5r7b/Jonq4y7lKXSbHwPXkGLieHIPSlXX+4LSkhDNVV1JC/D/ZP2Wrqv2j\n2Gz8OfhuCv+Kp8OOb/Fs3dyh5dSJJ/DY8SXWsAgs/cdXcKMKZMSDtag4IeHhWfHAr8BshX0Jnpht\narqFFeCjr76vm3MXrXywshBPvYppd3ri7+O+ZRuXfn427Uhl8RcJ1A/RMW9mJAH+dbtpXkZmEXPn\nnyb+TD7Xd/Hnif+0QK9z32PpCpKUqBhnJiVSU3PZtPcc3+6Io03Tejx5R2c0avm8Vhc5V3E9OQau\nJ8fA9eQYlK6s8wf5pRTCjWRu2E7hsZME3RbtcEICmxXNgc0oKhXWroMrvtHC9OKEhCGgShMSAHHp\nOoqsaq4JU1VrQiK/UGHZRiM2G9wdpXfrhMSlfo3J5KMvE/D30/LCk63rfEIiIamQZ+bGEn+muNHn\n04+1lISEcHtR1zWhS+tg/jqXxapdVzk1sxBCCFGHyNmdEG5CsVo5/+ZHoNEQNvUBh5dTxx9EnZ2K\nrVVXlHr1K7ZRq7l4xg2VBnzKb5paEWn5GpJzPfDRW2nTqEpXXSabovDNViOZuQpRPXRENK0Zw/yP\nHM/lnY/OYNCref6JcBqG1u1h38dP5jFzXiyp6UU8NL45D41rUuf7aoiaQaVScf+wtoTW82T9nrMc\niksrfyEhhBCiDpOkhBBuImPNVgpjTxE8aiiGlk0dW8hsQnv4JxSNB5ZOAyq+0bxkUGx/N7esuot3\nsxViU/+ebSPEhLoaLya3x5g5fsZKZFMNA66tGSMNYuNzmTc/HoBnHm9Fy2Z1u4Hj3gNZvPjmSQoK\nrTx+XzMmjGlW52ceETWLl8GDR29tj1aj5pO1x0jNKnR1SEIIIYTbkqSEEG5AsVg4/9ZHqLQawp5w\nfJSE5thuVIV5WNv1Aq8K1nkX5YMpp7i5paFeBSMuW1yaniKrmuaB5mot2ziZYGHTb0XU81FxV5QB\ndQ24kL2QYuKpF49gNNmY+mDzOj/F5aYdqby+4BRqtYpnp7Si/41Brg5JiKvStL4v4wZHUGCysHDV\nn5gt1TfzkBBCCFGTSFJCCDeQvmozxlPnCL7jZvRNwxxbqDAXzbHdKAYfrNfcWLENKgrkXiz+t2/D\nKp1tIy1fQ3KeFl+9lSb1zFW23vJk59n4cpMJtQomDDHg4+n+CYmsbDMvvR1HRpaZB+9uQq9rA1wd\nkssoisKX359n8RcJ+PpqeXl6a7p28Hd1WEJUSu+ODenVoQFnL+ay/KeTrg5HCCGEcEuSlHBTJrOV\nlMwCTGarq0MRTqZYLJx/+2NUHloaTb7f4eW0h7ejshRh6dQfPCrYf6AwA6ym4hESVTzbxomSso1Q\nU7VN/2m1KnyxyUheocKI3jqaNXT/KTQLCq28/E4cF1NM3DO2KUP6V21Pj5rEYlGYv+Qs369PpmGo\nnnkzIwlv4e3qsISoNJVKxbjBkTQO8WHHwfPsOXrR1SEJIYQQbqdmdICrQ6w2Gyu2x3EwNpWMHBOB\nfnq6RIQwtn+4TCtWS6Wt3IDpTCKhE0ejb9zAoWVUWSmo4/Zj8w/BFt61Yhu0miE/9e/mlqFXEfGV\nnUzTY7aqaRlYhLeu+so2Nuwp4nSSjU6ttdzY0f37SJjNNl794BSnzhUyuE8w99/dnLS0PFeH5RKF\nRitvLDzNwT9zCG/hxbNTWlHPz/2PoRCO0ntoeOzW9sz+fB9LN/1F01AfwkJ8XB2WEEII4TbkKtfN\nrNgex7aYRNJzTChAeo6JbTGJrNge5+rQhBPYisycf+cTVHodjR6/x+HlNAe2oFIUrF0Gg7qCowLy\nUpzS3DI1T0PK32UbjauxbONIvIWdB8yEBKgYM0Dv9g0RrTaFdz4+w5HjuVzf1Z+Hxjdx+5idJSvb\nzHOvneTgnzl06+jHy9NbS0JC1Er1A724b2hbisw2Fvz4J4Umi6tDEkIIIdyGJCXciMls5WBsaqnP\nHYxNk1KOWijt27UUJSQROu42dI0cm85TdfE0mvMnsNVvjq1xZMU2WJQPpuwqb25ZZIXYND0qVfWW\nbaRl2Vi+1YiHFiYONWDQufc5QCTDAAAgAElEQVTFvaIofPJVAntisrgmwodp/2lRZ6e5TEo28szc\nE8SfLWDAjUHMeLwVBr37l90IcbW6twll8LVNuJhRwNJNf6Eo1TeaTAghhHBnkpRwI9l5JjJyTKU+\nl5lrJDuv9OdEzWQzFZH07qeoDXoaOjpKQrGhPbAZAEu36Io1qHRic8visg0VLaqxbMNsUVi6wYix\nCEb109MwyP0vaL9be5FNO9Jo3tiTmZNbovOom1/BsafymfFKLMmpRYy5uQGP3dsUjaZuJmdE3TKq\nbyvCw/z5/XgK2w+cd3U4QgghhFuom2fEbsrfR0+gX+kNCwN8Dfj7VLCZoXBrqd+spigpmdCJo9GF\nBju0jPrMn6jTz2Nt3gElyMFZOko4qbllSp6G1DwtfnorTfyrb0jyqv+ZSEqz0aO9lu5t3X/I/5ad\naXyz6gKhwTqemxaOt1fdbOkTczib518/SV6+hUcmNOXOkY3qbPmKqHu0GjWPjGyPr5cHy386SXxS\ntqtDEkIIIVxOkhJuRO+hoUtE6R34u0QEo/dw/zvBwjG2QiNJ7y9B7Wmg4WMTHFvIakF7cCuKWoOl\n86CKbdDe3FJdpc0ti6xwMlWP+u+yjeq6ttx33MxvRy2EhagZeZP7J+v27M9k8Rfn8PPV8sKT4QTW\nc/8kijNs+zmNefPjUVD476SWDO7rWDJOiNokwFfPQze3w2ZTWLTqT/IKq68HjxBCCOGOJCnhZsb2\nD2dg98YE+RlQqyDIz0C/rmH06xImPSVqkZSvfsR8MZX6943FIzjQoWU0J/aiys/CGnk9+AZUbIMl\nzS29q7a55clUPWZbcdmGVzWVbVxIs/L9DhMGXXEfCQ+te99l//NELu8sPoNOp+b5J8JpVN/g6pCq\nnaIorFhzgQWfn8PbS8Psp1pzXZeq62kiRE3Trnkgt/RuQUaOiY/WHsUm/SWEEELUYXVz/LAb06jV\n3DUwgtv7tCIjx8i2mAT+iEtj54HzMj1oLWEtMHJh/ueovb1o8PB4xxYyFaA5shNFZ8DaoU/FNnhp\nc0vPCiYzypCSpyE1X4ufwUrjairbMJoUPt9gxGyBccMNBPm79/8Hp88VMO/9eBQF/jupJa2ae7k6\npGpntSp89GUCW/6XRmiwjuefCCesYd1LzAjxT8NvaE78+RyOnEpn3a9nuLlXC1eHJIQQQriEe5/R\n12F6Dw07Dp5nx8EkmR60lklZthJzajoNHrwTjyDH7hZrjvwPVZERa4e+oK/Ahe1lzS0bVFlzyyIL\nxJaUbYRUT9mGoih8+5OJtCyFft08aN/SvXOqyakmXn4njkKjjckPNKNzOz9Xh1TtTCYbry04xZb/\npdGiqSfzZkZKQkKIv6lVKh4ccQ2BfnpW7zrN0TMZrg5JCCGEcAlJSrgpmR60drLmF3BhwVI0vt40\neOhuxxbKzURzYi+Kd73i0o2KuKy5ZdXcpVeU4uk/LTYVLauxbOOXw2YOx1lo2UjNkJ66atnm1crK\nMTP7rTgysy3cf2djel/vWIlObZKTa+H5N0+y71A2na7xZc5/I+psLw0hrsTH04NHRrZHrVaxePVR\nMnKMrg5JCCGEqHaSlHBTMj1o7ZS85Fss6Zk0eOhutPUcu3OuPbQVlc2Kpcsg0FRgdIDV4pTmlil5\nGtLytfgbrIRVU9nGmQtW1vxShK+XivFDDGjU7ttHorDQypx34rmQYuL2YfUZNrDq9n1NkZxqYsbc\nE8TG59OnZyDPTm2Fl6c06hWiNK0a+XPHgNbkFZr5cPVRLFabq0MSQgghqpUkJdyUTA9a+1hz87jw\n4Rdo6vlR/8G7HFpGlZaI5swRbEFh2Jq3r9gG85OrvLmlyaLiZFpx2UZkNc22kVeosGyjEUWBcVF6\n/Lzd92vLbC4uV4g/W8DA3kHcfVsjV4dU7U6dLWDG3BMkJZu4dUh9Jt/fDA+t+x4zIdxB/65hXNc2\nlLjz2azcGe/qcIQQQohqJWeKbkqmB619Ln66HGtmNg0fHofWz6f8BRQF7f7NAFi6RRWPeHBUUQEY\nq7a5paJAbKquuGwjqAgvD+eXbdhsCl9tNpKdpzCkh47wJu7bR8JmU3j/07McPpbLdV38eXhCU1TV\nNUeqmzh0NIdnX40lK8fCA3c1ZsLoMNRuPKpFCHehUqmYGN2GhkFebNmXQMxfKa4OSQghhKg2kpRw\nY6VNDzqwe2PG9g93dWiigizZuVxc/BXaAH/q3zfWoWXUiX+hTjmDtXEkSv0KdGVXFMi7UPzvKmxu\nmZKnIb3g77INv+op29i2z0zsOSttm2vo1919+xEoisKSbxL55fdM2rb2Ztp/WqDR1K2L8Z170pnz\nbhxWq8JTj7Sok2UrQlSGp17LoyPbo/NQs2TDcZIzClwdkhBCCFEt3Pe2o7hsetDsPBP+PnoZIVFD\nXfz4a6zZuTR59nE0Pt7lL2CzojmwBUWlxtp1cMU2VpgJlqptbnlp2UabairbOHHOwpa9RQT4qrhr\nsAG1G486+H59Mut/SqVpmIGZk1uh19WdfK+iKKzalMyy75Lw9tIw4/GWtIv0dXVYQtRIYSE+TIxu\nw8drj7Hgxz95dkI3+d0XQghR69WdM+caTO+hITTAS05MaihLZjbJH3+NNiiA0HvHOLSMOm4/6pw0\nbOHdUPwrcMfZZoH8lCptbnlp2UaroCI8q6FsIyvXxlebjKjVMHGoAS+D+yYktv6cxlc/JBESpOOF\naeH4eNedXK/VpvDp14ks+y6JoAAP5s6IkISEEJXUs10D+nUJIzE1jy+3nEBRqmeGIyGEEMJV6s7Z\nsxAucmHxl1hz82nywoNovDzLX8BsQnt4O4pWh6VTv4ptLO/v5pY+DaqsuWVynpb0Ai31DFYaVUPZ\nhtVa3Ngy3wi399XTpL77JuP2Hsziw6Xn8PXR8MK0cAID3Huq0qpUZLbx7sdn2BOTRdMwA889EU5w\nYN15/+7szxO5fPxlAjdeF8DoEQ1dHc5Vef3119m/fz8Wi4X//Oc/dOjQgRkzZmCxWNBqtbzxxhuE\nhISwZs0ali5dilqtZsyYMYwePdrVoVeJOwa05vSFHHYfuUjrxvW4qVPda5orhBCi7pCkhBBOZE7P\nIvmT5XiEBlF/wiiHltEc/QWVMR9Lp/7gWYG7zuaS5pb6KmtuabKoiEvToanG2TbW7S7i7EUbXSK1\n9Ozgvl9Rx2LzePvD0+h0amZNDSesocHVIVWbvHwL8+af4lhsHu0ifZjxeEu8vdz3WNUVpiIbX/2Q\nxLqtKaiAgHru24elLL/99hsnT55kxYoVZGZmcuutt3L99dczZswYhg4dyldffcVnn33GpEmTWLBg\nAStXrsTDw4NRo0YxaNAg6tWr5+q3UGkeWjWPjmzP7M/38eWWWJo38KVpfRmFJIQQonaS8g0hnOji\nomXYCgpp+Pi9qD0duGgtyEFzbDeKpy/Wtr0c35CiQO7F4n/7NKyS5paKAicumW2jOso2/oiz8PMh\nM/UDVIzup3fb2SvOJhbyynvxWG0K0x9rSURLB/qE1BJpGUXMnBfLsdg8buhej+enhUtCwg2cPJ3P\nk7OPs3ZLCg1D9cybGcnA3sGuDuuqXHvttbz33nsA+Pn5UVhYyAsvvEBUVBQAAQEBZGVlcfjwYTp0\n6ICvry8Gg4GuXbty4MABV4ZepYLrefLA8GuwWG0s/PFPCoxmV4ckhBBCOIUkJYRwEnNqOsmffYtH\nw1BC777VoWW0h7ejspqLR0l4VGAofGEmWIxg8Add1TS3vJirJaNAS4Bn9ZRtpGbZWL7ViM4DJg7z\nRK9zz4RESpqJ2W/FUVBo5fH7mtOlvZ+rQ6o2ZxMLeeaVEyQkGRk+MIQnH26BzkN+RlzJbLHxyZen\neeaVE5y/YGLYwBDefrEtEa1qbqJMo9Hg5VX8PbZy5UpuuukmvLy80Gg0WK1Wvv76a0aMGEFaWhqB\ngYH25QIDA0lNTXVV2E7RKTyYYT2bkZJVyKfrj0t/CSGEELWS3N4SwkmSFizFVmikyfNTURv05b5e\nlZmMOv4ANv9QbK26Or6hy5pb1q9ExP/PaFERl/532UaI88s2iswKSzcYMZnh7ig99QPd80I3O8fM\n7LfiyMw2c98djenTM7D8hWqJP//KZd78UxQUWpk4JoxbokLddiRLXXE2sZD3PznDqXOFhATpePy+\nZnRoW3uG+G/bto2VK1eyZMkSAKxWK9OnT6dHjx707NmTtWvXXvZ6Ry/YAwK80Gqd06smJKTq9/+D\nt3YkITWfgyfT+OVoCrf1k2nBy+KMYyAqRo6B68kxcD05BhUjSQlRZUxmq0xd+reii6mkLPseXVgD\nQu642aFlNAc2o1IULN2iQF2Bi/K8lCptbqkoEJuiw2pTERFiwlANZRs//M/EhTQbN3TwoGuke9bB\nFxqtzHkvnqRkE7cOqc+IwVUzu0lNsPv3TN795Awo8MRDzbmpR91Jxrgjq01hzeZkvv7xAhaLwrBB\nDbhrZH28PGvP9+6uXbv48MMP+eSTT/D1LT6xmzFjBs2aNWPSpEkAhIaGkpaWZl8mJSWFzp07l7vu\nzMwCp8QcEuJLamquU9Z9b3QkL36ew9L1x6jvryeiSc3vm+EMzjwGwjFyDFxPjoHryTEoXVmJGve8\nHSlqFKvNxtfbYpn18W/MWPwbsz7+ja+3xWK12Vwdmstc+OBzFKOJRlMfQK0vvwxDdSEeTdJJbA1a\nYmvU2vENmQvAmFWlzS0v5mrJKNQS4Gmhoa/zyzb2HjWz75iFJqFqbuntnrM3mC02Xl9wirjTBfS/\nMYjxo+pOJ/y1W1N4a/FpPLQqnnuilSQkXOxCspFZr8ay7LskfLw0zJzckhmTI2tVQiI3N5fXX3+d\nxYsX25tWrlmzBg8PDyZPnmx/XadOnThy5Ag5OTnk5+dz4MABunfv7qqwncrfR88jt7QHYNHqP8nO\nL3JxREIIIUTVkZESotJWbI9jW0yi/XF6jsn++K6BEa4Ky2WKkpJJ+fIH9E3DCB4zvPwFFBvaA5sB\nsHSNcrxJpROaW9rLNtQKkaFFTi/bOJ9q5YedJjz1MGGoAa3W/coBbDaFD5ac5dDRXLp38uPRiU3r\nRNmCzaawbOV5Vm9KIcBfy3NPhNOiadX0KxEVpygKm3em8fmK85iKbPS6th4PjW+Kn0/t+xnfsGED\nmZmZTJ061f63pKQk/Pz8GD9+PACtWrXixRdf5Mknn+T+++9HpVLx2GOP2UdV1EYRTeoxqm8rvt0R\nx+LVf/LUHV1Qq2v/d5EQQojar/adzYgrckZ5hcls5WBs6Y3FDsamcXufVnWulCPp/SUoRWYaPfEA\nao/y/xdTn/4DdcYFrC06oQRV4A58FTe3VBQ48XfZRmSICYPWuWUbhabiPhIWK0wcaiDQz/0GbimK\nwucrzvPzb5m0CffmqYdbotHU/osAs8XGB0vO8vNvmYQ10PP8tHBCg8vviyKcIy2jiA8+O8vho7n4\neGt47N7m9L6+9o5YGTt2LGPHjnXotdHR0URHRzs5IvcRdV0TTiZmcfBkGj/uOsXtfVq5OiQhhBCi\n0iQpUQdYbTZWbI/jYGwqGTkmAv30dIkIYWz/cDQV6V1Qiuw8Exk5plKfy8w1kp1nIjSg7txdNSUk\nkfrNavQtmhB8+5DyF7CY0R7chqLWYuk80PENXdrc0rtqmlteyNWSWagl0NNCAyeXbSiKwoptRtKz\nFQZ09+CaFu75VfTjxmTWbk2hSSMDMye3Qq93v8RJVSsotPLaB6f443gubcK9mTG5Va28G18TKIrC\n//Zk8PFXiRQUWunawY/H7mlKYIB7ljkJ51OpVNw/rC2zP9/H+j1nCQ/zp1N4zZz6VQghhChR+8+w\nhb28Ij3HhML/l1es2B5X6XX7++gJ9Cv9DmqArwF/n7p1dzXpvSUoZgth0x5EpS3/Qk7z1x5UBdlY\n2/YAnwo0LitpbukdAprKXzAazSri04rLNiKqoWzj54NmjsRbCW+sIaqHe15g/bQrnS9WJhEc6MHz\n08LxrQMX5hmZRTz7aix/HM/lui7+vPhUa0lIuEhWjpnXFpzivU/OYrMpPHpPU2ZNbSUJCYGXwYNH\nR3ZAq1HzybpjpGUVujokIYQQolIkKVHLlVdeYTJbK7V+vYeGLhEhpT7XJSK4TpVuGM8kkrpiLYbw\n5gSNjHJggXw0f/6MovfC2v4mxzdU0txSowfPyg/hVhQ4karHqqgIDypyetnGqSQr63YX4eet4u4o\nPRo3rInedyiLhUvP4uOt4flp4QQH1v4LwcQLRp6ZG8uZhEKi+gYz/bGW6HXyE+EKv+3PYspzx9l7\nIJt2kT68+1JbBt0UXCd6mQjHNGvgy7jBEeQbLSxc9SdmS91tLC2EEKLmk1tgNZSj/SGqo7xibP/i\nOdMPxqaRmWskwNdAl4hg+9/riqR3PwGrlbAnH0KlKT8ZozmyE5XZhKX7UNB5OraRS5tb+jaokuaW\nF3K0ZBZqCPRyftlGboGNLzYaARgXbcDP2/0uev+Ky+PNRafx0KqZNTWcJo0cPDY12F9xebzyXjx5\n+VbuurUho4Y3kAtgF8gvsPDJV4ns3JOBh1bFvXeEMXxgqDQzFKXq3bEhJxOz2H3kIst/Osn4qEhX\nhySEEEJcFUlK1DAV7Q9RUl6RXkpioqrKKzRqNXcNjOD2Pq2qvJFmTZEXe5q0lRvwjGxJ4AgHekPk\npKM58TuKbyDWiGsd35Dx7+aWen/QeV99wH8rNKuIT9ehVStEhji3bMNmU/hqs4mcfIXhvXS0CnO/\nz8i584W88l48FqvCzMktiWxV+X3s7vYeyOLtxaexWBUev68Z/W8McnVIddKhozl8sOQs6Zlmwlt4\nMfn+ZnUiISaunkqlYtzgSM5ezGXHwfOEN/anZ7sGrg5LCCGEqDD3u00pylTR/hDVWV6h99AQGuBV\n5xISACfnLACbjbCn/oPKgeah2oNbUSk2LF0GOd4TwmYp7iWhUoNPaCUj/kfZRnAReieXbWz5vYiT\nCVbatdTQt6uHU7d1NVLTi3jp7Tjy8q08fl8zunX0d3VITrdpRyqvLziFWq1i5uRWkpBwAaPJyuIv\nzjH7rTiycszcObIhr86MlISEcIjeQ8Ojt3bAoNOwdNNfnE/Ld3VIQgghRIVJUqIGudr+EGP7hzOw\ne2OC/AyoVRDkZ2Bg98Z1rrzCWQpPniZp+Tq82kUQMKRfua9XpZ5Dc+4otuAm2Jq2c3xDlzW3rPxF\nfVKOlqxCDUFeFur7OLds43Cska2/mwn0U3HnIIPblQbk5FqY/fZJ0jPN3DMmjL431O6Lc0VR+OqH\nJBZ/kYCPj5aXpreuE0kYd3P8ZB5PvPAXm3ak0STMwGuz2jDm5oZ1YtpZUXUaBHpx39C2FJltLPzx\nCMYi536fCyGEEFVNyjdqkKvtDyHlFc51/q2PQFEcGyWhKGj3bwbA0i3K8Z4Q5sIqbW55adlGhJPL\nNjJzbXy4MgutBiYONeCpd68LLqPJyivvxXH+golbokO5Jbpqplh1VxaLwqKlZ9m+O4MGoXqenxZO\nw9C6NUuOqxWZbSxfdYFVm5IBuHVIfe4c2RAPD7lPIK5O9zahDL62CVv2JfD5xr/4z83t3C75K4QQ\nQlyJJCVqkMr2hygpr3CEo40067qC43FkrNmKf9d21Btc/gwa6oRjqFPPYW3SFiW0mWMbURTIvVD8\n7ypobqkocCJFj01RERlidGrZhsWqsGyDkfxChdH99TQOda/PksWi8MbC08SeKqBvz0AmjApzdUhO\nVWi08sbC0xz8M4fw5l48O7UV9fzcr5SmNjt1toB3PzlDwnkjDUL1TL6/GW1b+7g6LFELjOrbilNJ\nOfx+PIXWjesxoFtjV4ckhBBCOESSEjVISX+IbTGJ/3quqvpDXKmR5qQxXSq97tro/FuLAYh4cUr5\nd6VsVjQHtqKo1Fi7DnZ8I8asv5tb+lVJc8vzOVqyjMVlG6E+lZsStjxrfyniXLKNXp09ub6de90F\nttkUFnx2lgNHcujawY/H7m1Wq2c5yMox88q78cSdKaBrBz+eeqQFngb3ShLVZlarwvfrL/Lt2gtY\nrRDdL5gJo8PkGIgqo9WoeWRke1787HeW/3SSFg39aNnIz9VhCSGEEOVyr6sEUS5n94e4UiPNJWuP\nVsn6a5P8I3+RuWEH3l3bExLtwCiJ2H2oc9OxRVyL4hfs2EYua25Z+bKCQrOKU9VUtnEw1swvh800\nCFJzzwg/txtKvGzleXbuySCilTdPP9oCrda94qtKF5KNzJgbS9yZAgbcGMSMx1vJxXA1Skgq5Jm5\nJ/hm1QXq+XnwwrRw/jO+qRwDUeUCfPU8dHM7bDaFRauOkFdodnVIQgghRLlkpISTlVcGUdEyCWf2\nhyirkeZvf15gyHVNpJTjEuff+giAxk8/XP4Fd5ER7R87UDz0WDqW3wzTLi8FFGtxQqKSzS0VBf6q\nprKN5Awb3/1kQu9R3EdCr3Ov/OeqTcms3pRCWEM9z05phUFfez/XsafyeeW9eHJyLYwe0YA7RzZ0\nuwRRbWWzKazblsJX3ydRZFbo2zOQB+5ujLeX/PQK52nXPJBberdg1a7TfLz2GFNGd0Qt/88LIYRw\nY3Jm5CRXKoMY2z8cjVpd7vPlqUh/CEeV1UgzLavwio0066K8w8fI2vIzPtd1xu+m68t9veboLlSm\nAiydB4LBwRKMKm5ueT5bS7ZRQ7C3c8s2TObiPhImM4yP1hMa4F4JiR2701n67XmCAjx4YVpr/Hxq\n79fg/j+yeWPhacxmGw9PaEJU39KnBxZVLznVxPwlZzl6Ig8/Xy1PPNSUHt3quTosUUcMv6E5ceez\nOXIqnfW/nmFErxauDkkIIYS4otp7Nu5iJWUQJUrKIADuGhhR7vOuUFYjzeB6nuU20qxLzr/xIeDg\nKIn8bDTHf0Xx8sPatqdjG6ji5pYFRSpOZfxdthFsclrZhqIofL/dxMUMG707edA5wr2aKO7/I5sP\nPjuLj7eG56eFExKkc3VITrNtVxqLlp5Dq1ExfVJLru8iF8TVQVEUtv6czmfLEzGabFzf1Z+HJzSV\nhqKiWqlVKh4a0Y4XP/udVbtO0zLMn3bNK5/cFkIIIZzBvW5h1hJllUEcjE0jt6CozOdNZuc2H7yS\nkkaapenRvqGUbvwtN+YPsrf/iu8N3fDr1b3c12sP/YTKasHSeQBoHbwIrsLmlooCf6UWl21EhJjQ\nOTEV+dtRC/tPWGhaX83wG93rgv9EfD6vLzyFVqvi2SmtaBrm6eqQnEJRFL5dc4EFn53Dy1PD7Kdb\nS0KimmRkFvHKe/EsWnoOtVrFlAea8d/HWkpCQriEj6cHj4xsj1qt4qM1R8nMLX0kpBBCCOFqkpRw\ngrLKIDJzjSSm5JX5fHae604crtRI874R7VwWk7s5/2bxjBuNn3643NeqMi6gPnUIW0B9bC06O7YB\nm7VKm1smZmvJMWoIcXLZRkKKlR93mvAywIShBrQa96lhTkgqZM67cVgsCk893JI24bVzCkarVeHD\nLxL4ZtUFQoJ0vDozsta+V3eza28GU54/zv4/cujUzpf3Xm5L3xuCpH+HcKlWjfy5Y0BrcgvMLFr9\nJxarzdUhCSGEEP8i5RtOUFYZRICvgcahPmU+78oyiSs10tRoJH8FkLv3IDk/78Xvpuvxvb78aVK1\nBzajQsHcNRoc6BUCQH5Jc8vQSje3LChScTpDh4daoXWI85JdBcbiPhI2G9w92ECAr/t8XtIyipj9\nVhx5+VYev68Z13b2d3VITmEy2Xhr8Wn2HcqmRVNPZk0NJ7Ce3KF3tpxcCx99eY7d+7LQ69T8Z3wT\novoGSzJCuI3+XcM4mZjF78dTWLkznjsGtHZ1SEIIIcRl3OfKoRYpqwyiS0Qwvl66Mp93hzKJkkaa\n7hCLO0n8u5dE2FP/Kfe1qqSTqC/EY2sYjtLIwSlbzYVQmAkaHXgGVSbUy2bbaB1iQuekQ2lTFL7Z\naiQjR2HgdR60ae4+uc7cPAsvvR1HeqaZ8aMa0f/Gyu1Td5WTZ+GFN0+y71A2na7xZc5/IyQhUQ32\nHcpmynPH2L0vizbh3rwzuw3R/UIkISHcikqlYmJ0GxoGebFlXwL7T6S4OiQhhBDiMu5z9VDLjO1f\nfBF6MDaNzFwjAb4GukQE2/9e1vMVnSZUVI+c3THk/rof//434Nu9Y9kvttnQ7t+MggpLtyjHNqAo\nkHux+N++DSvd3DIxW0uOSUOIj3PLNnYeMHPstJXWTTQMvs59+kiYTDbmvh9PQpKREYNDuXVI5Uth\n3FFKmomX3o7j/EUTN/UIYNJ9zfDQSr7ZmQoKrSz5JpGffklHq1UxYXQYN0eFolFLMkK4J0+9lkdH\ntuflZTEs2XCcxiE+1A+U2bSEEEK4B0lKOMmVyiDKel6rUVVqmlDhPIqiVGiUhPrUIdRZyVhbdUEJ\naODYRoxZYCmskuaW+X/PtuGhUWgd7LyyjfhEKxt/LcLfW8W4KANqN7kos1gU3lh0ir/i8rmpRwD3\njAmrlXevT50tYM67cWRmW7h1SH3G3d7IbY5BbXXkeC7zl5wlNb2Ilk09mfxAc5o1rp1NU0XtEhbi\nw8ToNny89hgLfvyTWRO6oZMbH0IIIdyAJCWcrKQMwpHnv94W63bThIpiOT/vJe/3Q9QbfBM+nctp\n+mkpQntoG4rGA0unAY5twN7cUlXp5pYlZRuKoiIi2Oi0so2cfBtfbDKCCsYPMeDj5R4Xw4qisGjp\nWfb/kUOX9n5Muq9ZrbxQP3w0h9cWnMJosnH/nY0ZPijU1SHVaiaTjS++P8/6bamo1TB6RANGj2gg\no1JEjdKzXQNOJmaz8+B5vtwSy33D2ro6JCGEEEKSEs5wNeUX5U0jenufVlLK4SKKopD494wbYU8+\nVO7rNcd/RVWYi6X9TeDtYFPFkuaW3pVvbpmQ5UGuSUOoj4UQJ5VtWG0KX24ykVugcHNvHS0auc9n\n84uVSWzfnUHrFl48/YnAARcAACAASURBVGiLWnnR+L89GcxfcgaVSsWTD7eg17UBrg6pVouNz+e9\nT86QlGwirKGeKQ80p3WLyo1mEsJV7hzQmjMXcvjlyAVaN/and6dGrg5JCCFEHSdJiSpktdmuuvyi\nvGlEs/NMZY64EM6TvX03+fuPEDC0H94d2pT94sI8NEd/QdF7Y23X27ENXNrc0qtyjRjzi1SczvTA\nQ2NzatnG5t+KiD9vpUMrDTd1dp+Gimu2JPPjxmTCGuiZNTUcT4P7JEuqgqIorNqUzLLvkvDy1DBj\nckvaR/q6Oqxay2yxsWL1BX7ckIwCjBgcyt23NUKvq32JLlF3eGjVPDqyPbM/38eXW2Np1sCXpvXl\ne0QIIYTryJlVFVqxPY5tMYmk55hQ+P/yixXb48pdtmQa0dK4eprQuqy4l0TJKInye0lo/9iBymzC\n0qkf6AyObOCS5pYNKtXc0nZJ2UZkSBHOGlhz7LSFn2LMBPurGDvQ4Da9Gv63J4PPlp8nsJ4Hz08L\nx8+3duVcrTaFT79JZNl3SQQFeDB3RoQkJJzoTEIB018+wffrkwkO0vHS9Nbcd0djSUiIWiG4nif3\nD78Gs8XGwh//pMBocXVIQggh6jA5u6oi5ZVfmMxlD6MvbxpRKd1wjawtP1Pwx3ECRwzCq23Z03qq\nslNRn4zB5heErXV3xzZgzL6kuaVPpWItKduo72Mh2Ns5ZRvp2Ta+3mJEq4GJQw146t0jIXHgSDbz\nl5zB20vD89PCCQ2uXUm8IrONtz48zfptqTQJM/Dqs5HSXNFJrFaF79df5OmXTnAmoZBBNwXx7uy2\nkgAStU7n8GCG9WxGSlYhn64/hqIorg5JCCFEHeXUW4lGo5Hhw4fz6KOP0rNnT6ZPn47VaiUkJIQ3\n3ngDnU7HmjVrWLp0KWq1mjFjxjB69GhnhuQ0VVF+Ud40oqJ6KTYb599YDCoVYU850Evi4FZUig1L\nl8GgdiCJZLNCXnKVNLfMM6k4k+GBTmMj3EllGxaLwrKNRgpNMHagnkYh7pEoi43P5/UFp9GoVcyc\n3KrWXaznF1iYN/8UR0/kcU2EDzMnt8Tbq3aNAnEXSclG3vvkLLHx+QT4e/DYvU3p1tHBvjBC1EAj\ne7cg/nw2B0+msfn3BKKvb+rqkIQQ/8fencdFVe9/HH/NPuzrsAiKCOK+23orzd26paWl2a6VlZma\n/aqbVjdbbnXL0rJ90RbLss267pmVlZaK+4K4ocg2MDDA7HPO7w/ENGEYYIYB/D4fDx8PkMOZr8Pi\nnM/5ft4fQTgH+fWV7RtvvEFERNULuvnz5zNhwgRGjhzJ3LlzWbp0KaNHj2bBggUsXboUjUbD2LFj\nGTp0KJGRkf5cll9Ut18U11CY8Lb9oq4xokLTMq1cj2VPFjHXjiSoY6rHY13HD6I6thfJ0A6prZdp\n5j4Kt5Rk2FekQ0ZBhsHut7aNb3+xc7xQ4vyuas7v2jxyJHLzbDw9LxunU+Lh+zrQNaNxu02aG2OJ\ngzkvZ3Ms18bF/SOZdmd7tBqxwc3XJElm5Y9FLPoiF4dD5tILorjzxraEhYrij9C6qZRKJo/qzr8/\n+IMv1meTHBdC99TGZRsJgiAIQn357dXtwYMHyc7OZuDAgQBs2rSJwYOrxiNefvnl/P7772zfvp0e\nPXoQFhaGXq+nb9++bN261V9L8itftl9UjwkVBYnAkSWJ3BffAqWSNjPuqONgGfvPywBw9RvhXS6E\nD8Mtj5VqqLCriA91+q1tY8s+J7/tdJEYq+Tagc2jNaLY5ODJudmUV7i559Z2nN+n5RUzPTl63Moj\nz+znWK6NK4cYmHl3qihI+EFRsYMnX8rmnU+Oo9MqefCeVB6YnCoKEsI5IyJEy33X9EClVPLGN7vJ\nK64M9JIEQRCEc4zfXuE+//zzPPLII6fet1qtaLVaAGJiYigqKsJoNBIdHX3qmOjoaIqKas5laAnG\nDUpnSP9kYsL1KBUQE65nSP9k0X7RApV8txbrvoPEjr2CoLQUj8cqj+7CnX8Ud0o3ZEPbuk/uw3DL\nM9s2HA0+jyf5xRJL19nRa6tyJDTqwOdIVFS6mDM3m6JiBzde24Yhl8UGekk+tXt/ObOey6LY5OSW\n65KYdEMySmXgn/fWRJZl1m0oZvrje9ixt5z+vcKZ91RXMV5VOCelJUVw28hOWO0u5n+5k0qbM9BL\nEgRBEM4hfrkV9M0339C7d2/atq35Aq22MCVvQ5aiooJRq32/i8BgaHyQ2bQb+mFzuDCZ7USF69Br\nW8/dNl88Py2B7Haze967KFQqus+ZRoiHf7fsclGx7AdkpYqIwdegjKz7ObKZiih3WdGGRxORlNjg\ndUqSzLZdMjJwfrqSxCjff31sdokXFxtxuGDq+Ei6dmx4XoOvvn/sdjdPvLiDnFwbY69K4u7b0prN\nBJDGqH5+fvy1iDkvZSMDj8/szLCBjcsbaS18+funxOTghQVZbNhUTHCQikfuz+DKIQkt+vvoXPn9\nLPjPxd0TyS2qZMWmHN78djfTr+tZ5zhzQRAEQfAFv1wxr1+/nmPHjrF+/Xry8/PRarUEBwdjs9nQ\n6/UUFBQQFxdHXFwcRqPx1OcVFhbSu3fvOs9vMll8vmaDIYyionKfnU8NlJdZ8d0ZA8vXz09zZvxq\nBZX7DmGYMBpLeBQWD/9u1d7fUJcVo+1zGcVOHdT1HEluKD4KKHBoYhr1nB4p0VBq0ZIQ5kTtcuDr\nTUayLPPxKjt5RjcD+mhoH+dq8Hp99f3jdss8v+AQO/aYueT8KG4YFYfRWNHo8wZa9fPzv7WFvPfp\ncfQ6JQ9P6UCvbsHnzM+dJ778/fPbZhNvfphDeYWb7p1DmToxhbhYXYv+Pmrq38+iANJ6jRmQxglj\nJdsPFrNkXTYThmQEekmCIAjCOcAvRYlXXnnl1NuvvvoqSUlJZGZmsmrVKkaNGsXq1au59NJL6dWr\nF7Nnz8ZsNqNSqdi6dSuPPvqoP5bUbNidbhFi2YzJLhe5c99BoVHTZtpEzwc7rKh2rEfW6NFeOBwq\npLofoLLIJ+GWFXYlR01VbRtpMf5p2/htp4ttWS7aJyq58mKtXx6jPmRZ5o1FOfy5rYxeXcO4/46U\nVtPSIEkyH36Ry9crCoiKUPPYjHRS23me1iPUT3mFi3cXH+PnjSa0WgV3TEhm5CBDq/keEgRfUCoV\n3HV1N579aAtrNx8nKTaEAb2TAr0sQRAEoZVrst6CqVOn8vDDD7NkyRLatGnD6NGj0Wg0zJw5k0mT\nJqFQKJgyZQphYa3zDoxbkliyLpvMrCJKzHaiw3X0yTAwblC62B7ZjBi/XIH9UA5xt4xB17aNx2NV\nu35G4bDi6jsMZVAIVNRxp9JpA2vJyXDLaM/HeiDJsK9Qi4yCTnH+mbaRk+/m25/thAYpuGWkHpUq\n8Bdun3x1gh82FJOWEszDUzqgUbeOnxunS+Lpl/exen0hSQk6Hn8gnbjY5hEm2lps2VHG6wtzKCl1\nktEhmPvvaE9Sgj7QyxKEZilIp2bq2J48vWgzH6/OIiE6mE7tRNaKIAiC4D9+L0pMnTr11NsffPDB\nWR8fMWIEI0aM8PcyAm7JumzWbj5+6v1is/3U+2J7ZPMgOV2cePldFFoNiVNv93xwRSmqvRuRQyJw\nd76w7pPLMlTkVb0dmgCKhl9QHzVpqHCoSAhzEhPs+2kblVaZD1fYkCS4cbiOiNDAX/x/v6aQL/9X\nQGK8jtkz0ggKah27jCxWNy8sOMT2PeV0Sgvh0WlphIupDz5jtbpZ+Hkuq38yolYpuGlMG0aPiG8W\nRTZBaM7iIoOYck13XvxsGwu+3sVjt/bHENnwTCFBEARB8CTwVxvnALvTTWZWzQ3/mVlG7E7/jHEU\n6sf4+ffYc3Ix3HgNuqQEj8eqt61FIblw9R7iXRuGraxqDKguDHShDV5juV1JjkmDTi2R7oe2DUmW\n+XSNDVO5zPALtWS0C/wF8i+bSnjv0+NERah54oF0IsMb3vbSnJSUOpn9fBbb95RzyQUxPPlgR1GQ\n8KHd+8uZ8cReVv9kpH1yEC881okxVyaIgoQgeKlTuyhuHJZBhdXJ/KU7sNpdgV6SIAiC0EqJV8BN\noKzCTonZXuPHTOU2yirsxEWJ/vFAkhxOTrzyLgq9jjZ17JJQFJ9AdXg7UnQiUmpPL07uhooCQFG1\nS6Khazy9bcNgxw8DaFi32cneI246tVMx+LzAX/xv221m/rtHCQ5S8tiMdOINraOtITfPxpyXsyk0\nOhg2MJZHp3fFVNJygxabE4dT4pMvT/DdmkIUwJgr4xl3dSIajajBC0J9DeydRG5RJT9sOc473+3h\nvmt7iBwWQRAEwedEUaIJRITqiA7XUVxDYSIqTE9EaOu40GrJij79FkduPvF3TUCbYKj9QFlGvXUV\nAK6+w71rwzgVbmloVLjlUZOGSoeKxHAn0X5o2zhwzMXKjQ4iQxVMGK5HGeDxiAcOV/L8a4dQKOBf\n96e1muDHfdkVPDPvIBWVbiZck8jYfyagFnfvfSL7cCXz3j3K8TwbifE6pt3Rnk5pIYFeliC0aOMH\np5NXXMm2bCNf/XyIsQPTAr0kQRAEoZURt46agE6jok9GzRe6fTJivZrCYXe6KTRZRKuHH0g2Oyfm\nv49Sr6PNlFs9Hqs8cQBl/iHcbToiJ3rxwsx1erhlTIPXWH5y2oZO7Z9pG2UVEh+vtKNUwC0j9YQG\nBfYiOTffxtMvH8ThkHhgcirdO7WOANw/Mkt54r8HsFjd3Hd7CtddlYgiwMWf1sDlkvn0mxM8/Mx+\njufZuHKwgZf/3UUUJATBB1RKJfeM7k58VBDLNx7l9135gV6SIAiC0MqInRJNZNygdKAqQ8JUbiMq\nTE+fjNhTf18bMbXD/wo/+RpnXiEJ99yMxuChcCC5UW1ZhaxQ4O47vO4TyzKUNz7csqptQwco6GSw\n4euhE263zEcrbVRYZUYP0JKSGNgQyRKTgzlzszFXuLjnlnZc2C8yoOvxlVXri3j7o2NoNEoevb8D\n/XpGBHpJrUJOrpV57x7h0FErsdEapk5MoWfX8EAvSxBalRC9hvvH9uTpD7fwwYp9xEUFkZYkfocJ\ngiAIviGKEk1EpVQyYUgGYwakUVZhJyJU59UOCTG1w78kq428Vz9AGRJM4r117JI4mImyrBB3ej/k\nqPi6T14dbqltXLjlkRINlQ4lbcKdRAdLDT5PbZb/7uDwCYleHdVc0jOwORKVFhdPvXyQQqODG0Yn\nMmxgbEDX4wuyLPPpN3l88V0+4WFqZk9Po2OquIPfWG5J5rvVhSz+6gROl8ygS2KYOD6ZkODWMZlF\nEJqbxJgQ7hndjZc/386rX+3k8Vv7Ex0uRusKgiAIjSdutTcxnUZFXFSw1y0bYmqHfxV+9CXOwmLi\nJ41DE+PhjrzTgXr7OmSVBlevQXWfWHJD5clwyzAvChi1MNuU5JRq0KslOvihbWPnQRfrtzoxRCm4\nfrAuoK0EdofEs/MPceS4lZGDDFx3VcNDQZsLl0tmwQc5fPFdPglxOp57NEMUJHwgr9DOY89nsejz\nXEKCVfxragemTkwRBQlB8LPuqTGMH9QRc6WD+V/uwO4Qr0MEQRCExhM7JZoxf0ztsDvd9dqp0Zq5\nLVZOvLYIZWgIiZNv8nisau+vKKzluHoMhGAvtoZXFlUVJkIMVXkSDVmfdFrbRpzv2zaMpRKfrbGh\nUcOtV+jRawNXkHBLMi+/dZg9WRVc3D+SSROSW3zWgs3u5sU3DrNlh5n09sHMmp7WasaZBoosy6xa\nb2TR57nY7BIX9Y/k7pvbER4m/isThKYypH8yucYKft6ex3vL93LPqG4t/ve1IAiCEFjilVwz5sup\nHSKb4myFH3yOy1hCmxl3oo7y0BtrLUe1ewOyPgR3t0vqPvGpcEtNo8Itj5o0WJxVbRtRQb5t23C6\nZBYtt2FzwA1DdSTGBK5AJcsyb32Yw6bMMnp0CWP6ne1RtfCRc6VmJ8/MO0j2YQt9e4Tz4D2pBOnP\n7SJgYxWbHCz4IIfMXWZCQ1Q8cGt7LrkgSlwMCUITUygU3DSsE/nFFjbvK+S72BCuviQ10MsSBEEQ\nWrBz82q0hfDF1I5q1dkUxWY7Mn9lUyxZl+2j1bYs7opK8l7/EFVEGAl3TfB4rHr7jyhcjqq2DU0d\nhSBZhvKTyeSNCLf0d9vGNz/ZOWGUuLC7mv5dAnv3/tNv8ljzczEd2gXxyH0d0Gha9q+lvEI7jz6b\nRfZhC4MuieFfU9NEQaIRZFlm1Y8FTHtsL5m7zPTpHs68OV249MJoUZAQhABRq5Tce20PYiP0fLPh\nMJv3FQZ6SYIgCEIL1rJf/Z8Dxg1KZ0j/ZGLC9SgVEBOuZ0j/5DqndpxOZFOcreD9JbhMZSRMvhF1\nRO3jJhVlhSiztyCFxyKl96v7xHYzOC0nwy0bNsby9LaNznF2n7dt/LnXycbdLpIMSkZf5v1uG39Y\n/kPhqbyFx2akExzUsi/esw9X8sgz+8krtHPdPxO47/Z2qNXiwrmhysxOXnj9ME/N3YfbLXPPLe14\nbEYa0VENa4kSBMF3woO13D+mJzqtine/38PR/PJAL0kQBEFooUT7RjPX0Kkdp/NHNkVL5jJXkPfm\nx6iiIkiYNN7jsaqtq1HIEq6+w0BZx/MuuaGi8eGWR062bSRFOIn0cdtGntHNlz/a0WurciQ0Abxg\n/vUPE+8uPk5kuJrHH0gnMqJl5y1s2VHGi28cxuGQmHxzW0ZcXvMuJ8E7mzJLeWNRDmVmF727RTD5\n5mQS4gJbRBME4UzJcaHcdVVXXvtyJ/O/3MHjt/avV2upIAiCIIDYKdFi/H1qh93pptBk8WqXQ3U2\nRU3qm03RGhS8sxh3qZnEu29GFVb7qE5FwWFUx/cjxbVHSu5c94kri0ByQUhsg8Mty2xKjlW3bUT7\ntm3DZpdZuNyG0wU3DNMTExG4H/8de8y88s4R9Dolj81IJ7GFX2yu21DMs/MPIkkyD93XQRQkGqHS\n4mLeu0d47tVDWCxubhuXxPxne4mChCA0U306Grh2QAdM5XZe+2onTte5t/tSEARBaByxU6IZq2lS\nRkMCK6uzKdZuPn7Wx+qbTdHSuUrN5L/9CeroSOInXl/7gbKEesuqqs/pNxzq6F132SxV4ZbKM8Mt\n6zPt5K+2DegcZ0flw5qBLMt8/oMdY6nM5f00dO8QuB/9g0ct/OfVQ6CAf01No0NKy92lI8syS7/P\nZ/HXeYSGqJg1LY3O6bUXugTPtu828+r7Ryk2OUlLCWbaHSm0TQpC2cKDTwWhtbviwhRyjZVs3F3A\nwhX7ueOfXUTmiyAIguA1UZRohjwVHqoDK6tVB1YCTBiSUes5qzMoMrOMmMptRIXp6ZMRW69sitYg\n/+1PcJdX0vaxaahCar8YVh7ZhbI4F3f7HsixyZ5PKstU5B2pejusKtyyIcWjwyVarE4lyX5o29iw\n3cn2bBcd2igZeVHg+vHzCmw89XI2dofEg/ek0qNLw3I3mgO3JPPuJ8dY+aMRQ4yWxx9IJzlRH+hl\ntUg2u5sPvzjBinVFqFQwfnQiY65IEHkc57AXXniBLVu24HK5mDx5MsOGDePDDz/k+eef548//iAk\nJASAZcuWsWjRIpRKJddffz3XXXddgFd+blIoFNw+sjMFJVZ+351PsiGEkRemBHpZgiAIQgshihLN\nUG2FB7dbYsfB4ho/JzPLyJgBabXejfdFNkVL5ywpJf+dT9EYYoi71cMLV7cLdeYaZKUKV++hdZ/Y\nbsZpKQdt6Klwy/oWj8qsSo6XqQnSSKT6uG3jSJ6bZRschAUruHmkPmDjNk1lTp6cm02Z2cXkm9ty\ncf+ogKzDF+wOiZffOsymzDLatw3isekifLGh9mVXMP/do+QV2mnbRs+0O9qT1r7l7p4RGm/jxo0c\nOHCAJUuWYDKZuOaaa7BYLBQXFxMXF3fqOIvFwoIFC1i6dCkajYaxY8cydOhQIiMjA7j6c5dGrWLq\nmB48tWgzS9cfJDE2hN7psYFeliAIgtACiEyJZsbjpIwDxjoDK+vy92yKc0n+Gx8hVVpInHobquDa\n72ir9m9CUVmKu9MFEFbHhXN1uKVCUbVLgvpPO3FLsK/oZNuGwbdtGxVWmQ9X2JBluGm4jvCQwPzI\nV1S6mDM3m4IiB+OuTmjRmQvmChf/fvEAmzLL6NkljGceyRAFiQZwOiU+/CKXWf/JIr/IzugRcbz4\nRGdRkBA477zzmDdvHgDh4eFYrVYGDx7MjBkzzmgJ2L59Oz169CAsLAy9Xk/fvn3ZunVroJYtAJGh\nOqaO6YFGreStZbs5XlQR6CUJgiAILYDYKdHMeJqUUVbhIDJUh6mG4sO5GFhZH05jCQXvL0GTYCDu\nxmtqP9BuQbVzPbJWj7vHgLpPfDLcMtiQhEVRdWFa32knp7dtRPiwbUOSZD5ZZaOsQmbkRVrS2wbm\nx93hlJjzzC6OHLMybGAs40YlBmQdvlBotDPn5Wxy8+xcdmEU901MQePrma3ngMM5Fl555wg5uTbi\nDVrun9Serhkii0OoolKpCA6u+h25dOlSLrvsMsLCzm71MhqNREdHn3o/OjqaoqKaC8Kni4oKRq32\nT2HeYGi5LWm+YjCEMWMCPP/hZhZ8vYuXpl3WpK9PxNcg8MTXIPDE1yDwxNegfkRRopmpnpRRXMNF\nrU6rolfHGNZnnjjrY+daYGV95S34EMlqo+3s+1EGedglsfMnFA4brn4jQFfHHVuX/VS4ZXBsGyzF\nlYDnr+Hfi0elfmzbWPunk6wcN13aqxjUPzDjNt2SzCtvHyFzZxkX9ovkrpvattjws8M5Fp56+SCm\nMiejR8Rx89gkEcBYT263zFfL81myLA+3G4YPjOXW65MI0ovfXcLZ1q5dy9KlS3n//fe9Ol6WZa+O\nM5ksjVlWrQyGMIqKyv1y7pamU5twrv5He5b9eoSn3t3IzPG9UftyG2AtxNcg8MTXIPDE1yDwxNeg\nZp4KNeIWXzNTPSmjJjaHG6VSwZD+ycSE61EqICZcz5D+yedcYGV9OAqMFCz6Am2beAwTRtd+YLkJ\n1f5NyCGRVa0bnsgylOdVvR2WgOK08EpPX8PTi0f+nLaxP8fF6k0OosIUTBimRxmAQoAsy7zz8TF+\n31JKnx4RzLirfcDyLBprxx4zs57LotTsZOINydx6fbIoSNTT8Twb/3p2P4u/ziMyXMPjD6Rz9y3t\nREFCqNEvv/zCm2++yTvvvFPjLgmAuLg4jEbjqfcLCwvPyJwQAuvqS1Lp18nA/mOlfLw6y+uikSAI\ngnDuETsl/Kw+IyGrjb40lQ078rA5zp71vf1AMU/fecE5HVhZX3kLFiHb7LSZPgmlrvbef/W2NSgk\nN84+Q0FVx4+G3QxOyxnhlqfzZtrJoRItNpeStpEOIvS+a9soLZf4ZKUNpRJuuUJPsD4wF8+fL8tn\n1Xoj7dsG8Z9Z3bFarAFZR2P9vLGEV987CgqYOTmVf5zfcgM6A0GSZP73QxEfL83F4ZQZcFE0d0xI\nJjRE/Pcj1Ky8vJwXXniBhQsXegyt7NWrF7Nnz8ZsNqNSqdi6dSuPPvpoE65U8ESpUHDHlV0pMm3h\n5+0nSDaEMKR/20AvSxAEQWiGxKtCP2nISMhqFRYn9hoKEgAlp2USnJ5LINTMcaKAwo++RNu2DbHX\nX1XrcQrjcVRHdiLFJCG17+75pNXhliggNKHGQ+qadlJqVZJbpiFYI9E+ytmQf1qN3O6qYMtKG1w7\nUEe7+MAUrFb+WMRn3+YRH6vlsRnphIaosfpnx7TfyLLMt6sKWfR5LsFBKv51fwe6dxL9gfVRaLTz\n6vtH2bWvgvBQNdPvastF/URRR/Bs+fLlmEwmpk+ffurvLrjgAjZt2kRRURF33nknvXv35qGHHmLm\nzJlMmjQJhULBlClTat1VIQSGTqti6piePPXhZj794QCJMSF0S42u+xMFQRCEc4ooSvhJfUdCni5I\npyYiVEtpxdkZAwpg1R85TBiaUWdxQ4ATry5EtjtImj4JpbaWXAVZRr1lFQCufsNBUcfzajGC5ILg\nWFB7nrpQPe3kdK5TbRuyz9s2vv/VwdF8iT4Zai7uEZgf7983m3j742OEh6l5YmY60ZGBybNoDEmS\nWbgkl+/WFBITpeGxGemkJAcFelkthizL/PBLMe9/dhyrTeL8PhHcc0s7IiNa3veC0PTGjRvHuHHj\nzvr7++6776y/GzFiBCNGjGiKZQkNFBOh575re/DC4q288c0uZt/an4RocVNFEARB+Iu4qvWD+o6E\nrOaWJBavzWLOwj9rLEgASDL8mHmCJeuyfbbe1sp+PJ+ixV+ja59MzNgraz1OeXwfysIjuJM7Icen\nej6pyw6WYlBqIKRh89cPFVe3bTgJ92Hbxo5sFz9vcxIfpeC6QbqABEru2lfO3LePoNMqeXxGOonx\ntYeKNlcOp8Tctw7z3ZpC2ibpeW5WJ1GQqIeSUifPzDvIgoU5KBRw/6QUHrmvgyhICMI5LD0pgltH\ndMZidzFv6Q4qbb7bISgIgiC0fKIo4QfejISsSfXuipqmNvydp+KGUOXE/PeQnS6SHrgTpaaWXQOS\nG9XW1cgKJe6+wzyf8G/hlnXuqKiByarkhNn3bRtFpRKfrbGhVcMtVwSh0zZ9QeJwjoX/vHoQZHjk\nvg6ktW95d8IqLS7mzM3m1z9L6ZoRyrOPZBAb7Xk3jPCXDX+UMO2xPWzZYaZX1zDmPdWVy/8R02In\nrgiC4Dv/6JHIiAvaUVBi4c1vd+OWfFeUFwRBEFo20b7hB/UZCVnN0+6KmphOy5YQzmY7ehzjZ8vQ\np6UQM3p4rccps7egNBtxdzwPOaKO1PbTwy21ofVek0uC/X5o23A4ZRYtt2F3wo3DdSTENH2tMb/Q\nzpy52VhtEjMnp9KrW3iTr6GxjCUOnno5m5xcGxf1j2T6ne3RakTd1hvmChfvfHyMDX+Y0GmV3HVT\nW4YPjBUTSgRB4rPwOgAAIABJREFUOMPYAWmcMFay42AxS9Zl19nOKgiCIJwbxCtuP/B2JOTpPO2u\nqEltxY262J1uCk2WVr/L4sQr7yG73CQ9cCcKdS21N6cd9fZ1yGotrl6Xez6hJJ0ZbtmAO7/VbRvt\nfNy28dVPdvKMEhf3UNO3U9NvkS8tc/Lk3GxKzS7umJDcIqdT5ORaeeSZ/eTk2rhysIGZd6eKgoSX\nNm8vY/pje9jwh4nO6SHMfbIzIwcZREFCEISzKJUKJl/djTaxIazdfJyftuUGekmCIAhCMyB2SviJ\nNyMhT+dpd0VNaitu1MZid/Hpmiz25ZjqPQ2kpbEdysG4dDlBGR2Ivnporcepdm9AYavE1WsQBNWR\n2G4p8jrcsiYmS1XbRohWon2079o2Nu128uceF23jlIy6tP5FqsayWN089XI2+YV2rvtnAlcMrmO3\nSTO0J6uCZ+cfpNLi5pbrkhg9Ik60G3jBYnXzwWfHWftLMWq1gpvHtmHUiHhUohghCIIHQTo194/t\nydOLNvPx6iwSooPp1K7lFbMFQRAE3xFFCT+payTk3+k0KoL1mjqLEjHhnosbf1c9mnTDjhPYHH/d\nna/PNJCWJveVd8HtJmnmXShUtTznFjOqPb8iB4Xh7vIPzydsZLilS4J9RX+1bfjqmi23yM1X6+0E\n6eCWK/So1U17Meh0Sjz32iEO5VgZelkMN1yT2KSP7wu/bTbxyttHkGSZaXemMPCimEAvqUXYta+c\n+e8dpajYQWq7IKbd0V6EgQqC4LW4yCDuHd2dl5ZsY8HXu3js1v4YIsXvEEEQhHNV67pF3gxVj4Ss\na1eD3emm0lrzxI1qUaE6Hr+tPxOGeD8OtDo88/SCxOlaW2Cm9cARir9aSVDXjkRdOajW49Tb16Fw\nO6t2SWg87HyQZSjPr3o7LL5B4ZYHi7XYXUpSopyE6XzTtmG1V+VIuNwwYZie6PCm/VF2SzKvvHOE\nnXvLuaBPBJNvbtfidhf8b20hL75xGJVKwezp6aIg4QW7Q+K9xcd47IUDFJscXPfPBJ6fLaaTCIJQ\nf51TorhxWAYVVifzv9yB1e4K9JIEQRCEABE7JfzA7nR7tTvidGUVdkzlnosSpRV2rHYXYcHetQ9Y\n7C427Djh8ZjWFpiZO/dtkCSSZ05GUUvhRmEqQHlwK1JEHFJaX88ntJeDsxK0IaCto8WjBiUWFXlm\nDSFaNyk+mrYhyzJL1tooLpMZ3F9D19Sm/TGWZZn3Fh/nt81VEypmTE5FpWo5BQlJkvn4yxN8vaKA\nqAg1s6en0yGldXz/+1PWoUrmv3uE3Hw7SQk67r+jPRkdQgK9LEEQWrCBvZPILazkh63Heee7Pdx3\nbQ+RRyMIgnAOEkUJH6pulcjMKqp3boM3mRI6rape4ZafrsmqdYdEtYYGZjZHln3ZlCxbQ3D3TkSO\nGFDrcaqtq1DIMq5+w8HT10WSoCKfhoZbutywv0iLApnOcQ6ftW38nOlk50E3aUkqhl/Y9OMql36f\nz4p1RaQk63n0/g7otC1nw5XTJbHggxx++r2ENvE6Hn8gnXhD6/j+9xenS+KLZfl8uTwfSYKrhsZx\n45g2LerrLghC8zV+SDp5JZVsyzby1c+HGDswLdBLEgRBEJqYKEr4UHWrRLX65DZUT+w4/fMbw+50\nsy/HVOdx9Q3MbM5y574DskzS/91dayuBIu8gqhMHkBI6ILXp6PmEZ4Rb1v/C9a+2DYfP2jYOnXDz\n/a8OwoIV3DRC1+Shgqt/MrL46zwMMVoen5FOSHDL+RVitbp5/vVDbN9dTkZaCLPuTyM8rOWsPxCO\nHrcy790jHM6xYojRcv+kFLp3rv+OIUEQhNqolEruGd2dpxdtZvnGoyTFhnBR94RAL0sQBEFoQuJW\nl4/YnW4ys4pq/Ji3uQ3jBqVzsYf/iB0n20K8UdeIUZ1GyZD+yV4HZjZ3lt1ZmL7/gZA+3YgccknN\nB8kS6q2rAHD1He5550Mjwy2LLSryyn3btlFukfhohQ2Am0fqCQ9p2h/fjVtKeevDHMJD1TwxM53o\nqKbfpdFQpjIns5/PYvvucs7rHcGcBzuKgoQHbknmq+X5PDhnH4dzrAy5NIZX5nQRBQlBEPwiRK/h\n/rE9CdKp+WDFPg7mlgV6SYIgCEITEkUJHykyWWptvajObaiLSqnk5uGdiAmv+a58fVotqttBaqLV\nKPnP5AvrFZjZ3B1/8S0Aj7sklId3oCzJw53aCzmmTe0nk+WTbRtAaP3DLZ1u2F9Y1bbRxUdtG5Ik\n88kqO+ZKmZEXa0lLatrdLbv3lzP3rcNotUpmz0gjKUHfpI/fGLl5Nh55Zj+HcqwMGxDLw1M6oNO1\nju97f8grsDH7uSw+WnqCsBAVs6alMeX2FIKDWseOKkEQmqfEmBDuGdUNtyTx6lc7KTHbAr0kQRAE\noYmIV+aN5JYkFq/NYt7SHbUe420xoTogs2dazVMA6tNqUd0OUpPLerUhMrTlXFTWpXLHXkpX/URo\n/55EDLiw5oNcTtSZa5GValy9h3g+ob0cHCfDLXX1vzN8sFiLw101bSPUR20bq/9wcOCYm26pKgb2\n1fjknN46cszCs/MPIcvw8JQOdExtOeGG+w9W8q//7KfQ6OCG0YncfUvbFhXK2ZQkSWb5D0XMeGIf\n+7IrueT8KF55qiv9e0UEemmCIJwjuneIYfygjpgrHbz65c5WNR1MEARBqJ3Yv9xIf8+RqEldxQSL\n3cWna7LYl2M6FZDZNi6UCosDU4WDyBAtfToZ6t1qUX18ZpYRU7mNqDA9fTJiW03LRjVvdkmo9v2O\nwlKGq9slEBpZ+8lk6bRdEvUPtyyuVJFfriFU66adj9o29h5xseYPJ9HhCsYP1aNswtGbBUV25szN\nxmJ188Bd7endPbzJHrux/sgs5aW3DuNyyUy5vR1DLq1/G865wlji4LX3j7J9TzmhISrum9ieS86P\nDvSyBEE4Bw3pn8zxogp+2ZHHe//byz2jurW4kdOCIAhC/YiiRCN4ypEAiA7T0ddDMaF6WseGHSfO\nmJJRbLZTbLafGgxRWung9115KBRww+COXrdcqJRKJgzJYMyAtHqPKG0pKrbuomztBsIu7Ev4JefV\nfJCtEtWun5F1wbi7X+b5hJXGk+GWMfUOt3SeMW3D7pO2DVO5xOLVNtQquPUKPcH6pnthVmp28uTc\nbExlLibekMylF7aci9TV64289VEOGo2SR+/vQL+e4m5/TWRZZv1vJby7+DgWq5t+PcO597YUoiOb\ndjeOIAhCNYVCwc3DO1FQYmHzvkK+iw3h6ktSA70sQRAEwY9EUaIRPIVJKhQw/fpeJBtCa/38unZZ\nSKft/Lc5JNZtyUWpUNQ5yePvdBoVcVHB9fqcliL31C6JybXvkti5HoXTjqv/FaANqv1kp8It1RBS\nc+uLJ9kn2zZSox2E6uR6f/5Zy3HLfLjchsUGYwfpSI5ruoKS1ermmVcOkldgZ8yV8Vw1NK7JHrsx\nZFnms2/z+HxZPuGhamZNTyOjQ8tpN2lKpWYnby7KYVNmGXqdkim3tWPwpTHijqQgCAGnVim599oe\nPLVwM99sOEyb2BD6d24Z/w8JgiAI9ScyJRrBU5hkdJgeQ2TtF8B17bKozdb9RaLH8qTyP7ZRtv53\nwi85n/CL+tV8kLkY1f4/kMOicWfUspMCTgu3lE+2bdTvR+OESaagXEOozk3bSN+0bXy3wUFOgUS/\nzmou7NZ09UOnS+L51w+RfcTC4EtiuPFaD6GgzYjbLfP6whw+X5ZPvEHLc7MyREGiFr9vMTFt9l42\nZZbRvXMo857qwpDLYkVBQhCEZiM8WMu0sT3RaVW8+/0ejuaXB3pJgiAIgp+IokQjeAqTrM6RsDvd\nFJosZxUS6hrZWRtTud3rsaCt3aldEg/eVesx6sw1KGQJV5+hoPJwYe84GW6pqX+4pdMNWw7JVW0b\nBt+0bWRmOdmw3UlCtJIxl+ua7GJRkmRefe/oqdGZ99zarkVcqNrsbv7z6kHW/lJMevtgnnu0E4nx\nrSfM1VcqKl288s4RXlhwGJvdzcQbknnywY7ExdavVUkQBKEpJMeFctdVXXG6JOZ/uUO8/hEEQWil\nRPtGI9UWJjl2YAcWr80iM6voVHhln4yqfAmVUnlql0VtY0RrExWm83osaGtm/m0z5g1/EjHwIsLO\n713jMYqiHFQ5u5Fi2yK161b7yWQJyguq3g6rf7hltlGHzQmp0U6ftG0UlEh88YMdnQZuvVKPTtM0\nRQFZlnn/s+P8sslE5/QQZk5ObRGTKsrMTp6ed5Dswxb6dA/n/+5NJUjfurJTfCFzl5kFHxyl2OSk\nY2ow99/RnuREUbgRBKF569PRwLUDOvDlT4d47audPDShDxq1+B0vCILQmoiiRCPVFia5eG3WGXkR\nxWb7qfcnDMk4tcuipkwJlVKBW6r54rZvJ0OrC6usL1mWyX3xbaAqS6KWg1BvWQWAq99wz4WGSiNI\nzgaFWxorVRRUqIkKwSdtG3ZnVY6E3Qk3jdARF9V0m5m+Wl7A/9YW0TZJz6xpaeh0zX8jVV6hnafm\nZpNXaGfQP6K559YU1Oqzv9bV43ZbY9hrXaw2N4s+z2XVeiMqFUy4JpFrr0hoEQUnQRAEgCsuTCHX\nWMnG3QUsXLGfO/7ZpUXs4hMEQRC8U6+iRFZWFjk5OQwZMgSz2Ux4eMsZD+hvp4dJesqLyMwyMmZA\nGjqN6qxdFpGhOjqnRDF+cBrfbjjCrzvzsTmq2j70WhUX90hodeM8G8K84U/KN24lcsilhPbpXuMx\nymN7UBbl4G7bBTkupfaTnR5uGVy/cMvTp22cn6bEXlmvTz+LLMt8uc5OfonEJb009MlougkIa382\n8vGXJzDEaHnigXRCQ5p/vTL7cCVPzztImdnF2H8mMOGaxLNepFZPuKltx1JrtyergvnvHaGgyEG7\nJD3T72xParvWGXorCELrpVAouG1EZwpKrPy+O5/kuBBGXuDh/3ZBEAShRfH6ymPhwoV8//33OBwO\nhgwZwuuvv054eDj33nuvP9fXInnKizCV2yirsBMXFexxZOeNQzsxdmA6RaVWkGUMUcFn3OE9V+/8\nyrJM7gtvApD0YC27JCQ3qq1rkBVK3H2HeToZVBRwKtyynhepB4w6nG4lHaIdhAfrKWpkUWLjbhdb\n9rtoF6/kqku0jTtZPfyRWcobi3IIC1Xx+APpxEQ13WM31NadZfz39cM4HBKTb27LiMtrLij9fcLN\n33cstVYOp8Tir0+wbFUhCuCakfHcMDoRjab1F2IEQWidtBoVU8f04KlFm1n640ESY0LonR4b6GUJ\ngiAIPuD1K9Tvv/+ezz//nIiICAAeeugh1q9f7691tWiepnJEhenPyoSo3mXx9+KCTqMi2RBKclzY\nqY+5JYnFa7OY/c5G/vXWRma/s5HFa7Nwnz4/tBUrW/87FVt2EDViICE9O9d4jDLrT5TlxUgZ5yGH\ne3jB4qio+tOAcMuiChWFFWrCfDRt41ihm6/X2wnWwy1X6FE30db6PVkVvPTmYTQaJbOnpbeIjIF1\nvxbz7PyDSJLMQ1M61FqQqGvHUmudYnPwqIUH5+zj25WFJBh0PPOvDG65LkkUJARBaPEiQ3VMHdMD\njVrJW8t2c7yoItBLEgRBEHzA61epISEhKE+7k6xUKs94X/iLN1M5Gqr6zm+x2Y7MX3d+l6zLbvA5\nWwpZlsn978ldEjNrmbjhsKHe8SOyRoer5+UeTiZBeX7V2/UMt3S4IcuoQ6GQ6Rxnr28u5lkstqoc\nCUmCG4fpiQprmp+ro8etPDv/IG5J5qEpqWSkNe/xmbIss/T7fF597yhBehX/frAjF/SNrPV4b3Ys\ntSYul8ySZXk8/PQ+juXaGDnIwNwnO9M5PTTQSxMEQfCZ9gnhTLyyC3aHm/lLd1BucQR6SYIgCEIj\ned2+0a5dO1577TXMZjOrV69m+fLlpKWl+XNtLdq4Qem4JZltWUZKK+1En5zK0ZhMCG+zKlqr0rUb\nqNy2h6h/Dia4W81b71W7f0Fht+DqPQT0Hi6yGxFuWdW2oaBDjJ0QbeOmbUiyzKdrbJSYZYaer6Fz\n+6bJcig02pkzN5tKi5tpd6bQt0dEkzxuQ7klmXc/OcbKH40YYrQ8NiONtm2CPH6Opwk3Ne1YasmO\n5VqZ/95Rso9YiInSMHViCr26icwfQRBap/O7xHPCWMmyX4/w+te7mDm+N2qVuFEmCILQUnn9G/zx\nxx8nKCiI+Ph4li1bRq9evXjiiSf8ubYWqzpcb/uBIkwVdsKDNfRMi250uN65duf3dKd2SSgUte+S\nqCxDtfc35OBw3F0uqv1kLkeDwy0LK1QUVagJ17lpG+Gq1+fWZP1WJ3sOu+nYVsWw85smy8Fc7mLO\n3GxKSp3cNi6JgRfFNMnjNpTdIfHfBYdY+aOR9m2DeO7RjDoLEuDfHUvNhSTJfLuqgJlP7iP7iIXL\n/xHNvKe6iIKEIAit3tWXpNKvk4H9x0r5eHUWstz4kdyCIAhCYHh9W1alUnH77bdz++23+3M9rcKn\nPxxg3ZbcU++XVTr5MfMECqWCm4Z2atA53ZLEqj9yUCiq8hn/rrXd+f0708r1WHbtJ3r0cII71bxD\nR73tBxRuF87eg0FdywW+LENFPlXhlvH1Crd0uOFAkQ6lj9o2Dh53s+I3B+EhCm4crkOp9H+OhNXm\n5ulXssnNtzN6RByjhsf7/TEbo7zCxbPzD7Ivu5IeXcJ4eEoHQoK9Lyb8fcJNlA92LDUX+YV2Xn3/\nKHuyKogIV3PPLe08trMIgiC0JkqFgjuu7EqRaQs/bz9BsiGEG0Z2DfSyBEEQhAbwuijRtWvXM8bt\nKRQKwsLC2LRpk18W1lLZnW5+25lX48d+25nPdQPTG3SHdsm6bH7MPFHrx1vLnd+ayJJE7otvgVJJ\n0ow7azxGUZKH8tA2pKh4pNTetZ/sVLhlMOjqdzf5QJEOp6QgLcZOcCPbNsyVEh+ttAFwy0g9YcH+\n33bqcsn89/XDHDhcdUf9luuS/P6YjVFotDPn5Wxy8+xcekEUUyeloFHX73nyNOGmpZJlmTU/FfPB\nkuPY7BIX9ovk7pvbEhHedCNkBUEQmgOdVsXUMT15atGffPZDNh3bx5ASK8YeC4IgtDReFyX27dt3\n6m2Hw8Hvv//O/v37/bKolqzIZMHmqHkShs3hJreonNAgbb0ujjxlSSgVMKBPUqu481sb0//WYd2b\nTczYKwjq2L7GY9RbV6NAxtl3RO27H84It0ysV7hlYYWKoko14Xo3yY1s23BLMh+vtFNukbn6Ei2p\nbfx/kSxJMq++f4TMXWb69Qzn3ltTzigyNjeHcyw89fJBTGVORo2I45axSY3aSVI94aalKzE5WLAw\nh607zYQEq5h+Z3suuzCqWX8tBUEQ/CkmQs991/bkv59l8uzCP5g6pgfdU5t3W6IgCIJwpgbdntVq\ntQwYMIBff/3V1+tp+eq4OHjtq131HuXpKUtClmH4eW3rlVVhd7opNFlaxEhE2e0m96W3QaWqfZfE\niWyUedlIienIbTwUZxoYbulwQVZ124ah8W0bqzY6OJjrpkeaisv6+P/utizLLPw8l583mshIC+H/\n7umAWt18L2J37C1n1nNZlJqdTByfzG3XJzdJa0tzJssyP28sYdrje9m600yf7uG8MqcLAy6KFgUJ\nQRDOeenJEUwd0wOAV7/cye4jJQFekSAIglAfXu+UWLp06Rnv5+fnU1BQ4PMFtXSGyCD0WhU2R80X\n/KUVVaOrqkd5AkwYUvMkiWqepghEh3ufJVEdwJmZVUSJ2U50uI4+GYZGB3D6U/G3a7BmHSJ2/NXo\nU9uefYAkod66EhkFrr7Daj/RGeGWsV4/vixXjf90SQrSfdC2seewix82O4mJUDBuiL5JLii/WVnA\nd6sLSU7UM2taGjpd8/xaA/yysYT57x0FBcycnMo/zo8K9JICzlzu4s2Pcvh9cyl6nZLJN7dl+MBY\nUYwQBEE4TffUGGbdfj5Pv7+JV5fuYNp1veiSIv4PEQRBaAm8vjrZsmXLGX/Kysp45ZVX/Lm2Fkmn\nUfGPHgleH5+ZZaxzx4KvpggsWZfN2s3HKTbbkfmrMLJkXbbX621KssvFiblvo1CrSJo+qcZjlIe3\noTQVIHXojRydWPvJzgi39L5dorBChbFSTYTeTVIj2zaKyyQWr7ahVsGtV+gJ0vn/onLdhmI+/OIE\nMVEanpiZTnho04wcbYhvVxYw9+0jaLVKnnggXRQkgD+3lTLtsT38vrmULh1DmPtkF0ZcbhAFCUEQ\nhBr06xzPlGt64JZk5i3dzv4cU6CXJAiCIHjB6yuU//znP/5cR6syfnBHFApF1Y6EcjsRIdpTOyT+\nrnqUZ1397o2dIuAplyIzy8iYAWnNLgCw+OuV2A7lYLjpGnTtaghldDlQb/sBWaXG1Xtw7Seylzco\n3NLuUnDAWNW20amR0zZcLpkPV9iw2uH6wTqSDP5/rv/cVsaChUcJDVHxxAPpxEY3zcjR+pKkqvaS\n71YXEhOl4bEZ6aQk1z3yszWrtLh5/9NjrPu1BLVawa3XJ3HVsDhU53gbiyAIQl16pccy5ZoeLPh6\nJ698sYMZ1/cio62YTCQIgtCc1VmUGDBggMe7cuvXr/flelqFvyf+B+nUzFn4Z43tF96O8mzsFAFP\nuRTeFkaakuR0kfvyuyi0GtrcX/MuCdXe31FYzLi6XwYhETWf6IxwywSvwy1lGbKKtFVtG7F2gjWN\na9v49hc7xwslzuuq5oJu/s+R2JddwYtvHkKtVjBrWhptk5rnRb7TKTHv3SP8+mcpbdvoebwZF0+a\nyo695bz2/lGKih10SAli2h3taddMv35C8+RyyWzbbaZtGz3xhtY7KloQatO7Yyz3jO7OG9/s4uUv\ntjPz+t6kJ9fyOkEQBEEIuDqLEosXL671Y2azudaPWa1WHnnkEYqLi7Hb7dx777107tyZhx56CLfb\njcFg4L///S9arZZly5axaNEilEol119/Pdddd13D/jXNzOmJ/30yDKcyJE5X31GeDZ0i4CmXwtvC\nSFMqXvo/7EeOE3fbdeiSa2iHsVag2v0Lsi4Yd7dLaz+Rpbgq3DIoGtR6rx+/sEJFseVk20Z449o2\ntuxz8ttOF4mxSq4d4P/nOSfXyjPzDuJyyfxrahqd00P9/pgNUWlx8dxrh9i1r4KuGaH8a2oHQkOa\nb3uJv9ntEh8tzeV/PxShVMK4qxMY+8/EZh1KKjQvVqubtb8U892aQoqKHQy8KJppd7YP9LIEISD6\nZhiYfHU33vx2N3M/38bM8b1JayMKE4IgCM1RnVcASUl/bZvPzs7GZKrqz3M4HDz99NOsWLGixs/7\n8ccf6d69O3feeSe5ublMnDiRvn37MmHCBEaOHMncuXNZunQpo0ePZsGCBSxduhSNRsPYsWMZOnQo\nkZGta6tdY9svGqs6l8IXhRF/kxzOql0SOi1tpt5e4zHqnetROO04z7sStLUUG9yOqokbSjWE1JzJ\nUZPT2zY6N7JtI79YYuk6OzpNVY6EVuPfC0xjiYM5c7OpqHQzdVIK/Xs1zxdgxSYHT72czdHjNi7q\nF8n0u9qj1TTfAE5/27XPzJMv7iWvwE5yop5pd6SQnhoS6GUJLYSx2M5HS3NZtd5IpcWNVqtg5CAD\nY//pfb6RILRG/TvHMRl469vdzF2yjQfH9yE10fs2TkEQBKFpeH1b8umnn+bXX3/FaDTSrl07jh07\nxsSJE2s9/oorrjj1dl5eHvHx8WzatIknn3wSgMsvv5z333+f1NRUevToQVhYGAB9+/Zl69atDBo0\nqKH/pmapoe0Xdqe7Qe0aNQl0YcRbxiXLcBzPI/6OG9Amxp31cYXZiDLrT6SwGKSM82o/UXn9wy1P\nb9voGGsnqBFtG3aHzKLlVhyuqoKEIdK/F93mChdPvpRNscnJLdclMegfzXNOe06uladezsZY4uSK\nwQYm3pB8zmYlOJ0SS5bl8fWKAmQZrh4Wx4Rr26DTnrsFGsF7OblWvl1VyM8bS3C5ZMLD1NwwOpER\ngwzNOtRWEJrSeZ3jkCSZt7/bzUufbePBG3rTPkEUJgRBEJoTr1+17Ny5kxUrVnDzzTfz0UcfsWvX\nLtasWVPn540fP578/HzefPNNbr/9drTaqn7xmJgYioqKMBqNREdHnzo+OjqaoqKaAxmrRUUFo1b7\n/s6+wRDm1XE2hwuT2U5UuA69tv4v/JK9OMbtlnj/u91s3JVHUakVQ2QQF3ZPZOJV3VCpGn7BMu2G\nfg1ev7fPT2O47Q52vPoByiA93Z+Ygr6Gx7T8/gUuWSJ44NVo4mveUWMvN2F2VKAJDiMiOcnraQVH\ni2SKLTKGcOiVVr+Rnac/P7Is88YXpRSaZIZfHMLgi/z7AshqczP7+e0cz7MxbnQyd97codlNaDAY\nwti+u5RZzx2gotLFPbelMuHats1unU3lwOEKnp57gINHKkmM1zNreid6d29dO8R8qSl+/7QEsiyT\nubOUT78+zu+bSwBomxTE+NHJjLg8Hp2u+ex6E4Tm4oKu8UiyzLvf7akqTIzvQ0qC+J0iCILQXHh9\nRVpdTHA6nciyTPfu3Xn++efr/LzPPvuMvXv38n//93/I8l93nU9/+3S1/f3pTCaLl6v2nsEQRlFR\nucdj3JLEknXZVVM1zHaiw3X0yTAwblA6KqVv72wuXpt1RqtFocnKsl8OUV5h4+bhnRt9fjVQXmbF\n87/4L948P75Q8MHn2I7nkzD5JspVesr/9piKwqNos3cgGdpRGpEKNa1JlqD4MABOvQGjscKrx7a7\nFGw9FoRKAR0irRiN3u+S+Pvz8+sOJxt32mmfqGRwH/z63LlcMs+9dpDd+8sZcFE01//T+39zUzEY\nwli2IoeX3z6CJMtMuyOFgRdHNbt1NgW3W+brFQUs+TYPl1tm2IBYHry3E5WV1ib5GWuJmur3T3Pm\ndsv8ttldvy8HAAAgAElEQVTEtysLOXi06v/ALh1DGDUiniuGJFNcXIHZ7Pv/G2siCkRCS3RRtwQk\nSeb9/+3lxc8y+b8b+tAuXnwvC4IgNAdeFyVSU1P55JNP6N+/P7fffjupqamUl9f+InHXrl3ExMSQ\nmJhIly5dcLvdhISEYLPZ0Ov1FBQUEBcXR1xcHEaj8dTnFRYW0rt378b9q/xkybrsMwoFxWb7qfcn\nDMnw2eN4Gt/507YToFAwYUjHU4WQ01s8AJ+1ezQ1yWrjxPz3UQYHkXjfrWcfIMuot6wCwNVveO2T\nNBoQbinLsN9HbRs5+W6+/dlOiB5uHqFHpfLfTgBJklmw8Chbdpjp0z2c+25PQdkMWyG+/D6XV94+\njE6r5NH70ujd7dzcOpubb2P+e0fJOlhJVISGKbe3o1/PCIKD1VRWBnp1QnNktZ0Mr1xdFV6pUMBF\n/SIZNSKeTmlVuSPN8WdeEJqjf/RIRJJlPli+jxc/28ZDE/qQbGieYdCCIAjnEq+LEnPmzKG0tJTw\n8HC+//57SkpKmDx5cq3Hb968mdzcXGbNmoXRaMRisXDppZeyatUqRo0axerVq7n00kvp1asXs2fP\nxmw2o1Kp2Lp1K48++qhP/nG+5KlQkJllZMyAtDOKAI3JgvA0vlOS4cetuSDLDOnflrWbj7HjYDHF\nZjt6rRJQYHe4Pe7i8GVOhS8VfvwVzgIjiffdhiYm6qyPK3N2ozQew92uG7KhXc0naWC4ZX65mhKL\nmqggN20aMW2j0irz4QobkgQ3jtATGebfbICPluay/rcSOqYG89CU1GY3qUGWZT7+8gRfLS8gMlzN\nYzPS6ZDSfEbPNhVJklmxrogPl+bicMhcdmEUd0xoS5jo+xdqUVLqZPkPhaz88a/wyhGXx3L1sDgS\n472fJCQIwpku7dkGWYaFK/bx308zeeiGPiSJwoQgCEJAef2K+Prrr2fUqFFceeWVXH311XUeP378\neGbNmsWECROw2Ww8/vjjdO/enYcffpglS5bQpk0bRo8ejUajYebMmUyaNAmFQsGUKVNOhV42J54K\nBaZyG2UVduKign3S4uFpfGe1n7ad4MfME2f8nc0hnXq7pl0cTdl+Ul9ui5UTry5EGRJMwt031XCA\nC3XmGmSlClefobWfqLyAqnDLOK/DLW0uBdnFWlQKmU6Ghk/bkGSZT9fYMJXLDL9AS6d2/r3g/HZl\nAd+sLCQpQcfs6enom1kvudMl8foHOaz/vYS2SUHMur8D8YbmNXq2KRQa7bz2QQ4795YTFqpi2h3t\nuLj/2UU3QQA4djK88qfq8MpQNeNHJzLycgPhYaKIJQi+cFmvNkiSzIer9lcVJib0pU2smHgkCIIQ\nKF6/wnn44YdZsWIF11xzDZ07d2bUqFEMGjToVNbE3+n1el566aWz/v6DDz446+9GjBjBiBEj6rHs\npuepUBAVpj/VOuGLFg9P4zurSV52F5y+i6Op2k8aonDRUlzGEtpMn4Qm+uywP1XWnyjKS3B1vhDC\na5kqYS8HRzlogkHn3ShMWYasQi1uSUGGwY6+EW0b6zY72XvETad2Koacr2nwebyx/rdiFn6eS0yU\nhidmdmx2FytWq5sXXj/Ett3lZKSFMPfJXjgdtkAvq0nJssy6DSW89+kxrDaJ83pHcM+t7YiK8O/3\nhtDyyLLM7qwKvllRwJYdZgAS43WMGh7HwItjxDQWQfCDgX2ScEsyn6zJOlmY6ENijChMCIIgBILX\nVzL9+vWjX79+zJo1iz/++INly5bx73//m40bN/pzfc2Gp0JBn4xYdBpVvVs8PBk3KB23W+KnbSe8\nLkDUpHoXR0Sozmdr8zV3pYW8BYtQhYeScNeNZx/gsKLa8SOyRoe7x8CaTyJLUFFQ9XZYQu15E3+T\nX66mxKomKshFYljD2zb2HLKzcqODiFAFE4brUfpxosSWHWW89sFRQoJVPDYjHUNMzYXBQDGVOXn6\n5WwO5Vg5r3cEMyenEhmhoajo3ClKmMqcvLEohz+3lREcpGTqxBQu/0f0OTtpRKiZ2y2zcUsp36wq\nIPtwVUhl5/QQRo+Ip3/viHN2VK4gNJXB/ZKrdjmuPcALn2byyIS+xEefey2GgiAIgVav26tms5m1\na9eycuVKjh07xrhx4/y1rmZp3KB0oOoi3lRuIypMT5+M2FN/722LhzdUSmXVlA2FoipDooGqd3H4\ncm2+VvD+ElwlpSQ9OBl15NkBiKpdP6NwWKvaNvS13MWwFFflSdQj3PJU24ZSplOco8FtG2UVEq9/\nXopCAbeO1BMa5L8Lif0HK/nv64dRKRU8en8aKclBfnushsjNtzFnbjaFRgdDL4th8s3t/Br02Rz9\n+qeJtz7KobzCTY8uYUydmNLsCkdCYNnsbn44GV5ZYKz63XNB3whGj4inc7robReEpjS0f1tkSeaz\nddm88GkmD0/oE7DXQ4IgCOcqr4sSkyZN4sCBAwwdOpS7776bvn37+nNdzZJKqWTCkAzGDEirMSjS\n2xaP+qiasqEgM8tIidmGQuF96wb8tYujPmtryiBMd3kFeW98hCoynPg7bjj7gIpSVHs3IgdH4O58\nUS0nqQ63VHkdbinLsP9k20Yngx29umHbUdxumY9W2jBXSoy+TEtKov+er2MnrDz9SjZOl8Qj93Wg\na0bzunjZf7CSZ+ZlU17h5obRiVx3VcI5tTOgvMLFO58c4//ZO8/AqKr0Dz93enpPCAGSkBh6RxCk\nd1CKgqAgNlRcsKG77q6r/hd117aCDdeCiGADQYFVuoACCiih9wQIIaRn0jP13v+HgZieSTIpJOf5\nNJk758w7JXPvec/7+7279xvR6SQemtWGccODRGcEQTHGHCsbf0xn88508gvs6LQSY4cFMmlsMK2F\neaVA0GiM6dcOWYHVO68lJnoT5Nu0kv4CgUDQnHE6KXHPPfcwaNAg1Oryi66PP/6Yhx56yKWBNWX0\nWnWFWXRnJB41pWwiZMtvidVWTkgS+Jep4nAmtqqMMOuLlKVfY8/Opc3f5qHxLr/I1hzejiTbsPYa\nBZpKtPj5V80tPUKcNrdMztNgLNLg72ajVR1kGxt/tXDhiky/LgYG9ai/hERGloUXF8WRX2Bn/v3t\nuLFned+NxuS3w9n854ML2GwK8+9rx6ghgY0dUoNy8GgOSz69hDHHSkyUB4/PCSeslVhkChxcTjax\nfksqu35xmFd6eaqZMakV40YE4estPEYEgqbAuP7tsMsya386z+tfOiomAkViQiAQCBoEp5MSQ4cO\nrfTY7t27W1RSoiqqk3jUtgrhWiLkWuXEnqPJmCz2co8b3qs1Y/u1q3D+6mKrygjzibv61OBdcA5b\nTh4pH36Oxs+HkAfKS4GkzCuoLxxB9g9Fjuxe8STmfIfBpdYNDM6ZW5qsEvEZDtlGTB1kG8fibeyK\ntRLkKzFnig/5eQW1m6ga8vJtvLgojowsK3dPbc2owU1rwb/1pww+XHEJrVbF3x9rT98ezn0OzYGi\nIjufrrrMtp8z0agl7p7aminjQlqcZEVQHkVROHk2n/Vb0vjtcA4ArYId5pXDBwag1wvzyqp4/fXX\nOXjwIDabjblz59KtWzeeeeYZ7HY7QUFBvPHGG+h0OjZs2MBnn32GSqVi+vTp3HHHHY0duuA65pYB\nEcgKfPfz+eKKiQAfkWAWCASC+sYllv2KUgcnxmZGZRIPuyzz5fazdW7HeW3+KYMj+XLbOU4nGMnO\nN5dKMFQ2X1Xyk+pMOk2W2lcTVEbKR19iz82n7XOPo/Ys4xWhKGhitwBg6z0WpApekyJDforjtmeo\nU+aWigJn0vXYFYkOgbWXbWRky3y9zYRWA/dOMOBmUJGfV6upqsRslvn3O/EkXjFx66ggbp8Q4von\nqSWKorBqfTKrNqTg7anhH09GEdO+5TiXnziTx7ufJJCaYSGijRtPPBRORFuhQ27p2GWHeeX6zamc\nu2peGRPlwZRxwfTr5SvMK51g3759nDt3jlWrVmE0GrntttsYMGAAM2fOZPz48SxatIg1a9YwZcoU\nlixZwpo1a9BqtUybNo3Ro0fj69u0KskE1xcTB0Ygywrr91zg9a9i+evM3vh7i8SEQCAQ1CcuSUq0\nJN24s5SVeNS0HWd1FRVqlYpJN0cwY0Q0RWZbjSovKpKfVGeEacw1u+bLchVrVjYpH3+JJtCf4PvK\n72yprpxDlXIee+sbUEKjKp6kpLml1rkLhuRcDcYiNf7utZdtWG0Kn200YbLAXaP1hAbWj2zDblf4\nzwfnOR1XwOD+ftx/Z5sm879mtyt8sOIS23dnEhKk44WnoluMJt5skfni2yt8vy0NCZh6SwgzJoei\n1Yid75aMyWxnx55MNmwpYV7Zy4fJ40LodEPT8n9p6tx444107+6ojvP29qaoqIj9+/ezcOFCAIYP\nH86yZcuIjIykW7dueHl5AdC7d29iY2MZMWJEo8UuaB5MHhSJLCv875eLxRUTfl419wUTCAQCgXO4\ncp0pqISatAqtytdBrVLVm+9DdUaYft568nKK6vQcJUn58Avk/ALa/Plh1O5lNJuyHfXBLSiShL33\n2IonsFsd5paS8+aWRVaJ+EwdGpVCh6DayzbW/WTmSobMTV009O1UP3pwRVF4/7NL/H4kl55dvHhs\nTniTMUw0me38578XOHg0l6hwd557Mgpfn5ahi4+7UMDbSxO4nGyidYiexx+MoENUy6kOEZQn+6p5\n5aar5pVajcSYYYFMGh1MWGjLSNS5GrVajbu7I3G+Zs0ahgwZwp49e9DpHF1sAgICSE9PJyMjA39/\n/+Jx/v7+pKdXfK4VCGrKlMGRyIrCD78mFHfl8K2FYblAIBAIqkckJWpJTbwhnGnHea1t55YDl9h5\n6Erx8bIVFTWtuHCWqowwu0cHYMw1Y7faXdKNw5ppJPWTr9EGBxA8e2q546r4Q6hy0rBH90Hxq0Su\nkJ8CKODpnLllSdlGxyAz+lrKNn47ZWXfCRthQSqmDK2/i5PP115hx55MoiPdeWZ++yazC5+Ta+Vf\nb8dz7kIhvbp685d5kbgZ6rdDS1PAZlP45vtk1nyfgizDLaOCmD01TPgCtGCSSphXWq+aV06f1Irx\nwrzSZWzfvp01a9awbNkyxowZU3x/ZZJRZ6Wkfn7uaDT187sVFORVL/MKnMeVn8HcqT0wGLSs3RnH\notVH+Pe8m/HzEsnG6hD/B42P+AwaH/EZ1AyXJCUiIiJcMc11QXWVDBVRdRWCni0HLnE0PpOsXHOl\nu/eHzmYwcWCE0xUXtaG8EaYed4OWI+fS2XUoCX+v2vlglCX5/RXIhUW0+ft8VG5lTu5WC5ojO1DU\nWmw9KinBrYW55ZVcDdlFagLcbYR41k62kZxhZ+1OMwYd3DPegFZTP5UL/9uaxrcbUwkN0fPcE1FN\nZtGfkmbmxcVxJKeaGX6zP/PuDUdTT+9BUyLhchHvLL3I+UtFBAXoePSBcLp3EiealoiiKJw6V8C6\nzanF5pUhQTomjw1hxM3CvNKV7N69mw8++IClS5fi5eWFu7s7JpMJg8FAamoqwcHBBAcHk5GRUTwm\nLS2Nnj17Vju30VhYLzEHBXmRnl4P5kICp6mPz2BCv7bkF5jZciCRv723h2fu6oW3h86lz9GcEP8H\njY/4DBof8RlUTFWJGqeTEklJSbz22msYjUZWrlzJ6tWr6devHxEREbz44osuCfR6oDaVClVVIbgb\ntKUqIyrb6DHmmbicll9txUVFrUqdpVz70WqqNmqDJS2DtE9XowsNIXjWbeVjOLUXqSgPW7dh4O5d\nfoJamFuWlG3E1FK2YTIrLN9owmqDu28xEOhbP4uPn37NYtnXl/Hz0fLPp6PxaSI7rvEXC3nprThy\ncm1MvSWEWbe3bjL+FvWFXVbYsCWNL7+7gs2mMGJQAA/c2QYP96aRJBI0HHZZ4UBsNus2p3L2/FXz\nyvbuTBkXQr/ewrzS1eTl5fH666+zfPnyYtPKgQMHsmXLFiZPnszWrVsZPHgwPXr04LnnniM3Nxe1\nWk1sbCzPPvtsI0cvaG5IksT04dHYZYXtv1/mja8P8cxdvfByF4kJgUAgcBVOJyWef/55Zs2axaef\nfgpAZGQkzz//PCtXrqy34JoaNfGGKEtF7Ti7Rwdw5Jxz+lc/LwNtgj2r9H3wcZHWUa9V4+Op52h8\nZoXH61KVkbzkM2STmdZP3I/KUCbeojzUJ/agGDywdxlU8QSFWVfNLf2cMrdUFDidpkdWJDoEmWol\n21AUhdU/msnIVhjWW0vXqPpRPR0+nsu7yy7i7qbmhaeiCA5sGtrVQ8dzeX3JecwWmYfvbsv4Ec55\neFzPJKeZefeTi5w6V4Cvt4Z597Xjxp7C0b+lYTbL7NibyYataaSkOX53b+zpw5RxIXS6waPZJ+Ya\ni40bN2I0GnnyySeL73v11Vd57rnnWLVqFa1bt2bKlClotVqefvpp5syZgyRJzJ8/v9j0UiBwJZIk\ncdfIG1Bk+DH2Mm98dZhnZvbC061pbBwIBALB9Y7Tqyur1crIkSNZvnw54HDHbmk44w1RWaVCySqE\n9Owix2pZktgVm+TUc/eKCcTLXVdpxUWvmECX+D1coy6vtTIsKemkrViLLqwVgXdOLndcc2Qnks2C\ntc9Y0FawILdboSD9qrllsFPPmZSrIcfkkG0Ee9prFO819hyxciTORvvWKiYMqJ+dkbPnC3htyXlU\nksSzj7dvMq0ld+7NZMnyBNQqiWfmteemPs17Ya4oClt2ZbB8VRJmi8zAvr7Mnd0Oby9hv9OSyM61\nsmlHOpt2pJOX7zCvHD0kgEljQ2gjzCvrnRkzZjBjxoxy91/bFCnJuHHjGDduXEOEJWjhSJLEzNE3\nICsKOw8l8Z+vDvHnu0RiQiAQCFxBja60c3Nzi3eGzp07h9lc8aK1uVJdh4rqKhXssszan+KL/Sj8\nvHTodWpMlvKLZZXkyFv4exvoFRNYXGlRUcVFyeOuoq6vtSKuvPspitlC6ycfRKUrfRKXctJQxR1E\n9g5Eju5T8QQ1NLcsskqcr6Ns42KynQ17LHi6Sdw9zoBa7fqd0aRkE/96Kx6LReaZ+e3p0qHxd/oU\nReHbjal8vvYKnh5qnn08qtm3NczIsrDk0wQOn8jD00PN/PsiGNTfT+yGtyCSUkxs2JrGrr2ZWKwK\nnh5q7ri1FRNGBrWYDjMNxcWLF1uUH5WgeSBJErPGxCArCj8dvsKbqw7z5zt74mEQvw8CgUBQF5xO\nSsyfP5/p06eTnp7OxIkTMRqNvPHGG/UZW5OjKm8IZyoVyvpRZOVZKn3s0F5hjL2xbbnuHmV9H5zp\n/lEb6vpay2JOSiH9i+/Qh4cROP3WcsfVsVuRFJmiHqPIzKngdVmumltqnDO3dIVsI79IYcUmE4oC\ns8fp8fF0vY9EltHCwkVx5ObbmHdfO/r3bvxKBLussPSLRDbvzCAoQMfzC6Jo29qt+oHXKYqi8NO+\nLD7+/DKFRXZ6d/Nm/n3t8PcTeuGWwqlz+azfnMqBwzkoCoQE6pg0NpgRgwIw6IWHSG25//77S1U3\nvP/++8ybNw+AF154gRUrVjRWaAJBrVFJErPHdkCWFXYfTWbRqsM8PaMX7gZRUScQCAS1xelf0Jtu\nuol169Zx9uxZdDodkZGR6PVNQ/PekNS2UqEqPwqDTo2HQYMxz1xqPrVKhdlqJ81YWG6Rrteq62Rq\n6QyurMq48s4yFIuV1gseQqUt/bWTUi+gvnyGFF0w/95oJCs3tXRXE0mCvKvmll6tnDK3TMpxyDYC\nPWon25BlhS+2mMjJVxg/QEd0W9dfbBQU2li4KI70TAszbwtl9JBAlz9HTTFbZBZ/dIH9sTlEtHHj\n+QVRzXpxnpNr5YOView7mI1Br+JP97Zj9JAAUR3RArDLCgcOZbN+cxpn4gsAiI50mFfe1EeYV7oC\nm610p6N9+/YVJyWcbd8pEDRFVJLEveM7IisKe4+lsHj1YZ6a0RM3vUhMCAQCQW1w+tfz+PHjpKen\nM3z4cBYvXszhw4d57LHH6Nu3b33G1+SobaVCVR4NFqudZ+/uje6qwaReq8Yuy3y5/WyNWo+6mpKv\nVa3TYrdYa1WVYU68QsZX69G3b0fg7WW0v4qM5uAWAJZcbkum1VE9UqrTxwD/EuaW1e/YF1okzmdd\nlW0EVt5mtSq2/2bl7CU7nSLUjOjr+rJMs0XmX2/HcynJxISRQUy7tZXLn6Om5OXb+Pc78ZyOK6Br\nR0/+9mhUs+40sT82m/c/u0Runo3OMZ48PieckKCWl2htaZgtMjv3ZrJhSxrJJcwrJ48NpnOMp0hI\nuZCy72XJRIR4nwXXOypJ4v7xnZBl+PVECotXH2HB9B4iMSEQCAS1wOlfzpdffplXX32V33//nWPH\njvH888/z4osvttjyy5pWKlTn0RDk515qwV+b1qPXMFvtLpV26LVqggI9at1v98pbn6DY7IQ99RCS\npvRXTnXxOKrMJA5aW3HeWr4F6PnETJTudiQnzS0VBU6nO2QbHYNN6GpxbXDmko2t+y34eUnMHGNA\n5eKLZ7td4c0PLnDqXAE33+jLA3e1afQL9PRMCy8uiuNysonB/f147IFwtNqGSX41NAWFNpZ+eZld\nv2Sh1Ujcf2cYt44KRiV2xps1OcXmlRnk5tvQaCRGDQ5g0tjgZi1Pako09u+cQOBqVCqJObd0QlEU\n9p1M5a1vHIkJQ20uPgQCgaAF4/Svpl6vJyIiglWrVjF9+nSio6NRNdCOfXOgJh4NtW09apdlVu2I\nq7C6wmZXyMk346bXUGS21ZsXRVlMFy+Tvvp7DDdEEjB5TJmAbWgObUNRqfk8M6LC8WM765BQwDPY\nKXPLyzkack1qgmop28jOk/liswmVCu6ZYMDd4NqLaEVR+GDFJX47nEP3Tl488WBEo5eJX0ws5KXF\n8WRlW5k8Nph77ghrtgv0wydyeW9ZAplGK9ER7jz+YLhYkDZzrqSa2LAljZ0lzCunXTWv9BPmlfVK\nTk4Ov/76a/Hfubm57Nu3D0VRyM3NbcTIBALXoVJJzLm1E7KicOBUGm99c5QFd/RAr2u+lYYCgUDg\napxOShQVFbFp0ya2b9/O/Pnzyc7OFhcVNaQyj4YpgyNL+UZk5ZoqrKiAqttxVlZdceZSNgVFFrLy\nLKgkkBUIaCA5SNLij8FuJ+zph5HUpU/Q6jP7kQqyMXcYgD3HB8q85k6hOm6MdENWG1AZqjeALLRI\nXMjSoVUp3BBU884wdrvD2LLABLcP09MuxPUXFF9+l8z23Zm0D3fjb4+2b/RqhKOn8njtvXgKi2Tu\nvzOMSWNCGjWe+sJktvPZ6iQ278xArYa7poRy+4RWaDTNM/kigNNx+azfksb+2GwUBYIDdUwcHczI\nwQG4GcRioSHw9vbm/fffL/7by8uLJUuWFN8WCJoLapWKhyZ2RpYVfj+TzttrjvDEHT0aZPNHIBAI\nmgNOJyWeeuopVqxYwYIFC/D09OTdd9/lvvvuq8fQmh8lPRrSjYXYFfj5yBX+75MDpSobbHa50jkq\na8dZVXVFYlp+8W35qqS3JnKQ2lIUd5HMtZtw6xiF/60jywRciPrYLhSdAXoMo1fu5VIJFbUKZt3k\njaKAyju0WnPLkt02OgabqM0Gxfd7LSSkyPSK0TCwm+tLL3/Ynsaa71MIDdbz/IJo3Nwa92Jl9/4s\n3lmaABI8/UgEg/r5N2o89cXpuHzeWZpAcpqZtmEGnngwgqjw+jWJFTQOsqzw2+Ec1m1O5XScw7wy\nKtydKeODGdDHr15a+goqZ+XKlY0dgkDQYKhVKh6e1AV5/Qliz6bz7tqjPD61OzqRmBAIBIJqcXrl\n1a9fP/r16weALMvMnz+/3oJqzthlmbU/xXPobHq5aohriQK9pvLd8+5R/hVm3qsy0qyKquQgdeXK\n4qUgy4T9eS5SmWoM9bGfkCwmbH3Ggd69XBXJ5N4+tPbTIBt8kZwwt0zM0ZBrVhPkWTvZxtE4Gz8f\nthLiJ3HHCL3Ltc97DmTxyVeX8fPR8MJT0fh6N27Z+PotqSxflYS7m4q/PRpFt07Nb9fSapX5al0y\n6zenogBTxgVz122t0TVTr4yWjNkis+uXTNZvSSM51fE72Ke7N1PGhdClgzCvbCzy8/NZs2ZN8QbG\n119/zVdffUV4eDgvvPACgYGN33FIIHAlGrWKRyZ34f3vjnM4LoN3vz3G41O7odWIxIRAIBBUhdNJ\nic6dO5e6sJMkCS8vL/bv318vgTVXykosKsJsq7xSYlTftuUfb7Vjscn4eenIyrPUKJ6q5CB1oejs\neTLXbcG9Swx+44aVPphnRH1mP4qHL/YO/YHSVSR5eQUE2JJAUqHyrF5OUHBNtqFWuCGw5omZ9GyZ\nr7c5TDHvmeCGXufaBcyRE7m8/XECbgYVzy+IplVw43V4kGWF5auT+N/WNPx9tbzwVDThbZqfp8L5\nhELeXnqRS0kmQoJ0PD4ngs4xno0dlsDF5ObZ2LQznY0/ppOb5zCvHDnIYV7ZLqz5fa+vN1544QXC\nwsIAuHDhAosWLeKtt97i0qVL/Otf/2Lx4sWNHKFA4Ho0ahV/mtKVJd8d42h8Ju99e5xHb++GtooN\nJ4FAIGjpOJ2UOH36dPFtq9XKL7/8wpkzZ+olqKaO2WonPbsIFKVc14zqxlUmsXCGAG8D/t6G4r/L\nGlvWxlSpMjlIXUl682NQlAqrJDSHtyHJdqy9RoO69FdQr1WjV+eCzTlzy2uyDUWRiAmsuWzDYlX4\nbKMJsxVmjdXTKsC1Fw1xFwp49b3zSBL8/bEoIts1nmzAapV555ME9hww0ra1gecXRBMUoGu0eOoD\nu13h240prNqQjN0O44YHcs8dYcJDoJmRnGpiw9Y0duzNxGJR8HBXM/WWECaMDMbfV5hXNhUSExNZ\ntGgRAFu2bGHcuHEMHDiQgQMH8sMPPzRydAJB/aHVqJh/Wzfe+/YYx85nsuS7Y8y/TSQmBAKBoDJq\nJfKedHMAACAASURBVJzXarUMHTqUZcuW8fDDD7s6piaLXZb5+sdz7D2WgsnikAgYdCoGdgvlrpE3\nVGsYWVuJxTXKdukoW3XxR0xqLFY7fl4G3A2aUp4S1c3pCgpPniPrf9vw6NEZ3zFDSh2TMi6jvngM\nOSAMOaJr+cGWAjDngsYATphbJmZryTOrCfa0EVQL2ca3P5lJzpAZ2E1D7w6uXcxcSTXx0lvxmC0y\nf5kXSdeOjSeRKCi08+p78Rw/nU+nGzz4+2NReHk2r5Zll5NNvL30InEXCgnw0/Lo/eH07Fq+zazg\n+uVsfAHrNqey76p5ZVCAjoljghk1KKDRPVoE5XF3/yMJe+DAAaZNm1b8t5DUCJo7Wo2KR2/vyjtr\nHRUT/113nHm3dUWjFokJgUAgKIvTq5I1a9aU+jslJYXU1FSXB9SUWbUjjh8PJpW6z2SR2XEwCZUk\nVWsY6eOpx99bX2lnjcrw89TTp2NQse8CVF114WHQ8OzdvQnyc0ejlli1I47YM+lk5Zkr7L7hapLe\n/AiAsL/MLX3hqShoDm4BwNZnLEhlTsyKAnkpjtte1ZtbOmQbWrRquVayjf0nrPx20kbbYBWTB7u2\nWiQr28rCN+PIzbMxd3ZbBvTxc+n8NSHTaOGlxXEkXDZxUx9fFjwc0ax8FWRZ4Yft6Xy+NgmLVWHY\nAH/mzGyDp0fzSrq0VGRZYc/+DD5bdZFT5xzmle3D3ZgyLoSBfYV5ZVPGbreTmZlJQUEBhw4dKpZr\nFBQUUFRU1MjRCQT1j1aj5rHbu/HO2qMcjsvgg/UneGRyF5GYEAgEgjI4fdV+8ODBUn97enry1ltv\nuTygpkp10ovYM+nVGkbqtWp6xQRV6ylREl9PHf984Ea83EuX2VdVdWHMM6PTqotjuebVkJNvxk2v\nochsK24/6moKjp7GuGknHn264TN8YKljqsunUaVdxN6mA0pIZPnBRVlgN4PBD6oxt5SvyTaQ6BBk\npqYvJSndzre7zLjp4Z4JBpe2hiwotPPSojjSMizcOTmUccODXDZ3TUlMKuLFxXFkZFkZPyKIOTPb\noFY1n0VcWoaZdz5J4MSZfLy9NDz5cOMmgASuw2KV2fVLFhu2pJKU4vit693NYV7ZtaMwr7weeOih\nh5gwYQImk4lHH30UHx8fTCYTM2fOZPr06Y0dnkDQIOi0ah6b2p23vzlC7Nl0PtpwgocnicSEQCAQ\nlMTppMQrr7wCQHZ2NpIk4ePjU29BNUWqk14Y88ykGwvRadVVLvinDWvPmUvZJKXnF7fnrIreHYLK\nJSSg6qqLinwi9Fp1sZllRfO5iqQ3PwSgzZ/LVEnIdtSxW1EkFfbeY8oPtFuhIB0kNXhWv4i/JtsI\n8bQR6FEz2UaR2eEjYbPDvRMM+Hu77sLAYpV55d14Ll4uYtzwQKZPauWyuWvKybP5/PudeAoK7cye\n1prbxoc0m4Wcoihs353Jsq8uYzLL9O/lwyP3tmv0riaCupObb2PLznR++DGdnFwbGrXEhJEhjBnq\n3yxNWZszQ4cOZc+ePZjNZjw9HUazBoOBv/zlLwwaNKiRoxMIGg69Vs0T03rw1jdH+P1MOqrvT/LQ\nxM7Vyn4FAoGgpeB0UiI2NpZnnnmGgoICFEXB19eXN954g27dutVnfE2G6qQXOq2Kt9ccJSvXjH8J\naUTZE86aXecr9HhQqyTsFWQpKltCVlV1UR8+Ec6Qf/gE2dt249mvJ95D+pc6poo7iCo3A/sNN6L4\nBFcwOBUU2SHbUFX9tcw3S1zM0qJTy0TXULahKAqrtpvIzFEY2VdL50jXlfjbZYVFH17gxJl8BvT1\n5cFZbRstCfDrQSOLP7yIrCg88WA4wwYGNEoc9UFWtpX3lydw8Ggu7m5qnngwnKED/JtNwqWlkpJm\nZsPWNH7ck4HFouDupua28SHcOiqIDjEBpKfnNXaIghpy5cqV4tu5ubnFt9u3b8+VK1do3bp1Y4Ql\nEDQKep2aJ+7ozuLVRzhwKg2VJPHgrZ1RNaPqRYFAIKgtTq/I3nzzTd5//31iYhy+CSdPnuRf//oX\nX3zxRb0F15SoTnphtsqYrY4FcmauufhxU4dGFXfq8HTXsudocoXj5UrKJg6fy2TaMHuFSYZrfhCH\nzmZgzDPh52WgV0xgOZ8Is9VOTr653iQb10h642qVxDOPlF4gWs1ojuxA0eiw9RhefmANzC1lBU6n\nO2QbMbWQbfx8yMqxeDtRYWrG3uS6ihFFUfhoZSL7Y3Po2tGTBQ9FNJpMYuOP6Sz9MhG9TsWz86Oa\nldnj7v1ZfPR5IvkFdnp08eLR+8MJ9G9eHURaGmfPO8wr9x/MRr5mXjk6mFGDhXnl9c6IESOIjIwk\nKMhR/aYof5znJElixYoVjRWaQNAoGHQanryjB4tXH2HfyVQkSWLOLZ1EYkIgELR4nE5KqFSq4oQE\nQOfOnVGrW9YF44wR0SiKUqr7hl6rAgnMFrnc438+nMTPh5Kw2B0XYtdMJiuiMiWHMc9ETr65WHpR\nErVKxcxRMUwcGMHltHzaBHuWkmaUbRlaVQVHXcn77Qg5O3/B6+a+eA/sWzrOE3uQTAXYeowAtzId\nKGpobpmYrSXfrCbE01pj2cb5K3a+32vBy13i7nF6lyYNln2ZwNafMohs58bfH4tC2whGkoqi8MW3\nV1j7Qyq+3hqeWxBNVHjjtSB1Jbn5Nj5aeYm9v2Wj16l4+O62jBseKKojrlNkWeHg0RzWbU7j5FlH\n5Vhkuz/MK13p8SJoPF577TXWr19PQUEBt9xyC7feeiv+/v6NHZZA0Ki46TUsmN6DN1cd5tcTKahU\ncP+ETqjE+UwgELRgapSU2Lp1KwMHOswLf/755xaXlFCrVMwa3YFpw6KLqx+QJP7vkwMVPt5iK51q\nqMpDorKERUX+ENeoLulQtmVoyQqO6jqFVEfZ6ouk//zhJVGKwlzUJ/eiuHlh73Rz+YmKzS19qzW3\nLC3bsNQo3rxCmZWbTADMHm/A28N1SYNNO9L59OtEQoJ0PL8gGvdG2N212RSWLE9g1y9ZhIboeWFB\nNK2CXdtRpLH4/UgO7y9PwJhjo2O0B4/PCSc0xNDYYQlqgcUq89OvWazfkkpSsqOyrFdXb6aMC6Zb\nJy+RZGpmTJ48mcmTJ5OcnMx3333HrFmzCAsLY/LkyYwePRqDQfwfC1ombnoNT03vyZurDrH3WAoq\nSeLe8R1FYkIgELRYnE5KLFy4kJdeeol//OMfSJJEz549WbhwYX3G1mTRa9W0CXKYdpmt9lq1+SxL\nsK8bKcbyLdKq8oeoKukwdWhUpd1CDp3NqLZTSGVUlAgZIGfQZvcBvIf0x6t/r1KP1xzZgWS3Yu0x\nAbRlyuxLmVtW4DNRgrp025BlhS+2mMktULjlZh1RYa5LGuz9zcjHXyTi56vl/56+AT+fhjdaLCqy\n8/r75zl8Io+Y9u7844lovL3qvx1mfcuCCovsLPvqMj/uyUSjkbjnjjAmjQ1uVt1DWgp5+TY270xn\n44/pZF81rxx+sz+Tx4YI88oWQGhoKPPmzWPevHl88803vPzyyyxcuJDff/+9sUMTCBoNd4OGp2f0\n5I2vD7P7aDIqlcTssR1EYkIgELRInF65RERE8Mknn9RnLNcltWnzWREPTerCrydSqvWHuEZVLUoP\nnc1gSI/WVbQMrVwSUh3lEiE5JlTfOnxF2vzlkVKPlYypqOJjkX2CkaN6l58sP81pc8tLRi35FjWt\nvKwE1FC2sfWAhXOJdrpEqhnW23VJg6On8njr44sY9Cre/Gc3/BrBusGYY+Xlt+I4n1BE3x7e/PmR\n9uj19SsdaQhZ0LFTeby7LIH0TAvt27nx+IMRYvF6HZKabuZ/W9PYvjsTs0XG3U3FbeNDuGVUEAF+\nwgukpZCbm8uGDRv49ttvsdvtzJ07l1tvvbWxwxIIGh13g5anZ/TkP18d4qfDV5AkibvHxIjEhEAg\naHE4nZT49ddfWbFiBXl5eaXMqlqK0WVVzBgRTaHJxi/HU2o13qBT0zrQg5mjYpg6NMqp3eeqWpQa\n80ygKDVqGeoMFSVCWl+Op3XSeZKjO9Oje+dSx9SxW5AUBVufsVB2sWopAHOOU+aWeWYVCUaHbCMq\noGayjVMXbWw7YMXfW+LO0QaXnejPJxTy6rvxAPztsShiorwavDtAUoqJlxbFkZphYdSQAB6Z3Q61\nuv4vZOpVFmSWWbk2iR+2p6NSwR0TW3HHxFZoNaJt2vXEuQsFrN+cyq+/O8wrA/213DU6lNFDAhtF\n3iRoHPbs2cPatWs5fvw4Y8aM4dVXXy3lTSUQCMDTTcuf7+rFG18dYtehJIrMNubc0gmNWpz3BAJB\ny6FG8o158+bRqlWr+oznukStUjF7bAdOJRgx5tVcxnFTl+DiBIReq3aqgqGqFqV+XgaC/Nxd3jK0\nXCJEUbhx31YAfu07kgElqi+k5HjUV84ht2qP3PqG0hPVwNzSIdvQOWQbwTWTbRjzZL7cakKjhnsn\nGHA3uGbBnpxm5sXFcZjMMk8/Ekn3Tl7VD3IxZ+ML+Nfb8eTm27hzcijTJ7VqED1+dRU6tZUFgeM1\nvb30IldSzYSF6nniwQhuiPSoS7iCBsRhXpnL+i2pnDjjMK+MaOswr7z5RmFe2RJ58MEHiYiIoHfv\n3mRlZfHpp5+WOv7KK680UmQCQdPC003LX+7qxTtrj7L/ZCp5hRbm39YNN339SzEFAoGgKeD0r11Y\nWBiTJk2qz1iua/RaNZ3D/dhbRbWESoLWgR4Umqxk5VmKzS2PxWfx5fazNSp/r0o2ci3p4GzLUGcp\nmwhpc+kcockXuRDZGXv0DX9UXygymtgtANh6jy2fdKiBuWWCUUvBNdmGu/OyDZtdYcVGE4UmmDZC\nT5tg1+zOGnOsLHzzHDm5Nh6+uy033+jnknlrwm+Hc/jPB+exWRX+dG87xgwNbLDnrq5CpzayIKtN\nZtX6ZL7bmIoCTBwTzKzbW6PXiV2i6wGrVeanfVms35zG5WSHmWzPLl5MGRdC987CvLIlc63lp9Fo\nxM+v9G/l5ct1kzwKBM0NTzeHlOPD9Sc4HJfB618dYsEdPfD2EFI3gUDQ/Kk2KZGYmAhA3759WbVq\nFf369UOj+WNY27Zt6y+6JkxZkz+7LKOpog2kTiPx6iMD8PU0sHLrGXbGJhV326ht+XtFLUoNOhWy\nomCX5eKWoc5KQqqjVCKkRJXE7zeNKVV9obpwFFVWMvbIHigBrUtPYrddNbdUVWtumWdWccmoRa+R\nia6hbON/eyxcSpXp01HDTV1cs9NQWGTnpcVxpKZbuGNiK8aPCHLJvDVh288ZfPDZJTRaib89FsWN\nPX0a9Pmrq9CpqSzoYmIhby9N4GJiEcGBOh6bE07XDg1feSKoOfkFNjbvzGDjj2kYc2yo1TBsgD+T\nxwUT0bZ5tKIV1A2VSsWCBQswm834+/vz4YcfEh4ezueff85HH33E7bff3tghCgRNCr1Wzfzbu/LZ\n5jPsOZrMvz8/yNMzehLkKzyVBAJB86ba1dq9996LJEnFPhIffvhh8TFJkvjxxx/rL7omSGUmf4qi\n8NOhK5WOu7FjCG56LWarnaNxGRU+pqbl72qVCkmSihMSACaLzI6DSagkqTjB4awkxBmuVVkk//AT\nIamXuNyxB73G9/uj+sJmRXNoO4pKg63nqPITFKQ6zC09W1Vpblm224amBrmUQ2et7DlipZW/iqnD\n9S7ZqbVYZV55N54Ll4oYMzSQu6aE1nnOmqAoCqs3pPD1+mS8PNU890Q0MVENL21wpkLHGex2hXWb\nU/l6XTI2u8LoIQHcP6MNbsJvoMmTlvGHeaXJLONmUDF5XDC3jgom0F/s6An+YPHixSxfvpyoqCh+\n/PFHXnjhBWRZxsfHh2+++aaxwxMImiRqlYr7x3fEx0PHD78m8O+VB1kwvQftQkTCXiAQNF+qTUrs\n2LGj2knWrVvHlClTXBJQU6cykz+DrurF1N7jKZxKyKJjuL/Lyt/rU99fGWqVirtG3sDx1xdSJEmM\neOev+Hb9o7pDfWYfUmEOti6DwLOMgaWlAExXzS3dqpY9OGQbKkK9rfjXQLaRmiXzzY9m9Fq49xYD\nem3dExJ2WeGtjy9y/HQ+/Xv78PDstg1akm63K3yw8hLbf84kJFDH809FE9bK0GDPX5a6yoKupJp4\ne2kCZ+ML8PPRMv/+dvTp3rAVH4KaE3+xkHWbU/nlNyOyAgF+WmZMdphXeriLZJKgPCqViqioKABG\njhzJK6+8wl//+ldGjx7dyJEJBE0bSZKYOjQKbw8dX20/x2tfxvLY7d3pGN7wklGBQCBoCFxS1/7t\nt9+2iKREVUmAktUKlZGVZ+GX4ykYdOoKH1/T8vf60Pc7Q/aWnyg6fgb/SaNLJSQwF6I+9jOK3h17\n1yGlB5Uyt2xVpbnltW4bek3Num2YrQ4fCbMV7h6nJ9iv7p4EiqKw9ItEfv09m84xnjw1NxK1quES\nEiaznTc/uMDvR3JpH+7Gc09G4+fjuramtaG2siBZVti8M53PvknCYlEY3N+Ph2a1xctTGHk1VWRZ\n4dDxXNZtTuX46avmlW3cmDwumJv7+YmuKIIqKZu8DQ0NFQkJgaAGjO7bFm93HUu/P8mi1Yd5eGIX\n+nasWvoqEAgE1yMuWQ2UbBHanKkqCeAKatoVw9X6fmdQZJmk/3wEkkTY0w+XOqY+ugvJasLWdwLo\nyugfS5lbVp4okRU4laoHJDoEmXB2zaMoCmt3mEnJkhnUQ0uvGNcs3Ff/L4XNOzOIaOPGs4+3R1eF\nb4irycm18u934jl7vpCeXbx4Zl77JiVvqIksKCXNxItvxnH0VB5enmoen9OuUUxCBc5htcr8vM/I\n+i2pJF5xmFf26OLFlLEh9OgizCsFtUN8bwSCmtO/cwie7lre+/YY/113nLvHdmB4r7DGDksgEAhc\nikuSEi3lQqOqJIBaBXbZuXnMFjs3d23F6UvZxeXv3aMDGN4rDLPVUUHhzA60q/T9NcG4aSeFJ88S\ncPt43G6I/ONAXhbqswdQPP2wx9xYepBcsbllWbNQgItZWgqtKlp7W/F3d/INBfadsHHwjI12ISom\nDnKNrn3LrnS+XpdM8FXJhId7w+3op1xtO5qcambYAH/m3d/uutyVVhSFnXuzWPb1ZQoK7fTt4c28\n+8IbvdpDUDEFhQ7zyh+2p2PMsaJWw9AB/kweG0xkO2FeKagZhw4dYtiwYcV/Z2ZmMmzYMBRFQZIk\ndu3a1WixCQTXE10i/PnrzF4sXn2ElVvOkJNvZvKgyBZz/S0QCJo/om66BlSVBLDL0DbYk/xCC8b8\nqiUH/t4G7h7bAYCsXBPbf0/kaFwGO2OTMOhUgITZYi820ayqVair235WhWK3k/SfD0GtJuyph0od\n0xzaiiTbsfYaDeoyX6v80uaWlZmFTrg5hkvZWgwamfY1kG0kptn5bpcZdwPcM8GARl33k/SvB418\ntDIRby8N//d0NP6+DbeIjk8o5OXFcWTn2ph6Swizbm99XV54ZOdYef+zS/x2OAd3NzXz72/HyEEB\n1+Vrae6kZZj5fls6237O+MO8cmwwt44W5pWC2rN58+bGDkEgaDZEtPLm2bv78Oaqw2zYe5HcAgt3\nj+mAqgElpQKBQFBfiKREDZkyOJI9R5Mr9IRIzy7CTV/9W1qyimHnoSR2lujaYbL8UR3gTKtQV7f9\nrIqs/22n6Mx5AqdPxNC+XfH9Unoi6oQTyIFtkMO7lh5kKSxnblmRWeiO2CsEhXVEq5PoEOy8bKPQ\n5PCRkGWYNcaAn1fdqwmOn85j0YcX0elUPP9kFK1DGs5U8vDxXF5bch6zReahWW2YMPL61I7++ruR\nD1Ykkptvo2tHT/75ly6oJWtjhyUoQ3xCIes3p7L3NyOyDP6+WqZPCmXMUGFeKag7YWGixFwgcCUh\n/u78Y3YfFq0+wq7DV8grtPLwpM5oa9KiTCAQCJogLklKeHp6umKa64L8QivmSkwtTRZ7hckKleTw\nSvD30tO7Q1BxFUNVxpklOXg6nYkDI/Byb7wdS8VuJ+nNj0CtpvWCOSUOKGgOOnbDbH3GlTawVBTI\nT3bcvmpuWdlr7tklBq3OjRBPC35uzsk2ZEXhq20msnIVRvfT0jGi7l/nC5cKeeXdeFDgr4+2Jzqy\n4dpu7tybyZLlCagkib/Mi2RAn+vPcyG/wMbHXyTy8z4jOq3EnLvaMGFkECHBBtLTRVKiKaAo18wr\n0zh2Kg+A8DYGJo8NYVB/YV4pEAgETRkfTz1/ndmb9749ysGz6SxadYTHpnbH3SD2GQUCwfWL079g\n6enpbNy4kZycnFLGlk888QTvv/9+vQTXFKnKV6IiJAkGdGvFhP7h+HsbSlUxOGucacw383/LDtC3\nYzAzRkRjsyvFVREatVShFKIqyUdtSPr6e0zxCQTNnIIhvE3x/arEU6jSL2Fv2wklOLz0oCIj2MwU\nSZ6o0KOv5DUH+vvSuUM0efkFdPQrBJzTru+KtXLygp0b2qoZ06/uCZuUNDMvLY6jyCSz4OEIenbx\nrvOczqAoCt9uTOXztVfwcFfz7ONRdI65/hJ9scdyWPLpJbKyrcS0d+fxORGEhTZe61JBaaw2md37\njazfnMqlJId5ZfdOXkwZH0JPYV4pEAgE1w3uBg0Lpvfgo/+d5OCZdF77MpYF03vgWw8G5wKBQNAQ\nOJ2UmDt3Lh06dGjR5Zh2WWbtT/EUmJzf8VUU2Hs0BTedppwEoyYJjux8C9t/v8yZS9kUmqzFCQg3\nvYbL6QXFj3NG8lFTFJuNcy8vQdJqaP1kiSoJ2Y46diuKpMLeq3SbN7vNgj0nBZtd5tk159HqEukV\nE8SUwe1LvWaVSsXAG3uikiSOnzzFmM7OxRx/2c6mXyx4e0jMGquvs6YyO9fKi4viMObYeHBmGwb3\n96/TfM5ilxU++fIym3akE+iv5YUF0bQNc6t+YBOiyGRn+eoktu7KQKOWmHV7a24bH4LaBd4egrpT\nUGhj608ZfL8tnaxsKyoVDLnJj8ljQ2gfLswrBQKB4HpEq1Hzp8ld+WLbWXYeSuLfKw/y9IyehPiL\n33WBQHD94XRSwt3dnVdeeaU+Y2nylPVCuIZeq0KSpAqlG9c4dDaDiQMjKDLbin0fqjLOrIzEtPzi\n246FfcUJjUNnM5g6NMol/hIZazZSGJdA8L3T0LcJLb5fde53VHmZ2GP6ofgElRpzMS6eKH9YfSCf\nXJMMpj+SJSVfc88uHfD19uLUufOEB6mdije3QGblZsdO7z3jDXi5160ipKjIzkuL40hOMzP1lhBu\nGdUwPg5mi8xbH19k38FswtsYeH5BNAF+15ep4Mmz+byz9CKpGRbC2xh44sEI0aWhiZCeaeH7bWls\n+zmDIpOMQa9i4phgJo4OJijg+vqeCWpORd2NBAJB80Klkrh7TAw+HjrW7bnAvz8/yJN39CAytGEq\nPQUCgcBVOJ2U6NGjB/Hx8URFRdVnPE2WqvwfPAxaetwQyM7YpErHZ+aa+Oey38jOLy2xuOYvEXsm\nnaw85yQhzpCVayIn30ywX90WiLLVRtLipah0Wlo/dv8fBywmNEd2omj12LoPLzXGUpRPlL/CpUwr\nu04Xljp26GwGC+c4WoZeSLXSuUMUBYWF+GrzmD68+o4hdlnh881m8goVJg3SEdm6bhfbVqvMq++d\n53xCEaMGBzDr9tZ1ms9Z8vJtvPJuPKfOFdC1oyd/ezTqujIWtFhlvvz2Chu2piEBU28JYcakULRa\n4UfQ2Fy4VMi6zansOeAwr/Tz0TLt1laMHRbYoG1tBY1DZd2NXC3pEwgETQNJkpg0KBJvDx0rt57h\n9S8P8ejt3egS2TAVnwKBQOAKnL5C3b17N8uXL8fPzw+NRtPi+oxX5f+QnW9mVB+Hz8JPh5KQlQof\nhjHfMb6sxGLmqBjsslJlUqOm6HVqfFygLcxY/T8siVeImD8bXeuQ4vvVJ3YjmQuw9RwJbiX8DxQF\nKS8FgM9/zS33XhjzTOQXWpkxIobfEg2YbNAvQiGom3MtTLfssxCfZKdblJohverWplOWFd75JIGj\np/K4sacPj9zTrkF09emZFl5cFMflZBOD+vnx+Jzw62oxH3ehgLeXJnA52URoiJ7H54TTMfr688Bo\nTiiKwuETeazfnMqRkw7zyrZhBqaMDWHwTcK8siVRUXcjV0v6BAJB02NYrzC83LV8uOEkb31zhDm3\nduKmzq0aOyyBQCBwCqeTEv/973/L3Zebm+vSYJoyVfk/+HkZ8Pc2MHtMB1CUUi0+q+KaxALgaFyG\nS+N1BbLZwpW3PkEy6In668PkXTtQkIP61C8o7t7YOw0sPajIiBYLv180E5dW3nvDz8uAj6eeC1k6\nTDY1bXysBHk5F8/JCzZ+/N1KgI/EjFGGOiUQFEXhk68us+eAkU43ePD0I5EN4oFwMbGQlxbHk5Vt\nZeKYYO6bHnbd9Bi32RTWfJ/MN9+nIMswYWQQs6e1xqC/fio8mhtWm8ye/UbWb0kl4bJD0tStkxeT\nxwbTu5u3MK9sYVRV0edKSZ9AIGia9OkQzNMztLyz9igfbThJXoGV0Te2beywBAKBoFqcTkqEhYUR\nFxeH0WgEwGKx8PLLL7Np06Z6C64pUZX/Q6+YQADSjIVMHRaFWq3i0NkMjHkmvD10ZOdbKpzTmOeQ\nWABVduGQAH9vA256dSlTy6qwXNUT10W+kf7VeixJKbSaOwtDaDB56Y60hObIj0h2G9YeI0FTQpsu\n26AgDSQVlwrdAWO5OXvFBGKyabmco8FNKxPpX/F7U5bMHJkvt5rQqOHeCQbc9HVbbK35PoWNP6bT\nLszAs49HodfV/07ysVN5vPpePIVFMvfNCGPy2JDqBzUREpOKeHtpAvEJhQT6a3nsgXC6dxaa1cai\noNDO1p8y+GF7GplGh3nl4P4O88qoCOHp0VKpqqLv2vmmrpI+gUDQtOnQzo+/zerDolWH+erHsrXj\npwAAIABJREFUc+QUWJg6tL1IUgsEgiaN00mJl19+mb1795KRkUG7du1ITEzkgQceqM/YmhxTBkdS\naLJxOsFIdr4ZPy8DPW4IQFEUnvt4Xyn97sI5/cgvtOCm1/Di8t8qrbC4JrGorAojwFvPo1O78fOR\nZI6cc+yAqSQqlYhUNHdtkE1mrryzDJWbgdB59xTfL2Ulo4o/jOwbgty+Z+lB+WmgyODZislDfDHZ\npOLkjJ+XgV4xgUwbFs2hK464OgaZUTuRC7DZFFZsMlFkhukj9YQF1W2nb9vPGXz5XTJBATpeeCoa\nT4/619nvOZDF20sTQIGn5kY0WHePumKXFf63NY0vv72C1aYw4mZ/Hrir7XXlf9GcyMhymFdu/amE\neeXoYG4dHURwoGgF19KprqLPFZI+gUDQ9Gkb7Mmzsx2JiY37EsgtsHDv+A7CV0YgEDRZnF6NHTt2\njE2bNjF79mxWrlzJ8ePH2bZtW33G1mSoyDisX6cQxvZvx8+Hk9hRQq5RkX63e1RAhZKOju18gaqr\nMLpHB7L9t8vsPZ5SfN+1hERYkAeZOaYKu370igmsU5lu2uffYU1JJ3TePWiDAorv18RuRULB2mcs\nlDy5WQvBlA0aPbj5oZYkZo6KYerQqFIO8HEZOoqsKtr4WPFxk52KZf1uM5fTZG7srKF/l7r5SOyP\nzeaDzy7h5anm/55qmG4XG7am8unXSbi7qfjro1F07+SkXqWRSUkz8+6yBE6ezcfHW8O8e9vRr5dv\nY4fVIrlwqZD1W9LYcyALux38fDRMvcVhXtkQSTXB9UF1FX1CuiEQtByCfN34++w+vLX6CHuOJZNX\naOGRKV3F74BAIGiSOH01q9M5Fm9WqxVFUejatSuvvfZavQXWlKjIOCzzZCr7TqZSmR3AobMZTBkc\nybrdFzganwn8UeHgaCEKe4+ncPqSkV4xQUwb1r54nKOyQI+7Qcvhs2kY88t7MwCYzHb+/XB/1uw6\nX6p6o1dMYHFXj9pgLzSR/N6nqDzcafWnElUSV+JQJcchh0ahtL7hjwGKAlfNLfEMhRIlgnqturhc\nOLtIVWPZxsHTVn45ZiM0UMXtQ+u2y3fiTB5vfnABnU7Fc09GExZqqNN81SHLCp+tTmLD1jT8fLQ8\nvyDqumiXqSgKW3/KYPmqJExmmQF9fXlkdju8vcTityFRFIUjJ/NYtzmVIyeumle2NjB5bAhDbvK7\nrsxRBQ3Htd/+slVqdTknCASC6xNvdx3PzOzFku+OcyQ+k/98fYgnpvXA061uGzwCgUDgapxeZURG\nRvLFF1/Qt29f7r//fiIjI8nLy6tyzOuvv87Bgwex2WzMnTuXbt268cwzz2C32wkKCuKNN95Ap9Ox\nYcMGPvvsM1QqFdOnT+eOO+6o8wtzFVUZh0HlMgpjnokvt53jlwoqHMzWPyoEylZWXKss2HLgUrWG\nmcY8ExarzIO3dnZpT/q0lWuwpmUS+vj9aAMcO+OKLKOJ3YyChK332NIDioxgM4HBB3QVL7rtMpxO\nuyrbCHZOtpGSKbNmhxm91uEjodPWXg95MbGQf79zHllR+Pv8KGLae9R6LmewWmXe+SSBPQeMtAk1\n8PyCqOuivD7TaGHJp5c4dDwXD3c1Cx6OYHB/P6FFbUBsNoU9v2WxfnMaFxOLAOja0ZMp40Lo1dX7\nujFGFTQOapWqwio1gUDQMjHoNDwxrTvLfjjFvpOpvPL5QZ6e0RN/7/rdmBEIBIKa4HRSYuHCheTk\n5ODt7c0PP/xAZmYmc+fOrfTx+/bt49y5c6xatQqj0chtt93GgAEDmDlzJuPHj2fRokWsWbOGKVOm\nsGTJEtasWYNWq2XatGmMHj0aX9+mUSZelXFYVfh56TmdkOX040s6o/t46ourK6p+jj80wiUrEuqC\nvaCQ5Pc+Q+3lQejcu4vvt576DZUxFXv7Xij+oX8MKGFuiUflxo3ns3SYbCra+lrwMVQv2zBbFD7b\nWITF5khIBPnWflc4LcPMi4viKSyy8+RDEfTqWr8GjQWFdl59L57jp/PpGO3Bs49H4eXZtKsMFEXh\n531GPv4ikYJCO726ejP//nYNIm8ROCgssrPtpwz+t+2qeaUEg/r5MXlsMNGR9ZtEEzQ/XHVOEAgE\n1z8atYoHJ3bGy13Htt8T+dfKgzw1oydhgeLcIhAImgbVrpROnjxJ586d2bdvX/F9gYGBBAYGcuHC\nBVq1qrgH8o033kj37t0B8Pb2pqioiP3797Nw4UIAhg8fzrJly4iMjKRbt254eTl09r179yY2NpYR\nI0bU+cW5gqqMw6qiYzu/UlUS1VHSGd3ZREh9aIRTP12NLdNI66ceQuPn47jTZsG8dyOKWoOt58jS\nA4rNLUNAXfHXKbtIRVKOFnetTIRfxVKUkiiKwuodZtKMCkN6aukeXfsFfU6ulYVvxmHMsfLAnW0Y\nOqB+DSazjBZeWhzPxctF9O/tw4KHIxuks0ddyMm18uHKRH49mI1Br+JP97Rj9NAAUR3RQGRkWfjm\n+3jWbbpCYZHDvPKWUUFMHB1MSFDTr64RCAQCQdNHJUncOTIaX08d3+yK59XPD/LEHT2IDvNp7NAE\nAoGg+qTEunXr6Ny5M++//365Y5IkMWDAgArHqdVq3N0duzRr1qxhyJAh7Nmzp9ibIiAggPT0dDIy\nMvD3/2Oh6O/vT3p65XKJhqYq47CSqCSHtYK/t0O/O2Vwe05fMjqdzChZ9VBdIiTgaocPV2uE7Xn5\nJP93JWofL1o9NLP4fvWpX1Hyc7B3HQIeJU5e18wt1Xpwq3ixbyuWbShOyzZ+OWbj8FkbEaEqbr25\n9jv1RSY7L78dz5VUM7eND2HimOBaz+UMiVeKeGlxPOmZFsYND+TBWW1RN/FS+/2HsvnvZ5fIybXR\nOcaTxx4Ip1WwWAg3BBcTHeaVu/c7zCt9vTXcNt5hXtnUK2sEAoFAcP0hSRLjbwrHy13H8k2n+c9X\nh/jTlK70iA5s7NAEAkELp9or32effRaAlStX1uoJtm/fzpo1a1i2bBljxowpvl9RKjZjqOz+kvj5\nuaPRuF4jGxRUcVeER6f3wt1Nx77jyaQZiyp8zJBebZg6IppWAR4YdI639eYeYWzYfd6p5+7ftRVt\nWv8hWals7Mi+bXlkqqMCxZhrxstbX/x8deXc0s+xG3OIWfgEodGtAZAL88g/uRvJzQO/oeOR9G6A\n43PKPp+ADfBp2x6dR8WSiNgLMiYbdGgNUW2rLxOMv2xh/e58vNxVPDkrEH+f2n3OVqvMKy8dJ+5C\nIRNGhvDUnzrU687/kRM5/OPVc+Tl25h7TyR3T2vbpCsN8gtsvP1RHJt2pKLTSsx/oD3TJ7VBra6/\nmCv7/2pJKIrC70ey+eq7RA7EGgEIb+POXbe1YfSwkCZfVdOYiO9P1Yj3RyAQOMug7qF4umv5YN1x\n3l17jPvGd2RQ99DqBwoEAkE9Ue1qdvbs2VUurlasWFHpsd27d/PBBx+wdOlSvLy8cHd3x2QyYTAY\nSE1NJTg4mODgYDIyMorHpKWl0bNnzypjMhoLqwu7xgQFeZGeXrlx55SbIxjfry1ZuSa2H7zM0bhM\njHkmdFo1oLAr9jLH4tKLKxjUKhUTB7SjsMjCobMZZOWaqCrdcnOXkFLPX3JsSQf1acMi+XDtkVLt\nSUs+Z22x5eQR/+YnqP188LrztuJYNAe+R20xox9+Kxm5NuBqjEVZYCoAvQ85hRIUln/vjEUq4lPd\ncNfKBOuLqK4ApqBI4Z2vC5HtcNcYHXZLYbVjKkKWFd76+CIHDhnp28ObB+5sTUZGfs0ncpJ9B7NZ\n/PFF7HaZx+aEM+Jmv3p9vrpy9GQu7y5LICPLSlS4O088GE7bMDeysuov5ur+v5o7NpvC3t+MrN+S\nyoVLjsRmlw6eTB4bQp/u3oSEeLfo96c6Wvr3pzoa+v1pqATI2bNnmTdvHvfddx9333038fHxvPDC\nC0iSREREBP/85z/RaDRN2ixbIGiq9IwO5M939eLtb46wbOMpcgstjO/frklvqAgEguZLtUmJefPm\nAY6KB0mSuOmmm5BlmV9++QU3N7dKx+Xl5fH666+zfPnyYtPKgQMHsmXLFiZPnszWrVsZPHgwPXr0\n4LnnniM3Nxe1Wk1sbGxxdUZTQ69VExrgwewxHTAPt7Nyy5lSvhFlO2lcc0GfMjiSlVvO8tup1Aq7\ndQR4G8q5IFfmoP7l9rPl2pOWfM7akvLxl9hz8mjz7KOovTwBkHIzUJ39DdkrAG33gZB1NRkk2xxe\nEpIKPCuWRNhkOFMD2YasKHy1zYQxT2Fsfx0d2tWu+kNRFD79+jK79xvpGO3Bnx9pX6+7/5t2pPPx\nF4kY9Cr+Oj+K3t2arjbTZLaz4v/Zu+/4pq77/+MvbdmS98IDDyxsszErYYU9soA0CTR7kbTZq/01\n37ZJ2qT55ps2o0maTQbZZEJoGGEmQAJhme0hYww2Rpa3JVnz3t8fAg88sI0NBs7z8ejj0Ui6V0eW\nsXQ+95z358ujLF9rRaWC386O5erLe6FWiy8g3aWuzscPP5Xx31WllFX4wyvHjgxl1oyYbu8AIwjn\nMofDwdNPP91ki+jzzz/PXXfdxYQJE3jttddYvnw5U6ZM6dFh2YLQk5niQ3jsxuG8uCiLr9bnU21z\nM2+KCaUoTAiCcIadcuZ34gvBu+++y4IFC+pvnz59OnfffXerxy1btozKykoeeuih+tv+7//+j7/+\n9a8sWrSIuLg45syZg0aj4dFHH+WOO+5AoVBw77331ode9nQ5hytbvL1xJw2AxRsK2LLf0up52gqs\nbJyg3lZ70pOfsyO8ldVY3vkUdUQYMbfNrb9dteMHFLKEd9g0FKpG520Sbtlyr+uD5f5uG4mhboLb\n0W1j7TYPBw75SE9UMXVU5/tnf7PMwn9XW+kdp+fPD6Si03XPcnhZlvnkm6N8/b2FkGA1L/x9MBE9\ntx5BttnGKwsKKSl10TtOz4Pzk0lNFsn83aW80s33q62sXF+Go86HTqvk8ilRXDEtWmR2CEI7aLVa\n3nnnHd5555362woLC+sDtMePH8+nn35KZGRkjw7LFoSeLj7SwF9uGs6LX+xi1bYj1Drc3H55P9Tt\nCQETBEHoIu2+HH3s2DEKCgpISUkB4PDhwxw5cqTVx8+bN4958+Y1u/39999vdtvMmTOZOXNme4dy\nVrg8viYrFtrqkHGik0aIUYe1qo4dOaUtPk6pgAmZ8e0OrGzPc3amBdyxtz/BV2un9xN3ojL4j1eU\nFqI6cgApKhGpd/+GB3vqThluWelQcrRGg0ErkRzu77Zx8s+vsbwjXlZsdhNiVHD9DH2nK/RrNpTz\n8ddHiQzX8MQjpm4LC/R6ZV77oJD1P1cQG63jiUdMZJh65vJyj0fi8yUlLF5uQQZmz4zm+qvi0GrE\nl43uUFhUx5KVFjZsrsTrkwkJVnP9zFhmTIoiWIRXCkK7qdVq1Oqm/2bS0tL48ccfmTNnDhs2bKCs\nrKxTYdndlUsFItujJxDvQcdFRQXx/IOX8PS7W9i834LLK/HYLSMJ1HfuIpF4D84+8R6cfeI96Jh2\nf0t+6KGHuPXWW3G5XCiVSpRKZY/dZtGVfJLEorXmZhkOc8b3abVDRohBy8qtR9htLqOixtVqloQk\nQ53TS2llHeHB+lOucmirK0fj7h2NtVUMAPCUV3FswedooiOIvvka/42yjHr7SgC8w2fAiSKBLENt\nif//B/VquL0RrwTZ1oZtG7Is8ema5j+/ExkY1TaJj1e4UCjglkv1GAM6V5DYmlXF6wsLMRpUPPGI\nicjwznftaEtdnY9/vVHAzr019E0J5C8PphIS3PmVHd2p4LCDlxccorDISUyUlgfuSKZ/mvFsD+u8\nI8sye7JtLF5uYefeGgDie+mYPTOGCaPDRQFIELrIn/70J/72t7/xzTffMGrUqBaDsdsTlt0duVQg\nsk96AvEenJ4Hrh7Em4v3sjPXyp9e3cBDc4cQHNix71PiPTj7xHtw9on3oGVtFWraXZSYOnUqU6dO\npaqqClmWCQsL65LB9XSL1ppbzXBorVVojcPDuh3F7Tr/5v0WNu+3NGnz2VpgZVvtSU/eAtJaMeXk\n8x9740Mku4OEP92DKtCfa6E8vA9l2RF8iQOQoxIbnsRZBV4n6IJB2/J++PxyLS6vkqQwN0E6iU9X\nt/7zmzepLx+tcGKrk5lziZak2M5duTqQZ+P5NwrQqJX89SETveNazzo5HVXVHv7x73zyCx0MHxzM\nH+5OQa/rnqttp8Pnk/lm2TG++O4YXp/MjImR3DI3ngB9zxvrucznk/l5ayWLV1o4WOgPr+yfZmTO\nzGiGDw5B2cPbwQrCuSY2Npa33noL8Adpl5aWdiosWxCEluk0Ku67ehALl+ewcU8Jz360nUfnDSUy\ntHu+VwmCIJzQ7qJEcXExzz33HJWVlXz00Ud8+eWXjBw5kuTk5G4c3tnl8vha3XqxI8fKU/NHAbBx\ndwlOt6/+Pl9LaZan0N7AyhNbPU7uynHyFpC2iiknzu+xlmN5/ws0vaKIvvGq44P3ot65Clmpwps5\nrf54yetpFG4Z0+LYKhwqSmo0GLQ+ksI8p8zACNQmUnBUYohJzbghnVttcLi4jmdezsfrk/nzA31I\nT+2e8MCjFidPvWDGUuZm6vgIfn9zYrcGaHZWcYmTlxccIq/AQXiohvtuTyJzYMvtWoXOqavzsXpD\nOUtXlWItd6NUwOgRocyZEUNaN/3+CYIAr7zyCoMHD2bixIl88803zJ49+5wKyxaEc4FKqeS2yzII\nNmhZtrmQZz7eziNzh9I7Wqy0FASh+7S7KPH4449zww031GdCJCcn8/jjj/PRRx912+DOtmqbi4pa\nd4v3VdS6sDk8XD0hle051iZFidOxI8faZmBla105GmtvIGbJ6x8i1Tnp/fiDKPX+rR+q3K0oaivw\nZlwMwRH1x9lLi0D2tRpu6fVBjlWLApmMaP9Era0MjFq7ng1ZXqJCFcydoutUCypruZunXjRjd/h4\n4I4khg/unqTJ3IN2nvl3PjU2L/Nm9WLe7Nge1zJLkmS+X2Pl46+KcXtkLrk4jDtv6I3RIHIMukpF\npZvv1/jDK+0OH1qtgksnR3Hl9GhiRXilIHSpvXv38txzz1FcXIxarWblypX84Q9/4Omnn+bVV19l\nxIgRTJw4EeCcDcsWhJ5KoVBwzcRUgg1aPl+Tx/99sp0Hrh5MeuKFsUpaEIQzr90zFo/Hw5QpU/jg\ngw8AGDlyZHeNqccI0KlRKmixjSfAf385hE+SqaxteeLdGRW1rnYFVjbuynGy9gRihrodWBZ+hTYu\nhqjrZvvvdNeh2r0OWaPDN2hiw0GeOpyVpW2GW568bQNaz8BQKnQYdKlo1HDLZXr0uo5P8Gtqvfz9\nhTzKKz3cMjeeSWMjTn1QJ2zbVc3zbxTg8UjcfUsi0ydEdsvznI7SMhevvlfI3mwbwUY1D93Zm9Ej\nxBeHrnK4uI4lK0v56ZcKvD6Z4CA1182JZeZkEV4pCN1l4MCBLV70+Oqrr5rddi6EZQvCuWj6yN4E\nGzS8+98DvLBoF7+b1Z/h6S23ghcEQTgdHfpGXVNTU3+FOC8vD5er6ybjPVGdy9tqQQJg4+5jXf6c\nSoW/GHI62hOIWfLU68hOF3EP3YFS5w8xUu39CYW7zr9tQ398GXo7wi3LHSpKahu2bZzQcgaGAoPO\nBKi4ZpKO2MiO5xw4XT6eedlM8TEXs2dGM2dmy9tJTteqn8p488PDqNUKHru/DyOH9qy+97Iss2ZD\nOe99XkSdU2JUZgh335xIaEjPDN48l8iyzN5sG0tWWti+2x9eGRejY/aMGCaMCUenFeGVgiAIwvnv\n4v69MAZoeO2bvby+eC83TU9nYmb82R6WIAjnmXbPfu+9917mzp2L1WrlyiuvpLKykn/961/dObaz\nLsSoI6KVyX13kWR/MSSog2nHjZ0qEFNhLaP0o6/RJcYTOW+W/w5bFaoDm5EDQ/BljG444Hi4pS44\nAlcL4ZYeH+SU+rdt9Du+baOxkzMwQgL7gGxgVH8VI/p1fPLs9cr887UCcg86mDg6nJuv6foPRlmW\n+WLpMT5fXEKQUcVfHjR1W1ZFZ1VUeXhjYSHbdtUQGKDk/juSmDQmvMdtKznX+HwyP2+rZMmKUvIL\n/Qn9GSYDcy6NYeQQEV4pCIIgXHgGpkTw/67P5KUvdvHhyhxq7G6uHJssvnMIgtBl2l2USElJ4aqr\nrsLj8ZCdnc2ECRPYvn07o0ePPvXB56i2JvfdJSJY12Jrz45qKxDz0GPPIbs9RN9/G0qN/1dAnbUa\nheTFkzkV1MeLBZKvPtzS0CsRV1Xz4kx+uRa3T0lymBvj8W0bjTXOwNi4y8myn2Xio5T8ZqK+w69J\nkmT+834hO/fWMGxQMPfeltTlk0SfT+atjw6z6qdyoiO1PPGwifjYjo+1O236tZI3PzqMze5jcL8g\n7rs9iaiI7mmBeqGocx4Pr/zBH16pUMDo4aHMmhFNhkmEewmCIAgXtpTYYP5803BeXJTF4o0FVNvd\n3DAtTRTrBUHoEu0uStx5550MGDCAmJgYTCb/hNfr9XbbwHqKeZNN+CSZH3cWt7mVo6tkpkW1GnLZ\nES0FYqpVCr7+4hcSP11MbUgEX1WGM3R1Lr8dGoiqYBdSeCxSyuCGk9hLj4dbRqPSaIGmRYlyu4pj\ntRqMWh+JjbZttKSiGlb9KqPXws2X6tGoO/4h9uGXxfz4SwVpqQb+eE8K6k6coy0ul8QLbxWwNaua\nPokB/PVhE2E9aCtEjc3LOx8fYeOvlWi1Cu68oTczJ0WKLwSnoaLKw7I1paxcX4bN7kOrUTBzUiSz\npkcTG9OzilGCIAiCcDb1Cg88XpjYxbqdxdQ43Nx1ZX80atFyXBCE09PuokRoaCjPPvtsd46lR1Ip\nldw0PR1kmXU7j7b7OK1agdvb/iqGXqti3ODYZq09T1fjQMxPV+fifvcTlJKPbaOmUmbzsnrbEWaU\nZxMAeIfN8Lf8BPDUQV0lqLQQ0DxE0tOo20a0vhqPV91qMcXpkvlgmROPF268XE9kaMf343+73MKS\nlaXEx+r4y4Op6HVd+wFYU+vlmZfN5B50MGRAEH+6pw8BAT3nQ3b77mpee7+Qymov6akGHpifRJyY\nNHfakePhlT9ursDrlQk2qvnt7FhmTookJLjnFKIEQRAEoScJNep47IZhvPr1brbnWHmpbhf3/WYw\ngXoR/CwIQue1+y/ItGnT+O6778jMzESlapisxcXFdcvAeprrp6WhUinZmVtGeY3zlI/3dKAgARCg\nVXH1hFRUypYn7C6Pr9UWoO3h8vjI3XKAGQe2URkWhTk9E4Ahugri3MfwxJqQY1P9D5ZlqD0e4hkU\n22K4ZV6Zf9tGTl4eH2ZlEx6sIzMtinmTTU1egyzLfLHGRVmVzMRhGgamdvxDa+2mcj78spiIMA1P\nPtK3yzseWKwu/v6imRKLiwmjw7n3tkQ06p4RZFhX5+O9RUWs/qkctVrBTdfEMXtmDCqxOqLDZFlm\nX66NxcsbwitjY3TMnhHNxDERIrxSEARBENohUK/mkXlDePu7/WzPtfLcpzt4eO4QQrtg+7EgCBem\nds/ucnJyWLp0KaGhDR0IFAoF69ev745x9TgntkNcOSaZJ9/7lSqbu83Hd3SnR5XN3WIrUJ8ksWit\nmZ25VipqXK1O/k+l2uYide1yVJLEtoumISuVKJG4LiQfSYbyvhOpbyLprAJvHeiCoYVwyzK7ilKb\nhrKKKn7dlYMMlNe46rM3rp+aVv/Yjbs87DJ76ROn5LLRHc892LbLv0LAaFDxxCOmLs9OyC908I+X\nzFTVeJk9M5pLp4YhyWdgn0477M2u5dX3Ciktc5PcO4CH7kwmKSHgbA/rnOPzyWzeXsXilRbMBY3C\nK2fGMGJoiCjwCIIgCEIHadQq7p4zkI9/yGF91lH+96PtPDpvKFFRQWd7aIIgnIPaXZTYtWsXW7du\nRau9sAP16lxeqk9RkOiMsKCWAy4XrTU3CdpsbfJ/KnqrhbTs7VSEx3DQ5M+NuCTwGL01dn5xJzAg\nLsH/wPpwSwUYm7faPLFtwydJ/Lw1C/mkCfzO3DKunpCKTqPiUImP7za6MQYouHGmHpWqY5O/bLON\nf71xELVawV8eTCUxvmsn5Fl7a3jutYO43BKZw7XsKytkw9u5nS78dBWXW+KTr4+ydFUpSgVcc0Uv\n5s7q1WNWb5wrnC4fa46HV1rK/OGVFw0LYc7MGBFeKQiCIAinSalUcNOMdEKMOpZsLOB/P97Ok/Mv\nJjxQbIMUBKFj2l2UGDhwIC6X64IvSoQYdYR3Q5vQzLTIZtsyHC4vG3e3nGPRePIPp97eYX31PRSy\nXL9KQqfwcU1wAU5JSWHCRQw7ccyJcEtDNKiaf6iYy3R4fEp27ztAVU1ts/sra51U21wE6gP4cLkT\nWYabZuoIMXZsQn2kuI5nXs7H65V57L7ULp9Erv+5nP+8X4hSoeDisXqyS4/V39fZwk9XyCuw8/KC\nQxSXuIjvpeOBO5JJ62HtSHu6ymoPy9ZYWbHOWh9eOWNiJLNmRIscDkEQBEHoQgqFgtnjUgg2aPl4\nZQ6PvbaR307py6TMeNEyVBCEdmt3UcJisTB58mRSU1ObZEp88skn3TKwnqq72oR6fRKllY4mRYXP\nVuXidDdvswlQUeOf/EeE6E+5vaMur4Dyb1cS0M9En3kzqTZXMEE+QJjKTZZxELOmHe+40TjcMrB5\nuGWZXYXFpsag9VFS0vLrDwvSExSo5cPlTqptMpeO1mLq3bEMiLIKN39/0YzN7uP+25MYOTSkQ8e3\nRZZlvl1u4aOvjmIIVPGHe5L5ZP3eFh97cuGnO3m8El9+d4yvlx1DkuCKqVHceHU8Op1YHdFeRSVO\nlqy0sP5nf3hlkFHFvFm9mDk5ilARXikIgiAI3WZSZjxRoXreWXqAj3/IxVxczS0zMtDAfrYNAAAg\nAElEQVRpe05ouCAIPVe7Z4u///3vu3Mc55QTHTJ25pZRUeNEp1UhSdIpu22EB+uotbvx+Jo/7qes\nEn7KKqkvKswZn0L24cpWz6XVKAkx6vh0dR7rdhTX397SVf7iF94GSSLhj79n0PQMrrm4CsN/VyOp\nDfS7YjYolSeFW/ZqFm7p8sj13Tb6x7gY2jeyxcJMZlokG7Ikcg/76JesYvKIjk0Ga21e/v6CmfJK\nDzddE8fkcc2LI53lk2Te+6yIZWusRIRpeOIRE/pAmYpWVr2cWPVxcs5HVyssquOVBYc4eLiOqAgt\n99+exKB+Yk8mnHoFkCzL7M+1sWRlKVuzqgHoFe0Pr5w0JkIUdQRBEAThDBmYEsHLj0zkmfc2s3mf\nhcMWG/deNZDYCLHiUxCEtrW7KDFq1KjuHMc55UTo5dUTUvlg+QG27C9t8/F6rZKBKeHkHK5usSAB\nDcGYJ4oKDqf3lFtEPludw8bdx1q878RVfp+5gIqlqwkclEHojAkABO7/CaXPg2fETNAcz7FwVjcK\nt2y+VSLrkIzHp6RPuBuDVm5SmKmsdRIWpCczLZJMUwrvfuciLEjB9dP1KDuwdM/lknjm5XyKSpxc\nOT2aqy5tnmnRWW6PxL/fPsQv26tIjNfz+MMmIsO1uDy+VrfjhAXpW8z56Co+Sea7lRY+/bYEr1dm\n6vgIbvttAoE9qBXp2XKqgFef5A+vXLLCQt7x8Mq0VANzZkYzKjNUhFcKgiAIwlkQFRbAn24Yxhdr\nzazeXsRTC7dx26UZjOrXdd/pBEE4/4imwp3kkyS+WJt3yoIEgFqlZFtOWYfOn11YSahR22qXD5dH\n4qddLRckoOEqf/WLb4Msk/DH36NQKFBUl6I0b0cKjkQyDfc/WPKBzQK0HG5ptak4XA5BOh+9Qz1A\n08LMiSvZdU4FL37mQKmEmy/TE6hv/8TQ65X51xsHycm3c8nFYdw6t+v2ItrsXp599SD7c20MzDDy\n2H19MAT6f/Xb2o7TUs5HVymxOHnl3UKyzXbCQtTcfUvXblM517UW8Or1ykRqwvjuh1IsVn945ahM\nf3hlv74ivFIQBEEQzja1Ssn109IwJYTw/rJs3lyyD3NRNXMnm1CrxApGQRCaE0WJTlq01sy6nS2H\nUJ6gUyuJCNVztMzR4fNX1roYkRHN1uyWix5KBUht7BYJC9KjLSyk8vu1GDIHEDJlLACqHT+gkCW8\nw6aDsuVwy8ZL5hVKFbllOpQKyIh2nbyrA51GRXRYID6fzIfL67A74TcTdSTGtH8yL8syry8sZPvu\nGjIHBnPf7Ukou+hKt7XczdMvmTly1MnYkaE8OD8ZjabpB2Jrqz5O3N6VZFlmxboyFn5RjMstMXZk\nKHfdlEiwUfxTPMHl8bEz19rkNsmrwFWlY8nXNiSfHY1awfSJkcyaFk18rAivFARBEISeZlS/GBKi\njLz27R5Wby+i4FgNd88eSHiw+NwWBKEpMRPqhJYmTS0+zitxrLzjBQnwb+fILarCoFdhd/qa3d9W\nQQL8V/lL//0mAPEnVklYClAV5SBFJyMlZPgf6HHWh1v69GEsWp3bZMn85LEjCTAaGJyowKBp/Un/\nu8lN4TGJzDQ1YwZ17Nfqo6+Osm5TBaaUQP54T0qXtb4sLKrj6Zf8+RRXTovm1nnxLRY7Wlr10R0r\nJMoq3Pzn/UJ27avFaFBx3+3JjBsV3uXPc66rtrnqcz58biXOSh3uGi3IChRKicunRXLN5XEivFIQ\nBEEQeri4SAOP3zKCD1fksHm/hb+9v5XfzRrAgBTx/UcQhAaiKNEJFTXOdrcEPVXxoC3Vx7duGPVq\n1Col1Q434UF6Bpsi2JVnpaK2+dYOpQImZMZzRYSb7B9+wjhyCCETLgZZQr19JQDe4TP8QZayDLYS\n/4FBvVi0Lr/JknlDUDgBxjDcThtpsUGUtbIDZbfZy09ZHmLCFFw7WdehbRdLVlr4drmFuBgdf30w\nlQB91xQD9mbX8uyr+TjqJG6dG8/smafey3hi1UdXk2WZ9T9XsODTIhx1PoYPDuaeW5MIDxWT6pYE\nG7QEKAIoLVLisft/RkqND12Yi9h4JTddk3BGOqIIgiAIgnD69Fo1d17ZH1NCCJ+tzuPFRVnMHp/C\nFWOSO5Q9JgjC+UsUJTph9bYjZ/T5bE4vlwyO5bLRSfVX8VVKRYs5CBOGxnHT9HRybnoQoD5LQlmw\nB2V5Mb7kQciRCf4HO6v9bUB1QbgUAU1Wf+i0Wi4aNgivz8fPW3dx9ZjRLY7NWiXx+SonWjXcfFkA\nOm37P1zW/1LOB4uKCQ/V8OSjJkLauPJ9qi4MjW38tYKXFxSCDI/clcz4i89eNb6qxsObCw+zZWc1\nep2Se25NZOr4CNG7uwU+SebXHVUsXllKcb4/YFSl96IPc6ExelAoYHg/UZAQBEEQhHONQqFg8rAE\nknoF8cbivSzeUEB+cQ13XtkfY4C4SCMIFzpRlOggl8fH7vzyLj9vUICG2jpPq/dvOWDhumlp9ROy\ntnIQbNv3UL1mE0GjhxE0dgT4vKh3rkJWqvAOneY/YZNwy15U17iatMa8aNggAvQ6tmbto8hSQWWN\nq9kvi9sjs3CZE5cHbpiho1dE+7dd7NhTzX/eK8QQqOKJR0xER7bc5eJUXRhOtvSHUt77vIgAvZLH\n7k9l8Flsrbl5exVvfHiYmlovA9KNPHBHUquv80Lmckms3VTOdz+UcqzU/zs4YmgwxkgPRyorqbJ5\nujXnQxAEQRCEMyM1LoS/3TaKt5fuY8/Bcv7+/q/cc9UgUmKDz/bQBEE4i0RRooMa73fvSm0VJMDf\nbcNaVUdClL/DQFs5CEXPvwVA/B9+h0KhQJWzBYW9Cm+/MRAU5j+h3dok3DLEqKxvjZmUEEty7zhK\nyyrIzjtIeLCesGAdtdV1Tcb0zY8uSsokxgxSMyy9/VXu3Hw7/3ytAJVSwZ8fSCUpIaDVx7bWhQHg\n+qlp9bdLksyHXxazZGUpYSEaHn84lZTErt+K0R52h5d3Pinix18q0GoU3P7bBC6fGtVl4Z3ni6oa\nD8vXWlm+1kqtzYdGrWDaJRHMmhFDwvHwyo6skBEEQRAEoeczBmh46Noh/HfTIZZsLODZj7dz3ZS+\nTMzsus5rgiCcW0RRooNCjLr6yfsZJzcPqDg5B6F2SxY1P24meNwogkcPB5cD1Z71yFo9vkET/A/y\nOKGuAlRaCAyvP09mWhQb95Ry0bDBeL0+Nm3NQsYfmqnXqqlt9Lxb9nnYut9L72gls8e3/+p/UYmT\nf7xsxuOR+NN9feif1nobx7YCRXfmlnH1hFR0GhUej8Sr7xWyYUsl8bE6nni49ZUX3S1rbw3/eb+Q\n8koPppRAHpyfXD/BFvyKjzn57odS1m8qx+2RMRpUXHtFLy6bEkVoSNPiVnflfAiCIAiCcPYoFQpm\njUuhT3wwb3+3n49+yCWvuJpbZmSg04qLEIJwoRFFiQ46MXlvKc+hO+m1KqKOT87aunpc9PyJjhu/\nA0C150cUbife4TNBF9g03NLYCxQNWyDmTjIRFp2CXqdla9ZetEofU0ckNFsyX2z18c16FwE6uPky\nPWp1+6raZRVunnrRTK3Nx723JjIqM7TNx7e1KqWy1km1zYVBp+O51w6y50AtGSYDf34glaCz0F7T\nUefjrY8Os2JdGSoVXH9VLL+5rBcqlaj4n5BttrF4uYVfs6qRZYiJ1DJrRjSTx0Wg14kvIIJwOmRZ\nprTMTbbZTrbZRv4hB5PGRnDp5KizPTRBEIRWDUyJ4G+3jeT1xXvZvM/CYYuNe68aSGyE4WwPTRCE\nM0gUJTph3mQTsiyzcXcJLo90Rp5zzKBeqFUKPj2pZWfjfIWaTduo3bSNkEljCBo5BGorUeVsQTaE\n4ku/yH+iRuGW6JquUih3aAgwBBGk83LzpBhCgxKbFT3qXP4cCa8PbrlMT3hw+3IkbHYvT71kxlru\n5obfxDH1kshTHtPWqpSwID0+r5K/vpTLoaI6LsoM4eHfpaDTdk070Y7Yn2vj9YX7KS5xkhiv58H5\nyfRJElf3wR9euXVnNd+vMbM3uwYAU0ogc2bGcPGwUFG0EYRO8ngkDh6uI9ts49CRw+zaV0Vltbf+\nfq1GgXQ67Z8EQRDOkPBgPY/dMIxFa82s2V7EUwu3cdulGYzqd+rOaYIgnB9EUaITVEolCoWizYKE\nVqPE3QUFizCjluEZ0cybbGozX+G6KX0prs+SuAsAddYqFJIPT+Y0UKn94Zb2hnDLxlxeBXllOpQK\nmf4xbgI0gbg8PkorHYQY/VshZFlm0Won5dUyU0Zo6J/Svl8fl0vimZfzOVLs5PKpUVx9efs+ZNpa\nlZIaE86T//QXOWZOimT+Db1RneHMBrdH4rNvj7JkZSkKBVx1aQzXzYlFoznzhZGexuWWWHc8vLLE\ncjy8ckgwc2bG0D/NKPaMCkIHVdV4yMm3k3N8JYS5wIHH21B0CAvRMHpEKBkmAxmpRlKSAtCoxd8i\nQRDODWqVkhumpWGKD+GD5dm8uWQf5qJq5k42oVaJv2WCcL4TRYl2OHm7RFtZByeMHhDDnvxyKmrd\nnX7eYWmR3DIzg6BA7SnzFaaryqndspPQqeMxZg5EUVaE6tAepIh4pOSB/gfarf7ChCEKVJr61xVs\n0JFXHohXUmCKdKFV+fh0ddOOF2OHxBOij2VPvo+UOCXD0r24POpThg/6fDIvvFVAttnOuFFh3P7b\nhA5NSFvqMtI7LIxN61zYHD5u+E0cV18ec8YnufmFDl5ecIgjxU56Ret48g/96BUpPjSrazysWFfG\nsjVWamxe1GoFU8dHcOt1KRj0Z2ZVkSCc6yRJ5shRp78AkW8j22yvL+4BKBWQ3DuAdJORDJOBMaNi\nUCncotgnCMI576L+MfSONvLat3tYvb2IgmM13D17IOHBIp9LEM5noijRhtbaUU7KjD9lB478ozU4\nXL4OPZ9C4Y980B/fgrAjt4zCY1tP+ZyVNXUU//NDwN9xA1lGvWMlAN7hM/y5Ed6GcEufPoxFjbaB\nDExPInPwYEL0XuKDvXy2pvmKjO83lRKsj0Ctljhk2cdf3rGfsj2nLMu8sfAwW7OqGdI/iAfuSOpw\nB4qTu4zkmp28uqAQr0/m/tuTmDwuokPnO11er8zXy47x5dISfD6YOSmSW+bG0zshBKu19tQnOE8d\ntThZ+kMpazc2hFdefXkMl0+NJixEQ1SU4YL++QhCW+qcPvIO2o/nQdjJybfjqGv4/AgMUJE5MNi/\nCsJkoG+KgYCAhoJwVJQeq7XtDk6CIAjnirhIA4/fMoKFK3LYst/C397fyu9mD2BAcvjZHpogCN1E\nFCXa0Np2Ca9PQqdV4XS3XnQoKrU3u+1UWzqCAzUE6jSUVDiaPafb4201X6FfaQGuXfsIu3QShsEZ\nKI9ko7QcwpeQjhyT4q901PrDLasIZelqM+t2HgUgQK+jf0YGHq+X3Lwc+kf3brYiQ4Eao9aELEOl\nLRevZG8yNmjanvOET745ypqN5aQmBfKne/uc1rYGnUbFjiw773x8BK1WyV/u68OwQSGdPl9nHDla\nxysLCjEfchARpuG+25MYOuDC7qudbbaxZGUpW3ZUIcsQHanlymnRTBkfQYBehFcKwslkWcZa7m4o\nQJhtHDpSR+P4h9hoHaMyQ+hnMpJuMtA7Ti9aCguCcEHRa9XcdWV/TPEhfL4mjxc/z2L2+BSuGJOM\nUqwKE4TzjihKtKKt7RKb91naLEi0xqhXowhQtNpOtNruodre8tWujbuPERdpAE46VpYZueUHAOIf\nvQskH6odK5EVCnyZ0wGQ6qpQeurYW+zmpZW7afy3/OLhg9FptWzZsZsyq4WxAyKbrcgw6FJRKrU4\n3IfxSs2vdjduz3nC0lWlfP29hdgYHX99OLXJVb2OkmWZT745ytffWwgJVvPXB1MxpZy5VGZJklm6\nqpRPvj6KxyszcUw4869PwBB4Yf7zkSSZrVnVLF5hIdvsL1ClJgUy59JoRg8PE+GVgtCIxytRcDyQ\n0l+EsFNR1fB3XqNWkJZqoF9ffwEiPdVAaLCmjTMKgiBcGBQKBVOGJ5AcG8Qbi/eyeEMB+cU13Hll\nf4wB4u+kIJxPLsxZVTu01Y6yMwUJgCqbm9EDerFp77EOHyvJUGS10zvaiMPprc9XGGsvRF9wkPAr\npxLYvy/K3K0oa8rw9R2BHBoNkg9XZQlKhczCTdXI+BdOAPRJTKB3XC9KLFZy8gtRKvx3Nl6RodfE\no1GF4PZW4vK2PO4T7Tmjj7cs3bC5gvc+KyIsRM2Tj5ha/YLdVmvTE7xemdcXFrJuUwWx0Toef8RE\nbLSuwz+/zrJYXbzybiH7c20EB6l59JZELhrWdivT9mjPa+9pXG6J9T+Xs2RlQ3jl8MH+8MoB6SK8\nUhAAamq95OTbOJDn34ZhLrDj9jQsgwgNVnPx8OOBlCYjfRIDRDiuIAhCG1LjQnjy1pG8s3Q/ew6W\n8/f3f+WeqwaREnthr1YVhPOJKEq0oq12lJ0+p0HH1RNTCdCr2Z5tpdLW8XM7nF6euHUEdS4vwYEa\nzFf8B4dCQdwjd4LHhXrXWmS1Fu+QyQB4a0sJ0MA3222U2xqKKQF6HSMzB+DxePl52y7A32YzKiyw\nvuOFWhlCgCYen+TE4T6IXqvE6W6+/SQsSF/foSNrbw2vvFtIYICSxx82ERPVvIDQWlbHydkUdU4f\n/3q9gJ17azClBPKXB1PP2BVEWZZZ9VM5739ehNMlcdGwEH5/c+JpP397X3tPUlPrZfk6qz+8stYf\nXjllXASzZkSTGB9wtocnCGeNJMkUlzjJzreTnedfCXH0pEDKxISA+gJEhslAdKRWFPAEQRA6KChQ\ny0PXDmHpz4f4bmMBz368neum9GViZrz4myoI5wFRlGhFW+0oW5ucn0qlzcUzH24jMy2Kx28dzlMf\nbKPK1rHuHBW1TupcXqLDAqlYthbHvlwirppJYHoqql1rUDhteAdPgoAg8DpRuSqx1HhZsbdpxsXo\n4UPQabX8sn03dkcdAJlpkeg0KuZNNuH2qNiTF4EsS6jUh7lyfBI2h4u124ubjenEcXkFdp577SAK\nBfzPA6mkJAa2+Braam16IpuiqtrDP/6dT36hg+GDg/nD3SnodWdmRUFFpZvXPjjMjj01BAaoePDO\nJCZcHN4lH3rtee09RYnFyXc/lLJ2Uzlut4wh0B9eedmUaMJDxbJJ4cLjdPnIO+ho2IqRb8fuaBxI\nqWTogKD6AkTfPgYCT2PrmiAIgtBAqVQwe1wKqXHBvL10Px/9kEtecTW3zMhApxV/awXhXCaKEm1o\nqR3l4NRw7C4Pv+5vuyVoaxpPQkdkRLdY9GhLqEFHiFGHLEkUP/8WKJXEPTwfHDWo9m1CDjDi6z/2\neLjlMRTAf3fX4W204yQ1KYGEuBhKLFbMBwuJCNaTmRZZ/3q9Ppn8I2GAmjp3AUaDv2gxd1IqSoWi\nyc/jxHHFx5z846V83G6JP97Th4HpQS2O/1StTa+ekEp5hYenXjRjsbqZMi6Cu29JPCM5BbIss3FL\nJW9/cgSb3cfQAUHce1sSkeHaLjl/e157T9jKkZtvZ/EKC5uPh1dGRWi5cno0U8dFnFY2iCCca/yB\nlDZyzHYOnAikbFSP7hWtY+SQENJN/kyIhDg9KhFIKQiC0K0G9ongyVtH8saSvWzeZ+GIxcY9Vw0k\nNuLM5Y0JgtC1RFGiDY3bUVbUOFm9vYjd5rJTtgNtj23ZpTxx60jgpKKHKYJdeVYqalteQTH0+KqE\n8u9WUZedT8S1lxNgSkb9y2IUPg+eIZeBRgfOavA4QBtEQLAa8K+UCAzQM3LoQNweD7LTwrO/u7hZ\nrsFLi6w4nEZc3jJcPiuuGvhuw0Ecde4m7TlPHFdR6ebvL5ipsXm5++ZELh7eeuZCW1kdlbVOsvZX\n8fq7xdTYvMyd1Yvfzo49I8vyamq9vPXRYX7eVoVOq+R3N/VmxsTILn3uU732xrkcZ5okyWzb5Q+v\nPJDn/13pkxTAnJkxjBkhwiuF85/XK1NwxFHfESPbbKe8siGQUq1WkNbHQLrJQEaqfyVEaIhYMSQI\ngnA2RIToeeyGYSxaY2bNjiKeWriN2y/rx8iM6LM9NEEQOkEUJdpBp1Gxbmcx63Y037rQWVU2N09/\nsI3hGVH8/Y6R2Bye+km+SqlocQVF72gjV09IxVJWy7Hn3wKViviH5qOosqDM34EUEoWUmgmSD2wW\nQAFBMcyb7H+bd+aWMXTIELRaDVVlh5k3MalZjsHWAy6sFUZ8kgOH+1CT+xpfzT8xebY7vDz1khlr\nuZvr5sQyfWJkm6+7rawOrS+Ql944gscjcffNiac8V1fZmlXF6x8cpqrGS4bJwAPzk7slTLOt1944\nl+NMcnsk1v9cwXcrLRQf849r2CB/eOXADBFeKZy/amxecsx2cvL9BYi8Ajtud0MgZUiwmouGhdRv\nxUhNChSBlIIgCD2IWqXkhulpmBJC+GB5Nm8s3kveiATmTjKhVom/14JwLhFFiXZoa9n9yXQaJS5P\n+/ImKm3N8wRcHh+TMuPx+SR251dQUeMkxKhlaN8IlEolT767hfBff2GK+RA1l0xEkxSPav0nKGQZ\n77AZoFRB7TGQvGCIApUW1fHzjx+eQX5FACF6LxNGRXDyfNNSIfHNOg+y7MPmMgNNX8fJV/Ndbon/\nfeUghUVOLp0cxbVX9mrHz6flrA5XtZaqUi0ajcyf7uvDqMzT73BxKo46H+9+VsTajeWo1Qpuvjae\nWTOiu235dVs5JSdyOc6UGpuXleusfL/GSnWNF7VKweSx4cyaEUNSggivFM4vkiRz1OKqD6PMzrdR\nXNJQHFQoICk+wL8KwmQg3WSkV5QIpBQEQTgXXNQ/ht7RRl77dg+rtxVRUFLD3bMHEh6sP9tDEwSh\nnURRoh3aWnYPoADCj+cyzBmfwqer8vi5A20/d+ZamTM+hcUbCpp0ZeibEMKMiwbRKzyQr3/MZ/W2\nIhSSj2m/rsanVLK0z8Wolm9gZkUuUkwKUnwaeJ1QVwFKDQRG1D+H06vgUJUelVKmX4y7WUHC5ZH5\ncJkTtxeUqiIk2dlsnI2v5vt8Mi+9VcD+XBtjRoRyx/UJ7f4C3ziro6LGCTYDDouGIKOKPz+QSobJ\n2O6fXWftPlDLf94rxFrupk9SAA/OTz4jnSRayilpnOfR3Y6Vuli6qpQ1G8pxuSUCA1RcdWkMV0yN\nIjysa7IzBOFsc7kk8g7Zyc6z+zMh8u3Y7I27DykZMiCIjFR/V4y+fQwYAkVeiiAIwrkqLtLA47eM\nYOGKHLbst/C397fyu9kDGJAcfraHJghCO4iiRDu0tew+IljHg9cMJiossP5K922XZRCoV9dPuuVm\nRzVVXuPimYXbKalwNLmtfH8pWeYyRg/oxe78cgD65uwktKqMfQMvwhYcxgDrr6AC7/AZ/gNrjxdD\ngnqBwr90TZYhp1SLT1KQHuVCr246IlmW+Xqti2MVEuOGaKjzaFi9rfk4T1zNl2WZtz46zJad1Qzq\nF8RDdyZ3aHXBiayOOeP68OaHh9mQW0V0pJYnHjYRH9u9VW2XS+Kjr4r5fo0VpRLmzurFtVfEolaf\nmSuijXNKGudydLfcg3aWrLCweXsVkgyR4Rqunx7LtPGRIrxSOOeVVbjrwyhzzHYKjjjwNQr3jYnU\nMnxwiH8VRKqBxIQAEUgpCIJwntFr1dx1ZX9M8SF8viaPFz/PYs74FC4fk4xSrHwThB5NFCXaoe1l\n91EkRDftNNF44plzuJKXv9x9ysJE44JEY063xLqdRwFQ+nwM37Ian1LFzpGTGRNgobeqhtrY/lQp\nwwhzVKHxOEBrBF3DmEpq1VTWqQkP9NIryNvsOTbv87I9x0tijJIrx2lRKJpfzR87JI4rRycC8Nm3\nJaz6qZw+iQE8dl+fTu2zdrkk/v12IVuzqklJDOCvD5m6vc1kTr6dVxYc4qjFRXysjgfnJ9M35ewk\nNTfO5egukiSzfXc1i1eUsj/XBkBKYkN45ZkqxAhCV/J6ZQqL6urbcmabbZRVNAqkVClITTbQz+QP\npUxPNYoWtoIgCBcIhULBlOEJJMcG8cbivXy7oYD8ozXMv6I/xgDxWSAIPZUoSrRTR5fd+ySJr3/M\nZ0dO6SkLEu2Vlr2dkJoK9g4egysomLnBW/DISv6VG8nRrC3877VRGHVKMERz4tq306Mgv0yLSimT\nFtV828aRUh/frncRqIebL9OjVikARbOr+QlxoVittSxbU8qX/z1Gr2gdjz9sIrATV9lrar0880o+\nufl2hvQP4v/d26dT52kvj1di0ZISvl1mQQZmTY/m+t/EodOenyFIbo/Ej79UsGSlpX7ffObAYObM\njGZQvyCxT144p9TavJgLy9myvYxss428gw5c7oa8m+AgNaMy/asgMkxGUpMD0YpASkEQhAtaalwI\nT946kneW7md3fjl/f38r91w1kJTY4LM9NEEQWiCKEu3U0WX3i9aaW1xZ0VlKn5fhv67Bq1Kzc8Qk\nZhiLiFS7+G9tb/JrVFw70khIgJLFO2pxqA9z/dQ0/7YNqw6frCA9svm2DYfTnyMhSXDDdD1hQU2/\nyJ98NX/Tr5Us+LSI0GA1Tzxi6lQ7PIvVxVMvmjlqcTFhdDj33paIRt19E4hDRxy8/E4hh4rqiI7U\ncv8dSQxMDzr1geegWpuXFeusLFtjpep4eOWkseHMFuGVwjlClmWOHnPVr4DINtspKmnIt1EooHec\nngyTkXSTfzVEr2idKLQJgiAIzQQFanno2iEs/fkQ320s4NmPt3Pd1DQmDo0TnxuC0MOIokQHtbXs\n3uXxYa104PFK7Mgp7dLnzdi/laDaSnYPHYciOJBZQbupldQsqU0iLlTFtAGBWGu9LN9jJ9jg4+oJ\nqZQ7dFTWqVrctiHJMp+tclJRIzNtlIaM5LZ/FbZmVfLvdw6h1yl5/GFTp1pmHjYVMuIAACAASURB\nVCx08I9/m6ms9nLVpTHceHUcym7a1+3zySxeYeHzxSV4fTLTJ0Ry69z48zI/wWJ1sfSHUlbXh1cq\nuerSGC6fGkWECK8UejCXS8J8yF5fhMjJt1NrawiD0OuUDO4XxLDBYfSO05CeasAQKD62BEEQhPZR\nKhXMHpdCalwwby/dz0crczAXVXHzjAx02vPvO6EgnKvEt7su4JMkPluTx897SnC629cOtCW9o41Y\nq+pwun1Nbld5PQzbuhaPWsPO4ZO4OugQBqWXj6pMOGQN914cjFqp4NPNtXh8/tad1moPBTVBqJUy\n6S1s21i/w8P+Ah99e6uYPqrtiWv+IQeP/ysPFPA/96fSJ6njWQhZ+2p47j8Hcbkl5l+fwOVTozt8\njvYqPubklXcLyc23Exai4d7bEhk+OKTbnu9sMRfYWbzCwi/bGsIrr5sWy7RLIrt1O4wgdFZ5pZts\ns70+lLLgcNNAyuhILZkDg0lPNZJhMpCUEIBKpSAqKgirtfbsDVwQBEE4pw3sE8GTt47kjSV7+WWf\nhcMWG/dcNZDYiLOTLSYIQlOiKNEFFq01s3Z7caePjwjWkZkWxbzJJlweH5+uyiO7sJIqm4tQo47E\nX37BaKsma9glBAWrmWYoxuLVs8YRz8gUPf3idOw67GTXEX9+QFiQnlJnCD5ZQUaUC91J2zbyi3ws\n/9lNsEHBDTN0ba5WOGpx8tRLZpxOH3+4O4VB/Tq+9WH9L+X8571ClAoFf7g7hTEjwjp8jvaQJJnl\na618+FUxbrfM+IvCuPOG3gQZz59fc0mS2bGnhsUrLOzL8YdXJvf2h1eOHSnCK4Wew+eTOVRUR059\nIKUda7m7/n61SkFqUiDpJn8BIiPVINrSCoIgCN0mIkTPYzcMY9EaM2t2FPHUwm3cflk/RmZ034Uy\nQRDa5/yZrZ0lLo/vtLZqxIYH8sRtI+vzKQJ1SuZf0R+Xx0e1zUWQWmbna0/i0WjJGjaRO4PzUStk\nFtWkktgrmN+OCsDjlfl0S8NVxLHDM6hxqTFqXITqXEDDVfMau8RHK/x7tG++VE9QYOt5DhVVHp56\nwUxNrZdH7+7LmBEdK0jIsn8LxYdfHsUQqOJ/7u/DgG7Kc7CWu3n1vUL2HKglyKjigTsSGTuye4of\nZ4PHI/Hj5gqWrCit32M/dEAQc2bGMLi/CK8Uzj6b3UtOvn8VRHa+nbyDdpyuRoGURjUjhzYNpDxf\nw2YFQRCEnkmtUnLD9DRMCSF8sDybNxbvxTyiN9dOSkWtEp9JgnC2iKLEaaq2uaiodZ/ycUoFSC20\n4XB7fc1vpCG74tjbn6CuqqLiylkMiFNxcaCVQ74QgvpnMv+iYFTOSlbtd1Ju8xERrGd4v1iCw+Nw\nezx8sPRHArTUr8IABR+vcFHrkJk1TktKXOtL/O0OH0+/ZMZS5mberF5cdVlch5ZP+ySZ9z8r4vs1\nViLCNDzxiInE+K4PW5RlmXWbKnj3syM46iRGDg3h7lsSCetECGdPZLN7Wbm+jO9Xl1JZ7UWlgomj\nw5k9M5rk3t3bUlQQWiPLMiWlLrLzjgdS5ts5Uuxs8hh/IKWhPpQyLkYEUgqCIAg9w0X9Y0iINvL6\nt3tYte0IBSU1/H72AMKD9Wd7aIJwQRJFidMUYtQRHqRttTARHqzj5unpvPzV7hbvr6x1UW1ztRie\n6XPUcfQ/C1EaDUz53/u5/NcvoQyipv+G66PjoSIflBouGdOXIUM8BBt0/JirQKlUsWXrLhxOFw4n\n9V1AQgOTyC/2MShVxSWZrU/a3R6J//tPPoeO1DF9YiTzZsd26Gfi9kj8+51D/LKtisR4PY8/bCIy\nvOuXZVdWe3hj4WG2ZlUToFdy321JTB4Xfl5MfErLGsIrnS6JAL2S2TOjuWJqdLf8LAWhLS63RP4h\nR31HjByznRpbQ3iuTqtkYIaRfscLEOmpBowG8fEiCIIg9FzxkQYev2UEHyzP5tcDpfz9g63cNWsA\nA5LDz/bQBOGCI741niadRsWw9OhW238OS4siPSmM8GAd5TWuZveHBekJMer8nTuq6kCWiQoLRKdR\nUfrBl3jLKoh7aD46ewnqsiP4evdDHZsCVYf9JwjqhU6rIVqr4VCFEl1AAIeLSyg43DTjYke2C1ny\nEBGiYN5UfasTd58k89Lbh9ibbePi4aHcdWPvDk3ybXYvz756kP25NgakG/mf+/t0S1r+z9sqefPD\nw9TafAzMMHL/7UlER3a8I0hPk3/IweIVFn7eVokkQUSYhnmz/eGVhkARXimcGRVVHnLMNg6Y7eSY\nbRwsrMPra1jqFRWhZVz/MPr1NZBuMpJ8PJBSEARBEM4leq2a380aQN+EUD5fk8cLn2cxdlAvrplo\nIsQgLgIJwpkiihJdYN5kE5Is8/OeY/WdM/RaFWMH9WLeZBMqpZLMtKgWCxdD+kbw1Xozmxodq1Ur\nGZsaTP/XFqIKNtJr/jxUPy1EVijxZU4DVy147KA1+v8H1HkUFFbqcbncbN6+p8lzKBVaJF9vNGq4\n5TI9AbqWJw+yLPP2x0fYvL2KgRlGHr4rGdVJIZgnsi5CjLr6HIwTyircPPWimSNHnYwZEcqDdyaj\n1XTt/rxam5cFnx7hp82VaLUK5l+fwKWTo7qtteiZIMsN4ZV7s4+HVyYEMHtmNGNHhaFRiz2OQvfx\n+WQOF9fVt+XMNtspLWtY+aVSQUpiIBmpBjL6GklPNYjVOoIgCMJ5Q6FQMGV4AimxwSxckc2mPcfY\nkWtl1tgUpgxPEFkTgnAGiKLEaWg8Qb9xWjqzx6ZQcLSGoEANcVHGJpN2f6YD7Mwto7LWSViQjozE\nMCRJZv3Oo03O6/ZKVH38Db7KamIfvQutNRdlbTm+tFHIQRFQYQYUYOwFCgWyDNmlOmQU7DlwAKer\n8YoMBQZtXxQKNbPGa4iPav1q+6IlJfywvozk3gE8dl9qk4KCzyfx6epcduZaqahxEd6oY4hKqaSw\nqI6nXzJTXunhiqlR3PbbhC4vFGzfXc3rHxymospDWp9AHpifTHyv9u39a6uYcrZ4PBI/ba5kyQ+W\n+v34Q/r7wyuHDBDhlUL3sDt85B48XoDIs5N7UiCl0aBixJBgMo53xTAlG9DpxBcy4czLzc3lnnvu\n4dZbb+XGG29k69atvPjii6jVagIDA/nnP/9JSEgICxYsYMWKFSgUCu677z4mTJhwtocuCMI5qE9c\nME/cOoIfs47y7U8HWbTWzE+7jnL9tDSxpUMQupkoSnSCT5JYtNZcP0EPC9JiCNDicHpanLADeH0y\nU4cncNnFiXy1/iDZhRVs2nuMlubtWlcdQ3b8iFMXwM99hpK6ay2yRod38CRwWEHyQmAkqP1XK49U\nqah2qiixWNifd7jJuQI0iahVBiJCHYwd3HrLoxXrrCz67hgxkVoef9jUbKvAe0v3NVnpUV7jqv/v\nwQmxPPvqQRx1Pm6ZG8/sGdFdOqGuq/PxwRfF/PBjGWqVghuvjmPOzJh2LRc/+b1q6b050+wOLyvW\nlfH9aiuV1R5UKpgwOpzZM6JJSRThlULXkWWZY6Uu/yqIfDvZeTaOHHUiNwrdTYj1B1Kmmwz0MxmJ\n6yUCKYWzz+Fw8PTTTzN69Oj625599lmef/55+vTpw5tvvsmiRYu49NJLWbZsGZ9//jk2m43rr7+e\ncePGoVL1jOKzIAjnFpVSyeRhCYzMiObbnw7yY9ZRXvg8i+HHvztGhnZ9aLsgCKIo0SmL1pqbTNAr\nat1Ngi4bT9jnTTY1mRTrtKr6bRrQckeOQVkb0bvq2DJ6JgPL9qHQ2/EOnQIaDdSWg1IDhkgAHG4F\n5jItbo+LDVuympxHq4pAr4khQOfh4XkRrb6en7dV8vbHRwgOUvPEoybCQ5uGYLo8PjbvLWnx2J82\nV/DtYTvI8PBdyVxycddWkvfl1PLqu4VYytwkJwTwwPykDk3cT36vGr83109N69KxnkppmYv/rrKy\n6qcynC4JvU7JrOnRXDldhFcKXcPtORFI6c+CyM63U13TEEip1SoYkO7fgtGvr5G0PgaCjOJjQOh5\ntFot77zzDu+88079bWFhYVRVVQFQXV1Nnz592LJlC+PHj0er1RIeHk58fDxms5n09PSzNXRBEM4D\nQYFabp6ZwYSh8XyyOpftuVZ2Hyzn0osSueziJLQ9ZNWtIJwvxLfRDnJ5fOzMtbbrsRt3l+D1SU22\nZzQuSLRE63QweOcG6vQGijOH84AuC68+CF/GaKg95n9QUAwolMgyHCjVolQq2bJjD05XQ2FEqdBj\n0CWj1cCD80IIaGX59Z4Dtbz09iF0WiVPPGwiLqb5dohqm8sfwnkSZ6WWSqsGvU7B/9zfh8H9g9vz\nY2kXt0fik6+PsnRVKQrg6stjmDcrFk0HMiraeq925pZx9YTUM7KVI7/QwZIVFjZt9YdXhodqmDsr\nlukTIrolBFS4cFRWe8g228gx28k228kvdOD1NlQ6I8M1jBsVRnqqgQyTgeTegajVYhWE0POp1WrU\n6qZ/H//85z9z4403EhwcTEhICI8++igLFiwgPLyhGB4eHo7VahVFCUEQukRSryD+54ZhbN5n4Yv1\nZr7bdIhNe47x2ykmhqVFiZWFgtBFxIyog6ptLipa6KLREqfbxy97jnXo/IOzNqBzO/ll7GXMiTyK\nViFRN3gySp/reLilAbRBABRVq6l1qTl05CiFRY1XMigx6voCKi4brSAqtOWJ/MFCB8++mg8yPHZf\nH1KTW16BEGLUERUaQGmlvzAhy1BXpsdVqUelkfnbH02k9zF26HW2xVxg5+UFhRSVOImN0fHg/GTS\n/z979xkfZ3nmff93TZemqI96HzXbkiXLHdu4YhkwmNAJkADJptBS9pPd1IeEO3snd7IklJQNHZaW\nkGC6hQ3YGBv3XlRGvXdpNL1dz4uRRy6SG+4+v29AU665NDPyZ85jjvN/5OpP+TjHe60Ght3jjmI9\nE2RZZuc+GytXdbP34DAAmWk6rl+ayJwZIrxSOHWBoExzq4vqOkc4lLKr57BCpAJyMiIpsIQKEIUW\ng+jAES4pjz76KE899RTl5eX89re/5dVXXz3mNrI8RvvhUWJiIlGpzk5BOiHBeFaOK5w88Rqcf5fi\na3Cd2cTiWVn8fU0Nb39Wx5/e2kdpXgLfXDGJjKQz96XcmXIpvgYXG/EanJqzWpQ4OqSqo6ODH/3o\nRwQCARISEvjd736HRqPhnXfe4cUXX0ShUHDLLbdw8803n83T+lKiDFpijJojtmscj8cfPPGNRmhd\nDkp2fo4zwoBtSglzI3fTr4pGbymFgXoOD7d0eiUa+jWoFEFqa6uPOI5ek41SEQFSD9MnZoz5WB3d\nHh79gxW3J8gPv5XN5Inj/4OqVSuZOSmZd9bXI8vg7IzEO6xBoQ6wdJnxjBUk/H6Zf7zXwZvvdRIM\nwjWLErjrptTTDtmLMmhPOIr1TPP5g6zfPMDbq7poHgmvLCkysmJZIqUivFI4BU5XgJq6kUDKOgc1\ndQ5c7iMDKctLDgukzI5EpxXtpMKlq7q6mvLycgBmz57Nu+++y8yZM2loaAjfpqurC7N5/PwkgIEB\n51k5v4QEIz09w2fl2MLJEa/B+XepvwbXzMhgiiWO1z6uZVdtDw/991oWladx3RXZROoujO96L/XX\n4GIgXoOxHa9Qc9b+esYKqXriiSe44447WLZsGY899hhvvvkmK1as4E9/+hNvvvkmarWam266iSVL\nlhAdHX22Tu1L0aqVFGbGsnHfqXVAnIzJOz5D4/OwdeZV3BLfjEKCyLnLwdV3WLilNjxtIyhLFJk9\nNGdH09EXGiWpVZnRqOLwB4Ypn+Adc+LE4JCPXz1mZdDm55tfTeOK6TEnPLd7l09kyOahcpUN77AS\nnT7IVRUm7l6Wd0Z+9+Y2F48/00h9k4v4WDUP3pv5pbeDaNXKcUexluXHn9GtG8N2P2992Ml7q3vo\nH/ShUMC8mTFcvzSRnEwRXikc32ggpX0kD8JBU5vriEDK1CRtuABRYNGTmqS7qEfhCsKpio+Px2q1\nYrFY2Lt3L5mZmcycOZPnn3+eBx98kIGBAbq7u7FYLOf7VAVBuIQlx+n5/s2T2WXt5fWPa/loawub\n9ndy4/xcrihORiG+gBKEU3bWihJjhVRt3ryZX/7ylwAsWLCA5557juzsbIqLizEaQ5WTKVOmsGPH\nDhYuXHi2Tu1Lu2NJHturu/H4Tr4L4kR0TjvFezbg0BtRlOdTojuAOz4LKSkT+uuOCLdsGVJh8yhJ\nMPgxab0sKEslEJTZXesk6M8A/JiMHeyxOlm3s+2IiRMej8yjf7DS2e3h5muTuHrR8b9ROmRgyMeu\nTUFcw0omTzTww29nY9SrT3zHEwgEZd79qJtX/9WOzy+zcE4c996Wdsz0j9N17ChWHWX58eHLv6ye\nPi/vre5mzfo+nK4AOq2C5VeZWb7ETEKcaJ0XxubzBalrcoa3YdTWO+kf9IWv16glivIMFOXpKcgN\nBVOajBfGNzCCcC7s27eP3/72t7S1taFSqaisrOSXv/wlP/vZz1Cr1URFRfFf//VfmEwmbrnlFu68\n804kSeKRRx5BcZ4mKwmCcPmQJImyvAQmZceyaksL73/RyPMfVLFuVztfXZJPdvKFt6VDEC5kZ+1T\n7lghVS6XC40mtFCLi4ujp6eH3t7eMUOqjuds7Qc9mb0/gUCQle/uH/nQc+pFiYToCIadHtzeI+9b\numMtap+XzbOXcUd8E0EZDItuwO3uIQDoEtMxxkZhc8k01stoVWCts/LyylZ6Bl3ERxlQKwrwSQoK\nc2xs3DcYPvahiRNajZqDO2Tqm10sX5rMQ/+Wd1LbCZpanPzwkZ10dntYsSyZ738rD18gwIDNQ4xJ\ni05zem+jtg4Xv/5jFXsO2IiNVvOjB/KZMyP+tI51PA/fXo7b6//S53u42no7r73VwsefdRMIQlys\nhrtvyeD6ihQxzWAcl/Peuv4BL/uqbOw9OMS+KhtVtcP4jgik1LDgigSKJ5goLjRhyTacUqjr5eBy\nfv+cjEvt+Zk0aRIvv/zyMZe//vrrx1x21113cdddd52L0xIEQTiCWqVk+ewsrpiUxN8/tbLlYDf/\n58VtzClJ5sYrczHpxRdUgnAyztvqabwwqpMJqTob+0FPdu/Pq2tqxtwOcLK+dV0RL66qoaXbHr4s\nwjHMxD1fYDdEETctg0y1lRpdDk27upmXFWRfq4cX39xOWX4CBYUlBGUlHW31vPdZbfgYLlcKaqWS\nxLghdtTUHfO4sgwr3+7FPqBkRlkUX7spid5e+zG3O1qV1c6vH6/D7ghwxw3J3HC1maf+viM84vTw\nLgzlSX47JcsylWt7efHvbbg9QWZNjebbd2VgMqrO6v4rFTA85OJ0H0GWZXbtH+btVV3sPhA6Snqq\njhVLE/nKtRkMDjpwu1y4jx1Uctm7nPbWBYIyre3u0FaMWgdVdQ46u0dzTRQKyEqPCG/FKLQYKCqI\nPeLvcXDQcT5O/YJ1Ob1/Tse5fn4utQKIIAjClxVr0vHt6ycxv3SAV9bUsH5PB9uqe1gxJ5uF5akn\n/RlZEC5X57QoERkZidvtRqfThcOozGYzvb294dt0d3dTWlp6Lk/rpJ3KONDxPPWvfbi9/iMuK9v+\nKWq/jy3TFvCtuBb8KNkdNZnZ8T78AQWvbLLRZwvQMawlxaMkVufh/V3W8P11qmTUymh8gSHqO2vx\nHrWtRJbB1R2BZ0iJJSeC738rG6XyxB0Sm3cO8thfG/AHZH7ycAHTJuuPKcoc6sIAuGNx/gmP2Tfg\n5U/PN7Nznw2DXskPvpbFnBkxF3QApM8f5PPNA7xd2UVTayi8srjIyPVLzUwpNiFJkvhW+zLmcgWo\nqQ8VH6qtDqrr7Dhdo3+D+kglU4pN4QKEJTuSCN2RnV4X8vtfEARBEISTU5gZwyP3TOPTHW2sXN/A\nax/X8tnudu5Ykk9R5okz3AThcnVOixKzZ8+msrKS66+/no8++oi5c+cyefJkfvazn2Gz2VAqlezY\nsYOf/OQn5/K0Tlq/zT3mJIdTMWg/cmqH3j7EhL2bGDbGkD09kRhFM56iOegdMvEGJe/tttNlCxBl\nNFA6sQCX280rqzeGz0OlMKJTpxEMenB46pDH2FLi7tfiGdKiiQjy4wdz0WpOvICuXNvD315uQaNR\n8JP7c6hYlERr++C4RZmdNb3ceGXuuOGRsiyzblM/z7zSisMZoGySiQfuySA25sJta3M4A3y0rpf3\n13TTNxAKr5wzPYYVFYnjjk8VLm2yLNPd6w1nQVTXOWhqcRE8rMErJVHLzCl6CiwGiix6UpNFIKUg\nCIIgXC6UCgWLp6YzfUIi/1pXz/rd7fzutZ1MLTRz6wILcVG6832KgnDBOWtFibFCqn7/+9/zn//5\nn7zxxhukpKSwYsUK1Go1P/zhD7nvvvuQJIn7778/HHp5rnl8gTGnVRyyZlvLGX/Msm2fogr42T/j\nSh6IbmM4qGYgeTLzFH302QO8t9uBJElcMb0UpVLJpk3b6Rlp7ZYkNXqtBZCxe+uQ8R9zfM+gBndf\nBApVkHnzI4iNOn4RQJZlXnurg3+814nJqOJn38slL1sPwJDdQ/84RZmBYTdDdg/mmGMX60M2H399\nuYVN2wfRaRV85+4MllwZd8F+O9zbHwqv/GhdLy53MBReucTMtUsSMMef+TGiwoXL5w9S3+QKFSCs\nDqqsDgaGjgykLMwLBVEWWvQU5OqJMn35AFhBEARBEC5upkgNX19WyJWlKby6uoZtVd3ssfZy9axM\nls3IQH0W8vEE4WJ11ooS44VUPf/888dcVlFRQUVFxdk6lRMKBIM8vXIvG3a3jZuT4PEF2FPXN+4x\nUuP1ON1+Bh0e1EoFXv+JQzANwwMU7dvMkCmWydNjiVB08MJgDtcrHagVEq9vtuH1y0wqtBAfG0Nd\nUyst7V0j95bQaywoJDVObxOBYGg/uk6jCIdoeofVOLsjkJRB4rKd3HPd8bfF+P0yf3mpmU8+7yPJ\nrOUXP7CQbB5dhEcZtMSatGN2i8QYdUQZjl2wb945yF9ebGbI5mdCvoEH780kyXxhLuwbmp28XdnN\n51v6CQQgJkrFjdcksXR+PAa9CK+8HAzafFSPbMOostqxNjiPCKSMiVIza2p0aCtGroHszAjUKrF1\nRxAEQRCEsWUnm/jxXeV8sa+Tf6ytY+X6Bj7f08Hti/IozYu/YL+kE4RzSay0gDc+sY6bk3DjlbkM\n2T14fYFxuwQAHC4fgw4v0QYNpXlxKBQKdlb3MHDUdo3DTdn6CcpgAOuseTxg6qTDH0F/bDaRCg/7\n2jxsb/IQbTIyeUI+TpebrTv3he8boU5DrTQiM4gv0EWcKTTqMijLfLK9DZ9TiaMzEiQwpDqYPy2Z\nSO34L7fLHeD3f2lgx14blqxIfvq9XKKP+sZXq1ZSlp8wZtBnWX78Ed0lDqefZ15tZe3GftQqia/f\nmsryJeYLro1dlmV2Hxhm5aoudu8fCa9M0XH90kTmzYwRWRGXsGBQpqXdHSpA1Nmpsjro6DoskFIK\nBVIWhAMp9STEacSHB0EQBEEQTolCkriiOJkp+Qm8s6GBNdtaefJfe5mUHcvti/NIjtOf71MUhPPq\nsi9KHC+88vM9HUdMmdAe1oVwtEFHqPgwaPeydmcH6WbDcRfgxqF+Cg5sZTA6ntnT9agkD/8czuXW\na6PxB2Re/cKGJEnMnhbatvHF9m14faG2cbUyGp06GfDw47sTkOXY8JaTQDCIbTDIxx85QYaUPB9X\nTEvm1oWWcc9l0Obj13+sw9roZEqxiX//TvYxQXyHHDrOzppeBobdxBhDxZDDj797v40nn2uib8BH\nbmYkD38jk/TUiHEf/3zw+2U+39rP26u6aWwJjcuYVGjg+qWJTCk2XXDFE+HLc7kD1NY7RvIgHFTX\nOXC6AuHrIyOUlE0yhQsQedl6IiJEa6UgCIIgCGdGhFbFrQvzmFuSwmtratjX0M8vnt3CkqnpLL8i\ni4jjfIEoCJeyy/6df7ycBLc3gNsbWrScasDl4SM/xzJt+ycog0HarriC5YZ+qj1RJBVkEW9Q8sEe\nO522AMWFecTHRtPQ3EJbRzcACklLpCYHWQ6Qm96PSR+NVj26HaK3z8e2jT6CAYn7vprCknkJ44ZP\nAnR0ufnVH+ro7PawaE4c3747A5Vq/AW5UqHgjsX54Q6Sw/M33J4AL/2jnQ8/6UGphNtWJHPj1UnH\nPd655nQFWL2ul3dXj4RXSqHwyuuXmrFkiyr1pUKWZXr6vKMFCKudxqMCKZPNWqaXRVFkMVBg0ZOe\nIgIpBUEQBEE4+1Li9fzg1lJ21vby+se1rNrSzBf7O7lpfi6zJiWhEF2ZwmXmsi9KHC8nYSw6jRJZ\nlvH4TpwZMR7TYC+W/dvojzGzcLoG8PKhP49vlBjotwd4d5eD6CgjJRPzcbpcbN6xjysmJXGwaQi/\nLweFpMIbaGB7TQ+NT3eH8y+G7QF++d9WBob83Ht7GtcuMh/3PGobHPyfP9ZhG/Zz8/Ikbl+RfNKt\n6Vq18ohQyyqrnSeeaaKj20N6qo6H78u6oCZU9PZ7eX9NKLzS6Qqi1Si4ZnECy5eYSUy4MDMuhJPn\n8wdpaA4FUoaKEA76B0cDKdUqifyRMMpDwZRHb08SBEEQBEE4VyRJYkp+ApOyY1m1uZn3NzXx7PsH\nWburjTuXFJCZdH6C/wXhfLjsixLHy0kYi9sbQPMlg+3Kt6xBIQeJvGEB+TobW1wJzJ+VhVop8foW\nG94ALJ5WhlKh4IttezBGqLhzaQFvrfWy9WAAj78bpze05eRQ/oXPJ7N3i0xHt4evXJ3I8iXHL0hs\n3zPE7/7cgM8X5Nt3p7N0fsJp/S4+X5DXVnbw9qouZGBFhZnbb0hBc4FkMTS2hMIr128OhVdGm1Tc\nsCwUXmk0XPZv/4uWbdhPdZ2dg7WhbRjWBgde32gbRLRJxczyaApzQ0WIdixzQgAAIABJREFUnIwI\nkQ8iCIIgCMIFR6NWct2cbGYXJ/H3T6xsq+7hVy9sZV5pCl+Zl4Mx8viT8wThUiBWZYRyEiIjNGzY\n3c7AsJtogxanxx/eunE4rUqB5yQma4wnur+bvOqdDJmTWVamQHYryKm4GqPOS+ewxLZGDyVFecTF\nRGFtaKats5vFU9PYYw2y9WAAcOH0Nh1xTFmGylU2XMNKFs2J484bU457Dh+v7+PPLzahUkr86IEc\nZpRFn9bvUt/k5PFnGmluc5OYoOGh+7KYkG84rWOdSbIss+fAMG9XdrNznw2A1GQtK5YmMm9W7AVT\nMBFOTjAo09bhpqrOQVVtqBOi/ahAyoy0iNBIToueIosBc7wIpBQEQRAE4eIRHxXBd28o5kBjP6+u\nqWXdrna2Huzmhnk5zC9LCU8EFIRLkShKEMpJ+OaKYpZNTw/nJPxzXd3Y3RMnWOfEmbRE6tTjZkqE\nuiRkYlfMQekcxF8wA2OkDEGISs5gfrmOtKx8HE4XdfV1LJ6axrySHJ56041WDT22GmD0G2FZBkdn\nJL5hJSUTDHznaxnjLsZkWebN9zp59a0ODHolP304l0LLqRcRAgGZf33QyRvvdBAIQMWCeO6+OXXc\ncMxzxe+X2bB1gLcru2hoDoVXTiwIhVeWl4jwyouF2xOgtt45uhWjzoHDOVogjNApKJ1opHAkCyI/\nR0+kCKQUBEEQBOESMCErlkfumcanO9pY+Xk9r6yuYd2uNr66JJ+CjJjzfXqCcFaIosRhDs9JGGvK\nREFGNF/s6xz3/lPy4rn32gm89VkdPYOuYzotYvo6sdTspi8hmaW5HoIqLZ7sSaiCTg50S7zwz93M\nnD4dhULBUG8zP//aFBQo+cMbTnx+uLNCw6troC/05T+yDK6eCHzDGnSGID/8TjZK5dgL70BQ5un/\nbaFybS8JcRr+vx9YSE3WnfJz1Nrh5vFnGrE2OImLUfPAPZmUTjKd8nHOJJcrwOr1vby3uoeePi8K\nCWZPjeb6ikTyc0R45YUuFEhpp9rq4OChQMrDmpGSzFqmTY6iYGQqRnpqBEpRYBIEQRAE4RKlUipY\nMi2dGRMSeXNdHZ/v6eC3r+5kepGZWxZYiDWd+md4QbiQiaLEOA5NmVg+O4vWbjvmmAhcHj/VzQNj\nhmLqNEruvbaIlevr+Xh725jHnLp5DRIy2gUlRODjXbuFBX4HQ16ZJ1f1UJifR2x0FLX1TXyxvQbZ\n7yTgy6B3UGb+FDVl+RoONo/mX7j7tXgGtSg0AZZWmDDpxw7u83iCPPa3BrbsHCI7I4Kffc9CbPSp\nhfwFgzLvftTN//6zDa9PZv6sWO67Iw2D/vy9hfoHvLy3pofKtb04XQG0GgVXLwqFVyaZRXjlhcjv\nl2locYYnYlRZHfQNjAZSqlQS+TmhbRiFuaFOiJgoEUgpCIIgCMLlx6TXcO/VRcwvTeWV1TVsOdjN\nLmsv187KYun0dNQq0SkqXBpEUWIcTo+f11bXcLCpn/7h0LfvQRl0mrH3c82cmEj/kJudNT1jXh/X\n006udQ/9iSlUlCnp9WtImjwBtVLi1U1D6A1GiovycDhdbNt9AICd1TJy0E92ioKrZ4VCbg51cKzd\nMIC7T41KI1NxtZG7KvLGfFyb3c9/PV5HdZ2DyROM/Oj+nFNude/u9fDLx+rYtW8Ik1HF9/4tnVnl\n5699rKnVxTuVXXy2aQB/QCbKpOKOimSWLkjAJMIrLyg2u59qq4OWjh527BmgtsGB1zu6/SjKpGLG\nlCgKLQYKLXpyMiNF5ocgCIIgCMJhclJM/PTucjbs7eCfa+v412f1fL6ng9sW51FqiT/fpycIX5pY\nwR0lEAzyxidWPt/Tjts72kMeHFlHHX7Z4b7Y18Hane3jHnfq5tUAxC6agFYhs1qZz5IsPQfaPWxv\n9HDN4hkoFAo2bt2Fz+9HqTAQDCSjj4C7KnThbRlKhYLcODNvNtvRRyr51X9YyEkfe4tCd6+HXz1m\npa3Tw7yZMTxwbyZqlQKPLxDOztCqxy9QyLLMmvV9PPdaK25PkBllUXz7axnnZZSiLMvsrbKz8sOu\n0fDKJC3XLU1k/mwRXnkhCAZl2rs84TDKqjo7bR2jXUWSBJmpEeFtGAUWA0kJIpBSEARBEAThRBSS\nxNySFMrzzbz9eQMfb2/liTf3UJIbx22L8kiKjTzfpygIp00UJY7yxifWkx4PejjPYeMIjxbf3Up2\n/X4GktNYXqKi0WegdF4B/qDMK1/YKJmQT0y0iZq6Jjq6e5FQYdDkIkkSty3REGUYXXAfqLHz2F8b\n0KgV/OL74xckGpqdPPoHKwNDfm5YlsidN6YgI/Pqmhp21vTQb/MQa9JSlp/ArQstxyT69g/6+PML\nTWzfYyMyQsnPvl/IlEkR53wBGQjIbNw6wMrKLuqbQuGVE/INrKgwU14SJcIrzyOPJ0hto4OqWkco\nE6LOgd1xZCDl5IlGCnP1zChPwBynQB8p2gwFQRAEQRBOV6ROxe2L85hXmsKrq2vYU9fH/oZ+rpqe\nzrWzss736QnCaRFFicN4fIFxt198GVM3hbok0pfkIUkSjQmTmGVS8+FeBx7JwKRCC3aHk2179gOg\n1+agUGhJSbAxMdsYPk5Tq4v/eqKOQFDmJw/lkJ87dkFizwEbv3mqHrcnyH23p3HtEjMAr66pPaLg\n0mfzhH++Y3F++PL1m/v52/+2YHcEmDzRyAP3ZFJUEEdPz/CZfWKOw+UKsGZ9H++u7g6HV86aGs2K\npYnj/t7C2dXb7w2HUVZbHTS0OAkcluWaGK+hvCQq1AWRqycjbTSQMiHBeE7fP4IgCIIgCJey1Hg9\n/35bKdure3jjk1o+3NTMF/s6+WpFESVZ0SJvQrioiKLEYYbsHvrHCLH8MsydzWQ1HsSWlsacCVoO\n+OKYWp7FgCPAe7udLJ4/J7RtY9tuTJEqXK5E1MpoTAY3D92SGD7Ooa0YDmeAh7+ZyZTiqDEfb90X\n/Tz1XBNI8MNvZ3PFtFD2w/EKLjtrernxylw8Hpm/vdzMhq2DaDUK/u3OdCoWxJ/T7oj+AS/vfxwK\nr3Q4A2g0EssWJrD8KjPJIrzynPH7ZZpaXeGxnFVWO739hwVSKiVys/QUWUKhlAW5hlMOTxUEQRAE\nQRBOnyRJTC00U5wbx4ebmvhwczN/enM3pkg1C6eksWBKKsZIzfk+TUE4IVGUOEyUQUusSTvmdI3T\nNXXTRwDkXZWDjIQvvxS1SuKN9cMU5OcRE2Wi2tpIZ3cvN8+bzJptWqINEj+4PQ71SI6EbdjPL//b\nSv+gj6/fmsr8WXHHPI4sy6xc1c1L/2gjMkLJjx/KYVLBaJfF8QouA8NuPt/SxytvdjIw5KfQoueh\n+zJJTjx344aa21y8XdnNZ1/04w/ImIwqbl+RTMVCEV55Lgzb/dTUO8IFiNp6J57D8lNMRhXTy0Jd\nEIUWA7lZIpBSEARBEAThQqBVK1kxN4crS1P54mA3H2xoYOXnDXywqYkripO5alo6iSJzQriAidXe\nYbRqJWX5CcfNlIgzaYnUqXG4fAzaPWjUStzewJi3TWpvJKO5BkdmOvkFevaQRmG+mYPtHuoGtSwr\ntzDscLJ9zwEkSc2nO1UoFfC1q3XoI0IFCZc7wKN/tNLe5WFFhZnrlyYe8zjBoMzzr7fy3poe4mLU\n/Pz7FjLTIo64zXgFFzkA3iEDTz3bikolcffNKVy3NDHcdj+ekw3LPB5ZltlXZeftyi627wmFV6Yk\narl+aSJXzo5FO86kE+HLkWWZ9k5POIyyqtZBa4c7fL0kQXqKjkJLaCRnkUVPklkrAikFQRAEQRAu\nYDFGLV+7ZgILS5NZv6eD1Vtb+HRnG2t3tlGaF0/FjAwsqVHiM51wwRFFiaMcGrm5s6aXgWE30QYt\nhZkx3DQ/B68vGF6EH1qUGyLV/GOtlXU7O4451tTNoS6JSUsz8QQVxE0rxR+UeW2LnSumXYFCkti4\ndRf+QBCjNp9AQMnyuWoykkKLfJ8/yP/7Uz3WBicLrojl7ptTj3kMry/I4083snHbIOmpOn7xfQvx\nsce2aY1VcPE5VTg7Iwn6FWRnRPDwN7KOKWYc7dB0kpMJyxz3GAGZjdsGeHtVN3VNTgAKLXpWLEtk\n2mQRXnmmeTxBrI2hLojqulAnxLB9tJCm0yooKTKOTsXI1aOPFP80CIIgCIIgXIx0GhVLpqazcEoq\n26t7qNzSzM7aXnbW9pKbYmLp9Aym5CeIz9zCBUOsPI6iVCi4Y3E+N16Ze1KdAEqFAt8YkzeSW+tI\na7HiyUknLdfIvshc8uKNrNrrwJyaS3SUkSprA109fUSo01EpjXj9fRRlxgNagkGZx59pZNf+YcqK\njXz3a5nHVDUdTj//98l69lfbmZBv4CcP5Rx3MXmo4LK9qpf2Bgn3gBZJgpuuTeSW65JRq05cVDh6\nOsl4YZljcblHwis/CoVXShLMKo/muqVmCi2GEz62cHL6BryhAsTIVoz65iMDKc3xGsommSjINVBo\n0ZOZFhEeOSsIgiAIgiBcGpQKBdOLEplWaKa2dYhVm5vZZe3lzyv3kRCt46ppGcwpTkarEaGYwvkl\nihLj0KqVmGOO3Xs1VqeA3eU78kayzLSRLInJSzMYDmrInFbCoDPAhiYlC+ZZGLY72LHnIGplDDp1\nMoGgC622g0hdMu29dv7wTD3WGj9KnZ8hVTd/Xysf0Y3Q2+/lV3+w0tLmZvbUaB7+ZtYJ9/grFQqm\nZqey4WMf7gEPKUlaHv5GFvk5JzfN4mTCMscq4PQP+vjg424q1/ZidwTQqCUqFsRz3VXmc5pbcSkK\nBGQaW11UhwMpHfT0ecPXq5QSuZmRFFhCBYjCXD2xMSLwSBAEQRAE4XIhSRL56dHkp0fT0edg9dYW\nNuzr5JXVNaxcX8/8slQWlacRbRCh8sL5IYoSp2isToGjpbZaSWlvIGBJIyHLRH3iBFJ1Gl5YN0R5\n2YyRbRu7CQZVmHTZyHIAu8dKqknJr17YSlsjuHojUGgCGFIdDDjkI7oRmlpdPPoHK30DPq5ZnMC9\nt6WdsP3K5w/y93c6+df7nQRlWL7EzFdvTDml3IYThWUO2T1HFHJa2l28vaqbdZv68ftlTAYVt12f\nTMWCeKJMYlLD6XA4/aNdEHUOausduD2HBVIaVEwrPTKQUmRzCIIgCIIgCADJcXrurihkxdwcPtnR\nyic72nj/iyYqtzQzc2ISS6elk5ogOpiFc0sUJUa4vX66B5zH3a5xvE6BsMO6JMoqMulDT2pJAVUd\nXryRmUSbjBysraertx+jbiKSpAKpidQEJS3ddjxDGly9kUiqIMZUOwrl6NaQnTW9TEhO5Pd/acTh\nDHD3zamsqDCfMKymqdXF48800tDswhyv4cF7M5lUaDzufcZyvOkkMUYdUQYtsiyzv8bO26u62LY7\nFF6ZbNZy3VIzC66IEwvkUyDLMh3dHqpqQ9swquoctLS5j7hNKJBSHw6lTEkUgZSCIAiCIAjC8Zn0\nGlbMzeHqmZls3NdJ5ZZmPt/Twed7OijOiaNiejqFmTHic6VwTlz2RYlD2zH21PXRM+A6bnDj8ToF\nDklrriGpowllQRpR6SZ6CiYTQOL9AzBlmgWb3cHOvVVEarJQKSKR6eWnd+fwm1d24LWrcHZFIClG\nChLqI7MqOtsD/PqP9QB875tZXDkr9gS/m8zKD7t4fWUH/oDM4nlx3HtrGhERp7dv7HjTSSZb4ti2\n08bKyi6sDaPhldcvTWRaWdQJp3kI4PEGqWt0hgoQI90QNrs/fL1Wo2BSoYGikQJEQa4eg/6y/xMW\nBEEQBEEQTpNGrWR+WSrzSlPYXdtL5ZZm9tb3sbe+j4xEA0unZzCt0IxKKb5YFM6ey35FcyrBjcfr\nFNBplERqFOEuiZKKTLpVsURlZrD6gAtLUTkAG7fuQkEMWlUC/oCDaRO9BIIyXV1+HB0GkMCQ6kCp\nDR5xfPeABldPBBE6if+4P4fJE03H/b3au9w88UwT1XUOYqJUfPfrmUydHHXqT9BRjp5OEhWpw6Qw\nsX6Nj3/2NiBJMGNKFCsqEkV45Qn0D/qotto5aHVQbbVT3+TCHxgtRCXEaZgzIYaiPD0FFgNZIpBS\nEARBEARBOAsUkkRZfgJl+QnUtQ9RuaWF7dXdPP3uAd5cW8eSqenMm5xCpO6yXz4KZ8Fl/a461eDG\n43UKzClJZom/g4auFnQT0jCkmJBKyxl0BWnwpJJvNHCgpp6+PhdG3USCsh+TsZ3bF0+mocWFo90A\nMhhSHKgiRkclyDK4enV4BnTodBK//s98sjOODeA8JBiUWfVpLy/9ow2PN8ic6TF88850TIYz81If\nmk6yqCyDtyu7+GzjIPVOLxq1xNL58Sy/ykxqkgivPFogINPc5hoJowx1QnT3jgZSKpWQnRFJYa6e\nwjwDBbn6MUe7CoIgCIIgCMLZlJsSxXdXRNEz6GL11hbW7+ng759aeWdDA1eWprBkajqxJvF5Xzhz\nLuuixKkGN8KxnQIxRh1l+fHcsiCXqmW/BEliwtIs+k1p6OPiWbdXJs+Si23Yzs59Nei1RUiSAofH\nikrtprPHw2+eqCcYkIhMdKA2jLbryzI4OyPxDmswmiR++5NCks0R4/4+vf1ennquid0HhjHolTx4\nbzZXTI85A8/UqNYON29XdrFuYz8+v4zRoOTW65KoWJhAtAivDHM4A9TUjxQgah3UHBVIadArmTrZ\nROHIVAxLlh6tVrTFCYIgCIIgCBeGhOgI7liSz3Vzslm3q40121up3NLCmm2tTCsys3RaBplJp55T\nJwhHu6yLEicT3Hi0Q50CN16Zy5DdEw7GHPhwLc591USXpqNLMqGaXEZ9j5+I5FIANmzdhU6ZiVKh\nw+VrxxcYpG9Q4v/8oY6+AR933ZSCW2M7YluEvT2SweEgeTmR/Ox7lnG7HWRZ5tON/Tz7agtOV5Dy\nEhPf/XomsdFnpkggyzK79w/ywuuNbN01BECSWcv1S80smB132S+mZVmmtd3Fxi19VNU5qKq109Lu\nRj4sEiQtORRIWWDRU2QxkJIkAikFQRAEQRCEC58hQs01s7K4aloGmw90UbmlmU37u9i0v4uizBiW\nTs+gOCdWfLYVTttlXZQ43naMsvz4cadwHLrvoS4KORik9b//BySJ3EVZOJIsqHR6tjREk5QRQbW1\nHtuQhkhNLL6ADbevFTkIrg4jAw4v111l5oZliUhSEjdemUtzu4M/P9dKd5ebaaVR/PBb2eMu/AeH\nfPzlpWa27BwiQqfg/nsyWDQn7oz8oxAIymzeMcjKD7uoHQmvzM/Vs6LCzPSy6Ms2vNLrOxRIGcqC\nqKpzMGQb7XDRaCQmFoS2YBRaQv81nqHtM4IgCIIgCIJwPqhVCuaUJHNFcRL7Gvqp3NLMgcYBDjYN\nkBKvZ+m0dGZOTEKtury/sBRO3WW/Ujq0HWNPXR+9g67wdoxDl4/H4wuEOyUclZ/iOlBLbFkaqsQY\nlEXFfN4QJDE9jyGbnf0H24hQWwjKXhyeOmQZ7O16/E4FV86K5Wu3pIaLCL29Pn7/p2a6e71cNT+e\nf/tq+rjhhl9sG+CvL7Vgs/uZVGjgwXszMccf291xqtyeAJ983s87H3XR1eNFkmDujDiWLYyj0KK/\n7KqgA0M+qqx2qq0OqqwO6pqc+P2jbRBxMWoWzU0gK01LoUVPVnokKtXl9RwJgiAIgiAIlwdJkijO\niaM4J47mrmEqtzSz5WA3z39Yxb8+q2dReRrzy1IxRIit3cLJueyLEoe2Y3zrxgjqGvvC2zHGc2iE\n6M6aHvptHmINaq578Um0ComcxTkEcydiC6ix6YvQARu37kVJFpIkoVC2AD4C/Ub8TiWlk4w8cE8m\nipGOgyqrnV8/XofdEeCOG5K56dqkMQsAdoefp19p4bNNA2jUEvfdnsbVixLCxzldg0M+Pvikhw8/\n6cHuCKBWSVx1ZTzXXWWmtCSBnp7hL3X8i0EgKNPc6qK6zhEOpezqGQ2kVCggOz2Swjw9hZZQJ0R8\nrIaEBONl8fwIgiAIgiAIwiEZiUa+uXwiN16Zy5rtrazb1ca/PqvnvS8amVucwpJpacdk9AnC0S77\nosQhOo3qpP5gjh4hGrN9C9q2NsxT01AkJ0BWPttaTETGmdhXZcXliEOt1LB0pooryybx7GstrK7p\nJy87kv+4Pyf8jfqWnYP8918b8AdkHrgnk0Vz48Z8/J37bDz1XBP9gz7ysiN5+BtZpCZ/ufTbtg43\n73zUzacb+vD5ZQx6JTcvT+LqRZd+eKXTFaCmbiSQss5BTZ0Dl/vIQMryksMCKbMj0WnHL1oJgiAI\ngiAIwuUm1qTjlgUWls/O4rPd7aze1sLHO1r5ZGcrU/ITqJieQW5q1Pk+TeECJYoSp+DoEaJSMMDU\nzatBIZGxMBdF4WTqBiWUcYUM2oapqhlGq0whyuBm8bQ43qnsZvXaflKTtPzse5bw4rZybQ9/e7kF\ntVrBTx7Kobzk2D9YlzvAC39v46O1vaiUEnfckMxXrk4ad2vHiciyzMFaB29XdrF11xCyDIkJGq67\nKpGFc2IvyYW3LMt09XjDIzmrrQ6a2lxHBFKmJmkpsBgoGgmlTE3SfekOFEEQBEEQBEG4HERoVSyd\nnsGi8jS2VXdTubmF7dU9bK/uwZIWxdJpGZTlxYvP18IRRFHiFBw9QtRSvYvowV6SpqejyEglkJxJ\nly0fWYYt261olclo1H6+f1sM6zb28+Lf24iLUfOLH1gwGVXIssxrKzv4x7udmIwqfva9XPKy9cc8\n7oEaO08820hXj5fMNB0PfyOL7IzTa4MKBGW27BhkZWU3NXUOAPKyI1mxLJEZUy6t8EqfL0hdkzO8\nDaPa6mDw8EBKtURRniG8DaMgV4/JKP4kBEEQBEEQBOHLUCkVzJyQxIyiRKqbB1m1pZk9dX1YW/di\njolg6bR0ZhcnH3fbvHD5ECuwU3D4CFFFIMDULWtAqSB9YS7ShDL6ScCtiCZe50YRSEGpgO/eaKTG\nauep55vQRyr5+fctmOO1+P0yf32pmY8/7yPJrOUX388lOfHIbRheX5BX32rnncpuJOArVydy2/XJ\nqNWnnmjr8QT5ZEMf73zUTWd3qLAyrTSKFRWJFOVdGuGVg0M+quscHBwpQFgbjwykjI1WM3tqdGgr\nRp6erPQIkQ4sCIIgCIIgCGeJJEkUZsZQmBlDW6+Dj7Y088X+Tl7+qIa31jewoCyVheVpROk15/tU\nhfNIFCVOweEjRPOqdhA11EfyzAyUllycpiQO2NOJVAf4dMMwLg/ctECLc9jN7/7cgEop8ZOHcslM\ni8DtCfD7vzSwfY8NS1YkP/1e7jHZDXWNTh5/ppGWdjfJZi0PfSOTQovhlM950Objw5HwymF7KLxy\nybw4rluaSNqXzKI4nwJBmdZ2d2grRq2DqjpHuNgCoUDKrPSIcBZEKJBSfUkUXwRBEARBEAThYpMa\nr+eeq4v4yrwcPt7Rxqc7Wnl3YyMfbm5m9qQklk5PJznu2K5x4dInihKn6NaFFvD7SX7xYySVgrQF\nOciFpbQGM/GjZKDVRlNnkPICFamxPn76Gys+f5D/fCCHCfkGBm0+fv14HdYGJ1OKTfz7d7KJ0I22\nLfn9Mv98v5N/vNdBIABXL0rgrptSTjnjoa0zFF65dkMfXt9IeOW1I+GVURdfeKXLFaCmPlR8qLY6\nqK6z43SNBlLqI5VMKTaFCxCW7MgjnldBEARBEARBEM6/KIOWr8zL4ZqZmWzY18FHW1r4bHc7n+1u\npzgnjvKCBIpz4ogxas/3qQrniChKnCKlQsHi3ioah/pJviIT9aRJDBtSaB2ORxv08O42N0mxCuaX\nSfx//y803vP+ezKYVhpNR7eHRx+z0tHtYeGcOL5zd0Z4+gZAS5uLx59poq7JSXysmgfuyWTyRNMp\nnV+V1c7KD7vYcii8Ml7DdUvNLJwTd9GEV8qyTHevdzQLos5BU4uL4GGBlCmJWmZO0YdDKVOTRSCl\nIAiCIAiCIFwstBolC6ekMb80lZ21Paza0sze+j721vcBkJZgoCQ3juKcWHJTo1ApxbbrS5UoSpyi\noMdL+x+fRaFWkLYoH5+lmP2OLLTKIO+tHkKjhhvnq/jNE1Z6+33ceWMKi+fGY21w8Ogf67AN+7n5\n2iRuvyE5vJUgEJR576NuXvlXOz6/zIIrYrnv9nT0kSdXRAgEZbbuHGLlqi6qR8IrLdmRrKhIZOaU\n6NOe0HGu+PxB6ptc4TDKKquDgSFf+HqNWqIwLxREWWjRU5CrJ+oSH1UqCIIgCIIgCJcDhUKivMBM\neYGZzn4ne+tChYmq5kFae+x8sKmJCK2KiVkxFOfEMUl0UVxyRFHiFPW8uhJvexepc7NQlpTSqszA\n7o1g/55B3F64dZGGp19qoKXdzbWLE/jK1Yls3zPE7//SgNcb5Ft3pVOxICF8vM5uD08+18SBGjtR\nJhXf+VoGM8qiT+pcPN4gn46EV3Z0hfIUpk42saIikQn5hgs2P2HI5gtvw6iy2rE2OPEdFkgZE6Vm\n1tTo0FaMXAPZmSKQUhAEQRAEQRAudUmxkSTFRrJkWjoeb4Cq5gH21Pext66PbdU9bKvuASDDbKA4\nN47inDhyU00oFWKtcDETRYlTEHS5aX/iWRRqJalLJuDJmkSdK43hfhf1LV5mF6v4aHUzVVYHc2fE\ncM9taXy6oZ8/vdCESinxowdywgUHWZb5aF0vL7zRhtsTZFZ5NN+6K/2kOgCGbD5WfdrLBx/3YLP7\nUakkFs+N47qlZtJTIs7203BKgkGZ1g73SBilnSqrI1xAAVBIoUDKgnAgpZ6EOM0FW1ARBEEQBEEQ\nBOHs02qUTLbEM9kSjyzLR3RRVLcM0txt5/0vmojUqpiYHUtxTmirR5RBdFFcbERR4hR0v/IWvq4+\n0ubnoCibitWXQyAosW7TMOmJCtrqOtm+x8bkiUYeuDeDf77fyavtjblxAAAgAElEQVRvdWDQK/np\nw7nh6Rl9A17+9HwzO/fZ0Ecq+d43s5g3M+aEC/H2LjfvftTNJ5+PhlfeeE0i1yw2E3OBhFe63AFq\nG5xU1YYKENV1DpyuQPj6yAglZZNM4QJEXraeiIiLI+tCEARBEARBEIRzT5IkkuP0JMfpuWp6Bm6v\nn6qmQfbW97Gnro+tVd1sreoGIDPRSHFuLCU58eSkmETu3EVAFCVOUsDppuPxZ1FqlKRUlDCUVEyn\nO5YNXwwQoQVDcJD3N/ZjyYrk37+TzfOvt7Hq014S4jT84gcW0pJ1yLLM+s0D/O1/W3A4A5RNMnH/\nPRnExRx/Lm+V1c7bld1s3jGILIM5XsPyJWYWzY07rxMmZFmmp89LtdXBQauDaqudxqMCKZPNWqaX\nRVFkMVBg0ZOeIgIpBUEQBEEQBEE4fTqNitK8eErzQl0UHX1O9ox0UdS0DNLUNcx7G5vQ6w7voojD\npD/+uks4P0RR4iR1v/Qmvr5B0hfmIpXPoNqbTXOTi/5BP5PS3LzzXifJiVp+dH8OTz3bxOadQ2Sl\nR/Dz7+USG6NhyObjf15u4Yvtg+i0Cr59dzpXXRk/bndEMCizdVcovLLKGgqvzM2MZMUyM7PKY85L\neKXPH6Sh2TVShAiFUvYPjgZSqlUS+SNhlIeCKaNFIKUgCIIgCIIgCGeJJEmkxOtJiddTMSMDl8dP\nVdNAqIuivo8tB7vZcjDURZGVZKQ4J46S3Diyk0UXxYVCFCVOQsDhpOOJZ1FqVSRfN41WUyl9Q1r2\n7O8jPznAO+81ExOl5offzuax/2mgyuqgpMjIfzyQQ2SEki07B/nzi80M2fwU5el58L4sks1j73Xy\neIOs3djH25Wj4ZXlJaHwyokF5za80jbsp3okB6Kuyc3BGhte32gbRLRJxczyaApzQ0WInIwI1GoR\nMiMIgiAIgiAIwvkRoVVRlp9AWX4CsizT3utgb30/e+p6qW0dorFzmHc3NmKIUDMxO5aSnDgm5sRi\nihRdFOeLKEqchK7n3sA/OEzGYguBsiuo96SyaesQidEyqz+qIzJCyQP3ZvCHvzXQ1uFh3swYHrg3\nE69X5slnG/lkQz9qlcTXb0nl2qvMKMeoyNmG/Xz4aU8ovHI4FF65aE4ovDIj9eyHVwaDMm0dbqrq\nQiM5q2rttB8eSKmAjNSI0EhOi54iiwFzvAikFARBEM6Ompoavvvd7/L1r3+dO++8k4ceeoiBgQEA\nBgcHKS0t5dFHH+WZZ55h1apVSJLEAw88wJVXXnmez1wQBEG4UEiSRGqCgdQEQ7iL4kBjqItib30f\nmw90sflAFxKQlWyiOCeW4tw4spNEF8W5JIoSJxAYttP5pxdQRahIumkuVZrJHDjgwe/1s2t7IwpJ\n4p5bU3nquWYGhnysqDBz102p7Ksa5snnmujt95GTGcHD38gas7jQ0e3hncouPtnQh9cro48MhVde\nvchMbPTZ2/rg9gSorXdSZbVTXRcKpLQ7RgMpI3QKSicaKRzJgpg9PRGnw3XWzkcQBEEQDnE6nTz6\n6KPMmjUrfNkTTzwR/v8f//jH3HzzzbS0tPDBBx/w+uuvY7fbueOOO5gzZw5KpQhQFgRBEI4VoVVR\nXpBAeUGoi6KtxxEOy7S2DdHQYeOdDaEuikk5I10U2bEYRRfFWSWKEifQ+fSr+G0OMivysU+6ktqB\nKKx1A/Q1t+F2+bjluiSee70VtyfIvbencdW8eJ59rZUPPu5BoYBbr0vipmuTUamOrLTV1DlYuaqL\nTSPhlQlxGpZfZWbxnLizMo2ip88bKkCM5EE0trgIBkevTzJrmVoSRcHIVIz01IgjOjr0kSqcjjN+\nWoIgCIJwDI1Gw9NPP83TTz99zHX19fUMDw9TUlLCm2++ydy5c9FoNMTGxpKamorVaqWgoOA8nLUg\nCIJwMZEkiTSzgTSzgWUzM3G6/Rxs6g8HZm7a38Wm/aEuipwUUygsMzeOzCQjCtEtfkaJosRx+IeG\n6fzry6gi1STetoSt8kS27xzG2d/PQK+DxXPjePO9LpDgh9/KJi5WzfcfOUhHl4f0FB0PfyOL3KzI\n8PGCQZltu0PhlQdrQyv8nMwIVlQkMnvqmQuv9PtlGlqcoZGc1lAmRN/AaCClSiWRnxPahlGYG+qE\nuFBGigqCIAiCSqVCpRr7I8pLL73EnXfeCUBvby+xsbHh62JjY+np6TluUSImJhKV6ux0UiQkGM/K\ncYWTJ16D80+8BuefeA1OX2Z6DBVzcpFlmcYOG9sOdrG9qpuDjf3UtdtY+XkDUQYNUwrMlBcmUlZg\nHnOih3gNTo0oShxH519eJGB3kXXNBDrylrD9IAz12mhv7KV0kpE16/uIjFDyo+9ms+fgMI/9Txcy\ncP1SM3d8JQXNSOij1xdk7cZ+3qnsoq0zlNMwpTgUXjmp8MuHV9rsfqqtjnAoZW2DA693NJAyyqRi\nxpQoCi0GCi16cjIjw+cmCIIgCBcLr9fL9u3beeSRR8a8XpblMS8/3MCA8wyfVUhCgpGenuGzcmzh\n5IjX4PwTr8H5J16DM8egVjC/JJn5Jck43T4ONA6Euyg+3d7Kp9tbkaRQF0XJSBdFRqKRRLNJvAZj\nOF6hRhQlxuEfGKLr6VdR6zXE3bmcVYMZWGv7aa5pJys9gl37homLUXPvbWm88EYbja0uEuM1PHhf\nJhMLQk+4ze6n8tMe3v+4hyGbH5VSYuEVsVy3NJHMtNMLrwwGZdq7PFTVhgoQVXV22jpGAyklCTJS\ndeECRIHFQFKCCKQUBEEQLn5bt26lpKQk/LPZbKahoSH8c1dXF2az+XycmiAIgnAJi9SpmVpoZmqh\nGVmWae6yh8MyrW1D1LXZeGt9Aya9hsl5CaTGRpCdYiIz0YhGLXKOTkQUJcbR8eQzBFxeMlZMpjZ9\nKVvWOmipaSPGpKSxxUV6io7ykij+8LdG/AGZq+bH8/VbUonQKens9vDu6m4+Xt+HxxskMkLJDcsS\nuXZxArExpxaS4vEEqW10UFXrCIdSHh5IqdMqmDzBSKFFT6HFQF6OHn2keOMLgiAIl569e/dSWFgY\n/nnmzJk8//zzPPjggwwMDNDd3Y3FYjmPZygIgiBc6iRJIjPJSGaSkWtnZ+Fw+9jf0M/euj72NvSz\nfldb+LYKSSLNrCcnJYrsZCM5ySaS4/RissdRRFFiDL6+QbqefxO1UYvh7lt486CehgMNqCU/fQMB\nLFmRyLLMylVdxEaruf+eDKYUR1FT7+DtVV1s2j5IUIb4WDV3XJXMkrnxJx1e2dvvDYdRVlsdNLQ4\nCYzWIEiM1zCl2ERRnoGCXD0ZaRFjjhgVBEEQhIvVvn37+O1vf0tbWxsqlYrKykqefPJJenp6yMjI\nCN8uJSWFW265hTvvvBNJknjkkUdQKMT2REEQBOHc0evUTC9KZHpRIrIsE1Ao2ba/nYb2Yeo7hmjq\ntNPcZWftztDtdRolWUnGkUKFiZwUEzFG7fn9Jc4zUZQYQ+fvnyLo8ZF5/VQ2RSxk19ZO3MPD+Hwy\nWekRNLU58flg3swY7rs9jeo6Bz/9TQ0HauwAZGeMhlcePXXjcH6/TFOri6qRMMoqq53e/sMCKZUS\nuVl6CnP1FObpKcg1nNUxoYIgCIJwIZg0aRIvv/zyMZf//Oc/P+ayu+66i7vuuutcnJYgCIIgHJck\nSSTH65k5IYmZE5IA8AeCtPbYaWi3Ud9uo77DRlXzIFXNg+H7xRi14QJFdrKJrCQjEdrLZ6l++fym\nJ8nX3UvXa++iMWmR7/oGH21w0tfWTSAgExujprHFhdGg5IF70vF4g/zkNzXhTIeySSZWVJgpLjKO\nmeEwbPdTU+8IFyBq6514vKNzOU1GFdPLosJbMXKzRCClIAiCIAiCIAjCxUqlVJCVZCIrycSCKaHL\nnG4/jZ02GjpGChXtNnbU9LCjpgcACUiJ15OdYiInOVSoSDPrUV6i3YCiKHGUjv/7GEFvgNRbZ/F2\ndwl1e6sJBGRUKon+AR9lk0xkpet4/vVWBm1+lEqYPzuWFRVHhlfKskx7pyccRllV66C1wx2+XpIg\nPSUUSFlg0VNk0ZNk1opASkEQBEEQBEEQhEtYpE7FhKxYJmSFxlrLsszAsIf69tFCRWPnMG29Dj7f\n0wGARqUgIymUS5EzUqyIi9JdEutHUZQ4jLe9k+5/fYw2Wkf3jfez7vVGfJ7QdgqVUmJivoH91cPs\n3GcjMkLBDcsSuXpRAvGxGjyeIPurh6myOqiuC3VCDNuPDKQsKTJSYNGHpmLk6tFHiqdfEARBEARB\nEAThciZJErEmHbEmHVMLQ1OkgkGZ9l4H9SNFioYOG3VtQ1hbh8L3M0aqw9s+cpJNZKeY0Osuvu3+\nYlV8mI5Hf0PQFyDxxgX8bp0R+2A7AFEmFTabn90HQmNAly8xUz7ZRFOrm3cqu6my2vn/27v/qCzr\n+4/jzxtuSAFRQG6UTFNCQTTUsk2Rakvchp48x5n5A9xWWUaa1SwYUdrJqThaazpXlh09iINST7qc\n1pbZPIGaoy9TkjwaNX7FD0EQ5DfX9w/ynj/Qaep93Xq/Hv947s993df1vt7n4+XH9/W5PtdX/zl7\nQUpbb09GDvNlSEjnqzkH9OuOu/v1X8USERERERGRa8vNzUI/mw/9bD7cHRkMQHNLO9+Un7SvTVFY\nWse/jx3n38eO238X5NfdvjbFwGBf+tt64GF17sc+nKYosXTpUvLy8rBYLCQnJ5/1HnJHaDj6FRXv\nZ3OTvxd770rgq/dK7d/V1rURHHQTg0O8aG012P5RJeve+e+rXqzuFkIGeDHkts4CRFiI92W/+lNE\nRERERETkQm7ydGfwLb0YfEsve1ttfTOFZZ1v+igsreOrspPk5JeTk18OgLubhf5BPgzq25OBwZ1v\n/bD5dcfNiR77cIqixP79+/nmm2/Iysri2LFjJCcnk5WV5dAY/v1kCkZ7B34PxLBk+wkwOtt9vN1p\nbumgtLyZ0vLOBS19fayMHnH2gpQ3eTp39UlERERERERuLD19bmJE6E2MCO0NQIdhUF59yr42RWFZ\nHf8pr6ew7CTkdv7G6yYrA7+bTXF6jQpfb/NuqjtFUSInJ4fx48cDEBISQm1tLfX19fj4+DgshlP/\n9yXdAn143WMqbS2N9vb6hvbvFqT0ti9KGRykBSlFRERERETEubhZLPQN8KZvgDdjh/UFoLWtnf9U\n1J+1kGZ+YTX5hdX23wX4dmNQsC9D+vfi7shgrO6Ou+nuFEWJqqoqIiIi7J/9/f2prKx0aFGi6PEX\nONHWjcO5jQwJ8eL2cF+GfLcgpY+3U6RJRERERERE5LJ4WN0JCe5JSHBPe1t9Yytfn34l6Xd/flZQ\nwWcFFZ3rUfT1dVh8Tvm/bcMwLvq9n58XVqv7VT1m1Kz7aGxsZ96LPbFqQcouBQb2MDsEp6b8XJzy\nc3HKz8UpPxen/IiIiMjl8OnuwbBBAQwbFAB0/h+8qraJ2voWbu3j2HGFUxQlbDYbVVVV9s8VFRUE\nBgZecPuamlNXPYbQQT2orDxJTXX9Vd/3jSAwsDM/0jXl5+KUn4tTfi5O+bk4R+dHBRAREZEbj8Vi\nIbBXdwJ7dXf4sZ1idcaoqCg++OADAPLz87HZbA59dENEREREREREHM8pZkqMGjWKiIgIpk+fjsVi\nYdGiRWaHJCIiIiIiIiLXmFMUJQAWLlxodggiIiIiIiIi4kBO8fiGiIiIiIiIiLgeFSVERERERERE\nxBQqSoiIiIiIiIiIKVSUEBERERERERFTqCghIiIiIiIiIqZQUUJERERERERETKGihIiIiIiIiIiY\nQkUJERERERERETGFihIiIiIiIiIiYgoVJURERERERETEFCpKiIiIiIiIiIgpLIZhGGYHISIiIiIi\nIiKuRzMlRERERERERMQUKkqIiIiIiIiIiClUlBARERERERERU6goISIiIiIiIiKmUFFCRERERERE\nREyhooSIiIiIiIiImMJqdgDOYOnSpeTl5WGxWEhOTub22283OySH2LdvHwsWLCA0NBSAwYMH88gj\nj/Dcc8/R3t5OYGAgv/vd7/D09GTbtm2sX78eNzc3pk2bxgMPPEBraytJSUmUlpbi7u7OsmXLuOWW\nW0w+q6vjyJEjJCQk8Mtf/pK4uDjKysquOC8FBQUsXrwYgCFDhvDSSy+Ze5JX4Nz8JCUlkZ+fT69e\nvQB4+OGHuffee102PytWrOBf//oXbW1tPPbYYwwfPlz95wzn5mfXrl3qP0BjYyNJSUkcP36c5uZm\nEhISCAsLU99xcq46hnAm515TJkyYYHZILqmpqYlJkyaRkJDAlClTzA7H5Wzbto233noLq9XKk08+\nyb333mt2SC6noaGBxMREamtraW1t5YknniA6OtrssK4Phovbt2+f8eijjxqGYRhHjx41pk2bZnJE\njrN3715j/vz5Z7UlJSUZf/vb3wzDMIxXXnnFyMjIMBoaGowJEyYYdXV1RmNjozFx4kSjpqbG2LJl\ni7F48WLDMAxjz549xoIFCxx+DtdCQ0ODERcXZ6SkpBjp6emGYVydvMTFxRl5eXmGYRjGM888Y+ze\nvduEs7tyXeUnMTHR2LVr13nbuWJ+cnJyjEceecQwDMOorq427rnnHvWfM3SVH/WfTtu3bzfWrFlj\nGIZhFBcXGxMmTFDfcXKuPIZwFl1dU8Qcv//9740pU6YYmzdvNjsUl1NdXW1MmDDBOHnypFFeXm6k\npKSYHZJLSk9PN9LS0gzDMIxvv/3W+MlPfmJyRNcPl398Iycnh/HjxwMQEhJCbW0t9fX1Jkdlnn37\n9nHfffcB8KMf/YicnBzy8vIYPnw4PXr0oFu3bowaNYrc3FxycnKIiYkBYOzYseTm5poZ+lXj6enJ\nm2++ic1ms7ddaV5aWlooKSmx30E7vY/rUVf56Yqr5mf06NG89tprAPj6+tLY2Kj+c4au8tPe3n7e\ndq6Yn9jYWObMmQNAWVkZQUFB6jtOTmMI813qNUWurWPHjnH06FHdnTdJTk4OY8aMwcfHB5vNxssv\nv2x2SC7Jz8+PEydOAFBXV4efn5/JEV0/XL4oUVVVdVaH8ff3p7Ky0sSIHOvo0aPMnTuXGTNm8Omn\nn9LY2IinpycAAQEBVFZWUlVVhb+/v/03p3N0ZrubmxsWi4WWlhZTzuNqslqtdOvW7ay2K81LVVUV\nvr6+9m1P7+N61FV+ADZs2MDs2bN5+umnqa6udtn8uLu74+XlBcCmTZu4++671X/O0FV+3N3d1X/O\nMH36dBYuXEhycrL6jpNz9TGEM7jQNUUcKzU1laSkJLPDcFnFxcU0NTUxd+5cZs6cqeKzSSZOnEhp\naSkxMTHExcWRmJhodkjXDa0pcQ7DMMwOwWFuvfVW5s2bx89+9jOKioqYPXv2WXcXLpSLy22/0VyN\nvNxouZo8eTK9evUiPDycNWvWsGrVKkaOHHnWNq6Wn3/84x9s2rSJt99++6znm9V/Op2Zn0OHDqn/\nnCEzM5PDhw/z7LPPnnUu6jvOT/k1z5nXFHGs9957jxEjRtww64pdr06cOMGqVasoLS1l9uzZfPzx\nx1gsFrPDcilbt24lODiYtWvXUlBQQHJyMlu2bDE7rOuCy8+UsNlsVFVV2T9XVFQQGBhoYkSOExQU\nRGxsLBaLhf79+9O7d29qa2tpamoCoLy8HJvN1mWOTrefviPU2tqKYRj2O3o3Gi8vryvKS2BgoH06\n15n7uFGMGTOG8PBwAH784x9z5MgRl87Pnj17eP3113nzzTfp0aOH+s85zs2P+k+nQ4cOUVZWBkB4\neDjt7e14e3ur7zgxVx5DOJNzryniWLt37+ajjz5i2rRpvPvuu6xevZrs7Gyzw3IpAQEBjBw5EqvV\nSv/+/fH29qa6utrssFxObm4u48aNAyAsLIyKigo9TnaJXL4oERUVxQcffABAfn4+NpsNHx8fk6Ny\njG3btrF27VoAKisrOX78OFOmTLHn48MPPyQ6OprIyEgOHjxIXV0dDQ0N5ObmcueddxIVFcXOnTsB\n+Pjjj/nBD35g2rlca2PHjr2ivHh4eDBo0CAOHDhw1j5uFPPnz6eoqAjoXH8jNDTUZfNz8uRJVqxY\nwRtvvGF/m4T6z391lR/1n04HDhyw3+Wtqqri1KlT6jtOzpXHEM6iq2uKONYf/vAHNm/ezDvvvMMD\nDzxAQkICY8eONTsslzJu3Dj27t1LR0cHNTU1nDp1SusZmGDAgAHk5eUBUFJSgre3tx4nu0QWQ3MN\nSUtL48CBA1gsFhYtWkRYWJjZITlEfX09CxcupK6ujtbWVubNm0d4eDiJiYk0NzcTHBzMsmXL8PDw\nYOfOnaxduxaLxUJcXBz3338/7e3tpKSk8PXXX+Pp6cny5cvp27ev2ad1xQ4dOkRqaiolJSVYrVaC\ngoJIS0sjKSnpivJy9OhRXnzxRTo6OoiMjOQ3v/mN2af6vXSVn7i4ONasWUP37t3x8vJi2bJlBAQE\nuGR+srKyWLlyJQMHDrS3LV++nJSUFPUfus7PlClT2LBhg8v3n6amJp5//nnKyspoampi3rx5DBs2\n7IqvyTdCbpyZq44hnEVX15TU1FSCg4NNjMp1rVy5kptvvlmvBDVBZmYmmzZtAuDxxx+3L5IsjtPQ\n0EBycjLHjx+nra2NBQsWMGbMGLPDui6oKCEiIiIiIiIipnD5xzdERERERERExBwqSoiIiIiIiIiI\nKVSUEBERERERERFTqCghIiIiIiIiIqZQUUJERERERERETKGihIiIiIiIXDPFxcUMGzaM+Ph44uPj\nmT59Or/+9a+pq6u75H3Ex8fT3t5+ydvPmDGDffv2fZ9wRcTBVJQQEbZu3XrR7z/55BNOnDhx0W3i\n4+PJzs6+mmGJiIjIDcLf35/09HTS09PJzMzEZrPx5z//+ZJ/n56ejru7+zWMUETMYjU7ABExV3t7\nO6tXr2by5MkX3GbdunUsXryYXr16OTAyERERuVGNHj2arKwsCgoKSE1Npa2tjdbWVl588UWGDh1K\nfHw8YWFhHD58mPXr1zN06FDy8/NpaWnhhRde4Ntvv6WtrY3Jkyczc+ZMGhsbefrpp6mpqWHAgAE0\nNzcDUF5ezsKFCwFoamriwQcfZOrUqWaeuoicQ0UJEReXnJxMSUkJDz30ELGxsWRmZtK9e3cCAgJY\nsmQJ27Zt48CBAyxcuJBly5ZRWFjIW2+9haenJ+3t7axYsYJ+/fr9z+MUFxfz+OOPM3jwYEJDQ5kz\nZw5Lly4lPz8fgB/+8Ic89dRTAKxevZrdu3djtVoJDQ0lJSWF8vJyHnvsMaKiojhw4AB+fn7cf//9\nbN26lZKSEl577TXCwsJIS0tj7969eHp6EhQURGpqKp6entc0hyIiInLp2tvb+fvf/84dd9zBs88+\ny5/+9Cf69+9PQUEBycnJbNmyBQAvLy82bNhw1m/T09Px9fXllVdeoampidjYWKKjo8nOzqZbt25k\nZWVRUVHBfffdB8COHTsYNGgQL730Es3Nzbz77rsOP18RuTg9viHi4ubPn4+/vz9Llixh5cqVrFu3\njvT0dPr27cu6deuYOXMmgYGBpKWlcdttt1FXV8err75Keno699xzDxkZGZd8rGPHjvHEE08wd+5c\nduzYQXFxMX/5y1/IyMjg008/Zf/+/Xz++ed8+OGHZGRksHHjRmpqanj//fcBKCwsZMaMGWzZsoXC\nwkKKiop4++23mTRpEps3b6a2tpaMjAyysrLYuHEjMTExVFVVXavUiYiIyCWqrq62rykxe/ZsbDYb\nP//5zyksLOT5558nPj6e3/72t9TX19PR0QHAqFGjzttPXl4eUVFRAHTr1o1hw4aRn5/PkSNHuOOO\nOwCw2WwMGjQIgOjoaHJyckhKSmLXrl08+OCDDjpjEblUmikhIgB88cUXRERE4OPjA8Bdd91FZmbm\nedv17t2bxMREDMOgsrKSkSNHXvIxevbsaR8k5OXlMWbMGCwWC+7u7tx5550cPHgQd3d3Ro8ejYeH\nhz2OgwcPMnr0aPz8/Bg4cCAAQUFB9sFKnz59KC0tpWfPnkRHRxMXF0dMTAyxsbH06dPnivIiIiIi\nV+70mhJnOnnyJB4eHue1n3Z6LHAmi8Vy1mfDMLBYLBiGgZvbf++3ni5shISEsH37dj777DN27tzJ\n+vXruxzfiIh5NFNCRLp0+h/5M7W2tvLUU0/x8ssvs2HDBuLj4y9rn2cOLi40qLhQO3DeAldnfjYM\nA4A//vGPLFmyBIC4uDgOHz58WTGKiIiIY/To0YN+/frxySefAJ0zIletWnXR30RGRrJnzx4ATp06\nRX5+PhEREYSEhPD5558DUFZWRmFhIQB//etfOXjwIGPHjmXRokWUlZXR1tZ2Dc9KRC6XihIiLs7N\nzY22tjb79Mf6+noAsrOziYyMBDoLCG1tbTQ0NODm5sbNN99Mc3MzH330ES0tLd/ruCNGjCA7OxvD\nMGhra2P//v1ERkYyYsQI9u3bR2trKwA5OTn2OP6XoqIi1q1bR0hICA899BAxMTEUFBR8r/hERETk\n2ktNTeWNN95g1qxZJCUl2R/NuJD4+HgaGhqYNWsWv/jFL0hISKBfv35MnjyZmpoaZs6cyauvvsrw\n4cMBuO2221i+fDlxcXHMnj2bOXPmYLVqsriIM9HfSBEXZ7PZ6N27NwkJCTz66KP86le/wtPTkz59\n+vDMM88AMG7cOObOnUtqaiqTJk1i6tSpBAcH8/DDD/Pcc8+xY8eOyz7uT3/6U3Jzc5kxYwYdHR2M\nHz/e/izoxIkTmTVrFm5ubkRERDBp0iRKS0v/5z6DgoL44osvmDp1Kt7e3vTs2ZN58+ZddmwiIiJy\n9fTr149//vOfXX43dOhQNm7ceF77uY90fPnllwBYrVbS0tLO297Hx4e1a9d2eYx33nnnckMWEQey\nGKfnPIuIiIiIiIiIOJBmSojIVVNUVERycnKX3yUnJxMeHtjibPIAAABUSURBVO7giERERERExJlp\npoSIiIiIiIiImEILXYqIiIiIiIiIKVSUEBERERERERFTqCghIiIiIiIiIqZQUUJERERERERETKGi\nhIiIiIiIiIiY4v8BBFl0kCEKC+4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ajVM7rkoYXeL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "T3zmldDwYy5c", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=500,\n", + " batch_size=5\n", + ")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "M8H0_D4vYa49", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This is just one possible configuration; there may be other combinations of settings that also give good results. Note that in general, this exercise isn't about finding the *one best* setting, but to help build your intutions about how tweaking the model configuration affects prediction quality." + ] + }, + { + "metadata": { + "id": "QU5sLyYTqzqL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Is There a Standard Heuristic for Model Tuning?\n", + "\n", + "This is a commonly asked question. The short answer is that the effects of different hyperparameters are data dependent. So there are no hard-and-fast rules; you'll need to test on your data.\n", + "\n", + "That said, here are a few rules of thumb that may help guide you:\n", + "\n", + " * Training error should steadily decrease, steeply at first, and should eventually plateau as training converges.\n", + " * If the training has not converged, try running it for longer.\n", + " * If the training error decreases too slowly, increasing the learning rate may help it decrease faster.\n", + " * But sometimes the exact opposite may happen if the learning rate is too high.\n", + " * If the training error varies wildly, try decreasing the learning rate.\n", + " * Lower learning rate plus larger number of steps or larger batch size is often a good combination.\n", + " * Very small batch sizes can also cause instability. First try larger values like 100 or 1000, and decrease until you see degradation.\n", + "\n", + "Again, never go strictly by these rules of thumb, because the effects are data dependent. Always experiment and verify." + ] + }, + { + "metadata": { + "id": "GpV-uF_cBCBU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Feature\n", + "\n", + "See if you can do any better by replacing the `total_rooms` feature with the `population` feature.\n", + "\n", + "Don't take more than 5 minutes on this portion." + ] + }, + { + "metadata": { + "id": "YMyOxzb0ZlAH", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 969 + }, + "outputId": "d5df5f3d-a51c-4db5-8697-c806efa46268" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=1000,\n", + " batch_size=5,\n", + " input_feature=\"population\"\n", + ")" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 225.63\n", + " period 01 : 214.62\n", + " period 02 : 204.86\n", + " period 03 : 196.59\n", + " period 04 : 189.80\n", + " period 05 : 184.24\n", + " period 06 : 180.03\n", + " period 07 : 178.07\n", + " period 08 : 176.70\n", + " period 09 : 176.02\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 119.8 207.3\n", + "std 96.2 116.0\n", + "min 0.3 15.0\n", + "25% 66.2 119.4\n", + "50% 97.8 180.4\n", + "75% 144.2 265.0\n", + "max 2990.3 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean119.8207.3
std96.2116.0
min0.315.0
25%66.2119.4
50%97.8180.4
75%144.2265.0
max2990.3500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 176.02\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FOX2wPHv9t1UUiEhQCiGKkgR\nBUS6Ce0HShXFhgUFyxUb99pRUbl6r6KAckXBckURkN4EpKhoqCogHRISIL1vnfn9EbMXJISUTXYT\nzud5eB52d+adszObndkz73tejaqqKkIIIYQQQgghhBA1TOvtAIQQQgghhBBCCHFlkqSEEEIIIYQQ\nQgghvEKSEkIIIYQQQgghhPAKSUoIIYQQQgghhBDCKyQpIYQQQgghhBBCCK+QpIQQQgghhBBCCCG8\nQpISQnhRy5YtOXPmjLfDKNNdd93F4sWLL3p+5syZ/OMf/7jo+bNnzzJkyBCPbX/8+PF8++23lV5/\n5syZdOnShYSEBBISEoiPj+eFF16gqKiowm0lJCSQnp5eoXUutf+EEELUDi1btmTAgAHu88iAAQP4\n+9//TmFhYZXa/eqrr0p9fvHixbRs2ZJNmzZd8LzVaqVTp04888wzVdpueZ06dYqJEycSHx9PfHw8\nw4cPZ8OGDTWy7YqYNWtWqftkx44dtGvXzn3czv9XWyQnJ9OyZcsLrmFuu+029u/fX+G23nrrLf77\n3/9WaJ1vv/2W8ePHV3hbQlSU3tsBCCHqlvr167NixQpvh3GB+Ph4Xn31VQDsdjuPPfYY77//Pk88\n8USF2lmzZk11hCeEEMLHffrppzRo0AAoPo/87W9/44MPPuBvf/tbpdpLS0vjP//5D6NHjy719aio\nKFasWEGfPn3cz23atImgoKBKba8ynnjiCYYNG8acOXMA2Lt3L3feeSerV68mKiqqxuKoiqioqFp/\n7tbpdBe8h1WrVjFp0iTWrl2L0WgsdztTpkypjvCE8AjpKSGED7Lb7bzyyivEx8fTt29f9wUBwO7d\nu7nllltISEhg0KBB/PDDD0BxNv2GG27gtdde4/bbbweK7+4sXbqU4cOHc8MNN/DJJ5+421m4cCEJ\nCQn07duXxx9/HKvVCkBSUhKjRo2if//+TJkyBZfLVaHYk5OTadOmDVB8t+eRRx7h73//O/Hx8Qwa\nNIjDhw8DkJuby5NPPkl8fDz9+vXjm2++uWSbhw4dYuTIkfTq1Ytnn30Wl8vFI488wkcffXTBMtdf\nfz1Op7PM+IxGI2PGjGH79u2XjaNly5Z88MEHxMfH43K5LujZsmDBAgYNGkRCQgIPPvggmZmZHtl/\nQgghfJvRaKRnz54cOHAAAJvNxvPPP098fDwDBw7k9ddfd3/3Hzx4kLFjx5KQkMCwYcPYunUrAGPH\njiUlJYWEhATsdvtF2+jUqRM7duy4oFffqlWr6NGjh/txVa4VFixYwNChQ+nZsyerVq0q9X0eOnSI\nDh06uB936NCBtWvXupMz7733Hr169WL48OF8+OGH9O3bF4BnnnmGWbNmudc7/3FFrmF27tzJiBEj\nGDBgAKNHjyYpKQko7jHy2GOP0adPH26//fZK9zhdvHgxkydP5s477+TNN99kx44djB07lkcffdT9\nA3716tUMGTKEhIQE7rjjDk6dOgUU98J89tlnGTly5AXXVgCPPvoo8+bNcz8+cOAAN9xwA4qi8K9/\n/cvd8+SOO+7g7NmzFY570KBBWK1Wjh07Blz6eu6ZZ55h+vTpDB06lNWrV19wHC71uVQUhZdffpne\nvXszcuRIDh486N7uzz//zM0338ygQYMYOHAgq1evrnDsQlyKJCWE8EFz587lyJEjLF++nBUrVrB2\n7Vp3N87nn3+eCRMmsGbNGu6//35eeOEF93rZ2dm0bt2azz77zP3ckSNHWLp0KbNmzeLtt9/G5XKR\nmJjIO++8w/z589m4cSMBAQG88847APzzn/+kW7dubNiwgTvvvJNdu3ZV6b1s2bKFcePGsXbtWq67\n7jrmz58PwOuvv45Wq2X16tV8/fXXzJw5k0OHDpXaxo4dO/j0009Zs2YNv/zyC5s2bWLIkCEX9MhY\nv349N910E3r95TuAORwO992Fy8Whqipr165Fp9O5n9uzZw8fffSRO6bo6GjeeustwPP7TwghhG/J\nyclhxYoVdOzYEYD58+dz5swZVq5cyZIlS0hMTGTFihUoisLjjz/O7bffzpo1a3jllVeYMmUK+fn5\nvPbaa+67+KXd7TYajXTr1o3vvvsOgPz8fA4cOODeJlT+WiErKwutVsvy5cv5+9//zr///e9S3+eN\nN97II488woIFCzh69ChQ3BtSo9Fw6NAh5s+fz6JFi1i0aBF79uwp174r7zVMfn4+Dz74II8//jjr\n16/njjvu4NFHHwXgm2++IT09nfXr1zNz5ky2bdtWrm2XZvv27bz00ks89dRTAOzfv5+xY8fy1ltv\nkZKSwnPPPcf777/PmjVr6N27N88//7x73e+//54PP/yQu+6664I24+Pj2bhxo/vx+vXrSUhI4OjR\no6xZs8Z9rAYMGMCPP/5YqbhdLhdGo7HM6zmAH3/8kUWLFjFw4ED3c2V9Lrdu3cr27dtZuXIln332\nGYmJie713njjDaZOncqqVauYPXu2Tw7lEbWXJCWE8EGbNm1i3LhxGI1G/Pz8GDZsGOvWrQNg6dKl\n7pNL586d3XcOoPjH9oABAy5oa9iwYQC0bdsWm81GRkYGGzduZNCgQdSvXx+AW2+91d1+YmIigwYN\nAqB9+/Y0a9asSu+lefPmtGvXDoA2bdqQmprqfo933HEHWq2W0NBQBgwY4I7hr+Lj47FYLFgsFnr1\n6sWePXvo1asXp06dct8p2LBhgzvusuTn5/PFF1+499Pl4ujdu/dFbWzevJn4+HjCwsIAGDVqlLvn\nhaf3nxBCCO8bP348CQkJ9OvXj379+nH99ddz3333AcXnhNGjR6PX6zGbzQwdOpTt27eTnJxMeno6\ngwcPBuDqq68mOjqaX3/9tVzbHDx4sDv5vmHDBvr06YNW+79L98peKzidTm655Rag+NogJSWl1O3P\nmDGD2267jeXLlzNkyBD69u3rrkmwc+dOrr32WiIiItDr9eWuJVXea5idO3dSv359d8+QIUOGcOrU\nKVJSUkhMTGTAgAHo9XpCQkIuGOLyV6mpqRfVk3j99dfdr8fGxhIbG+t+bDab6datG1CcsLjuuuto\n0qQJUHyu37Fjh7tHZocOHQgNDb1om71792b//v1kZ2cD/0tKBAUFkZmZyfLly8nJyWH8+PEMHz68\nXPuthKqqLFy4kPr16xMbG1vm9RxAt27dMJlMF7RR1ufyl19+oVevXvj7+2M2my9IZoSFhbF06VKO\nHj1KbGys+2aMEJ4gNSWE8EF5eXlMnz6dt99+Gyjuotm+fXsAli9fzoIFCygoKEBRFFRVda+n0+kI\nCAi4oK3AwED3a1CcIc/Ly2P9+vXuuwuqquJwOIDiO0Dnt1HV8asl2y+JoaRLa15eHo899pg7LpvN\ndsniU+ef9AMDA0lLS8NkMjFgwABWrFjByJEjSUtLo2vXrqWuv3btWnbu3AmAwWBgwIAB7jsbl4uj\nXr16F7WXmZlJZGSk+3FQUBAZGRmA5/efEEII7yupKZGZmekeelDSMy8zM5Pg4GD3ssHBwWRkZJCZ\nmUlgYCAajcb9WskP0/Dw8Mtus0ePHjz77LNkZ2ezcuVKHnroIY4fP+5+vSrXCn5+fgBotVoURSl1\n+yaTiQkTJjBhwgRyc3NZs2YNr732GjExMeTk5FxwfitJ0l9Oea9hcnNzSUpKuuB8bDQayczMJCcn\n54Jri6CgIAoKCkrd3uVqSpx/3P76OCsr64L3GBgYiKqqZGVllbpuCT8/P7p3787mzZvp3Lkzubm5\ndO7cGY1Gw8yZM5k3bx7Tpk3j2muv5aWXXrpsfQ6Xy+XeD6qq0qJFC2bNmoVWqy3zeu5SMZb1uczJ\nybno+qbEa6+9xuzZs7n77rsxm808/vjjtapoqPBtkpQQwgdFRkZyzz33XJT9P3v2LM8++yxff/01\nrVu35sSJE8THx1eq/Ztvvpmnn376oteCgoLIz893Py6pleBpkZGRvP/++8TFxV122ZycnAv+X3KS\nHTx4MNOnTycwMJD4+PgL7iCd7/xCl1WJo0R4eLj7DggUdzktucCsqf0nhBCi5oWGhjJ+/HhmzJjB\n7NmzgUufE8LCwsjJyUFVVfcPwOzs7HL/gDcYDPTp04elS5dy8uRJOnbseEFSojqvFTIzMzlw4IC7\np0JQUBCjR49m69atHDp0iMDAQPLy8i5YvsRfEx0l5/CKxBUZGUmzZs1Knb0qKCjoktv2pLCwMHbv\n3u1+nJOTg1arJSQk5LLrxsfHs379erKysoiPj3cf/+uvv57rr7+ewsJC3njjDf75z39etsfBXwtd\nnq+s67my3telPpdl7dvw8HCee+45nnvuObZt28bDDz9Mz5498ff3L/e2hbgUGb4hhA/q168fX3/9\nNS6XC1VVmTVrFlu2bCEzMxM/Pz+aNWuG0+lk4cKFAJe8Q3Apffv2Zd26de6TzYYNG/jwww8BuOaa\na1i/fj0Au3btchd18rS+ffvy5ZdfAsVdSV977TV+//33Upddt24dNpuNwsJCtm7dSpcuXQDo3r07\n2dnZfPrppxd0MayuOEr07t3bfbEB8OWXX9KrVy+g5vafEEII77j77rvZvXs3P//8M1B8Tli0aBEu\nl4vCwkK+/fZbevXqRUxMDA0aNHAXkty1axfp6em0b98evV5PYWHhZYszDx48mLlz59K/f/+LXqvO\nawWr1cojjzziLoAIcPLkSfbu3UuXLl3o2LEjiYmJZGZm4nQ6Wbp0qXu5iIgId4HEpKQkd22lisTV\noUMH0tLS2Lt3r7udJ598ElVVueaaa9i4cSMul4vMzEy2bNlS7vdVET169CAxMdE9xOTLL7+kR48e\n5apd1adPH3bv3s2GDRvc1yfbtm3jpZdeQlEU/Pz8aNWq1QW9FSqjrOu5Synrc9mxY0e2bdtGUVER\nRUVF7mSIw+Fg/PjxnDt3Dige9qPX6y95M0iIipKeEkJ42fjx4y8oovjKK68wbtw4kpOTGTx4MKqq\n0q5dO+688078/Py48cYb3fUMnnnmGXbt2sX48eN59913y73Ntm3bMnHiRMaPH4+iKISFhfHSSy8B\n8OSTTzJlyhS+/fZbOnToQPfu3S/ZzvnDIgBat25d7imnHnvsMV566SX3XZKePXvSsmXLUpft3r27\nu0p179696dmzJ1B89yAhIYHvvvuOzp07l2u7VYmjRPv27bn//vu57bbbUBSF1q1b8+KLLwIV239C\nCCFqn4CAAO6//37eeOMNFi1axPjx40lKSmLw4MFoNBoSEhIYOHAgGo2Gt99+mxdeeIH33nsPi8XC\nO++8g5+fHy1btiQ4OJgePXqwZMkSoqOjS91W165d0Wg0pdZMqs5rhejoaGbPns27777LK6+8gqqq\nBAQEMHXqVPeMHGPGjOHmm28mJCSEm266yT271ujRo5k8eTI33XQTbdq0cZ9fW7VqVe64zGYz7777\nLtOmTaOgoACDwcCjjz6KRqNh9OjRJCYm0r9/f6Kjo+nfv/8Fd/fPV1JT4q/efPPNy+6DBg0a8Mor\nr/DQQw/hcDiIiYlh2rRp5dp/AQEBtG3blj/++INrrrkGgGuvvZaVK1cSHx+P0WgkNDSU1157DYCn\nnnrKPYNGRZR1PXcpZX0u+/Tpw+bNm0lISCA8PJxevXqRmJiIwWBg5MiR7qGvWq2WZ599FovFUqF4\nhbgUjXr+YC4hhKhl5s6dS1ZWlrtythBCCCFqVmJiIk899dQFs04IIUR5SZ8bIUStlZmZyVdffcWt\nt97q7VCEEEIIIYQQlSBJCSFErfTll18yYsQI7rvvPho1auTtcIQQQgghhBCVIMM3hBBCCCGEEEII\n4RXSU0IIIYQQQgghhBBeIUkJIYQQQgghhBBCeEWtnBI0La30aX8qKyTEj6ysQo+2eSWQ/VY5st8q\nR/Zbxck+qxzZb2WLiAj0dghV4ulriBLyufE+OQbeJ8fA++QYeJ8cg9KVdf0gPSUAvV7n7RBqJdlv\nlSP7rXJkv1Wc7LPKkf0mKkM+N94nx8D75Bh4nxwD75NjUHGSlBBCCCGEEEIIIYRXSFJCCCGEEEII\nIYQQXiFJCSGEEEIIIYQQQniFJCWEEEIIIYQQQgjhFZKUEEIIIYQQQgghhFdIUkIIIYQQQgghhBBe\nIUkJIYQQQgghhBBCeIUkJYQQQgghhBBCCOEVkpQQQgghhBBCCCGEV0hSQgghhBBCCCGEEF6h93YA\nvsrmcJGTbyM4wITJoKvQ8gCn0/LIyrMTYNHjbzESUc9SajulbafkOYtJT5HNWeprlYmrPMvXBnXx\nPQkhhBBCCCHElajakhI7duzg0Ucf5aqrrgIgLi6Oe++9l6eeegqXy0VERAQzZszAaDSybNky5s+f\nj1arZfTo0YwaNaq6wrosl6KwcOMRdh9KIzPXRmiQiY5xEYzp2wKd9uKOJX9d3qDXYHeqFy1nNGjo\n2T6asf2uQqfVlrqdDleFowH2HE4nI9eGVgOKCqGBRq6Ji3C/Vpm4Lrd8bVAX35MQQgghhBBCXMmq\ntadE165deffdd92Pp06dyrhx4xg4cCBvv/02ixYtYvjw4bz//vssWrQIg8HAyJEjGTBgAPXq1avO\n0C5p4cYjbEhMdj/OyLW5H4/rH3fZ5UtLSADYHSrf7TyNRqNhXP+4UrezcefpC9ZR/mwqM89+0WsV\njetyy9cGdfE9CSGEEEIIIcSVrEZvL+/YsYN+/foB0KdPH3788Uf27t3L1VdfTWBgIGazmU6dOrFr\n166aDMvN5nCx+1Baqa/tPpSOzeEq9/KXsvtQGnmF9gqvd+n2KhZXacvXBnXxPYnLy/5uG0cmTkWx\n2irfSF4m+u//iyb7rOcCs+dDThIonv/cqSqcyDJwPNPg8bar274jThassuK4RHK2LsvLdzJz3kk2\n/5Dh7VBEDUvPLuLdRfs4dSbX26EIIYQQtVK19pQ4cuQIEydOJCcnh8mTJ1NUVITRaAQgLCyMtLQ0\n0tPTCQ0Nda8TGhpKWlrZP9hDQvzQ6z1bSyAiIpDU9AIy80r/8ZOVZ0VnNBAR7u9+rqzlLyUzz0ae\nXanwepdS0bhKW74qIiICPdLO5dTke6oJNbXfarPCE8nsmvQsqqIQFmIBKr7fVIedgtULUdJTCOza\nG70H9rvTWkj28WRUVSUs1A+twVjlNs+3P1nlRKZKRBBERJir3F5Nfda27Cpkwep8LCYNwfUC8LfU\n7iFVFdlvx04WMHX6IU6nWmlQ30/+vq8w+VYHe46k88/PdzL1tk7odbX7sy+EEELUtGpLSsTGxjJ5\n8mQGDhxIUlISd9xxBy7X/+4qqmrpd9Iu9fz5srIKPRYnFF98pqXl4XK4CA00kZF78Y/fkEAzLruD\ntLQ893NlLX8poYEmAo3aCq93KRWNq7TlK6tkv9WEmnpPNaEm91ttpTqdHBj3OM7cfJr++0WyihQi\nAqjwftP/uBRdegquq64lyxIFVd3vihMyj4OiQFBDMrJtgGcSjACpuXr+SDNh0iu0CLGSlla1Hgc1\n9Vnbvs/B4s02/Mxw/3AzhfkFFOZX+2arTUX2245d2fx77gmsNoWRQxowYmB4nf/7lqTLhWIbBHFj\nhyi27E1lxQ8nGN6zmbdDEkIIIWqVakvn169fn0GDBqHRaGjcuDHh4eHk5ORgtVoBOHv2LJGRkURG\nRpKenu5e79y5c0RGRlZXWGUyGXR0jIso9bWOceEXzfRQ1vKX0jEugkA/Y4XXu3R7FYurtOVrg7r4\nnsSlpbz3Cfm/7CV06ADCRw2uVBvao7vRHdmJEhqN89qBVQ9KVSEnGRQH+IWDObjqbZ4nvUDHH2lG\n9FqVDlFWTPraMQTi+112Fm+2EWDR8OAtFhpFXhl/i4qisnBZKq+/dwxVhScebMptt0Sj1Wq8HZrw\ngjF9ryK8noWVP57k1Nm6nZQSQgghPK3akhLLli3jo48+AiAtLY2MjAxuueUW1q5dC8C6devo2bMn\nHTp04NdffyU3N5eCggJ27dpFly5dqiusyxrTtwX9u8QQFmRGq4GwIDP9u8Qwpm+Lci1v1Jd+QWoy\naOjXuaG7ndK207dzQ/p1bkhYUPG0oiXXtqGBpvNeq1xcl1u+NqiL70lcLH/3b5x+ay7GqPrEvjEV\njabiP/I0WWfQ71iOajDjuHEM6DxQnyH/DDgKwRgI/p5JKpbIsWrZf9aEVgPto6z4GWtHQmLDL3aW\nbbMT5K/hoREWosOvjIREkdXFjNnH+XJpKhFhRqb/PY4e14Z4OyzhRRaTnodHX4NLUfnPigM4XYq3\nQxJCCCFqDY1anvESlZCfn88TTzxBbm4uDoeDyZMn07p1a55++mlsNhvR0dFMnz4dg8HAmjVr+Oij\nj9BoNNx+++383//9X5lte7prbGlddW0OFzn5NoIDTOW6C3/+8gCn0/LIyrMTYNHjbzESUc9Sajul\nbafkOYtJT5HNWeprlYnL070JvDUMoTrfU02Q4RuX5ioo5LebbsN2IplWX80mqMf/EpTl3m8OG4ZV\nc9DmpuPodStK4zZVD6wwszgpoTdBvabgwSloC+0adp224FSgXQMb4f6eK55ZXZ81VVVZ/aOd7xId\nhARqmHizhfB6dWccfVn77cw5G9NnHuXUaSvtWgXw5IPNCAqs1vJMPqe2D9+oru/fiIhAZiz4hS17\nU/i/HrEyjMML5PzqfXIMvE+OgffJMShdWdcP1XYlFRAQwJw5cy56/uOPP77ouYSEBBISEqorlEox\nGXREhvhVevlm0eWb0rS07Zz/XKCf8bLLV7T92q4uvidR7NTzb2E7nkTUQ3dckJAoN1VF/+NStLnp\nONv08ExCwl5QnJDQ6CC4kUcTEjanhr2pZpyKhpYRnk1IVBdVVVm21c6WPQ7CgzVMvMVCSGDdSUiU\nZe/vufxzznHyC1wM7hfBXWNi0F+id5y4Mo3p24Lfj2ew4oeTdLwqgiYNancCRwghhKgJV8aVZC1i\nc7g4l1UoU1yKK07mqo2k/fdb/K5uRcOnHqxUG9pDP6M7+RtKRGNcHQdUPSinvbiOBEBwDOg8N9OG\n0wX7Uk3YnFpiQ+1EBTk91nZ1UVSVbzbb2LLHQf1QLZNGXhkJCVVVWb7uHC+/fQSrVWHSXY2597ZG\nkpAQF7GY9Nw1sDWKqvLRyv0yjEMIIYQohyurz6kPcykKCzceYfehNDJzbYQGmegYF8GYvi3QefDO\nrBC+yJ56juNPvorWbKL5e6+gNVa8BoQmPRl94mpUkx+OnqNBW8WhPYoLcpJAdUFgFBg9N+WsosJv\nZ8wU2HVEBzloUs/hsbari6KoLPzORuIBJ9HhWh4YbiHAr+7/KLc7FOYsOMWm7ZmEBOt5alIzWrUI\n8HZYwoe1bRpK72ui2bwnhWXbT3DLjTKMQwghhCiLJCV8xMKNR9iQmOx+nJFrcz8e1z/OW2EJUe1U\nReHYoy/iysoh9vVnsFwVW/FGbIUYtiwERcFxwyjwr+LMGKoKuafBZQNLKFg8V8RQVeHAWRPZVh3h\n/k6uCrdTiVqeNcrlUvlinY09h500qq/l/mEW/Mw+HrQHZGTZeeO9Yxw+XkiLpn48M7kZYSGe6y0j\n6q5RfVrw67FMVv14kk5x4cQ2CPJ2SEIIIYTPklvwPsDmcLH7UFqpr+0+lC5DOUSddmbuF+Ru+5l6\nA3oSMX5ExRtQFfTbF6MpyMbVvhdqtAdmYyk4B/Z8MPhDQP2qt/cnVYUjGUbSCvQEm120jrT5fELC\n6VSZv9rKnsNOmkZrmTj8ykhIHDySz5MvH+Tw8UJ6dw/l1WfiJCEhys1i0nP3oFZ/DuM4gMMpwziE\nEEKIS5GkhA/IybeRmWsr9bWsPCs5+aW/JkRtV/j7IZKnv48hIoymbz1Xqek/db9vQ3f6D5QGzXFd\n3afqQRVlQ2FGcf2I4Bg8mTVIyjZwOseAn0GhXQMrOh//BnY4VT5eaeX3Yy5axOi4b5gFs6nuJyRW\nbjjDc28eJifXyT1jY3hkQhOMBh8/WMLntIkNpXfHhpxOK2DZ9uPeDkcIIYTwWTJ8wwcEB5gIDTKR\nUUpiIiTQ7J5mVIi6RCmycnTSs6h2B03/9TyG8NAKt6E5ewLdnu9QLYE4bhhZ9ZkxHIWQlwoa7Z8z\nbXhuytkzeXqOZRox6RTaR1vx9dlsbXaVeSusHEl20TpWx52DzBjqeGFHp1Plk4XJrPwujQB/HVMm\nNuWattLtXlTeqN7N+fVoBqt/OkWnuAiaRsnnSQghhPgrufXjA0wGHR3jIkp9rWNcOCZf//UiRCWc\neuVdig4do/49Y6jXt0fFGyjKx7D1KwAcN44BSxWLD7ocxYUtUSEoBvSeSwZmFur445wRvValfbQV\ns171WNvVocim8uG3RRxJdnF1cx13Da77CYncPCcvvX2Yld+l0bSxH28+10oSEqLKLCY99/w5jGOe\nDOMQQgghSiVJCR8xpm8L+neJISzIjFYDYUFm+neJYUxfD4yPF8LHZH+3jXMff4WlZTMa/ePhijeg\nKBi2fY2mKA9XxwGokU2qFpCqFCckFFdxDQmT52ZXyLVq+e2MCY0G2jWw4m/07YREQZHKnCVFnEhV\n6NhSz/iBZvS6up2QOJFUyJPTDvLbwXyu6xjMBzM6EhUpPdSEZ7SODaVPp4acTpdhHEIIIURpZPiG\nj9BptYzrH8eIXs3JybcRHGCSHhKiTnKkZ3Lsby+jMRqKp/+0mCvchm7fJrRnjuGKaYWrTSV6WZxP\nVSE3BZxWMNcrnm3DQwodGn5NNaOo0La+jXoW375Lmleo8MESK6kZCl3b6BnV14RWW7cTEj8kZvHu\nf05isyuMHRbFqKEN8PPTU1Dg7chEXVIyjGPVTydlGIcQQgjxF9JTwseYDDoiQ/yqPSFhc7g4l1Uo\nM3uIGqWqKscfn4YzPZOYqZPwa1vx6W41KYfR/fo9qn89nN1vqXohysJ0sOWCwQKBDTxW2NLuhH0p\nZhyKhqvC7UQE+PbfWk6+wqxmM+v+AAAgAElEQVRvikjNUOh+tYFR/ep2QkJRVL5YnMKMWcfRaODp\nSc0YMyyqTr9n4T1mo557BrVGVflzNg7f/j4QQgghapL0lLjCuBSFhRuPsPtQGpm5NkKDTHSMi2BM\n3xboqlokUIjLOLfgG7I3bCWoZ1ca3Deu4g0U5GDYtgi0Why9xoLJUrWAbLlQkAZaQ3FhS41n/gac\nCuw7Y8bq1NIkxE7DYKdH2q0umbkKcxYXkZGr0qujgaE3GCs1E0ptUVjk4t9zT/DLnhzqRxiZ+nBz\nmsRU8bMkxGW0ahJC304N2bjrNEu3HWdUbxmeKYQQQoAkJeo0m8N10VCQhRuPsCEx2b1MRq7N/Xhc\n/4rftRaivIoOHyfppX+hCwmm2b9fRFPBJJjqcmHYuhCNrRBH16GoYQ2rFpDDCjmni3tGBDcCrWe+\nDhUVfj9jIt+mo0Ggg9gQh0farS7p2QqzFxeRna8yoKuB+OvqdkIi5ayV6e8eIznVSoc2gUyZ2JTA\nADkVipoxsndz9h3NYM2O4tk4mkcHezskIYQQwuvkSqwOulRviOE9m7L7UFqp6+w+lM6IXs2ljoWo\nFordwdFJz6JYbbR4bxrGqMgKt2HbugxtWhKu2KtR4q6tYkDOC2faMFS8rkVpVBX+OGciq0hPmJ+T\nuAi7p0aDVIszGQofLC0it0BlUDcj/a41ejukarX7t1zemnOcgkIXQ2+K5M5RDdHV8SKewreYjXom\nDG7NG1/sZt7KA7x497UY9HLeFUIIcWWTpEQNK+m9YDHpKbI5q6Wg5aV6QxRanWTm2kpdJyvPSk6+\njcgQP4/GIgTA6TdnU/jbH0TcOozQQX0rvL721O/Yd32PEhSO8/phVav7oKp/zrThAP8IMHmu4Nyx\nTANn8/UEmVy0qW/Dl8sTpKS5mLOkiAIrDLvRyI3X1N2EhKqqLF1zjs8WnUan0/DIhCb06RHm7bDE\nFapl4xD6dY7hu53JLN16nFF9ZBiHEEKIK5skJWrI+b0XMnKLf6woKoQGGunUMtJjNR1sDtcle0Mc\nPJlFaJCJjFISEyGBZoIDZAo84Xm52xNJnf0ppqaNaPzylEo0kIH+hyWgN+LsNRYMVficqirkpYKj\nqDgZ4Rde+bb+IjlbT1K2EYtBoV2UFZ0Pl2g5ddbFh0uLsNpgZF8T3doZvB1StbHZFWZ9cpItP2UR\nWs/A05ObEdfM39thiSvcyF7Fs3Gs+fnPYRwNZRiHEEKIK5cPXzbXLSW9F0oSAopa/Hxmnp0Nicks\n3HjEI9vJybddsjdEdr6NVo1DSn2tY1y4DN0QHufMyuHoI8+DVkvz96ah869gTxynA8OWL9E4bJj7\nj0KtV79qARVlgjUb9GYIivbYTBvn8nUcyTBi1Cm0j7Ji9OE/pWMpLuYsLsJqh7ED6nZCIj3Tzj+m\nH2LLT1m0bO7PjOdbSUJC+ASTUcfdg1q5Z+Owy0xYQgghrmCSlKgBZfVeKLH7ULpHpucMDjARGlT6\nneSQQDO3Doijf5cYwoLMaDUQFmSmf5cYxvSV7qPCs1RV5cQz03GknqPhlPsI6Niuwm3of1mFNusM\nrhZdMLapYh0JWz7kny0uaOnBmTayCrUcOGtCp4X2UTYsBtUj7VaHw0lO5i4twuGC8QlmurSuuwmJ\n/YfyeeLlgxw9WUj/nmFMe+oqQuvV3fcrap+WjUPo3zmGM5mFLN163NvhCCGEEF4jwzdqQFm9F0p4\nqqaDyaCjY1zEBTUlSnSMC8fPpGdc/zhG9Gp+0cwcQnhS+tcryVy+gYCu1xD98N0VXl97bA+6I4ko\nIQ1wdh1UtWCcNshNBjQQHAM6z/w4zbdp+e1McZHMdg2sBJgUj7RbHQ6ccPLJSiuqCncOMtOuWd39\n+l+3OZ25nyehqCr33RbDwL4RdXpGEVF7jejVnH3HMlj78yk6tYyghQzjEEIIcQWSnhI1oKzeCyU8\nWdNhTN8Wl+0NYTLoiAzxk4SEqBbWE8mc/Meb6AL9aT7zZTS6in3ONNln0f+0DNVgwtHr1qolERRX\ncWFLVYHAKDB4pphrkUPDvlQTLhVa17cRYvHdhMSvR518vMIKwD1D625CwuFUmLPgFLMXnMJi0fLi\nlKsY1C9SEhLCZ5mMOu4Z1BqQYRxCCCGuXHXzytTHlNV7oYQnazrotFrpDSG8RnU6Ofbw8ygFhTR7\nbxqmRtEVa8BhQ//9l2hcDhw3jIXA0CoEoxb3kHDZwS8MLPUq39Z57C7Yl2rG7tLSIsxGZIDv/pDY\n9YeD/66zodfDhKFmWsTUza/97FwHM2YdZ/+hfGJjLEx9pBmR4VK8V/i+uEb16N+lEesTk1iy9Rhj\n+l7l7ZCEEEKIGlU3r059UEkvhYtn3zDRqWVEtdR0KOkNIURNSnlnHvk79xE6PJ7wWwZWbGVVRf/T\nt2hz03G27o7SuG3Vgsk/C/YCMAaAf2TV2vqTS4FfU80UObQ0qmcnpp7TI+1Wh+93FvLFWhsmI9w3\nzEJsVN1MTh49WcjrM4+Snumge5d6PDyhCWZT3Xyvom66pVcz9h1NZ93PSXSKi+CqGM8kUIUQQoja\nQJISNeSvvRcsJj1FNqf0YhB1Sl7iPk7/6z8YGzYgdvozFV5fe+gXdCd+RYlohKvTTVULpiireLYN\nnQmCGnpkpg1Fhf1nTeTZdNQPcNAs1FHlNqvLtr12lnxvx88M9w+30Ciybn7PbN2RyXsfn8ThULnt\nlmhGDK4vwzVErWMy6LhncGte/2wX81Ye4MV7usq1gRBCiCuG1JSoYSW9FwL9jFLTQdQprrx8jk1+\nDlSVZjNfRh8cWKH1NRmn0SeuQjX54eg5BrRV+NuwF0JeKmh0xTNtVKWtP6kqHEozklGoJ8TipGWk\n3VMzinrc5l3FCYkgfy0P3VI3ExIuRWXB16d5+4MT6LQapj7cjJFDGkhCQtRaV8XUY8C1jTibVcSS\nLce8HY4QQghRY6SnRDnYHC6pzSDEZZx87p/YTp0m6pG7Cbq+U8VWthVh+P5LUBQcN4wE/ypUoHfZ\niwtbQvFMG3pj5ds6z4ksA2fyDASYXLRtUDwEyxet/9nOmp/sBPtr+PuEMPQUeTskjysodPL2ByfY\n9WsuUfVNTH24GY2iLd4OS4gqu/nGZuw9msH6X4qHccQ1kmEcQggh6j5JSpTBpSgs3HiE3YfSyMy1\nERpkomNccf0HnVY6mQhRImPZetK/WoF/hzY0nPJAxVZWVfQ/LEZTkI3z6t6o0VUo8qYof8604YKA\nBmD0r3xb5zmdo+dklhGzXqF9Ayt6H/zzV1WV1T/a+S7RQWiQhok3W4iK0JOW5u3IPCs51cr0d4+S\nctZGx3ZBTJkYi7+fnMpE3WAy6JgwqDXTP9vJvFUHeEmGcQghhLgC+OClte9YuPEIGxKTyci1oQIZ\nuTY2JCazcOMRb4cmhM+wnT7DiadfQ2sx0+y9aWgNFfuBqNu/HV3yQZQGzXC171P5QFQVck+D0waW\nEPCrwqwd50nL13E43YhBp9Ih2orRB3//qqrKsq3FCYnwYA0PjbAQFlz3vt5/2ZPD068cJOWsjZsH\n1ucfjzWXhISoc1rEBHNT10acyypi8fcyjEMIIUTdV/euWj3E5nCx+1Dptxh3H0rHJnOJC4HqcnHs\n0Rdw5eTR+OUpWJo3qdD6mrMn0O1ej2oJxHHDKKhKD6SCNLDngcGvuJeEB2QXadl/zoRWA+2jrFgM\nqkfa9SRFVflmk40texzUD9UyaaSFkMC69dWuqiqLVpxh+syjOJ0qf7s/ljtGNUTnq2NohKiim3s2\no0GoHxsSkziUlO3tcIQQQohqVbeuXD0oJ99GZq6t1Ney8qzk5Jf+mhBXkjNzPiPvh52EJPQmYtzw\niq1clI9h61cAOHqOBktA5QOx5kBhOmgNxXUkPFDssMCu4bczZlChXQMbgSalym16mktRWbjexo+/\nOYkOLy5qGeRft77WrTYXb805zueLUwitZ+C1qS258XrP9IIRwlcZ/5yNAw3MW3kAm11uhAghhKi7\npN/rJQQHmAgNMpFRSmIiJNBMcIDJC1GVjxTmFDWhYN9Bkt+cjaF+OLEznq3YrAeKgmHb12iK8nB2\nugm1fmzlA3EUQW4KaLRQrxFoq/61ZnVq2JdixqloaBVpI9TP934QuFwqn6+zsfewk8b1tdw3zIKf\nuW71HDiXbmP6zGOcSCqi9VX+PPVQM+oFG7wdlqgBb775Jjt37sTpdPLAAw9w9dVXM3XqVJxOJ3q9\nnhkzZhAREcGyZcuYP38+Wq2W0aNHM2rUKG+H7jEtGgYT37Uxa3ac4pvvjzJuQJy3QxJCCCGqhSQl\nLsFk0NExLoINickXvdYxLtwnf+xLYU5RU1yFVo5O+geqw0mzf72IIaxiFeJ1v25Ce+YYrpiWuNr0\nqEIgjj9n2lAhKAb05sq39SeHC/almLG5tDQLtdMg0FnlNj3N6VRZsNrK78ddNI3Wcu9QC2ZT3UpI\n/PZHHjPeP05uvpObeodz77gYDL5YYVR43E8//cThw4dZuHAhWVlZ3HzzzVx33XWMHj2aQYMG8fnn\nn/Pxxx8zefJk3n//fRYtWoTBYGDkyJEMGDCAevXqzowVN/dsyt4j6WzYmUznlhG0bBzi7ZCEEEII\nj5MrvDKM6duC/l1iCAsyo9VAWJCZ/l1iGNO3hbdDK5UU5hQ1JWnav7EePUn9+24luPf1FVpXk3IE\n3b7vUf3r4ew+oriHQ2Wof860oTjBPxJMgZVr5zwuBX47Y6bQoSUm2EGjeo4qt+lpdofKvBXFCYmr\nGum4b1jdSkioqsqq79J48Z+HKShy8sD4Rjx4R2NJSFxBrr32Wt555x0AgoKCKCoq4oUXXiA+Ph6A\nkJAQsrOz2bt3L1dffTWBgYGYzWY6derErl27vBm6xxn0xcM4NBqYt0qGcQghhKibpKdEGXRaLeP6\nxzGiV3OfHw5xucKcI3o199nYRe2StW4L5+YvwtK6BY2mTq7YygU5GLZ9DVotjl5jwWSpXBCqCrmp\n4LSCORj8wirXzl+aPHDORI5VR0SAk+Zhdk+UpvAom13lo+VWjp520TpWx52DzBj0PhZkFTgcCh9+\nnsSGLRkEBep5elIz2sRVodbIFSov38mS1WdpExdAlw7B3g6nwnQ6HX5+fgAsWrSIG2+80f3Y5XLx\nxRdfMGnSJNLT0wkN/V99kdDQUNLKMQduSIgfen31nA8jIqqeHC2tzVuScvhm0xFW7jjFA7e09/g2\n6pLqOAaiYuQYeJ8cA++TY1AxkpQoB5NBR2SIn7fDKFN5CnP6+nsQvs9+Lp3jU6ahMRlp/v4raM0V\nqK2iuDBs/QqNrRBH1yGoYQ0rH0hhBthyQG+BwKgqF7ZUVTicbiS9QE89s4vWkTafS0gU2VTmflvE\nyTMK7ZvruC3BjF7nY0FWQVaOgzffP8bBIwU0a2LhmcnNiQgzejusWmfHrmw++PQUWTlOnE61ViYl\nSmzYsIFFixYxb948oDgh8dRTT3H99dfTrVs3li9ffsHyqlq+2XGysgo9HisUX4CmpeVVS9s3dW7I\nD/tSWLH9OG0a16NVExnGUZrqPAaifOQYeJ8cA++TY1C6shI10h+2jigpzFkaXy/MKWoHVVU5/reX\ncWZk0egfD+PXqmLDmHS71qFNO4Ur9mqUuK6VD8SWBwXnigtaBsdUfvjHeU5lG0jJNeBvdNGugRVf\nm2myoEhlzpLihETHlnpuH1i3EhKHjxfw5MsHOXikgJ7XhfDaMy0lIVFBuXlO3ppznNffO0ZegYvb\nR0Rz5+gqJP68bOvWrcyZM4e5c+cSGFh8ETN16lSaNGnC5MnFPbQiIyNJT093r3Pu3DkiIyO9Em91\nM+h1TBjcxj2Mw2r3vVo3QgghRGVJUqKOKCnMWRpfLcwpapdzH39FzqYfCO7djfr3jKnQutpT+9Ef\n+AElKBzn9cMq37PBaYXc04AGghuBruozMaTm6jmeacSkV2gfZaOaenVXWl6hwuzFRSSfU+jaRs+4\nASZ0vpY1qYLNP2Twj+mHyMx2cMeohvzt/lhMJjk1VcT2X7J4+Nn9bPs5i7jm/rz9YitGDG6ArpYm\nrvLy8njzzTf54IMP3EUrly1bhsFg4JFHHnEv16FDB3799Vdyc3MpKChg165ddOnSxVthV7tm0UEM\nvK4J6TlWFm0+6u1whBBCCI+R4Rt1SEkBzt2H0snKsxISaKZjXLjPFuYUtUfhH0c5Ne0d9KH1aPqv\nF9BUZDaXvEz0PyxG1Rlw3jgWDJXrtaM4HZCdVFzgMqghGCpZj+I86QU6/kgzoteqdIiyYtKXr/t3\nTcnJV5i9pIi0LJUe7Q0M72VE62vjSirJ5VJZ8PVplq07h59Fx9OTY+ncvvYONfCG7BwHH36WxI87\nszEaNNw1uiFDboqs9UmrVatWkZWVxWOPPeZ+LiUlhaCgIMaPHw9A8+bNefHFF5kyZQoTJkxAo9Ew\nadIkd6+KumrYDU3ZcySdjbtO07llJK1lGIcQQog6QKOWdxCmD/H0GJ26Nu7H5nDVSGHOurbfakpt\n22+Kzc7vg++kaP9hrpr3T0ISepd/ZZcDw5q5aDNTcXS/BaV5x8oFoaoYCpJxFOaBXzgEVL2Ldo5V\ny96U4ilEO0RbCTYrVW7TkzJzFeYsLiIjV6V3JwNDehjRVDAh4auftbx8J299cJy9v+fRMMrE1Ieb\n07BB1adz9RRf3W8lVFVl644s5n6eRH6Bi9ZX+TPp7iY1tg9re/Gu6jq2NfW5OZ6ay6sLdhIaZOLl\nCV0xG+X+Uglf/9u9Esgx8D45Bt4nx6B0ZV0/yJmsDqoNhTlF7ZH8+vsU7T9MxO03VywhAeh/WYU2\nMxVXi86VT0gA5J/BUZRXPO2nf+nDlCqi0K7h11QzigrtGth8LiGRll2ckMjOVxnQ1UD8dRVPSPiq\nU6eLmD7zGGfO2ejSIYjH7muKv5+PjZnxYZnZDuYsOMUve3IwGbXcOy6GgX0j0Nby3hGi/JpGBTHw\n+sas/PEkX286yvj4lt4OSQghhKgSSUp4UU31aBCisnK27ODMB59jbtaYxi8+XqF1tcf2oDuciBLS\nAOe1gysfRGEmFGWhM/nhCmxY5Zk2bE4Ne1PNOBUNLSNshPu7qtSep53JUJizpIi8QpVB3Y3061J3\nCj7u2JXNv+eewGpTGDmkAbcOj5If0+Wkqiqbfshk3n+TKSh00a5VAJPuakKDSClifCX6vx5N2XM4\nnU27T9OlZQStY0Mvv5IQQgjhoyQp4QUuRWHhxiPsPpRGZq6N0CATHeMiGNO3BbqKjNUXoho5MrM5\n9tiLaPQ6ms96FZ1f+Ws4aLLPov9pGarBhOPGsaCvZEFKewHknwGNjuDGcWTm2CvXzp+cLtiXasLm\n1BIbaicqyLcq2J9Oc/HBkiIKrDD8RiM9r6kbCQlFUfl6xRm+XJqKyajliQeb0uNaGQtfXumZdmbP\nP8WuX3Mxm7Q8ML4RN/UKl4TOFcyg13LP4Na8umAn81Yd5OUJXbGY5JJOCCFE7SRnMC9YuPEIGxKT\n3Y8zcm3ux+P6x3krLCHcVFXlxJOv4jiTRszUyfi3b13+lR029FsWonE5cNwwFoLCKheE0w45f/6d\nBDdCZzQBlU9KKCr8dsZMgV1HdJCDJvUclW6rOpw64+LDb4uw2mBkXxPd2lV9ZhFfUGR18e5HJ/lp\nZzYRYUamPtyMpo1leFl5qKrK+i0ZzP8qmcIihQ5tA3nozsZEhkvvCFE8jGNQt8as+OEkX28+yh0y\njEMIIUQtJUmJalTa8Aybw8XuQ2mlLr/7UDojejWXoRzC69L/+y1ZqzcReH0noh4aX/4VVRX9T8vQ\n5qThbNUNpXHbygWguCDnFKguCIwCY9V+xKoqHDhnItuqI9zfyVXh9qqOAvGoYyku/vNtEXYnjB1g\nokvrupGQOHPOxvSZRzl12kq7VgE8MbEpwUF1471Vt3PpNmZ9coq9+/Pws2iZdFdj+vUMqzO1RYRn\nDO3elN2H09m8+zSdW0bQVoZxCCGEqIUkKVENCm0Ovlh/mIMnM8nKs18wPCMn30Zmrq3U9bLyrOTk\n26RIpfAq67FTnHz+LXRBATR792U0uvInybSHf0F3Yh9KeCNcnW6qXACqCrmnwWUHSyhYqtbNX1Xh\nSIaRtHw9wWYXrSNtPpWQOJTk5OPlVpwKjE8w0+GquvG1vG9/LjNmHye/wMWgfhHcPSYGvd6HdryP\nUhSVtZvTWfD1aaw2hc7tg5h4R2PCQ+vGUB7hWQa9lgmDW/PK/J18suoAL0+4ToZxCCGEqHXkzOVB\nJbUitu1LxWr/X/G884dnjOjVnNAgExmlJCZCAs0EB0i3XOE9isPJ0cnPohQW0XzWq5hiGpR7XU1G\nCvpfVqEaLThuHA26Sn69FJwDez4Y/SGgfuXaOE9StoHTOQb8DArtGljR+VDZlgMnnHyy0oqqwl2D\nzLRtVvu/klVVZcX6ND75KhmtRsOkuxrT/8Zwb4dVK6SeszHrk5P8djAffz8dj0xoQu/uodI7QpQp\ntkEQg7o1YcUPJ/hq0xHuTGjl7ZCEEEKICqn9V8A+5K+1Iv6qZHhGx7iIUpfrGBde5tANma1DVLeU\nf82lYM9+wkYOImx4fPlXtBdh2PIlGsWF44aR4F+vcgEUZUNhBuiMEBRT5Zk2zuTpOZZpxKRTaB9t\nxZf+bPYdcfLZGitaLdwzxEzLJrX/69juUJiz4BSbtmdSL0jP05Ob0apFgLfD8nmKorLyuzQ+/yYF\nm12ha8dgHhjfmNB6MtRFlM//9Yhlz+E0vt+TQpeWkbRtKsM4hBBC1B61/yrYR5RVK6JEyfCMMX1b\nAMVJiqw8KyGBZjrGhbuf/yuZrUPUhLwde0h592OMjaKJffWp8q+oquh/WIImPwtnu14oDStZrNVR\nCHmpoNFCcCPQVi2DkFmo449zRvRalfbRVsx6tUrtedKuPxz8d50NvR7uHWqheYwPZUsqKTPLzuvv\nHePw8UJaNPXj6UnNZMhBOZw+Y+W9eSc5eKSAwAAdk+6K5YbrQqR3hKgQvU7LhMFteGVBIh+vPsA0\nGcYhhBCiFpEzloeUVSuiRMnwDJ1Wy7j+cYzo1bxcPR9ktg5R3Zy5+Rx9+DkAms98GV1g+e9u6w78\ngC7pAEr9prg69K1cAC4H5CQBKgQ1An3VhjHlWrX8dsYEGmjXwIq/0XcSEjt+d/D1dzZMRrhvmIXY\nqNqfkPjjaAFvvHeMrBwHvbuF8uBdjTEaJGFaFpeisnzdOf67JAW7Q6Vbl3rcf1sj6gVL7whROU0a\nBDK4WxOWbT/Bwo1HuGugDOMQQghRO0hS4jxVGR4RHGC6ZK2IEn8dnmEy6C5b1LLs2TrSZLYO4REn\n//EG9uRUoh+7l8Cu15R7Pc25k+h2rUO1BODoOQoq03NHVYoTEoqruIaEqWrd/QsdGn5NNaOo0La+\njXoWpUrtedK2vXaWfG/HzwwPDLcQE1n7/3a/25rBnE9PobhU7h7bkKEDIuUu/2UknS5i5ryTHD5e\nSFCgnkfva0T3LlUr6CoEwJDusew+nM6WvSl0aRlBu2aVnJJZCCGEqEGSlABcLoUvNhyq0vAIk0F3\nyVoRZqOOG9pHXXJ4Rlly8m2XTHRk5Npktg5RZRlL1pDxzWr8O7Uj+m/3ln9FawGGrV8BKo6eo8ES\nWPGNqyrkpoDTCuZ6xbNtVIHdCftSzDgUDVeF24gIcF1+pRqyeZed5dvsBPppeOBmM1FhtTsh4XSq\nfPJVMis3pBHgr2PKxKZc0zbI22H5NJdLZcnqsyxclorTqdLzuhDuHdeIoEA5FQvPKB7G0Zpp8xP5\nePVBpk24Dj+zfL6EEEL4NjlTAfOW/+6R4REX14ow0apxCLcOiMOvkmM7LSY9Wg0opfQ+12qoNWNG\npUinb7Ilp3Ji6uto/Sw0nzkNraGcnydFwbDtazSFuTg7DkCt37RyARSmgy0XDBYIjKpSYUunAvvO\nmLE6tTQJsdMw2FnptjxJVVU2/OJgzU92gv01TLzFQmRI7R7akJvnZMbsY/x2MJ9GDc1Mfbg5UZEy\nc1BZTiQVMnPeSY6dLCIkWM8DdzTmuo6VLAgrRBka1z9/GMdh7h7U2tshCSGEEGWqHb9oq5HN4eKn\n31JLfa1ktozy/oiuaK2I8iiyOUtNSEBxoqLI5iTQz3eLyUmRTt+lulwce/h5XLn5NH37ecxNG5V7\nXd2vm9GmHsXVsCWutjdULgBrLhSkgdZQXNiyCgkJRYXfz5jIt+loEOggNsRR6bY8SVVVVv9o57tE\nB6FBGibebCEsuHZ/7k8kFTJ95jHOpdu5rmMwj94bi8UiicZLcTgVFq88y6IVZ3C6VPr0COWesTEE\n+F/xp19RjYZ0j2XP4XS27kulS6tIrpZhHEIIIXxY7b469oCcfBtp2UWlvlYyW0ZFldSK8ESPgOLE\nRumHyWTQEhzg23cnS4p0ZuTaUPlfL5SFG494O7QrXuqsBeTt2E3I4L6Ejxla7vU0KUfQ7duM6l8P\nZ49bimfLqCiHFXJPFycighuBtvI/0FQV/jhnJKtIT5ifk7gIe1VnEvUIVVX5dmtxQiK8noaHRtT+\nhMQPiVk88+ohzqXbGTssiqcmNZOERBmOnizkqZf/4MtvUwkO0vPsY815ZEKsJCREtdPrtNwzuDU6\nrYZPVh+k0OobPceEEEKI0tTuK2QPCA4wEVHPUuprJbNleNulisb5ejG5sot0pmNz+M54/ytN/t79\nnJ4xB0NUJE3f/Ef5P0uFuRi2LQKtFseNY8BUiXomivO8mTYagsFc8TbOcyzTwNl8A0EmF23q29D6\nwJ+Foqos2mRj6x4HDUK1TBphISSw9n7dKorKF4tTmDHrOBoNPD2pGWOGRaH1hZ3tgxwOhc8Xp/DU\ntIOcSC6i/41hvDOtDZ3bB3s7NHEFaVw/kKHdY8nKs/HlxsPeDkcIIYS4pCv+do3JoOP6dlEs23rs\notf+OluGN+Tk27DZS1G5RD4AACAASURBVP/xbv+zToOvFrosa5rUkl4ovhp7ibpYC8NVWMTRSc+i\nOl00+/eL6EPK+UNJcWHYshCNrQDHtYNRw2MqvnH3TBsO8I8AU9UKIyZn60nKNmIxKLSLsqLzgd/9\nLkVl4QYbOw86iQ7X8sDNFgIstffHe2GRi3/PPcEve3KoH2Fk6sPNaRJTeiJXwKFjBbz38UmSTluJ\nCDPy0F2NpQCo8JpB3Zqw63Aa2/al0qVlBO2bh3s7JCGEEOIiV3xSAuCeoW0pLLKfV6DSTMe48ErN\nluFpZU016is9OS6lNsdel2thnHrhbWzHTtFg4niCe3Yt93q63evRpp3C1aQdSsvrKr5hVYW8M+Ao\nKk5G+FXt4vhcvo4jGUaMOoX2UVaMPpAzcrlUPl9rY+8RJ43ra7lvmAU/c+1NSKSctTL93WMkp1rp\n0CaQKRObEhggp43S2OwKXy5NYdnacygqJPQJ546RDWV4i/Cq4tk42vDyJ7/wyeqDvHLvdfiZDd4O\nSwghhLiAXF0COp3nC1R6il6nwc9sKPWHvS/05ChLWdOk+nrsJbUwSlR2RhZfk7V6M2mfL8GvbRwx\nTz9Y7vW0SQfQ79+OEhSGs9vwyhWlLMoEazbozRAUXaXClllFWg6cNaHTQvsoGxbDJarB1iCHU2XB\naiv7j7toFq1lwlALZlPtTUjs/i2Xt+Ycp6DQxdCbIrlzVEN0utr7fqrTwSP5vDfv/9m778CoqvT/\n4+/pM+mF9EYSCL2jYAEUUUFAYJUirgVQUQF3/bmLumtZXXddddf1q6CoK4i6KhoFEaWooKDSBARD\nSSCBJKT3SZl67/39McIipsyEJDNJzuuvlHvnnmQmkzmfOed5cikothEVoWfR7UkM6teKFrmC0A4S\nIgOYellP1u04yXtfHWfB5P7eHpIgCIIg/EK7hhJWq5UpU6Zw7733cskll7B06VIkSSIiIoLnnnsO\nvV7P+vXrWb16NWq1mlmzZjFz5sz2HFKzzhSobA+t3QawZusJ8kvrfvX1hMgAn1jJ0ZJft0n1nVUo\nTWmpFoYnHVl8ib24jJN/+Csqo4HU5U+hNrjZtaW2Eu13H6NodDjHzgFdK1a42OqgrsRV0DI4oXXF\nMX9WZ1OTUeyqQzEw2kqAQW71bbUVu0Nh1WdWsvIkeidomDfFiEHXOSfwiqKwblMp76QXoNGouG9B\nEldeJir3N8Zmc9WO2PBlKQBTJkRw8w2xGA2d7/lB6NquG53EgaxyvvupmJF9IhnSS2zjEARBEHxH\nu4YSr7zyCsHBrv3qL774InPnzmXSpEk8//zzpKenM336dJYvX056ejo6nY4bb7yRq6++mpCQrtO7\n/UK2ATQ3OW6wOnFKilt76L1ZF6E92qS2t65QC+N8iiyTc/8TOKtqSPrbUkxpKe6dKDlcdSQcVhyX\nzkAJjfb84k4bmE8DKgiOB03rlw5bHCoOFRmQZBX9o6yEmrwfSFjtCis/tZJdINGvp4bbrjOi03bO\nQMJml3n5zVy276oiLETHg4tTSEvx9/awfFJGZi3LV+VRXGojJsrA4nlJ9E8L8PawBKFRrm0c/Xji\nzb2s3nSMv94xCn+xjUMQBEHwEe0WSmRnZ3PixAmuuOIKAHbv3s0TTzwBwJVXXsnKlStJTk5m0KBB\nBAa6lrkOHz6c/fv3M378+PYaVoe7kG0AFzo59qW6CO25CqWtdeZaGE0peeN9zN/sIviqy4i83f3V\nSNofNqKuLERKHY6cOtzzC8uSq7ClIru2bOha/xiwORQOFRmxS2p6hduIDPB+9xaLTeH1TyzkFssM\nTtVw80Qj2k66xaG80s4/XsohO7eBtFR/HlyUQliImLScz2KVeDu9kI1by1CrYNrESG6aHotB37lr\nzQhdX3xkANdfnsza7Tm89+Vx7pgitnEIgiAIvqHdXkU988wzPPTQQ2c/t1gs6PWu5eLh4eGUlZVR\nXl5OWFjY2WPCwsIoK2t8ZUBndKEtMc9MjhvjzuT4TCBSYbah8L9AZM3WE26Nv7s6UwujMb5eC6Mx\nDUeOk/+3l9CGh5Ly/GNut/9UnzyIJmsvcmgUzouneH5hRYGa0yDZwS8cjK1fASXJ8G2mgsWhJiHE\nTnyIs9W31VbqLQorPnYFEsP7aPntpM4bSBzJquMPTx4jO7eBqy4P56mlvUUg0YhDR8z8/rGjbNxa\nRnyMkaf/1IfbZ8WLQELoNK4bnUhSdCDfZxTz4/Fybw9HEARBEIB2Wimxbt06hg4dSkJCQqPfV5TG\ni9I19fXzhYb6odW27cQwIqLti5IVlddTWdv0SgeNXkdEj+aXRl82JK7RdqWXDYklPrbpSZ7V7uRQ\ndkWj3zuUXcHCG0wY9Rd+91/I781qd1JlthEaZGiTsbSlxbOG4WfSsyujiPJqCz1CTIweGMP8qQPQ\ntEHfyfZ4vDVGsto4+rvHUewOhr7xNFH9e7p3XkUx9bvXg95A4PQ70ISGtXzSeeqKTmFx1KMPCCEo\nMdXtMOR8sqLwfaZCZR0k9YCLUg2oVMZW3VZbqamT+Pf7lZwukxk3wsS864NRq30zkGjpsfbJpkL+\n/eoJFFnh/oW9+M3k2FbfV13Jub+3+gYny1fmsH5zERo13DIzgdvn9BRhhNDpaNSubRxPvrmX1ZuP\n0TtBbOMQBEEQvK9dZoJff/01+fn5fP311xQXF6PX6/Hz88NqtWI0GikpKSEyMpLIyEjKy/+X1JeW\nljJ06NAWb7+qqqFNxxsREUhZWW2b3iaA5JAIC2x6G4Bkd7R43amXJDbarnTqJYnNnlta1UBZlaXR\n75VXW8g+VXHB2ynO/725W7vCl7aVNGf6ZT2ZdHHCL36mysr6C77d9nq8NSb3sX9ReziLyNtmor54\npHvXddjRbXwDtcOOY+xsKp1G8HS8liqoLQGNAbsxivLyXxdrdYeiQGaZnuJaHVHBkBRUT7mX39yr\nrpVZsdZCWbXC5UN0TLlUTUVF636+9tbcY83hlFn53mk2bSsnMEDDH+9JYVC/wFbfV13Jub+3/T/V\n8PKbeVRUOUiKN7Jkfk9Se/phrrnw54LOqqNCVaF9xEcEcP1lyXy8PYd3vzjOnVPFNg5BEATBu9ol\nlHjhhRfOfvzSSy8RFxfHgQMH2Lx5M9OmTWPLli2MGTOGIUOG8Mgjj2A2m9FoNOzfv58//elP7TEk\nrzDoNAxODWfbgcJffc/dbQCtLRTZkXURPA0ZOlO7zc5UC+N81V/vpOQ/72Hs1ZOER3/n3kmKgnb3\netQ1ZTj7jkZOGuj5he31UFsEKg2EJIC69auaTlXpKK7VEWCQuCRNS3Vlq2+qTVSaZV752EKlWeHK\nETomX6rvlKsKqs0Onnv5JEey6ugZb+KhJSlERXS+Wintqa7eyar3T7P1u0o0Gph1fTQ3TolGp/Wd\n4FQQWmvS6ET2Z5Wx83AxI/tGMKx341sWBUEQBKEjdNia+SVLlvDggw+yZs0aYmNjmT59Ojqdjgce\neIAFCxagUqlYtGjR2aKXnd2ZifqZLRRqFcgKhAUaGN4nwuOWmJ5Ojs/URTh38n9GW9dF8CRk6Krt\nNn2No6KKk7//CyqdltTlT6Hxc2+7g/r4D2hOHkTuEY80/FrPLyzZXXUk4OdOG262HW1EQY2W3Co9\nRq3M4GgrOo13nxvKql2BRE2dwjUX67hmVOcMJHJyG3j6pWzKKx1cMjKE+xYkiRaW5/l2TznPvJhF\nVY2DlEQTi+cnkZzYOcNJQWiMRq1mwZT+PLFqD29tyqR3fAgBJrGNQxAEQfCOdg8llixZcvbjVatW\n/er7EydOZOLEie09jA53/kRd/rlcxpDePTpsNcCZ4OP8rR+eBiLN8TRk6IrtNn2NoiicfOCvOEor\nSHjkPvwH9XXrPFVFIdq9n6PoTTjGzgaNh08PsgzV+aBIEBgN+ta3kiyr03C8XI9OozAk1oq3S44U\nV7i2bNQ2KEy+VM/4ka0PW7xpx+5Klq3KxeFQmDsjhhunRHfKYKW9mOucvPFuPtt3VaHVqJg7I4YZ\nk6LRdtIWr4LQnLge/ky7PJmPvsnh3S+zuGvqAG8PSRAEQeimfKu6YBfR3ET90IkKbFdKHbIaoLVb\nPzzhacjQFdtt+pqy/66lest2gi6/iOi7f+veSXYLuu3vo5KdOC6/Cfw97JShKGAuAMkGplAweV4Y\n84xqi5ojpQbUKhgUbcWkc68AbnspKJN4da2FeitMH6dnzJDOF0hIssK7Hxfy8eclmIxq/rAkmYuG\ntr4bSle0c18Vr72dT7XZSb/egdx9azyJcSZvD0sQ2tXEUYnszypn1+ESLuoT2WTnKUEQBEFoT2Jz\nbDtwZ6Lekc5s/WiPIMTTtqVdrd2mr7GcOEXeY/9CExJEygt/QeVO4VBFQfv9WlR1VTgHjkWOa8VK\nnvoysNeCzg8Coj0//8zN2FVkFBtBgYHRNoKMcqtvqy3kFUu88rGFBivMHG/olIFEfYOTv/9fNh9/\nXkJMlIFnHukjAolz1Jgd/POVHJ5dfpL6BolbZ8byynPDRCAhdAsatZr5k/uh1ahYvekY1R38+kQQ\nBEEQQIQS7cLTiXpn1pqQYfb4XkwYGU94kBG1CsKDjEwYGd+m20q6I9nuIHvxo8hWG8nP/Al9bJRb\n52mOfo8m/yhyVDLSkPGeX9haAw3loNG56ki0cjuA1aniUKERp6yiT6SdMD+pVbfTVnIKJFastWC1\nw03XGBg9sPPtt87Nb2DpXzPZ/5OZYQODeO7RPiTEisk2uLY5fbunkvseOcp3e6vpk+rP80/0c23X\n0IjtGkL3EdfDn5lX9MLc4OC19YeRZO+GwYIgCEL3I7ZvtIOOLDLpCzytXdER20q6o4J/vkrDoaP0\nmDWVsKkT3DpHVZqHZv8WFFMAjjEzPe+U4bCAuRBUaghOBHXrnlIcEhwqNGKT1KSE2YkOdLbqdtpK\nVp6TVRusOGW4ZaKRIb0731PlDwdreOH1U9Q3SMyYFMXNN8SiUYvJNkBVjYNX385j9/4a9HoV8+bE\nMXlCpPj9CN3WhJHxZOZXsz+rjE++PcVvxqZ4e0iCIAhCN9L5Xml3Eh1RZNJXtDZk6MztNn2Neec+\nipavxpAUR9JTf3DvJGs9uh1rAAXH5bPA5GF3C8kBNfmAAkHxoG3dCiBJhoxiIw0ONXHBDhJCHK26\nnbZy5KST1Z9bURSYN9lI/+TO9TSpKAoffVbCu2sL0enU3H9XT8aObn2Nj65EURS+2VXJG++epq5e\non9aAIvnJRIT5V53GkHoqlQqFfOv60teSS2ffX+KtIRgBiaHe3tYgiAIQjfRuV5tdyLdcTWACBm8\nw1ltJmfJY6BWk7rsKTQBbnS9kGV036ajajDjHDoBJTrZs4sqsiuQkJ3gHwmG1rXrVBQ4Wmqgxqoh\nwt9Jr3B7a3d/tIlDJ5y8s8mKWg3zpxrpk9i5niKtNollK3P5bm814aE6nnlsEOHB3h6Vb6iosrPi\nrTx+OGjGaFBz583xTLwyArVYHSEIAPgZddwzfSBPv7OP19Yf4Yn5FxMa2HW2mwqCIAi+S9SUaGft\nWWRSEBRF4dRDT2MvLCHu/jsIGDHIrfM0Gd+gLjqBFJeGNHCMpxcFcxE4rWAMBr/WvZumKHC8XE95\nvZYQo0S/KJtXA4l9xxy8vdGKVgN3TjN1ukCitNzGw3/P4ru91fTr7c8/H+tL316tC4u6EkVR+GpH\nBfc9cpQfDpoZ1C+QF57sx3VXRYpAQhDOkxwTxOzxvamzOHj1kwxRX0IQBEHoEJ3rVbcgCL9Q8dHn\nVK7/goCRg4m9b55b56iKstEc3IbiH4zzshtc9SA80VABthrQmiAwptWFLfOqdRSadfjrJQZGW/Hm\n/HD3YQcffmXDoIe7pplIiulcIWJGZi3PLT+Juc7JNVf04I658ei0InMuq7Dzyuo8DmSYMRnV3HNr\nIlePC0flzfRLEHzc+OFxZOZX88OxUtZuP8mNV6R6e0iCIAhCFydCCUHopGx5BZz607OoA/xJeelJ\nVFo3/pwbzOh2fAhqNY6xc8Dg4XYbWy3Ul7oKWgYneB5o/KzIrOVkpR6DVmZwjA2tFzOAbw/aWfuN\nHT8jLJxuIj6y8wQSiqKwcWs5K9/PB2DhLQlMvLLxbjjdiaIobPmmnNUfFGCxygwbGMQ9tyUSEd75\nWroKQkdTqVTcPrEvecW1fL4rl7SEYAan9vD2sARBEIQuTLyV1g3YHBKlVQ3YHN5tsSi0HcXpdLX/\nrKun59/+iDEpvuWTZAndjg9Q2epxjpiI0sONc87ltIK5AFC5AglN6zLNinoNmWV6tGqFITFWDFql\nVbfTFrbtdwUSgX4q7r2hcwUSDofMy6vzeP2/+fj7aXnyj2kikABKymw8/s8TrHgrH5VKxeJ5STx6\nf6oIJATBA35GLfdMH4hWo+b1T49QabZ6e0iCIAhCFyZWSnRhkiyzZusJDmSVUWm2ERZkYFhaBLPH\n90KjFnlUZ1b40pvU/XCIsOuvJvzGyW6doznwJerSXKSkAch9Rnl2QdkJ1fmuApdBcaAztWLUYLaq\nOVxiQK2CQTFW/PTeCSQUReGLPQ4277YTHKDinhkmIkI7z99EVY2DZ5fncOxEPSlJJh5aLCbdsqyw\naVsZb6cXYrXJjBwSxN23JhIe2r1/L4LQWknRgdw0oTdvb85kxSeHWTp3GFpN53meFARBEDoPEUp0\nYWu2nuDLH06f/bzCbDv7+dwJad4alnCB6vZnUPD86+hjo+j5j4fd2h+vzj+K9si3yIHhOEdP96wO\nhKJAzWmQHeDXw1XcshUa7CoOFRmRFRgYbSPY6J0Caoqi8Pn3drbucxAWpOLuGSbCgzvPC+3jJ+t5\nZlkOFVUOxowKZdHtSRgMnWf87aGoxMqyVXkcyaojwF/D725NYtzoMFE7QhAu0BVDY8nMq2LP0VI+\n3p7DrCu7XltzQRAEwftEKOEDbA6pzduG2hwSB7LKGv3egaxybhiXKjqCdEJSXT3Zix8BWSblxSfQ\nhgS1fFJtFdrvP0bRaHGOmwN6o/sXVBSoLQZHg6vtp3/rtgfYnCoOFhlxyir6RNjo4e+drUSKovDJ\ndjs7DjqICHEFEiGBnWdC//X3Fbz8Zh5OSeHWmbFMnxjVrSfekqzw2Zel/PfjQux2hVHDg1l4SyKh\nwTpvD00QugSVSsVtE/uSW1zLpt15pCWEMLSXqC8hCIIgtC0RSnhRe26vqKmzUWm2Nfq9qlorNXU2\nIkM9LHIoeF3uY//Cduo0MYtuI+jSkS2fIDnQbX8fld2K45IZKKHRnl3QUgXWKtAaIDCuVZ02nBIc\nKjJgc6rpGWYnJsjp8W20BVlR+GirjV2HnUSHqVk4w0iQf+cIJCRJ4e30Aj7ZXIqfScODi3syYnDr\nVqx0FaeLrCxbmUtmdj1BAVrum5/ApReFdOuQRhDag8ngqi/xt7f38caGIzw+7yJ6BLduC58gCIIg\nNEaEEl7UntsrggMMhAUZqGgkmAgNNBIcYLig2xc6XuVnX1H+/nr8BvUl7o93u3WO9odNqCsLkVKH\nI/ca7tkF7XVQVwwqjauwZSuCMlmBjBIj9XYNsUEOkkIcHt9GW5BkhTVf2th3zElchJq7ppsIMHWO\nyWttnZN/vXqSg4driYsx8PCSVOKiPVjt0sVIksL6LSW8t7YIh1PhsotCuPPmBIKDxOoIQWgviVGB\nzJ3Qm9WbXPUlHrp5uKgvIQiCILQZ8R/FS1raXnGhnTIMOg3D0hpfaj8srYfYutHJ2AtLOPnHv6E2\nGkhd9hRqfcsTMPXJg2iy9iCHROG82L1imGc57a46EvBzpw3PiwUqChwtNVBt0dDD30nvHvbWLLS4\nYE5J4Z1NVvYdc5IYpebuGZ0nkMgrsLD0qUwOHq5lxOAgnvlz324dSOSetvDQ3zN568NC/Pw0LF2U\nzB/uSRGBhCB0gLFDYhk9IIqcQjPpX2d7eziCIAhCFyJWSnhJR2yvmD3eVZDqQFY5VbVWQgONDEvr\ncfbrQuegyDI5v38CqdpMz388hKl3zxbPUdWUot21HkVncNWR0HoQKsgS1OS5Om0ExoDe88ehosCJ\nCj1ldVqCjRL9Im1eCSQcToW3Nlo5clIiJVbNgutNGPWdI5DYfaCaF147hdUmc8PkKG6aEYtG3TnG\n3tacToW1G4v5YH0xTklh7OhQFsxNIChA/AsThI6iUqm49do+5BbXsmVvPmkJIQxv4s0PQRAEQfCE\neEXnJR2xvUKjVjN3Qho3jEtttpBmexTaFNpO8WvvYv52DyFXjyHilhtaPsFhR/vNGlROO46xs1GC\nPChKpihgLgDJDqYwMIW2asz51ToKanT46WQGRlvxxipfu0Nh1WdWsvIk0hI0zJtiRK/z/Um9LCt8\nuKGY99cVYdCr+cPdyVx2cevuh67gZF4Dy1bmkpNnISxEx923JnDR0BBvD0sQuiWj3lVf4qnVP/DG\nZ0dJiAwgIkTUlxAEQRAujAglvOTM9opza0qc0dbbKww6TaOrLtqz0KbQNuozMjn99DJ0EeEkP/9Y\ny0X8FAXtnk9R15Ti7DMaOWmghxcsddWS0PtDQFSrxlxcqyGnUo9BIzM41oo3ci6rXWHlpxayC2T6\n99Rw63VGdFrfDyQsVokX38hl175qIsL1PLwkheTE7lmQ1uGUSd9QzEefFSNJMP7ycObPicPfT/zb\nEgRvio8I4OZr0lj1+TFeWZfBw78dgU4rXjMIgiAIrSde3XlRa7ZXtOWqhvYstClcOKnBSvaiR1Ac\nTpJfeBxdeMvvlqtP7EOT8yNyeDzSiGs9u6ClGhoqXPUjguJb1WmjskFDZqkBrVphcKwVo1bx+DYu\nlMWm8PonFnKLZQb30nDztUa0Gt8PJIpLbTz9UjZ5BVYG9g3gD3cnd9taCdmnGnhp5SlyT1sJD9Vx\n7+2JDB/UvbuNCIIvGTM4lqy8ar7LKOaDbSe4+WrxmkEQBEFoPRFKdJDGwgR3t1dA269qaKnQ5g3j\nUsVWDi/Lf+r/sB4/SdT82YRceWmLx6sqi9Du+QxFb8IxdjZoPPjzdjRAbRGo1D932vD8vjdb1WQU\nG0AFA6Ot+Os7PpCosyi8ts5CQZnMiD5aZl9t6BR1GA4dMfPcKyepq5e47qoI5s2OR9sJVna0NbtD\n5oP1RazdWIIswzXjenDbrDj8TOK5SBB8zW+v6cPJ4lq+2neaPgkhjOwb6e0hCYIgCJ2UCCXamTth\nwvnbKxoLMNp6VUNHFNoUWq/6q28pffNDTH1SSPjzkpZPsFvRbX8flezEcdkcCPBgz73kgJp8QIGg\nBNB6Xs/E4lDxU7ERWYEBUTZCTLLHt3GhzPUyr66zUlwhM3qAlhvGG1B7o7qmBxRFYcMXZbz5wWnU\nKhWLbk9kwlgPaoB0IVnZ9by0MpfTRVYie+hZdHsig/sHeXtYgiA0waDXcM/0gfx19V5WbTxKYlSA\neN0gCIIgtIoIJdqRzSHx9uZMvs8oPvu15sKEpgKM6WNSmlnVUNaqVQ0dUWhTaB1HeSU59z+JSq8j\ndfnfUJtaaAGpKGh3rkVVW4lzwBjk+D7uX0yRXYGELLlqSBgCPB6v3QkHC404JBW9e9iICLiwdrat\nUV0rs2KthbJqhTFDdEwbq2+5/oaX2R0yK97KY9t3lYQEaXlwcQp9e3n+++/sbHaZ99YW8umWUmQF\nJo2P4JYbYzEZxeoIQfB1cT38ufXaPvxnw1FeXpfBn28ZgU4r/nYFQRAEz4hQoh2cGy40NumHxrdI\nNLUawmJ1NrmqocJs4+3Nmcy7rq9H2zg6stCm4D5FUcj5f0/iLK8k8S/349e/d4vnaI7tRJN3BDmq\nJ9LQqzy5GJgLwWkFY4ir24aHnDIcKjZidapJCrUTF+z0+DYuVEWNK5CoNCtcOULH5Et9P5CorLLz\nj2U5HD/ZQK9kPx5clEKPMA/atnYRR7LqWLYql6ISG9GRBhbNS2Rgn0BvD0sQBA9cOjCGzLxqdhwq\n4v2vTnDLtR4E44IgCIKACCXaxfnhQmPO3yLRXI2HY3lVhAbqqay1N/r97zOKUQG/vbaPR2FCawpt\nCu2rdHU6NV9+S9CYi4m646YWj1eV5aHZtxnFGIDj8lme1YJoKAebGXR+EBjjcWFLWYHDxQbqbBqi\nAx30DHV4dH5bKKuSeWWthZo6hWtG6bnmYp3PBxKZ2fU8syyHqhoHV1wSxj23J6LXda/K9VabxDsf\nFfL5V67nvKnXRHLzjFgMhu71exCEruLmq9M4WWRm24EC+iSGcHG/1nVvEgRBELonEUq0sebChXOd\nv0Wi+RoPNkYPiP7FNpDzfZdRzNHcSob3iXS7+KUnhTaF9mc5fpK8J19AExpMyv89gaql+9Baj277\nGkDBMWYm+HnwDrPVDPVloNZBsOedNhQFMkv1VFm0hPs5SYuwt6ZZxwUprpBYsdZKbYPC5Mv0jB/h\n+ysNvtpRwYq385AlhXlz4ph6daTPhyhtLeNYLctW5VJSZicu2sDi+UndctuKIHQlep2rvsSTq39g\n1cZjJEYFEh0m6ksIgiAI7hGhRBtrLlw41+DUsF8EAC3VeJh7dW9UuMKHplTW2ltV/PL8QptCx5Nt\ndrLv/TOK1Uby8qfQR0c0f4Iio/suHVWDGefQq1CiU9y/mMMK5gJXEBGSAGrPnwZyKnWU1OkINEj0\nj7LR0Q0uTpdKvLbOQr0VZozTc/kQ3w4knE6FNz84zWdflhHgr+GBu5MZOqB7FXG0WCTeSi9g07Zy\n1CqYMSmK2dNiMOjF6ghB6Apiwv25bWIfXlt/hJfXZvDIrSPQizc6BEEQBDeIV4Nt7Ey40JIJIxN+\n8fmZGg+NGZbWAz+Djt9e24ewwJYnXweyyrE5Or7YoNB6p599hYbDWUTMnU7YpCtbPF7z03bUhSeQ\nYnsjDRzr/oVkJ9Tk4eq0EQfaFopoNjbWai351XpMOplBMVY0HfwsklsssWKthQYrzBxv8PlAwlzr\n5Innj/PZl2UkD6zf9AAAIABJREFUxBl59tG+3S6Q+PGwmd89dpRN28pJiDXy9J/7cOvMOBFICEIX\nM7p/NFcMjeV0WR3vfXXc28MRBEEQOgmxUqKNNVdA8ozwICNhQb+eDLZU48Gg0zC8T6TH9SoE32b+\ndi/FK97BkJxA4hP/r8XjVUU5aA5tRfELxnn5jaByc2J3ttOGE/wjwOD5xLi0TsOJCj16jczgGCv6\nDn4TLLtA4o31FhxOuOkaAyP66jp2AB46ld/A0y/lUFpuZ9SwYH53R09Mpu7zzmF9g8SbH5zmy+0V\nqNVw45RoZk2NRtfNamgIQncy56reZBea+ebHQvokhDB6QLS3hyQIgiD4OBFKtIMzIcK3h4qw2n+9\nYqGp7hbu1Hj4X3DRdGcP0dKz83BW1ZD9u8dRadSkLn8KjX8LQVKDGd23H4BKjWPsbDC4GTwpCtQW\ng8PiCiP8eng81iqLmqMlBjRqGBxjw6RTPL6NC5GRbeP1TyxIMtwyycjgXr799PX9D1W8+J9cbHaZ\n2ddHM+v6GNQdvc/Fi/YdquGV1XlUVDnoGW9i8YIkUpNEUCq459lnn2Xfvn04nU4WLlzINddcw1tv\nvcUzzzzDnj178Pf3B2D9+vWsXr0atVrNrFmzmDlzppdHLuh1Gu6dPpAn3tzL6k2ZJEUHEhPu7+1h\nCYIgCD7Mt1/Vd0I2h0RNnY0bxqUyfUwy735xnGO5VVTX2dzubtFcjYdzg4u3N2c2WvxStPTsHBRF\n4eSDf8dRVEr8g/cQMHRA8yfIErodH6Ky1uMceR1KRELzx5/LUgnWatd2jaBYjwtb1tnUZBS7VvcM\njLISYJA9Ov9CHTnp5K2NdSgKzJtspH+y7z51ybLC++uK+HBDMUaDmgcXpTB6RIi3h9Vh6uqdvPHe\nab7+vhKNBuZMi+E3k6PQacXqCME9u3bt4vjx46xZs4aqqipmzJhBQ0MDFRUVREZGnj2uoaGB5cuX\nk56ejk6n48Ybb+Tqq68mJKT7/L35qqgwP26f1JcVnxzm5XUZPHLrSPG6RBAEQWiS776y72QkWWbN\n1hMcyCqj0mwjLMjAsLQI5l3XF6ektNjd4kyY4W4HDINOw7zr+uJn1IqWnp1U+QcbqNrwFQEXDyVm\n8e0tHq/58SvUpaeQEvsj9R3t/oVstVBX4ipoGZzg/naPn1kcKg4VGZBkFf2jrIT6dWwgcfC4k3c2\nW9FqYP4UI2mJvvu01WCReOH1U+z9sYaoCD0PL0klKd7k7WF1mN0Hqnn1rTyqapykJJlYMj+Jngli\ndYTgmYsuuojBgwcDEBQUhMVi4aqrriIwMJBPP/307HEHDx5k0KBBBAa6Og8NHz6c/fv3M378eK+M\nW/ili/tFkZlfzbb9Bfz3iyzmX9fP20MSBEEQfJTvvrrvZNZsPfGLWg8VZtsvOmE0tfKhqTDDnbae\noqVn52U9dZrcR55DE+hP6rK/otI0f7+pT2eiPbwDOTAM5yUz3F/p4LS5Om2gcgUSGs9qMDgkOFRk\nxC6p6RVuIzKgYwuo7jvm4L0vbOi18Idbwwnzb7mzjbcUllh5+sUcThdZGdI/kAfuTiYwoHs8xZpr\nnfzn3Xx27K5Cq1Xx2xtimT4xCo2m+2xXEdqORqPBz8/1PzM9PZ2xY8eeDR7OVV5eTlhY2NnPw8LC\nKCtzoyV3qB9abfv8r4yI8KA1czewZPYw8krr+PZQERcNiGb8yMR2v6a4D7xP3AfeJ+4D7xP3gWe6\nxyvmdmZzSBzIavyF0IGscm4Yl9pkWNBSmOGOjmjp6elKDqFpssNB9uJHkOsbSFn2FIb4mOZPqKtC\n+91HKBotzrFzQO9mxwxZchW2VGRXpw2dZ+/YSzL8VGTE4lCTEGInPsTp0fkXaleGg/StNowGuHOa\niT499ZSV+WYocSDDzL9WnKS+QWLqNZHcNjOu20zIv/+hitfeyafG7CQtxY/F85JIiOs+q0OE9vPl\nl1+Snp7OypUr3TpeUdyrc1NV1XAhw2pSREQgZWW17XLbndmdk/vxxJt7WZ5+kDB/PXE92q++hLgP\nvE/cB94n7gPvE/dB45oLakQo0QZq6mxUNlF0srlOGBcSZnSU5lZyCK1z4u+vUL8/g/AZE+nxm4nN\nHyw50W1fg8puwTF6OkpYCwHGGYoCNadBsoNfOBiDPRqjrMCREgNmm4aoACcpYQ6Pzr9Q3x60s/Yb\nO35GWDjdRHykbwZhiqLwyeZS3v6wAI1GxZIFSYy/LNzbw+oQ1WYHr72Tz84fqtHrVNw2K46p10Si\n6UbFPIX2s2PHDlasWMF//vOfRldJAERGRlJeXn7289LSUoYOHdpRQxTcFBnqx7xJ/Xh5XQavrMvg\n0VtHYujo1k2CIAiCTxOVx9pAcICBsKDGu1001wnDnTDD286s5Kgw21D430qONVtPeHtonVLt3oMc\n//sr6ONjSPr7gy0er923CXVFAVLKMORew92/UF0JOOpBHwD+kS0ffw5FgawyPRUNWkJNTvpE2jyt\ni3lBtu1zBRKBfioW3eC7gYTNLvPC66dY/UEBIcE6nnoorVsEEoqisGNXJfc9coSdP1TTt5c/zz/R\nz7VdQwQSPqO03IbF0rHbrdpKbW0tzz77LK+++mqzRSuHDBnCTz/9hNlspr6+nv379zNy5MgOHKng\nrpF9I5kwIp7C8nre3pLp9qoWQRAEoXsQKyXagEGnYVhaxC+2YZzRXCeMM2FGY609faGtZ0srOaz2\njl3O39lJtXVkL34UgNSXnkQb3PxeM/Wpn9Bk7kYOicQ5aor7dSQsVa5uGxqDa9uGh4nCqSodxbU6\nAgwSA6JtdNQ8U1EUtuxxsGW3neAAFffMMBER6pu5aXmlnX+8lEN2bgNpqf48uCiFsBDP6nV0RpXV\nDl59O489B2rQ61XMvyme666KEGGEDzmV38Ca9cXs2lfN+MvDWTI/ydtD8tjnn39OVVUVv//9789+\nbdSoUezevZuysjLuvPNOhg4dytKlS3nggQdYsGABKpWKRYsWNbmqQvC+WeN7kV1Yw/cZxfRJCGHM\nkFhvD0kQBEHwESKUaCNntjN40gmjtWFGR2lpJUeV2SYeQB449chz2PML6fXw3QSOGtbssaqaMrQ7\n16Fo9a46Elq9exex10NtEag0EJIAas8eQwU1WnKr9Bi1MoOjrXRUF0dFUfjsezvb9jkIC1Jx9wwT\n4cG+GUgcyarj2ZdzqDE7uerycBbekoBO55tjbSuKovD195WsfP80dfUSA/oEsGheEjGR3g1Ohf85\nld/AB+uL2bmvGoC0FD+mTIjw8qhaZ/bs2cyePftXX1+8ePGvvjZx4kQmTmxhG5zgE7QaNfdMG8hf\nVu3lnS+ySI4JIj4ywNvDEgRBEHyAmFO2kdZ2wmhNmNFRWlrJERpkoLbG4oWRdT4Vn2yh4sPP8B/a\nn96PLqai2tr0wU472u3vo3LacYyZhRLs5sRCsrvqSAAEx4PGzSDjZ2V1Go6X69GpFQbHWtF30LOD\nrCh8st3OtwcdRIS4AomQQN+c5G/5upzX/5uPrCjceXM8k8ZHoOrIvS1eUF5pZ8Vbeew7ZMZoUHPX\nbxO49ooeqMXqCJ+Qe9rCmvVF7PzBFUb0TvZjzvQYhg0M6vKPTaHz6RFiYsHkfrz08U+8vC6DR28b\nickgXooKgiB0d+I/QRvztBOGL7f1bGklh1GvRdSVbZmtoJhTDz2N2mQk5aW/otbpgCZCCUVBu3sD\n6upSpD6jkHsOcu8isgTV+aBIEBgNes+qm1db1BwpNaBWwaAYK366jtnvK8sK6dts7D7sJDpczd0z\njAT6+V4g4XDKrHzvNJu2lRMYoOGP96QwqF/XXiauKApf7ahg1ZrTNFhkhvQP5N7bE4nsIVZH+ILc\n0xY+WF/E9z+HEb2S/ZgzLYbhg0QYIfi2YWkRXHNRAlv25vP25kzunNpfPGYFQRC6ORFK+IiOaOvZ\nGr68kqMzUCSJnPseQ6qppedzj2BKbX5/t/rEfjQ5B5DD43COcHNJsqKAuRAkG5hCwRTm0Rjr7Soy\nio2gwMAYG0FG2aPzW0uSFdZ8YWNfppP4CDV3TjcRYPK9F6bVZgfPvXySI1l19Iw38dCSFKIiuvbE\nvLTcxiur8/jxcC1+JjX33p7IhDHhYuLgA/IKLKz5RIQRQud24xWpZBfUsOtICWmJIVwxNM7bQxIE\nQRC8SIQSQrN8eSVHZ1D0ytvU7txP6MQriJg7rdljVZVFaPduQNGbcIydDRo3/zzry8BeCzo/CIj2\naHxWp4pDhUacsoq+kTbC/DqmWr9TUvjvJiuHsiWSotXcOc2EyeB7E6qc3Aaefimb8koHl4wM4b4F\nSRgNXffxL8sKW74pZ/UHBVhtMsMHBXHPbYn0CPNsK5DQ9vIK/rcyQlGgV08/Zk+LYcRgEUYInY9W\no+buaQP5y6o9vPvFcVJigkiM6tqrzwRBEISmiVBCcIuvruTwZfWHjlLw3Ap0UT3o+dwjzU8c7FZX\nHQnJiWPsHAgIde8i1hpoKAeNDoITPOq04ZDgUKERm6QmJcxOdGDHdFNxOBXe+tzKkVMSKbFqFlxv\nwqj3vUnVjt2VLFuVi8OhMHdGDDdOie7Sk7/iUhvL38wl41gd/n4alixI4spLw7r0z9wZ5BdY+ODT\nYr7bW4WiQGqSK4wYOUSEEULnFh5s5I4p/fm/9EO8vC6Dx2+/SNSXEARB6KY8evbPysoiLy+PCRMm\nYDabCQoKaq9xCUKnJjVYyV70CIrDScoLf0EXHtL0wYqCduda1LWVOAeMQY7v495FHBbXtg2VGoIT\nPeq0IcmQUWykwaEmLthBQojD7XMvhN2hsGqDlax8ibQEDfOmGNHrfGtiJckK735cyMefl2AyqvnD\nkmQuGtrM/dfJybLC51+V8c5HhdjsMhcNDebuWxIICxWrI7xJhBFCdzCkVw8mjUpk4+48Vm86xsLr\nB4jHtyAIQjfkdijx5ptvsmHDBux2OxMmTODll18mKCiIe++9tz3HJzTC5pDEVgofl//kv7Fm5xJ1\n11yCx41u9ljNsV1o8o4gR/ZEGnqVexeQHFCTDygQFA9a92scKAocLTVQY9UQ4e+kV7jdkwUWrWa1\nK7yx3kJOoUz/ZA23TjKi0/rWi8/6BifPv3qK/T+ZiYky8PCSFBJiTd4eVrspLLGybGUuR4/XE+Cv\n4d7bezJmVKiYFHhRfqGFDz8t5ts9rjAiJcnEnGkxjBwSLO4XoUuaMTaF46dr2HO0lD4JIVw5PN7b\nQxIEQRA6mNuhxIYNG/jggw+47bbbAFi6dClz5swRoUQHkmSZNVtPcCCrjEqzjbAgA8PSIpg9vhca\nte91LOiuqjZ/Q+lbH2Hq14uEhxY1e6yqLB/Nvk0oRn8cY2a5t9pBkV2BhOyEgEgwuL8PV1HgeLme\n8notIUaJflG2DgkkLDaF19ZZyCuRGdJLy9xrDWg1vjXBOl1k5ekXsykssTFsYBD/b2FPAvy75lJi\nSVbYsKWUd9cWYncoXDIihLt+m0BIsM7bQ+u2ThdZ+fDTInbs/jmMSDQxe1oMFw0VYYTQtbnqSwzg\nL6v28t5Xx0mJDSYpWtSXEARB6E7cfsXt7++P+pyJr1qt/sXnQttpaiXEmq0nftGes8JsO/v53Alp\nHT5O4dfspeWcfOCvqAx6Upc/hdrYzAoGWwO67WsABcfls8DPjRdhZzptOK1gDAZTuEfjy6vWUWjW\n4a+XGBhtRd0Bc506iyuQKCiTGdFXy+wJBjQdcWEP/HCwhn+/dpIGi8z0iZH89sY4nxtjW8kvtLBs\nVR5Z2fUEBWr53Z0JXDrSzRomQpsrKLLywTlhRPLPYcTFIowQupGwIFd9iRc+PMjL637i8dsvxs/Y\nNUNhQRAE4dfcfsZPTExk2bJlmM1mtmzZwueff05qamp7jq3baW4lhFNSOJBV1uh5B7LKuWFcqtjK\n4WWKonDy/idxVlaT+OQf8OvbTNtURUb7bTqqhhqcQ65CiUlx7yINFWAzg9YEgTEeFbYsMms5WanH\noJUZHGND2wEPF3O9zKtrrRRXyoweqOWGKw2ofWiipSgKH39ewn8/LkSnVXH/XT0ZO9qzlqqdhSQp\nrNtUwppPinA4FcaMCuWOuQkEBYoX/t5wJoz4dncVsgI9E1zbNC4eJsIIoXsanBrO5EuS+GxnLqs2\nHuXe6QPF34IgCEI34far0ccee4y33nqLqKgo1q9fz4gRI7j55pvbc2zdTlMrIWRFwWqTqDDbGj2v\nqtZKTZ1NdMfwspKVa6jZ9j3BV15K1ILZzR6rydiOpvA4cmxvpEFj3buArRbqS0Gt/bnThvsrlSrq\nNWSW6dGqFYbEWDFoFbfPba2qWpkVay2UVyuMGaJj2li9T73AtNoklq/K49s9VYSH6nh4SSqpPbvm\n31DuaQsvvZFLdm4DocFaFt6ayKhhXbd4py8rKLby4afF7NhV6Qoj4n9eGTEsGHUXXZ0jCO6aPiaZ\n46dr2JdZxlf7TjNhZIK3hyQIgiB0ALdDCY1Gw7x585g3b157jqfbsjkk9meWNvq97w4VYXPITZ4b\nGmjEZNBSWtUgil96ScOxE+Q/9SLasBCS//1Ys5NvZ95xNAe3ovgF4bjsBvfCBacVzAWAyhVIaNx/\nd9tsVXO4xIBaBYNirPjp2z+QqKhxBRKVZoXxI3Rcd6lvBRKl5Tb+sSyHk3kW+vX2Z+m9KV2ynoLT\nKbNmfRHpnxbjlBSuuDSM+XPiCQwQqyM6WkGxlfRPi9kuwghBaJJGrWbh9QP4y6o9rNl6gtS4YJJj\nRKc3QRCErs7tV6b9+/f/xaRCpVIRGBjI7t2722Vg3U1NnY3KWnuj32sukADwM2p58s29ovill8hW\nG9mLH0Wx2Ule8TT6yB5NH9xQi2XjW4AKx9jZYPR34wJOqM53FbgMiged+90gGuwqDhUZkRUYGG0j\n2Nj8Y6ktlFXJvPKxhZp6hYmj9Uy4SOdTgURGZi3PLT+Juc7JNVf04I658ei0Xe9vJSe3gVf+msmJ\nk/WEhei457ZERg4J9vawup3CEtfKiO07XWFEUryR2dNiGDUsRIQRgtCI0EADd00dwPNrfuSVdRk8\nPu8i/I1dLzQWBEEQ/sftUOLYsWNnP7bb7ezcuZPMzMx2GVRX1FIbT5NBi1oFsodvYseE+ZFfWnf2\nc1H8suPl/2M5liPHibjlN4ReO67pA2UJ3Y4PUBpqkUZOQolIbPnGFQVqToPsAL8eYHT/HSObU8XB\nIiNOWUWfCBs9/CW3z22togqJV9daqW1QmHKZnitH6Nv9mu5SFIVN28p54718ABbeksDEKyO8PKq2\n53DIfPhpMR9vLEaSYMKYcG6fHYe/n1gd0ZGKSqx8cH4YcX0Mo4aLMEIQWjIgOYwpl/bk0+9PsfKz\noyz+zSCfCrcFQRCEttWqV6l6vZ5x48axcuVK7rrrrrYeU5fibhtPi83pcSARGqDH7mx8otma4pct\nBSe+zFtjr/lmFyWvvYsxNYnEx+9v9ljNj1+hLj2FtvcQbH0vafnGFQVqi8DR4Gr76e/+BNopwaEi\nAzanmp5hdmKCnG6f21qnSyVeXWehwQozxum5fIjvBBIOh8xr/83ny+0VBAVqWXpvMgP6dL2Wc8dP\n1vPSylzyC6xEhOt5+L4+JCeIdxg7UlGJlQ83FPPNzkpkGRLjXCsjRoswQhA8Mu3yZI6frubA8XK+\n2JvPNRe7EeQLgiAInZLboUR6evovPi8uLqakpKTNB9TVuNvGMzjAQHiQodFilka9Gqv918vu+/UM\nY2dGcaPX9aT4pbvBiS/y5tgdFdXk/P4vqLQaUpc/hcav6W0V6tOZaA/vQA4Mw3TNHOrNboQEliqw\nVoPWAEFxbnfakBXIKDFSb9cQG+QgKcTh7o/UarlFEq99YsFmh1lXGRg1wHcmwlU1Dp5dnsOxE/Wk\nJJl4aHEqEeG+E5i0BbtD5v11RXyyqQRZgWuv6MGtM+NISgyhrKzW28PrFopKbaR/WsTXP4cRCXGu\nlRGXjBBhhCC0hlqtYuH1A3h81V4+/Dqb1LhgUuPEFjRBEISuyO1QYt++fb/4PCAggBdeeKHNB9SV\n2ByS2208DToNw9IifhFgnHHZoBhUKhUHssqpqrUSGmhkWFoPpo9JJjOvqtEgIzTQSHCAwa1xuhuc\n+CJvjV1RFE4t/RuOknLi/7QY/8H9mj64rgrtdx+hqLU4x85BZTABLUwU7XVQVwwqDQQnut1pQ1Hg\naKmBaouGHv5Oevewe9I1tFWyCyTeWG/B4YS51xoY3sd3AokTJ+v5x7IcKqocjBkVyqLbkzAYfDto\n89SxE3UsW5VLQZGNqB567p2XxOB+XW8ViK8qKrWRvqGYr7+vEGGEILSx4AADC6f2559rfmTFJxk8\nPu9iAky+8z9GEARBaBtuhxJPP/10e46jS6qps1HpQRvP2eN7AfwqfDjzrv8N41J/tUWhqSBjWFoP\nt7YxeBKc+Bpvjr3s3U+o2riNwEuGE3PPLU0fKDnRbV+Dym7BMXoaSlhMyzfutLnqSMDPnTbcewGm\nKJBdoaesTkuwUaJfpK3dA4nMPCerNliRZbhlkpHBvXynbsHXOyt4eVUeTknh1pmxTJ8Y1aX2JNts\nMu+uLeTTL0pRFJh8VQQ33xCLyeibf69dTfHPYcS2M2FE7M9hxEgRRghCW+rXM4xplyWz7tuTvLHh\nCEtuHIy6Cz2XC4IgCG6EEuPGjWv2hfzXX3/dluPpUoIDDIQ1sSWjsZUMGrWauRPSGg0fwLWa4vzt\nGM0FGU05t/6Cp8GJL/HW2C3ZueQ99k80wYGkvPgkKk3Tk0DNvs2oKwqQUoYi9xrR8o3LEtT83Gkj\nMBb07o8/v0bL6RodfjqZgdFWNO28IOBwjpPVn1tRqeD2yUb6J/tGICFJCm+nF/DJ5lL8TBoeXNyT\nEYO71pLfw5m1LF+VR1GpjZhIA4vnJ9E/LcDbw+oWSsr+F0ZIEsTHGJk9LZpLRoaiEWGEILSLKZf2\nJOt0NQezK9i8J49Jo5K8PSRBEAShDbU4i3j33Xeb/J7ZbG7yexaLhYceeoiKigpsNhv33nsvffv2\nZenSpUiSREREBM899xx6vZ7169ezevVq1Go1s2bNYubMma37aXxMc1symlvJ0Fj40JSWgoxzNVZ/\nYXBquEfBiS/xNPRpC7LDSc6SR5EtVlKffwxDXHSTx6pzM9Bm7kIOjsR58dSWa0IoCpgLQLKDKQxM\nIW6Pq7hWQ06FAb1GZnCslfZe3HLwuJN3NlvRqmHeVCNpCb4RSNTWOfnXqyc5eLiWuBgDDy9JJS7a\n6O1htRmLVeKdjwr5/KsyVCqYdm0kN02P7XJbUnxRY2HErOujufQiEUYIQntTq1XcNXUAj6/aw0df\n59ArLpje8e7/jxQEQRB8W4szibi4uLMfnzhxgqqqKsDVFvSpp55i48aNjZ63bds2Bg4cyJ133klB\nQQHz589n+PDhzJ07l0mTJvH888+Tnp7O9OnTWb58Oenp6eh0Om688UauvvpqQkK6xj8bT1YyXEgH\nCXeCjMbqL2w7UEhCZECjE3t3t4B4S2tDnwtR+Pxr1P94hPCZkwmfdk2Tx6nM5Wh3rkPR6nGOmwM6\nNwor1pW4akno/SEgyu0xVTZoyCw1oFUrDIm1YtR62MbFQ/uOOXjvCxt6LdxxvYmUON94jOQVWHj6\npRyKS22MGBzE/Xcl4+/nG2NrC4eO1vLyqlxKyu3ExRhYMr8nfVL9vT2sLq+03MaHG4rZ9p0rjIiL\nMTB7agyXXizCCEHoSEH+eu6+fgDPvneAFZ8c5i/zLiLQr2sVLRYEQeiu3H5786mnnuK7776jvLyc\nxMRE8vPzmT9/fpPHX3fddWc/LioqIioqit27d/PEE08AcOWVV7Jy5UqSk5MZNGgQgYGuwmzDhw9n\n//79jB8/vrU/k09xZyVDg83Je19kcSyvqt06SDRXf6He4uDK4XEcOlHh9hYQX9Ga7SutVbv7AIUv\nrsKQGEfPp/7Y9IFOO9pv3kflsOG4fCZKsButPC3VYKkEjR6C4t3utFFrU5NRbAAVDIy24q9v30Bi\nV4aD9K02jAa4c5qJpGjfmPTvPlDNC6+dwmqTuWFyFDfNiO0yE8YGi8TqDwvY8nU5ahX85rooZk+L\nQa8TqyPaU2m5a2XE1jNhRLSBWdfHcJkIIwTBa/okhjJjTAofb8/h9Q1H+P3MIaK+hCAIQhfgdijx\n008/sXHjRm655RbefvttMjIy+OKLL1o8b86cORQXF7NixQrmzZuHXu9KtcPDwykrK6O8vJywsLCz\nx4eFhVFW1vjk+YzQUD+02radDEVEtH+1+njAandSZbYRGmRAp1Gz8tPDfLEnF4tNOnvcmQ4SfiY9\nd04f1CbXLiqvp7K28foL1XU2brq2H/fONJwdm1Hv3kOjI35vLfndTSN+8Xt1d+yecFSb+el3j4NK\nxfC3/0lYStMFKy2b38VRXYJuyOUEXXxZo8ec+3tzNNRSXVaESq0hJLkfWoN72w3qrAo78xRkBS5J\nUxEf1r7vmm/ZVc+HW20E+qlZensYSTEdXwH9/MebLCusXpPLG+/mYjSoeWJpP64aE9nh42ovu/dX\n8sxLWZSW20hJ8udPv+tD396e/c35wt9oZ1JcauXZZVl89mUxkqSQGGfi9jlJXDUmEo1GTH4Ewduu\nuySJrPxqMnIq2bgrl8mX9PT2kARBEIQL5Pbs7UyY4HA4UBSFgQMH8swzz7R43vvvv8/Ro0f54x//\niKL8713ccz8+V1NfP1dVVYObo3ZPREQgZWUttGi8ADaHRKXZypf7TnPoRPnZ1RB+Rh35pXVNnvfd\nwUImXZzQJtsQJIdEWGDT9Rcku4PaGhktUFtjaalhJdD+vzdPeTJ2T2UvehRLXiGx99+J1Lt3kz+3\n+sR+dIf3IIfFUjfgKuoaOe4XvzfJAZU5oCgowXFUmR2Ao8Xx2J2wv8CEzammdw8bBslJC1neBdm6\nz85n39kNzmL+AAAgAElEQVQJ9FNx9wwDflorZWXW9rtgI85/vFmsEi++kcuufdVEhOt5eEkKyYkm\nn3pMtlZ9g5NV7xfw1bcVaDQwc2o0M6dEo9Ph0c/na3+jvqyswk76Z8Vs3VGBU1KIjXKtjLh8lGtl\nRGVl08/V3Y0IugRvUqtU3DG1P0+s2sva7SfpHR9CWkLX2PIrCILQXbkdSiQnJ/Pf//6XkSNHMm/e\nPJKTk6mtbfrFbkZGBuHh4cTExNCvXz8kScLf3x+r1YrRaKSkpITIyEgiIyMpLy8/e15paSlDhw69\nsJ/KR5xbWPL8MKDCbGs0IDhXW3eQ6JsYyncZxb/6ujdrR1xIHY2OUv7xRirWbsJ/xCDi7l/Q5HGq\nqmK0ez5F0RtxjJ0Dmhb+vBT5504bEgREg9697glOGQ4VG7E61SSF2okLdnry43hEURS27LazZY+D\nkAAVd//GRESI97cNFJfaePqlbPIKrAzsG8Af7k4mOKhr9K7f+2MNK97Ko7LaQXKiiSXzk0hO9M0O\nOF1BWYWdjz4r5qufw4iYKAN33JzMkH4msTJCEHxUkJ+ehdcP4Nl3D7Dikwz+Mu9igvxFfQlBEITO\nyu1Q4sknn6S6upqgoCA2bNhAZWUlCxcubPL4H374gYKCAv785z9TXl5OQ0MDY8aMYfPmzUybNo0t\nW7YwZswYhgwZwiOPPILZbEaj0bB//37+9Kc/tckP523nF5b0VFt0kDg/GDHq1YAKu0Pyau2IxjqB\ntHUdjbZgyy8k9+F/oPb3I/Wlv6LSNvEnY7e66khIThxjZkFgaPM3fKbThtMKxhAwtXD8z2QFDhcb\nqLNpiA500DO05VUVraUoCp99b2fbPgdhQSru+Y2JsCDv3zeHjph57pWT1NVLXHdVBPNmx6PVdv7J\nY22dkzfeO803OyvRalTcND2G31wX3SV+Nl9UXmknfcMvw4hZU6MZMyqM6OggscJEEHxcWkIIvxmX\nQvrX2by+4Qj3zxri7SEJgiAIreR2KDFr1iymTZvG5MmTuf7661s8fs6cOfz5z39m7ty5WK1WHnvs\nMQYOHMiDDz7ImjVriI2NZfr06eh0Oh544AEWLFiASqVi0aJFZ4tedmbNFZZ0V1usYDg/GLHaZQAu\nHRjNLdf2OXv7Hb1iobFOIGc+nzshzSsrKM6/piJJ5Nz3OFJtPcnPP4axZ3zjJyoK2l3rUNdW4Ox/\nOXJCv5Yv1lAOtlrQ+UFgjFuFLRUFMkv1VFm0hPk5SYuwu1sP02OyorDuGzvfHXIQEarinhkmggO8\nG0goisKnX5Ty5prTqFUq7r09kavH9vDqmNrKrn3VvPp2HtVmJ716+rF4fhJJ8SZvD6tLKq90rYz4\ncvvPYUSkgZlToxk7OkysjBCETmbiqESy8qs5lF3BZ9+fYv70wd4ekiAIgtAKbocSDz74IBs3bmTG\njBn07duXadOmMX78+LO1Js5nNBr517/+9auvr1q16ldfmzhxIhMnTvRg2L6vps5GZQvbM5pi0KsZ\nmRbJ9DEpFzSG5oKRzLxqwDsrFpob1/7MMiRZ+UXtjfYeT1O/g7GHd1C7+wChU66ix+ypTZ6vztyN\nJvcwcmQS0rAJLV7PZq6E+jJQ6yDY/U4bOZU6Sup0BBokBkTZaK8GALKskL7Nxu7DTmLC1SycYSTQ\nz7uBhN0h8/cXMtm49f+zd97hUdVZH/9Mn/Tee0KXJk1BlKIgKAgoxUVRseEK7K7urq5r2cXVF8u7\n4rsCoq6AYgGJgCgICKIUpYYqVUIJJX2SSZl+7/vHSM20lEmB3+d5eB4yt52bTCa/873nfE8B4aFq\nnp2SSbtWvrW7NGfKjTb++9lpNm0zoFErmDA6kRG3x4nk2A9cECM2lmC3CzFCILgaUCoUPDqsA/+c\nt41lm47TrUM8SRFC0BUIBIKWhs+iRPfu3enevTvPP/8827ZtY/ny5fzzn/9ky5Yt/oyvxRIWrCMy\n1LWx5JWEB2sxVlkJD9ai06gxW238tD+fQ6cM9UrIPQkj5/0q1u487bFiwR94iqu0wsL6nDONGo+r\nqo09K34mK/t9tAmxZLz+dxRuhANFUR7qnauQdUHOtg2ll6oOmwlj0UlQKCE8BZS+/QqeLlOTV6Yl\nQCPRKcGMyk8agUOSWfidhZzDdpJjlDw+MoCggKZN2EoNVl6bmcvR49W0Sg/k2SmZREe2/N7hzdsN\nvP9JHsYKO22ygpgyMZWURLGYbmiKS60sWVnAdxuKsdtl4n8TI/oJMUIguCoIDtDwxIiOvPFZDtM/\n2s6z47uREtvyRWuBQCC4lqjV7ESj0cjatWtZtWoVeXl5jBs3zl9xtXh0GhXXt4nx6imh0yiZ9nAv\nTBY7q7edYv2usxe21Tch9ySMRIToCdCp3VYs7DpSzD39svzSOuEpLqXC6ZvQWPG4qtpQWy3cuvpz\ncEik/PsfqCPC3BxcjWbjIpAkbDePgcBQzxeT7L8ZW0oQlgJq30Z/Flaq+LVEi1Yl0TnBjNZP3Sx2\nh8ynq8zsPeYgLV7JYyMCCNA1bdJ2+FgVr8/MxVBu4/YBcUwcl4BO2/S+FvWhrNzG+5/k8fPOMrQa\nBQ+NS2LYoFhU/ip9uUYpMTjFiDU/OsWIuBgtY4cn0K+3ECMEgquNVklhPDqsA3O++oUZX+zm+Qk9\niArz7W+sQCAQCJoen0WJRx55hKNHjzJo0CCeeOIJunXr5s+4rgrOG0juOlJMidH1+MS+nRMICdSi\n1ajYe6zE5T51Tcg9CSPXt4nGZLF7raRoqMkfvsblSpDwZzyuqjZu2vg14WXF7Ol2CxldOrk+UJZQ\nb/4SRVU59i4DkROyPF9IlqAsDyQ7gbHJVOObb4rBpORggQ6VAjolWAjQeB+ZWxdsdpmPV5o5cMJB\nVpKSh4cHoNc2beK2bmMJcxacQnLITLw3iYfHZ1Fc3HLHMsqyzIYtBv77WR6VVQ46tAlm8sRUEuPE\nwrkhcSVGjBnmFCOEaahAcPXSq30cNhk+XP4Lb32xm+fu705wwNUxlUkgEAiudnwWJR544AH69u2L\nSlUzMf7ggw947LHHGjSwqwGVUsn429pwT78sSo1m1u7IY++xEkorLESGXPRKAN9aLeqSkF8qjBgq\nzJdN3LA7ZI+VFPWd/FHbuDpnRbL3WEmjxnNl1Ub6sf20/2UbxdGJ/Dp4hNtrqvZvRHXmCFJCKxyd\n+nm+iCxDxTmwm0AXSmB0ItU+JNeVFiX7850Ja8d4MyE6qXY35yMWm8y8b8wczXPQJlXFxDv1aDVN\nl7zZ7TLzvzjNirVFBAep+PMTGXS9LtRtC01LoNRgZc6CPLbvLkenVfLo+GSGDoxBKaojGozSS8QI\nm10mLlrL6OHx9O8dJcQIgeAaYWS/VuSdM7Jmex4zv9zLn+/tikbdPMeNCwQCgeAiPosS/fq5T7w2\nbtwoRAkP6DQqEqKCmHB7O7dTJby1WtQ1Ibc7ZG7rnszwPumYLPbLrqtS4rGSwp9TLy4VbC79fny2\n9kijxnNp1UZgZTn912VjV6lZO+R39OiQ4PKaivzjqPasQw4MxdZ3tNMfwhOmUjCXO9s1QhN9Sq5N\nNgV7z+lwSAo6xJmJCPSPIGG2yny43ETuWYnrMlQ8MFTfpAmcsdLO/757nH0HK0hJ1PPc1EwSWnAl\ngSzLrN9cytyFp6mqdtCxXTCTH0ojPtZ/gt+1RqnBypJvC1jzg1OMiI3WMmZYPP37CDFCILgWGTuw\nFYYKC9sPFfLB1wd4YkRHIQALBAJBM6dWnhLukGX/lJS3ZNyJDzqNymXFg7dWi9om5J6malyKp0qK\nxuDK70dTxDNuYCuQJIKnfYjeXE3OkDH0GNzd9TVNFWg2fgEosN08DvRBnk9uqYDKAqehZViKdwED\nsDlg7zk9VoeSrCgLscGOut2YF6rNMh98ZeJUgUSXVmruu13XpL32J/Kqee2dXAqKrdxwfRh/fDSd\ngICW+4SruNTKux+dImefEb1OyaQJKQzuFy0Wxw1EaZmNpSvzWfNjMVabECMEAoET50SO9hirrOw4\nXMTn644y/rbWLbraTiAQCK52GkSUEB/0F6nriE2LzcGA65NwOCT2Hiutd0LuaqKEK9NMdxULTUVT\nxKNSKhl4Yienjh8moF9vHprzZ/RaF78akgPNxsUozJXYuw9Bjk31fGK7BYxnAIVTkFB57211SLDv\nnB6TTUlKuJWUcHvdbsoLldUy7y0zcbZYokc7NWNv0zWp0eLPOwz8339PYrFKjLsrnrF3JbTY5F2W\nZb7bUML8RacxmSW6XhfCkw+lERPV8ieGNAdKy2ws+7aA1T8UYbXJxERpGTM8nv59ItGoW7YJqkAg\naBg0ahVT7+nE9E9yWLfzNJGhOobekNbUYQkEAoHADQ0iSggu4qsYcB5XIkbnVtHc1j2ZyFB9nRJy\nVxMlzuPONNNdBYena5wrrsJhcz7Fb2gBobbx1IfqA0fJ+5+ZqKMjafeff6JxJUgAqj3foyw4jiOl\nPY72fTyfVHJcnLQRmgQa76MeJRkOFOgwWlTEBdvJjLTV5Xa8YqySmLPUTEGpRO+Oau4eoEPZRMKi\nJMks/Ooci7/OR69T8uzkTG7sHt4ksTQEhcUWZs8/xZ4DFQQGqJg8MZVb+0YJ4bYBMJTbWPptAavX\nXxQjRg+LZ8BNQowQCAQ1CdRreGpsF15dsJPF648REazjxuvimzosgUAgELhAiBINSF3EAFcixvqc\nM6iUCu7pl0WhobrWyb6/TDPhChGlwvJbXDJmq0SUj1UhzQnJZObY5OeRrTYyZ7yEJibK5X7KM0dQ\n79+AHByBvc8o8JRkyjKUnwaHFQKjQO9mpOgVhxwp0lJSrSYiwE7bWIvHS3jDXfuQoUJizlITxWUy\nN3fVMOJmbZMlzNUmB29/cILtu8uJi9Hy3NQs0pK9izfNEUmSWbW+mAXZZzBbJLp3DuX3D6YSFSGq\nI+qLSzHizngG9BVihEAg8ExkqJ6nxnRh+qc5fLjiIKFBWjqkRzZ1WAKBQCC4ggYRJdLT0xviNC2O\nKxO/2ooB1RYbm/aec7n/pr1n2XGokPJKq88tIOfxl2km1BRRzNaLfgfeqkKaI3n/MxPT4VxiHxpD\n+K19Xe9UVYZ6UzayUo2t372g9ZI4VxaArQq0wRAU61McJwwa8is0BOscXBdvoa6dC57ah8oqYM5S\nE6VGmVt7aBjau+kEibMFZqb/J5fT58x06RDCn5/IICS4ZWqk5wotzJp3kl8OVxIcpOKPE9Lo1ztS\nVEfUk7LfxIhVPxRhtcpER2oYPSyegX2jhBghEAh8Jjk2mKl3d+KtL3Yzc8k+/nZfN1LjfBvLLRAI\nBILGwecs4MyZM7z++usYDAYWLFjAF198Qa9evUhPT+fll1/2Z4zNDneJ38ibM2olBnz23dHLkvpL\nMVslzFYrUPtkv6FNM8/jqRLkUtxVhTQ3ytb/RMGHC9G3ziD1xT+63slhR7NhEQqrCdsNdyFHJno+\nqcngnLah0jnbNnxITM+Uqzlp0KJXS3SON1OffMtd+5DZouJ0fjzlVTJDbtQyqFfTPcHftd/Iv+cc\np6rawfDBsTw4JqlJDTbrikOSWbm2iE+WnMFqlbnh+jAen5BKZLh37xCBe8rKbSxbVcC36y+KEffc\nGc+tfaPQaIQYIRAIak+7tAgeHdaBOV/9wozFe3h+Qneiw1pmZZ5AIBBcjfgsSrz44ovcd999zJs3\nD4CMjAxefPFFFixY4LfgmiuefCN8FQMsNgeHTpbW6rq1SfYbeoqFxeYg90y5S8HlSurbItIY2EoM\nHP/TNBQaNVmzXkEZ4HrspCpnNcri0zgyuiC17uH5pNYqqDgHChWEp4DS+8+pqFLF0WItGqVM50Qz\nbuwsfMKdaKRUBPDLsUhAZlhfLQO6NY0gIcsyX60uZMHiM6hUCqY+ksbAm1y3yzR3zpwzM3PeSQ79\nWkVIsIopE1Po2ytCVEfUgzLjb2LE904xIipCw+hxQowQCAQNQ6/2cZRVWFj4/a/M+GIPz93fneAA\nISILBAJBc8DnFMhms3Hrrbcyf/58AHr27OmvmJo13nwjpj3S68L/PYkB5ZUWDBXWWl271Euyf2U7\nyZVTLABKys218qi4sipEqXAaMnqivi0i/kaWZY4//TK2ohJSXvwjQR3butxPeXI/6kNbkMJisN9w\nl+eqB4fV6SMBEJYMKu+Jf5lJyYFCHUoFdEowE6ip32hdV+1DKkUgwfq2gIZBvRRNJkhYrBKz559k\nwxYDkeEanp2SSZtML+NUmyEOSWb56kIWLjuL1SbTp0c4j92fQnioWNjWlTKjja9WFfDt98VYrJIQ\nIwQCgd8Y3CuV0goLa7bn8c6Xe/nLvV3RqJt3VadAIBBcC9TquazRaLzwJPDo0aNYLN6fml9tePON\nqKy2+jTS0pPvgzvCg3Quk31PPgI6jYqoMH2dxpRCzaoQ2Ye8uT4tIo1B0SdLKPtuI6F9exI/6T6X\n+yiMxah/Xoas1mLvdy9oPCTzkgPK8kB2QEgCaL0n21VWBfvz9SBDxwQLoXqprrdzgSvfUyplEMG6\ntihQoVDmMaB70/h8FJdaee2dXI6drKZNVhDPTs5skS0OeWdMvDP3JEePVxMWquZPj6XQu0dEU4fV\nYik32vhqdSEr1xVdECMeHJvEbTcLMeJa4MSJE9esH5WgaRk7sBVllRa2HSzk/a8P8PsRHVvsCGqB\nQCC4WvBZlJg8eTJjx46lqKiI4cOHYzAYePPNN/0ZW7PEVxNJbyMtPfk+uKOrm2Tf2xjS2o4pPY+n\nqhClwilQ6LTOeCxWB5Gh9WsRaQxMR09w6h9voQoPJfPtf6JwJcrYbag3LERhs2DrOxo5zINZpSyD\n8Qw4LBAQ4fznhWqLzN6zeuySgnaxFiIDXfuK1JZL31NqZQjBujaAkirrMfpdH9gkQtGBI5W8MTuX\ncqOdW/tGMWlCSotLOO12mWWrCli0/Bx2u8wtN0bwyPgUQluoMWdT40qMeGBMEoNuEWLE1cbEiRMv\ntHwCzJ49myeffBKAl156iY8//ripQhNcwygVCh65swPGKis7Dxfx+dqjjB/UWrTfCQQCQRPi86r6\nxhtvZNmyZRw5cgStVktGRgY6XfMt0fcXDWkiOW5gKw6fKiOvsNLrvimxwYy/rXWN1721kwzvk17r\nMaXn8VQVIgP/eqIPUUGaC/vWdnRpYyNZbRyb8gKS2UKrd15Gmxjncj/1tm9QGgpwtOmJlNHF80mr\nCsFaCZogCPY+/9zmgI2HZCwOJZmRVuJD7HW5FbeMG9gKY6WOo6cikGVQqk7S7/rAJhGK1vxYzAef\n5CHJMo/dl8zQgTEtbtF3Iq+ad+aeJPekiYgwDU88kEKv68ObOqwWibHCfsEzwmyRiAzX8MCYRG67\nJRqtECOuSuz2yz/ftmzZckGUkH0puxMI/IRGrWTK3Z2Y/mkO63JOExmqY+iNaU0dlkAgEFyz+CxK\n7N+/n6KiIgYMGMCMGTPYvXs3U6dOpUcPL+Z/VyENZSJpd8hUm20ut533bggP1nJ962jGD2rjstXC\nWzvJ6cLKWo0pvRRPVSGRIXrapkVQUW4CaNamluc58+YcqvcdInrccCLvvNXlPspjOaiO5SBFJmLv\nMdTzCc3lUF3i9I8IS/Y6acMhwf58PUYzJIXZSAl3/bOvD4dOSOSejkKtgpH9FHRr277RhSKbXWLu\n56dZtb6YkGAVf/l9Jp3bt6zxaza7xJff5JO9Ih+HAwbeFMnEe5MJDhLVEbXFWGHnq9UFrFx3UYyY\nMFqIEdcCV4qQlwoRLU2gFFx9BOo1PDWmC68u2MniH44RHqKj93XeHy4IBAKBoOHxeYX9yiuv8Npr\nr7Fjxw727dvHiy++yMsvv3xNll+qlEqffCO84a0S4a/3diUzKQydRoXF5qCkvLrGtby1kyTHBtdq\nTOmleKsK0WvVVPhwn80B4087ODf7Y3TpyaT96y8u91EY8lFv/QZZo8d2yzhQefA9sJnAeBYUSgjz\nPmlDluFgoY5ys4rkSMgKt/oyLbRW7Dlq55PVzpGiE4fraZPS+Al0mdHGm7OPc+BIJenJAfxtaiZx\nMS2rourYyWpmfniSE6dNREVo+P2DqXTvHNbUYbU4jJV2lq8uYMVapxgREabh/nsSGdRPiBHXKkKI\nEDQ3IkP1PDW2C9M/yWHuioOEBWnpkB7Z1GEJBALBNYfPWYtOpyM9PZ1FixYxduxYWrVqhdKLSeLV\njjffCKg5EeNSvFUiZCaFoVYp+GztEbcmld6Eg5BAbb3aTRqqKsTT98Hf2MuM5E79ByiVZM18BVWw\nCyNKq9npI+GwYbt5DIR4WJQ4bFCeB8gQmgxqz0m3LMPRYi3FVWrC9Q56tVJTWlK/e7qSHQdtLFxr\nQauGR0cEkJnY+G00uSereW1mLkUlVnr3CGfqw2kE6JtvO8+V2GwSi5afY+m3BUgSDLoligfHJhMU\n2HLuoTlQU4xQc9/dTjFCp722/2Zca5SXl/Pzzz9f+NpoNLJlyxZkWcZoNDZhZALBRZJjgvnDPZ34\n96LdzFyyj7/d143UuJZV3ScQCAQtHZ9FCZPJxLfffsvatWuZPHkyZWVlYlHhAU8TMc63YfjiT/HZ\n2iNeTSq9CQf1ERbqWxXiy/fBn8iyzIlnp2M9V0DSX58guFtHVzuh3vIVSmMJ9g43IaW093BCySlI\nSHYIjgOd94XLqTINZ40agrQOOsabUSkbdrGzZb+N7O8t6HXw+IgAUuMbP4neuLWUmfNOYrXKjB+V\nwOhh8S3qqeiR3Cpmzj1J3lkzMVFaJj+USpfrQps6rBZFRaWzTeNSMWL83YkMFmLENUtoaCizZ8++\n8HVISAizZs268H+BoLnQNjWCR4d1YM5XvzBj8R6en9Cd6LCApg5LIBAIrhl8FiWefvppPv74Y556\n6imCg4N55513eOihh/wYWsvG14kXngQDbyaW500qvQkHDdFu4ktViCvqOvmjoSjJXkHp198R3KMz\niVMfcrmP8vBWVCf3I8Wm4bh+kPuTybKzZcNuBn0YBHgv8TxnVHO8VItOLdE5wUJDj0PfuNvKsg1W\ngvQwaVQASTGNK0g4JJnPlpxlycoCAvRKnpua0aKMIC1WiYXLzrJ8dSGSDEMGRPPA6CQCAkR1hK9U\nVNpZvqaQFWsLMZklwkPVjB+VyOD+Qoy41lmwYEFThyAQ+Eyv9nGUVVpZuO4oM77Yw3P3dyc4oOWN\nrxYIBIKWiM+iRK9evejVqxcAkiQxefJkvwXV0vFVTADPgkFJeXWtTCp9GUPamIaUtfk++APzydOc\neP5NlMFBZM38Fwp1zbe7ovg06p2rkHVB2G4e69kboroELEZQB0BIgldjy5IqFYeLtKiVMl0SzOjU\nDes2//0OKyt+shISqOCJUQHERzVuAlhV7WDG+8fZuddIQqyO5/6QSUpiy3mydOjXSt758CRnCyzE\nxWiZMjGNju3E01tfqai08/WaQr65RIy4d2QCt/eLQacTYoQAKisryc7OvvAAY+HChXz++eekpaXx\n0ksvER0d3bQBCgRXMLhnCqVGM2u25/GfL/fyl3Fd0TbjqWICgUBwteCzKNGhQ4fLyrEVCgUhISFs\n3brVL4G1ZLxNxHA18cKVYODNxNKTSWVTY7E5yD1T7jJ28D75o77Idju5U15Cqqwi8z/T0KUmuQiy\nGs2GRSBJTh+JQA/l+pYK5/hPpdppbKnwnHQZzUp+KdChVECnBDOB2oYTJGRZZvVWK99tsxEerOCJ\nuwOICW/cJPD0OTPT/3OMswUWru8YytOT0lvMZAqzxcFnS87xzdpCAIbdFsN99ySi14mFpy9UVl2s\njKg2CTFC4J6XXnqJpCTnZ+/x48d56623ePvttzl16hSvvvoqM2bMaOIIBYKajB3YirJKC9sOFvLB\n1wf4/ciOKJUtpx1RIBAIWiI+ZxGHDh268H+bzcZPP/3E4cOH/RJUU9CQRoyexITwYB1Wu4TF5vB6\nHV88J5obV3pInB9teiX+FlXO/mcelTv3EnnXIKLuuaPmDrKEevOXKKrKsHcegJyQ5f5kdjMYTwMK\npyCh8vxrU21VsPecHkmGjvEWwvRS/W7m0rBlmW82W/khx0ZUqFOQiAxt3ERwx55yZrx/nGqTxMgh\nsdw/OglVC1mw7T9cwax5p8gvtJAYp2PKw2m0bx3c1GG1CCqr7Hz9XSHffOcUI8JC1Tx0VwJD+gsx\nQuCavLw83nrrLQBWr17NkCFD6NOnD3369GHFihVNHJ1A4BqlQsEjd3bAWGVl55EiPl97lPGDWrco\nnySBQCBoadTp0aZGo6Ffv37MnTuXxx9/vKFjalQcksQHy/axec+ZBjNi9CQmVFvs/OPDbV6vc14k\nGXlzBlD/6ReNxZUeErKbAgF/iiqVO/dxZsZ/0SbGkf7acy4XEqpfNqE6cwQpIQtHp/7uTybZoSzP\neSOhyaDx3J5gsSvYc06PXVLQJsZCdJCjnndzSSiyzLIfrWzeayMmQsHvRwUQFtx4yaAsyyxZWcCn\nS86iUSt46vF0brmxZYxOM5kdfLz4DKvWF6NUwIghsfxuZKLwPPCBqmpnm8bX3xVRbXIQGqLmobEJ\n3D4gWlSXCDwSGHixEm7btm2MHj36wtciwRM0ZzRqJVPu7sT0T3NYl3OayFAdQ29Ma+qwBAKB4KrF\nZ1EiOzv7sq/z8/MpKCho8IAaG38ZMY7un8nhU2WcKaq8rFLAbHV4vI67aRXTHulFZbW1SUZq+oon\nDwmlwpnXR4b6V1RxVFZxbMoLIElkvvMy6vCaLRmKguOodq9FDgzF1ncMuBOfZBnKT4Nkg8Bo0Hue\nxmB3wN5zOix2JekRVhJD7Q1xSwBIkszi7y1sO2AnIUrJpFF6QgIbL6E2WxzMmneKTdsMREVoeG5q\nFlnpjedPUh/2/GJk1vxTFJVYSUnUM2ViGm2yXIyFFVyGKzHiwbFJDBFihMBHHA4HJSUlVFVVsWvX\nrnBZ1e4AACAASURBVAvtGlVVVZhMpiaOTiDwTKBew1NjuvDqgp0s/uEY4cE6eneMb+qwBAKB4KrE\nZ1Fi586dl30dHBzM22+/3eABNSb+NGLM/iGXvMJKr/tdeZ2GFkkasi3FG568NGTgL/d2JTMpzK9x\nnHzhf7GcPEPClIcI7d295g6mCjQbvwAUTmNLvZvkVJah4hzYqp1jP4NiPF5XkmF/gZ4qq4rEUBtp\nEbb638xvOCSZz7+zsOuwneRYJY+PCCAooPGeMhYWW3htZi7HT5lo3zqIZ57MJDys+TuSV1U7+OiL\n03y3oQSlEu65M45xdyWg0YjqCE9UVTv45rtClq8pdIoRwWoeGJPE0IFCjBDUjscee4w77rgDs9nM\nlClTCAsLw2w2M378eMaOHdvU4QkEXokM1fP02C5M/ySHuSsPEhqs5br0llEhKBAIBC0Jn0WJ6dOn\nA1BWVoZCoSAsLMxvQTUWdTGk9AVPYoen6zSkSOKu4qI+bSne8OSlERmi97sgUfrNWoq/+JrATu1I\n+sukmjtIEpqNi1GYKrF3H4Ic66EU02QAcxmo9RCa5HHShizDwUIdZSYV0UF2WkdbvQ3m8Bm7Q+aT\nVWb2HXOQFq/ksREBBOgaT5DYf7iCN2cdx1hpZ3D/aB4dn4xG3fyT+px95cyef4oSg420ZD1TH05v\nMZUdTUVVtYNv1hby9ZpCqqovihFDBkQToBdihKD29OvXj02bNmGxWAgOdnq36PV6/vrXv9K3b98m\njk4g8I2kmGCm3tOJfy/azawl+/jbfd1IjROTmgQCgaAh8VmUyMnJ4ZlnnqGqqgpZlgkPD+fNN9+k\nU6dO/ozPr/hruoUnscPTdRpSJPFXW4onmtKY03q2gOPP/A9KvY6sWa+g1NZ8kq/a+z3KguM4Utrj\naN/Hw8kqoTIfFCqvkzZkGY6VaCmqVBOqd9A+1tJggoTNLvPRSjMHTzjISlLxyHA9Om3jCBKyLLNq\nfTEffp4HwKQJKQwZ4LlapDlQWWVn3sLTfL+5FJUKxt0Vzz3D4luEkNJUVFU7WLHWWRlxUYxIZMiA\nGCFGCOrF2bNnL/zfaDRe+H9mZiZnz54lMTGxKcISCGpN29QIHh3Wgfe++oUZX+zh+QndiQ5vOSOw\nBQKBoLnjsyjx73//m9mzZ9OmjTOhPXDgAK+++iqffvqp34LzN/5Koj2JHZ6u01AiiT/bUi5tB3HF\nea+IxjTmlCWJ3D/9E0eZkfTXnyOgVXqNfRRnjqLe9yNycAT2PqPcVz7YLU4fCRQQngIqz20KeeVq\nTpdrCNRIdIo3o2qg3Ndik5n3jZmjeQ7apqp46E49Wk3jCBI2m8T7n+axdkMJoSFqnnkyg+vaNv+n\nQtt3l/HuR3kYym1kpgYw5eE0MlJFdYQ7qk0XxYjKKgchwSomjE5k6EAhRggahoEDB5KRkUFMjFPQ\nlC9xPlYoFHz88cduj33jjTfYuXMndrudSZMm0alTJ5555hkcDgcxMTG8+eabaLVali9fzkcffYRS\nqWTs2LGMGTPG7/cluDbp1T6OskorC9cdZcbiPTx3f3eCA5p/K6NAIBC0BHwWJZRK5QVBAqBDhw6o\nVC1/4TpuYCsCA7Rs3nO2wZJoT2KHXqvCanO4vE5DiST+aEtx1Q5yU5ckhvdOvawdRKVUMv62NtzT\nL6vRvCzy3/sU46bthA++hZj77665Q1U5ms3ZyEo1tlvuBa2bpxuSA8rzQJYgJBE0nr9H+RUqckt0\naFUSnRPNNNRtmi0yH35tIvesxHWZKh4YoketbhxBwlBu441ZuRz6tYrM1AD+NjWLmChto1y7rhgr\n7Xz4WR4bthhQqxWMH5XAqKHxjfY9a2m4EiPuvyeROwbGEBDQ8j/TBc2H119/na+++oqqqiruvPNO\nhg0bRmSk9378LVu2cPToURYtWoTBYGDUqFH07t2b8ePHM3ToUN566y2ys7MZOXIks2bNIjs7G41G\nw+jRoxk0aBDh4eGNcHeCa5HBPVMwVJhZvS2P/3y5l7+M64q2mZqPCwQCQUuiVqLEmjVr6NPHWfa+\nYcOGq0KUUCmVPDayE0N7pTRoEu2uYmDkzZkep2h4qjTw1bTSH20prtpBlm/MpdpkddkOotOo6uTH\nUVuq9h3i9Guz0MRGkfHvF2uOmXPY0WxYhMJSje2Gu5Cj3JQLyzIYT4PDCgGREOB5UVtareJwoQ61\nUqZLohm92s3s01pSbZb54CsTpwokurRWc99gHSpV4yTXvx6v4rWZuZQYbPTtFcGUiWnodM277eHn\nnQbeX5BHmdFOq4xApj6cRmpS05XUNqaxbG25UowIDhJihMC/jBgxghEjRnDu3DmWLl3KfffdR1JS\nEiNGjGDQoEHo9XqXx/Xs2ZPOnTsDEBoaislkYuvWrUybNg2AAQMGMHfuXDIyMujUqRMhIc5Krm7d\nupGTk8PAgQMb5wYF1yRjBrTCUGFh28FC3v/6AE+O7IhSKURwgUAgqA8+ixLTpk3jX//6F88//zwK\nhYKuXbteWCBcDTREEn1lQuKuYiBQ5/7b7qrSQK1S1Mq0sqHbUvzZDlIfHNVmjk15EdlmJ2PGP9BE\nRdTYR5WzBmVxHo6Mzkite7g/WWUBWKtAGwTBcR6vW2FR8ku+DhTQMd5MkLZhBInKapn3lpk4WyzR\no72acbfqGm2h88PPJcyedwq7Q+aBMYmMHBJXU+BpRpQbbXzwaR6bt5ehUSt4YEwSdw2ObTQB50qa\nwljWV0wmByvWFfHV6oILYsR9dydy561CjBA0DgkJCTz55JM8+eSTLF68mFdeeYVp06axY8cOl/ur\nVCoCA51/j7Ozs7nlllvYtGkTWq2zaisqKoqioiKKi4svq7yIjIykqMi7yXRERCBqtX/e+zExzb/V\n7WqnMX4Gf3uoF//8YAs5R4pYuvkEk0Z1atZ/Mxsb8XvQ9IifQdMjfga1w2dRIj09nQ8//NCfsbRY\nPCUkdRU7Lj3us7VHam1a2ZDeDvVpB/Hnk+O8f/0f5qPHiXvkXsIH1DSuVJ78BfWhn5HCYrDfcJd7\nHwlTGZhKQaWF0GSPkzZMNgV7z+lxyHBdnIXwAKlB7sVYJTFnqZmCUonendTc3V+HshEWOA6HzILs\nM3y1upDAABXPTkmne+fmO1lHlmU2bzfwwSenMVbaadcqiCkT00hKcP3EtbFoCmNZb5hMDhYsPsWn\nX566TIy449YYAoUYIWhEjEYjy5cvZ8mSJTgcDiZNmsSwYcO8Hrd27Vqys7OZO3cugwcPvvD6pd4U\nl+Lu9SsxGKp9C7yWxMSEUFRU4ZdzC3yjMX8Gjw9rz2uf5rBi83ECNEruuNHDRK9rCPF70PSIn0HT\nI34GrvEk1PgsSvz88898/PHHVFRUXPaHvyUbXTYU/kxI6lqlUFtvB0/iQV3aQfz95Njw3UYKP1pM\nQLssUp6fWnMHYwnqn5ciqzTYb7kXNG5aVmzVUHHOOWEjLAWU7r9HVjvsOavH5lDQOtpCTLCj3vcB\nYKiQmLPERHG5zC1dNdx1s7ZRnrhUVtn595zj7P6lgqR4Hc/9IYuk+KZN7j1RYrDy+qxctuaUo9Uq\nePjeZO64LQZVE5fNNrdKIpPJwcrvnZURFZVOMWL8qATuvC1WiBGCRmXTpk18+eWX7N+/n8GDB/Pa\na69d5k3liY0bNzJnzhz++9//EhISQmBgIGazGb1eT0FBAbGxscTGxlJcXHzhmMLCQrp27eqv2xEI\nLiNQr+GpsV15dcEOsn84Rniwlj4dE5o6LIFAIGiR1Kp948knnyQ+Pt6f8bQ4PCUkOYeLLiQk7pJ+\nb5UE9TWt9Fap4Yt4UJd2EH8KNbaiEo4//TIKrYasma+g1F8hONhtaDYsRGGzYLtpNHJ4rOsTOWxQ\nlgfITkFC7d5rwy7Bvnw9ZruStAgrSWH2et3DeUrKJd5dYsJQIXNrDw1DezeOIHHqjInp7+SSX2ih\ne+dQnno8g6DA5pmwyrLMjz+XMnfhGSoq7XRoE8yUiakkxDUPAcUfxrJ1wWR28O33RSxb5RQjggJV\nPHp/Ov1vDGu2P1vB1c2jjz5Keno63bp1o7S0lHnz5l22ffr06S6Pq6io4I033mD+/PkXTCv79OnD\n6tWrGTFiBGvWrOHmm2+mS5cuvPDCCxiNRlQqFTk5Ofz973/3+30JBOeJCNHx1JguTP8kh3krDxEW\npOO6DO9mrgKBQCC4HJ9FiaSkJO666y5/xtIi8ZSQlFZYWLDqEAF6NbuPFl+W9I/un0n2D7leKwn8\nYVp5Kb6KB67aQW7qksjw3qk1zunPJ8eyLJP79MvYSwykTnuawA6ta+yj3r4CpSEfR+ueSJld3JxI\n+m3ShgOC40Eb7Paakgy/5OuosKiID7GRHmGrU+xXUmhwChLGKpkhN2oZ1Ktxplxs3VXG2++fwGyR\nuOfOOH43KrHJqw3cUWKwMufjU+zYYyRAr+Sx+1IYMiC6WZmK+ft31BuuxIjfjXRWRqSnhYvyQUGT\ncX7kp8FgICLics+f06dritznWblyJQaDgT/96U8XXnvttdd44YUXWLRoEYmJiYwcORKNRsOf//xn\nHnnkERQKBZMnT75geikQNBZJMcFMvacT/160m5lL9/G38d1IixfvQ4FAIKgNXkWJvLw8AHr06MGi\nRYvo1asXavXFw1JSUvwXXQvAU0IC8NMvBZd9fT7pP3yqjLzCyhqvg1MMuLSCwl2VQuesyHqVhddG\nPHDVDpKc6Drh8eeT48L5iylft5nQW24g7pF7a2xXHtuF6tedSJEJ2HsOdX0SWQbjGbCbQR8OATUN\nMi/d9XChFoNJTWSgnTYxVk+WEz5zrtjBnKVmKk0yw/tq6d/N/4KEJMks/iafhcvOodMq+csTGdzU\ny/29NyWyLLNuUwnzFp6h2uSgc/sQXni6PRpVw1SoNCQNbSzrK2bLb2LEt4UYK+0EBqi4d2QCw26L\nFZURgmaBUqnkqaeewmKxEBkZyXvvvUdaWhqffPIJ77//Pnff7WKEMzBu3DjGjRtX4/UrKy0AhgwZ\nwpAhQxo8doGgNrRNjeCx4dcxZ9l+3l68h+cndCc6vOkmQQkEAkFLw6so8eCDD6JQKC74SLz33nsX\ntikUCtatW+e/6FoAnhIST5wpqnT5+vaDBdjsEvtzSy5UUHRtHc3A7knsPlJMaYUFpcL59H7vsRI+\nW3ukzj4NdREPfDHu9NeTY9ORXE796/9QR4SR+fY/UVxxzwpDAeqtXyNr9NhuuRdUGtcnqioCSwVo\nAiEkwaOxZW6phoJKDSE6B9fFOb/39eXEWRuzl5ioNsPd/XXc1NlNnA2IyezgPx+eZMvOMmKitDw3\nNZOMVP+3FNSFohIr7350il37ndURv38glUH9ooiNDWi2T/0b0ljWG04xophlqwowVvwmRoxIYNig\nGIICfS5+Ewj8zowZM5g/fz5ZWVmsW7eOl156CUmSCAsLY/HixU0dnkDQoPRsF0vZra35fN1R3vpi\nD3+f0J3gAP//fRcIBIKrAa8r2O+//97rSZYtW8bIkSMbJKCWyLiBrag22/lpf77Px0huTMLLq2z8\nuPvsha9LjBbW7TzDbT2S6dI6mvU5Zy4ce766wmS2c//tbWv9RNZf4oE/nhxLFivHnnwB2WwhY9ar\naONjLt/BZkG9YSEKhw1b39EQ4qan02yE6mJQaiDM86SN02Vq8sq0BGgkOiWYUTXAZMcT5xx8+HUJ\nJjOMu01Hrw7+X7DkF1p4beYxTp42c13bYP76+wzCQpvfQkmWZdb8WMxHX5zBZJa4vmMoTz6USnRk\n47S11IfaGsvWBbPFwar1xSz9VogRgpaBUqkkKysLgFtvvZXp06fz7LPPMmjQoCaOTCDwD4N6pmCo\nsLBq2yn+k72Xv9zbFW0TjEwXCASClkaDrGSXLFlyTYsSKqWSCbe35fApg9s2jis5X+3gKzmHi9zm\nz5v353PwZCnd2sbWqmrCn2XnDf3k+PTr71J94Agx940iYmj/yzfKMuotX6E0FmNv3wcptYPrk9hM\nzrYNhRLCU0Dp/u1fWKni1xItWpVE5wQz2gZYU/x62s6HX5uxO2D87Tq6tfW/MLD3gJE33z1OZZWD\nO26NYeK4ZNTq5uPHcJ6CIguz5p9i38EKAgNUTH04jQE3Rba4ue91HQHsCYtFYtX6IpauKqDcaCcw\nQMm4u+IZPjhWiBGCZs2Vv78JCQlCkBBc9YwekIWh0sLWAwW8t/wXJo/q1Kx8kAQCgaA50iArWl9n\ng1/N1LaNIykm+DJPCW8YKjyLHaUV1jpNt7goHhRRWmEhMuSi4eZ5vE0IcUVDPjku37iN/DkL0GWm\nkjrt6RrblUe2oTqxDykmFUe3wS7OADjsTmNLZAhNBrX7yQ0Gk5KDBTpUCuiUYCFAU//396GTduZ9\nY0aWYcq4CNJiGsYs0x2yLPPN2iLmLzqNUqHgyYdSGXRLtF+vWRckSWbV+iIWZJ/FbJHo2TWMJyak\nEBnR/Ksj/I3FIrHqhyKWfntRjBh7VzzDB8USHCTECEHLo6WJjAJBXVAqFDx8R3vKKy3sOlrMp2uP\ncP+gNuL9LxAIBB5okJWt+KB14qo6oEvrKBTA7qMlGCrMhAfraJcWwb23ZrF880l2HCqkrNLq9dwR\nIToUCrxWYtR1uoUsy8jy5QKTL+NCvVHfJ8e20jJy//RPFGoVWTP/hSrwcuMoRckZ1Du+RdYFYrt5\nLChd3Pf5SRuSHYJiQefeFbvSomR/vlOw6BhvJkQn1Tn28+zPtfPxSjMKBUwcpqdHBz1FRf4TJaw2\nifc+PsX3m0sJD1Xz7JRM2rVyP12kqThbYGbWvFMcOFJJcJCKPz2Qzi03RlzznydXihEBeiVjhsdz\n12AhRgi8U1Ri5aftBrbvKadvrwiGDIjxfpCf2LVrF/3797/wdUlJCf3790eWZRQKBT/88EOTxSYQ\n+BONWsmUuzvz2qc7WZ9zhsgQHXf2Tm/qsAQCgaDZIla4DYin6oBRt9j5/LsjHDpl4Of9+Rw+ZeD6\nNjG89FBP/jV/B4ZKz2JDt7bOhaW3SozaTre4ciTopRUXV17P3bhQfyHLMiee/R9s5wpJ/tuTBHe9\n7vIdLCY0Py4EScLWdwwEhbk6CVScA7sJdKEQGOX2eiabgr3ndDgkBe1jzUQE1l+Q2H3ExqdrLKiV\n8PBwPa1T/PsrV2qw8vqsXI7kVtMqPZBnp2Q2O08GhyTzzXeFfLb0LFarzI3dw3n8/hQiwpqfz0Vj\nYrFKrP6hiKUrCyg7L0YMc7ZphASLj2qBe4pLrfy0w8Dm7WUcOVYFgFIJN3QLb9K4Vq1a1aTXFwia\nkkC9mqfGduXVBTv48sdcIkJ09OmY0NRhCQQCQbNErHT9gKvqgGUbc9l8iRHmpQl+93bu2z6iQmt6\nMew6UuS2YkKrUREc6Fty52kkqCcPi/PVGP6meNHXGFZ8T8gN15Mw+cHLN8oS6p++RFFVhr1zf+RE\nN14VplIwlzvbNUIT3Rpb2hyw95weq0NJVpSFuBBHvePfcdDGwrUWtGp4bEQAGYn+Nbs6fKyK12fm\nYii30b93JE88mIpO2wDunA3I6XNmZs49yeFjVYQGq/nDwyn06Rl+TVdHWKwSa34oZum3+RjKhRgh\n8I1Sg5WfdpSxebuBQ7/+JkQooEuHEPr0jODGbuGEhjTt+ycpKalJry8QNDURITqeGtOF6Z/kMG/l\nIcKCdFyX4caIWyAQCK5hGmTFEhzc/ErDmxPekv+pozvhcEjsPVZ6oe2jc1Ykt/VIITJUf1krxvlK\njI9XHeLnXwpqnM9sdbBs43GfKhk8jwR1X7lxvhoj2esV6o75eB4nX3gTVWgwme+8jEJ1eUKvOrAZ\n1enDSPFZODoNcH0SSwVUFjgNLcNSnAaXLnBIsO+cHpNNSUq4lZRwe73j/3m/jS+/t6DXweMjA0iN\n868gsW5jCXMWnEJyyEy8N4nhg2KbVaLvcMh8tbqAhcvOYbPL9O0VwaPjk5vlFJDGwmKVWPNjMUtX\nOsUIvU7J6N/EiFAhRghcUFpmY8tOZ0XEwaOVyLJTiOjYLpi+vSK4oVs44dfw75RA0BxJignmD6M7\n878LdzNz6T7+Nr4bafHu20gFAoHgWsTnlW9RURErV66kvLz8Mt+BP/7xj8yePdsvwV0teEr+Syss\nvDxvB5GhOjq3iua27sk1hIgr0WlU6DyMg8g5XOSTr4TnkaDuPSzqMy7UFySbnWNTX0SqNpE58xV0\nyZeXOyoKTqDatRY5IMQ5/tOVv4Xd4py0gcIpSKhcL9QlGQ4U6DBaVMQF28mMrL/Xw4bdVr7aYCVI\nD0+MCiAxxn+ChN0uM/+L06xYW0RwkIo/P5FB1+tC/Xa9unDytImZ807y6/FqwkPVTJqQyo3dm7as\nvCmxWCW++7GYJSsLMJTb0OuU3HNnHHfdHifECEENysptbMkpY9M2AweOOIUIhQI6tAnmpp4R3Ng9\n/JpvfRIImjttUsJ5fHgH3l22n7cX7+H5Cd2JDg/wfqBAIBBcI/i8Ap40aRJt27YV5Zhu8DShwlPy\nDyDjTP7X55xBpVR4rXKw2BzsOVridntphcUnXwlPE0M8eVjUd1yoN87O+C9VOfuJunso0XcPuXyj\nqRLNxi8AsN0yDgJcVOlIDig/5TS4DE0Cjes//LIMR4q0lFSriQiw0zbW4rZlxVfW7bCy8icroUEK\nJo0MID7Kf+0Txko7//vucfYdrCAlUc9zUzNJiHM/VaSxsdtlln6bzxfL87E7ZPr3juTh3yVfsy0J\nVptTjPhyxRVixOC4Ji+zFzQvyo1OIWLz9jJ+OVRxYXx0+9ZB9O0VwY3dI4gMF0KEQNCS6NEulntv\na83na4/y1hd7+PuE7gQHiN9jgUAggFqIEoGBgUyfPt2fsbRIfJlQUZtxoZf6NbgTOcorLZR5MMZU\nAAE63360riaG1PSwcL+toanYtpuz/5mLNjmBtP959vKNkoRm02IUpgrs3W5Hjk2reQJZhvLT4LA5\nTS31Lswvf+OEQUN+hYZgrYPr4i3UZ4y4LMus3mrlu202IkIUPDEqgOhw/wkSJ/Kqee2dXAqKrdxw\nfRh/fDSdgAD/tojUhuOnqnln7kmOnzIRGa7hiQdS6dnV/c/iaua8GLFkZQGlZU4x4u474hhxuxAj\nBBcxVtrZmlPG5m0G9h2qQPrNZ7ddqyD69IygT49wosSoXIGgRTOoRwqGCgurtp7i/7L38Nd7r0fr\nx4c8AoFA0FLweUXcpUsXjh07RlaW/w0OWxJXTq9wN6Hi0uS/1GhGxjUlRjMfrzrEkbwytyJHWLCO\n8GCd24kdMmCy2AkJ9L6A9TQx5Pw9uNvW0NiNlRyb+hIAWe+8jDr08ioI1d71KPNzcSS3w9HhJtcn\nqcwHWxVog53jP91wplzNSYMWvVqic4IZdT30A1mW+WazlR9ybESFKnji7gAiQ/0nSPy8w8D//fck\nFqvEuLviGXtXAsr6KCoNiM0usfjrfJaszMfhgFv7RjHx3iSCAq+95Ntqk1i7wVkZcV6MGDU0jpFD\nhBghcFJZZWdLThk/bS9jzwHjBSGiTWYgfXpGcFPPiGY3PUcgENSP0f2zMFRY2HqggPeW/8LkUZ2a\nzd9wgUAgaCp8Xhlv3LiR+fPnExERgVqtFnPGcbZR5BwudLntfMXD+ST+0uS/yFDN/2XvddvOcamB\n5XmRo9psZ8LtbZ1+EhoVXdtEsz7njMvjo0J1tfZ8cDUxxJdtDcnJF97AmneWxD8+TMgN11+2TXH2\nKKp9PyIHhWPvc7frKRomg/OfSuds23DTi1FUpeJosRaNUqZzohltPfJDSZZZ+oOVn/bZiI1wVkiE\nBftHkJAkmYVfnWPx1/nodUqemZxB7+4RfrlWXfj1eBXvzD3JqTNmoiM1PPlQGtd3bF7+Fo2BU4wo\nYcnKfEoMF8WIEbfHXtPGngInVdV2tu4q56ftBvb8UoHd4ZSoW2UEctNvFRGx0f7z7BEIBE2LUqHg\n4TvaY6yysutoMZ+uPcL9g9o0K3NqgUAgaGx8TsfefffdGq8ZjcYGDaYl4ZAkPll9mNIKq8vt5ydU\nXJnM6zQqkmND6JwVxfpdZ32+3k/78zl8ynChamL8ba359XQ5eYWVNfa9vk2MXysa/EHJstWUZK8k\nqGsHEp9+/PKNVeVoNmWDUomt372gc+ERYa2CinOgUEF4Cihd33+ZScnBAh1KBXRKMBOocVez4h1J\nkln8vYVtB+wkRCuZNFJPSKB/BIlqk4O3PzjB9t3lxEVree4PWaQlNw+TLKtNYtFX51i2qgBJgsH9\no3lwTBKBzaidpDGw2STWbizhyxVOMUKnFWKEwEm1ycG2Xc7xnbv3XxQiMtMCfhMiIoiPFUKEQHCt\noFErmTyqE699msP6nDNEhui4s3d6U4clEAgETYbPokRSUhK//vorBoMBAKvVyiuvvMK3337rt+Ca\nM4u+/5XN+/Pdbvc2oeK2Him1EiWgZmvISw/14LPvjrDraDHllVYiQ52eDyNvzqDQUO33douGwnI6\nnxN/m44yMICsma+g1FzytpQcaDYuQmGpxtZrOHKUC6NVh9XpIwEQlgwq1+XOVVYF+/P1yDJ0TLAQ\nqpfqHLPDIfP5dxZ2HbGTEqvk8ZEBBOr985TjbIGZ6f/J5fQ5M53bh/Dn32c0mykNh49VMXPuSU6f\nMxMbrWXyxDQ6t7+2Rp3ZbBLrNpWQ/c1FMWLkkFhGDIkT4xmvYUwmB9v3lLN5u4Fd+4zY7E4hIiM1\n4EJFRHMyphUIBI1LoF7NU2O78OqCHXz5Yy7hwTpu6pTg/UCBQCC4CvE5s3nllVfYvHkzxcXFpKam\nkpeXx8MPP+zP2JotFpuDXUeKPO7jbUJFZKieKA8TOTxxaWvIhNvbMXagc/JHcKCWZRtz+ceH29z6\nUTQ3ZIeD3D+8hMNYScb/voA+M/Wy7aqcNSiL8nCkd0Jq07PmCSQHlOWB7ICQBNAGubyO2a5ghDw/\nzwAAIABJREFU71k9dklBu1gLUYGOOsdsd8h8ssrMvmMO0hOUPHpXAAE6/wgSu/Yb+fec41RVOxg+\nKJYHxyahUjV9iafFKvH50rN8vaYQSYY7bo3h/nsSCdA3fxGsobhSjNBqFYwYEstIIUZcs5jMDnb8\nJkTk7L0oRKQl6y9URCQlCCFCIBA4iQjR8dTYrkxfsJP53x4iLFhLx4yopg5LIBAIGh2fRYl9+/bx\n7bffMmHCBBYsWMD+/fv57rvv/Blbs6W80kKpBzGhT8f4GhMqrhwZWpuJHFdyZWvIec+Hz9Ye8cl0\n0xc8jThtSM7NXkDFlhwihg4g+ncjLtumPPUL6oM/IYVGY79xRE2PCFkG4xlwWCAgEgJq+itYbA5K\njVZOVUVgcSjJjLQSH2Kvc7w2u8xHK80cPOGgVbKKh4fp0WkbXiSQZZmvVheyYPEZVCoFUx9JY+BN\nzWOhcuBIJTPnneRcgYX4WB1TJqZyXdtrpzrCZpdY91ubRnHpb2LE7b+JEWFCjLjWMFsc7NxrZPN2\nAzv3lmO1OoWIlEQ9N/VyVkSkJDaPViuBQND8SIoO4g+jO/O/C3czc8k+pt7dmesyIps6LIFAIGhU\nfBYltFpnSbzNZkOWZTp27Mjrr7/ut8CaM2HBOiLdVDlEheqYcHvbC5UJnkaGjrw5k017z2K21q6N\nwFVriKfqjStNNz3hy4jThqJq70HOvPkumvgY0t98/nKTJ2MJ6p+WIqs02PvdCxoXrTBVhWCtBE0Q\nBMe5vI89v5bQrev1xMWoqCwvJDE9AKjbfVhsMvO+MXM0z0G7NBUP3alHo254QcJilZg9/yQbthiI\nCNPwtymZtMlyXQHSmJgtDj758iwr1znfZ8MHx3LfqER0uuZZhdPQ2OwS328q4csVBRSVWJu9GGGx\nOThXXIXD5mgRbVwtCYtVImdfOZu3Gdixx4jlt8/wpHgdN/VyTs1ITRJChEAg8I02KeE8ObIjs5ft\n5+3Fe3j8ruvo2c79BDGBQCC42vBZlMjIyODTTz+lR48eTJw4kYyMDCoqKjwe88Ybb7Bz507sdjuT\nJk2iU6dOPPPMMzgcDmJiYnjzzTfRarUsX76cjz76CKVSydixYxkzZky9b8yfeKpyuNJk0tPI0Nu6\nJ19YzNYGV60hnqo33JluusLXEaf1xVFt4tiTzyPbHWTO+AeayPCLG+02NBsWorBZsN10D3J4XM0T\nmMuhusTpHxGWXKOKYtH3v7Jux2lu6d2DuJgoTuSdYcOWHIylyXW6D7NF5r9fmzh+VuK6TBUPDNGj\n9oMgUVxq5bV3cjl2spo2WUE8+2QGkRFNPxJw38EKZs07SUGxlaR4HVMeTqNdq2DvB14F2OwS6zeV\nkr0i3ylGaBTcNTiWkUPjiGiGYsRlwmKFhciQ5t/G1RKw2iR27XNWRGzfXY7Z4vzsTojT0bdnBDf1\niiA1SS8c9AUCQZ3o2jqap8d24T9f7mXOsv1U3d6W/te78NESCASCqxCfRYlp06ZRXl5OaGgoK1as\noKSkhEmTJrndf8uWLRw9epRFixZhMBgYNWoUvXv3Zvz48QwdOpS33nqL7OxsRo4cyaxZs8jOzkaj\n0TB69GgGDRpEeHi423M3B863Z+w6UoyhwkxEiNNk8tK2DW/VC8P7pLutuACIjwqgQ1oEe34tdXuN\n83iq3ogI0ROgU3s1v2yoagtfODVtBubcU8RPuo+wfjdetk29fSVKQz6OVj2QMrvWPNhmAuNZUCgh\nrOakjfP30fP6jqQlJ5BfWMymbbvrfB/VZpn3vzKRVyDRtbWa8YN1fvF1OHi0ktdn5VJutDOwbxRP\nTEhBo2naJNJkcvDR4jOs/qEYpQJGDY1j3IgEdNqrP7m12SXWby4l+5uLYsTwwbGMaqZixHkaUlhs\nrDau5orNJrH7FyObtjmFCJPZKUTExWi587eKiPSUACFECASCBqFdWgTPjL+etxbt4ePVh6k02biz\nd5r4jBEIBFc9XkWJAwcO0KFDB7Zs2XLhtejoaKKjozl+/Djx8fEuj+vZsyedO3cGIDQ0FJPJxNat\nW5k2bRoAAwYMYO7cuWRkZNCpUydCQpw96d26dSMnJ4eBAwfW++b8iUqpZPxtbbinX5bbRbu36gWT\nxe7RVyK/xIRGpWLaI72orLZ6TAw8VW8E6tW8PH+713aMhqq28IZh1Q8ULVhCQIfWJP9t8mXblLm7\nUf26AykiHnuvO2oe7LBBeR4gQ2gyqGu2dZRXWkhMTKVdqwxKy8pZv3k7kiTV6T4qq2XeW2bibLFE\nz/Zqxt6qQ6ls+MXBmh+L+eCTPCRZ5tHxydxxa0yTL0J27zcy+6NTFJVYSUnSM/XhNFpnNH0bib+x\n22XW/+Q0sCws/k2MGOSsjIgMb75iBLTMNq7mhs0u8dP2ElauPcu2XWVUm5yfHbHRWoYMcFZEZKYK\nIUIgEPiH9PhQnru/G28t2s2SDblUmmyMHdgKpfjMEQgEVzFeRYlly5bRoUMHZs+eXWObQqGgd+/e\nLo9TqVQEBjoTv+zsbG655RY2bdp0wZsiKiqKoqIiiouLiYy8aOgTGRlJUZHnyRbNifMmk64IDtSi\n0ypdekZoNSqCA7WMG9gKhyTzQ84ZZBfnyCus5MsfjzFhcNsLr7l7eumqeiNQryavsPLCPp6emnqr\ntvA04tRXrAXFHP/LKyj0OrJmvYJSd7E1QVFWgHrLcmSNDlu/34HqigRQlpyChGR3ekjoXJsrWgjm\n+k4xVFZVs27jVmz2i8aWtbkPY5XEnCUmCgwyfTqpGdVf1+CLArtd5sPP81i1vpiQYBV/+X1mk4/U\nrKp2MH/RadZuLEGphDHD4hkzPL7Jqzb8zZVihEatYNhtMYy6I77ZixHnaWltXM0Fu11m70Ejm7eX\nsTWnjKpq53SemCgtg/qFc1PPCFqlBwohQiAQNAoJUUE8d393/r1oN2u251FlsvHQHe2uelFYIBBc\nu3gVJf7+978DsGDBgjpdYO3atWRnZzN37lwGDx584XVZdpWCu3/9UiIiAlGrG7aUOCamYRNBs9XO\nJ1/udWtiabY6WLPjNI+N7MTvbm/P+pwzbs+191gJIWEBOBwS7y/bz75jxRSXmYgJD+DGjgk8PPw6\nVCrnH6o//q47Zqsdg9FCoF7N02//6Pack+4JQK+9/C1wU5cklm/MrbH/TV0SSU6s2VJTm++bLEls\nf+hP2EvL6DDjBdL6XmzNkK0WqlZ8geSwEXDHRMIy0y4/VpapOH0Mi92MLjyakETX5YznDDK5pTKS\nZGftxq2YzJcnaO7u40qKyxzMWVpCgUHm9j5BjB8S0qAJSUxMyP+zd9/xUdX5/sdfZ/qkzqSREAIp\n9BJqohAQEFRWpagI9rWsq2tbd/Xeve7Ptuu9q1td266udVdXASvY1obSAhIIIfQQShLSy0ySyfQ5\n5/fHJCEhk8kklAT8Pv/x4cycOSeZITPnfT7fzweL1c1v/ryXgj2NZKSG8+T/G8fgxP5tjrd5Wz1/\neL6I2no3w9PC+fXPRzEyY+BM1jjV/04BvF6Z/6yt5p8rS6mscaLTSixdmMwNV6UQF3vyQdyZFBlt\nJN5spMbi6HJfnMlIRmpsl3/zJ3K6vRQeqg94X3d/N85GXp9C/k4LazfWsn5LHU3N/vAyIU7P5Rcl\ncuGsBMaOPLX/7gVBEEIVE2XgoRum8vSqnWzaXUWL08udi8eh+wEupRME4dzX4zfLG2+8MeiXsn/9\n61/d3rdhwwZefPFFXnnlFSIjIwkLC8PpdGIwGKiuriYhIYGEhATq6urat6mpqWHSpAB9BDqwWOw9\nHXavxMdHUlsbvGlnqNrKnvMP1NDQ7A762E07K/hRdgpujw9J8k+4DKS+0cnT/95OflFNp5CjxuJg\nzYbD2B3uLlcvNcCxCiu1AU5OAOqsDg4dre9y1XTh9KHYHe4uvTIWTh/a5XfU299b1SsrqP1yI9Fz\nZxC+bPHxbRUFzcZ3UTfU4B0zA6spHU583pZaaKkHrRGXNo6mysYu1SJNThUFFQYkCSYnu6gaZWJH\nkbfHn6Pr70bmxQ8dWJoV5mdpuWgq1NXZgm7TG/HxkXy/rZqnnj9Mbb2b6dNM3HvrMLRq7yl7H/aW\nrcXLq+8c47vcBjRqiWuWJHHlpYPQaui3YzrRqfx3Cv6r499true9j6uobq2MuGx+PFf+aBAxZh2K\n7Ka2Nvi/4YEoMyM24DKuzIxYmhsd9PQbrLHYe/1342zh8ynsOdDMpjwrm7dbaLb5KyJiTFounx9P\nTraZkenhDBoURW1t8yn9d38uOR3hoCAIXUUYtfzXtZN4/oNdFBTX8fSqndx7VSZhhrM/GBYEQeio\nx79qd911F+CveJAkifPPPx9ZlsnNzcVo7P6qbnNzM3/4wx9444032ptWzpgxgy+++ILFixfz5Zdf\nMmvWLCZOnMjDDz9MU1MTarWa/Pz89uqMs9GJZc/BtJVTQ/eBBIBOqyJ3d1W393e3Vjz4cgw9bo8P\n1wnjAkPpldEX9n3FlP3fs2hiTKQ9/WinoEtVlIf66C7k+BR8Uy7uurGr2R9KqDT4IpNZ+U3Xte4L\nZ46gsNKArMD4RBfmMPr0c1Q3+AOJphaFH03XMT/r1E+++Hp9Db975gBut8J1VySx9PLEfr0a+/0O\nKy/9qxRLo5eMYWHce9swhg05d8cZer0K6zY38O4nlVTXtoYR8+K54tJBxA6ASScnK5QmvMGciWVc\nZ5JPVth7wMamPAubt1vbKyLM0RounRdPTpaZ0cPDT0uvGEEQhJNl0Gn4+dKJvPzxHrYdqOUP7+Tz\ny2WTiAo/+z+vBEEQ2vQYSrT1jHj11Vd55ZVX2m+/+OKL+dnPftbtdp999hkWi4X777+//bannnqK\nhx9+mJUrVzJ48GCWLFmCVqvlgQce4LbbbkOSJO6+++72ppdnm2BN5gLp+AU/NsgUDilgt4njulsr\nHqz5ZYvTw2Ov5XXbwC5Yr4zekp0uDt3zMIrLTdpLT6FLiGu/T6ovR7PtMxR9GJ5Zy7tM0sDrhKZj\ngATRKaz87miXte6bdteSMGQsGq3EyHgXceG+Pv0clXU+XvzQic2hsGimjtlTTu0Hvk9WePuDCj74\nrBqjQcVD96aRPbn/psw0NXt55e0yNnxvQaORuOGqwSxZMOi0TBYZCHy+tjCiiqoaFxqNxKXz4rny\nHAkj2nQMFtU6LT63p1fBYvCRx13HEQ9EPllh/0GbvyJimwVrkz+IiI7SsGBuHDnZZsaMiEAtgghB\nEM4CWo2KOxeP580vD7CuoIIn39rOA8snEWc6dy8gCILwwxJy/VdVVRVHjhwhLS0NgNLSUsrKyrp9\n/PLly1m+fHmX219//fUuty1YsIAFCxaEeihnTG/H4QVrMhdIxy/43Z0EJMWEUdkQfLlKsKuXJ141\n1WnVON2+9mUgZ6KBXdmTz+PYV0zCTVdhvviC43e4HGjXrQBZxjNzKYRHd95Q9oK1zF9GEjUEF7ou\noY9Wo2HerPPQaPWkRDsZHOWjN9peY5tDy+ufuLA74ao5emZkntrGhi12H0//4wjbC5sYkmTkv+9O\nJWVw379MnOyoxtxtFv7xVhmNTV5Gpodxzy3DSEk+N7/c+HwK67Y08O7Hx8OIH13oDyPiYs6dMOJE\neq2a+LjwPi15Odlqi/4gywr7i1vIzbOQu82KpdEDQFSEhovnxJGTZWbcKBFECIJwdlKpJG66ZBQR\nRi2fbi7hd63BRHJ8RH8fmiAIwkkLOZS4//77ufnmm3G5XKhUKlQq1Vm9zCKYvo7DC1b23JFKgtmT\nBnf6gt/xJKCh2YkpXM+kkXFcNTuDx179PuhzBrt62fGqaa3VwV9XFeB0dz1x376/loUzUokMO7Un\naY3fbaH65XcwZAwj5dFfHL9DUdDkfoDUYsU7YQ7K4BGdN1QUaDwGsgfC48EQRaPF3in0UalUzJkx\njRhTNEWHjjJmWjgQWlVEx9e40aYl0jAKULFsnp7zxp3aQOJYpZMnnz1ERbWLyeOj+L//Nx6Xw9mn\n5zrZUY3WJg//eKuMzdus6LQSNy9L5vKLE87JE7VAYcSCuXFcdVniOR1GnAqnaxnXqSbLCkWHW8jN\ns5K7zUK9xR9ERISrueiCWHKyzIwfHXnOVv8IgvDDIkkSV83OINygZdW3xTz173zuXzaRjMHRPW8s\nCIIwgIUcSsyfP5/58+djtVpRFAWz2Xw6j6tf9XUcXrCy545mT07uNOITgp8EBHvOlISIkK5e6rVq\ndBoVlm6ab1psLh57bSvTRieEfILbE0+9lcP3P4ak1ZDxwv+hDjO036feuwn1sf3Iien4Mud23lBR\noLkSPHb/2M8w/3KPE0OfnKxJJA2Kp7S8koPFBzHNPS/kY2t7jTWqSCL0I1EUFS3uQxyqDOO8cd2/\nxr2tUNi2s5Gn/3EEu0NmyYIEbliaTFSElto+hhJ9fW8qisLG7y28/HYZzTYfY0aEc/ctw0hONHS7\nzdnK51NY3xpGVNa40KhFGNFXp3IZ16miKAoHD9vZlGchd5uFuobjQcS8mbHkZJuZMDoSjUYEEYIg\nnJsWnDeUCKOWNz7fz5/eKeDuK8czPi22vw9LEAShz0IOJcrLy/n973+PxWLhzTff5N133yUrK4vU\n1NTTeHhnXrC+EN01lOyoU8VDkxO9zv9Yt8cXUgl0oJOAJbPS2FhYGbDCwe704vUpqEPIEKIj9Jgj\ndd1OBbHa3KdsKYeiKBx58Ak8NfWk/L97Cc8c3X6fVFOCesdXKMZIPDOvhhMDEIcFnFbQGCAqGVqb\nQHYMfaZNHEfa0GRq6hrYsCWfuVMGh3wlt+011qiiidD7KzRa3Afx+KzsKLIHfI17W6GgKAoffFbN\nvz+oQKuRuP/2VGZPj+nNr7Db4w4k2HuzwerhpTdL2bqjEb1OxW3XDuHSefHnXGM/n09hw/cNrPq4\nisrq42HElZcmEh8rwoizmaIoHDrqDyI25Vmprff/DQszqrkwJ4YZWWYyx0ai1Zx8mCoIgnA2mJmZ\nRLhBw99X7+GZdwu5feFYsscM6u/DEgRB6JOQQ4lHHnmE66+/vr0nRGpqKo888ghvvvnmaTu4/hCs\nL0R3DSU7ClTx0Pa8fS2Bttk9uAIEEh2PKTpC3+M+9Fo14cbuQ4k2oYQvPal9+yOsX6wjcsZUEu+8\n4fgdDhva9SsB8MxaBsYT1kK6bWCr8je8jE4BqfNJxvILhxMelUB0bDLWxmYKCncyd8rgXq11b7S5\naGoxEqH3b2NzHcQrNwLdv8a9qVBwuny88HopG7daiDVreejeDDJST/5qc2/fm4qi8G1uA6+9c4wW\nu4/xoyO46+ZhJCWcXdMTeuKT/WHEu2uqqGgNIy6Z46+MEGHE2UtRFI6UOlqDCAvVreNZjQYVc6b7\ng4hJ4yLRakUQIQjCD9PkkfH8ctlEnn2/kJdW78Hu9DJncnJ/H5YgCEKvhRxKeDwe5s2bxxtvvAFA\nVlbW6TqmfhWsL4QpQo/bK3cZoxnIiRUPJ1MC3dNozy+2llJ4qL7HK/gujw+709Pj/kIJX4JxHCqh\n9NE/o46OJP2Z3yCpW39Xsox243tIjma8Uy5GGZTaeUOvy99HonXSBuquvR1qW7RExyajU8tkDXXz\nowlTex2elFSpidCPQFFkbK4ivPLxRoCBmob2pkKhps7FU88f5kipg9HDw/nV3emYok9Nj4rejGqs\na3Dz4r9K2V7YhEGv4o4bU7h4dlyvqiNOtpnm6eaT/UtSVq2pbA8jLp4Tx1WXDiIh7twKXn4oFEXh\naJk/iMjNs1JZ43+vG/QqLjjfTE6WmUnjo9CJIEIQBAGA0cPM/Oq6KfxlVQH/+uIANoeHy6YP69dR\n44IgCL0VcigB0NTU1P5H7uDBg7hcoU+aOFsE6wthd3l57NWtvW4u2FFfTvSCHZPL4+PbHRXt/x/s\nCn6o00GCTfPoiezxcvieR5AdTjKefgx9cmL7fepd36GqOoRvyCh8Y3NO2NAHjWWgyBA5GLRdA5EG\nu5oDNXo0KoXMJCcR+t73Q8jb52Hl1x5UKgWr/QA+2dbp/kBNQ0OtUNh9oJk/vnCEJpuXi2fH8ZPr\nh5zScvJQRjUqisLXG+p5Y+Ux7A6ZieMiuevHQ3t1kn6yzTRPt7Yw4t2PKymvcqFWw8Wz47jqMhFG\nnI0URaG03NkaRFgorzoeRMzM9gcRkydEodf1/3tPEARhIBqWGMlDN0zlzyt28MH6w9gcHpZdOByV\nCCYEQThLhBxK3H333Sxbtoza2loWLlyIxWLhj3/84+k8tn7T/RhN/xKKvozRPNkTveUXDudAqZWy\nms4n0TaHN+DjAy3BCHU6SLBpHj0p//NLtOzcS+zVlxG76KL226WKYtSF36GEm/DOuKrzsgxFgaZj\n4HODMQaMpi7P2+xSsadKDxKMT3QSoVd6fWybd3l471sXRj38ZJGR3D0mdhR5exx52FOFQlS4js/X\n1vLqO/4RuXfcmMKCufG9Pr5QBBvVWFPn4m//LGXnnmbCjCruunko82fF9vpqSV+baZ5ubQ0sV605\nHkZcdEEsSy9PFGHEWais3NHeI+JYpb/xq04nMWOaiZnZZqZMiEavF0GEIAhCKBJjwnjohqn8ZdVO\nvswrw+bwcPOPRqMJpemYIAhCPws5lEhLS+OKK67A4/Gwf/9+Zs+ezfbt25k+ffrpPL5+0WmMpsXO\nM+8VBmwy2ZveCz2d6PVUQeH1KSEtvWjT0OTkcHkj6cnR7c/X03SQ2KieG3EG07Qln8rn3kA/NJnU\n//2v43e0NKLd+C6oVHhmXwN6Y+cNbdXgbgFdBER0bdLk8EgUVhrwKTBukAuTUe71sa3f4Wb1BjcR\nRok7lhgYHK8mNSm0kYd6rZqJI+JYu728y30T0mN47e1yvlpfT1Skhv++K41xoyJ7fXyhCtSzRKtW\n8eW6Ov65qhynS2ZqZhR33jS0T5MmTrbR6+ngkxVyt1p4/7P9lByzizDiLFZe6WzvEVFa3hpEaCWm\nTzWRk2Vm6sQoDPqBt1RIEAThbBATZeB/rp/C06t2kru7CrvTy52Lx6EbgEswBUEQOgo5lLj99tsZ\nN24cgwYNYvhw/0mr1xv4Kv25Qq9Vo9OqT6rxJfR0oleLzyf32BMi1KUXbSQJ/rSioMvzBbrSnjk8\nlvlThxBh1OJwhT7NoyNvYzOH730UJIn0536LOrK1gaXsQ7thFZLLjif7cpTY4w2YXB4frqY6onwN\noNZ1mrTRxu2FnRUGPD6JEXEu4iMCN/wM5ps8N59tdhMVLnHnFUYGxRz/4UIdeRio1kD2Sqxf66S+\nzk76UCP/c2/GGWus2HbcVTUuXnijhN37bYSHqbnvtmHMmRHT57WkJ9vo9VTyyQq5eRZWraniWKUT\ntVpi/gWxLL0skUHxIow4W1RUO9m01d8j4ugxBwBajcR5k6PJyTIzbVI0RoP4wiwIgnAqRBi1/Ne1\nk3jhg10UFNfxl1U7ue+qTMIMvVqxLQiCcEaF/BfKZDLx5JNPns5jGZB601ywO8FO9OqbXCH1hIiO\n0GOK1GNpDi2YkJXAzxfoSrtGLZ10D4GjDz2Fu7yKwb+8ncisie23q3d8haq2FF/qBOSR2cDxpSyW\n+gbuuCASu0/h68M+Lpsp0fHUxCvDrioDTq+KoSY3ydG9C8EUReE/W9x8nefBHOkPJOJMvS9jdHl8\nFBys63Sb16nGVhGO4pWZkWXivltTz2ipuSwrfPZNLW+9X4HLLZM9OZo7bhxKjOnkmmqeivf7yZJl\nhdxt/jCirMKJSgXzZ8Vy+00Z6NTndhB6rqiscZHb2iPicKk/iNBoJLIm+YOIrEnRhBlFECEIgnA6\nGHQa7ls6kZc/2cu2/TX84e18frF8EtHhYiKVIAgDU8ihxEUXXcSaNWuYPHkyavXxL5ODBw8+LQc2\nUITSXLAnwU70VNLxAKGj/AO17aXyPlnm/XWHsDt6Xr4hAYG6LZxYet+xQuDtr4tOqodA3Qef0/DR\nF4RPnUDy/bcd/9lK96LZuwk5Kg7v+YvbqyBWri0mf18FjyyKRZLghW+s7Kt0Y3NL7fuTFdhTpafZ\npSYx0kNaTOhLV8AfSHy80c26HR5io/2BRLhRocZi7/U0iRNDJVeTFnt1GCgQFufgpuWjzmggUV7l\n5PnXSthf3EJkhJq7b05l5nnmU9Jp+1S83/tKlhU2b7Oyck1lexgxb6Z/mUZigp74eCO1tc09P5HQ\nL6prXeRus7Bpq5VDJXYANGqJqZlR5GSZyZ5sIjxMBBGCIAhnglaj4s5F43jLoOG7ggqefGs7Dy6f\nRJzJ2PPGgiAIZ1jIocSBAwf4+OOPMZmONyGUJInvvvvudBzXgBKsuWAogp3oBQokABqaXbz1xQFu\nvnR0l34UgbSFG921f+yu9P5kewi4yiooeegpVOFhZDz3BJKm9S3V3IAm90MUtRbvBdeAVt++vz2H\narlvvploo5q3Njexr9LdaX86jZoDNTosDg0xYV5GxrtPXNURlKwofPidm9xdHhLMErcv1vOfrX2v\nBGkLleoaXTjqDLgsBiSVQnhSC4mDNZgiez8FpC98ssLHX9bwzocVuD0K06eZ+On1Kads5Gibk32/\n91Z7GPFxJWXl/jDiwpmxXN0aRggDV229m9zWHhEHj/iDCLUaJo+PYma2mezJ0USEi5JhQRCE/qBS\nSdx4ySjCjVo+3VzC797azgPLJ5EcH9HfhyYIgtBJyN8Wd+7cSV5eHjrdD6/0K9CSh1CvGLc1sFwy\nKx1ZUcjdVdXeNFOvVeHxycjd9G3ctLsKnU5NYXFd4Ad00F240aa70vtQeghER+gD/tyy18uhex7B\n19xC2tOPYUgd4r/D50G7fgWSx4lnxpUo5uPNKxubnVw52cjQWC3f7rezdp+9y/6a5WiqbVoi9T7G\nDXKh6k0gISusWusib6+XpDgVdywx8HHuyU2T0GvVjEuN49PPrHjtWlRaHxHJLah1MpODT9VOAAAg\nAElEQVRHJp6Rxo9l5Q6ef72EosN2oiI1/Pz2FGZMM5+WfZ3M+703ZFlh8/bWyoi2MCInhqULk0gS\nYcSAVdfg9ldE5FkpOtQCgEoFk8ZF+isippiIihBBhCAIwkAgSRJXzc4gwqhl5dpinvp3PvdfPZGM\n5Oj+PjRBEIR2IX9zHD9+PC6X6wcZSrQJtSkiBB4BGmbQdpri4fL0PEWioKgOi637PhKS5J+o2ZPu\nSu+DLS0xRej5Iq+MwuK6gBUGh/7wD2x5O4lZOJ+4ZZe3b6fJ+xxVQyW+4VORMyZ3es4YjY2EVAP7\nK928vbmp033mSAN2JZIyqw6jVmZCkjPkhpsuj4+GJidffq+isNhHSoKKny4xolbLJz1NorTcwffr\nPHjtWsKifejjm4k1nd7qgTY+n8JH/6lmxepKvF6FWeeZ+cl1KURFnv6TvkDv956mxIRClhW25FtZ\nubqS0o5hxOWJJA06M1UnQu80WNzkbrOyKc/C/uLWIEKCzDGR5GSbOX+K6Yy8JwVBEIS+uSR7KBFG\nLa9/tp8/rtjBPVdOYHxabH8fliAIAtCLUKK6upoLL7yQjIyMTj0l/v3vf5+WAzvbBRoBGujEvyfW\nFhemCB1Wm7vLfVFhOprtXW9vI+EfDxXs5DnY0pJwo5Zv84+PwexYYbAo1s3B3z6PNimB1Kceau9n\noDq8E/XBPGRzIt6syzo/obMJjbMemwv+ttaC74QwZfrk4Ry16NGpZTKTnOhCOOdtC3/yD9Thcg1B\np4kh3OjiJ4tNhBkkaiwnN03i+x1W/vqPozhdMlddNoirLh9Es9192qoHOio55uC5V0s4VGLHHK3h\njpuGct5kU88bngaBQrbeNkOVZYXv8/2VESXHnKgkmJsTw9UijBiQLI0eNrdWROw7aENR/EHE+NER\n5GSZOX+qCVPUqV06JAiCIJw+OROSCDNo+PtHe3jm3UJuXziW7DFdR7ELgiCcaSGHEnfeeefpPI5z\nSrA+Db0VE2kgMyOm04SONlNHxVF4qD5g2BEbpefnSzOJN4f1ePIccExoRgyFh+oDPr5wdzljVz2D\nIstkPPtbNGZ/CaBkrUGzZTWKVu/vI6HpcMLicUBTOUgqjIOGcf4ETaf9nZeZSmxCKioJJiS5MGpD\nKP+gLfwpJ0I/Ap3GhMfXxLH6ItZsGsx180f2eZqELCu8+0kVKz6qRK9T8eCdaeRk+5dLGPWn94qw\n16vw/mdVvPdxFV6fwtycGG69Zki/rs0PFLKFugRGlhW+32Fl1eoqjh5zoJJgzowYrl6YyGARRgwo\n1kYPW/L9FRF7DviDCEmCMSMimJntDyLMp7iHiSAIgnDmTB4RzwPLJ/LMe4W8tHoPLU4vcycn97yh\nIAjCaRTyWU52dvbpPI5zSrA+Db01cUQs184bgVqtaj+JN0XoGT3MzFVzMlCrVd1MSohnSEJkSPsI\n1EOgockZMAgBGPvpKtxHj5H+wG1E5Uzz3+hxoVm/AsnnwZNzDUpUh5JAnxcaywAFooag1hk77U+j\nM7KnJhxZhvGJTiL1PS9rAX/4k3+gngj9SLTqaDw+KzbXQUDptDSjt9MkHE4fz75awpbtVuJjdTx0\nbzppQ0NbtnOyDpfYee61Eo6WOYg1a/nZj4cyNbN/1332tRmqLCts3dHIyjWVHC1rDSOmx7B0YSLJ\niSKMGCgamzx8n9/IxjwLe/Y3t/enGTMinJwsM9Onmogx/3CX7QmCIJxrRg0186vrpvCXVQW8+cUB\nbA4Pl08fdkqmeAmCIPSFWAR8GgS7Ot9bEsdDgyWz0nnnqyL2l1rYvLuKA6UWRg01M3vyYHYfaug0\nKWHJrLRej7/s2EPg6+2Bp32kFe9i9J48jONGMfI39/vDF0VB8/0aVI21eEdPRx427vgGiuwPJGQv\nhCeA/nhQoteqiYoIJ7/cgE+WGJPgxBwWWiABUNPgxONORauOxO1toMV9iLb5Ix2XZvRmmkRVjYun\nnj9EyTEn40ZF8F8/SyP6DJSoezwyqz6u4oPPqpBlmH9BLDcvGzIgRiiG0gy14xIYRVH4Pr9zGDF7\nur8yQoQRA0OTzcv3rRURu/Y1tzfbHZURTk62P4iIixFBhCAIwrlqWGIkD90wlT+vKODD9Yex2T0s\nnzcclQgmBEHoByKUOA2CXZ0HUKskFEXBHKnHanPhC3IeXnCwnqVzfOi1aj7acJhNu6va76tvcpG7\nuwqDTsX0cYnMn5ZCdISejzYc5rFXt/Z57b/L4ws48SPc1sjste8ja7UM/9v/otbrABeqg9tQHylE\njkvBN+Xi4xsoCjRXgtcB+mgI69xQyeODnZUG3D4VGbEuBkX6CJXdqfDet6BRR+L21tPiPkzHgagd\nl2aEOk2icG8Tf/z7EWwtPi6dF88ty4eg0Zz+D+eDR1p47rUSysqdxMfquOvmoUwaF3Xa9xtIoEaW\noS6BUZTjlRFHSjuEEZcnkpwkwoj+Zmvx8n1+I5vyLBTua8LX+s9tZHoYM7LMzJhmJj5WBBGCIAg/\nFIkxYfz6xqn8eWUBX20ro8Xp4eYfjUYTapdxQRCEU0SEEiepu2kES2als7GwAqe7a+LgkxXOHzeI\nHy8YzfvrDnUbXkDnsZzdldA73TLf7qhA3fohcjLjL6GbK+OKzNyvVmFw2jE//AuMI9IAkOor0OR9\niqIz4rlgGag7vKUc9eBsBI0BopL8i9Pbfwewq9KAw6MixeQmxeQN6dgAmu0yL33kpLJOITbaTnHl\noS6PCbQ0o7vpKYqi8MnXtbyx8hgqSeKum4dy0QVxIR9PX7k9Mis+qmT1f6qRFVgwN46bliZjNJ75\n6ohgjSx7WgKj06hae0ZUcrjUgSTBBeebuXphEkNEGNGvmm1e1m6qJzfPws49zXhbu8sOT/UHETlZ\nJhLixPhVQRCEHypzpJ7/uX4Kf313J7m7q7A7vdy5eBy6MzDuXBAEoY0IJfqop2kENrs7YCDR5kCJ\nFfA3mfT5ZNYVVLSv5e6o7Up0KH0q8g/U0l3VXajjLyHwlfHMHRsZUnaQihHjyPzJcgAUpx3t+hVI\nsg/PzKW4dJE0ti0Zke1gqwGVBqJTQDqeussK7K3W0+RSkxDhJT3G0+MxtWm0ybz0oYNqi8KMCRoW\nXRDLu98OCWlpRiBuj8xL/ypl7aYGTFEafnVPOmnDjL1e+tJb+4ttPP9aCeVVLgbF67j75mFMGBNa\nD5DToadGloGWwEwaEUt6TDwP/ma/CCMGELvDx9YCK7l5Vgp2N+Hx+v+wpA8zktNaEZGYIIIIQRAE\nwS/CqOXBaybxwge7KCiu4y8rC7hv6UTCDOI0QRCEM0P8temjnk7ioiP03Y7yBP+oz7a1+DdeMhok\nqdP4zTZhBg0atRRSnwpLc7D7eh5/2ebEK+OxtRWcl/s5dmMErp/fg0GnAUXB8cU7SDYLnnEX8NY+\n2LF6Cw1NLkYnG7l/fjQatYQUnQLq4z0ZFAUO1uqot2swG32MTnB1G6ScqKFJ5sUPHdQ3KsyerGXh\nTB2SJIW0NCPg81nc/P6FwxQdtjM8NYz/uiuVrwtKefXLvo+97InLJfPcK8WsWuN/rS+fH8/1Vw3G\noO+/KxKhNrJs+z1bm50cOuzi/U+rea/kCJIEs84zc/XCRFIGG8/w0QsADoePvJ3+pRk7dh0PIoan\nhXPe5GhmZJnEpBNBEAShWwadhvuWTuTlT/aybX8Nf3g7n18sn0R0uFjWJwjC6SdCiT4I9SRu8oi4\nbidY6LXqTuMor5s/guJjjZTV2Do9rqzGxsq1xVw3f2TQPhXgL8GTJHo9/jKQtivjO/dUMPeLd1DL\nPqx3/YylS6YCoN6Xi/fQLuRBafyrJpm1Bf7jCtdL3DQ9HK0aNpVK5CR0Pkk9atFS2awlQudjXKIT\nVYiBRJ3VH0hYmhXmZ2lZcL6uU5fo7pZmdOfAoRZ+//xhLI0eZk+P4Wc/Hsr76/s+9jIUew4088Lr\npVTWuEgapOeeW4YxdmTEST/vyQq1kaWiKBTuaWbF6koOl/grI2Zmm1m2SIQR/cHh9LG9sJFNeVby\nCxtxe/xBxLAhhvaKiEmZ8dTWNvfzkQqCIAhnA61GxZ2LxvGWQcN3BRU8+dZ2Hlw+iTiT+IwXBOH0\nEqFEHzTaXN1WLHQ8ibtqTgbrd1YEbWTZxutTsDsDL2PYWFjJklnp7UHBxsJKnO6uTSGnjIoH6NX4\ny+60NYc8f+1H1DVUE/vjq8l+wL9sQ6opQZ3/JVJYJO/4pvBdob/5plqCn801MShKwyc7baw76GXa\nRF/7fssbNZRYdBg0MplJTjQhFh9UN/gDiaYWhR9N1zE/6+RS+2821PPim6XIPoWblyez6OIE3F65\nT2MvQ+Fw+njr/Qo++6YWlQTXXjGExZfEodcNjEZSPTWyjArXkVfQyMrVlRwqsR8PIxYmkpIsvqic\nSU6Xj+2FTWzKs7C9sBG32x9EDEkyMDPbzIxpJvGaCIIgCH2mUknceMkoIsK0fJJbwu/e2s4vl09i\nSHz/X0QRBOHcJUKJXvLJMl/klaGSCNgDQqdVExHmX65gs3u6DSRcbl+n5RTBrlY73T7e+aqI2y4f\n2zoaNI23vzrI/hILVpsrYB+FvvZY6Mi6dhN1b6zCODKdtEd/3nowLWg3rAIUvomexWfbGtoff815\nkYwdrCe/xMmH221IEu0/Y22LmoN1OrQqhczBTnQhvvMq6ny89KETm0Nh8SwdF0zueyDh8ym8sfIY\nn3xdS0S4mgfuTGufctHbsZehKtzbxAtvlFJT5yY5Sc+9t6Yy8/zEAXX1urtGlooCieEmHnmqmOKj\nx8OIqxcmMlSc+J4xLrdM/q5GcvOs5BU04mrtVZOcqCcn20xOllm8HoIgCMIpI0kSV16QQYRBy4q1\nxfz+3/n8/OqJDE+O7u9DEwThHCVCiV5aubY4YO+HNk63j482HGnvKxHbzRXomKjjyyl8sswXW0uD\n7nd/qQWXx191EKbX8pPLx3Y7+aOvPRY68tQ1cOQXv0XSaUl//glURgPIMtqN7yLZm3BmzuPjLccf\nP2eUkXljwylr8PDKukYUIKZ1yYjVoWJftR6VBBOSnIRpA6Q5AZRV+/jHagd2J1w1V8+MCdqeN+pG\nk83Ln/5+hF37mkkZbOChe9NJ6rDGPtSxl6GyO3z8c1U5X66rQ6WCKy8dxPLFSei0A6M64kQdG1k2\nNDnRy2E4GwxsPOgEICfLxNULkxg2RJz8ngluj8yOXf6KiLyCRpwufxCRlNAWRJgYNsTYaQmTIAiC\nIJxKF2cPJdyo5fXP9vOnFTu454oJjE+P7XlDQRCEXhKhRC8E6yXRUae+EkFGKbaFBSvXFnfbe6KN\npdnV5Wp9W1+KQOFDKD0Wugs1FEXhyC+fwFNbT8qj9xM+fhQA6l3foao8hC95FLUpWdT+53sARiXq\nuG56FM0OmWe/tuJsbbI3eWQcXkXD7ioDigLjk1xEGUJYywIcqfTxymoHLg9cc5GerDF9DyRKjjl4\n8tlDVNe5yZ4czf0/Se0ydjPU1yoUO3Y38bc3Sqhr8DA02cC9tw5jeFp4n4//TFCrVFw7bwTpsfGs\nXF3J0VInIDNjmolli0QYcSZ4PDIFe5rYlGdl6w4rDqf/38qgeB2XtVZEpKaIIEIQBEE4c3ImJBFm\n0PD3j/bwzHuF3L5wLNljBvX3YQmCcI4RoUQvhDKWEzqX+wcapdhxOUWoQceJV+t7GkkaTE/b1r75\nPtavNxA1M5vEn14HgFRRjLrwO5RwE96cK4lW6Yk3GVG8bu6+0ATAC2st1Nt8qCSYPWkwSy4Ywc4K\nA15ZYnSCi9iwrn0wAiku8/LqJ068Xrj+Ej2TR/Y9kNi8zcKzr5bgdMksW5TI8kVJqLrprtnTa9WT\nFruX11aUs3ZjPWo1LFuUyNLLE9GG2jyjnyiKwo7dTaxcXUnRYTsA06eZWC7CiNPO45Up3NvMxq0W\ntu6wYnf4g4iEOB0L5vqDiPRhIogQBEEQ+s/kEfE8sHwiz75fyEur99Di8DB3ypD+PixBEM4hIpTo\nhVDGckLnAKGtYWR3yylCDTpOvFrf00jSYIJte8UwHaWPP43aFEX6M48jqVRgb0K78T1QSdRMWoxR\n5f8ZZmYmMimmiQiDijc2NlJU7W/UOXtyMtfMG0VBhRGXT0V6jJvESG+PPyPA/qNeXv/UiaLAjy81\nMD6jb29RWVZYsbqSdz+uwqBX8d93pzF9qjnoNj29VsHkFTTy4r9KabB6SBtq5N5bh5E2tPc9KM6k\ngGHEVBPLF4sw4nTyehUK9/krIr7Pt9Ji94d1cTFaLrogjpxsM8NTw0QQIQiCIAwYo4aa+e9rp/D0\nqgLe/LIIm8PD5TNSxWeVIAinhAglekGvVZOZEdvjUotA5f7dLaeIjtBjjtTR0OwO+FyxHaoY2oQ6\nkjSQYNsW7Ktiwu9fQna6GP7cb9ElJYDsQ7N+JZKrhXedY1i9qpSYqGqmjIzjxukReFu0bDjoYuNB\nB7FR/sqCq+cMZ3eVgRa3iuRoDymmwFNFTrTrkJc3P3ciSXDr5QZGp3Z+e3a33OREdoePv758lLyC\nRgbF6XjovoxenWQHeq2623ezzcur7xxj3eYGNGqJ665I4oofJaLRDNwPaUVRKGgd7Vl0qAWA86ea\nWL4okdSUgR2knK18PoVd+5vZtNXClnwrthZ/EBFr1nLhzFhyssyMTBdBhCAIgjBwDUuM5KEbpvKn\nFQV8uOEINoeX5fOGoxKfXYIgnCQRSvTS/GkpQUOJpJiwoOX+Lo+PWosdJIl4kxG9Vk24MXAokRQT\nxqO3ZHU5AT+ZSRHBth3+5Rocew4Qd80iYi6bB4B6x1eoa0vZYk/gI4t/DWF9k4toGvG2+EAbTnbW\nSEaNdRMdoUenUbOnWk+jU018uJfhsW5C+azaUeTh7S9caDRw2+UGhqccf2v2ZqlKZbWTJ587TFmF\nk8wxkTzwszSiIvr+Ng+277wdTbz0ZinWJi/DU8O459ZhA7rCQFEUdraGEQc6hBHLFiYO+KqOs5HP\np7DnQDOb8qxs2W6lyeavFjJHa7lsfgwzs82MTA/vdjmRIPzQFRUVcdddd3HzzTdzww03cOjQIR59\n9FEkSSI1NZXHH38cjUbDmjVr+Oc//4lKpWLZsmVcffXV/X3ognDOGhQTxq9vnMqfVxbw1bYybA4P\nt1w6Go16YC9VFQRhYBOhRC/FRBmICVLZ4Pb68PoUTvzb7JNl3vnmILm7KnG2jvQz6NScP24QNnvg\nkMDtDdyDISJMi16nxunuen9PkyK6W4IyuKyYidvXoRs2hGFPPAiAqmwfmr2bqJbDeNk6CvCfPJ2f\nYeDSzAhqbT6ikpPQ6zQk6DQoChys01HXosFk8DFmkCukQCJvn4eVX7vQa+Eni42kJXUOYUJdqrJj\ndxN/fvEILXYfCy9K4MfLklGrT+6EL9C+v9xSzpaNTspKvWg1EjcuHcziSwad9L5OF0VR2Lm3mZWr\nK9lf7A8jzpsSzfJFSSKMOMV8ssK+Ihsbt1rYvN1KU3NbEKHh0nnx5GSZGT1cBBGC0BO73c4TTzzB\n9OnT22/705/+xE9/+lNmz57NCy+8wOeff868efN44YUXeO+999BqtSxdupSLLroIk8nUj0cvCOc2\nc6Se/7l+Cn99dyeb91ThcHm5c/E4dH2Y9iYIggAilOg1vVbN6GEx5O6uCnh/oCkZ4D+5Xbu98yhR\np9vHd0GqLhqaXRwubyQ9ObpTtcRHG44EDCTg+NKR7pYbBJoyoXPaufCrlaCSGP7C/6IOD4PmBjSb\nPkBWaXi6ehxOxf9WSY/XcktONHaXzDNfNnDfci8Jeh0ApVYtFU1awnU+xic6CeW8K3eXh/e/dWHU\nwx1LjKQM6vyBFspSFZ1Gxeovanjz3XLUaol7bxvGhTknP7LqxH0rCnhsWuw1Rhp9XkakhXHfT1IZ\nkmQI8iz9R1EUCvf6KyPaw4jJ0SxblET6MBFGnCo+WWH/QRub8qxs3mbB2uQPIqIiNSyYG0dOlpkx\nIyNQiyBCEEKm0+l4+eWXefnll9tvKykpITMzE4BZs2bx9ttvExcXx4QJE4iMjARgypQp5Ofnc+GF\nF/bLcQvCD0WEUcuD10zihQ93U1Bcx19WFnDf0on9fViCIJylRCjRB9ddNIL8otqQKxVcHh/5B2p6\nvR8J+OOKAmIidYweFsN1F41ArVJ1e5Ju0KlZmJPG218XBV3q0GnKRJODizZ8RIStkcEP3kHElPHg\n86BdvxLJ48SZvRj7Ny5ocmEOU3HPPBNqFTz3jRWvpGv/WSubNBxp0KHXyGQmudCEEJav3+Fm9QY3\nEUaJO64wMDiu60Y9LVWptTh496Na1m+xYI7W8j/3pDMy49SM3+y4b9krYa8x4rHpQFIIi3fwy7tG\nkRg78AIJRVHYtc8fRuw76A8jsif7KyNEGHFqyLLCgUMtbMqzkJtnxdLo75sSFaHh4jn+IGLcyIgB\nWz0jCAOdRqNBo+n8FWXkyJGsW7eOJUuWsGHDBurq6qirqyMmJqb9MTExMdTWBp9oZTaHoQnlQ6oP\n4uMjT8vzCqETr8GZ9cSdOfzl7e1s3FnBn1cV8Jvbp4vXYAAQr0H/E69B74hQog/C9FpmZiZ1qjZo\nE6jJZaPN1e1yj2Bkxf/fhmY3uburyC+qZerI+G6nf7g9PlZ9c5BNHao4Ai116Dhlovytj6jbV0BE\n1kSS77sFAM22z1E1VODLmIJq1DQmlxWxfscx7p1vxhSm5p3vm9hd7mbRrHT0WjX1LWoO1OrQqBQy\nk5zoNUqPP9vXeW4+3+wmKlziziuMDIoJvBYx2MSTCL2Bp/9WxuFSByMzwvnVXWnEmHU97jtU/iak\neirLZRw1RhRZhcboJWyQnYQ4HeaogRVIBAojsiZFs3xxEhkijDhpiuIPInLzrORus1Bv8QcREeFq\n5l/gb1Y5YXSkCCIE4TT51a9+xeOPP84HH3xAdnY2itL1sybQbSeyWOyn4/CIj4+ktrb5tDy3EBrx\nGvSPmy8ZhUaC7woquP/p77j98rGMGhp84plw+oh/B/1PvAaBBQtqRCjRR52qDZqdmCP9kycCNbmM\njtAH7UMRKqfbx6bdVRh0qva+FB2ZIvTsL7UE3DbQVA6lvJKG3z2DKiKcjOd+i6TRoDqyE3VRHrJ5\nEN7sy/0/69wMZgz1kWpS2FhkJ79MZv60Idy6cBxHKxzsqdajkmBCkpNwXfAvhIqi8J8tbr7O82CO\n9AcScabumyNp1BJhBm2XUMLrUFNVasTldHDhzFjuvDEFrfbUNllqsfmwV0Vgr/KBpGCMt6M3+Rt3\nBgqf+ouiKOzab2Pl6kr2FtmA1jBiURIZqSKMOBmKonDwiJ3cPAu526zU1vv/DYeHqZk3M5acbH8Q\nMZCnrQjCuSIpKYmXXnoJgA0bNlBTU0NCQgJ1dXXtj6mpqWHSpEn9dYiC8IOkUknceMkoEsxhvLfu\nEH94ZwdXzErn0unDxGQOQRBCIkKJPupYbdDTmEq9Vs2UUQkBKyv6wuMNfOI/epiZzd32uug8lUPx\nejl876PILXbSn/st+qHJSI01aLasQdHq8V5wLWi0/se21JNqUvCpDIwcO4z/Pc+AXqvG7pYorDQg\nKzA+0UW0oWtQ0pGiKHy80c26HR5ioyVuW6hDVpy4PN3/7lauLaasxtbpNpdVh6PWiCQp/OS6IVw6\nL/6UjlJUFIW1Gxt4bcUx7A4fCYPUGBPs2NzuoOFTf2irjBBhxKmjKAqHSxxs3NrAprzjQUSYUc3c\nnBhyssxkjo1EqxGdxgXhTHr22WfJzMxkzpw5fPDBByxevJiJEyfy8MMP09TUhFqtJj8/n1//+tf9\nfaiC8IMjSRILzhvKtHFJPPnPrXyw/jBFx6zcfvlYIsNOXRWrIAjnJhFKnCS9Vt3t+M02Lo+PuZOT\ncbq9bCwMHBp01F0lRBufrJAUE4bbK3eq0lgyK40DpZaASx1O7HVR8cxr2LYXErP4YmKv/BF43GjW\nrUDyuvFcsBwlKhafLLNpWxEXpMrU23w8/20VI4Z5WX7hcFxeia37FbyyxMh4F3HhgRtvtpEVhQ+/\nc5G7y0uCWWJQXCV/WlEddMRnoEaTjhojrkY9Ko3Cr+9NZ+qEU9thva7Bzd/eKGXH7iaMBhV33pTC\nxbPjcHvlHsOnM2n3fn8YseeAP4yYNjGK5YuSGJ52avpp/NAoisKRUgeb8ixsyrNQXesPIowGFXOm\nxzAjy8ykcZGnvBpHEITAdu/eze9//3vKy8vRaDR88cUXPPjggzzxxBM899xzTJs2jTlz5gDwwAMP\ncNtttyFJEnfffXd700tBEM68MWkxPH5LFi9/spfdhxt4/PU87lw8jhFDxEQcQRC6J0KJXuo41QII\neqLqk2VWri3u1HRySHw4x2pbAj53bJQ/XPDJMt/mdz+Vo+04HrslC4fL22n/J07WaNNxuUHztkLK\nn34FXXIiqU89hARIm1ejaqzFOmwqqsFj0ANf5B7kwjQvLg88+7WFsgYvJbXHkCQVw0eOx+6GVLOb\nwVHeoMcqywqrvnGRt8/L4DgVcTEVrCsobb+/uxGfJzaabKkMx+vQoNb5iExuIWXIqUveFUXhq3X1\nvLHqGA6nzKRxkdx18zDiY/37CCV8OhN2H/CP9ty93x9GTM2MYvniJEaIMKLXFEWh5JiDjVv9zSor\na/zvNYNexQXnm5mRZWby+Ch0IogQhDNu/PjxvPnmm11uf++997rctmDBAhYsWHAmDksQhBBEhum4\n/+qJfL6lhA/WH+b3/97B0jkZXJKdckorWwVBOHeIUCJEJwYMep0aUHC6ZWK7udK/cm1xp4DAX8Hg\nIiUhArvT217lkJkRw/xpKcRE+ZdFvPXVgR6Px2pz4XB5u5wo99Trwtds4/A9j4CikP7sb5Aiw8lb\n8ykzmwopdkfx29wItNs2MmdiPPPTfRi0ap7/xh9IAKhUKrSRQ2hxq0lPgJQIT3YbaPwAACAASURB\nVPDfm0/h7a9cFBR5SRmk4seX6vjdm9UBH3ti34u2JpfVNV5aKsKRvSq0EW7CE+3EmbpOOemrmjoX\nL7xeSuG+ZsKMau6+ZSjzZsYOqA/OPQf8lREijDg5iqJQWu5snZphobzKH0TodSpmZpvJyTIzeUIU\nep0IIgRBEAShr1SSxGXTUxmeHM2La/aw6ttiisqs3HrZGCKM2v4+PEEQBhgRSgTQsRqi7QT5xICh\n4zjQtiv9Pp/MjZeMbn+O7kZ32p1eHr15Go0tblAU4s1h7ftxeXzsPFgXcLuOAo0ehZ57XZQ88idc\npeUk3XsLUdOn8p/Pt/CjxjyaFQ3PNozDhwq8PibGu4kJ1/FhfjP5JceXg+RkTSIuNpZIrYspaQbq\nghyq16vw1hdOdh3ykTZYxU8WGmmyO4KO+OzY90KvVROnN1Fc5gRFwhDrwBDjOmWNJmVZ4T/f1vHm\ne+U4XTJTM6P42Y+HEnsKJ3icrL1FNt75qKI9jJgywR9GjEwXYURvlFU42LTVwqY8K8cqnQDodBIz\nppnIyTYzdUI0er0IIgRBEAThVBo11Mzjt2Tz8sd7KCiu4zev5/GzJeNJHxzV34cmCMIAIkKJDgIt\nt5g8Mp4ls9K6DRg6WldQAZLEdfNHdFp6cCJLs5N3vi5if6kVq83dqdIi2HYd9XRSHmi5Qf2ar6hb\n9QlhmWNIfuCnuFpamFGzFp1K5q/146n3+Udc3jA9ilGJOvKOOPi44PhSk2kTx5E2NJkGi4XsCWok\nydjt/j1ehTc+dbK/xMfwIWpuXWhAr5WQVN2P+OwYtPhkhbc/qGDLJhcajUR8qhu32nXKGk1WVjt5\n4Y1S9hywERGu5uc3DWP2+TEDpjpib5GNFasr2bXPP05oygR/z4iRGSKMCFV5pbO9R0RpeWsQoZU4\nf6qJnCwT0yZGY9D3f38QQRAEQTiXRYfr+OWySXyce5Q1G4/w5FvbWXbhcOZPHTJgvncJgtC/RCjR\nQaDlFl9vO4bd6Q0pKJAV+Da/HBSFuZOTuz35liSJLXtruuwH4KrZGd1uB6DXqJiRmRT0pDxQpYer\nvIqjv/odKqOBjOefQKXVoFm3giiVg4+ah7HTFQvA/LFhzB4VRkmdh1fXN7Y/59iR6YwdmY61qRlX\nUxlh+ozu9+VWeO0TJ8XHfIwepubmywxoW0cm6rXqHvtetNh9PP2PI2wvbCIpQc9D96aTkKA7JY0m\nfbLCZ1/X8tYH5bjdCudNieaOG4dijh4YpYR7i/yjPQtbw4jJ4/2VEaNEGBGSimonm1p7RBw95gBA\nq5E4b3I0OVlmpk2MxmgUQYQgCIIgnEkqlcTimWmMGBLNP9bs4Z2vD1JUZuWWH40hzCBORwThh078\nFWgVbLnF/hJL0KDgROsKKvhuR0W369J9cuCRnhsLK1kyK53MjFi+3RG40aXLK7PzYC1qldSlh0V3\nlR7LZqdx+OeP4WtsJvaxB1ENS0G9bzP6qiKKPGbeb0oFYNxgHddkR9Jo9/HsNxa8MgyJD8dsjmfy\nxHE4nE5c1hKWzUnDJ8u8/NEuNu0s77SvRTkZvP6Ji6OVMhMy1NxwiQGNpnMKHqzvRXmlkyefO0R5\nlYvJ46P45R2pRIT736Yn22iyvNLJ86+XsL+4hagIDffeOoScLPOASOn3HfSHETv3Hg8jli1KZPTw\niH4+soGvqsbV3iPicKk/iNBoJLImRTMjy0T2JBNhIogQBEEQhH43NjWGx2/N5qXVe9h+oJbS6mbu\nWjKBYYliao4g/JCJUKJVsGUTVpuL6eMS2bS753Ge4K+YANrHehp0atweH+ZIPTa7B5c38LhPp9vH\nO18Vcen0Yd2GEgANze6A0yq6q/QwfbKGuNztlI+cwEsN8Ux99XPuC9tKo6Ljr3VjkFExKErNnXNN\n+BR47hsrlhb/MfpUYUzKHI9Kkjk/1Yt5XBoAb39d1GVf32yrZN/hOOxOHZNHarj2Ij1qddcT/u76\nXmwvbOQvLx3B7pBZsiCBG5Ymo1adfGDg8yms+bKadz6sxONVyMkycfv1KURH9X91xP5i/zKNnXv8\nYcSkcZEsX5wkwoge1NS52JRnJTfPQvFROwAatcTUzChyssxkT44mPEz8eRN+uAJVsQmCIAwEpgg9\nD147iY82HOHTzSX835vbuHbeCOZMTh4QF4oEQTjzxLf2Vm2THrrrdXDtRSMxGjTtV/e1GhUuT+Bw\n4URheg2/vnEqKAqPvZYX9LH7Sy0su3A4Bp2qPdToTsdpFd1VesTVHMP83ru0hEXy1ewrCVd7uElf\ngITCc/VjaZT1GHUSP7/ITLhexSvrrRyu9U/UiDFFM2f6NGRZZvwgJ+Zw/wdFoH1JaIgwjMbu1DFp\npIr5WT68soxa3XPfC0VReP/TKv79QQVajcT9t6cye3pM+75C/WId6LGl5Q6ee62E4iN2oqM03HFj\nCtOnmoM+z5lwYhgxcVwk14gwIqiqGieffFHNpjwLB4/4gwi12l9VkpNl5rwp0e1VNYLwQ9VdxdyJ\nlXWCIAj9Sa1ScdXsDEammHj54728+WURB8qs/HjBaIx68VkuCD804l99q556HYTpNV2u7q/6ttjf\nQ6IHVpsLnUYVNPhoY2l20djiRgm8wuOExx6fVhGo0kPjcTPvixWoZR/fXrQMlzGM+8yFxGpcrGxM\nZ5/bjEqCO+eYSIzW8PmuFnKL/Q0BI8LDmDfrPDQaNes3b2PC5amAf/nEifuSJC2R+tGoVUacnmp2\nHKzkuwJ3SF+GXS6Z518vYeNWC7FmLQ/dm0FGalivvlgHeuzE4XHonJG8+0k1Xq/CBeebue26FKIi\n+vctv7/YxpPPHWHrDgvgDyOWL0pizAgRRgRS1+Bm8zYrm/IsHDjkb7qqUvl/bzOzzGRPMfX7ayoI\nA0l3FXPQubJOEARhIJiQHsvjt2Tx4uo9bN1XQ0m1jbuWjCclQXwvEoQfEvFtvoNgvQ7adJxqcd38\nEahVEjuK6mhociJJx5dudNQ2VSJY8HH8sXo+3VwSUhVGx2kVgQKP6Rs/xWypoXDSTI4NG8WSyKNM\nNDSwwxnDx7ahAFydFcmEIXp2ljl5b5v/qr1Br2P+BedjNOj5Pr8QW7O10/jRjvtSSToi9KNRqww4\nPZU4PGU4/IUW7V+GFUXh+otGdTn+mjoXTz1/mCOlDkYPD+dXd6djam042Zsv1ic+trrWw0e7GvG5\nWogxabnzphSyJpl6/H2eTgcOtbBydSU7djcBMHFsJMsWJTF2pPjQPVGDxU1uaxCxv7g1iJBg6kQT\n2ROjOG9K9IBYeiMIA02w3kgdK+sEQRAGkpgoA/993WQ+WH+Y/3xfyv/+axvXXzSSWZlJYjmHIPxA\niFCig+56HYT6+C/yygJWTrRNlfDJMrKiBF2aEWbQ8v3e6pCON8ygQaMOPNVi6JG9jNu1mfrYRHbO\nuYxx2gauijxCnVfPi5axKEjMHGHkkvHhVFi8vPRdI4oCGrWaC2eeR1REOIV7izhwqIT504Z0+j20\n7Wvt9trWQEKPw1OO0xO4amTTriqWzhne6Tl2H2jmjy8cocnm5eLZcfzk+iFoNf4KiN58se74WEUB\nZ70BZ4MekIiM9fLHh8cTE60L6fd5OhQdamFFhzAic0wkd/w4ncEJ4sSgI0ujp70iYt9BG4oCkgTj\nR0eQk2Xm/KkmRmTEUFvb3N+HKggDVk+jqNsq6wRBEAYajVrFsrnDGTnExKuf7uWNz/dzoNTKTZeM\nQq8T35kE4VwnQokAOlZD9ObxHSsnAlVarFxbzNrtgU/cY6MMZA6PZefBwCfjgZTV2Fi5tri9cqBt\nP3vzDzP363fxqTW0/PJ+5iTGcFn1ZmQknmkYj03WMmKQlptmRGFzyTz7tQWnR0GSJGbPmEZcjImD\nR0op3HuAuZMHBxw/OmdSOrsODsLtUeP0lGHQ1+P0BD5Op9tHrdXBkPgIFEXhP9/W8eo7ZQDccWMK\nC+bGd3p8o83V7RKXE79Yt30J9zrV2KvC8LnVSBqZ8EEt6CK8eGUvcOZDiaLD/sqI/F3+MGLCmEiW\nL0pk3KhI4uMjxck1YG3ysGW7P4jYc+B4EDFmhD+ImD7NNGBGtQrC2aCn3kgdK94EQRAGokkj4njs\nliz+/tEeNu+poqS6mZ8tGU9ynBiNLgjnMhFKnELBKi2CXf03Reh49OZpOFxevguhR0VHHSsH1CoV\n184bwf7XnqPZ0cLgx37B9B/PxbLqb0SrPfzTOoL/z959x7dZ33v/f13aki3J8pb3dpaz7QwnZBD2\nSJgBSgsUTnvKOOc+v96nv7aHTnraw2nLfe6WlhYotKWlBCgrZYSRARkkTpyQhAwnjuM9ZFuyLWvr\nuu4/ZCvecRJn8n3+wwNHli9dkmV939fn+/kcC1pIiFHx0PI4JAl+u95FW08YgIVzZ5CemkxDcyuf\n7trL0lnpfPnK4dsumhxhfv+Gn0BQzXULtUzLz8bttfOTP1eOfqCKQjAk88xf6vng4w4sZg3fejCX\nqcWDR0CFZZl1FfWoTrIVpp9Jr0XpjqGnRQNI6Kx+TIleJPX5+RBedayXl99qZtfeSBgxbVIsd6y0\nD3ucX1Rd3UG2V3axpcLJ/kM90ed4UkEMi8psLJgTR7zt/FW2CMLF7GS9kcTWDUEQLgaJViPfuXs2\nL2+IbM997E8VfPnKYspL7Of70ARBOEtEKHEWjFRpMVZZbXdvAK8/NK5GmEMNrRxoe/5lejZuw7Jk\nPun/dCfsep/UYBufepJ4vzcdvUbikRU2LEY1f9nWzaHmAACzpk0iPyeT9k4n+z/fz+Vz0keskKhv\nDfP7N7x4/XDvjRZKciLbUKyx+lG3pRh0arQqLd//7yMcOtpLXpaRbz+ST1LC8MXnmvVjNw8d+MG6\nqrqXXz9Xi7NFi0oTxpTqRWsKjXjbs+1ITaQyYmAYsXqlnWkijKDbHWJ7ZaQiYt/BHuS+l0hxfky0\nIiIxXgQRgnA6FEWh0xWkvtFHXZOXzgYdUkc8LlcYfZyf9FyG9UYSBEG40GnUkQt9RRlxPP/uQf7w\n9kGq6l186YoidCJgFYRLjgglzpHxlNWOdZXLoFPjC4RH/V4Az+Fq6n7yKzQ2K3n/80PUjYfRHtpC\nc8jIs65JSEg8cJmVrAQtGw56WH8wMlZxUkEuJZMLcff2UpoV5IaZpSMu5muawjz7lhd/EO64Qs/y\n0pjoNgS9Vs3CEvuI21MmpyXxHz87QoczyKIyGw/fl41eP3wax1jVJCoJlsyMbCXxB2T+9kYTa9e1\nIStw9bJEjIle9tUEcfaERmxQerYcrYn0jOgPI6YWRyojpk0aHEYMHFf6ReDuDUUrIvYe7Cbc99It\nzDVRXmpjYaltxFBKEISRKYqCqztEfaOXukYf9U0+6hq91Df56PUM/tugVkNasoGrL09nxeIkUSEh\nCMJFa+6kZLJSYnnqjc/5ZG8zNc3dfGPVNOwJYjuHIFxKRChxjoy3rHa0CSChsMzG3U2jfq/sD1D9\n0KMoPj+5v/lPdCY1mo2voag1/Kl3Nl5Fw6pZsczJMXCw2c+Ln0YW0dkZdkpnTsXj9fHBpm2U3T0D\nvVY9aBGt16o5Uh/iubU+QjLcfZWemUUn9vr33/bmy/JQSRKVhx04e/zYzHoSdHFs3uAnGFL48q1p\n3HRNyqidlMeqJlGAq8qyqKr28ORztTS1+klN1vPQfVnRaoShx3w2Ha3pZc1bzez8LHIepxTFcueq\n4WHESONKy2ekc8OCrFHHpF6sej0hduyOBBGffd5DKBzZm1GQY2JhqY3y0jiSE78YoYwgnImu7mBf\n8DA4gHD3Dg4fVCqwJ+spmWwmM81AdrqRzHQD9hR9tHGwIAjCxS7ZZuK7X57NS33VtD/+007uubqY\n+VNSz/ehCYIwQUQocQ6NZ+To0L4UsSYdr31czbb9LYPuy6BTsbDEHv3ehv/6Ld4DR0j60k3YrlyE\ndt2zSAEfwQU3kXI8FkNHOzfOisXRE+Kp9S7CCqQkJbCobBbBUIiPPtmOTq0Qa9Ly4odVgxbRefYM\njjcloChwzzUGpuVHXjbhsDzstrOKkvjxA/Podvt5+/1O/vGBA5NRzbceymHOdOuY52esapI4k4E3\n3m7nvQ3tANxwZTJfuiltUMXFqTYoPR3Vxz2seauZij1dQCSMiFRGxI4Ytow02vStT47h8QaGjTa9\nGHm8YXbscbG1wsXu/d2EQpEgIi/LyMK+igh78sURRJzLUEsQILK1qb6v2mFgCNHdExp0O0mC1GQ9\nU4tiyUw3kpVmIDPdQHqqAa1WhA+CIFz6tBo1X76ymOLMOJ5/9xBPv3WAqvou7ry8AK1G/M0WhIud\nCCXOkf4Fzw0Lc5g/NQV3b4DcNCtm08gl7P0L7BfePzxijwVfQEYlSahVKro+3k7L7/+CIS+LrB/9\nf2h2vouqo5Fw/mzkgtmszvKgdIbwBRV+/aGLkKIizmpiWXkpSBIbt+7E2dXNirkZvPFJzaBFdHev\niSN1NlQqhQduNDIp+8RL5rm1nw9bcH+4s4FAQKH2oIo9n/eQnqrnO4/kk243nPQc6bVqZhQmDtsC\nEvRoaG0ycszdTnqqnoe/ms2kgtiT3t9Eqq71sObNE2HE5MIY7liVRskoYQSc2mjTi4nXG2bnZ5GK\niMp93QT7goicTGPf1ow40lJO/nxfKEaqZplVlMTq5QWXXDWLcH64e0PR0CHS+8FHfaMXV/fw8CE5\nUUdxvpXMvuAhK81Iut2AXidei4IgCGWTU8hKMfPb1/excXcjx5q6eHDVNDHuWBAuciKU6HOqV0nH\ne/uBC56hFQAGnZryklTuuLxw2OInLMu8+EHViFs2+lVWOViUZaL9X3+IpFGT95ufoG09grpqB3Jc\nCqGy6yAcRN3dACpQzBl87eZsfEGJ2p441Botn3y6i6DPzYq5GaxanMcP/rA9ev9adTwxunxABqmG\n3LRpgx7/p/ubhz9ev4p31vYQ9KuYM93Cv30tF40W2pyeYdNIRjp/A5f3igxehxF/lx4khZuuSWH1\nSvs5/XB+rNbDSwPCiEkFMdy5yk7JZPOoYUS/sbajDG1QeqHz+fuDCBeVe7sIBCNBRFa6IdojImMc\nwdOFaKRqlv7/vxSqWYRzp9cTjgQPTb5o48n6Rh+druHzkpMTdcyZbiEr3UhmmoGsdCMZdsOI/XYE\nQRCEE1LjTTz6lbm8+GEVH3/WzI/+WMF910xm7qTk831ogiCcprMaSlRVVfHggw9y7733cvfdd9Pc\n3My3vvUtwuEwSUlJ/PznP0en0/HWW2/xpz/9CZVKxe23385tt912Ng9rkLAs88wb+9jyWeO4rpKe\n6lXVoQuegXyBMB/taiQYCnPt/JxBC/Q164+yYYxAAqCzy8fW+x8lr9VBx22rMWUloHnvaRSNjtCS\nO0CtAWctyCFkUxKvbGtlf42LeXNLsVp0OB31PHB1JvGWQvRaNW1OT3QRrVMnYtLlAmF6/FUoinvQ\nIrrL7cfh8g46noBbQ29zDCgS11yewL2rM3h1Y/WgczWjMBEJ2HOkfdj5C4UV9hyJbM8I9mrwtJqQ\nQypUujBpeSFWr0pFf45KlWvqImHEjt2nHkb0G09z0wuZ3y+za18XW3Y42bm3i0AgEkRk2A0sKrOx\ncG4cmenG83yUZ+ZSrWYRzi6vL3yi0eSAng8dzuHhQ2K8llnTLGSlG8hMi/R8yEwzYDSI15UgCMLp\n0mnV3HvNZIoy4/jzusP89o39rJiTwe3LC9CoRbgrCBebsxZKeDweHnvsMRYsWBD92q9+9Svuuusu\nrrnmGp544gleffVVVq1axW9+8xteffVVtFott956K1dccQVxcXFn69AGOdWrpKdy+7EWPAN9/FkL\nH3/WQkLfAn3V4rxxfV/xgZ3kVe+nKS2X91Ons+S9FzCGAgQX345iToCeJgh5QW/lpU872bC7hSuX\nzMdqieXzw0fZtfcgXndG9Lj7F9E9HisxuhxkJYTbd4iw4iHBMngRbY3VkxRnpM3pRVHA16nH12EE\nSSElL8A9t0cCiaHnaujWjIHnb8WcDNqdfjwOI4FuPaBgiPdhiPfhVTgnlQU1dZFtGtsHhBF3rLQz\nfcr4w4h+421ueiHxB2Qq93WxtcJFxZ4u/H0jXtNS9JSX2SgvtZGVbjjlc3GhupSqWYSJ5/OHaWg6\nsd2iv/eDoyMw7LbxcVpmTjUP6PkQqYAwGS+833NBEIRLxcJpdrJTLTz1xn4+3NVAdVMX31g5jcS4\ni/uiiSB80Zy1UEKn0/HMM8/wzDPPRL+2fft2fvSjHwGwbNkynnvuOXJzcykpKcFsjkwtmD17NpWV\nlSxfvvxsHVrUqV4lPdXbO1zeEa+Sj6Z/ge71hUZdKPWzuhws+vhN/DoD669czT3xR7GFuggUlqHk\nlEBvO/i6QGPAb0xmz5FaLps/m6SEeI7VNrBr70EANu9tZtXiPEx6DXqtmrSEHBpCVmQlSI/vELIS\nqYYYuojWa9XMn2bnzU3H6G0xEXTrUGlkYtJ6uWy+ve+cnDxYGXj+sqwJuOsshIIq1LowplQPGkOk\n2/zZriyoqYs0sNxeGQkjivNjuGOVnRmnEUYMNFJz0/IZadywIGtCjnsiBIIyu/d3s7XCyY7dXfj8\nkSDCntwfRMSRnWG8ZIKIgS72ahZhYvgDMo3NkWqHukYfre1BqmvctHUEUJTBt7VZNUyfbI72e8hM\nN5CVbiDGJHZDCoIgnA/piTF87ytzeeH9w2zd38IPn6/g/usnM6sw6XwfmiAI43TWPkVpNBo0msF3\n7/V60ekijR0TEhJwOBy0t7cTHx8fvU18fDwOx9iLWZvNhGYCOu02t/fS2TP6VVK1TktSYswp3z4c\nlnlu7eds3Tu8QeV4HGnsIjHOgMPlG/HfVeEwy9e9hDYY4MOr7mRuqo/LTC1UB8ykll1HvCFEd1sb\nikpDbGYRwV6ZwoIiMtNSaWpxsLViT/S+fIEwr31Sw7/dOZu3NvbQ0GpFpw0jUwM+L8k2I/On2fnq\nDVNRDymHu7o0j7de6yLoDqMxhsieHGbRrGy+esNU2pzeUc/VUHJYor5K4pc7a5EkFYYEL4Z4PwPX\nwOUz0shIm/jqmaM1bp7/Wy2btkW2jUwtNnP/XTmUzrJN2CL8X++cgy8Qwtntx2bRY9Cd/8VLICiz\nY3cnGz5x8Mn2DjzeSPiTlmpg+aIkli9KojBv9Cae50tSkvnkNzpF5TPSeeuTYyN8/ey85s61s3HO\nLlb+gExdo4ea2l5q6jwcr4v8t6nViywPvm2cVcuskjhys0zkZsVE/2sxa0e+c0EQBOG80evU3H/d\nZIoz4/jLB1X8+u/7uKosk1uW5IvtHIJwEThvqyNl6OWnk3x9IKfTMyHHEA6GiTePfpXU2+vj8053\ntNfDyW4fDgRxOHp48cOqUftIjEe7y8v8qak4XC0j/vucHR+S0lpPVfFsgtMKuCeuEres4c+BOfyb\nz0NHax2g8LM3W+gJOlhUOo3CvGw6nC42bqtAHnKO9xxu47nXHWysDGEzS/zzTWbMMTMGNaLs7Owd\n9D17D3Tzy98fp7snzJVLE1h1bSLxVgN6rRpHew9/+6AKCTjZsxlwR3pHKGEVuVlGHrovi+1HGoeN\nTb1hQRYOR89pn9Ohjtd7ePmtFrbtcgFQlGfijlVpzJwaqYxob3dP2M/qpwF6urwYkswT+ljGKxiS\n2Xughy0VTrZXdkWDiOREHVctTaS81EZe9omKiLNxDs5E0lk6bzcsyMLjDZz119z5cLbO2YUuGJJp\navFHR2zWN/moa/DS0uZHHvKmZI5VM6kgNtrzISvdwMzpiYQCw9/n/T4fDt/IYfEXiQi6BEG4EEmS\nxOIZaeTYLfz2jf2s21HP0cbIdo54y8XZjFsQvijOaShhMpnw+XwYDAZaW1tJTk4mOTmZ9vb26G3a\n2tqYOXPmOTmesfb8mwwafvzHimHNGE/WI2C8fSTGYjMbuOuKQkwGDZWHHYMqDlKbapi1cz09Zhs7\nl13PD+L3o5Nk/m/HVIpmZhDqqMOoh6c2dHG8I0RhXjrW+DQ8Hg8ffbKdUCg87Of5/ClsrAyRaJX4\n55uN2MyRRHmkvfSKovD2hw6eX9OASiXx4L1ZXHFZ4qDbjKdJpxyW8LYZCfToQFKYNkPHDx6ahEYj\nkZ9dxC1L8k9pGsp41TZ4WfNm86AwYvVKO7OmWS64qoCJEAop7D3YzZYKF9srXfR6Is9/YryWKy5L\nYGGpjcJc0yX52MdLrVJx14qz95oTzp5QSKG59UTPh7q+qRfNbT7CQ97qYkxqivJjTky7yIj0frBa\nNMNe/zarDodj/FvvBEEQhAtHZnIs379nLn967xA7Drbxw+creOD6KUzPTzjfhyYIwijOaSixcOFC\n1q1bx8qVK3n//fdZvHgxM2bM4NFHH6W7uxu1Wk1lZSXf/e53z9kxrV5egMmoY8tnTdGrpCaDhvq2\nE1eJBzZjHKlHwKyixOjXx2qcN16zihIx6bXctaKIUFiOjgXV+b1cvu4lAD66ajX3pR4nVeNlnS+X\npJIZ3DRdhzrsZe0eNxU1PjLTUpk3uwSvz8+nFbtQ5NCwn2XSZqPXpJBsk/jGzUYsMapRx3UGgjK/\n/3Md67d0EmfR8NP/mIY9aXBJ3FihjEqCxTPTaGkMU/Gpj3BIQh8js2RJDF+7uRi16sTCQK9VT2iD\nwdoGL2veambbzkgYUZhr4o5Vl2YYEQ4r7DsUqYj4dJcLd29kdZZg07K8PIHyskgQoVJdWo/7TE30\na06YOOGwQkubPzpis77JR22jl+YWP6Hw4NIHk1FFQU7M4J4PaQZscdpL7nddEARBGJlRr+HrN06l\nOMvG3z6s4n9e+YzrFmSzanHuiNPyBEE4v85aKLF//34ef/xxGhsb0Wg0rFu3jl/84hd8+9vfZs2a\nNaSlpbFq1Sq0Wi3f/OY3uf/++5EkiYceeija9PJcUKtU/NOqEq4py6TL21jw+gAAIABJREFU7ceo\nj1RIjKS/meVYV1XHapwHkDBgLObuqnY6e/yoJJAVotM3+gMOfzDMtv0ntnAs2vgm5h4nu0ovZ2ah\nljKjgyMhG3PuvAtTuBO130VlrY83Kt0kJ8SzeP5swuEw6zdvx+nqYsHUVLYMuD+TLhe9JgmjPshD\nt8RhNCi8+GHViONOu7pCPP6bY1Qd81CQY+L/fziPycXWYaXhY4UyoaBE3UE1lXs9aDUqVl6fyC3X\n2jEZzl42Vtvg5eW3mtnaF0YU5Jq4Y6Wd2SWXVhgRDit8XuVmy45IENHtjgRQNquW61bEU15qozg/\nRgQRwgUtLCu0OvzUN/aN2+yrfGho8REKDQ4fDPrIlq/+aRdZGZEKiASbCB8EQRCEyHaOZbPSybNb\n+O0b+3h7Wy1HGrr4+o1TsZlFI2tBuJCctdXgtGnTeOGFF4Z9/fnnnx/2tauvvpqrr776bB3KuPRf\nJW1zesY1InC0q6pjbQnRa1RML0jkzssLUatU3Lq0IBqEeP2hYQGHw+XFH4x0Xys4vJuiw5W0pmTi\nWlTKw9a9uMI6KuzLyKw6TlmGTH1nkGc2dWGxxLJsUSkqSWL9lgo6nF0kWAzceUURRoOGysPt+P3p\n6DQJmAwBvnW3lViTxIsfHhlx3GlHe5jd20M4u4IsWRDPN+7JQq8bOWUeKZRRFAj2aPE4jFSGe5hU\nEMPD92WTbj97+/vqGk+EEYoCBTmRyohLKYwIywoHq9xsqXCybZeLru5IEBFn0XDN8iTKS+OYXBgr\nggjhgiPLCm3tgUE9H+obvTQ0+wgEB4cPep2KnIxIxUN/z4fMNANJCbpL5ndZEARBOHuyU8384N4y\nnn/3ILsOO/jh8zv42o1TmZoTf/JvFgThnDj/YwAuMBMxIrC/0mHz3mZ8gRMbm/0hmQ2VjahVEnet\nKBoUbJhNumH3EwhGFpmx3U4Wb3idoFbHtmtu5buJh1Ch8GHsQqwWI3PSwvR4FX71oQu1Vs+KxfPR\n63Rs3rGbptbIVorIlhANty8txOvN4ECNTHaqiq+ttGHQS6Nuu/B36Vj/gQcJiXtXp3PjlcljLgT0\nWjXT8xOiPSXkkISn1UiwN9I7wpTsYfJsE6kpwx/vRKhv9PLy2ha2VDijYcTqlXbmTL80wghZVjh0\ntJfNO5xs2+nE1RdEWMwarl4WaVY5uSh20FYYQThfZFmhvTPQFzz0BRCNPhqaffgDg8dd6LQSGXYD\nmf09H9INZKUbSUrQiWBNEARBOCMmg4YHV03jo10NrFl/lCde2sMN5TncWJ4r/sYIwgVAhBJDjFXp\n0N/M8mTUKhW3LMlnd5VjUCjRr38byMnuS6fVIMkyy99/CX3Ax8bLb+UruW0kaPy83JXL7BUziQ83\noygST6530uNXcdWyecSYjOzae4BjtQ2oJFgyM43VywsIhhT++LaPQ7UyhZlq7rvegF4beSMeuu1C\nUcDrMOJ36ZFUMv/yQBZL549v3vOKuZmsr2wi0KPF22ZEkVVojCFMKR7UOpmNe5rQaCLNBSfK0DAi\nPzsSRsydcfGHEbKscLi6ly0VTrZWuHB2BYHI1IArlyRSXhrH1GIzavXF/TiFi5eiKHQ4g5EtF40n\nGk/WN/nw+QeHD1qNRLrdEJ120d/zITlJL8I0QRAE4ayRJIkVczPJS7Py1Bv7eWvLcY40dPG1G6di\njTk7F8sEQRgfEUqM4GTNLMdjrN4KHd0+Ort92BNixryPpDgjcz7bRFpTDcfypzFpXhIzDMfZ44vn\nYyWPazUdaDUqnt/cRbUjzBWXzcdmtXDwyDE+P1wNREZyXlWWRSgk8dw/fBxtCDM5R8091xrQak4s\nAAZWiMhhid4mEyGvFpUuTEZRiAVzxl/iFvCDv9WMt1sNkoIx2YPeGmBgNjDeYOZk6pu8vPzWiTAi\nL9vIHSvtzJ1hvajDCEVRqDrm6QsinHQ4I0FEbIyaFZclUF5qY1qxGY1m8GMcrUmpIEwERVFwuoLU\nNfkGBRANTV483sHhg0YtkZaqj0676G88mZqsFwGaIAiCcN7kpVn4wX2lPPf2QfYcbeeHz+3g6zdO\nZVK27XwfmiB8YYlQYgQTMSLwZA0vP9xZz5evmjTmfQQPHGbO1vfpjbHQcvXl/LulivaQnt85p/Dv\nNyWjJcQnR3xsrvJy2YK5pCQlcLy+iYo9n0fvI95sQK/V8fSbXo43y5Tkq7n7agOaIYuC/gqRdVua\ncDfFIAfVaGOCxNh7mTc9Y1yPPxQO8/izh6jc6UMOq9GYgphSvKi18rDbDuzPcToamn28/FYzm3dc\nOmGEoigcqfGwtcLJ1p0uHB0BIDLKcPmiBMpL45g+2TIsiAAIyzJr1h8dsUmp6DItnCpFUXB1hyJj\nNvt6PvQ3nuwfK9tPrQZ7soGZUyPbLTL7ej7Ykw0jvlYFQRAE4XyLNWp55JYS1u2o59WN1fz8pd3c\ntDiPaxdko7pIP0cKwsVMhBLjdKpXoPVaNdMLEtlQ2Tjiv392tINls90kxRlHvL+wx0v1Q48ihcN4\nv/EA30ioRkbiz/5ZfP3aLDKsCmhjaPCqKZ2VQXaGnZa2djbv2D3ofkrykvjDWj+NDoUZhWq+dJVh\n1BLpbGsivY1u5BAYE3yk5cDs4oxxVYg4OgJ875cHaW0JgwpMyR50Q6ojBhpvf46hGpp9vLK2mU+2\n94URWUZWr7RTOvPiDCMUReFYrZctFU62VDhpa48EESajmmXlkakZ06eY0WrGDhbWrD86YpNSYEK3\nyQiXnq7uYF/ocCJ4qGv0RkfJ9lOpwJ6sp2SyOdrzITPNSFqq/qSvT0EQBEG40EiSxNXzsihIt/LU\nm/t57eNjHK538eUri8SIcEE4x0QoMYKBV507uv0YdCpAwh8Ij/sKdFiW8flDo/57Z4+fH/xhx6j3\nV/eDJ/AfqyP163dRPtWLqi2Ac8oKvlZcgtbTAmodWDOYP1tPrVNPd08PG7ZUgBKpSog365mal8zh\n2kR8fgV/yMHeY01o1g//WbKs8NKbzbyytgWDXsW/3p9JcZFxXAGMLCu8v6mdP73ciM8vozEFiUnx\noNIqY37fePtz9Gts9vHy2mY2b3ciK5DbF0aUXYRhRCSI8ESDiFZHJIgwGlQsWRBPeWkcM6da0GrH\nt9AbrUkpTNw2GeHi1+0ORfs8DGw82d0z+H1KkiA1Sc+Uoliy+sZtZqYbSE81jPs1KQiCIAgXi4IM\nKz+8r5Rn/3GQfcc6ePTZ7ayYm8kNC3Mw6sVSSRDOBfGbNoKhV519A7rEj/cK9Jr1R9n2eeuYP0cZ\n5f6c727E8dfXMU0pIvvqSaiqthHOmoKpZC646kBSgTWTZnckkNBrZJYVw/zsudHxoqDj/67pwRfQ\n4gu24g3W4gkw7Gd5vGH+55njVOzpIiVRx3f+JZ/sDOO4zlNji5fHfnmE/YfcmIwqYlI8aC0jV0fY\nYvV09fpPuT9HY7OPV/7RwiefdiIrkJMZ2aZRNuviCiMURaG2wcuWChefVnbR0OQFwKBXsXiejfIy\nG7OmWdCdxqJvrP4lZ7pNRrj49HpC0SkXjs5WDld3U9/ojU5q6SdJkJyoozjfOqjnQ7rdMOrIX0EQ\nBEG4FJlNOv7XbdOpONTGKxuqeW97HVv3NXPzknwWldjFhA5BOMtEKDHEWFedB9pd1c4NC3Pw+kPD\nKgrGex9D7++WJflIHZ3U/O/HkAx6Cr53P7qqjcjmeEJl10N3I6CAJZMOv4nDDh0alcJ0u48YnQqz\nMbLwDIY0PPWaty+QaMYbrB/xZ3V2BvnZr49R3+Rj+mQz3/xGLpbYk78kZFnh3fUO/vL3Jnx+mdKZ\nVu67M50nXtlFR/fw2ydYDHz/3rkjnqvRNLb4eGXtgDAio68yYpb1ovrDEAkiIs0qG1siwYFBr2JR\nmY2FpXHMLrGe8QJwIsbYChcfjzcc3W4RaTgZaTzZ6QoOu21Sgo450y3RppNZ6UbS7XoMelFBIwiC\nIAgQ2c5RNjmFmQWJrKuo551ttfzx3UOs39XAnSsKKc4SjTAF4WwRocQQY111Hqij28cPnttBlzsw\nbAvGeO9jIGePD1e3F+e//YiQs4vs7z2EpWU7ilpD6LLV4HWAHILYFLoVC5+36lFJUGL3EaM7sVWi\n3SXzu9e9OHsUfMFGvMHhPS2cPT627uzgD39tptcT5oYrkrnn9vRxdcRvavXxm+frOFDlxmLW8I17\nslg8z4YkSWOOUjWbdJhNJx+31NTq45W3Wvh4hDAiGJZp7/Je8JMl6pu8bK1wsaXCSX2TDwCdTmLB\n3DjKS21cvTydnh7PhP28iRhjK1y4vL5wNHjo33JR3+SlvXN4+JAYr2XWNEu038P0afHEGmWMBvEa\nEARBEITx0GnV3LAwh0Uldl7bVM2W/S08/uJu5hQlcdvyApLjxldRLAjC+IlQYoiTTc0YyOWO9AIY\nugVjrPtQSSCP0G7BZjYQfPVNujd9inXZAtKzfEidXoLzV6KoZfD7wBCHR53A3iYDsgLTUv1YDSe2\nlrR2yjz1mpcejwJS04iBhKIAnhh+/WwDarXEI1/NZvmihJM+1rCs8I8P2njxtSYCQYUFc+L4zr9O\nJhw68RjPZJRqU2ukMuLjbZEwIjvDwOqVdubNikNB4aX1Ry7oyRKNzb5oj4i6xr4gQisxf04c5aVx\nzJlujS4MDQY1PT0T+/MnYoytcH75/GEamiIjNgf2fuifwjJQfJyWGVPNZKWdmHaRmWYkxjQ4fEhK\nMuNwTPCLTRAEQRC+AGxmPfdfP4XlczL420dH2FXl4LPqdq4szeK6Bdmi34QgTCDx2zTEWFedT2Zg\nU8HR7iM9KZb6Nvewr88zemj+8W/QJNgo/MpC1G0HCOfNQrZngacdtEb8Rjt7m4yEZImiJD+JMSe6\n4zc5wvz+DR9ur4InUIs/NLyfhSKDp9VEoEeLzarl2w/nUZQfc9LHVd/k5cnn66iq7sVi1vAvD2RS\nXmoj3qbD4TgRSpzOKNXm1kjPiE3bOpFlyEo3cMdKO/Nmx0W3abz44ZEJnSxxqpNUxjr2LX0VEcfr\nIz0iNBqJsllWykttlM6wYjSemyvUEzHGVjg3/AGZxuYT2y36p120tQcioeEANquG6ZPN0X4P/QFE\nbIx46xYEQRCEcyHXbuE7X5rd12/iKO98Wsvmfc3cclke5aLfhCBMCPHJdgSrlxcgKwpb97XgCwwe\nixcXo8PVO/zKJUBnt49jjV3kpVtHvXJ969I8Xt14bNDXZ+dYKPr5Y/j8AVIffQBj2wHkuGRCM5dA\nbyuotITMmextNuILqcixBUiznGhaV9ca5uk3vPj8IKnqRwwk5KCEr9VMwKOiMM/Etx/KI9429naK\ncFjhjfdaWfNmM8GQwqIyGw/clYHVoh3z+/Ra9UkbKza3+Xl1bTMbB4QRq1famT8gjICJnSwxcKrK\n6VZctLT5oz0ijtX1BRFqidKZVhaWxlE6I27Y1epzaTznXjg3gkGZhuYToUP/FoxWh39YtZTFrGFq\ncSyZaca+rRcGMtON4+rxIgiCIAjC2TWw38R7O+p459Nann/3EB9VNnDn5aLfhCCcKfGJdwRqlQqV\nJA0LJABmFCay/1jHiFszJAl+8dKeQYvdka5cD72i3fzj/0Pb4Woa55QxV1OHT1HzScw8Fve2ISEh\nWzPZ3xZLb0CN3RIk23ZiL/mxpjDPvuklEIJrF0r89cPmYccV8qpxN8WghFUsX5TA17+cedIpD7UN\nXp58rpajxz3EWTT881eymDc77lRP5TDNbX5e/UcLG7d2IMuQmW5g9Y12FsyJGzFpnsjJEkOnqoy3\n4qKt3c+WChdbK5wcPR7pBaFWw5zpFhaW2pg3y0qMSfwqfVEFQzJNLf4B/R4i2y+a2/zI8uDbmmPV\nTCqMjfZ86A8gThb0CYIgCIJw/um0am4sz2Xx9DRe3VjNts8j/SbmFidx27ICkkS/CUE4LWIlNYKx\nrs7vP9bJ9PwENuxuGvZv/Vc/hy52R1o091/Rdm3cRtsfXsJlS2LBdWkYVX6e6ZnGtTlGJBQUSwaH\nOq24vGoSY0IUJZ4YuXmkPsRza32EZPjy1QYm5Ui8u2NwLwu/S4enLfIGee/qNG68MmXMUZqhkMJr\n77TwytoWQmGFpQvi+eqdGZjP8IptS5ufVwaGEWl9YcTckcOIfhM1WeJUKy4cHQG27nSyZYeTIzWR\nIEKlglnTLJSX2iibZT3jcyJcXEIhhebWEz0f6voqH5rbfISH5JcxJjVFeTEDpl1EKh/iLJqLapSt\nIAiCIAjD2cx6/umGKVw+J4O/fVTFzsMO9hzt4KqyTK6dL/pNCMKpEr8xIzjZ1fkVczNRq1Xsrmqn\ns9uHNErzypNtLwh2ODn2rz9EVqmx3Dqf7Bg/H/SmM39RMYmxatZ97iVnajxtbg0WQ5jJyf5oIHHw\neIg/vu1DUeCeaw1My4s8lf29LBQFvG1G/F16JJXMZUtNrLwqdczHXVPn4dfP1VJT5yU+Tss37sli\n7gzr+E/cCFodfl5Z28KGUwwj+k3UZInxVFyoFA3bdkZ6RByu7gUiQcSMqWbKS23Mmx0nyum/AMJh\nhZY2/7CeD00tfkLhwb/oJqOKgpyYQT0fstIM2OK0InwQBEEQhEtcXpqF7949h+0HWnllYzVvb6tl\n895mblmSz8KSVFTis4AgjItYYY3gZFfn4y2G6BaMY41d/OKlPSPeT+cY2wsURaHmf/+EkKMDx9JF\n3FoQojpgRpoyi6JUHTuOednvikffo8eklSlJ9aHu23GxrzrEC+/6UKngq9cbKM4+8TSuXl6A36fw\n/vs9+N0qdEaZFVfE8tUbR9+eEAzJvLK2hdfeaSEchhWLE7h3dfoZbUlodUS2aWzY2kE4DBl2A6tX\nprJgrg31KTYEmojJEqM9p3JIQh008cRv6zhc3VcRIUHJZDOLSm3Mm20VpfWXqLCs0ObwRyse6hoj\nIURji49gaHD4YNCryM0ykpluJCvNEAkf0o0k2ET4IAiCIAhfZJIkMX9qKrOKknhvex3vflrLc+8c\njPabKMo88+3PgnCpE6HECMZ7dV6vVZOXbh01wJCAdTvquOuKomGNFB1/fR3Xuk3ElpZQdqUFt6ym\nMmEuN04yc7w9yEfHY1hQOg2dWma63Ud/QcDuqiAvrvOj0cADNxjJzxhcKVDX4GPbpiA+t4rZ0838\ny/3ZWM2jN7Q8WtPLr/5QS32Tj8R4LQ/dm83MaZZTPGMntLVHtmls2BIJI9LtelbfaGdh6amHEf0m\nYrLEwOdUDkkE3FqCPTpCXjUg0SF5mDYplvJSG/NnxxFnFUHEpUKWFdraA8N6PjQ0+wgEB4cPep0q\nsuWiL3To7/mQGK8T3bUFQRAEQRiVXqtm5aJcFk+38+qmaj79vJX/+mslpZOSuW1ZPolW0W9CEEYj\nQolRjPfq/FgBhqzAht1NqNWqQY0UvUePU/eDJ1BbYpm0sgC92sebSgk3zE/B5Qmz5jMV8+bOQg6H\nmJ4RwKCNLJx2HAjy8od+dFq473rdsEBi845Ofv2HWgJBhdtvTOWOlfZRr+IGgjJ/e72JN9a1gQJ6\nqx9LtpcDLS2UTIkdcxpF/0hN84A317b2SGXE+oFhxA12Fpadfhgx1JlMlnB1B4lTxaFxeXG0hYhE\nRgqJSWpWXmGnvDQemwgiLmqKouDoCPRttzhR+dDQ7MMfGNxxUqeVyLBH+jxEez6kGUlOFOGDIAiC\nIAinL95i4Gs3TOXy2Rm8+OERKg61sedoO1eVZXHt/CwMOrH8EoShxG/FKE7l6vzq5QWEZYVNuxtP\n2ltCDgSpfvh7yF4fRV+7AaPWR3DSAq7JyCGsKPxlR5A5sxcgATPSA8TqI3f4yWd+3tgUBEK0dx/i\n6bXh6IQPkPjr3xt5/d02JJVCbFovlU01KB+5Rxx3eeiomyefr6Wx2Y9KG8aU4kVrCuHsZcxpFENH\naibZjOSn2gg6jSfCiFQ9t99op3wCw4jT1d0T4tNdkR4R+w/1RJ+b4vwYZpbEsmR+IvZkw3k9RuHU\nKYpChzMYDR36G0/WN/nw+QeHDxqNREbqie0W/T0fkpP05/31KQiCIAjCpSs/3cp/fGUO2z9v5dVN\n1fxj63E2723iliX5LJgm+k0IwkAilDiJ8VydV6tUXFWayYbKxhH/feDoysZfPo1n70GSriwjJS1E\nKCmLQGYeOpWMR5/GjLlphBWJqSl+4mMiq+hNlQHe2hxEVoL0+A4hK146uiMBQsAv03BEw6693ai0\nYWLTelHrZTq6Q8MCBr9f5sXXm1j7QRuKAtbkEJLFjTSkKGK0Bp0DR2qGgxI1h+Dw9l7Ac8GEEd3u\nEDsqI0HE3oM90ZGMRfkxLCq1sWBuHInxo29nES4ciqLgdAWjPR8cnU0cru6hocmLxzskfFBLpKXq\no9Mu+htPpibrUavFH31BEARBEM49lSSxYFoqs4uSeHd7Le9ur+MPbx9kfWUDd15eREHGmTWUF4RL\nhQglTkP/9oWB1RPWWD0JJxld2b1tF81P/hF9Rgr5i214VQZqkkrIV8l8fDRAID4RjVZFqqkHi14B\n1HywI8B7nwZQlEBfIOGL3m84oOIfa3sIB9SYLGG0SW5U6sGlGv0BQ3WNlyefq6W5zY89Wc+Xbkvh\nuQ/2MkJhx6AQZeBj3l3lQA5KeDsNBLp0gIRKGyYpI8zPvzX9vI0/cveG2F7Z1RdEdEfHMxbmmijv\nCyKSE8c3OlQ49xRFwdUdiozZHDDtor7JR69n8KxNtRrsyQZmTI1UPGRlREIIe7IBjUaED4IgCIIg\nXHj0OjWrFuexeHoar26qZvuBVn76l12UTU7mtqUFJFhF5a7wxSZCiVMwdPtCvEUf3UJxsuaYao+H\nY498H1Qqim8vQa1TUxE/izmZFvbW+2nTTiVRa+DA4aO8sPcgNrOeFFseLe1mLDFQ334QWTkReATd\nGtwtMSBLlM83c6CjPtImYYjOLh+/f6GOjVucAKy8Kpk7V6WBSuGvm9T4AuFh36PTqrHGDl7E19S7\nqT+iwt9loT+MMCT40JmDhFTQ4wmc01Ci1xNmx+5IRcRnn/dERzXmZ5soL4tj4VwbKUkiiLjQdHUH\noz0f+htP1jV6cfcOfh2qVGBP1lMy2Rzt+TBjWiIGXQitZvR+J4IgCIIgCBeqBKuBr9/Y32+iih0H\n29h9pJ2ry7K4dn42et2pNXIXhEuFCCVOwcDtCwAd3f5BWyRGa455+7J8jj/8PQJNrWTeNA9ripY9\nxmLmzMmh0RniYKCAlGQbR2vq2Ln3IABeXwot7Wb0uhC3L1fz8zWRQEJRwO/U4203gASm1F5uvj6P\n1jfahlVpBD0afG0mNhxxkm7X88hXcyjOjwEilQ+MWCcxWHtngL+/3cIHH3cQDusHhRH9W+H6K0HO\nNo83zI49LrZWuNi9v5tQ39jGvCwjC0ttLCy1YU8WQcSFoNsdivZ5GBhAdPeEBt1OkiA1Sc+Uoti+\n8CEy8SI91YBWOzh8SEqKweHoOZcPQxAEQRAEYcIVZFh59J65bNvfwqubqlm79Tib9zVz65J85k1N\nEf0mhC8cEUqMU//2hZEM7MEwUnPM9r+/Q+eb7xM7OZvs0jj8STkUTp+B2yezpS2VlLRUGppb2bZr\nLwAmbQ56bTJh2UMgfJyMlJkYdCq8PpneVhPBHh2SRiY2rZdYC6QnmQdVaSgyeBxGAl16kODma1NY\nvdKObsAir8vtxzdkIkH0sQbC1NS72bSliw8/6SAUUrAn68nIgyMdrQx9n5yUdfbmL3u9YXZ+Ftma\nUbmvm2BfEJGTYWRhaRwLS22kp4qSt/Ol1xOKhA6NPuqaIo0n65u8OLtCw26bkqSjON86qOdDut2A\nXicqHwRBEARB+GJRSRLlJXbmFCfxzqe1vLe9nmf+cYCPKhu48/JC8tNFvwnhi0OEEuPU5fbTOUK/\nCBjeg2Fgc0x/XSPHv/M4KpOBSTfmgjkOpWQukkrig5pYkjNycXQ4+XjbLhRFwaTLRa9JIiT34vYd\nRvKH8PpDzMhL4YN1PYT9GtSGELFpvag0CgtL0tFr1dEqjS0VnbQc1yCHVFisKr77SAHFebHDjnm0\nHhhyUAJ3DN/7r2OEQgqpyXpuuyGVJfPjQVJYs14brQTR6zQoisyW/S0cqnNGt7KMNU50PHz+/iDC\nReXeLgLBSBCRlW6gvK8iIsMugohzyeMNn+j1MCCA6HQFh902KUHHnOmWvvDBSFaagYw0Awa9KEkU\nBEEQBEEYyKDTcPNl+Vw2I41XNlRTcaiN/3xhF/OnpHDr0nziLeIzr3DpE6HEOFlj9cSfpJHlUEoo\nRPUj30d291L4pVIMCTEEZy5C0mrZ32HBllFMV4+b9Zt3EArLxOjy0WkSCIXduP2HUQgTbzbQ2BRk\n6/oAYb8GS2IItc1NvEXP7OKkaBjh8yk46/U0HdGhUsHN16Vwx432YSXw/Yb2wJCDEr5OA/5uHSgS\nqcm6aBhxYnqBFK0EeWHdYbbub4ne39CtLKfK75fZta+LLTuc7NzbRSAQCSLS7XoW9QURWenGU77f\niTBSY9NLldcXCR/qB2y5qG/y0t45PHxIsGmZNc1CVrqBzLTIuM1MuwGj8dI+R4IgCIIgCBMt0Wrk\nG6umcXm9i799dIRPD7RSWeXgmvnZXD0v65L/DCp8sYlQYpxO1shypDeKpl//EXfFZySU5ZNSkkB4\nyjwUsxWPJh6nLg+/389HH3+KPxAkRleATmMjGO7G7a8CZBQFLJKV//yfagC+/uVMli2KH7ZA3rW3\ni6f+VEeHM0hulpFHvppNbtbYY0wBVi8vwOuR+WRrN10ONSgSMbES996WwbKFiWOOUjxc5xzx66ON\nEx2JPyCze183WyqcVOzpwt+3nSQtRU95mY3yUhtZ6Qak87SvbqzGpmdaDXK++f0yDc0+ahu9g3o/\nODoCw24bH6dlxlQzWf3BQ1okhIgxiT+OgiAIgiAIE6koM47v3TMP0aQaAAAgAElEQVSXLfuaeW3T\nMd7cXMPHnzVx29J85k1JOW+fiwXhbBKhxCkYrZFl/9cHclfup/GJZ9AlWim8Jhc5vYBwejZBdQw7\nnTmoJdixqxK3x0+svhCtOo5guAu3/wggY4vVo3SZqazwYzFr+NaDuUwtNgNEt4b0uEM891IDG7d2\nolFL3LnKzs3Xpo5rNGKnM8Br77Ty/iYvwZCGxHgtt16fyuWLEk/6/aeylWWoQFBm9/5utlY42bG7\nC58/EkSkJuspL42jvNRGTqbxgnjDPVlj04uBPyDT2Dyw30NkC0ZbewBlSJ/TOIuG6ZPN0X4P/QFE\nbIx4mxAEQRAEQThXVJLE4ulpzC1O5p1Pa1m3o56n1x7go10N3LmiiLw0y/k+REGYUGK1cQrUKtWI\njSyHCrt7qX74UZBlim8uRp2cRHDSTGS1jp3dhSioyIjt4nhjJ7H6IrRqC4Gwi17/EUBBDkk0Htbh\n7w2Rk2nkO4/kkZw4eHvI9t0ufv/nOpxdIfKzTTxyfzbZGSff3tDpDPDau628v7GdYEghJVHHrTek\nsnRBwrjCDDj1rSzBoMyez3siQcQeFx5vJIhISdRx7eWRiojcrAsjiOg33samF4pgUKaxpb/h5Ine\nD60OP/KQ8MFi1jC1OJbMNGPf1otI7wdLrHg7EARBEARBuFAY9RpuWdLfb+IoOw87+Mmfd7Jgaiq3\nLs3HZhZT54RLg1iFnIaBjSxHUvv9X+I/3kD68iKshckESxagaA181luIX9YyOdmHQZKIM00GYgiE\nOukNVAMKIZ8ad1MMSkiF1hxg1oKYQYFEd0+IZ/5az+YdTjQaibtvSWPV1SljbrUA6HQFef2dFt7f\n1E4gqJCcqOO261NZunD8YcTAx3+yrSzBkMzeAz1sqXCyvbILjzcMRJogXrkkUhGRn2O6oIKIgc6k\nGuRsCoZkmlr8A/o9+Khv9NLc5kceMkwlNkbNpMLBozYz0wxYLdpzftyCIAiCIAjC6UmKM/LgTSUc\nrnPytw+PsO3zFnZVtXHtvGyuEv0mhEuACCUmWOfbH9H+0lvEZCWSc3kuoSmlyJY4qgK5dIViyE/w\nE6sJ8fSbASAGf6gdT+AYAP5uLZ5WEyhgTPSit/nZd0zGHwyj16rZUuHk6b/U090Toig/hofvyyIz\nbezqiKFhRFJCpIHlstMIIwZavbwAk1HHls+aoltZZhQkUJyczJPP1bJ9twt3bySISIzXsmJxAuVl\nNgpzL9wgYqDTaWw6kUIhheY2X7TpZF1jJIRobvMRDg++bYxJTVFeDFnpxr4AIlL5EGfRXBTnWhAE\nYSRVVVU8+OCD3Hvvvdx9991UVFTwxBNPoNFoMJlM/Pd//zdWq5Vnn32W9957D0mSePjhh1myZMn5\nPnRBEISzojjLxvfvLWXzvmZe21TNG5tr+HhvE7ctLaBscrL43CdctEQoMYECTa3U/Pt/otJpmXTb\nZJTsQuS0HJpCaTT748m0BojTBXjqNR/NHTKlU9SElQA7D+loPq7C7zQgqRRi7L1oY0NA5Kp8fXMv\nr61tZ9suFzqtxL23p3P9lcmoVaO/8Ti7grz+TivrNjoGhRFLF8aj1Zx5k0a1SsU/rSrhyjkZ7Njj\nZN+BXtat7eLvvZGAJcGmZdnCBBaWxlGUF4NqjGO9EJ1OY9PTEQ4rtLT5h/V8aGrxEwoP3ndhNKjI\nz4khK80Q6fvQN27TFqcVf4QEQbikeDweHnvsMRYsWBD92s9+9jN+8YtfkJeXx+9+9zvWrFnDNddc\nwzvvvMNLL72E2+3mrrvuYtGiRajV4qqhIAiXJpVK4rIZaZROSuYf247zQUU9v3/r875+E4UkJZnP\n9yEKwikTocQEUWSZY//rR4Rd3RTcNBVDfibBSbNxKvEc8aaRHBsiQe/nN3/34nAqlE/XsmqJDo8n\nj0O7we90o9KGiU3vRa2L1OErCmiCJn788xp6esNMLozhofuySU8dfV6xsyvI6++2sm7DiTDi1utT\nWVY+MWEERBbSn1e5qXy5mQ2bHXS7IwGKzarlusvjKS+zUZx/8QURQ51KY9OTCcsKbQ4/dU0+Ol2d\nHDrSRV2jj8ZmH8HQ4PDBoFeRm2Uksy906A8gEmwifBAE4YtBp9PxzDPP8Mwzz0S/ZrPZcLlcAHR1\ndZGXl8f27dtZvHgxOp2O+Ph40tPTOXr0KMXFxefr0AVBEM4Jo17DbUsLWDIjjVc2VLOrysFjf9pJ\nSf5xCtMtTMmJJyfVfNF/Hhe+GEQoMUFann6R7s07iJ+aSsrCPELTF+LVWNjXk4fNKJNs8PLbv3vp\n6FZYOlvL9eU6Gpp8/OzXx2hu82NPU+M1upD6Lu7IIQlPqwlXrxa9TuGBuzK4ZnnSqG8srr4w4r2N\nDgKBvjDiulSWLZqYMCIsKxyscrOlwsm2XS66uiNBRJxFwzXLkygvjWNSYeyY1RsXm/E2Nh1IlhXa\n2gPDej40NPsIBAeHD3qdKrLlIr1vy0Vf48nEeJ34AyIIwheaRqNBoxn8EeW73/0ud999NxaLBavV\nyje/+U2effZZ4uPjo7eJj4/H4XCMGUrYbCY0mrNTSSGuUJ5/4jk4/8RzcG4lJZmZWpTC3qMOXnjn\nIPuq29lX3c5rHx8jxqhlekEiM4uSmFmYhD0xRlzgOkfE78GpEaHEBOjdf5iGnz2J1myg8OYphKeV\nEoxNYLe7EJNOIdXo4am/e3G5Fa4s03LlPB0Ve7r4P08fx+eXueW6FG5fmcqrG6upPNxOS2MYr8OE\nHJaYNimWh+7NJjV55B4Grq4gb7zXyrsbImFE/2jP5YsSzjiMkGWFQ0d7I0HETifOrkgQYTFruGpp\nItddkUZaivqSCiJGMlJjU0VRcHQE+rZb+KgfsP3CHxjccVKnlciwR/o8ZKYZmDbFhjUGkhNF+CAI\ngjBejz32GE8++SRz5szh8ccf58UXXxx2G2XorOMROJ2es3F4JCWZcTh6zsp9C+MjnoPzTzwH54/d\nauBbd85CZ9SxubKeA8edHDjeybZ9zWzb1wxAgkXP5Jx4puTYmJwdjzVGd56P+tIkfg9GNlZQI0KJ\nMyR7fVQ/9ChKMETR3TNRT55GwJ7Lnt5CVGoNqQYPv3vNS3evwnULdSydreWVtS387Y1mdDqJb/5z\nDovKIld5rpydw5G9EtUtPRj0Ku65K50rlySOuHB1dfeFEetPhBG3XJfK5YsS0GpPP4yQZYXD1f1B\nhItOVxAAc6yaK5ckUl4ax9RiM2q19IX4hVMUhQ5nMDpis66v8qG+yYfPPzh80GgkMlIj2y0GTrxI\nTtIPCm6+COdNEARhoh0+fJg5c+YAsHDhQtauXcv8+fOpqamJ3qa1tZXk5OTzdYiCIAjnnTVWT9nk\nFMomp0Quorm80YDiYK2TzXub2bw3ElJkJMUyJcfGlJx4ijPj0OtEPx7h/BChxBmq+8mv8B2pwb4w\nm7iySQQnzeKgNxc/JtL0vTz9ei+9Plh1mY65k9T84qkatu1ykZSg4zuP5JGbZUJRFD74uIM/vdyA\nxyszY6qZB+/JGjQKtF9/GPHe+nb8AZkEm5ZbV59ZGKEoClXHPGypcLK1wkmHMxJExMaoI1MzSm1M\nm2Q+o2kdFzpFUXC6gn2hg29A40kvHu+Q8EEtkZaqj067yEw3kJVmJDVZf9LRrIIgCMLpSUxM5OjR\noxQUFLBv3z6ys7OZP38+zz//PI888ghOp5O2tjYKCk69748gCMKlSJIkkm0mkm0mls5KR5YV6tp6\noiFFVX0XDQ4371fUo1ZJFKRboyFFjt2MWjUx/egE4WREKHEGXB9tpu35lzGlxJJzYwnBGQupDWXQ\nEY4nVd/LH97sxeeHW5fryU2W+c5PD1Pb4GNqcSz//o1crBYtbe1+fvvHOj470IPJqOKhe7O4fHHC\nsP1eXdHKiBNhxL2r0087jFAUhaPH+4MIF46OABAZL7l8UQLlpXFMn2y55IIIRVHo6g5R1+SjrsEb\nnXZR3+Sj1zN41qZKBWkpBmZMNfQ1nIw0nrSnGC658yIIgnAh2b9/P48//jiNjY1oNBrWrVvHj370\nIx599FG0Wi1Wq5Wf/vSnWCwWbr/9du6++24kSeKHP/whKvEhWhAEYUQqlUROqoWcVAvXzs8mEAxz\ntLFrQEjh4nC9i9c/qcGoVzMpKxJQTMmxkRpvEv0ohLNGUsazAfMCM9Gl76dTTh9s72Tf8tWEXV3M\nfGgB+uuuoy1+Gp9780nUefnrP9wEQnDHCj06xcvPn6rB3RvmmuVJfPWODFQqWLexnT+/0ojPLzNn\nuoV//koWifGD93Z1dQd5c10b73zkiIYRt1yXyorFpx5GKIrCsVovWyqcbKlw0tYeCSJMRhVls+Io\nL7UxY6p53L0oLvRtCF3dwUE9H/r/2+MeEj5IkJqsJyvD2LftItJ0Mi1VP2ETSwa60M/bhUqct1Mn\nztnpEedtbBd7866z9dyK1835J56D8088B+ffmTwHbm+QQ7WRgOLAcSdtLm/032xmPVOyIyHF5Bwb\ncbEj97sTxO/BaERPiQmmKArH/u3HhNqd5F43CcPCMroTCznYm4dV7eMva92EZLj7Kj0NtU6eX9OA\nSpL4f+3deXxU1f3/8ddklkySmclGJiQhYScIQmSXTWwV9Nf2V1usYi1YtZuiP7V1o0hFv/pQcasV\n7aqt/nABF1q1WNwqLUpEEUslggjE7MkkZJ0sM5mZ+/1jwpCEsClmAnk/Hw8fmDt3Zs49uYEz75zz\nOYsvzWHuGQOo8Pj47RNFbN/pJSHezDU/GsyZM1K6pI+NTYFIzYg2XziMuOSCLM4+IxXbMYQRhmHw\necn+IKKeSo8PgDh7DHOmpzBzShKnjXV9qToU0dbkDURmPHQOIBqbAl3OM5lgYFosp4x0RGo+ZGfa\nycqwH1OfioiIiIicbBxxViaPdjN5dLg2T3V9Kzs6hRTvbq/k3e2VAGQNSIjMohiVnURcrD5Wyhen\nu+cL8Pz/F2l46x2SRqSS8a0ptI6YxH9bRhJn8vPsuiYMAxaeY+Pf/y7jn+/WkuSycNNVw8gdnsAr\nb3h4+sVyfP4QUyck8rNFOaQkWSOv3dgU4KXXqnj1rXAYkZJkZdH3Mjn7jAFH/cHZMAyKSlt594N6\n3v2gjoqqcBBhj41h9rRkZk5JZsI41wn3Qby5JRAOHbrVfNi/K0hn6QNsjBrmOrDlZmYcWRl2Ym0n\n1jWLiIiIiERDWlIcaUlxnJGXScgwKPV4uyz1eGNLCW9sCdejGJbpioQUQzNcWMwac8vRUyhxjFo/\nK6T4tgexxFsZ+YPJ+E+bxXbfKEwGPPePRmJi4IIzLTyzZi+79rYwYkg8N189DJ8/xC337GLn7mac\nDjNXXTaEWVOTI7MjuocRyYlWFp6fydw5Rx9GFJcdWJpRVhEOImJtMcycksTMqclMHJd4Qnwob2kN\nUtKxy0Xx/poPZW2RnUA6S0u1MWm8q6PgZLjmw6BMO/ZYVQ8WERERETkeYkwmctKd5KQ7OXdaDu2B\nEHvKGvikKDyLYndZA5+VNvDSO4XE2syMzk6KhBSZAxJUj0IOS6HEMQj5/Oy5cimGz8+IRROIOeMs\ndphOodkfy0vr67BaYN4k+O1jn1HX0M6c6Sn8dFE2r2+o4dm/luNvN5gxOYmfLMwmyRWeHdHoDfDy\na1Wse/OLhREl5a1s6pgRUVLeBoDNZmL65HCNiEnjXX32A3pr2/7woWvNh5rag8OH1GQrE051HVh2\nkWUnO8NOXFzfvDYRERERkZOV1RLD6MHJjB6czPwzoLmtnZ1F9ZGQYtuefWzbsw+ARIeNMYNTIjt7\nJDtVj0K6UihxDErv/S0tn3xG+pRBJJ83lyJnHp6WJP7+ei02K0wc6ufRx4oIBQ0uXZDFhLFObrvv\nMz4rbCHRZeG6n2QzfXIy0FMYYeEH88NhxJFmM5RVtrGpY0ZEUWk4iLBaTEybmMjMKclMzkskzt53\nPqz7fCFKKw7scrH/z/2FNjtLSbKSN9ZJTmZH8JAZLjqZEN93rkdERERERA5IsFuZlJvGpNw0APY1\ntPFJUS07OpZ75BdUkl8QrkeRkRofmUWRm51MvF0fSfs73QFHqfGdD6j8/dPYU+MZ+sMzqR48nT3N\nGbz6Zh2xNki3N/LUmkoS4s38/KdDKCxu5fr/+ZRAwOCM05P50fezcTktNHkDvPy6h3VvemhtC4cR\nF8/PZN4RwoiKqrZIjYjPS8KVcC0WE1MnhIOIKXmJUZ814POHKKvoXO8hHEB4avx03+MlyWVh3CnO\njq02w8FDTpYdR4JuSRERERGRE1lqop3Z4zOZPT4TwzAoq24OF8wsquPT4nre+rCUtz4MbwYwNNMZ\nmUkxPCtR9Sj6IX0CPAqBugb2XH0LmCD3kqk0T57HJy1Def3temKtBqGGat56r47sTDuLvpfJM38t\nZ29RK8mJVq64JJupE5Jo8gZ4Zm05f+8II5JcFr7/nUzmnXnoMKLS42PTlvCMiL1FHUGE2cTkPFc4\niDgtKSozCNrbQ5RVtvGfT1op2FkXqf1Q5fER6hY+uJwWxuY6IqHD/toPLoduPRERERGRk53JZGKQ\n28Egt4N5U3MIBEPsLW+koLCWT4pqKSxvYk9ZI69s+hyrJYZBaQ6y3Q5y0h3kuJ1kpSVod4+TnL67\nR2AYBoU3/A/tnlpyzhmF9dvf4f32sbyxsQmzKUR1YSmVlS1MznMxOCuOex8tJBA0+NrMFC6/aBAA\nz/y1nHVvemhpDYcRF30ng3PmpBEbe3AY4anx8e4H9Wz6oI7dn7cAYDbDpPEuZkxJZtqERBLie+fb\n1h4IUV7p61TvIVx8ssLjIxTqeq4jwczoyFab4ZkP2Vn2SO0MERERERERizmGUdlJjMpO4rsMo6Ut\nwKcldXzyeR2fldRTXNVEYUVjl+e4k+PIcTvITneGAwu3g2RnrAponiQUShxBzZqXqfvHv3ANSSbj\nJ/P5yDaNNze2EWoPUFhQRLPXz9wzUtm1p5kt2xpJTbZy5Q9zyB2eEFmmsT+MWHBez2FETa2fdz+o\nY9MHdezaGw4iYmJgwqkuZkxJYtqEJJxf4cyCQMCgwtMWKTq5v+ZDeVUbwWDXcxPizYwalkBOVhyn\njEokJdFEdlYcSS6L/lIQEREREZFjEm+3MGFkGhNGhutRBIIhKva1UFzVRInHS4nHS3FVE1s+rWbL\np9WR5znirGS7u86qGJgar+UfJyCFEofR9nkpRbeswBxrYcRV57Arax6v50OLt41d24qwxISYPimJ\nt97ZRygEc89I5YL/O5A3N+7jwT8U0tIaItFl4dJvZ3DumV3DiH11/siuGZ/uaQYgxgR5Y5zMnJrM\ntAlJuJzH99sTDBlUenxdgofislbKK30Egl3XXcTZYxg+JCFS82F/4cmUJGskfEhLc1Jd3XRc2ygi\nIiIiIv2XxRwTCRv2MwyDuiYfxR4vJVVNHX962VFUx46iuk7PNZE5IIEct5Ps9PCMimy3g3i7Zm/3\nZQolDsEIBNj70xsItfoZtWgq+2Ys4NWt8dR4vOzdXkSiIwarzUL+h/Wkpdr40fezKCxu5bpbd9LS\nGsTltHDphRmc87UBkS05a+v85H8YDiJ2fHYgiBh3ipOZU5I4fWISicdhuUMwZOCp9lHcbbvNsoo2\n2gNdwwd7bAxDcuLIyYo7EEBkxZGabNXMBxERERERiTqTyUSKy06Ky85pIwZEjrf6ApRWeymu8nbM\nqmiitLqZ4iovfHzg+QMS7Z1mVYSXgAxItOvzTh+hUOIQyu57FO/23aSdlonl8h/z3M4sivbWU7Sz\nmJREM/tq2zGAs2enkui08PDjxZEw4ocXZnFuRxhR19DOP9+p7QgivBgGmEwwNtfBrKnJnD4xiaTE\nLxZEhEIG1fv8HfUeOuo+lLVSWtmG3981fLDZTORkxXWEDgd2uxiQYiMmRj+MIiIiIiJyYomLtTBy\nUBIjByVFjgVDISprWynxNFFS5Y3Mrvjosxo++qymy3P316fYH1ZkDkjAatHyj96mUKIHTZu3Uv7I\nU8Qm2cm86Yf8tTKPj/9bS/nuUuJiTdTUtuMeYGNsroP8D+tpbgnicli45IIs/s/XB9DmC7FhUziI\n+ORTL6GOIOKUkY7wjIhJyaQkHX0QYRjh8CG83CIcQJSUtVFa0Uabr2vFSZvVRFaGvaPgZFwkgHAP\nUPggIiIiIiInN3NMDFkDEsgakMDpYw4cb/CGl390rlXxWUk9u0rqOz3XREZqfMesCic56eHAwhlv\ni8KV9B8KJboJNnnZe8VNgMGIxefwdvy32PjWPqr2lhEKGrS0wqhh8ZRWtPH2u7UdYUQmM6ck85+C\nJu5+eC/bdzZFtsYcPSKBmVOSmT45idTkw9/MhmGwr649Uuuhc+2H7uGDxWJi0MDwcov9AUR2lp30\ntFjMCh9EREREREQiEh2xjHPEMm5YauSYrz1IWXUzxZFZFU2UepoprW4mv6Aqcl6yMzZSUDPb7STH\n7SAtOY4YLf84LhRKdFN03VJ8VfUMmncKBbP/H39/tYGqvWUEgwZOh5n2doNde1twOSws+LYbl9PC\nB/9p4KkXyyPbZI4ansDMKUnMmJzMgJSDgwjDMKirb4/UfCjumPlQUt5GS2vX7S4sZhMZA2M76j2E\nZz7kZMYx0B2L2awfAhERERERkS8i1mpmWKaLYZmuyLGQYVBd1xpe9uFpitSr+O+effx3z74uzx3k\n7lxU00lWWkI0LuOEp1Cik9pnX6DmH5twDEqk7ZpbeGq9n/LdZRiGgdVqoskbxJFgZsa4JLzNQV5Y\nVxnZMnPE0HhmTklmxuQk3ANigXD4UN+wP3xopbi8jeLSVkor2vA2dw0fYmIgM91O3ljngQAi005G\nuh2LReGDiIiIiIjIVy3GZCI9JZ70lHimjHZHjje1+Du2Jw2HFSUeL4XlTewpa4ycYzJBqsuOI86K\nK8FGYoKNRIeNxITYA18n2HAl2LDbzCq02UGhRAdfUQmFyx4kxmombemV3PXPFEp2lWLqWIZhjjHh\nHmij0uNj05bwuqPhg+OZOTU8I8IeG0NJeRtbtjUeKDpZ3kqTt1v4YIKB7ljG5jrIyYwjZ1C45kPm\nwFgVVREREREREemDnPE2xgxJYcyQlMix9kCQ8pqWTss/vNQ3+ymraebzyqbDvp7NEhMOKhw2XPE2\nEh2xkcAisVuAYbOav+rLi6o+E0rcddddbNu2DZPJxNKlSxk/fnyvvn/hldcTbPUz+Edn8+uSOXz+\nSQkAphgwAW2+EGWVPnKy7Iwe4SAlyUKjN8jWjxt56TUPDY2BLq9nMsHAtFhOGek4UPMh005Whh2b\nVeGDiIiIiIjIicxqMTN4oJPBA52RY2lpTjyeRlp9QRpb/DR4fTQ0+2ls9tPQ8V9jpz8/r2giGDIO\n8y4QF2vGlRBLYrwVV0/hRUew4UqwYTGfeJ81+0Qo8f7771NUVMSaNWvYs2cPS5cuZc2aNb3aBqsp\ngHvmCFYNvYYd75REjodC4HSYiY8z09oapLgsvANGZ+kDbIzMc0W22czOimPQQDuxsSfeDSEiIiIi\nIiJfnMlkIt5uId5uYWBK/GHPDRkGLW2BSHjRJcDw+juCDT+NzT48tS0cPr6g69KRTuFF91kZzjhr\nn9mdsU+EEvn5+Zx99tkADB8+nIaGBrxeLw6Ho9fa8PcLH8HbEmLLO5UHPdbkDdLkDZKWamPSsASy\nO9V8GJRpxx57ck+nERERERERkeMvxmTCEWfFEWclK+3w5wZDIbwt7YcJLzqCDa+P8prmw76WyRRe\nktJ9qUh6SjwzTh3YqzMu+kQoUVNTw9ixYyNfp6SkUF1d3auhxL/+XYnRETsluiwMy4nvCB/Cu11k\nZ9qJi1P4ICIiIiIiIr3PHBMTrj3hiD3iue2BEE0t3ZaM9LCUpLq+lRKPt8tzs90Ohma4DvHKx1+f\nCCW6M4zDT0pJTo7HYjm+AcHqP06lrt7PkOwEHAl9slv6pLQ055FPkoOo374Y9duxU599Meo3ERER\nOZFZLTGkuOykuOxHPNfnD9LQEg4rQiGDIQN7dxzUJz59u91uampqIl97PB7S0g49d6WuruW4vn9a\nmhObOUB6agytLa20Ht+XP2mlpTmprj58VVk5mPrti1G/HTv12Rejfjs8BTYiIiInl1ibGbctDndS\nXFTev09UYpw5cyavvfYaAAUFBbjd7l5duiEiIiIiIiIiva9PzJSYOHEiY8eO5aKLLsJkMrF8+fJo\nN0lEREREREREvmJ9IpQAuOGGG6LdBBERERERERHpRX1i+YaIiIiIiIiI9D8KJUREREREREQkKhRK\niIiIiIiIiEhUKJQQERERERERkahQKCEiIiIiIiIiUaFQQkRERERERESiQqGEiIiIiIiIiESFQgkR\nERERERERiQqFEiIiIiIiIiISFQolRERERERERCQqFEqIiIiIiIiISFSYDMMwot0IEREREREREel/\nNFNCRERERERERKJCoYSIiIiIiIiIRIVCCRERERERERGJCoUSIiIiIiIiIhIVCiVEREREREREJCoU\nSoiIiIiIiIhIVFii3YBou+uuu9i2bRsmk4mlS5cyfvz4aDcp6u69914+/PBDAoEAP/vZzxg3bhw3\n3XQTwWCQtLQ07rvvPmw2Gy+//DJPPvkkMTExXHjhhVxwwQW0t7ezZMkSysvLMZvN3H333WRnZ0f7\nknpNW1sb3/rWt1i8eDHTp09Xvx2Fl19+mcceewyLxcI111xDbm6u+u0Impubufnmm2loaKC9vZ2r\nrrqKtLQ0brvtNgByc3O5/fbbAXjsscdYv349JpOJq6++mjlz5tDU1MT1119PU1MT8fHxPPDAAyQl\nJUXxir5au3btYvHixVx66aUsXLiQioqKL32P7dy5s8f+lv5H44jo6z5umTdvXrSb1C91HgPNnz8/\n2s3pd7qPp84888xoN6nf6Wl8Nnv27Gg368Rg9GObN282fhxfCoYAAAxwSURBVPrTnxqGYRi7d+82\nLrzwwii3KPry8/ONH//4x4ZhGEZtba0xZ84cY8mSJcarr75qGIZhPPDAA8bTTz9tNDc3G/PmzTMa\nGxuN1tZW45vf/KZRV1dnrF271rjtttsMwzCMjRs3Gtdee23UriUaHnzwQWP+/PnGiy++qH47CrW1\ntca8efOMpqYmo6qqyli2bJn67SisWrXKuP/++w3DMIzKykrjnHPOMRYuXGhs27bNMAzD+MUvfmFs\n2LDBKC4uNr773e8aPp/P2Ldvn3HOOecYgUDAWLlypfGnP/3JMAzDWL16tXHvvfdG7Vq+as3NzcbC\nhQuNZcuWGatWrTIMwzgu91hP/S39j8YR0dfTuEWio/MYSHpXT+Mp6X09jc/k6PTr5Rv5+fmcffbZ\nAAwfPpyGhga8Xm+UWxVdU6ZM4Te/+Q0ALpeL1tZWNm/ezFlnnQXA1772NfLz89m2bRvjxo3D6XRi\nt9uZOHEiW7duJT8/n7lz5wIwY8YMtm7dGrVr6W179uxh9+7dkWRa/XZk+fn5TJ8+HYfDgdvt5o47\n7lC/HYXk5GTq6+sBaGxsJCkpibKysshvaPf32+bNm5k9ezY2m42UlBSysrLYvXt3l37bf+7Jymaz\n8ac//Qm32x059mXvMb/f32N/S/+jcUT09TRuCQaDUW5V/9N9DCS9q6fxlPS+7uOz5OTkKLfoxNGv\nQ4mampouN0tKSgrV1dVRbFH0mc1m4uPjAXjhhRc444wzaG1txWazAZCamkp1dTU1NTWkpKREnre/\n7zofj4mJwWQy4ff7e/9ComDFihUsWbIk8rX67chKS0tpa2vjiiuu4OKLLyY/P1/9dhS++c1vUl5e\nzty5c1m4cCE33XQTLpcr8vix9Ftqaioej6fXr6G3WCwW7HZ7l2Nf9h6rqanpsb+l/9E4Ivp6GreY\nzeYot6r/6T4Gkt7V03hKel/38dnNN98c7SadMPp9TYnODMOIdhP6jDfffJMXXniBP//5z13WZh6q\nj471+Mnmb3/7G6eddtoh6xmo3w6tvr6eRx55hPLyci655JIu165+69lLL71EZmYmjz/+ODt37uSq\nq67C6XRGHj+W/ukvfXYox+Me6+99KAfoXoiezuMW6V1HGgNJ7+g+nnr77bcxmUzRbla/0n18tnTp\nUtauXRvtZp0Q+nUo4Xa7qampiXzt8XhIS0uLYov6ho0bN/L73/+exx57DKfTSXx8PG1tbdjtdqqq\nqnC73T323WmnnYbb7aa6uprRo0fT3t6OYRiR30iezDZs2EBJSQkbNmygsrISm82mfjsKqampTJgw\nAYvFQk5ODgkJCZjNZvXbEWzdupVZs2YBMHr0aHw+H4FAIPJ4534rLCzs8Xh1dTVOpzNyrD/5sj+b\naWlpkemZQL/sQwnTOKJv6D5ukd7V0xho4MCBzJgxI9pN6zd6Gk/V1taSmpoa7ab1K93HZx6Ph2Aw\nqNlbR6FfL9+YOXMmr732GgAFBQW43W4cDkeUWxVdTU1N3HvvvfzhD3+IVOOfMWNGpJ9ef/11Zs+e\nTV5eHh9//DGNjY00NzezdetWJk+ezMyZM1m/fj0Ab7/9NtOmTYvatfSmhx56iBdffJHnnnuOCy64\ngMWLF6vfjsKsWbN47733CIVC1NXV0dLSon47CoMHD2bbtm0AlJWVkZCQwPDhw9myZQtwoN9OP/10\nNmzYgN/vp6qqCo/Hw4gRI7r02/5z+5Mve49ZrVaGDRt2UH9L/6NxRPT1NG6R3nWoMZD0np7GU6pn\n0Pt6Gp8pkDg6JqOfzzW8//772bJlCyaTieXLlzN69OhoNymq1qxZw8qVKxk6dGjk2D333MOyZcvw\n+XxkZmZy9913Y7VaWb9+PY8//jgmk4mFCxfy7W9/m2AwyLJly/j888+x2Wzcc889ZGRkRPGKet/K\nlSvJyspi1qxZ3Hzzzeq3I1i9ejUvvPACAFdeeSXjxo1Tvx1Bc3MzS5cuZd++fQQCAa699lrS0tK4\n9dZbCYVC5OXl8ctf/hKAVatW8corr2AymbjuuuuYPn06zc3N3HjjjdTX1+NyubjvvvtO2t8ubt++\nnRUrVlBWVobFYiE9PZ3777+fJUuWfKl7bPfu3T32t/Q/GkdEV0/jlhUrVpCZmRnFVvVf+8dA2hK0\n93UfT+0v6Cy9p6fx2fTp06PdrBNCvw8lRERERERERCQ6+vXyDRERERERERGJHoUSIiIiIiIiIhIV\nCiVEREREREREJCoUSoiIiIiIiIhIVCiUEBEREREREZGoUCghIr1q0aJFbNq06bDnvPLKK4RCocj5\nwWCwN5omIiIiX4HS0lJOPfVUFi1axKJFi7jooou4/vrraWxsPOrXONbxwPe//302b978RZorIr1M\noYSI9DkrV66MhBKrVq3CbDZHuUUiIiLyZaSkpLBq1SpWrVrF6tWrcbvd/O53vzvq52s8IHLyskS7\nASLSt2zevJmHHnqIzMxMysrKcDqd/PrXv2b9+vWsXr2auLg4UlNTufPOO3E4HIwZM4bFixezefNm\nmpubueeeexg1ahRf//rX+ctf/sLgwYMjr/nss89G3icUCrF8+XL27t2L3+8nLy+PZcuW8fDDD1NU\nVMSll17KI488wrRp0ygoKMDv9/OrX/2KyspKAoEA5513HhdffDFr165l06ZNhEIhCgsLycrKYuXK\nlZhMpij2ooiIiBzOlClTWLNmDTt37mTFihUEAgHa29u59dZbGTNmDIsWLWL06NHs2LGDJ598kjFj\nxhx2PNDa2srPf/5z6urqGDx4MD6fD4CqqipuuOEGANra2liwYAHf+973onnpItKNQgkROUhBQQEP\nPfQQ6enp3HjjjTzxxBM8//zzrFu3DofDwYoVK3jiiSe4+uqrCQaDjBw5kquvvprnn3+ehx9+mEce\neeSI79HQ0EBubi533HEHAOeeey67du3immuu4dFHH+WJJ57AYjnwV9SqVatwuVw88MADtLW18Y1v\nfIPZs2cD8NFHH7Fu3TpiY2OZO3cuO3bsYMyYMV9N54iIiMiXEgwGeeONN5g0aRI33ngjjz76KDk5\nOezcuZOlS5eydu1aAOLj43nqqae6PPdQ44FNmzZht9tZs2YNHo+Hs846C4B//OMfDBs2jNtvvx2f\nz8fzzz/f69crIoenUEJEDjJixAjS09MBmDhxIk8++SRjx47F4XAAMHXqVFavXh05f9asWZFzH3/8\n8aN6D5fLRUVFBQsWLMBms1FdXU1dXd0hz9+2bRvz588HwG63c+qpp1JQUADA+PHjsdvtAGRkZNDQ\n0HCMVywiIiJfpdraWhYtWgSEZ0tOnjyZ888/n4cffphbbrklcp7X640s4Zw4ceJBr3Oo8cCuXbuY\nNGkSAG63m2HDhgEwe/ZsnnnmGZYsWcKcOXNYsGDBV3qdInLsFEqIyEEMw+jy/36//6DHOy+P6Hx+\nT8sm2tvbDzq2bt06Pv74Y55++mksFktkgHEo3V+3cxu6rzHt3B4RERGJvv01JTpramrCarUedHw/\nq9V60LFDjQcMwyAm5kC5vP3BxvDhw1m3bh0ffPAB69ev58knn+zyixURiT4VuhSRg+zduxePxwPA\nhx9+yPnnn09BQQFerxeATZs2kZeXFzn/vffei5ybm5sLgMPhoKKiosvjne3bt4+hQ4disVjYvn07\nxcXFkfDDZDIRCAS6nJ+Xl8fGjRsBaGlpoaCggLFjxx7PyxYREZFe5HQ6GTRoEP/6178AKCwsPOIS\n0EONB4YPH85HH30EQEVFBYWFhUB4R6+PP/6YGTNmsHz5cioqKg4aY4hIdGmmhIgcZMSIETz44IMU\nFRWRmJjIZZddRkZGBpdddhk2m42BAwfyi1/8InL+J598wrPPPktDQwMrVqwA4PLLL+eWW25hyJAh\nPU6/PPfcc7niiitYuHAhEydO5PLLL+fOO+/kueeeY/bs2Zx//vldqnIvWrSIX/3qV/zgBz/A7/ez\nePFiBg0axPvvv//Vd4iIiIh8JVasWMGdd97JH//4RwKBAEuWLDns+YcaD5x33nn885//5OKLL2bQ\noEGMGzcOCI9pli9fjs1mwzAMfvKTn3SpWSUi0WcyNM9ZRDrpaaeMw8nNzaWgoED/wIuIiIiIyDHT\n8g0RERERERERiQrNlBARERERERGRqNBMCRERERERERGJCoUSIiIiIiIiIhIVCiVEREREREREJCoU\nSoiIiIiIiIhIVCiUEBEREREREZGoUCghIiIiIiIiIlHxv26rdCZoiB+tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ci1ISxxrZ7v0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "SjdQQCduZ7BV", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train_model(\n", + " learning_rate=0.00002,\n", + " steps=1000,\n", + " batch_size=5,\n", + " input_feature=\"population\"\n", + ")" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 6240d91e6e4166a401a22ed127a9497e749e82ce Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 01:21:39 +0530 Subject: [PATCH 03/11] Created using Colaboratory --- synthetic_features_and_outliers.ipynb | 1179 +++++++++++++++++++++++++ 1 file changed, 1179 insertions(+) create mode 100644 synthetic_features_and_outliers.ipynb diff --git a/synthetic_features_and_outliers.ipynb b/synthetic_features_and_outliers.ipynb new file mode 100644 index 0000000..2da9fd8 --- /dev/null +++ b/synthetic_features_and_outliers.ipynb @@ -0,0 +1,1179 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "synthetic_features_and_outliers.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "i5Ul3zf5QYvW", + "jByCP8hDRZmM", + "WvgxW0bUSC-c" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "4f3CKqFUqL2-", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Synthetic Features and Outliers" + ] + }, + { + "metadata": { + "id": "jnKgkN5fHbGy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Create a synthetic feature that is the ratio of two other features\n", + " * Use this new feature as an input to a linear regression model\n", + " * Improve the effectiveness of the model by identifying and clipping (removing) outliers out of the input data" + ] + }, + { + "metadata": { + "id": "VOpLo5dcHbG0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's revisit our model from the previous First Steps with TensorFlow exercise. \n", + "\n", + "First, we'll import the California housing data into a *pandas* `DataFrame`:" + ] + }, + { + "metadata": { + "id": "S8gm6BpqRRuh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "9D8GgUovHbG0", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "outputId": "2d5f461a-de28-4118-802b-03f241b07221" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import sklearn.metrics as metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))\n", + "california_housing_dataframe[\"median_house_value\"] /= 1000.0\n", + "california_housing_dataframe" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
5675-118.233.844.01497.0277.0542.0274.05.0321.8
2631-117.733.616.03016.0394.01172.0382.07.5315.6
597-117.032.714.03986.0675.02065.0702.05.7267.4
16723-122.939.115.01927.0427.0810.0321.01.686.5
12617-121.738.620.08627.01516.04071.01466.04.2164.1
..............................
3963-118.033.835.01153.0192.0884.0208.05.2177.4
14618-122.237.831.02424.0533.01360.0452.01.990.7
7445-118.333.934.01740.0387.01249.0375.04.2233.9
7607-118.434.142.05518.0979.01863.0957.08.6500.0
1448-117.233.416.03031.0554.01301.0518.04.1296.1
\n", + "

17000 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "5675 -118.2 33.8 44.0 1497.0 277.0 \n", + "2631 -117.7 33.6 16.0 3016.0 394.0 \n", + "597 -117.0 32.7 14.0 3986.0 675.0 \n", + "16723 -122.9 39.1 15.0 1927.0 427.0 \n", + "12617 -121.7 38.6 20.0 8627.0 1516.0 \n", + "... ... ... ... ... ... \n", + "3963 -118.0 33.8 35.0 1153.0 192.0 \n", + "14618 -122.2 37.8 31.0 2424.0 533.0 \n", + "7445 -118.3 33.9 34.0 1740.0 387.0 \n", + "7607 -118.4 34.1 42.0 5518.0 979.0 \n", + "1448 -117.2 33.4 16.0 3031.0 554.0 \n", + "\n", + " population households median_income median_house_value \n", + "5675 542.0 274.0 5.0 321.8 \n", + "2631 1172.0 382.0 7.5 315.6 \n", + "597 2065.0 702.0 5.7 267.4 \n", + "16723 810.0 321.0 1.6 86.5 \n", + "12617 4071.0 1466.0 4.2 164.1 \n", + "... ... ... ... ... \n", + "3963 884.0 208.0 5.2 177.4 \n", + "14618 1360.0 452.0 1.9 90.7 \n", + "7445 1249.0 375.0 4.2 233.9 \n", + "7607 1863.0 957.0 8.6 500.0 \n", + "1448 1301.0 518.0 4.1 296.1 \n", + "\n", + "[17000 rows x 9 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "I6kNgrwCO_ms", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we'll set up our input function, and define the function for model training:" + ] + }, + { + "metadata": { + "id": "5RpTJER9XDub", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of one feature.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(buffer_size=10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VgQPftrpHbG3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(learning_rate, steps, batch_size, input_feature):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " input_feature: A `string` specifying a column from `california_housing_dataframe`\n", + " to use as input feature.\n", + " \n", + " Returns:\n", + " A Pandas `DataFrame` containing targets and the corresponding predictions done\n", + " after training the model.\n", + " \"\"\"\n", + " \n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " my_feature = input_feature\n", + " my_feature_data = california_housing_dataframe[[my_feature]].astype('float32')\n", + " my_label = \"median_house_value\"\n", + " targets = california_housing_dataframe[my_label].astype('float32')\n", + "\n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(my_feature_data, targets, batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column(my_feature)]\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + "\n", + " # Set up to plot the state of our model's line each period.\n", + " plt.figure(figsize=(15, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Learned Line by Period\")\n", + " plt.ylabel(my_label)\n", + " plt.xlabel(my_feature)\n", + " sample = california_housing_dataframe.sample(n=300)\n", + " plt.scatter(sample[my_feature], sample[my_label])\n", + " colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)]\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " root_mean_squared_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " predictions = np.array([item['predictions'][0] for item in predictions])\n", + " \n", + " # Compute loss.\n", + " root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(predictions, targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " root_mean_squared_errors.append(root_mean_squared_error)\n", + " # Finally, track the weights and biases over time.\n", + " # Apply some math to ensure that the data and line are plotted neatly.\n", + " y_extents = np.array([0, sample[my_label].max()])\n", + " \n", + " weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0]\n", + " bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights')\n", + " \n", + " x_extents = (y_extents - bias) / weight\n", + " x_extents = np.maximum(np.minimum(x_extents,\n", + " sample[my_feature].max()),\n", + " sample[my_feature].min())\n", + " y_extents = weight * x_extents + bias\n", + " plt.plot(x_extents, y_extents, color=colors[period]) \n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.subplot(1, 2, 2)\n", + " plt.ylabel('RMSE')\n", + " plt.xlabel('Periods')\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(root_mean_squared_errors)\n", + "\n", + " # Create a table with calibration data.\n", + " calibration_data = pd.DataFrame()\n", + " calibration_data[\"predictions\"] = pd.Series(predictions)\n", + " calibration_data[\"targets\"] = pd.Series(targets)\n", + " display.display(calibration_data.describe())\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % root_mean_squared_error)\n", + " \n", + " return calibration_data" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FJ6xUNVRm-do", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Try a Synthetic Feature\n", + "\n", + "Both the `total_rooms` and `population` features count totals for a given city block.\n", + "\n", + "But what if one city block were more densely populated than another? We can explore how block density relates to median house value by creating a synthetic feature that's a ratio of `total_rooms` and `population`.\n", + "\n", + "In the cell below, create a feature called `rooms_per_person`, and use that as the `input_feature` to `train_model()`.\n", + "\n", + "What's the best performance you can get with this single feature by tweaking the learning rate? (The better the performance, the better your regression line should fit the data, and the lower\n", + "the final RMSE should be.)" + ] + }, + { + "metadata": { + "id": "isONN2XK32Wo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE**: You may find it helpful to add a few code cells below so you can try out several different learning rates and compare the results. To add a new code cell, hover your cursor directly below the center of this cell, and click **CODE**." + ] + }, + { + "metadata": { + "id": "5ihcVutnnu1D", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 969 + }, + "outputId": "49f83d04-b99a-4fe9-dd6e-c305a8c1a338" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE\n", + "#\n", + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] / california_housing_dataframe[\"population\"])\n", + "\n", + "\n", + "calibration_data = train_model(\n", + " learning_rate=0.005,\n", + " steps=5000,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\"\n", + ")" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.75\n", + " period 01 : 189.73\n", + " period 02 : 169.68\n", + " period 03 : 152.93\n", + " period 04 : 141.08\n", + " period 05 : 134.34\n", + " period 06 : 131.33\n", + " period 07 : 130.67\n", + " period 08 : 130.91\n", + " period 09 : 131.41\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 194.3 207.3\n", + "std 89.0 116.0\n", + "min 44.9 15.0\n", + "25% 159.3 119.4\n", + "50% 191.3 180.4\n", + "75% 218.4 265.0\n", + "max 4247.1 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean194.3207.3
std89.0116.0
min44.915.0
25%159.3119.4
50%191.3180.4
75%218.4265.0
max4247.1500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 131.41\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FOX2wPHv9k0nPUCAQELvCkgR\nIjWhCQqCF8VesBcQRVFAEbHA/SmiIHbv9YqiIiCCICJFASkiUgyhJhDSe3Y3u7Pz+yOyEAiQhCy7\ngfN5Hh/dmbwzZ2fW3Zkz73tejaqqKkIIIYQQQgghhBCXmNbTAQghhBBCCCGEEOLKJEkJIYQQQggh\nhBBCeIQkJYQQQgghhBBCCOERkpQQQgghhBBCCCGER0hSQgghhBBCCCGEEB4hSQkhhBBCCCGEEEJ4\nhCQlhPCg5s2bc+LECU+HcV533HEH33zzzVnL58yZw3PPPXfW8vT0dIYMGVJj+x87dizfffddtdvP\nmTOHTp06kZiYSGJiIgkJCUyZMgWLxVLlbSUmJpKVlVWlNuc6fkIIIWqH5s2b079/f9fvSP/+/Xn2\n2WcpKSm5qO1++eWXFS7/5ptvaN68OT///HO55VarlauuuopnnnnmovZbWUePHmXcuHEkJCSQkJDA\n8OHDWb169SXZd1W88847FR6TzZs306ZNG9d5O/2f2iI1NZXmzZuXu4a55ZZb2LNnT5W3NWvWLP73\nv/9Vqc13333H2LFjq7wvIapK7+kAhBCXl8jISJYtW+bpMMpJSEjg5ZdfBqC0tJTHH3+cuXPnMmHC\nhCptZ8WKFe4ITwghhJf77LPPiIqKAsp+R5544gnmz5/PE088Ua3tZWZm8v777zNq1KgK19etW5dl\ny5bRu3dv17Kff/6ZwMDAau2vOiZMmMCwYcOYN28eADt37uT222/nhx9+oG7dupcsjotRt27dWv/b\nrdPpyr2H5cuX89BDD7Fy5UqMRmOltzN+/Hh3hCdEjZCeEkJ4odLSUqZPn05CQgJ9+vRxXRAA7Nix\ngxtvvJHExEQGDRrEr7/+CpRl06+99lpmzJjBrbfeCpQ93Vm8eDHDhw/n2muv5eOPP3ZtZ+HChSQm\nJtKnTx+efPJJrFYrACkpKdx0003069eP8ePHoyhKlWJPTU2lVatWQNnTnkcffZRnn32WhIQEBg0a\nxP79+wEoKCjgqaeeIiEhgb59+/L111+fc5tJSUmMHDmS+Ph4Jk+ejKIoPProo3zwwQfl/qZr1644\nHI7zxmc0Ghk9ejQbN268YBzNmzdn/vz5JCQkoChKuZ4tn376KYMGDSIxMZEHHniAnJycGjl+Qggh\nvJvRaKRnz57s3bsXAJvNxgsvvEBCQgIDBw5k5syZru/+ffv2cfPNN5OYmMiwYcNYv349ADfffDPH\njx8nMTGR0tLSs/Zx1VVXsXnz5nK9+pYvX06PHj1cry/mWuHTTz9l6NCh9OzZk+XLl1f4PpOSkmjf\nvr3rdfv27Vm5cqUrOfP2228THx/P8OHDee+99+jTpw8AzzzzDO+8846r3emvq3INs23bNkaMGEH/\n/v0ZNWoUKSkpQFmPkccff5zevXtz6623VrvH6TfffMPDDz/M7bffzmuvvcbmzZu5+eabeeyxx1w3\n8D/88ANDhgwhMTGR2267jaNHjwJlvTAnT57MyJEjy11bATz22GN8+OGHrtd79+7l2muvxel08u9/\n/9vV8+S2224jPT29ynEPGjQIq9XKwYMHgXNfzz3zzDO88sorDB06lB9++KHceTjX59LpdPLiiy9y\n3XXXMXLkSPbt2+fa75YtW7jhhhsYNGgQAwcO5Icffqhy7EKciyQlhPBCCxYsIDk5maVLl7Js2TJW\nrlzp6sb5wgsvcPfdd7NixQruu+8+pkyZ4mqXl5dHy5Yt+c9//uNalpyczOLFi3nnnXeYPXs2iqKw\ndetW3nzzTT755BPWrFmDv78/b775JgBvvPEG3bp1Y/Xq1dx+++1s3779ot7LunXrGDNmDCtXruSa\na67hk08+AWDmzJlotVp++OEHvvrqK+bMmUNSUlKF29i8eTOfffYZK1as4Pfff+fnn39myJAh5Xpk\nrFq1igEDBqDXX7gDmN1udz1duFAcqqqycuVKdDqda9kff/zBBx984IqpXr16zJo1C6j54yeEEMK7\n5Ofns2zZMjp27AjAJ598wokTJ/j+++/59ttv2bp1K8uWLcPpdPLkk09y6623smLFCqZPn8748eMp\nKipixowZrqf4FT3tNhqNdOvWjZ9++gmAoqIi9u7d69onVP9aITc3F61Wy9KlS3n22Wf5v//7vwrf\nZ69evXj00Uf59NNPOXDgAFDWG1Kj0ZCUlMQnn3zCokWLWLRoEX/88Ueljl1lr2GKiop44IEHePLJ\nJ1m1ahW33XYbjz32GABff/01WVlZrFq1ijlz5rBhw4ZK7bsiGzduZNq0aUycOBGAPXv2cPPNNzNr\n1iyOHz/O888/z9y5c1mxYgXXXXcdL7zwgqvtL7/8wnvvvccdd9xRbpsJCQmsWbPG9XrVqlUkJiZy\n4MABVqxY4TpX/fv357fffqtW3IqiYDQaz3s9B/Dbb7+xaNEiBg4c6Fp2vs/l+vXr2bhxI99//z3/\n+c9/2Lp1q6vdq6++yqRJk1i+fDnvvvuuVw7lEbWXJCWE8EI///wzY8aMwWg04uvry7Bhw/jxxx8B\nWLx4sevH5eqrr3Y9OYCym+3+/fuX29awYcMAaN26NTabjezsbNasWcOgQYOIjIwE4F//+pdr+1u3\nbmXQoEEAtGvXjiZNmlzUe4mNjaVNmzYAtGrVirS0NNd7vO2229BqtYSEhNC/f39XDGdKSEjAx8cH\nHx8f4uPj+eOPP4iPj+fo0aOuJwWrV692xX0+RUVFfP75567jdKE4rrvuurO2sXbtWhISEggNDQXg\npptucvW8qOnjJ4QQwvPGjh1LYmIiffv2pW/fvnTt2pV7770XKPtNGDVqFHq9HrPZzNChQ9m4cSOp\nqalkZWUxePBgANq2bUu9evXYtWtXpfY5ePBgV/J99erV9O7dG6321KV7da8VHA4HN954I1B2bXD8\n+PEK9//6669zyy23sHTpUoYMGUKfPn1cNQm2bdtG586dCQ8PR6/XV7qWVGWvYbZt20ZkZKSrZ8iQ\nIUM4evQox48fZ+vWrfTv3x+9Xk9wcHC5IS5nSktLO6uexMyZM13rY2JiiImJcb02m81069YNKEtY\nXHPNNTRq1Ago+63fvHmzq0dm+/btCQkJOWuf1113HXv27CEvLw84lZQIDAwkJyeHpUuXkp+fz9ix\nYxk+fHiljttJqqqycOFCIiMjiYmJOe/1HEC3bt0wmUzltnG+z+Xvv/9OfHw8fn5+mM3mcsmM0NBQ\nFi9ezIEDB4iJiXE9jBGiJkhNCSG8UGFhIa+88gqzZ88GyrpotmvXDoClS5fy6aefUlxcjNPpRFVV\nVzudToe/v3+5bQUEBLjWQVmGvLCwkFWrVrmeLqiqit1uB8qeAJ2+jYsdv3py/ydjONmltbCwkMcf\nf9wVl81mO2fxqdN/9AMCAsjMzMRkMtG/f3+WLVvGyJEjyczMpEuXLhW2X7lyJdu2bQPAYDDQv39/\n15ONC8VRp06ds7aXk5NDRESE63VgYCDZ2dlAzR8/IYQQnneypkROTo5r6MHJnnk5OTkEBQW5/jYo\nKIjs7GxycnIICAhAo9G41p28MQ0LC7vgPnv06MHkyZPJy8vj+++/58EHH+TQoUOu9RdzreDr6wuA\nVqvF6XRWuH+TycTdd9/N3XffTUFBAStWrGDGjBlER0eTn59f7vftZJL+Qip7DVNQUEBKSkq532Oj\n0UhOTg75+fnlri0CAwMpLi6ucH8Xqilx+nk783Vubm659xgQEICqquTm5lbY9iRfX1+6d+/O2rVr\nufrqqykoKODqq69Go9EwZ84cPvzwQ1566SU6d+7MtGnTLlifQ1EU13FQVZW4uDjeeecdtFrtea/n\nzhXj+T6X+fn5Z13fnDRjxgzeffdd7rzzTsxmM08++WStKhoqvJskJYTwQhEREdx1111nZf/T09OZ\nPHkyX331FS1btuTw4cMkJCRUa/s33HADTz/99FnrAgMDKSoqcr0+WSuhpkVERDB37lyaNWt2wb/N\nz88v998nf2QHDx7MK6+8QkBAAAkJCeWeIJ3u9EKXFxPHSWFhYa4nIFDW5fTkBealOn5CCCEuvZCQ\nEMaOHcvrr7/Ou+++C5z7NyE0NJT8/HxUVXXdAObl5VX6Bt5gMNC7d28WL17MkSNH6NixY7mkhDuv\nFXJycti7d6+rp0JgYCCjRo1i/fr1JCUlERAQQGFhYbm/P+nMRMfJ3/CqxBUREUGTJk0qnL0qMDDw\nnPuuSaGhoezYscP1Oj8/H61WS3Bw8AXbJiQksGrVKnJzc0lISHCd/65du9K1a1dKSkp49dVXeeON\nNy7Y4+DMQpenO9/13Pne17k+l+c7tmFhYTz//PM8//zzbNiwgUceeYSePXvi5+dX6X0LcS4yfEMI\nL9S3b1+++uorFEVBVVXeeecd1q1bR05ODr6+vjRp0gSHw8HChQsBzvmE4Fz69OnDjz/+6PqxWb16\nNe+99x4AHTp0YNWqVQBs377dVdSppvXp04cvvvgCKOtKOmPGDHbv3l3h3/7444/YbDZKSkpYv349\nnTp1AqB79+7k5eXx2Wefleti6K44TrruuutcFxsAX3zxBfHx8cClO35CCCE8484772THjh1s2bIF\nKPtNWLRoEYqiUFJSwnfffUd8fDzR0dFERUW5Cklu376drKws2rVrh16vp6Sk5ILFmQcPHsyCBQvo\n16/fWevcea1gtVp59NFHXQUQAY4cOcLOnTvp1KkTHTt2ZOvWreTk5OBwOFi8eLHr78LDw10FElNS\nUly1laoSV/v27cnMzGTnzp2u7Tz11FOoqkqHDh1Ys2YNiqKQk5PDunXrKv2+qqJHjx5s3brVNcTk\niy++oEePHpWqXdW7d2927NjB6tWrXdcnGzZsYNq0aTidTnx9fWnRokW53grVcb7ruXM53+eyY8eO\nbNiwAYvFgsVicSVD7HY7Y8eOJSMjAygb9qPX68/5MEiIqpKeEkJ42NixY8sVUZw+fTpjxowhNTWV\nwYMHo6oqbdq04fbbb8fX15devXq56hk888wzbN++nbFjx/LWW29Vep+tW7dm3LhxjB07FqfTSWho\nKNOmTQPgqaeeYvz48Xz33Xe0b9+e7t27n3M7pw+LAGjZsmWlp5x6/PHHmTZtmuspSc+ePWnevHmF\nf9u9e3dXlerrrruOnj17AmVPDxITE/npp5+4+uqrK7Xfi4njpHbt2nHfffdxyy234HQ6admyJVOn\nTgWqdvyEEELUPv7+/tx33328+uqrLFq0iLFjx5KSksLgwYPRaDQkJiYycOBANBoNs2fPZsqUKbz9\n9tv4+Pjw5ptv4uvrS/PmzQkKCqJHjx58++231KtXr8J9denSBY1GU2HNJHdeK9SrV493332Xt956\ni+nTp6OqKv7+/kyaNMk1I8fo0aO54YYbCA4OZsCAAa7ZtUaNGsXDDz/MgAEDaNWqlev3tUWLFpWO\ny2w289Zbb/HSSy9RXFyMwWDgscceQ6PRMGrUKLZu3Uq/fv2oV68e/fr1K/d0/3Qna0qc6bXXXrvg\nMYiKimL69Ok8+OCD2O12oqOjeemllyp1/Pz9/WndujV///03HTp0AKBz5858//33JCQkYDQaCQkJ\nYcaMGQBMnDjRNYNGVZzveu5czve57N27N2vXriUxMZGwsDDi4+PZunUrBoOBkSNHuoa+arVaJk+e\njI+PT5XiFeJcNOrpg7mEEKKWWbBgAbm5ua7K2UIIIYS4tLZu3crEiRPLzTohhBCVJX1uhBC1Vk5O\nDl9++SX/+te/PB2KEEIIIYQQohokKSGEqJW++OILRowYwb333kuDBg08HY4QQgghhBCiGmT4hhBC\nCCGEEEIIITxCekoIIYQQQgghhBDCIyQpIYQQQgghhBBCCI+olVOCZmZWPO3PxQoO9iU3t8Qt276c\nyHGqPDlWlSfHqnLkOFWeHKvKq8qxCg8PcHM07iXXEJcvOQeeJ+fA8+QceJ6cg4qd7/pBekqcRq/X\neTqEWkGOU+XJsao8OVaVI8ep8uRYVZ4cq4snx9Dz5Bx4npwDz5Nz4HlyDqpOkhJCCCGEEEIIIYTw\nCElKCCGEEEIIIYQQwiMkKSGEEEIIIYQQQgiPkKSEEEIIIYQQQgghPEKSEkIIIYQQQgghhPAISUoI\nIYQQQgghhBDCIyQpIYQQQgghhBBCCI+QpIQQQgghhBBCCCE8QpISQgghhBBCCCGE8AhJSgghhBBC\nCCGEEMIjJCkhLorNrpCRW4LNrtTodrPzLfy6K43sfItrPweP5/HngSwKS0rPud8zl7srPiGEEEII\nIYQQF0/vrg1v3ryZxx57jKZNmwLQrFkz7rnnHiZOnIiiKISHh/P6669jNBpZsmQJn3zyCVqtllGj\nRnHTTTe5KyxRQxSnk4VrktmRlElOgY2QQBMdm4Uzuk8cOm31c12WUjtPv/sbRRaHa5leB4oC6ml/\np9OC04lrvyOva8KitQfLxeNrNlBsKSW3sLTG4hNCCCGEEEIIUXPclpQA6NKlC2+99Zbr9aRJkxgz\nZgwDBw5k9uzZLFq0iOHDhzN37lwWLVqEwWBg5MiR9O/fnzp16rgzNHGRFq5JZvXWVNfr7AKb6/WY\nfs2qvd0zExIAjgo6OSjO8vv9+2geKRlF5eLJLrDVeHxCCCGEEEIIIWrOJX1kvHnzZvr27QtA7969\n+e2339i5cydt27YlICAAs9nMVVddxfbt2y9lWKKKrKUOdiRlVrhuR1JWtYdKZOdbzkpIVNaxzKIL\n/xEXF59wD1vKcfbf8xQFf+47e6WlCP26hWgyjpx7A6oKBWlgybvoWDKKdOxNN+FUL/y3NWlHkp3/\nrLSiXOodX6S//i5k5tsHyMmzezqUWsNqU/jg8xS+/SHd06GIGpKVZ+GtRX9W+ndICCGEEOW5tadE\ncnIy48aNIz8/n4cffhiLxYLRaAQgNDSUzMxMsrKyCAkJcbUJCQkhM7PiG96TgoN90et1bok5PDzA\nLdu9nKRlFZNTaKtwXW6hFZ3RQHiYX5W3u+tI9W8qK3svdzHxVZd8ps7NWVrKr9c/R/7WXVgfHENE\nuxaudarTScnXn6Kk7MevZXuM5ziORWmHsVhz8fE14X8Rxzo9X2VvhopBB2FhBnRaTbW3VRVb/rLw\n35VF+PtqCQkJwGi48H694TO1flMWL81OxqmCj4+Z8HBfT4dUIW84VicdSSlh8sx9HDpaQt+e4V4V\nG3jXsapN8ktK+SM5iwWLd/HQ8DaeDkcIIYSoddyWlIiJieHhhx9m4MCBpKSkcNttt6Eop55Qq2rF\nd5HnWn663NySGovzdOHhAWRmFrpl25eT4CAfQgJM5YZHuNYFmFFK7ec9jja7Qn6RjSB/EybDqeRS\nvTqmasek1VQuMVGZ+GqSfKbO7+i0f5O/dRehNw0mIqFXuWOl++Mn9Cn7UaJbkB/WHCo6jpY8KEwH\nnQmLtg6Wah7rklIN24/5gAqtIqzkZDur+5aqZN9hBx8us2LUw91DTOTnXfhJqzd8ptb+ms2cD49g\n0Gt57tEm+JgUj8dUEW84Vidt2JLD3I+OYrU5Gdw3nNtH1/ea2KBqx0qSF+U1qRtIi4Z12LYvg7+P\n5tK8YbCnQxJCCCFqFbcN34iMjGTQoEFoNBoaNmxIWFgY+fn5WK1WANLT04mIiCAiIoKsrCxXu4yM\nDCIiItwVlqgBZqOejs3CK1zXsVlYuUTD6RSnk89XJzF5wSYmzd/E5AWb+Hx1Eoqz7AYwNMgHf5/q\n5cnqh/tX6u/OF5+4tHJXrefE/P9ijm1EzIyny63THN+PbtcvqH51cHS/ETQV9B6wW6AwDTRaCIqG\nahYwtSuw64QZh1ND8/BS6vhcmoTEoeMKHy+3otHAXUPNNIisHZ/L71dn8Ob7R/Ax65g6IY4OrQM9\nHZJXszucvP/fFGbNOwzA+HEx3HNLAwx6Kbh7udBoNIyIjwXg618OVurhihBCCCFOcdtV0ZIlS/jg\ngw8AyMzMJDs7mxtvvJGVK1cC8OOPP9KzZ0/at2/Prl27KCgooLi4mO3bt9OpUyd3hSVqyOg+cfTr\nFE1ooBmtBkIDzfTrFM3oPnHnbHOyOGZ2gQ2VU8UnF65Jdv3Nqw90OysxodfBmbekOq0GzWn7fe62\nq86Ix0SDCH9CAkyVjk9cOqXH0zn4+FQ0JiNx815B53da1//ifAwbFoFWiz3+ZjD5nL0BpwL5qYAK\ngfVBX71eNk4Vdp8wY7FraVinlKjA6tU0qarjmQrvL7GgKHDbQDNx0W4dSVcjVFXlyyVpvP95KnUC\n9Ux/uikt4iqXDLxSZWaXMnlmEt//lEmD+mZef6EF13YJuXBDUevE1g+ia5soko/ls/NAtqfDEUII\nIWoVt10J9+nThwkTJvDTTz9ht9uZOnUqLVu25Omnn2bhwoXUq1eP4cOHYzAYGD9+PHfffTcajYaH\nHnqIgADpGurtdFotY/o1Y0R8bIVDMc5ksyvnLY45Ij4Wk0GHj9HAW4/1Ijvfwt9H82jesA6hQT7Y\n7ArHMgspsjhoXDcQo0F31n4riudcQ0WE56gOB8kPPoeSm0/MzGfwbX3abChOBcP6hWhsJdi7DEUN\nrV/BBlQoSAWnHXzDwFS97wtVhaRMI3lWHWF+DhqHXJpijZl5TuYvtmIrhX8NMNG6ifcnJJxOlY8X\nHmPpqgzCQ41MmxBH3Uizp8Pyatt35fPv9w5TVKzQq2swD9zeELNJvoMuZ7cObMnmv07wzS8HaBcb\niraiHl5CCCGEOIvbrob9/f2ZN2/eWcs/+uijs5YlJiaSmJjorlCEG5kMOiKCL1zgLr/IRk4FNSig\nrPhkfpGt3HZCg3zo3vbUE3KTQUeTeuWnia1ov2fGU9n4xKVzbNZ7FG35g+AhfQkfO6LcOt32H9Fm\npqDEtMXZrHPFGyjOhNJiMPqDX8XDiCojJV/PiUID/kaFlhG2CkeI1LS8Qifzv7VQZFG58ToTV7cw\nuH+nF0lRVN75+AhrNuYQXdfM1AlxhAYbPR2W11KcZT1Kvlp6Ap1Ow7jbGjAgPgyN3KBe9hpFBdK9\nTRQb/zrB5j3pdGsd5emQhBBCiFpBBrWKSyLI30RIYMVd7IMDzAT5V7/Ipag98tdt5vhbH2FqWJ/G\nr08ud6Nm378T/d5fcQaG4eg6rOI6ErYCKMkCraFs2EY1b/SyinUczDZi1DlpW9eG7hJ8ExaVqMxf\nbCG3UGVgNyM92nl/QsJud/LGvEOs2ZhDXIwvLz/TTBIS55FfYOel2cl8ueQEYSFGXpnUjITrwiUh\ncQUZdm1jdFoNi9cfxKFcmvo0QgghRG0nSQnhVja7QsY/s6VUpTjmyXY2u1JhG1H7lGZkcfCRF9Do\ndcTOm4E+6LRhFwXZWFb+D1VnwBF/MxgqSFI5bFBwHNBAnQagrV5X+EKblj3pZbVG2ta1YdK7vyid\n1aayYImFjFyV+I4G+nby/oSExarw8psH2LQtjzYt/Jn2VFMCA7x/qImn7EsuYvy0fezcU8jV7QKZ\nNaUFcY0v3dTDwjuE1fHhuo71ycyzsn7ncU+HI4QQQtQKcoUp3KLE5uB/q5LYdzSXnAIbIYEmOjQN\no8/V9dm5P5vcQivBAWY6NgsrV3xScTpZuCaZHUmZrnYdm4Uzuk8cumrOriA8T3U6OfjIC9gzs2kw\n5XH8O7Q+tdJhx7DuCyi14ugxArVO5NkbcCqQnwKq85/CltWrZ2BzaNiVZsKpamgdaSXA5P4nmXaH\nygdLLaRmOOnSSs/Qa41e/+S8sMjB9DcPkHSgmM4dghg/rjEmo/z/VxFVVVm6KoNPvzqG6oRbR9Tj\nhoGRaLXefY6F+wzpHsOGP9NYsvEw3dvUxWSUWiJCCCHE+UhSQtSok0mFDX8ex1p66oYvu8DGT9uO\n0a9TNNPvveacxSdPztBxeruTr8f0a4aondLe/piC9Vuo068nUffdUm6d/vflaHNPYGjbDVuTDmc3\nVlUoPA5KKfiEgDmoWjEoTvjrhIlSRUuTkFLC/d3fC0dRVD5dbuXgcSftYnXc1Mfk9QmJnDw702bt\n5+gxK/HdQnj4zkbo9d4ds6eUWBTe/vAIv23LIyhQz/j7G9O2pRRqvtIF+Rnp37kBy349zOptKQzu\nFuPpkIQQQgivJo++RI06mVQ4PSFxuh1JWUBZkcqKhmycb4YOGcpROxVu3kHqa/Mw1o2k8f9NKXdT\nrj34B7rkrTiDozD3vrHiDZRkg60QDL7gX0EvikpQVdiXYaLQpiMqwE6DOu6facOpqvxvtY09hxWa\nNdRxS4LZ65+ep2faeG5mEkePWRnYJ5xH75aExLkcSbUw4cV9/LYtj1bN/Jk9pYUkJIRLYpeG+Jn1\n/LDpKMXWSzOzjxBCCFFbSVJC1JjzJRVOOjnTRkUqM0OHqF3sOXkceHAyALHvTMcQcmoGFU1eOvpN\nS1ANJuzx/0Kjr6DOQmkRFGeAVg9B0dUubHkox0BmsZ4gs0Kz8FK3z7Shqirfri1lx98OGkVpuWOw\n2etv7o8es/DsK0mcyLBx05Ao7r0l2uuTKJ6yZmM2E6fvIy3dxvDECF58qikhUgBUnMbXrGdwtxhK\nbA5+2HTU0+EIIYQQXk2SEqLGnC+pcNL5ZtqQGTouL6qqcujxaZSmpRP91P0EXNPx1Eq7Df0vX6BR\n7Di63wABIWdvQCmF/GNl/x0UXZaYqIYThXqO5hkx6520jrJyKe6zV2wq5dddduqGabnneh9MBu++\nud9/qJjnZiaRk2fnjtH1GXNjPa8fZuIJpXYncz8+wpwPjqDXaXnm4SbcPioanU6OlThbn6vqExxg\nYvXWFPIkqS6EEEKckyQlRI05X1LhpIpm2jjJZNBVaYYO4d3SF3xO3ur1BPbsQt2H7zi1QlXRb/oO\nbUEWjpbdcTZsfXZj1Qn5qaAqEFC3bOhGNeRZtPydYUSnVWlb18qlqDe3dnspq3+3Exqk4b5hZnzN\n3n3DumtvIS+8tp+SEoWH7mwkywndAAAgAElEQVTIsITqDZG53KVl2Jj08t+sXpdN44Y+vDGlBddc\nVefCDcUVy2jQcX2PGEodTpZuPOzpcIQQQgivJUkJUWPOl1QwG3X06xRdbqaNiozuE0e/TtGEBprR\naiA00FypdsK7FP2xm5SX56APC6HJnBfR6E5lA7RJv6M7vAtneAOUqwac3VhVoTANHFYw1yn7pxos\ndg27T5hRgdaRVvyM7p/6c/NuO0s3lBLop2HcDT4E+nn3V+yWHXm89O9kHA6VCQ80pl/PME+H5JU2\n78hjwrR9HDxqoX+vUF55tjl1I6Tnlriwa9vVJTLYh3U7j7umxxZCCCFEeTL7hqhRJ5MHO5KyyC20\nUsffRItGwYzp3xRfUwU1A86g02oZ068ZI+JjzzlDh/BujoIiDox7FtWhEPv2SxgjTt3oarKPod+6\nHNXki73naNBWcG6tuWDNL5v2MyCqWnUkHArsSjNjd2poGmYjxNf9U3/u3O/gqzU2fM1w/3AfQgK9\nOyGx9tds5nx4BIO+bBhChzaBng7J6yiKyn++PsbiFRkYjRoeubsRfXqEejosUYvotFpu6NWEed/t\nZvH6Q9x3fQU9w4QQQogrnCQlRI2qqaSCyaAjIrh6XfaF56iqyqEJL2E7eox6j91FUK9rTq20WTD8\n8gU4ndivHQl+FUztaS+BwhOg0UFQA9BU/cbeqcLudBMldi3RQXbqBzku4h1Vzr4jDv670opRD/cO\n8yEq1LsTEt+vzuD9z1Px89Ux+fFYWsT5ezokr5OTZ2fWvEPsSSqibqSJiQ82JqaBfCeJquvUIoKG\nm46weU86A7s2okGE/P8mhBBCnM67r5xFrXUyqSC9HK4smZ99Te6yn/Dv0oH64+87tUJV0f/6DZri\nPJS28aj1mp7V1mkvLasjARBUH3QX7llTkQNZRnItekJ8HcSGllZrG1VxKE3hk++taDRw11AzDSO9\n9zOvqipfLknj/c9TqROoZ/rTTSUhUYFdewsZP3Uve5KK6NapDm+80EISEqLatBoNI+JjUYFvfjng\n6XCEEEIIryM9JYQQNaJkz36OTJmNLjiI2LnT0ehPfb3o9mxEl7oPZ1QTlHa9z26sqhSkJoPTAX4R\nYKzejXJqvp5jBQb8jE5aRdrcPvXn8SyFD5ZYcChwx2AzcdHe+5WqqiofLTzG0h8zCA81Mm1CHHUj\nzZ4Oy6s4nSrf/pDO598cR6OFu26OZkj/cJmJRFy0No1DaNagDjsPZLM/NY+m0VIkVQghhDhJekoI\nIS6aUlxC8v3PoNpKafLvKZjqR7nWadIPo9uxCtUnAPu1N4G2gq+donTsJYVgCgDf6o3Zzy7RkZxl\nxKBTaRNlRe/mb7fMPCfvLbZiscHN/U20buK9CQlFUXn7o6Ms/TGD6LpmXnm2mSQkzlBY5GDGWwf4\nz9fHCa5jYPrTzRg6IEISEqJGaDQaRsbHAvD12gOoqvsL7wohhBC1hfdeRQshao0jz72G9cARIu8b\nQ/CAXqdWWIowrP8SAHvPUeBTQQ8Iaz5YctCZfFAC6lWrsGVxqYY96SY0GmgTZcXH4N4L/rxCJ/O/\ntVBYonJDvJGrW1RvqMmlYLc7mf3eYTZtyyMuxpfnn4gjMEC++k+XfKiY1989REZWKe1bBfD4fTHU\nCfTecypqp7joIDrEhfFHcha7DubQLlaKpgohhBAgSQkhxEXK/HIZWV8uw699Kxo8+8ipFU4nhg1f\nobEU4rhqAGpkzNmN7VYoOA4aLYENmpJbUPWilKX/zLShODW0jLASZHbvTBtFFpX3FlvILVRJ7Grk\n2vZGt+7vYlisCq/OPcjO3YW0aeHPpEdi8fXx3poXl5qqqqxcm8UH/0tFUVRGXR/FqOvrotNK7wjh\nHjf2asLO5Cy+/uUAbZqEoJWeOEIIIYQkJYQQ1WfZf5gjk2aiC/Ajdt4MtMZTT5d1u35Ge+IgSnRz\nlFY9zm7sVCA/BVAhMBq9yQcorNL+FSf8dcKM1aGlUXApkQHKxb2hC7DaVBZ8ZyE9V6VXBwP9Onvv\n0/TCIgfT3zxA0oFiOncIYvy4xpiMMmLvJKtN4d1PjrJuUy7+fjqeuC+Gq9pWMCOMEDUoOsKfrq0j\n+W13Or/vzeCaVpGeDkkIIYTwOElKCCGqxWmxkvzAJJwWK3HzZ2JuFO1apzmejO7PX1D96uDoPuLs\nqT1VFQpSwWkH37CyWhJVpKqQlGmiwKojwt9BTLD9Yt/SedkdKh8us5Ca4aRzKz3X9zR6bb2BnDw7\n02bt5+gxK726BvPIXTHo9d4Zqyekpll5be5BUo5badrYl6cebEJ4qPf2eBGXl2E9m7BlbwbfrjvI\n1c3D0eskWSiEEOLKJkkJIUS1HJ32byx79hNx2whChvY7taI4H8OGr0CrxR5/M5h8zm5cnAmlxWD0\nA7/w6u0/z0B6kZ4Ak0LzcPfOtKEoKp/+YOXAMSdtY3Xc1MfktQmJ9EwbU2clcyLDxsA+4dwzJhqt\nDEdw2bAlh7kfHcVqczK4bzi3j66Pwd1VUYU4TUQdH+I71GPN9mNs+DON6zrW93RIQgghhEfJlZgQ\nospylq4m49Ov8WnVlIZTnji1wqlgWP8lGlsJjk4DUUMruNi2FUJJFmgNEBhdrcKWGUU6DuUYMemd\ntImy4c4HjU5VZeFqG3sOKTRroOPWBLPX1hxIOWbh2VeSOJFh46YhUdx7iyQkTrI7nLz/3xRmzTsM\nwPhxMdxzSwNJSAiPGNo9BqNBy5KNh7DZ3TvsTAghhPB2cjUmhKgS65FUDk14Ca2Pmbh3X0Hrc2pq\nSd32H9FmHkWJaYuzWZezGztsUHAM0EBQA9BWvehigVXLvgwTOo1K2ygrJr37ZtpQVZXFv5Sy7W8H\njaK03DHY7LXDIPYfKubZmUnk5Nm5Y3R9xtxYz2t7c1xqmdmlTJ6ZxPc/ZdKgvpnXX2jBtV1CPB2W\nuIIF+Zvo36kBeUWlrNmW6ulwhBBCCI+SpISocTa7QkZuiTz9uQw5S+0cGPcsSmExMTOfwadpjGud\n9uge9Ht/xRkYhqPrsLN7QDidkJ8KqhMC64LBTFVZHRr+OmHCqUKrSBv+JvdO/bliUykb/7RTN1TL\nPdf7YDJ6503+rr2FvPDafkpKFB66syHDEqR43knbd+Xz5NS9JB0soVfXYF6b3JzoulX/7AlR0wZe\n0xA/s57lm45QYnVvTRwhhBDCm0lNCVFjFKeThWuS2ZGUSU6BjZBAEx2bhTO6Txw6reS/LgcpM+ZQ\nvHMPYaOGEHbTkFMrCnPQ//oNqs6Ao9fNYDCVb6iqUHgcFBv4hIC5TpX37XDCX2kmShUtsaE2Qv3c\nm/T6ZXspq3+3Exqk4b7hZnzN3pmQ2LIjjzfePYSqwvgHGtO9U7CnQ/IKilPlg/8e5uOFR9DpNIy7\nrQED4sOk94jwGr5mAwO7NmLR2gOs2HKUG3vFejokIYQQwiMkKSFqzMI1yazeeqobanaBzfV6TL9m\nngpL1JDcH9eR/t7nmGMb0ejliadWKHYM675AY7dh734janAFT+kt2WArAIMP+Ff9Kb6qwt50E0Wl\nOuoG2okOclzEO7mwzbvtLNlQSqCfhvuH+xDo551JtbW/ZTPngyMY9FqeebgJHdoEejokr5BfYOff\n7x1m555CIsKMTHywCbExvp4OS4iz9L06mlVbU/jx9xT6XhVNkL/pwo2EEEKIy4x3XmmLWsdmV9iR\nlFnhuh1JWTKUo5azHTvBwSemoTEZiZs/E53fqRs8/e/L0eakocRdjTO249mNS4uhKAO0+moXtjyY\nYyC7RE8dH4WmYaVunWlj534HX62x4WuG+4ebCQ3yzq/J5T9l8OaCI/iYdUydECcJiX/sSy5i/LR9\n7NxTSPfOIbzxQgtJSAivZTLouL5HY0rtTpb9esTT4QghhBAe4Z1X26LWyS+ykVNgq3BdbqGV/KKK\n1wnvpzocHHjwOZTcfBq9OB7fVk1d67QH/0C3fyvO4CgcnQef3Vixl9WRAAiKBp2hyvtPK9CTkmfE\nx+CkdaQVd04m8fdRB/9dacWoh3uH+RAVWvVCnO6mqipfLkljwX9TqROoZ/rTTWkR5+/psDxOVVWW\n/JjO5FeTyM2zc+uIesyc3IYAf+kQKLxbz3Z1iajjw9o/jpGZZ/F0OEIIIcQlJ0kJUSOC/E2EBFbc\n7TQ4wCxdUmuxY7Peo+j3nYQM7Uf4rTe6lmvy0tFvWoJqMGHvdTPoz0g4qE7ITwFVAf8oMFT9aXWu\nRUtSphG9tmymDYMbcwSH0xQ+XmZFo4G7hphpGOmdCYm3PzjA/xanER5qZMakZsQ0kF4AJRaF1985\nxEdfHMPfT8/UCU0ZMThKpkMVtYJep2V4r8YoTpXF6w95OhwhhBDikpOkhKgRJoOOjs3CK1zXsVkY\nJnfeTQq3yf9lE8ff+ghTw/rEvD75VJFAuw39uoVoFDuO7jdAYGj5hqoKhSfAYQVzEPhUvfhiSamG\n3SfKZkloE2XF1+i+mTaOZym8v8SCQ4GxA83ENfC+p+uKovL2R0dZ+N0xouuaeeXZZtSNlFkkDqeU\nMOHFffy2LY9WzfyZPaUFbVsGeDosIaqkS8tIGkT4s2n3CVIzizwdjhBCCHFJSVJC1JjRfeLo1yma\n0EAzWg2EBprp1yma0X3iPB2aqIbSjCwOPPICGr2O2Hkz0Af+M0RAVdFvWoI2PxNHi244G7Y+u7E1\nr+wfvRkC6la5joRdgV0nzDicGpqFl1LHx1kD76hiWXlO3ltsxWKD0f1MtGnifQkJu93JG/MOsWZD\nNs3j/Hn5mWaEBhs9HZbHrdmQzdPT/yYt3cbwxAhefKopIXJcRC2k1Wi4sVcTVOCbXw56OhwhhBDi\nkvK+q29Ra+m0Wsb0a8aI+Fjyi2wE+Zukh0QtpSoKBx9+AUdWDg2nPoF/h1OJB+3+39Ed/hNnWAOU\nqwac3dheAoVpoNGV1ZHQVC336VRh9wkzFruWBnVKqRvovpk28ouczPvWQmGJyvB4I51aVr3mhbtZ\nrAqvzj3Izt2FtG7uz+wX21NSfGWPO7eVOnn/8xRWr8vG10fHk/c34pqrqj7NrBDepF1sKE2jg/gj\nOYvkY/nE1Q/ydEhCCCHEJSE9JUSNMxl0RAT7SkKiFkt7+2MKNmyhTr+eRN47xrVck30M/e/LUU2+\n2HuNBt0ZeU2n47TClvVBV7Wn1qoK+zON5Fl1hPk5aBJiv9i3ck5FFpX531rILVRJuMZIz/be94S9\nqNjB1FnJ7NxdSOcOQTz/RBx+vld2Ljktw8azM/5m9bpsGjf04Y0pLSQhIS4LGo2GEfGxAHy99gCq\n6r4ha0IIIYQ3ubKvboUQZyncvIPU1+djrBtJ4/+bcqqOhM2CYd1CcDqx9xgJfmc8xVPVsoSE0wF+\nEWCs+owQqfl60goN+BsVWkbY3Db1p9Wm8v53FtJzVXp1MNC/i/f1kMjJs/Pi7P0cSbXSq2swj9wV\ng15/ZRdu3Lwjj7feP0KJRaF/r1DuHtMAk1Fy6+Ly0axBHdrFhvLngWx2H8qhTZPQCzcSQgghajlJ\nSgghXOzZeSQ/+BxoNMS+8zKGkH+eQKsq+l+/QVOUi6NtPGr9pmc3LkovG7phCgDfql9IH89VOZBt\nxKhz0qauDZ2b7jXtDpUPl1lJyXDSuaWeoT2NpxIvXiI908bUWcmcyLAxsE8494yJvqJnklAUlf98\nfYzFKzIwGjU8cncj+vSQmzVxebqxVxP+PJDN178cpFXjELRe9v0khBBC1DRJSgghgLLpJg8+MRV7\nWgbRzzxIwDUdXOt0ezaiS92HM6oJSrs+Zze25oMlp2y4RkC9Khe2LLJp2XFIRauBNlE2zHr3dFtW\nFJXPfrBy4JhC21gdN/U1ed0Ff8oxC1NnJZOTZ+emIVH864a6Xpc0uZRy8uzMmneIPUlF1I00MfHB\nxjINqrisNYwM4JpWkWzek87WfRl0aRnp6ZCEEEIIt5J+r8Kr2OwKGbkl2OyKp0O54px477/kr95A\nYK9rqPvwHa7lmowj6HasQvUJwH7tTaA942vDYYWC42UFLYMagLZqtURsDg27TphQnNAywkag2T0z\nbThVlYWrbew+pNC0gY5bE8zovKz3wf5DxTz3ahI5eXbuGF2fMTfWu6ITErv2FjJ+6l72JBXRrVMd\n3nihhSQkxBVheM/G6LQavl1/CMXpvtmHhBBCCG8gPSWEV1CcThauSWZHUiY5BTZCAk10bBbO6D5x\n6M68CRY1rmjHX6TOeBtDeCixc15Ec/KYW4rK6kgA9p6jwOeMOhFOBfJTABUC64PeVKX9Kk7464QJ\nm0NLmwYawozuSUapqsriX0rZ9reDRlFa7hxs9rr6DLv2FjLjrQOUljp56M6G9OsZ5umQPMbpVPn2\nh3Q+/+Y4Gi3cdXM0Q/qHX9EJGnFliQz2pWf7eqzdcYyNu07Qq309T4ckhBBCuI0kJYRXWLgmmdVb\nU12vswtsrtdj+jXzVFhXBEd+IQceeA7VodBkzosYwv8Zq+90YtiwCI2lEEfH/qiRMeUbqioUHAPF\nXlZDwhRYpf2qKuzLMFFo0xHpb6dFPSNZWTXzns60cnMpG/+0ExWq5Z7rfTAZvevmdsuOPN549xCq\nCuMfaEz3TsGeDsljCoscvPn+Ybb9WUBosIEJDzSmRVzVi6YKUdsN7R7Dr7vS+G7DIbq2isQoM1oJ\nIYS4TMkjaOFxNrvCjqTMCtftSMqSoRxupKoqh56aju3oMeo9dhdBva5xrdPtWov2xAGU+s1RWl97\nduOSLCgtAoNf2WwbVXQ410BmsZ4gs0LziFK3PQX/ZUcpq7bYCQ3UcP9wM75m70pIrP0tm1fnHkSr\n1fDcY7FXdEIi+VAxE17cx7Y/C2jfOoBZU1pIQkJcsYIDTPTtFE1uoY012495OhwhhBDCbSQpITwu\nv8hGToGtwnW5hVbyiypeJy5e5mdfk7vsJwKu6Uj9J+91LdccT0b351pUvzo4etxYVi/idLZCKM4E\nrQGC6le5sGV6oY4juUbMeieto6y4q7TD5t12lqwvJdBPw/03+BDo511fect/yuDNBUfwMeuYOiGO\nDm2q1tvkcqGqKit+zmTSK0lkZpcy+voonn8ijqBA75uqVYhLaVDXRviY9CzfdIQSq8PT4QghhBBu\n4V1X6OKKFORvIiSw4loEwQFmgvyrVqdAVE7J7iSOTJmNPjiI2LnT0ej/Gc1VnI9hw1eg1WLvNRpM\nZxQWdJSWDdtAA0HRoK3aKLB8q5Z9GSZ0WpW2da0Y3dQj+c9kB1+tseFrhvuHmwkN8p6vO1VV+Wpp\nGgv+m0qdQD3Tn256xfYIsNoU/m/BYeZ/loLZpGXy47HcPLye1xUhFcIT/MwGBl7TkCKLnZVbjno6\nHCGEEMItvOcqXVyxTAYdHZuFV7iuY7MwTDKOtsYpxSUk3/8Mqq2UJm9Ow1jvnynnnAqG9V+isZXg\n6DQQNSy6fEPVWVbYUnVCQF0w+FRpvxa7hr/SzKhA60gbfkb3TP2ZdNTBf1ZYMerh3ut9iAr1ns+Q\nqqp8tPAYn3+bRniokZcnNbtiZ5RITbMy8aW/Wbcpl6aNfZk9tSVXtQ3ydFhCeJX+nRoQ6Gfkx99T\nKCgu9XQ4QgghRI2TQpfCK4zuEweU1ZDILbQSHGCmY7Mw13JRsw4/+yrWg0eJuv8W6vQ7VS9Ct2MV\n2syjKDFtcTbrUr6RqpZN/anYwCcYfOpUaZ8OJ+xKM2N3amgaZiPE1z21Qo6kKXz0vRWNBu4cYqZh\nlPckJBRF5Z1PjrJmQzbRdc1MGR9HWIjR02F5xIYtOcz96ChWm5PBfcO5fXR9DHrJk4syr732Gtu2\nbcPhcHD//ffTtm1bJk6ciKIohIeH8/rrr2M0GlmyZAmffPIJWq2WUaNGcdNNN3k69BpnMuoY2j2G\n/65KYtmvhxnTX4o/CyGEuLxIUkJ4BZ1Wy5h+zRgRH0t+kY0gf5P0kHCTzC+Xkf3V9/h1aEX0pIdd\ny7VH96DfsxFnYBiOrsPOrhNhyQFbQVnvCP+oKu3TqcKedBMldi31g+zUD3LP2Oi0LIUFSyw4HHD7\nIDNNG3jPV5zd7mT2e4fZtC2P2Ea+vPBkHIEB3hPfpWJ3OPlk4TG+/ykTs0nL+HExXNslxNNhCS+y\nadMm9u/fz8KFC8nNzeWGG26gW7dujBkzhoEDBzJ79mwWLVrE8OHDmTt3LosWLcJgMDBy5Ej69+9P\nnTpVS5jWBvEd6rFyy1HW/nGMAV0aEBZUtV5qQgghhDeTx1LCq5gMOiKCfSUh4SaW/Yc4MmkmukB/\n4ua9gtb4TyHBwhz0v36LqjPg6HUzGM6o41FaDEXpZfUjAqOrXNjyQLaRnBI9IT4OYkPd0/04K8/J\n/MVWLDYY3c9Em1jvueG3WBVefusAm7bl0bq5Py9ObHpFJiQys0uZPDOJ73/KpEF9M6+/0EISEuIs\nnTt35s033wQgMDAQi8XC5s2b6du3LwC9e/fmt99+Y+fOnbRt25aAgADMZjNXXXUV27dv92TobqPX\nabmhZxMcisp3Gw55OhwhhBCiRklSQogrhNNiJXncJJwWK43fmIypYf2yFYodw7ov0NitOK4Zihoc\nWb6hYof81LL/DowGXdVmRDiWr+dYvgFfg5NWkTa3zLSRX+Rk/mILhSUqw3sZ6dTSe2ZtKCp2MHVW\nMjt3F9K5QxDPPxGHr8+Vl3TbviufJ6fuJelgCb26BvPa5OZE1zV7OizhhXQ6Hb6+ZXVWFi1aRK9e\nvbBYLBiNZUOdQkNDyczMJCsri5CQU0mtkJAQMjMrnl76cnBNq0jqh/vx618nOJZV7OlwhBBCiBpz\n5T2qE+IKdWTqbCx7k4m4fSQhQ/q5lut//wFtThpK3NU4YzuWb+QqbKmUDdkwVq0gY06Jlv1ZRgz/\nzLShd8O9eLFFZf5iKzkFKgOuMdKzg/fUaMjNtzNt1n6OpFrp1TWYR+6KQa+/smaVUJwqXy5J46ul\nJ9DpNIy7rQED4sPQVLG3jbjyrF69mkWLFvHhhx8yYMAA13JVrbhA7rmWnyk42Be9O76MgPDwALds\n96S7hrbhpQ83s3zzUZ69o8uFG1yB3H0OxIXJOfA8OQeeJ+egaiQpIWqUza5ITQgvlL1kFZmffYNP\nq6Y0nPKEa7n24E50+3/HGRyFo/PgsxsWngCHFcxBZcUtq6C4VMPudDMaoE1dKz6Gmp9pw1qqsmCJ\nhfQcJz07GBjQxXt6SGRk2ZjyRjInMmwM7BPOPWOi0V5h01zmF9j593uH2bmnkIgwIxMfbEJszJU5\n04iomvXr1zNv3jzef/99AgIC8PX1xWq1YjabSU9PJyIigoiICLKyslxtMjIy6NChwwW3nZtb4paY\nw8MDyMwsdMu2T4oJ9yW2fiC/7Upj885jNKkX6Nb91TaX4hyI85Nz4HlyDjxPzkHFzpeokeEbokYo\nTiefr05i8oJNTJq/ickLNvH56iQUp9PToV3xrIdTOfzUdLS+PmV1JMxl9SI0eRnoN32HajCV1ZHQ\nn3FDb8kFax7ozWXTf1bhyXapUjbThuLU0CLCRpC55j8HdofKR8uspKQ76dxSz/U9jV7z9D3lmIVJ\nM5I4kWFj5JAo7r3lyktI7EsuYvy0fezcU0in9oG88UILSUiISiksLOS1115j/vz5rqKV3bt3Z+XK\nlQD8+OOP9OzZk/bt27Nr1y4KCgooLi5m+/btdOrUyZOhu51Go2FkfCwAX/9ywMPRCCGEEDVDekqI\nGrFwTTKrt6a6XmcX2Fyvx/ST6cs8xWkrJXncJJTCYpq8NQ2fuJiyFXYb+nVfoFHs2HvcjBoYWr6h\n3VLWS0KjhaDosn9Xdp8q7D5hxurQ0ii4lMiAmp/6U3GqfLbCSnKqQttYHTf1NaH1koTE/kPFvPTv\nZAqLFO4YVZ9hiZEXbnQZUVWVpasy+PSrY6hOuHVEPW4YGHnFJWVE9S1fvpzc3Fwef/xx17KZM2cy\nefJkFi5cSL169Rg+fDgGg4Hx48dz9913o9FoeOihhwgIuPy7yzZvGEybJiH8dTCH3YdzaB0jxWKF\nEELUbpKUEBfNZlfYkVRxcbEdSVmMiI+VoRwekjJjDiV/7iVs1FDCRv4zPENV0W9agjY/E0eLbjgb\ntS7fyOkoqyOBCoENQFf5Gg2qCn9nGsm36gj3cxATbK+5N3MyPFVl4Wobuw8qNG2g45YEMzovueH9\na18hL795gNJSJw/d2ZB+PcM8HdIlVWJRePvDI/y2LY86gXrGj2tMmxaX/02iqFmjR49m9OjRZy3/\n6KOPzlqWmJhIYmLipQjLq4zoFctfB3P4eu0BWt0e7DW9xIQQQojqkKSEuGj5RTZyCmwVrssttJJf\nZCMiWLptX2q5K38hfcH/MMfF0GjGRNdy7f7f0R3+E2dYA5SrBpRvpKplM204HeAXDib/Ku3zaJ6B\n9EIDASaFFhG2qs4cekGqqvLdulK27XPQMFLLnYPNGLykcOSWHXm88e4hVBXGP9CY7p2qVoOjtjuc\nUsJr7xwiLd1Gq2b+jB/XmJA63lPjQ4jLSaOoALq0jGDL3gy2/Z1JpxYRng5JCCGEqDapKSEuWpC/\nieCAip+m1/E3EeRvusQRCVvqCQ4+MQ2N2UTcvFfQ+foAoMk+hv735agmX+y9RoHujLxkcQbYS8AY\nAL5Ve8qfWaTjUI4Rk85JmygbOjd8u6zcXMqGnXaiQrTcO8wHk9E7EhJrf8vm1bkH0Wo1PPtY7BWX\nkFizIZunp/9NWrqN4YkRvPhUU0lICOFmN/Rsglaj4dv1B6V+kxBCiFpNkhLiopkMOvx8Kk5K+PkY\n3D50w2ZXyMgtwWav+doFtZHqcHDgoedQ8gpoNO1JfFs1LVths2BYtxCcTuw9RoJfnfINrflQkl02\nXCOwXpUKWxbatOzNMKHVqLSpa8Okr/mZNtbtKGXVFjuhgRruG27G1+wdCYnlP2Xw5oIj+Jh1TJ0Q\nR8c2V041fFupk7kfH0PfIM4AACAASURBVGHOh0fQ67U883ATbh8VjU7nHedGiMtZZIgv17arS1p2\nCb/uOuHpcIQQQohqk+Eb4qLZ7Aol1oprB5RY7djsilsSE4rTycI1yexIyiSnwEZIoImOzcIZ3ScO\nnfbKzbelvjGfot93EjK0P+G33li2UFXR//oNmqJcHG3jUes3Ld/IYYXC4/8UtmzA/7N33+FRlWkD\nh38zZ2pIJr0nhBSDNJGiojRFUFAUFAUXKygron6r4rqra69rdxWxYF0VAVkpYgEREVBEuiAlpEAK\nCel96jnn+2MoAUMyhJlMyntfl5dJ5pR3UoY5z3kKWs9/XnaXhh2FRhQVesfYCTJ6/47db7ucLFnr\nwNJFw+1XmQkO9P/PV1VVFi4rYu6iQkIsOh6bmUa3xM5TplRYbOfF2dnk5FpJ7mrm7zNSiI0SWVGC\n0JquHNyN9X8UseTnHAb1ikavE/2bBEEQhPbH/+/shXav6Z4SdqpqG3/sdB2Z+FFWbUfl2MSP+asy\nfXK+9qBq9a8UvvERxqR4ur34r6PNz6RdPyPl70GJSUE+a8TxOymyu4+EqkJQHOg8v7CUFdhRaMQh\na0kNdxDRxfvZKjuyXCz4wY7ZCH8dbyI82P8vW6qq8tH8AuYuKiQy3MAzD6Z3qoDEhi2V3P/EHnJy\nrYwaFs5zD3UXAQlB8IMwi4mL+ydQXm3nx60H/b0cQRAEQWgR/7+7F9q94EAjYZbGL0hCg0xHe0p4\ns8yiuYkfnbGUw1FcStb/PYpGJ5H69nPoLO4mlZriA0hbv0c1B+Ecci00zCJRVaguANkBAeFg8rz0\nQFVhd7GRWodEbJCThGCXt58SGbkuPvnWhl4H08aZiQ33/11AWVaZ9WEuS1cUEx9r5NkH04mLNvl7\nWa1CllU+XpDPv2dl45IV7r41iRm3JGE0iH9KBMFfLjs/CbNRYtkv+7Havf86LAiCIAi+Jso3hNNm\n1Ev0S49k5ab8Pz3WLz0CnaRh7soMr5ZZiIkfx1Nlmey7HsFVWk7XJ+4jsG9P9wPWWncfCcA5dCKY\nT5imUV8KjlrQd4Eup9a9PbtcT2mdjhCTzBmRDq9P2jhQKPPh1zYApow1kRTj/4CE06nwyrv7+XVz\nJalJATx6XxqWoM7xMlpe6eTlt3PYlVFLbLSRB2Ykd6rsEEFoqwLNekaf25VFa3NYsTGPcUOS/b0k\nQRAEQTglPr29ZbPZGDlyJF9++SWFhYXceOONTJ48mb/97W84HA4Ali5dyoQJE7j22mv54osvfLkc\nwYcmjUhj5MAEwi0mtBoIt5gYOTCBSSPSfFJm4Wl2Rmdx8I0PqV63kZBLhhF921/cX1QU9OsWorHW\nIJ99MWp0t+N3stdAXQlo9RAcf0qNLQurdeRVGjDrFXrF2NB6OSBRWCozZ6kVpwtuHGMiPdH/F/42\nu8wzr2fx6+ZKenUP5MkHzug0AYkdu2uY+fhudmXUcv7AEF569EwRkBCENmTUOYlYAvR891su1fUO\nfy9HEARBEE6JT4MSb731FsHBwQC8/vrrTJ48mblz55KUlMTChQupr6/nzTff5KOPPuKTTz7h448/\nprKy0pdLEnxE0mqZPDKdp6edx7N/HcTT085j8sh0XLLqkzKLI9kZjemXHuHziR9tSfWvWyh46V0M\nsdEkv/LosT4SO1ajLcpCju+O3GvI8Tu5HO6yDTQQnABazy+uK61aMkoM6LQqfWJsePtbXVqp8M5i\nG1Y7TBpppE+q/y/8a+tcPP5SJtv/qGFgXwuP3JtGgLnj/44pisr/vi7i8Zf2UVPnYup1Cfz9juRO\n8dzbs7yDVuYvKaSmVqTydxYmg46xF3TD7pD5Zv0Bfy9HEARBEE6Jz4ISWVlZZGZmcuGFFwKwYcMG\nLr74YgAuuugi1q9fz/bt2+nTpw9BQUGYTCb69+/Pli1bfLUkoRUY9RJRoQFHgwKelFm0VFPZGZ2F\ns6ySrDsfBo2G1NnPoA9zj/nUHMxE+n01apcQXIOvdk/VOEJVoCrP/f+gWNCbPT5fvVPDziJ3/4Re\nMTYCDN4d/VlVq/DOYis19Srjhhk4p4feq8dviYoqJw8/n8HerDqGDQrlH3emdooeCjW1Lp59PYtP\n/3eQ0BA9T/8jnSsuiToa9BLanrp6Fx98ns+9j+1m3pJCDhRY/b0koRUNPzuecIuJVVsKKKuy+Xs5\ngiAIguAxn92CfP7553nkkUdYvHgxAFarFYPBAEB4eDglJSWUlpYSFhZ2dJ+wsDBKShq/q95QaGgA\nOh+NvYqMDPLJcTsaT79PQcFmIkPNFFf8+c1xRIiZ1G7hmAwt/zX8218GYHO4qKi2E2oxntaxfMVX\nv1OqorDptvtxFhbT/en7SBk7FAClppK6XxaiSlq6jJuKFBN9bB9VpaYgC7tsxxQaRVBcosfnc7hU\nNu9UcSkwIEVDSlQXrz6fmnqF979yUF6tMv6iQK4e4f+/xcJDNh55YRcFhTauuiyOe29PQ+vtWpUW\n8PXr1J59NTzy7wwKi22cc3Yoj95/JqHBBp+e01c6w2u6LKt8vbKIdz/JobLKSXysibtvTWXIeRGn\ndJzO8L3qyPQ6LeOHJvP+17tZ8nMOUy/r4e8lCYIgCIJHfHIFt3jxYs4++2wSExu/4FHVxu+unuzr\nJ6qoqG/x2poSGRlESUmNT47dkZzq9+ms1PBGm2CelRpOTZUVb3zHdeC1Y3mTL3+nCt/+lOJvVmMZ\ndh6WW65zn0eR0a/4AK21Due5YymXQqHh+evLoLYMdGZsunBsHq5NUWFHoYkam0RisIMgjRMP4oce\nszlU3l/moKDExdC+eob0Vv3+t5hXYOXxlzMpr3RyzdgYJl8VTVlZrV/XBL79nVJVleWrS3n/83xk\nWWXSlTFce2UsLoedkhLfjPb1pc7wmr57Xy3vzc0j+4AVk1HLDRPiuPKSKPR67Sk991P5XongRdt1\nfq8Yvt2Qy887ChlzXldiw70bPBYEQRAEX/BJUGL16tXk5eWxevVqioqKMBgMBAQEYLPZMJlMHDp0\niKioKKKioigtLT26X3FxMWeffbYvliT40ZFyiq0ZpVTU2AgNMtEvPaJTlVl4W+3WneQ/+wb6yHBS\n33gSzeEpJtLW79GW5CJ364OSfu7xOznqoPYQaCV3HwkP0/BVFfaVGqiwSoQHuEgJd3r1uThdKh8u\ns5GdLzOwh44rhxn8XiKwL6eOp17NpKZW5paJ8YwbHd38Tu2czS7z1se5rPm1gqBAiXumdaN/n2B/\nL0s4ibIKB//9ooA1v1YAMPz8MG66Jo6w0PaZ0SJ4h1ar4ephKcz6cgeL1mQz46o+/l6SIAiCIDTL\nJ0GJ11577ejHb7zxBvHx8WzdupXly5czbtw4VqxYwdChQ+nbty8PP/ww1dXVSJLEli1beOihh3yx\nJMGPjjTBnDA8lapaO8GBxk7ViNLbXFU1ZE5/CFVWSJn1FPrIcAC0ubvQ7foZxRKBa9C444MOshOq\nDmerWBJA8rxXQ0GVjsJqPV0MMj2i7V4d/SkrKp9+ZyMzX2ZADyMTL9ah9XNAYueeGp75TxYOh8Kd\nt3Rl5LBTS4Fvj/ILbbzwZjZ5B22kpwRw/x0pRIaLi9u2yOFUWLq8mP99XYTNrpCaFMBt1ydwZlpg\n8zsLnUK/MyJIibOwaW8JOYXVJMda/L0kQRAEQWhSqxXg33333fzjH/9g/vz5xMXFMX78ePR6PTNn\nzuTWW29Fo9Fw5513EhQk0kI7qiNNMIWWU1WVnPufwpF3kLh7biV46OFsiJpydL8sQpX0uIZdB/oG\nI1FVxR2QUGUIjAaD5+m8ZXUSmWUGDJJCn1g7Oi/2d1RUlQUr7ezMlklLkLjj2lCqKv1bHrFxWyUv\nzs5BVWHmHclcMDDUr+tpDWs3lDP7o1xsdoXLL47k5knx6L35gxa8QlVVfttaxYfz8zlU4sASpOPW\nyQmMGBzeJvqcCG2HRqNhwvBUXvx8K1/+lMXM6/r5e0mCIAiC0CSfByXuvvvuox9/+OGHf3p89OjR\njB492tfLEIQOofi//6Pi61UEndeP+Pumub8oO9GvmYfGacN5wdWooSeUGtQeApcVjMFgDvvzQU+i\n1q5h1yEjWg30jrFj0nlv0oaqqixd42DTHhddo7VMGWvCoPfvhdXq9WW88f4B9Dot/7grhX69O/bd\nRadT4aMFBXzzQwkmo5aZ07sx5FzPfz+E1pNXYOX9efls/6MGSYIrLoli0pUxdAloe419hbahR1Io\nvbqF8sf+CnbvL6dHN/G3LQiCILRd4h2NILQTdTv3kvv4K+hCg0l982k0Ovefr27jt2jLC5HTBqCk\nnnBHzFrh/k9nBEusx30kHC7YUWRCVjX0jLZhMSlefS4rNjhYu91JTJiW2640YzL4NyDxzQ8lzPks\njwCzxCP3pnb4VPiSMgcvzs5mX049ifEmHpiRQkKsyd/LEk5QV+9i3uJCvllVgqJAv94WplwXT2Kc\n52N8hc7r6uGp/LF/Ewt/yubhpFC/9+oRBEEQhJMRQQlBaAfkunqypj+IaneQMucFDHHubAht9nak\nfRtRQmNwnXP58Ts5rVBTBBotBCe6/+/JuRTYWWTC7tLSLcxBVKDs1eeyZpuDFb85CbNo+Ot4E13M\n/nujrKoqC5cVMXdRISEWHY/el0Zy145dYrRlRxWvvruf2jqZYYNCuePmrpiMosdLWyIrKj+sLeOz\n/x2kutZFTJSRqdfFM7BvsLiwFDyWHGthYPdINu0tYeu+UvqnR/p7SYIgCILQKBGUEIQ2TlVV9v/z\nOWzZucTcfgMhI4cAoKksRvfrElS90d1HQtegeaXigqo8QD3c2NKzpoWqCntLjFTbJaICXSSFeHfS\nxsbdTpascRAUoOH28WaCA/3Xu0BVVT6aX8DSFcVEhht4/P404qI7braArKgsWFrIF18VIUkapt+U\nyCXDI8RFbhuze18t732WR3bun0d8CsKpumpYCpszSvhyTTZnp0WI/iOCIAhCmySCEoLQxpUuWEbZ\n/76lS79eJDx4p/uLTju6NfPQyE6cg69DtYQf20FVoarAHZjoEglGz5vHHqjQU1yrw2KS6R7p3Ukb\nO7JcLFhpx2yE268yERHiv4ssWVZ56+NcflhXRnyskcdnnkFEWMedNlFV7eTVd/ezfVcNUREGHpiR\nQmq3jp0R0t6Uljv4ZKEY8Sl4V2x4F4b0iWXt74Ws/6OIwX1i/b0kQRAEQfgTEZQQWszulMWITx+z\n7svhwEPPI1kCSXvrWbQGPagqug1L0VaV4DrzfJSkXsfvVFcMzjowBEKA5+MsD9VI7K8wYNIp9I62\nIXkxZpCR5+KTb23odDBtnJnYcP/9vjidCq+8u59fN1eSmhTAI/emEmzxfERqe7Mns5aX3sqhrMLJ\nwL4W/u/WbgQFipf+tsLhVFjy3SH+9/Uh7A4x4lPwvnFDkln/xyEWr83h3B7RYrqOIAiC0OaId6ad\n1OkEFGRZYe7KDLZmlFBebSfMYqRfeiSTRqQhacWbHW9RrDYyb/8nitVG2n/+jbFrPADafZuQcn5H\niUhE7n/J8TvZqqG+zF2uYYn3uLFllU3LnhIjkkalT6wNgxdfGQ4UyXy4zAbAlLEmkmL8F5Cw2WX+\nPSub7X/U0Kt7IA/9XyoB5o4ZUFNVla++L+a/XxSgKnDDhDiuGhMt0rfbiKMjPuflc6jUQbBFx23X\nixGfgveFWUyM6B/Pio15rN5WwKiBif5ekiAIgiAcRwQlOhlZUZi/KvO0AgoffPUHKzflH/28rNp+\n9PPJI9N9su7O6MBjL2Pdk0XUzdcSNnYkAJqyg+g2fo1qMOMcNhGkBn/CLjvUFLgDEcEJoPXsYtvm\n1LCzyISqQs9YO10M3hv9WVgmM2eJFacLbr7MRHqi/15yautcPP1aFnuz6hjY18L9d6RgNHTMIFq9\nVWbWBwdYv7mSEIuOmdOT6X2m52U8gm/lFVh5//N8tu9yj/i88pIoJl4ZS5eAjhkgE/zvsvOTWLP9\nIMt+2c+QPrGYjeLtnyAIgtB2iH+VOpn5qzJPK6Bgd8r8urOw0ce2ZpQyYXjqnzIvRJnHqStbsoKS\nTxcR0DOdro/d4/6iw4p+zTw0ioxzyDXQJeTYDorsbmypHm5sqfOsYaNLcY/+dMoa0iLshAd4b9JG\nWZXCu4ttWO0waaSRPqn+e7mpqHLyxMv7OJBvY9igUO6e2g2drmPejd6fV88Ls3MoPGSnZ3ogM6cn\nExbScctT2pPGRnxO/UuCGMcq+JwlwMCl53Zlybocvt+Ux5WDk/29JEEQBEE4SgQlOhG7U2ZrRkmj\nj50soHCiqlo7JZXWRh+rqLFRUmnFoNMSHGhEJ2lOOyujM7Ltzyfn78+gDTCT+vazaE1Gdx+JXxah\nqa3A1Xs4SnyDAJKqQvVBkB0QEA4mi0fnUVXYdchInUNLnMVJQrDLa8+hqlbh7UVWqutUxg01cG5P\n/10UF5faeeylTIqK7Yy+KIJp1yd22PT4VevKeOeTXBxOlavGRHP91XFIUsd8ru2JrKj8sKaMz74U\nIz4F/7nknER+2JzP8t9yGdE/gUCzCFYKgiAIbYMISnQiVbV2yqvtjT5WUWOjqtZOVGjTHfmDA41E\nhpgprvhzYMKgl3htwTYqahyEWYwEmPTkFdcefVyUeTRPsTvInP4gSm0dKW88iTmtGwDS7l+Q8naj\nRCcj9x1x/E71peCoAX0AdIny+FxZZQbK63WEml2kRTi89hzqbSrvLrZRXq0y6lw9w/r5b3pAXoGV\nx1/OpLzSyTVjY5h8VWyHvAi0OxTem5vHyjVlBJgl7puexHn9QprfUfC5XRm1vD/32IjPG6+J44pR\nYsSn0PrMRh1jL+jGvB/28c36A0wckebvJQmCIAgCIIISnUpwoJEwi5GyRgIToUEmggONzR7DqJcY\n1DuWpWuz//SYzSFjc7jT/8uq7Y2eBzzPyuiM8p55g/rfdxMx8QoiJlwGgKb4ANKWFajmQJxDr4WG\nWSb2WqgrAa3O3UfCwwvug1U68qv0BOgVekXb8VbigN2hMmeJlaJyhSF99Vx6nv8CEpk5dTz5aiY1\ntTK3TIxn3Ohov63FlwqL7bw4O5ucXCspXc38fUYKMVHN/y0LvlVa7uC/XxSwdoN7xOeF54dxoxjx\nKfjZRf3iWLExl5Wb8xk5MIEwiygdEgRBEPxPBCU6EaNeol965HE9JY7olx7hcZBg6hW9qLc62JpR\nSkWNjdAgI3U2JzaH4tH+nmZldLZeFBXLf+LQe59jSutG0rMPuL9oq0O/dgGg4hw6EcwNmhXKDqjO\nBzQQnOgOTHigvF5LRqkBndY9aUPnpW+t06Xy4dc2cg8pDDxTx7hhBr9lJezcU8Mz/8nC4VC485au\njBzm+WjU9mTDlkpef/8A9VaZUcPCue36RAziDrxfnTjiM61bALdOFiM+hbZBr5MYNySZD7/Zw9Kf\n93PLmDP9vSRBEARBEEGJzmbS4XTNYwEFE/3SI45+3ROSpGXyyHQmDE+lqtaOwynz2AcbPd6/uawM\nb0wIaW/s+UVk3/sEGpORtHf+jRRgBkVBv+4LNPXVuPqNQo1u0JhMVQ43tlQgKBb0Zo/OU+fQ8Mch\nExqgd4wNs947kzZkReXT72zsy5PplSIxcaQRrZ8CEhu3VfLi7BxUFWbekcwFA0P9sg5fkmWVT/5X\nwJLvijEYNNx9axIjBof7e1mdmqqqbNhSxUfzxYhPoW27oHcM323IZd3vhYw+rysxYU3fIBAEQRAE\nXxNBiU5G0h4fUDidLASjXiIqNAC7Uz5pWUhjmsvKON0JIe2N4nSRNeMh5Mpqur3wEAE93AEiacdq\ntIVZyPHdkXsNObaDqkJ1oXsEqCkUzJ5ddDtl2FFoQlY0nBllJ8TsWWZLs+tXVRb8YGdntkxagsSN\no01IfroIW72+jDfeP4Bep+Ufd6XQr7dnTT/bk9JyO4++uI9dGbXERht5YEYy3RLFRYU/nTjic9yl\nUVx7hRjxKbRNklbLVUNTmL14J4vWZHPH+N7+XpIgCILQyYmgRCd1JKDgrWOdrCykoXBL81kZnkwI\nATpUWUfBS+9Qu+l3wq4cReT1VwGgOZiJ9Ptq1C4huAZfDZoGGSLWCrBXgc4MQZ71SVBU2FlkwubS\n0jXEQUyQdyZtqKrK0rUONu12kRitZcpYE3o/jdr85ocS5nyWR4BZ4pF7UztkuvyO3TW8Nmc/5ZVO\nzh8Ywl1Tkggwt/+/gfaqts7FvCWFfCtGfArtzIDukXSLCWLjnmIuK6ohKSao+Z0EQRAEwUdEUELw\nikkj0pBlhZ+2HURppCIgNNDIo7cMJCig6SZvTU0IKa+28enyvezJregwZR2Vq9dT+MaHGLslkPzi\nv9w9GOqr0a9bCFotzmGTwNggeOSog9oi0EiHG1s2/7xVFTJKDFTZJCK6uEgOc3pt/St+c7J2m5Po\nMC3TrjRjMrR+QEJVVRYuK2LuokKCLToeuy+N5K4dK3NAUVQWfXuIuV8eRKPVMPW6BMaOiuyQk0Ta\ng8ZHfCYwsK9F/EyEdkGj0TDhwlRenreN//2UxX2Tzvb3kgRBEIROTAQlBK+QtFouPbcrq7cebPTx\nqjo7Vrur2aBEUxNCjAaJn3cWHf28vZd1OA6Vkn33o2j0OlLfehYpKBAUGf2a+WjsdTjPuRw1IuHY\nDrLzcGNL3AEJybMZ83mVeopq9AQaZXpE2T0d0NGsNdscrNjgIMyi4fbxJrqY/ROQ+Gh+AUtXFBMZ\nbuDx+9OIi+5Yd6lral385739bP69mvBQPU8/2IuYiPYZhOsIxIhPoaPo1S2MHkmh7MwpZ29uBd27\ndrz+O4IgCEL7IN5FCV5zJKDQmFMZOdovPfKUzrs1oxS7Uz6lffxNlWWy734EV1kFiY/8jcC+PQGQ\ntn6PtiQXOak3SvfzGuygQlU+KDIERoOhi0fnKamTyC7XY5AU+sTYkbz0F79pt5MlaxwEBWi4fbyZ\n4MDWfymRFZU3P8xl6Ypi4mONPPtgeocLSGTm1HH/k3vY/Hs1fXsF8fJjZ9KnR7C/l9UplZY7eOWd\nHP717wyyc61ceEEYbz7bk6svixEBCaHdOlISufCnLFTVO42PBUEQBOFUiUwJwWu8NXK0sQkh3buG\nsL5BlkRDno4YbUsOvv4h1es2EnLJMKJvvQ4Abd5udLt+RrGE4zp/PMelNNQWgcsKRguYwzw6R41d\ny+5DRrQa6BNrx6jzzhvOnVku5q+0YzbC7eNNRIS0/gWZ06nw6rv7Wb+5ktSkAB65N5Vgi2eZI+2B\nqqosX13K+5/nI8sqk66M4dorY/3WQLQza2zE523XJ9I91bPAoCC0ZSlxFvqnR7Ilo4RtmaX0O+PU\nbgoIgiAIgjeIoITgVV4ZOdrIhBCAvbkVjZZ1eJqF0VZU/7qFgpffxRAXTcqrj7lr0GvK0f38Jaqk\nxzXsOtA3eD7WSndzS8kIljg8qb+wuzTsKDSiqNArxk6Q0TuTNvblufjvtzZ0Oph2pZnYiNZvsmiz\nyzw/K5ttf9TQMz2Qf/0ttUM1e7TZZd76OJc1v1YQFChxz7Ru9O8jsiNaW2MjPqddn8hFg8PEiE+h\nQ7lqWApb95Xw5U/Z9EkJR+etlDpBEARB8JAISghe5c2Row15KwvD35xlFWTN+BdoNKTOfgZdaDDI\nTncfCacN5wVXoYbGNNjBCjWF7oaWwYkeNbaUFdhRZMQha0kJcxDZxTulLblFMh8sswEw5XITSbGt\n/z2vrXPx9GtZ7M2qY2BfC/ffkYLR0HHeQOcX2njhzWzyDtpITwng/jtSiAxvug+L4H1ixKfQmcRH\ndGHoWXGs2X6QVZvzueTcrv5ekiAIgtDJiKCE4BOnM3JUVhTmr8pka0bJcVM2rrkwBVlR2ZZRSmWd\nnbAWZGH4k6ooZN/zOM6iEhIevIugc93dznWbvkVbfhA5tT9Kav9jOygudx8JVLAkgK75i1NVhd3F\nRmrtEjFBThJDvDNpo7BMZs5SK04X3DTGRHrX1n/pqKhy8uTLmezPtzJsUCh3T+2Gzk/jR31h7YZy\nZn+Ui82ucPnISG6eGI9e13ECLu1BYyM+b/1LAvFixKfQwU0YnsLmvcUsWpfDOT2iCQ1qP9mHgiAI\nQvsnghJCmzN/VeZxGRFHpmzsza2k3uakotZOSKCBs1LD2tU40KJ351L1w89Yhg8i9s6bANDmbEfK\n2IgSGo3r3LHHNlZVqCoAxQldIsHo2Qz5nHI9pXU6gk0y6ZEOr0zaKKtSeHexjXobTBpp5Ky01n/Z\nKC618/hLmRQW2xl9UQTTrk/sMCn0TqfCRwsK+OaHEkxGLfdPT2bwuaILfms6ccRnbJSRKWLEp9CJ\nBAUYuObCVD7+bi/zV+1j+rje/l6SIAiC0ImIoMRhdqdMYWkdslNu9VIAu1P2aqmDt87VmutqeM6t\nGSWNPpZXXHv048paBz9uPYgkadvFONDaLTvJf/YN9FHhpL7+BBqtFk1VMbpfl6LqjbiG/QV0DRo1\n1hWDsw4MgRAQ4dE5imp05FYaMOsVesfY8MY1e3WdwjuLrFTXqVw51MC5PVu/mWRegZXHX86kvNLJ\nhMujuf7quA5zoVhcauelt3LYl1NPYryJB2akkCDuyreqE0d83nRtHGNHihGfQucztG8ca38v5Lfd\nxQztW06vbp41VRYEQRCE09XpgxLHlQrU2AkLcpcKtMYd+JOVKfji3Kdyrqa2dcmqT4M3VbV2yhtp\nZnkyWzNKmTA8tU33lHBV1ZB5x0OoskLqrKfRR4aD04Hup3loXA6cwyahWsKP7WCrhvoykPRgifeo\nsWWlVcveYgM6rUrvGBve+HbU21TeWWyjrFpl1Ll6hvdr/d4GmTl1PPlqJjW1MjdPjGf86OhWX4Ov\nbNlRxavv7qe2Tmb4+WFMvykRk7Ht/h53NKXlDv77RQFrN1QAcOEFYdx4TTxhIR1niosgnAqtRsON\nl3TnyY838umKdoeHRgAAIABJREFUDJ6ceq4oIRMEQRBaRacPSpysVADw+R341jz3yc4lKyo3XtLd\no22PlE94GrzxNNOi4XbBgUZCgwyU1zg8el5tfRyoqqrk3P8UjryDxN1zG5Yh54CqotuwFG1VCa4z\nB6EkNUiTddmh5iCgcTe21DZ/kWp1athZZEIFekXb6GI4/dGfdofKnCVWisoUhvTVc+l5rR+Q2Lmn\nhmdfz8JuV7jzlq6MHOZZxkhbJysq85cUsnBZEZKkYfpNiVwyPKLDZH+0dX8a8ZkcwG2TxYhPQQBI\nigliRP8Efticz/Lfchl7QTd/L0kQBEHoBDp1UKKpUgFf34FvzXM3da6fthaAqjJ5VDqSVutx+URT\nARRPszJOtl16Uii/7jzk0XNr6+NAD7w9l4qvVxE0qD/x990GgHbfJqSc7SgRCcj9Lz22sSJDVR6o\nijtDQtd8Gr9Thh2FJlyKhvRIO6EBpz/60+VS+fBrG7mHFAacqWPcMEOrXzBv3FbJi7NzUFWYeUcy\nFwzsGD0WqqqdvPrufrbvqiEqwsADM1JI7dY2A2odzZERnx/Oz6e41EGIGPEpCI26amgKG/cUs+yX\n/QzqGU1EiNnfSxIEQRA6uE6dl9dUqcCRO/Ad4dxNnUtR4cetB5m/KrPZbRuzNaMUu/P4kZNHMi3K\nqu2oHAtgHDlHc9sZdBo8HZPelseB1u3cy+77n0MXGkzqm0+j0enQlB1Et/EbVIMZ57BJIB2OC6qq\nO0NCdoA5DEzBzR5fUWHXIRP1Ti0JwU7iLK7TXrOsqHy63Ma+PJleyRKTLjaibeWAxOr1Zfx7VjYa\nLTz0t9QOE5DYk1nLzCf2sH1XDQP7Wnjp0TNFQKKV5BZYefylTJ5/M5uyCgfjRkfx5nO9uHhouAhI\nCMIJAkw6Jl2UhsOlMHflPn8vRxAEQegEOnWmRHCgkTCLkbJGLsJ9fQe+Nc/d1LmOOJKd4cm2DZ1Y\nPuFpBkhT2/22qwT5JDf8TQYJh1MmtI2PA5Vr68ia/iCKw0na+09giI0ChxX9mnloFBfOIX+BLiHH\ndqgvA3sN6AMg0LO+CZmlBiqsEmEBLlLDPSt3aYqiqnzxg50dWTKp8RI3jjEhSa17wfbNDyXM+SyP\nALPEw/ek0uOMwFY9vy+oqspX3xfz3y8KUBW4YUIcV42JFhfDraC61sl7c/OOjvjs38fC1OvEiE9B\naM6gXtGs2X6QbZmlbNtXytlndIzyOUEQBKFt6tRBCaNeol965HH9E47w9R341jx3U+c6omFwoblt\nGzoxgOJJBkhUaECT29kccqNfNxkknv3rIBxOuVUngpwqVVXZ/89/Y8vOJeW+qYRcPMTdR+KXRWhq\nK3D1HoYS36DkxV7rnrah1UFwgkeNLfOrdBys1tPFoNAz2n7aoz9VVeWrtQ427naRGKVl6hUm9LrW\nu2hWVZWP5x9gzmd5BFt0PHZfGsld238WQb1VZtYHB1i/uZIQi46Z05PpfaZn412FlpMVlZVrSvl8\nUSFVNe4Rn1P/ksDAvs1nIAmCABqNhhsu7c7jH/zG3JUZ9OgW2mb/zRUEQRDav04dlACO3mnfmlFK\nRY2tVe/At+a5J41IQ1ZUftpagNJIH8SGwYUj59+y1z2RRKuh0X3gzwEUTzNATjUjA8DhlHE45Uab\nWvpjfOnJlM7/irIvv6VL/950f+peyqrsSLt/QcrbjRKdjNx3xLGNZQdUF+BubJngDkw0o6xeIrPU\ngF5S6BNjwxvN0b//zcmabU6iw7TcNs6MydDKAYkFBSxZXkxkuIHH708jLrr938nen1fPC7NzKDxk\np2d6IDOnJ4vJDq1gV0Yt783NIyfXitksiRGfgtBC8RFduOScRL7dkMvX6w9w9bAUfy9JEARB6KA6\nfVBC0mqZPDKdCcNTkQx6ZIez1S5qG57b1xfUklbrnrKhqvy49eCfHm8YXDiyLllR+XFL40GMcEvj\nARRPM0Ca2s5kkBrNlmisrKU1x6p6wpqRzYF/vYBkCSTtrWfRGgxoivchbVmBag7EOfTaYxM1VAWq\n8kGVISjWXbrRjFq7hl1FRjQa6BNjx6Q//Ukba7c7WL7BQZhFw+3jTQSaWy8gISsqb32Uyw/rykhK\nCODhe1KICGv9SR/etmpdGe98kovDqXLVmGiuvzqu1UthOpvScgcfLyhg3W/HRnzec3s6qnz6pU2C\n0FldMbgbv+46xHcbDnBB7xhiwtp/BpsgCILQ9nT6oMQRRr1EZEQXSkpq/HLu1hppOXlUOpKkbTY7\nw+6U+T2ztNFjhAebePTmgQQFNH7x6GkGyMm2U1WVHzYX/Om4jZW1+HOk64nkehuZ0x9EsdpIe/15\njIlxKPW16NfOB1ScQyaC+XDqvqpCTSG4bGAKAXPzzRwdLthZZEJWNfSMtmExnf6kjU27nSz+yUFQ\ngIbbx5sJDmy9QI7TqfDqu/tZv7mS1KQAXnumLy6H75rLtga7Q+G9uXmsXFNGgFnivulJnNcvpPkd\nhRazOxSWLm98xGdEmJGSEhGUEISWMhl0/OXiM5i9eCefrdjLfZPOFuOLBUEQBK8TQYlOxtPsjJJK\n68l7Q1S7e0NY7a5G9/f0HCfbTlYUNBqNR4ETf410bUzuYy9j3ZNF1C3XEnb5xaAoWL+di6a+GtfZ\nI1Fjko9tbK0AW5V77GdQTLPHlhXYeciEzaWlW6iDqMDG+26cip1ZLuavtGM2wl/Hm4gIab2AhM0u\n8/ysbLb9UUPP9ED+9bdUQoMNlJS036BEYbGdF2dnk5NrJaWrmb/PSCEmqu2Oq23vVFXl1y2VfDS/\nQIz4FAQfGtA9kt4pYezMLmfT3hLOOTPK30sSBEEQOhgRlOikTpadcaQcYsveYk5WGGA0SPxn4e/N\nlks0do7Gej+cuJ2nQQ1Pm2q2hrLFyyn5bBEBvdLp+ug9AEg7f0I+sBc5Ph2599BjGzvrobYINBIE\nJ4Km6WCAqsLeEiPVNomoQBdJoc7TXm9mnotPvrOhk+C2K83ERbRe8Ka2zsXTr2WxN6uOAWdZ+PuM\nFIyG9l3vv2FLJa+/f4B6q8yoYeHcdn0iBtHDwGcO5Ft5//N8duyuQZJg3OgoJl4RS4BZNOITBG/T\naDRcPyqdR977jc9XZtA7OQyzUbx9FARBELxH/KsiHOfEcojGWO0yVrv7Tr2n5RIt6f3QXFmLP0e6\nNmTLySPngWfRBphJffs5tCYjmsIspO0/ogkKxTV4wrHAg+x095EAd2NLqfnGhwcq9RTX6rAYZbpH\nnv6kjdwimQ+W2VBVuOUKE91iW+9CrqLKyZMvZ7I/38qwQaHcPbUbulac8uFtLpfKp18WsOS7YgwG\nDXffmsSIweH+XlaHVVvnYt7iQr79UYz4FITWFB0awGWDurL05/0s/TmHSSPO8PeSBEEQhA5EBCWE\no5oqhwAICzJQb5cbbUJ5snKJI5kRyzfm8eOWY30iThbMOJUpGv4c6XqEYne4+0jU1pEy6ynMqUlQ\nX41+7Reg1RIw9hZsusOBFVWF6nxQXBAYDYYuzR6/uFZif7kBo06hd4wN6TRvvheVycxZasXhgpvG\nmOjetfVeAopL7Tz+UiaFxXZGXxTBtOsT23WafXmFg5ff2c+ujFpio438484UkhLM/l5Wh3RkxOdn\nXx6kplYmNtrI1OvEiE9BaE2XDUpi/R9FfL8xn8G9Y0mICvT3kgRBEIQOQgQlhKOaKofQADdd2p3/\nLNzR6OMnlks0zIwoq3aPFW3MkWCGTtK0aIqGP0e6AuQ98wb1O/YQMekKIq4eA4qMfu0CNPY6nOdc\njhSbBEeap9YeAqcVjBYwhzV77Gqblj3FRiSNSp8YG4bT/Gstq1J4Z7GNehtMvNjIWWmt9+efd9DK\nEy9nUlbhZMLl7mkU7blZ2o7dNbz8Tg5V1S7OHxjCXVOSROmAjzQc8WkyasWIT0HwE4Ne4vpR6bz2\nxe98smIv/7y+f7t+HRcEQRDaDhGUEI5qqhwizGIiOS7Y43KJE8tAGhsrCseCGSs357doikZrjlU9\nUcW3qzn03ueYzkgm6ZkH3OvZuhJt8QHkpF4o3c87trG1EqzlIBkhKI7majBsTg07iowoqnv0Z6Dx\n9EZ/VtcpvLPISnWdypVDDJzXq/myEW/JzKnjyVczqamVuXliPONHR7faub1NUVQWfXuIuV8eRKOF\nqdclMHZUpHhj7gMnjvi8aHAYN0yIJyyk9X53BUE43lmpEfRPj2RLRgm/7CxicJ9Yfy9JEARB6ABE\nUEI4qqlyiO5dQzB4WC7RXBlIQ6FBJsxG3WlP0WjNsaoA9vwismc+icZkJO2d55ACzGjzdqPbtQ4l\nKBzXoPHHAg9Oq3v8p0br7iPRROYHgEuBHUVGnLKWtHA74V1Ob9JGvU3l3cU2yqpVRp6jZ3j/xke5\n+sLOPTU8+3oWdrvCjFu6MmpYRKud29tqal385739bP69mvBQPfffkcyZaSJ92dvsDoUl3x3if98U\n4XCopCUHMG1yIumpzZc7CYLge3+5+Ax25pSx4MdMzj4jgi4mESgUBEEQTo8ISgjHaVgOUV5tw2hw\nBwPW7yxib24Ffc+IYOyQZNb/XnjScommykBO1C89Aqvd1WamaHhCcbrImvEQcmU13V78FwFnpkFN\nBbpfvkSVdLiGXwcGd+M9xeU63NhSBUsC6JpuvqmqsPuQkTqHRJzFSXyw67TWaneovLfUSmGZwuCz\n9Iwe1HoBiY3bKnlxdg6qCjPvSOaCgaGtdm5vy8yp48W3ciguddC3VxD3TutGsEW8EfemxkZ83n5D\nPBdeIEZ8CkJbEh5s4srBySxcncWXa7K58ZLu/l6SIAiC0M6JoIRwnIblEJ8u38vPO4uOPlZWbWfV\n5gKuHJrC09POa7Rcwu6UcTjlk5Z5aDWgAmENghkuWfXaFI1TaZTZUgUvvk3tpt8JG3cJkZPHg+xE\nv2YeGocN5/lXoYbGuDdUVaoLMkFxQkAEGIOaPXZ2mZ6yeh2hZpm0CMdpTdpwuVQ++trGgSKFAd11\njB9uaLUyg5/Wl/P6+/vR6TQ8eFcq/XpbWuW83qaqKstXl/L+5/nIssqkK2O49spYJHGR7FUNR3zq\nJI0Y8SkIbdwl5yTy845CVm8pYEifWJJj2+drvCAIgtA2nFJQIiMjg9zcXEaOHEl1dTUWi/hHqCPb\nk1vR6Nd/3VnImHMTj8teOHHkp9HQeInC8LPjuPTcrscFDSQtpz1FoyUjR1uicvV6Cmd9hLFbAskv\nPIRGo0G36Tu05QeRU/ujpPU/tnFdCc76KjAEQpfIZo99sFpHXpWBAL1Cz2jbSZuDekJWVD5dbiMj\nT6ZnssSkkUa0rRSQ+OaHEuZ8lkeAWeLhe1LpcUb7LHGw2WXe+jiXNb9WEBQocc+0bvTvI6Y9eFNN\nrYt5Swr57vCIzwFnWZhyXQLxMWLEpyC0ZTpJyw2XdOfFz7fy6Yq9/OvGgSKjSRAEQWgxj4MSH330\nEcuWLcPhcDBy5Ehmz56NxWJhxowZvlyf4CdNlWCUVlr/VFJxYmNLm0MBwKjX4nAqhAYZ6d/95EGC\n052iceL5PW2UeSoch0rJvvtRNHodaW8/hxQUiDZnO1LGbygh0bjOvfzYxvZqqC9FqzeiWOKbbWxZ\nYdWyr8SATqvSJ9bG6SR5KKrKF6vs7MiSSY3XctMYE5Lk+zeLqqqycFkRcxcVEmzR8dh9aSR3bTtl\nN6civ9DGC29mk3fQRnpKAPffkUJkeOuVvnR0sqLy/U+lzF0kRnwKQnvVIymUQT2j+XXXIX7afpCL\n+sX7e0mCIAhCO+VxUGLZsmUsWLCAm2++GYAHHniA6667TgQl2pFTKW1oahJHRIj5uJIKu1Nmy97i\nRo/jdLmDE83dpD+dKRpNNdb0tFFmc1RZJuuuh3GVVdD1yfvpclYPNFXF6H5diqo3uvtI6A5ftLrs\nUH0Q0BDcNZ2KmqYbVdY7NPxR5L4z3DvGhlnf8kkbqqry1VoHG3e5SIzSMnWsGb2udQISHy8oYMny\nYiLDDTx+fxpx0e3zbvfaDeXM/igXm13h8pGR3DwxHr1OjJ/0lj/21vDe3Hz25x0Z8RnP2FGR4nss\nCO3QxBFpbM8q5cufshjQPRJLgAjeCoIgCKfO46BEly5d0Da4w63Vao/7XGi7WlLa0NQkjkG9Y49e\n5MuKwqfL91Je42j0OEdGgfoic+GIprI6vNUo8+B/PqDm502EXDqc6FsngdOB7qd5aFwOnMMmoVoO\nT5VQZKjKA1UBSzw6UwDU1Jz0uE4ZdhSZcCkaukfaCTErp7XOlRudrNnmJDpUw23jzJiMvg9IyIrK\n2x/nsnJtGfGxRh6feQYRYe3vjanTqfDRggK++aEEk1HL/dOTGXxu+23O2daIEZ+C0PGEBBoZPzSF\nz1fuY+GPWUy9vIe/lyQIgiC0Qx4HJbp27cqsWbOorq5mxYoVfPPNN6SmpvpybcJpaJgV8b+fslpU\n2nCykoqpV/SivLwOcJdNNGyG2ZyGmQsN16iTNC3uCdFUVsepNspsTPX6zRS8MgdDfAwprzyKBtD9\nthRtVQmu7oNQknq7N1RVqDkIsgPMYWBqOhVdUeGPIhNWp5auIQ5iLac3aWPddgff/eogNEjDX8eb\nCTT7PiDhdCq8+u5+1m+uJCXJzKP3prXLqRTFpXZeeiuHfTn1JMabeGBGCgmx7TPTo62xOxQWf3eI\nLw+P+DwjOYDbxIhPQegwRvSP5+ffC1m3o5ChfWM5IyHE30sSBEEQ2hmPgxKPPvoo//3vf4mOjmbp\n0qUMGDCA66+/3pdrE1rgxKyI0CAD9fbGyweaK204WUmFJLmDBE2VTZxMRY2N8mobP24tOC4AEWDS\nk1dce3S7U8msaCqrw9NGmSfjLKsg686HQaMhdfYz6EKD0e7bhJS9HSU8AXnApcc2ri8Dew3oAyAw\nusnjqipklBiotElEdHGRHOZs8RoBNu9xsugnB0EBGqZfZSYkyPdZTDa7zPOzstn2Rw090wP5199S\n2+W0hC07qnj13f3U1skMPz+M6TclYjK2v+fR1qiqyq+bK/lwfgElZYdHfN4Yz4XnixGfgtCRSFot\nN1zanWc/2cwny/fy2JRzvNpgWhAEQej4PA5KSJLElClTmDJlii/XI5ymExs+nqysAjwvbTDqpUa3\naaps4mRCg0ys3JTHj1sPHv1aWbW90SwH8LwnxOk2ymyMqihk/+0xnEUlJDx0F0Hn9EVTfhDdb1+j\nGsw4h00C6fCfkKMW6opBq4PghGabaORX6Siq0RNokOkRZT+t0Z87s13M+96O2Qh/HW8iIsT3bwZr\n61w8858s9mTWMeAsC3+fkXLSiSttlayozF9SyMJlRUiShjtu6sqo4eGtNja1IztxxOf40VFcK0Z8\nCkKHlRYfzNCzYln7eyE/bMrnknO7+ntJgiAIQjvicVCiZ8+ex71Z12g0BAUFsWHDBp8sTDh1p5q5\ncLqlDU2VTZgM2qMTOBrqnRLG71llHp/D08DJ6TTKPJmidz6jatUvBF94PrEzbgKHDf2a+WgUF87B\n10Hg4RRV2QFVBe6PgxPcgYkmlNZJZJUZMEgKfWLtSKdxLZ+Z5+KTb23oJLj1SjNxEb6/6KuocvLk\ny5nsz7cybFAod0/thq4Vmml6U1W1k1ff3c/2XTVERRh4YEYKqd3a56SQtkSM+BSEzuuaC1PZklHC\n4nU5nNMjmtCg0yudFARBEDoPj4MSe/bsOfqxw+Fg/fr17N271yeLElrmVDMXTre0oamyiQv6xKLV\naNiaUUJZtR2txt1DYdu+EqrqPC9VONXAycmyOk5V7eYd5D83C31UOCmvP4FGo0H3y5doaspx9R6G\nktDdvaGqQFU+qDIExbpLN5pQY9ey65ARrQb6xNox6lo+aSP3kMwHy2yoKtw81kRyrO8DEsWldh5/\nKZPCYjujL4pg2vWJ7S4Vf09mLS+9lUNZhZOBfS387bZuBHbx+KVQaERjIz5v/UsCA84SIz4FobMI\nCjBwzYWpfPzdXuav2sf0cb39vSRBEAShnWjRO3GDwcDw4cP54IMP+Otf/+rtNQkt1HTmgkQXk46K\nGrtXShuOaKpsQtJqkWWFH7cePDqF41QCEnD6gZOWcFVWk3nHQ6iyQuqbz6CPCEPa9QtS3m6U6GTk\nviPcG6oq1BSCywamEPd/TbC7NOwsNKKoGnpF2wgytnzSRlGZwpwlVhwuuHG0iTOTfH9RnXfQyhMv\nZ1JW4WTC5dFcf3Vcuyp1UFWVr74v5r9fFKAqcMOEOK4aE93ugiptTcMRn2aTlpsnxnP5SDHiUxA6\no6F941j7eyG/7S5mWN9yenYL8/eSBEEQhHbA4yuZhQsXHvd5UVERhw4d8vqChJZrKnNhyFmxXi1t\nODI5w2zUMXJAAldc0A2r3XXcse1O+ZRKNRKjAqm3ubzWE6IlVFUl5/6ncOQXEnfvNCyDB6IpzkXa\nshzVHIhz6LWgPfy9s1WArQp0JgiKabKPhKzAziIjdllLcpiDyMDGm496oqxK4Z3FVuptMPFiI33P\n8H1AIjOnjidfzaSmVubmifGMH910I8+2pt4qM+uDA6zfXEmIRcfM6cn0PjPI38tq104c8TlicBg3\nXBNPaHD7m74iCIJ3aDUabrykO09+vJFPV2TwxNRzRYBSEARBaJbHVzObN28+7vPAwEBee+01ry9I\nOD3NZS6cbmmDrCjMWbyDddvyKa9xHC3LCG8wwvOI5spJQgONVNUdn7nhklWvBU5aovijL6j45keC\nzu9P/H23ga0O/dr5gIpzyEQwH76QddZDTRFoJAhOBM3J33SpKuwpNlJjl4gOctI1pOWTNqrr3AGJ\n6jqVK4YYOK+X7y8Ad+6p4dnXs7DZFWbc0pVRwyJ8fk5v2p9Xzwuzcyg8ZKdneiAzpycTFiIunFtK\njPgUBKEpSTFBjOiXwA9b8ln+Wy5jL+jm7yUJgiAIbZzHQYnnnnvOl+sQvMQXDR8bOnG6x5GyjMZG\neDZVThJuMfHoLQP/lF0hafFKT4iWqNuxh9wnXkUXFkLqrKfRaDXof16Ipr4a19kjUWOS3RvKLncf\nCYDgeJCavsDdX6GnpE5HsEmme6SjxZM26m0q7y62UValMvIcPRf2N7TsQKdg47ZKXpydg6rCzOnJ\nDD4n1Ofn9KZV68p455NcHE6Vq8a4S04kSZRrtMSJIz5Dg8WIT0EQGnfVsGQ27i1m2S/7GdQzmogQ\ns7+XJAiCILRhzQYlhg8f3mTd+OrVq725HsFLvNXwsSFPpns0HOHZVDlJv/QIggIMBAX4/sLaE3Jt\nnbuPhMNJyutPYIiNQvr9R7QHM5Hj05F7D3VvqKpQnQ+KC7pEgSGwyeMeKFU5UGHApFPoFWOjpddu\ndqfKe0utFJYpDD5Lz+hBvv++/bS+nNff349Op+HBu1Lp19vi83N6i92h8N7cPFauKSPALHHf9CTO\n69d0zw/h5A7kW3lvbh4799SikzRcNSaaa8bGiBGfgk9lZGQwY8YMbrnlFm644QY2btzIK6+8gk6n\nIyAggBdeeIHg4GDee+89vvvuOzQaDXfddRfDhw/399I7vQCTnkkXpTFn2S4+/2Efd084y99LEgRB\nENqwZoMSc+fOPelj1dXVXl2M0LZ5Mt3jxBGeDctJyqttBAca6HdG6/eKaIqqquz/x3PYs3OJueNG\nQkYMRlOYhbT9R9QuwbgGTzhWnlF7yF26YQyCgPAmj1tl1bK9UEXSqvSJtWFo4fWby6Xy0TIbB4oU\n+nXXMX64wecNJr9dVcKcz/IwmyQevieVHmc0HXxpSwqL7bw4O5ucXCspXc38fUYKMVFiNF1LHB3x\nuaoERRUjPoXWU19fz1NPPcX5559/9GvPPfccL730EikpKbz99tvMnz+fMWPG8M033zBv3jxqa2uZ\nPHkyQ4YMQZJEwMzfBvWKZs32g2zdV8q2zFLOTmtfpX+CIAhC62k2KBEfH3/048zMTCoq3E3NHA4H\nTz/9NN9++22j+1mtVv75z39SVlaG3W5nxowZnHnmmTzwwAPIskxkZCQvvvgiBoOBpUuX8vHHH6PV\napk4cSLXXnutl55e+3KkeaS/+ik0p6lyjCNOHOEpabVMGpGGrKhsyyilstbO71llSFLm0T4X/lY6\nbylli76jS//eJPzzTqivRr/uC9BqcQ67DoyHM05sVWAtB8kIQXFNNra0OjXsLDKhqtA7xkYXQ8tG\nf8qKymfLbWTkyfTsJvGXkUa0PgxIqKrKwmVFzF1USLBFx2P3pZHc1T/lNC2xYUslr79/gHqrzKhh\n4dx2fSIGvf9/x9qbE0d8xkUbmSpGfAqtyGAwMGfOHObMmXP0a6GhoVRWVgJQVVVFSkoKGzZsYOjQ\noRgMBsLCwoiPjyczM5Pu3bv7a+nCYRqNhhsuSefxDzcy9/sMeiSFtsn3NoIgCIL/edxT4umnn+bn\nn3+mtLSUrl27kpeXx9SpU0+6/Y8//kjv3r2ZNm0aBQUFTJ06lf79+zN58mTGjBnDK6+8wsKFCxk/\nfjxvvvkmCxcuRK/Xc8011zBq1ChCQjpPqrWsKMxflcnWjBLKq+2ENWga2RYu2o9oqhzjiMZGeM5f\nlcmPWwqOft5Y/wl/sWZkc+BfLyBZAkl761m0kgb9qgVobHU4z7kcNSLBvaHTBtUH3RkTwQnHJnA0\nwiXDjkITTkVD/2QNFm3LRn+qqsrCVXZ+z5JJjddy02Umn/ZDUFWVjxcUsGR5MZHhBh6bmdZu7oi7\nXCqfflnAku+KMRg03H1rEiMGN53JIjROjPgU2gKdTodOd/xblIceeogbbrgBi8VCcHAwM2fO5L33\n3iMs7NjYybCwMEpKSkRQoo2Ijwxk1DmJfLchl6/XH+DqYSn+XpIgCILQBnkclNixYwfffvstN954\nI5988gk7d+7k+++/P+n2l1122dGPCwsLiY6OZsOGDTzxxBMAXHTRRXzwwQckJyfTp08fgoLcUw36\n9+/Pli3B0E9mAAAgAElEQVRbGDFiREufU7tzYvPItnTRfqJJI9IIMBtYt62A8prjMyaMOi0uWUFW\nlKPBlKb6UDTsP+EPcr2NzNv/iWKzkzbrKYyJcUhblqMtPoCc1Aul+3nuDRUZqvIAFSwJoDt5KYCi\nwq5DRuqdWuKDnaRGGylpug1Ho1RV5at1Dn7b5SIhSsvUsWb0Ot8FJGRF5e2Pc1m5toz4WCOPzzyD\niLC20e+jOeUVDl5+Zz+7MmqJjTbyjztTSEoQTdVOVUmZg48X5PPzRved6BFDwrlhQpwY8Sm0GU89\n9RSzZs1iwIABPP/8842Wl6pq81lpoaEB6HS++XcnMlKMGj7R1HF92LSnmO825HLFsFTiIn1bDih+\nBv4nfgb+J34G/id+BqfG46CEweC+QHE6naiqSu/evXn++eeb3e+6666jqKiIt99+mylTphw9Tnh4\nOCUlJZSWljZ6l6OzaMsX7Y2RtFqmje/DmHMT+XT5Xn7eWXT0MbtLYfXWg2QVVPPoLQORtFrKq20n\nLfc4sf9EY3xZ0pL76EtY92YTdcu1hF02Am3ebnR/rEMJCsc1aLy7PONoY0snBES4e0k0IavMQLlV\nR1iAi7RwB9CyXgY/bHLy01YnUaEapo0zYzL6LiDhdCq8Omc/6zdVkpJk5tF70wi2tI8L0R27a3j5\nnRyqql2cPzCEu6YkieaLp+jEEZ/pKQHcOjmR9BQx4lNoW/bu3cuAAQMAuOCCC/jqq68YNGgQOTk5\nR7c5dOgQUVFRTR6noqLeJ+uLjAyipKTGJ8du7yZelMbsxTt5ff5W7pvY12d9kcTPwP/Ez8D/xM/A\n/8TPoHFNBWo8DkokJyfz2WefMXDgQKZMmUJycjI1Nc1/s+fNm8fu3bv5+9//ftwdjJPdzehsdzkK\nS+v+lHFwREWNDcmgJzKi7V0cREQEsq+gqtHH8oprWbRuP3dM6Mv/s3fncVHV++PHX7MPMDDsi6Cs\n4oa7mSuaSplWWt20LNu9ld263251+90Wb3a9Lbe9W5qVZavZYpY3zXDfNbcUN0QhkX2GfZn1nN8f\nkwYywKAgCJ/n49EjgTmHtzjAnPd5L99sOtnwOfy9iI8JQq+t/zR0OiU+XHGIHWl5FJXWEOLvxbCk\nCO6+tg8q1YWXked8+T+KvliOX/9eDPrvMyislVRu/w5UGnyn3oMqJASAqsLTVNuq0BiMGLvFNfpC\nKiNfJqdMxs8Lkntr0KhdCbjmPqfW7Kxi1XYbwf4qnrwniEBj611k11icPPX8IXbtK2VAHyMvPpOE\nwcfjHwstztOvlSTJfPbNKT74PAuFQsHDs+K56drIVh8A2l60xM8pWZbZsM3EOx+eIL/QSlCAlvsf\njOWqsWEdasWnuFPhufb+tQoODiYjI4OEhAQOHjxIdHQ0w4YN46OPPuKhhx6ipKSEwsJCEhLazyBl\nwWVwjxCSYgNJyyxm97EiLuvZeOJIEARB6Fw8vvp47rnnKC0txc/Pj//9738UFxdz3333Nfj4tLQ0\ngoKCiIiIoFevXjidTnx8fLBYLOj1+rN3M0JDQzGZTGePKywsZMCAAY3G0pHucjjtTgJ93Q+PDPDV\n47TZ212mLSTElxNZZopKahp8zLYDuVw1JIqdaXkNPqZPTAAVZTW4+9t9sSa9TktLYUkNP2w+SXWN\n7YJbWiwnT5F2/zMofbyJfnsexaVVaH5ahNJag3349RTjC0UVYK2AshxQarDrwzGZKhs8Z3G1igN5\nOjRK6BVSQ2mJK7nW3OfUnqN2vvjZiq+3gnuv0+G0VZ9X+4cnKqsc/PvNExzNqGJwPz8enx1LTXUN\nNa3z7dUkT79WFZUO3vwgiz0HygkK0PDYA7H0TDA0+u/TkbTEz6nGVnyazR3n6yjuVHiuOV+ri5G8\nSEtL46WXXiInJwe1Ws3q1auZO3cuTz/9NBqNBqPRyPPPP4+fnx/Tpk3jtttuQ6FQ8Oyzz6JsR7OY\nBBeFQsGtVybyzAe7+HLtcZJiA/HStV0CXBAEQWhfPP6NMG3aNKZMmcLkyZO57rrrmnz87t27ycnJ\n4amnnsJkMlFdXc3o0aNZvXo1U6ZM4eeff2b06NH079+fp59+mvLyclQqFXv37uXJJ5+8oL/UpaSx\n4ZHuhka2F0aDDn+DjpJK91UeZZU2ThdWNrpCdMKQrm7f35otLZLVRsYDTyJVVRP39r/wio9GvXMF\nyuJcnPGDkBIGuR7osEJ5DqAAY9dGB1tW2RQcKtChUEBShAUvzflt2jh00sGXqVa8dPDnKXpC/Fvv\nhXVpmZ25r2aQdbqG5GEBPHR3DOpWnFnRUjIyq3h5QSaFJhv9+/jyyKyYS6bVpD2oqHSwZHkeq9eL\nFZ9C+5aUlMSnn35a7/1ffvllvffNnDmTmTNnXoywhAsQFuDNpGHd+GFrFj9szWT6uO5tHZIgCILQ\nTniclHjiiSdYtWoV119/PT179mTKlCmMGzfu7IyIc91888089dRTzJgxA4vFwpw5c0hKSuKJJ55g\n6dKldOnShalTp6LRaHj00Ue55557UCgUPPjgg2eHXnYW08e5Sk33pZsoqbAQ4KtnYGLw2fe3NXdz\nHXQaFQMSg+ts1agt0E9PVKihwRWiQX56Av3cXwiVVVobTGZ4MoeiMdnz3qL64FGCb76O4BuuRpn5\nK6r0XUj+YTiGTnY9SJKg7DTIEvh1AU3DF2y23zdtOCUFvUItGPXnt2kj47SDT1ZZUKngnuu86BLS\nesmoQpOVZ1/JIK/QysQrgpl1a9d2X64vyzKrN5hYtOQ0TqfM9OvCuem6CFTtPO724syKz8+X5VJZ\nJVZ8CoLQNiYNi2b7oXxSfznNyL4RRLXy0EtBEATh0uBxUmLw4MEMHjyYp556il27dvHDDz/w7LPP\nsmPHDreP1+v1vPrqq/Xe/9FHH9V738SJE5k4cWIzwu5YVEolMyYkcuOY+FYb6ng+GlpV+pdpAwGY\nMaE7GafLyC6sX+49MDEYX2/teVWBGA26BpMZAb56jIbzGx5ZsmoDBYu+xCsxjuh5j6MoK0S94wdk\njQ7HmJtBrXUNtqzIBacVvAJB3/BqWkmGtHw9FoeS6AAbYb7O84oru8DJhyssyDLcdY2e2IjW+7fP\nzq1h7qsZmEvs3Dg5jFtv6NLu5zBYrE4WfHyKTTtK8DWo+L9ZMQzqKy6mPZV2rIJFn58m67RY8SkI\nQtvSalTcmpLIG18f4LPVx3ji1kHt/neQIAiC0Pqa1dBXXl7OmjVr+Omnn8jOzmb69OmtFVenpNOo\nzrsCoDU0tKrU20vL1JExqJRK5tw5hC9S09l33ERZpY1Av7pVHudTBdIaLS3W03mc/NtcFHod8e8+\nj0qjQr3mSxQOG/bk6ch+wa4H1pjBWg4abzCENXg+WYZjhVrKLSpCDA5iAuzNjgkg3yzx3vc12Bww\nc6KentGt12ObkVnFc69nUFHp5PabIrn+6ob/fu3F6TwL/3nnJNm5FhLjvHnsgThCgi6NVaVtTaz4\nFAShPeoXH8zA7sHsO25iW1o+I/tGtHVIgiAIQhvz+Aronnvu4fjx46SkpHD//fczaNCg1oxLaGON\nzXXYkZbH1UO7otOoUCmVzLyqJ9PGuV/deb5VIC3Z0iLZHZx44CmcZRXEvPw03j3iUW/7FmVZEY4e\nw5Cik1wPtFVBZSEo1eAX5VoJ2oBTpRoKKjX46pz0DLE29tAGFZdLvLe8hmoL3DROR//urZeQSDtW\nwfNvnsBilZh9ZzdSkoNb7XO1lM07i5m/+BQWq8TkCSHcMS1S3N33gNUmsXxVActWiRWfgiC0T7dM\n6M6hrGK+Xp/BgO7B+OhFslQQBKEz8/gq6Pbbb2fUqFGoVPUvKN9//31mzZrVooEJbauxuQ6m0pp6\ncx10GhVGg67BxENzq0BasqUl5z8LqNxzgMCpVxEyYwrKjD2oTv6KFBSFc/BVrgc57a45EgDGKFA1\n/K1RVKkis1iLTi2RFG7lfDaUlldJLPyuhrIqmWtGaRmW1HovyH7ZX8YrC04iSfDo/bGMvCyg1T5X\nS7DbJRZ/lcPKtUXodUoeuz+WkUPbd8ztgSzLbN9TyuKlORSZbQQY1dw/M5IxwwPb/cwQQRA6l2Cj\nF9eOiOHbjSdZtukkM6/s0dYhCYIgCG3I46TEmDFjGvzY5s2bRVKig2lsrkOwv1eduQ4NzZ6YPi4B\n1e+r2dwNy/RE7WTG+ZyjdP028t75GF1MFLEv/QNlSR7qXT8ia72wJ093JR9kCcqyQXaCIdzVutGA\ncouSI4U6VAqZvuEWdOrmb9qotsi8970FU5nM+CEarhjUeu0IG7cX89aiLNRqBf94OK7dz2IoNFl5\nZUEmxzOr6Rqp5++z44iKEJshmuJuxedN14Tj5dX2s2kEQRDcuWpoN7al5bNhbw6j+0UQE+7X1iEJ\ngiAIbaRF6sVl+fxWIArtV2NzHYYlRdRJCjQ0ewJcbRhNJSya4knSwx1bfhEnH/4nCq2GhHdfRKVT\no1m7FIXkwD7yZjD4/z7YMh8cFtAbwavhO/IWh4K0fB2SDEnhVgy65j/vrXaZD36oIc8kMaKvhquH\nt15CYtW6It7/PBsvvYqn/y+eXt3b95TzHXuKefblo1RWORkzPJD7b++KXicuqhtz7orPIf1dKz67\nhIlEjiAI7ZtapeS2K3vw8pJ9fLr6GE/NHCKqugRBEDqpFklKiMnJl47mVBvUnutQXG7BaNAysHsw\nd1/bh+LiqrPna2j2xN5jRVTW2NlxqODs+2onLGZMSPQo5saSHg2dQ3Y6OfGXp3GYS+j2r8fw6dsD\n9cYlKCqKcSQlI0X9XipqKXX9p9aDb0SDcyQcEqTl6bA5lcQHWQn2af6mDYdDZvGPFn7LlxjYQ831\nY7Wt8r0jyzLf/ljA58tyMfqp+effEojt1n4GqJ7LKcks/T6Pb/6Xj0ql4IHbu5EyJkj8XGmE0ynz\n80YTX3wnVnwKgnDp6hUdwOW9w9h5uIBNv+YydmBkW4ckCIIgtIHWm6wntCvnU22gUiqZPi4BpySz\nP91EaaWVAyfMfLjiENcO74ZKqWx09kRxhbVOQqK2fekmbhwT32RipLGkR2PnyH1jERXb9hAwcSxh\nd09HdWQ7quwjSGExOPuPcz3IXg0VeaBQueZIKNx/HWQZjhToqLSpiPCzE2V0NBqzO5Ik8/nPFtJP\nOekVo+KWCTqUrZSQ+PjrHL7/qZCQIC3/fDSByPD2e9e8tNzO6wuzOHCkgohQPY/eH0N8TPtNoLQH\new+W8tr89LMrPu+cFskkseJTEIRL1PRxCfyaYeLbjScY1CMEP2+xYUkQBKGzEUmJTuJ8qg3OHLd+\nb06d437YfJLqGhszJiTipVNjNGgprbQ1K56SCsvZYZnnVm/UfruxpEftc9RWvm03Oa9/gDYynNhX\nn0FZlI1q72pkvQH7qGmgVIHkqDXYMhJUDb8IOlmswVytxt/LSfdgW7M3bciyzNfrrBzIcBLXRckd\nk/SoVC2fkHBKMu9+fIo1m81ERuh49tHuBAe23xd3R45X8uq7mZhL7Azp78dz/y8Ja42lrcNqtwpN\nVj7+Kodtu8WKT0EQOg5/g47rR8exZO1xvll/grsn92rrkARBEISLrEWSEjExMS1xGqGVnG+1QePH\nFeF0Shw4YW52QgIgwFePwVvLF2vS61RveOs1VNXYKKmwEeinIykuCD8fDWVVdrfnqD1wE8BuLuHE\ng0+DQkH8gudRe6nRrFsKyNhHTwNvX1fpQ9lpV2LCJxS0Dc9ayCtXk12qxUsj0SfMQnPbXWVZZsUW\nG7sOO4gKUXLPtV5o1C2fkLDbJV5/P4vtu0uJi/ZiziMJGP3a58WqLMusSC3kk69zkCWY+acuTJ0Y\nhp9BQ5FIStRjtUos/6mAZSvzsdll+vTw5Y5pXegeK1Z8CoLQMYwbHMmWg3lsOZjH6P4RdI/yb+uQ\nBEEQhIvI43rfnJwcHn74YWbOnAnAV199RVZWFgDPPfdcqwQntAxPqg2ae5y53Mr6fblut3N4YmBi\nMMs3n2TN7tOYy63Iv58zu7CS4grb2bc37s91m5A4c47ayRRZkjj58D+xF5iIeuIBfAcnodn6DYrq\ncpz9xyOHx7oeWFngat3Q+YJ3UIMxltQoSS/Sola6Nm2cz0bSFZuq2LjPTmiAgllTvNDrWj4hYbE6\nef6tE2zfXUrvRAPPPZ7YbhMS1TVOXp6fyUdf5uDro2bu4925YVK4GG7mhizLbP2lhIeePsyX3+fh\n463i4XuiWfCfgSIhIQhCh6JSKpl5lWvW06er03FKUhtHJAiCIFxMHiclnnnmGaZMmXJ200ZsbCzP\nPPNMqwUmtJwz6z3d0WpUGLzdX8A2dlxD15D+PloCfN0fAxDoq2PCkCimjo5tsAqjKUF+eiYMiTo7\niPOM/Hc/o2z9NoxjhxMx+3ZUBzeizM3AGZmIM2m060GWMqgpdrVr+HZpcLBltU3BoXzXLIY+4Ra8\ntc3ftLHtgJ1v1lQQ4Kvgz1O9MHi3/IV3ZZWDua9msP9QBYP7+THnbwn4eLfPjRVZ2dU89txRtu9x\nJU9efbYXST192zqsdikru5o5Lx/nlQWZlJTauf7qMN55vg9XjAwSCRxBEDqkhEgjo/pFcLqokrV7\ncpo+QBAEQegwPG7fsNvtjB8/nsWLFwNw2WWXtVZMQgtrbL2nxeZk+eZMt3MlGjtOauAavazKxoik\ncLam5df72MikcG67qgc6jYrCkuoGqzAaE2DQMefOIfieMwirYvcBTr/4DpqwYOLemouyIBPVr+uR\nfYw4Rt7oGmLpsEB5ruvPxq6u2RJu2J1wMF+PQ1LQI8RKgFfz79jsPWZn2QYrfj5K7rteT4Bvyw8h\nLC2zM/fVDLJO1zD68gAevicGdSu0hrSEdVvMLPz0FDa7zPVXh3HrDV1aZa7Gpa680sGS73L5eYNJ\nrPgUBKHTuWlsPPvSi1i++SSX9Qxt9CaHIAiC0HE060qpvLz87Jq+48ePY7WeX+m+cPFNHR2HXuv+\nn3vvsSKsdvcrLqePS2DCkCiC/PQoFa4qhUkjYgj0dT9AUaEAjUbJuMGRdY6ZMCSKOyf1PNtu0VgV\nRmNKq6yUVdWdYeEoLefEA08iOyXi356HxluNZsvXoFRiHz0ddN4gOaEsG5DBrwuo3X9uSYZDBXpq\n7Eq6+tuI8Gv+po3DmQ6W/GxFp4XH7wgkxL/lExKFJitPvuDawDDximD+b1b7TEhYbRLvLP6N/374\nG2q1kv/3UBy33xQpEhLncDplVq0r4sF/HOKn9SYiwnQ880g8T/01QSQkhGYrNFnZsN2M3dF+S+DP\ntH8KQm2+3lpuHBuPxeZk6brjbR2OIAiCcJF4XCnx4IMPMm3aNIqKirj22mspKSnh5Zdfbs3YhBZU\nWW3DanP/ArW4wspnq49x56Se9daDqpRKZkxI5MYx8Wc3YkR18cdmczRYQbFhXy5jBnRh5pWJ+Hpr\n6BJiqDdIU6dR0bNbgNuKisbIMrzx1X4G9Qhl+rgElAoFmY/+C1tOPl3+Ngu/4QPRpH6EwlKFY8gk\n5JCuroPKc8BpB+9g0Pk1eO7jJi2lNSqCvB3EBbqfZdGYE6edfLzSgkoF917nRXSEhqKilh3emJ1b\nw9xXMzCX2LlxsqvqQNEK60UvVF6hlZfnnyTzVA1x3bx4fHYc4aHirte50o5W8MEX2fx22iJWfArn\nzeGQ+WV/KambzOw/VI4sg6+PmsH9jG0W01133cVHH3109u358+cze/ZsAObMmcMnn3zSVqEJ7Vhy\n/y5s/jWPXUcKSe5fTO+YwLYOSRAEQWhlHiclhg0bxvLly0lPT0er1RIbG4tOJy4wLhVnKhMaGky5\nNS0fL726wfWgOo2qzurN6eMScDolNu7PddvKsXF/Lhv356JUQGSIgaduH4RWXffpdktKInvSC7E0\nkCxpSHGF7WxCZPypfZSsWo/viMFEPnIvqv1rUBb+hjO6D86ew1wHVBWBrRK0PuAT0uB5T5epySvX\nYNA66RVmbfbqz+wCJ4tW1CDLcNdkPbFdWn62Q0ZmFc+9nkFFpZPbb4rk+qvDWvxztISde0t5a9Fv\nVNc4SUkO4t5bu6LViIvs2s5d8Tn+9xWf/mLFp9AMuQUW1mwys26rmbJyV2VXj3gfrhwbzKC+7hOw\nF4vDUbfSbMeOHWeTEmfmUwnCuZQKBbdf1YPnPv6Fz35O57l7hqJWid8fgiAIHZnHSYm0tDSKioq4\n4ooreP3119m/fz8PPfQQQ4YMac34hN9Z7c6zlQru1nc2pbH5EGc0th70XCqlkquGdmPDvtxGHyfJ\nkF1Yyb8/2cvcu4fW+Zi3Ts2ofl0ajakxmRv3cerTN1AH+hP/9jxUuemoD21B8g3CMWyqq5fEWgHV\nJlBqwC+ywcGWpioVJ8xatCqJpAgrzb1JXVAs8d73NdjscNtEHT1jWmTbbh1pxyp4/s0TWKwSD9zR\njSvHBLf457hQDofMZ8ty+P6nQrRaBQ/dE824kQ1vOOmMzl3xmRjvw70zosRGDcFjNrvEjj2lpG4y\nkXa0EgCDj4prJoQwITmY6CivNo7Q5dwKrtqJiPZY3SW0H9HhvlwxMJJ1e3NYvesUk4fHtHVIgiAI\nQivy+Mpp3rx5vPjii+zevZuDBw/yzDPP8Nxzz4nyy1bmlCSWrstgX3oRxeVWAv10DEwMYfq4hHqt\nFk2ZPi6BaouDbQ20TJxZD1q7IqIxTVVf1Ha6sJKKalu9AZVnNmjsSzdRUmFBq1Fhsbmfb1GbxmZh\n6DcfItvsxL01F62PGvXKZcgqNY4xN4NWDw6rq20DBRijQOn+6V5pVXCkQIdSAUnhVvTq5t3BKy6X\nWPhdDdUWuGmcjgGJLX+n+5f9Zbyy4CSSBI/eH8vIywJa/HNcqOISG68uzOJweiURYTqeeDCu3Vwc\ntQeyLLNtdykff5VDkdlGgFHDAzd1IXlYoNioIXjkVE4NqRtNbNheTGWV6+dkUk8DKcnBDBvs3+6r\nkUQiQmiOG5Lj2H20kBVbs7i8dxjBRvH7RBAEoaPyOCmh0+mIiYlh6dKlTJs2jYSEBJTNvCgWmm/p\nuow6lQTmcuvZtxtqtWjImT3gx06VuE0kBPjqMRp0HldleFJ9cYaMKzHR65ze0HNnVhi8NSzfnHk2\nSRHgq6PKYq/b4iHLJK9bhrHMTMj9M/Efczma1R+gsFmwD5+KHBAOkgRlp0GWXKs/Ne5fzFgdCg7m\n63HKCnqHWfDTN6+VpKLalZAoq5K5ZqSWYUktn5DYtKOYtxZloVIp+MfDcQzq23Y94g05eKSCVxdm\nUlbuYPgQf/5yVzTeXu1zNWlbyMquZtGS06QdrUStVnD91WHcdE04XuJrJDTBYnWy7RdXVcTRjCoA\njH5qrr86jAnJQe16EGpZWRnbt28/+3Z5eTk7duxAlmXKy8vbMDLhUuCt1zBtXAIf/O8IS9Yc56Eb\n+7V1SIIgCEIr8TgpUVNTw6pVq1izZg0PPvggpaWl4kVFK7PanexLL3L7sea0WtTWWCJhQPcgvt14\nol5VxtTRcVRW284mKSw2B4Ul1RgNOqaPS+DYqVKyCyub/NyhAQ3f5ag9s+LcwZrfbjxRJ96eh3+h\ne/p+LPEJRP/jQdS7V6E05+CMH4iUMNg1sbIiF5xW8AoAL3+3n9MpQVq+DqtDSWygjVBD0xUatdVY\nZd5bbsFUJjN+iIYrBrvfSHIhVq0r4v3Ps/HSq3jqr/H0TjS0+Oe4EJIks2xlAUu+y0WhhLtvieKa\nCSHijujvzl3xedkAI3dNjySiHV9ICu3Did+qWbPJxKYdxVTXSCgUMDDJj5TkIIYMMF4Sg1D9/PyY\nP3/+2bd9fX155513zv5ZEJoyvE84m37NY99xE79mmOif0P7aFgVBEIQL53FS4m9/+xuffPIJjzzy\nCAaDgf/+97/ceeedrRiaUFZppbiB1ojmtlrUdm7LRICvnoGJwUiyzFo3VRlbDuRitUkE+unw1muw\n2ByYSi0E+unoFx9EtcWzLRVOdxMxG1A7SVE7XrKyGLXxe5ze3gz57BXUpw+jSt+F5B+GY+g1roNr\nisFa7qqOMIS7Pb8sw9EiHRVWFWEGO938m7dpw2qX+eCHGnJNEsP7qrl6eMsmJGRZ5tsfC/h8WS5G\nPzX//FsCsd2a/2/dmioqHbz5QRZ7DpQTFKDhsQdi6ZnQvpImbcXplPl5o4kvvsulsspJZLiOu2+J\napdVLkL7UV3jZNOOYlI3mTj5Ww0AQQEaJk8IZcLoIEKDL63h0p9++mlbhyBc4hQKBTOvTOTZj37h\n89R0ekUHoD2PuVqCIAhC++ZxUmLo0KEMHeoaVChJEg8++GCrBSW4NDaz4Uyrxflwt+YT4On3d7h9\n/JnWCXO5tU4s5nIr65sYdHlGkJ/uguO9fmgkRye/ht1hJ2Hh8/j461Cv/B5ZrcWRPB3UWrBVQWWB\na36EX1SDgy2zSjQUVarx0zvpEWpr1qYNh1Pm4x8tZOVJDEhUc8MYXYtWBsiyzMdfu4ZFhgRp+eej\nCUSGt6876xmZVfxnfiZFZhv9+/jyyKwYjH5iawTUXfHp7aXkzumRTBovVnwK7smyzLETVaRuMrN1\nVwlWm4RS6aqqSUl2bdBQqS7NyqPKykq++eabszcwvvzyS5YsWUJ0dDRz5swhOFjc9RaaFhliIOWy\nrvy08xQ/bv+N65Pj2jokQRAEoYV5nJTo3bt3nQsvhUKBr68vO3fubJXAhMZbLQYmBp/XFo5zz3+m\nGqGwpLrBqoymKBW4XQta28DEkAuON3/ua9hPZBF61zQCJ4xEvWohCocN++hpyMYQcNpdcyTAlZBQ\nub9ILqhQ8VuJFr1aIincQnNmDEqSzBerrRw75aRXjIoZKboWHVLolGTe/fgUazabiQzX8exj3QkO\nbPm2kPMlyzKrN5hYtOQ0TqfM9OvCuem6CFRiUCOFJiuLv8ph++5SFAqx4lNoXEWlg43bXVURp3Is\nAKuMD/kAACAASURBVIQGa5kwOojxo4IIDGg/3/fna86cOURGRgKQmZnJa6+9xhtvvMGpU6f497//\nzeuvv97GEQqXiutGxrDzcAGrdv7GiKRwwgLbV+WgIAiCcGE8TkocPXr07J/tdjvbtm3j2LFjrRKU\n8IeGWi3OvL8hzV0h2pxNGudqLCER5OdZvE0xLfuJoiXf453Ug25PP4x61wqUZYU4e1yOFNPXNdCy\nLBtkp6tlQ+v+BUuZRcnRIh0qpUzfCAvaZuRJZFnm63VWfs1wENdFye1X61v0DqbdLvH6+1ls311K\nXLQXcx5JaFfVBxarkwUfn2LTjhJ8DSoe+XMsA5P82jqsNme1Sny3Kp/vVhVgs8v0+H3FZ4JY8Smc\nQ5ZlDqVXkrrRxPbdpdgdMmqVghFD/EkZE0y/Xr4dahNLdnY2r732GgCrV69m4sSJjBgxghEjRvDj\njz+2cXTCpUSvVXPL+O7MX57GZ6np/G1afzG7SBAEoQPxOClRm0ajYcyYMXz44Yf8+c9/bumYhFrc\ntVo0lmQ43xWizdmkca4Ag5YBiSEcyDCfTZz0SwhiwuAoAv30F1whYTl5iqwnnkfp403Cuy+gPp2G\n6uR+pKBIHIMnuh5UkQ8OC+iNruGW7s5jV5CWr0eWoU+4FR+t5zMuZFnmf1tt7DrsICpEyd3XeqHV\ntNwLIovVyUtvn2T/oQp6Jxp48uF4fLzbT9/s6TwL/3nnJNm5FhLjvHnsgThCgi79O7kXQqz4FDxV\nWm5n/dZi1mwykVvgSvx2CdORMiaYsSMC8W9HyceW5O39R3J4165d/OlPfzr7trigFJprcI8QkmID\nScssZs+xIob0DG3rkARBEIQW4nFS4ptvvqnzdn5+PgUFBS0eUGfWWHVD7VaLxlzICtFzqzK0GhUW\nW9MbKXrFBDLzyh5Yr2hedYYnJKuNjPv/gVRVTdzb8/Dy16Be9SOy1gt78s2gUkNNCVhKQa0H3wi3\ncyQcEhzM12N3KugebCXQu3mbNtbttrNhr52QAAWzpnjhpWu5F9RV1Q7mvXGCoxlVDO7nx+Oz49Bp\n28/8gc07i5m/+BQWq8TkCSHcMS2y089HyMqu5oMvTnPomGvF5w2TwvjTZLHiU/iDJMkcOFzBz5tM\n/LKvDIdTRqNWMGZ4ICnJQfRONHT4C3On04nZbKaqqop9+/adbdeoqqqipqamjaMTLjUKhYJbUxJ5\nZtFOlqw9Tp/YQLx053VvTRAEQWhnPP5pvmfPnjpvGwwG3njjjRYPqDM63+qGc13oCtFzqzIM3hqW\nb85k77Eiiivct3XotSpmpHQHGk6cNLeVpLbsf71JddoxQm6ZQvA1Y9GsXIBCcmAfeTMY/MFe46qS\nUCjBGOX6/zlkGQ4X6KiyKYn0sxNpdDQrhm0H7KzcbiPAV8F9U70weLfchURpmZ25r2WQlV3D6MsD\nePieGNTq9nGhYrdLLP4qh5Vri9DrlDx2fywjh7qvQuksxIpPoSnmEhvrtphZs9lMockGQHSUnpTk\nYMYMD8Tg03kuombNmsWkSZOwWCz85S9/wWg0YrFYmDFjBtOmTWvr8IRLUFigN5OGRfPD1ixWbM1i\n2gW2hgqCIAjtg8evjl544QUASktLUSgUGI1itV1LuZDqhtpaaoVo7eTCmSTFZ6uPsTUtv95jR/WL\nwFvnvvS42mrni9TjHP2tmJIKm9tkS2MJi+JV6yn4cCleiXF0+9djqLd/h6KiGEef0UhRPUByuOZI\nIINfV1C5byc4YdZSXK0mwMtBfLCtyb9/bXuP2Vm2wYrBy5WQCPBtuQqBQpOVZ1/JIK/QylVjg5l1\nW9d2MzCy0GTllQWZHM+spmuknr/PjiMqovNeeDudrgGfS5b/seLznhldxUwNAXA9P/YeLCN1k5k9\nv5YhyaDXKZkwOoiU5GC6x3l3+KoId8aMGcOWLVuwWq0YDK51wXq9nscff5xRo0a1cXTCpWrSsGi2\npeWTujubEX3DiQoRq6gFQRAudR4nJfbu3cvf//53qqqqkGUZf39/Xn75Zfr27dua8XV4F1rdUFtr\nrRAFmDQ8Gq1WVWduRO0BlrWTC2qVgqXrMthyIK9O+0ftZMv0cQmNVodYT+eR+bfnUOp1xC98Ae1v\n+1CdOowUFoNzwHhX+UPZaVdiwicEdO5flOSUqTldpsFbI9EnzNqsTRuHMx0sSbWi08KsKXpCAlou\nIZGdW8PcVzMwl9i5cXIYt97Qpd1ctOw9WMbr72VRWeVkzPBA7r+9K3pd521LOHikgkVLxIpPob5C\nk5U1m8ys3WKmuNQOQEKMNynJwYy6PADvTt7Ok5v7x8ro8vLys3+Oi4sjNzeXLl26tEVYwiVOq1Fx\na0oib35zgM9+TueJGQPbze9PQRAE4fx4nJR49dVXmT9/PomJrjv3hw8f5t///jeff/55qwXXGbRU\ndQM0f4VoU20V7tpK+sUHMfWK7pSV1RDi7wXAF2vS6zzGW68hu7CywTj3pZtwSjLr9+acfV/thMXN\nY+LIeOBJnGUVxL7yND6BGlSrVyPrDdhHTQOlCioLwF4NWl/wdr/rvrhayXGTFs3vmzbUzbg+OHHa\nyccrLaiUcM91XkSFttzFxYmsap57LYPySge33xTJ9VeHtdi5L4RTkln6fR7f/C8flUrBA7d3I2VM\nUKd9sSdWfAru2B0Sv+wvI3WjiV8PVyDL4O2lZOIVwaQkBxMXLVYVnjFu3DhiY2MJCQkBXMNhz1Ao\nFHzyySdtFZpwieufEMzA7sHsO25i+6F8RiRFtHVIgiAIwgXwOCmhVCrPJiQAevfujUrVue8CtYSW\nrm7wZIWopzMs3LWVrN+Xy47DhVisDrcJCHO5tcm1osXlFvanm9x+bF+6ieHbVlG15yBB108k+PoJ\naFYuAGTso28Cb1+wlEG12dWu4dfF7WDLKpuCQwV6FEBSuAUvjeebNrILnSxaUYMkw92T9cR1abnn\nedqxCp5/8wQWq8QDd3TjyjHuEyoXW2m5ndcXZnHgSAWhwVr+PjuO+JjOeXFltUosW5XPcrHiU6gl\nJ9/Cmk0m1m0tprzCNZemZ4IPKWOCGTkkAJ1OVM6c66WXXuL777+nqqqKyZMnc8011xAYGNjWYQkd\nxC0TunMos5iv1mUwICEYb71IGAuCIFyqmpWU+PnnnxkxYgQAmzZtEkmJFtDc6oameLJC1JMZFo21\nldRYHWePayoB4Y7RoKW00v1xPgd/pej7T9HFdiXmxSfQbvsWRXU5jgHjkcPjXGs/K3J/H2zZ1VU1\ncQ6bEw7m6XFKCnqGWjB6SR7HVlAs8f7yGmx2uHWijl4xLTeU7pf9Zbyy4CSSBI/e136GRh45Xsmr\n72ZiLrEzpL8ff703plMN4ztDlmW2/VLK4q9OYyq2ixWfAja7xPbdpaRuMnHomCv56mtQce2VoaSM\nDqJrpFcbR9i+TZkyhSlTppCXl8d3333HrbfeSmRkJFOmTCElJQW9vvPOqREuXLDRi2tHxvDtxpMs\n23SS267s0dYhCYIgCOfJ4yuPuXPn8q9//YunnnoKhULBgAEDmDt3bmvG1ml4Ut3QXI1twth7rNDt\nMbVnWDTWVnKhBnYP5sAJc72EhndlGeNTv0Sh1ZCw4AW0mXtQ5mbg7NIdZ1IySE7XHAlZBr9IUNev\nIpFkOJSvx+JQEh1gI9zX89WfxeUSC5fXUGWBm8bpGJjYcnddNu0o5q1FWahUCv7xcByD+rb9oFhZ\nllmRWsgnX+cgSzDzT12YOjGsU16AZ56qZtESseJTcPntdA2pm0xs3F5MZZXrZ0jfXr6kJAcxbJA/\nGo2oimiOiIgIZs+ezezZs/n666+ZN28ec+fOZffu3W0dmnCJu2poN7al5bN+Xw6j+kUQEuLb1iEJ\ngiAI58HjpERMTAyLFi1qzVg6LU+qG1qCU5L4bPUxiivcb6A4M8PCaNBhszsbbCs5X3qtilH9Ilxt\nIqq61RoKSWL86iXoqqvoNu9xDCFaVGvXIXsbcYz6E6CA8tPgtIF3EOjrbz2QZThWpKXMoiLEx0FM\ngN3j2CqqXQmJskqZySO1DEtquYTET+uLeO+zbLz0Kp76azy9E9t+UnhVtZO3P/qNHXtK8fdT8+j9\nsST17Hwv5sSKT+EMi9XJll0lpG4yk36iCgB/PzU3TApjwugg8Zy4AOXl5fzwww8sW7YMp9PJfffd\nxzXXXNPWYQkdgFql5LaURF7+cj+frk5ncB8xPFUQBOFS5HFSYvv27XzyySdUVFTUGVYlBl22nIaq\nG1rK0nUZbtd6nhHgq2P1rlMcOGGmuNyKTtsydwOVChjaK4zbruqBt871lDu3OmTkgY1E5pzEf+JY\nQqdPdM2RUCixJ08HnTdUFYGtEjQ+4BPq9vNkl2ooqNDgq3PSM9TqbtSEWzVWmfeWWzCVyowbrGHc\nYPerRZtLlmU++eo33vs0Gz9fNc8+mkBst7af05CVXc1/3skkr9BK70QDj94fS6B/5+rFda34LGLJ\n8jyx4rOTO5FVzc+bTGzeUUyNRUKhgIFJfqSMCeKy/v6o1Z2vcqilbNmyhW+//Za0tDSuvPJKXnzx\nxTqzqQShJfSKCeTy3mHsPFzAym2ZXN4jpK1DEgRBEJqpWe0bs2fPJjw8vDXjEVpJYzMizvDWa1i/\n748VbhabaxaDTqPEavd8LsO5ZBmmjo49m5CAutUh+Wu3U/DWT2ijIoh75Sm0W75BYanCMWQSckhX\nsFa4khJKDRgj3Q62LKpUcbJYi04lkRRuReVhPsVml/nghxpyTRLDk9RMGtFyCYmPv87h+58KCQnS\n8s9HE4gMb/s7reu2mFn46Slsdpnrr3atIlWpOtdF18EjFXzwRTancsSKz86qqtrJ5p3FpG40cfJU\nDQBBARquvTKU8aOCCA0+//XJwh/uvfdeYmJiGDRoEMXFxXz00Ud1Pv7CCy+0UWRCRzN9XAKHMov5\ncMUhIgOGEBXa9hWJgiAIguc8TkpERkZy3XXXtWYsQi1NretsDqck8enqY422YgzrE0b6qRK3H/PW\nqfHSQWml+7aPpgT6NbxFRFlWRvE/5qFQKUlY8Dy6rF9QFmbh7NYbZ89h4LBBeQ6gAGMUKOs/ZSus\nSo4U6lAqZJIirOjUnm3acDhlPl5pIStPYkB3NTeM1bXI+kunJPPuJ6dYs8lMt0gvnnkknuDAlkl2\nnC+rTeKDL7JZs8mMt5eKR++PZuhA/zaN6WIrNFlZvDSH7XtcKz4njA7i1hvEis/OQpZljp2oInWj\nia2/lGK1SSiVMHSgkZTkYAb29UPVCeeptKYzKz9LSkoICKg72Pf06frDnQXhfPkbdNw9qRdvfXuA\nd384xDN3DGmVNlhBEAShdTSZlMjOzgZgyJAhLF26lKFDh6JW/3FY165dWy+6TsjTdZ3NsXRdBtsa\nadsI8tMx6fJu7DxU4PbjZVU2hvUOY1sDH29Kv/hAty8OZEni5F+fxV5goutTD+EXpkW9fjOSbyCO\n4dcDMpRlgyyBbxfQ1J90b3UoOJinQ5IhKdyKr86zig5JkvlitZWjvznpGa3ilit1LTLg0W6XeOP9\nLLbtLiUu2os3/z0Ah611BoZ6Kq/QysvzT5J5qoa4bl48PjuO8NDOcydYrPjs3MorHWzcVkzqZhPZ\nORYAwoK1TEgOZtyooE7XunQxKZVKHnnkEaxWK4GBgSxcuJDo6Gg+++wz3nvvPW644Ya2DlHoQAZ0\nD+aaUbH8b0smS9ce5/aJPds6JEEQBMFDTSYl7rjjDhQKxdk5EgsXLjz7MYVCwdq1a1svuk7Ik3Wd\nZ3hSTeFJ28bAxBBCArwbHGwZ4KtHq/X8joPRR0tZlQ2lwrUN48AJM1+sSa+XWMlf8Cll67dhvGIE\n4TOvQb1qIbJKjSP5ZtDoXBUSTit4BYBX/bv6TgkO5umwOZXEBVkJ9vFs04Ysy3y73sqvGQ7iuii5\nY5IedQu0MFisTl56+yT7D1XQO9HAkw/HE2DUUlTUdkmJnXtLeWvRb1TXOElJDuLeW7ui7SSbA2RZ\nZusvJXz8Vc4fKz6ndWHMsMAWqYgR2i9Zlkk7WsmmxafZuK0Iu0NGrVIw8jJ/UpKD6dvLt1NumbnY\nXn/9dRYvXkx8fDxr165lzpw5SJKE0Wjk66+/buvwhA7ormv68Gt6ERv259I7JpAhPd3PoBIEQRDa\nlyaTEuvWrWvyJMuXL2fq1KktElBn1lgCofa6zuZUUzS12jMi0Js/jY1Dq1YxMDGkTkLkjH7xgRw4\nYfbo7xBg0JLQ1cgvR4qQfu+icJdYqdh9gOwX56MJDyHu9WfQbvkaha0G+7CpyIERUG0GazmovcBQ\nf46JLMORQh2VNhXhvna6Gh0exQfw4zYbOw45iAxRcve1Xmg1F35xUlXtYN4bJziaUcXgfn48Pjuu\nxQaFng+HQ+azZa6ZFlqtgofuiWbcyKA2i+diyzxVzQdfnOZwuljx2ZmUltlZt9XMmk1m8gpdP/ci\nw3WkJAczdkQgRj9RFXExKZVK4uPjARg/fjwvvPACTzzxBCkpKW0cmdBRaTUq7p/Sh7mLf2HxqqPE\nRvgRZGz7eU6CIAhC4zyeKdGYZcuWiaREC2gsgXBmXWdogHezqimMBl2jqz3ziqv5ZsNJZkxIrLcR\nI8BXz8DEYK4YGFlnAGZjqq0OfjnSeGJFVVXFiQeeBFkm/u1/4ZW1E6U5B2fcQKSEQWCrgsoCUKpc\ncyTc3NXOLNZgqlLjr3eSGGLzeNPG2t021u+xE+KvYNYUPV66C09IlJbZmftaBlnZNYy+PICH74lp\n04n9xSU2Xl2YxeH0SiLCdDzxYBzRUfVbXzqi8goHX3yXS+pGseKzs3BKMr8eKid1k5lf9pfidIJW\no2Ds8EBumtKViBClqIxpI+d+3SMiIkRCQmh1EUE+zJiQyOJVR3lvxSH+PmPgebe/CoIgCBdHiyQl\naq8IFc5fYwkEf4MOo0HncTXFGTpNwxUQ7o47sxGjdltIRfUfrRhNaWxLR0mFhdIKC+WPPYctJ5/I\nR/+Mfxcdqs07kfxDcVx+DUgOKPs9Vr8oUNW/s5lfruZUqRYvjUSfcAueVmFvO2hn5TYb/gYF913v\nha/3hb9IKTRZefaVDPIKrVw1NphZt3Vt02F5B49U8OrCTMrKHQwf4s9f7orGuxNUB9Rb8Rmh455b\nxIrPjsxUbGPtFjNrN5spMruG8MZEeZEyJojkYYEYfNSEhPhSVFTRxpEKZ4jkkHCxjO4XwaHMYn45\nWsiKrVlMHR3X1iEJgiAIjWiRpIR4odEyGksgVFsdfLvxBFcMjPSomqK26eMSqLY4Ghx2WVxhoai0\nhqgQg9s5FTVWh0cJiaYE+Oqxf/MDJT9twHfEYCLvug716veR1VrXHAmVGkp+A9kJhjDQ1h9EWFqj\n5FiRFrVSpm+4BU+Ha+89ZmfZeisGL1dCIsD3whMS2bk1zH01A3OJnRsnu9ZrttX3giTJLFtZwJLv\nclEo4e5borhmQkin+N48cKSCRbVWfN51cySTxoW2abWK0DqcTpndB8pI3Whi38FyJBn0OiUTkoNI\nSQ6me6x3p3jOXyr27dvH2LFjz75tNpsZO3YssiyjUCjYsGFDm8UmdGwKhYI7JvbgZG45K7Zl0Ss6\ngB7dApo+UBAEQWgTLZKUEFrOmRaKLQfysNj+GNxosTlZs/s0TkludCClu9WbKqWSmVf14NipErfH\nyTK8vnQfBm8d1RZ7vTkVRoOOQF8txRXntxL0jGHaCvLmvYU6KID4N+ag2fo1CocN++hpyMYQqMgD\nRw3ojOAVWO/4GruCtHxXGX6fMAveWs8yJYczHSxJtaLTwqwpekIDLjwhcSKrmudey6C80sHtN0Vy\n/dVhF3zO81VR6eDND7LYc6CcoAANjz0QS8+Ejr+j3e2Kzxu74C/mBnQ4BUVWUjeZWLelmJIyOwAJ\nsd6kJAczemiAmBXSTv30009tHYLQiXnrNdx3XR9e/Hwv7604zNy7h2LwEr8fBEEQ2iORlGhnVEol\nN46JZ196UZ2kxBkHMsz0iw9yO+NhYGJwg1s4mmrjKKm0U1JpP/v2mTkVTqfEzKt6MqhHaKMtII0J\nMGgZEm0g4YW5WG124t58Fu/fdqIsLcTZ43KkmL5QU+L6T60Dv4h6cyTsTjiYp8chKUgMsRLg7dnq\nzxM5Tj5e6WrxuOdaL6JCL/zi5dCxCv795gksVokH7ujGlWOCL/ic5ysjs4r/zM+kyGyjfx9fHpkV\n0+GH+VmtEt+uzOf7n/5Y8Tnr1q7Ex3g3fbBwybA7JHbtLSN1k4lfD7taMLy9VFw9LoSU5CBiu4l/\n7/YuMjKyrUMQOrmEKCNTRsfy3aaTfLTyCH+5oa+ophIEQWiHWiQpYTB0/LuyF1NTAy8nDOmKSqWs\nN5DyTJVFQ/4YZFnU4ODLc23cnwsKBdPHxf9+rOtzajUqt0kTd/5vWn9q5rxAaVY2IQ/cTmBXPaod\n+5CCInEMngj2GqjIB4USjF1d/69FkuFwgZ5qu5Ioo50ufp5t2jhd6OTDFTVIMtx9jZ64yAtPSOz+\ntYyX559EkuDR+2IZObRtykFlWWb1BhOLlpzG6ZSZfl04N10X0abzLFrbuSs+A/013H5TJMnDAsSL\nzA4kJ89C6iYT67cWU17p+l7v1d2HlORgRgwJQKcTA+sEQfDc5GHRHMkqZt9xExv25XDFoKi2DkkQ\nBEE4h8dJiaKiIlauXElZWVmdwZZ//etfmT9/fqsE11k1NvAywFdPoJ/e7UDKpqiUSqaPS6Cy2ob5\ncKFHsUgyrN+bg0qpOPs5VVoNNouV5Zsz2ZduorjcQkONFIG+Wva9+TnhP/xMfng02wLjeHTHCmSt\nF/bk6aAAyrIB+ffBlto6x8syZJi0lNSoCPJ2EB/kWQtJQbHEe8trsNrg1ok6esVceP5t045i3lqU\nhUql4B8PxzGor/GCz3k+LFYnCz4+xaYdJfgaVDzy59gOP9Dx3BWfN04O48bJ4XjpRdl+R2C1SWzf\nXULqJjOH0ysB8DWouO7KUCYkB9G1S+fYHiMIQstTKhXMurYP//xwF0vWZtA9yp+oUHEzTRAEoT3x\n+Ertvvvuo0ePHqIc8yJQqxR46zVukxK1WzR0GlW9oZZNWbougx0eJiRqq72hIyTYh6IiiRkTEpk6\nOo4vUtPZeTgfp5uOirByE0GffoxV58WWq6fxD+8DqHGS6jOMZB9/KD3l2rjhEwI633rH55SpyS3X\n4KN10ivM6tHqz5IKV0KiygJ/GqdjYOKFtzP8tL6I9z7Lxkuv4qm/xtM7sW1e0JzOs/Cfd06SnWsh\nMd6Hxx+IJThQ2/SBlyi3Kz5vjiIitP7sFOHSk5VdTeomMxu3F1NV7aq86tfLl5QxQVw+0B+NRlRF\nCIJw4QJ8ddw9qRdvfXuAhT8c4uk7hnh0M0cQBEG4ODxOSnh7e/PCCy+0ZiwCYLU7+Wz1MbILK+t9\nrGuoockWjabO3dA60aac2exhNOjIM1XhtDvRaVQs33yywa0e3YwaBiz4AI3Dzk9X3cKt0QWEq2v4\noaIbayr0jCgvQG2vAq0BvOvPZTBXqcgwa9GoJPqGW1F7cH1SUS2x8LsaSitlJo/QMjzpwhISsizz\n7Y8FfL4sFz9fNc8+mtBmveybdxYzf/EpLFaJayaEcPu0SDSefFEuQe5WfN57S1cGdPCKkM6gxuJk\ny64SUjeaOJ5ZDUCAUc3EyWGMHx0sEk6CILSKAd2DGT84irV7TrN0XQa3X9WjrUMSBEEQfudxUqJ/\n//6cOHGC+Pj41oyn03JKEkvXZbD3WGGDWy6qLQ4cThnVeV6HNjaroikBvjpW7zrFgRNmiiusBPrq\n6BcfxK8nzA0e0335EoymfA72H0mPfkaGemVwxGrk6/JYBsfKqK3FrnYNv8h6gy0rrQoOF+hQKqBv\nuBW9pulNGzVWmfeWWygqlblisIZxQy6sgkCWZT7+OofvfyokOFDDs491JzJcf0HnPB92u8Tir3JY\nubYIvU7JY/e33SyLi+HcFZ933xzF1eNCxIrPS5gsy2RkVZO60cTmnSVYrBJKBQzu50dKcjCD+xnF\nv68gCK1u2hXxHDtVyoZ9OfSODmBIz9C2DkkQBEGgGUmJzZs3s3jxYgICAlCr1WLPeDNY7c4mZz8s\nXZfR5HaLM9UK57ZseHJ+aHxWRVO89Zo6Gz/M5Va3G0DO6H50L90P7qIoJJLCsaP4s/EgZU4Nbxf3\nIdxfw92j/ZFRoDBGgbJuzDYHHMzX45QV9A6z4KdvetOGzS6zaEUNuSaJYUlqJo+4sISEU5J595NT\nrNlkJjJcx7OPdW+TNolCk5VXFmRyPLOarpF6/j47jqiIi58YuRjyCiy8tuDkHys+k4O49Qax4vNS\nVlXtYOP2ElI3mcjKrgEgOFDD1IlhjB8d1KFbjwRBaH80ahX3T+nDc4t/YfGqo8RG+BFk7Ji/UwVB\nEC4lHiclFixYUO995eXlLRpMR3Om+mFfehHF5VYC/XQMTAxh+rgEVMo/yh08basI8NVjNPxR2uzp\n+c9oai1obUqFa8hkoJ+efglB/Hrc87YPY2kRo9cvw6bRsXXydP4RegwlMm8X98Gq0vP38QHo1ApX\nhYS67osBpwRp+XqsDiUxATZCDe43fNROxKiUSj5eaSEzV2JAdzU3jtVd0DYGu0Pijfey2La7lLho\nL+Y8ktAmazb3Hizj9feyqKxyMmZ4IPff3hW9ruP1wJ5d8bm6EJtNomeCD/fOECs+L1WyLHM0o4qf\nN5rYtrsEm01GpYLLBxlJSQ5mQJJfh94SIwhC+9Yl2IcZKYksXnWU91Yc4u8zBrp9zSQIgiBcPB4n\nJSIjI8nIyKCkpAQAm83GvHnzWLVqVasFd6k7t/rBXG49+/aMCYln3+9pW0XtIZfNOX9t08clUFxm\nYe9xU6OfSwYeu3kAcZFGyiqtbNib02R8ACqHnZSVn6O121hz1S3MjC0gWG3lq7JYjtgCeHC8d9wl\n6AAAIABJREFUkXCjmiKbNyH6uvMBZBmOFekot6oINTiIDrDXO/+5iZgAXx3+PomUlHvRM1rFLVfq\nUF7ABY/F6uQ/72SyL62c3okGnnw4Hh/vi5sIcEoyS7/P45v/5aNSKXjg9m6kjAnqcGsvz13xGRyo\n5bYbu4gVn5eo8goHG7abSd1o5nSeBYDwUB0TRgcxblQQAUZR8SIIQvswul8EaZnF7D5ayIqtWUwd\nHdfWIQmCIHRqHicl5s2bx9atWzGZTHTr1o3s7Gzuvvvu1oztktZY9UPtTRbQdFtFUK0KiPM5f20q\npZI7ru7J/owtSI2MaQj01REXaUSnUTWr7WPYlh8JNuVypM9Q+gwOYIA+k/2WQH6ojGZyfx8GRes5\nnGslLCam3rG/lWgorFTjp3PSI8T9po1zEzEWSwQlTi8MXlbumBSIWnX+F7NV1Q7mvXGCoxlVDO7n\nx+MPxKHTXdy7J6Xldl5fmMWBIxWEBmv5++y4Dlkx4G7F5313dKeqsrqtQxOaQZJk0o5VkrrRxI69\npTgcMmq1glFDA0gZE0xSD8MFJQkFQRBag0Kh4M6JPcjMLWfFtix6RQfQo1vHndUkCILQ3nmclDh4\n8CCrVq1i5syZfPrpp6SlpZGamtqasV3SGqt+OHc2RGNtFSOSwpl5VY96CYbmnL82pySxYltWk/H3\n7BZQZ/WoJ20fsRkH6XtgG8WBYZgnJHOv3yFMDh0LSnrTJ1LH1EEGzJVOFm4o5ak76h5bWKkiq0SL\nXi2RFG5xO8zz3ESMlyYKnSYUh1RFlS0TmcuA86tqKC2zM/e1DLKyaxg1NICH742+6Jstjhyv5NV3\nMzGX2BnS34+/3huDwcfjb9FLwrkrPocONHLndNeKT28vFVX1l84I7VBJmZ11W8ys2Wwmv9D1cygq\nQk/KmCDGDg/Cz7djPW8FQeh4vPUa7ruuDy9+vpf3Vhxm7t1DMXiJii5BEIS24PErR63WNZDMbrcj\nyzJJSUm89NJLrRbYpa6x6oJzZ0MAZ6sg9qWbKKmwEOCrZ2BicIPzIZp7/jM8Gaip16q4JaVu+8eZ\n+LYcyMNiqz/nwbe8mLFrv8Gu1rBj8jSeCDuOhIL/FvfBy0fPn8f643TCO2tL0Gg0deIrtyg5WqhD\npZBJCregbeBZWTsRo1NHoNd0wSnVUGk5hsLqaDAR05RCk5VnX80gr8DKVWODmXVb14va8y7LMitS\nC/nk6xxkCWb+qQtTJ4Z1qDvMTqfMT+tdKz6rqp1ERei555YoseLzEuKUZPanlZO6ycTuX8twOkGr\nVXDFyEBSkoPpmeAj2m4EQbikJEQZmTI6lu82nWTxqqM8eH2S+DkmCILQBjxOSsTGxvL5558zZMgQ\n7rrrLmJjY6moqGjN2C5pjVUXnDsbAlxtFTMmJHLjmHiPNmk09/zgqjTYe6ywydhH9YvAW1f3qaFS\nKrlxTDz70ovqJSWUTicTVn2BzlpDwd338nBSOf52G5+UJnBKMvLkOH8MOiUfbi4jy+xgwpCos/FZ\n7AoO5uuQZNfqT4Ou4Z6SM4mYimo/vLVdkSQrFdZjyDgIbCQR05jTeRaefeU45hI7N04O49YbulzU\nFyRV1U7e/ug3duwpxd9PzaP3x5LU0/eiff6Loe6KT5VY8XmJMRXbWLvZzNotZorMrnXFsd28SEkO\nJnlYAD7eoipCEIRL1+Rh0RzJKmZvehEb9uVwxaCotg5JEASh0/H41eTcuXMpKyvDz8+PH3/8EbPZ\nzP9n777jq6rvx4+/7p7ZN4MMMgkQZlgSgQQwQRwILmyxWqu1rv7ssLb9tvrVrse31dpWW23duKVS\nq9iqGAQJQ0BI2CMhJGQQktybm3Fz9z3n98eFkEAWSEgCn+c/rTfnnvO59+aGc97nPe65556BXNuw\n11v2Q090GlW/7/afzf4DksSbqw/R1ObtcX8RZh1Tx0T3uL6eSkZmfPkpsfVVGK7OZ/H1qWj2b8SX\nOJbchYuYbqthZKTMFwedHKiXyZ+W2LF/vwR7juvwBZRkWDxEmbqftHGSTqMiOTaJIzURSLIvGJCQ\ng6+np0BMb8ornfz6T4dpdfi5/eZ4rr8q7qye/3VVVDl58rkK6ho8ZGWaeejeVCLDL57U0Qarh1dX\n1LLlxIjPgtwolokRn8OC3y+zY3cLhUVWSva0Ismg1ylZkGehIDeK9BSjuJsoCMJFQalUcPeicfzv\ny1t55/PDjEoMJzHGPNjLEgRBuKT0GZTYv38/WVlZbNmypeMxi8WCxWKhoqKCuLieL+SeeOIJduzY\ngd/v55577mHChAn89Kc/JRAIEB0dzZNPPolWq2XVqlW89tprKJVKli5dys0333x+Xt0gO9vsh4Hc\n/4q1h9m093iP+wo3a3n8zumEGLU9btNdyUhS5UEmF6+nLTKayT+6GU3xB0ghkUizbmCE3wmyjKTS\nkzU+mZwcfcf6ZBkO1Oto96qID/WREOrv8/UeqPRztC4SlUpCVlQCbqJC+w70dGffoTZ+93Q5bo/E\nfd8eyYI8y1k9/+tau9HG829U4fXJXH9VMEND9TWadA4lbk+A9z+u54NP6vH5ZTHicxipa/Dw+QYr\nazfasLcEv5OZaUYKci3MmhGBQX/xjaQVBEGICNFx5zVj+eu/9vD8qn088u1p5/V8TRAEQehdn0GJ\nDz74gKysLJ577rkzfqZQKMjJyen2eVu2bKGsrIwVK1Zgt9u5/vrrycnJYdmyZVx11VX86U9/YuXK\nlSxZsoRnn32WlStXotFouOmmmygoKCA8PPzrv7oh4myyHwZi/71N6jhp2pgYtBoVDXZnj8GN00tG\nTI4W5n+2goBSxZFvfIur9q5GVqnx534DCIDjOChUKMOTiFF1vTtebtNic6qJMPjJsHi7nbTR2ZHa\nAMv/60apgO8tMZEYM/GcAz3bd7Xw5HNHkCR46J5UZs24cB23PV6Jl96uZk2RDaNBxUP3JjMj++L4\nXZdlmY3bgiM+bXYfkeEavr00gTmXiRGfQ5nPJ7G1pJnC9TZ2HwiW5JmMKq65Ipr83ChSkkQwSRCE\ni1/2qGiumJLI58U1rFh7mNuvHD3YSxIEQbhk9BmU+MUvfgHAG2+8cVY7nj59OhMnTgQgNDQUl8vF\n1q1b+dWvfgXAvHnzeOWVV0hNTWXChAmEhATr6KdMmUJxcTHz588/q+MJPettUgfAzPGxyLLMIy9u\noanVQ2SojokZFvKnJhIZeiq7ISBJSLKMSgmSX+KK1e9gcLezKW8xN4+oReF14Zu5BDnMAvYjyECz\nMhqjpETXKW5wrFVNTYsGo0YiK9ZDX/0caxoCvPyRC0mGO6/Vk54Q3Nm5BHo2bGni6ZcrUakU/M+D\naUyZEHbW+zhXdQ0ennzuCBVVLtKSDTx8XxpxMWffB2Mo6m7E543XxIk760NYTZ2bwvVW1m220eYI\nlk5lZZopyIsiZ2oEOu2FnT4jCIIw2JbOT+dQdTNflNQyLiWCqaNjBntJgiAIl4Q+gxK33XZbr3c5\nX3/99W4fV6lUGI3Bi8aVK1eSm5vLxo0bO6Z4REVF0djYiNVqJTIysuN5kZGRNDb2flf/UubxBc46\nQ6C3SR1RoToMGhWf76jteMzW6mFdcS3rimuJCtWRnRnsM7Fi7WHWnthu2rY1xNce4Uj6eLLnWEjX\nHmOrL4GxIyeibalBIQVYtdPJquKdRHbaR6tbTVmjFrVSZsIIN329hAa7xIsfuvF44daFOsamnHtT\nvU/XNfLCm9UY9Cp++YN0sjIvXM3o1uJmnnn5KE5XgAV5Fu5alohWM/wv+lrb/Lz172Os6WbEpzD0\neDwSm7fbKSyycqCsHYBQs5rFC2MomGMhYYR+kFcoCIIweDRqFfcuHsevl3/Fqx8fJCUulKgw8XdR\nEARhoPV5hXf//fcDsGbNGhQKBTNnzkSSJDZv3ozBYOjzAGvWrGHlypW88sorLFiwoONxWe5+ykJP\nj3cWEWFErR6YO7DR0UNz8kEgIPHKR/vYsreOxmYX0eEGZo4fwZ2LxqFSdX9x6/b6sbd6sFgMzJqU\nwKoNR87Y5rLxI9h+oL7H49paPazZXoNWq2Z3uQ2A+OrDTN32OW0hEbRfm8eVIUeo9pl4wZrO37w2\nFH4XW8pdfFjc2mUfZrOZqLhRoIDZYxREh/YeFLA2B3hxlRWHS+aO60KZP93U37erC1mWeXNlNc+/\nUU14mIY//3oio9IuTEDC75f450cNvPPvGnRaJb/80Wiumn9hG2oOBH9A5oOPj/HSW5U42v2kJBl5\n8LvpzJgS2feTezFUv39Dzdm+T2UVDj5aXcdnX9TjaA9mRUybHM6iBSOYM9NyUQTIeiJ+p/pPvFeC\nAPEWE8sKMln+yUFe/GgfDy/L7nY0uyAIgnD+9BmUONkz4uWXX+all17qeHzBggXcd999vT53w4YN\n/OMf/+Cll14iJCQEo9GI2+1Gr9dTX19PTEwMMTExWK3Wjuc0NDQwefLkXvdrtzv7WvY5iY4OobFx\naI45fXtNaZfxnw12F6s2HKHN4ea2K8d02dbp8fNOYSkHq+wd5RiTR1mYPzWBXWW2LpM6Zo2L5ZPN\nlX0e/8vdddgdHvROB1esfgdJqaDkmhv4cdxRXJKKp5vGkzcuAqWribpmP8s3tXZ5vk6rQWVMwBeA\nMdEe8PjpLSGmzSnx7EoXTS0yV1+uZUKKdE6fjSzLvP5eLR982oAlUsPjPxlFeIh8QT7nJruXZ16p\nZte+FkbE6vjZA2kkJxqG7O9Yf+3e38pL79RQ3c2Iz6/z2oby928o6e/75HIF2LAtmBVxuCL4NzMi\nTMON11jIn2PpKB1qaW4f0PUOJvE71X9n816J4IVwsZszcQR7K5rYfrCBjzZVsmRO2mAvSRAE4aLW\n71z448ePU1FRQWpqKgBVVVVUV1f3uH1bWxtPPPEEy5cv72haefnll7N69WoWL17MZ599xpw5c5g0\naRKPPPIIra2tqFQqiouLO/pYCEG9Napcv/MYKBQsyx8FBKdsbNx9DLdX6tjG1urh8x215E9L5Ld3\nX9al/MPjC/RY2tFZc7sHrVpm/mfvYnK2sW32Vdw+vgWDMsBfm7LQhIVy41QjEgqeLrTj9Z/KeFEq\nFOTlTMNkMhKldxIX2ns2jMsj8+KHbhqbZeZO0TB/6rmNkAxIMv94vYo1RTYS4nQ8/pNRWCJ7ni5y\nPu050MZTz1fQ0uonZ1o43/9OMkbD8O6vUN/oYfk/xYjPoUyWZcoqnBQWWdm41Y7bI6FUwLRJoRTk\nWpg6MeyimfIiCIIwUBQKBXcsHE3FsVY+2lzJ2OQIRo+8cE2xBUEQLjX9Dkr88Ic/5I477sDj8aBU\nKlEqlb0GDz7++GPsdjs//OEPOx77/e9/zyOPPMKKFSuIj49nyZIlaDQaHnroIe666y4UCgUPPPBA\nR9NLIai3RpWSDOuKa1Gd6BbZOZvidCWlVm7MS+/SIPL0iRo9CTNpSS/6jJFVpVQlj2bavFiSNPV8\n5khgrxTHY1dEoFTIvLqxjVZP16DDZVMnEhdjoa6+npnTDMCZF+cne2UYdFpe+9hLbaPEzHFqrp2l\nPafJDT6/xF9eqGTz9mbSRhp49McZF+TiWZJk3v+4nnf+fQyFEh68O525M0OH9fQJtyfA+/+t54NP\nxYjPoard6Wf9l00UrrdRWeMCIDpKy/VXRTF/dtQFC8YJgiBcLIx6DfdcN47fv1XMCx/t51d3zsBs\nEEF4QRCEgdDvoER+fj75+fk0NzcjyzIREb1HjG+55RZuueWWMx5/9dVXz3hs4cKFLFy4sL9LueT0\n1qjypOJDDX1e+Nrb3LQ4PGdMrbhlfgYQDFrYWt3dPldXVsrUTZ/SbgrFvXgueeYqyr0hvN2awYML\nwokyq/h3cRubSrumgmdlpjEqdSTWpmZwHUevzejy84AksWLtYUpKG2lq9RJuGg1yKBMzVNw4T3dO\nF/NuT4Annq2gZG8rWZlmfvFgOibjwGcptDn8PP1SJTt2txIVoeEn96UyJ2fEsE0fFyM+hzZZljlQ\n1k7heiubt9vx+mRUKpg5NZwFeRYmZoV0BCsFQRCEs5eRGMbi2Sn8e0MFyz85yAPXjxf//gmCIAyA\nfgclamtr+cMf/oDdbueNN97gvffeY/r06aSkpAzg8gQAtUqBUa/pNSjR1Obtcz9ajQqz8cwov0qp\nZFl+JosuT+FwbQtb9h+nvKaVprbg8XRuJ/mfvg3I7Ll6CT+Ir8EhqXmmaRzXTQllXIKOnVVu/rPz\nVEBCr1WRmjSCqROzcLnd+B3VLJ13Zk3mirWHO7I0TNp0kEPxBZpRaZwolZl9vqbTtTv9/PYv5Rw8\n3M7UiaE8fF8aOt3AN6g6XNHOE89V0GjzMmlcCD+6O4WwYVzWcOSok5ffESM+hyJ7i5cPP62ncIOV\n2rrgd3REjI783Cjmz4oiPGz4/t4JgiAMNdfkpHDgqJ3i0ka+2HmMedkJg70kQRCEi06/gxKPPvoo\nt956a0emQ0pKCo8++ihvvPHGgC1OCFqx9jDVDY6vvR+3N8AHGypYlt/1Yt/p8fHWZ6UUlzbi8QV7\nUeg0SrRqJV5fgLlr3iOkrZmSmVfwrckOtAqJZ5rGkZwYzjWTzNS3+HmxqIXORRsmk4kZU4INS2ek\n+DFnJmNrcXcZZdq5V4ZRk4JWHYU/0IbDc5hdZVpunpve77GnAM0tPn71p8NUVruYPSOCB7+bjEY9\nsAEJWZZZ/YWVl9+pIRCQueW6OG6+bsSwvUN9csRn4XorsgyXnRjxGSdGfA4qSZLZc6CNwiIrW0ta\n8Ptl1GoFcy6LoCDXwvgxZnH3ThAEYQAolQruXjSO/315K+9+XsaoxDASoy/cSHFBEIRLQb+DEj6f\njyuuuILly5cDMH369IFak9BJb00uz8XJvhI6jaqjdGLj7jrc3sBpxw0GJ8bv2kTqkX3UJqYzY8EI\nRqhtrGobSb0ulkdyw/H4Zf72eTMu76mQhEGvY/7sy5CBsTFuVn9ZdqI8IzgJJDszmlvmZ3T0ytBr\nEtFpYvBL7Tg8pYDUY6lJTxqsHh5/6jB19R6unGvh7m8lDXhgwOUO8I/XqyjaYifErOJH30sle3zo\ngB5zoPj9Mp+ua+TdD+todwZIHKHnrmWJTB43PF/PxaKp2cfajTbWbLBS3xjMhkpJMjJ/ViR5l0cS\nau73n3BBEAThHEWE6LjzmrH89V97eP7DfTz67Wloz+KmiSAIgtC7szqjbW1t7bgbV1ZWhsfT+8SG\nS93J5o2dswPOVm9NLs9F54v9zqUT3bE01JCz8b+4DCYCS/KYaarjgCeMLbosHrs2Go3Cz8sbWqlt\n9nc8R6VSMW/WDAx6PSPD3Xy0fi+b9x7v+Lmt1dNxzBvz0okwJyJL8QQkNw73IWSCwZGIED1h5v7d\nna+pc/P4H8uw2X3ceE0st94QP+B3jauPuXjyuQqqj7nJTDfx8H2pw7aZ4K59rbz8Tg3Vx06M+Pxm\nIlfNC474FC68gCRTsqeVwiIr23e1IEmg1SqYPyuSgjwLs2fGYbV+/cwpQRjqSktLuf/++7njjjv4\n1re+hc/n4+c//zlHjx7FZDLxzDPPEBYWxqpVq3jttddQKpUsXbqUm2++ebCXLlyEskdFc8WURD4v\nruHdtYe5/crRg70kQRCEi0a/gxIPPPAAS5cupbGxkUWLFmG323nyyScHcm3DVtfmjV2zA1TKsysn\nCDPriAjR9qtnRH9oNSrCzLo+MzA0HjcFn7yFSgpw4OpFPJB4nJaAhmebxvHQTRY0Cj+f7mlnU5mz\ny/NyL8vGEhlOe5uVv68u7rEPRvGhRpKik5GleCTJg8NzEJlTwY3sTEu/AjnllU5+/afDtDr83H5z\nPNdfFdfPd+LcbdjaxHPLq3B7JK7Nj+b2pQkDXiYyEOobPby6ooatxS0dIz5vvSF+WPfCGM4abV7W\nbLDy+QYbNrsPgLSRBgryLMy5LLKjWaso0xAuBU6nk9/85jfk5OR0PPbPf/6TiIgInnrqKVasWMH2\n7dvJycnh2WefZeXKlWg0Gm666SYKCgo6RpELwvm0dH46h6rtfFFSy7iUCKaOjhnsJQmCIFwU+h2U\nSE1N5frrr8fn83Hw4EHy8vLYsWNHlxMGIej0DITO2QGn93Poi06jYkxyZJdsg/Oh1wwMWSZ33b8I\na7FxYEYet03zoETmdU82t12ZSrw5wOEGHyu3d50qMXncaJISRuB2tfHv1VuQZLn7/QNtThMfrPdi\n0itISWjhwFEl9rZghkR2pqVjIkhv9h1q43dPl+P2SNx3+0gWzLWc1Xtwtnw+ieX/rOXjzxvR65T8\n5N5UZs0YfnPLux3xeWsS6clixOeF5vfLfLWrmcL1Nnbua0WWwaBXsmCuhQW5FjF2VbhkabVaXnzx\nRV588cWOx9atW8eDDz4I0DHd68svv2TChAkdo8SnTJlCcXEx8+fPv/CLFi56GrWKexaP5zfLv+LV\njw+SEhdKVJh+sJclCIIw7PU7KHH33Xczbtw4YmNjycgIXjD6/f4+nnXp6S0DoXM/h/4KSBIazfm7\nM+rxBktKzEYtOq0St1c6Y5sx+7YxqnQXx+NGsnBpGpGB47SMzuWO8ZehddQgK9X8bU0DUqeYQ9rI\nRCZmZdLqaOfLLdt7DUiolWGYtGnIskTSiCbuvCYNjy/5rEpdtu9q4cnnjiBJ8ON7Upg9I/Kc3o/+\narB6+OPfKyircJKUoOdn96eRMGJ4nYjIsszGrXZeey844jMqQsPtN4sRn4Ohrt5NYZGNdZtsNLcG\n/45mppsoyI1i1vQIMeVEuOSp1WrU6q6nKLW1tRQVFfHkk09isVh47LHHsFqtREae+vsfGRlJY2Pv\nfZgiIoyo1QPzHYuODhmQ/Qr9N9CfQXR0CN+7fgJ/e28Xy1cf4nf3Xo5KNfyyJQeS+B4MPvEZDD7x\nGZydfgclwsPD+b//+7+BXMtFobcMhLNt3gjBrIv1JXU9/nxudjw+n8TBKjv2Ng8RIXompkeyu9zW\nbelEZGiwV8O/1pd3G5CIsB1n9voPcesMKG/MY2TgOFL8KPRTcsFeCSgwJWSg0TaCO7j/6KgIcqZN\nxOv1sb24hAZ7z/XuKqUZsy4Y1HJ4Simt9uHxjUSnUfX7fdmwpYmnX65EpVLwPw+mMWVCWL+ed66K\n97Tw5xcqcbQHmJsTyT23J6HXDa+LxiNHnbz0djUHytrRqBXcdG0cN1wdKy5+LyCvT2LrjmY+K7Ky\n92DwO2I2qbgmP5qCXAvJiYZBXqEgDG2yLJOamsr3v/99nnvuOZ5//nmysrLO2KYvdruzz23ORXR0\nCI2NbX1vKAyYC/UZZKdFMm10NNsPNfLqqr0snp064MccLsT3YPCJz2Dwic+ge70FavodlCgoKGDV\nqlVkZ2ejUp26kImPj/96q7vIhJl1RIbqug0InE3zRug960KpgLzsBJblj0KlVJ7RVPPtNaXdNrHM\nzgyWOHS3X7XPS8HHb6IO+Dl07WK+l2TFLulRz1iMtrUW5ACEjMAUGkZ2ZjRrttdgNhmZN2s6CoWC\n9V9uRyl7USigu/NClcKIWZcJKHB4yvBLbdjbOKtAzafrGnnhzWoMeiW//EEGWZkDN5YrIMms+LCO\nlf85jkql4L7bR1KQFzWssgpaWn28/e86CovEiM/BUl3rCmZFbLbhaA82ch032kxBroWcaeFoNeIO\nmyD0h8Vi6Zj8NXv2bP76178yd+5crFZrxzYNDQ1Mnjx5sJYoXCIUCgXfvmoMFXWtrNpUwdjkCDKT\nRB8TQRCEc9XvoMShQ4f46KOPujSPUigUfPHFFwOxrmFLp1F1XLCfrr/NG0/qLetCluHK6UkdjTNP\nzzS4ZX4Gsiyzac/xjnGfeq0SSZZpanV3u99Z6z8k0t7Aockz+cZlfiQUPG3L4ofuZpDdoA8HQ0TH\n/hUKJWZLOnqdjj37DqDGTXVje7frVSr0mPWjUaCi3VuOX2oB+h+okWWZ9z+u581/HSM0RM1jP84g\nbQB7IDS3+vjz85XsPtBGjEXLT+9PG1b1/aeP+EyK13PXNxOZJEZ8XhAej8Smr+wUFlk5eDj4nQgN\nUbNkYQz5uRYS4oZX6Y8gDAW5ubls2LCBG2+8kX379pGamsqkSZN45JFHaG1tRaVSUVxczC9+8YvB\nXqpwCTDpNdxz3Xh+/1YxL3y0j8e/MwOzQTSKFgRBOBf9Dkrs2rWLr776Cq12eI49vJBONmksKbVi\nb3OfVfPGznrLujhZhtETlVKJQqHoCEgAuL0Sa3fUIkvyGfsddbCYsfu/ojE6gcuvSyJc5eCN5gxG\nZyVhkNtBrYeQU5MtFAolWWPHYXepidQ5uSM/jl8vr+52LQqFlhDdaJQKDe3eCnyBpo6f9SdQI8sy\nr79XywefNmCJ1PD4T0YN6EXdgTIHT/2jApvdx7RJofzguymYTWc1PXdQiRGfg+fIUSeFRVaKtjTh\ndEkoFDB5XAgFeRamTw4bllNaBGEw7N27lz/84Q/U1taiVqtZvXo1f/zjH/nd737HypUrMRqN/OEP\nf0Cv1/PQQw9x1113oVAoeOCBBzqaXgrCQMtIDGPx7BT+vaGC5Z8c5IHrxw+rbEpBEIShot9XWuPH\nj8fj8YigRD+olEqW5WdyY176WTVvPN3Xybpwenxs3N19L4rd5U2MT4ti/c5jAITZG8ld9z5ejQ7t\nzXPIMrWwzRVNmSmVn082ICtUKMKSQHHqgqrcqg0GJIx+JsTJNDb7u82+UKAOBiSUOlzearz+YNlI\nVKcxqb0JSDLPv15FYZGNhDgdj/9kFJbIgfkdlGWZjwobeP29WmQJbrspniULY1Eqh8cJxukjPhfk\nWVh2/Qgx4nOAOV0BNmxtonC9jfKjwVr1yHAN11wRQ35uFDEWUSojCGdr/PjxvPHGG2c8/swzz5zx\n2MKFC1m4cOGFWJYgnOGanBT2V9opLm3ki53HmJedMNhLEgRBGHb6HZSor69n/vz5pKdl8rcfAAAg\nAElEQVSnd+kp8dZbbw3Iwi4GZ9O8sSfnmnXxdmFZlyyJzmytbnaWBYMDmoCPgk/eQuPzUrZoEXcm\nt3Dcb+BddxY/uy5YqvH5YZn8nFMXtoePy9S2ajBpJbJiPSgUPWV1qDDrR6NSGnD76nD7g0ESBfCD\nmyaSGNP73SyfX+IvL1SyeXszaSMNPPrjDMIH6AK73Rngb68eZcuOZsJD1Tx0byrjxwyPu21ixOeF\nJ8syZUecfLbeyqav7Lg9EkoFTJ8cRkFuFFMmhKFSDY9gliAIgnDulEoFdy/K4rFXtvHu52WMSgwj\nMXrg+l0JgiBcjPodlLj33nsHch1CD84l66LN6WV/RVOv27S0+wC4bMN/sViP4Zgzi1tmKfDKSv5m\nH8edBRbCjSre3drK9qoAc6YF0GlU2Jwq9tRJqBQyoy3tqDs12ZyYHsW6kmMnjqDErBuFWmnC42/A\n5TtV2hEZqie6j2CN2xPgiWcrKNnbSlammV88mI7JGHzdpzf1/Loqqpw8+VwFdQ0esjLNPHRvKpHh\nQz+7oLsRn9++OYHZYsTngHG0+1n/ZROFRVaO1rgBiI7ScsPVUcyfHUVUhMgkEwRBuNREhuq58+qx\n/PX9PTz/4T4e/fY0tOfh/EQQBOFS0e+gxIwZMwZyHUIf+pN14fT4eLuwjH0Vto6gQ29SD+9h/O7N\nNEXGMmF+HCaFkxfto8nJjmdUrJatR1x8ti+Yjv7iR/tYmj+OvfV6ZFniky82s8rvwqjX0O7yYm/z\nEhmqIynGjMPpx+cbiUYVitdvw+mt7HLcvkpP2p1+fvuXcg4ebmfqxFAevi8NnU5JQJJYsfYwJaWN\nNLV6iOxUAnKy4efZWrvRxvNvVOH1yVx/VSy33hA/LO5wdzfi88ZrYofdqNLhQJZl9pU6KFxv5cvt\nzfj8MioV5EwLZ0GuhYlZIcOmxEcQBEEYGNmZ0cyfksDa4lpWrD3MbVeOHuwlCYIgDBvDp3uf0KOT\nF+sbd9f1WLJxupCWJuaueQ+fWoNh6WzSjE62euPxxKWSP85ETZOPVze2dmy/r7KVbZVqzCYVRVt2\n0NjUDNClXMPW6sHW6iE1djzNbUYyEhWEhHjYVabvd+lJc4uPX/3pMJXVLmbPiODB7yZ3NAdcsfZw\nl/4atlZPx38vy8/s/xsGeLwSL71VzZoNNowGFQ/dm8yM7KE/zuuMEZ9TwrhjqRjxORCaW32s29TE\nmiIrx+qDv+cjYnUU5FqYNytywEqJBEEQhOFp6bwMSqubWVdSS1ZKJFNHRw/2kgRBEIYFEZS4CJx+\nsd4bvVaJ1+Ul/9O30HndVF11JbemOjkWMFOXMYdvj1Lg9Ej8bW0zXr8MgFKpZN6s6ZhNRnbuO0Rl\n9bEe92/UJNPcZiQ5TsmdiwzoNJncPLd/pScNVg+PP3WYunoPC+Za+N63klCduAPt8QUoKW3s9nkl\npVZuzEvvdylHXYOHJ587QkWVi7RkAw/flzbkL+rFiM8LQ5Jkdu9v47MiK1+VtOAPyGjUCnJnRlCQ\nZ2FcplmUxgiCIAjd0mpU3LN4PL9Z/hXLPzlA6ogQIkPFCGhBEIS+iKDEMNfbxXpnEWYdU8dEI8ky\nzqefJ7a+muoxE7h+jhqXpGBH/DyuzNKilP38fV0zDa2nMi5ypk0ixhJJRVUNu/eX9ngMvSYRnSaW\ngNTOkjwzOk3w4q0/pSc1dW4e/2MZNruPG66O5Vs3xne5+GtxeLqd7gFgb3PT4vD0q6no1uJmnnn5\nKE5XgAV5Fu5alohWM7THNHYe8Wkyqrjrm4ksFCM+z6smu5fPN9pYs8FGg9ULwMgEPQW5FvJyIgkx\niz+VgiAIQt8SLCa+mT+K1z49xAur9vHwsuxzLjEVBEG4VIgz7WGut4v1k8LNWh6/czohRi1NhRs4\nXFyEIzKaWTenYVR5WR8+m4LpsSh87XxY4mBX9an9TRgzivTkRBptdjZ/tavHY+jUcRg08QQkN2rN\nUWIjp/b7NZQfdfLrpw7T6vBz+83xXJ0fTWOzq0tmRffTPYIiQvSEmXvPdPD7Zd58v5YPP21Aq1Xw\n4F3JzJsV1e81DobjDR6Wr6hha4kY8TkQAgGZ4j2tFBZZ2bG7BUkCnVbJFbOjKMizkJlmFFkRgiAI\nwlnLnRTPvoomth9q5D+bj7J4dupgL0kQBGFIE0GJYa63i/WTpo2JIcSoxXusnsofPo5Cp2XmzxcR\nIdfhzZjOzAnZ4LQSUJv4bF9Dx/NGJowge8IYHO1O1m36ioAkdbt/rSoao3YkkuTF4TnI/PEx/S6l\n2Heojd89XY7bI3HPbYk0BZp55MXyMxpZ6jQqsjOjuy1T6atxZpPdy1PPV7K/1EF8rI6fPpBGcqKh\nX+sbDG5PgH/9t54PT4z4HDvKxHeXJZEmRnyeFw1WD2s22Fi70YbNHmwIm55spCAvijmXRWI0iGah\ngiAIwrlTKBR8+6oxVNS1smpTBWOTI8hMGvp9qwRBEAaLCEoMA72NwOztYl2vVTF74ghumZ+B7PdT\n/v1H8dtbSPnhN4iQ65CiEpAnzQbHcVBp8JtGIFMJQFREGLNnZOPz+Vm7aRtuT/dBD40qEqM2BUn2\nodIcYf74mF4bWXa2fVcLTz53hIAk8+N7UqhqtfbayPLkfktKrf1unLnnQBtPPV9BS6ufnGnhfP87\nyUP2orPbEZ9LE5g9Q4z4/Lp8fontO1soLLKxc18rsgxGg5KF8ywU5FpEwEcQBEE4r0x6Dd+7bhy/\nf6uYFz7ax+PfmYHZIDIdBUEQuiOCEgOgtyDC2Wzf2whMf0DueM6ZF+s6xoyM4JsFmRh1wY+45qkX\nadtSTER+DgkJDmS1Ht/lS6C9AVBAWBItbX483gBGg555s2agVClZt3EbzS1tAIQYNbQ5T40aVSvD\nMGnTAIl29yH+9zvjSIwJ6dd7tGFLE0+/XIlKpeB//l8648ea+fDFA91u27mR5bL8TG7M67txpiTJ\nvP9xPe/8+xgKJdz5zUSuzY8eshf3p4/4vPnaOG4QIz6/tmP1btYU2Vi7yUZLqx+AMRkmCnItXD49\nXLy/giAIwoAZlRjO4tmpfLChgtc+Ocj9148fsuchgiAIg0kEJc6j3oII3TU56mv7nkZgHqpqxun2\nnfGcni7WWzd+xbG/vIQ2cQSZC5NQBtrw5SyFgANkCUITQK0nzBwgOsLIjKnTMBr0fLVzL7XHg+Uc\nEWYdv7htCr9/qxhbqweV0oxZFwyGODylhIVIRPej0STAp+saeeHNagx6Jb/8QQZZmWYa7M5+N7Ls\nq3Fmm8PP0y9VsmN3K1ERGn5yXypjMsz9WtuF1tLq4633j7Fmg61jxOd3bkkkNnpoTwMZyrw+iS07\nmikssrL3oAMAs0nFooIY8nOjGJkwdEt3BEEQhIvLtTkpHKi0s6O0kfU7jzE3O2GwlyQIgjDkiKDE\nedRTECEgyVw5PemMYEFP2wPcmJfe41SN6gZHt89Zlp95xsW6r9FG+fcfQaFSMvqe+WgDTfizZiOF\nhYCnDQyRoA8DQKtWkZczFYMpjEPllRwoq+jYz9Qx0USFGcjOjGbdjibMukxAQbvnMH6pjezMxD6z\nQmQ5mL3w5r+OERqi5rEfZ3SkzX/dRpYnHa5o54nnKmi0eZk0LoQf3Z0yJBtD+v0yn6xr5N0P6nC6\nAiQl6PnuNxOZmCVGfJ6rqloXheutfPFlE4724PSY8WPMLMi1cNnU8CE/ZUUQBEG4+CiVCu5elMVj\nr2zjnc/LGJUYRkL00LxRIgiCMFhEUOI86W005/qSWtYV1xJ1WvlFT9uXlFrJnRTf51SN059zssTh\nJFmSKH/wMXwNNpLvWUK4tgkpJplAZja4rKAxgjm2Y/sjTRoMJhMeVxvl5YdRKjijb8P87DR2l8bh\n8ytweo8QanaTnZnYZx8JWZZ5/b1aPvi0AUukhscfGkXCiFOzu79OI8uT+1/9hZWX36khEJC55bo4\nbr5uBCrl0EuT3LmvlVfEiM/zwu0JsGlbMCviUHk7AGGhaq6/Kpb83CjiY8V8eEEQBGFwRYbqufPq\nsfz1/T3848N9PPrtaWj72RBcEAThUiCCEudJb6M5JTn4v52zGvKnJvZaroAs9zlV4/TndC5xAKh7\n9nVa128hfM5UEtN8yHoTvpnXBAMSSjWEJcKJ2sYqu5LqZi16dYBZY5XMHT3jjFIQe5vES6s8+PxK\nrpujYWzKqH71zQhIMs+/XkVhkY34WB2P/2QU0VHaM7Y7l0aWAC53gH+8XkXRFjshZhU/+l4q2eOH\nXsaBGPF5/pQfdVK43sqGrU04XRIKBWSPD6UgL4rpk8JFgEcQBEEYUrIzo5k/JYG1xbWsWHuY264c\nPdhLEgRBGDJEUOI86c9ozpNKSq0sujyl13KF6Agjk0ZZWLujtl/HP73EoW3bTmqe+DuaWAujrx6J\nAg++y68Hb+uJBSeCUk1Akvj35uNExqbj83lZt2ErRxLN3DI/o0uAw+GUef4DF/Y2mZuuMJMz7tSx\ne2vs6fNLPP1iJZu+aiZtpIFHf5xBeA8X4Sqlst+NLE+qPubiyecqqD7mJjPdxMP3pWKJPDPgMZhc\n7gD/+u9xVq1uECM+vwanK0DRliYKi6wcOeoCICpCw7UFMVwxO4oYi+jDIQiCIAxdS+dlUFrdzLqS\nWrJSIpk6OnqwlyQIgjAkiKDEedJb+cHp7G1uXB5/n+UKZ3Ovt3OJg9/eQvn9vwRZJvOuXLRKF/6J\n85ANGvC7IWREsHQDWFlUTXhsBjLwxebt1FubqT7eDAR7VAC4PDIvfuii0S4zPQsKcvQ4Wt19Nur0\neCT+8OwRSva2MnaUiV/+IAOTse90xb4aWZ60YWsTzy2vwu2RuDY/mtuXJqBRD52+AbIs89kX9Tz7\nSrkY8XmOZFnmUHk7hUU2Nm2z4/FKKJUwfXIYC/IsZE8IHZIlOoLQX2c7rUkQhOFLq1Fxz+Lx/Gb5\nVyz/5ACpI0KIDBVlhoIgCCIocR51Lj9oanOj4FTpRmcnsxp6K1fw+ALsLLN2exydRolJr6HZ4Tmj\nxEGWZY786Fd4j9WTdPtCIsNcSCMyCKRkgqcV9OGgD8fjC3Dc7sYUmYxOq2XTVzupt9o6jlF8qJHc\nSfGEm/Us/6+XmkYJFDYKt5ezs9zAxPQoJFnuksnRuTxl8eVp/PYv5Rw83M6UCaH89P40dLrzEzDw\n+SReXVHLJ2sb0euU/OTeVGbNiDgv+z5fyo86eemtag4eFiM+z0Wbw88XXwazIqpr3QDEWrRcMSeK\nK2ZHERkxtLJhBOFsne20JkEQLg4JFhPfyB/F658e4oVV+/jpsikoRXBdEIRLnAhKnEenlx+s3lbF\nupJjZ2zXOauhp3IFW0vPIzI9PonsUeEsmpVCZKi+y921+pdX0PxZEaHTxzMyS4FsDMU3LR88LaDW\nEzDFsOLzMnaWWZkyOZu4GBN7D5ZRXlnd5RhNbR4ee/krwk2jQQ7F62+i3VsOQIPdxZrtNei13Z84\nf7XPytYiP1U1bi6fHs4P707pNoPhXO4QNlg9/PHvFZRVOElK0POz+9O6NMwcbKeP+MzNsbBsSawY\n8dkPsiyz92AbhUVWvtzejM8vo1YpuHxaOAV5FiaODREnbsJFo7fpSyez1ARBuDjlTYpnX0UTOw41\n8p/NlVw3O3WwlyQIgjCoRFBiAJwsP1hWkIlKpeyzcWN35Qp99ajYsr8es1HT5eTVsWs/1b/5C+rI\ncMYsSkGhlPFdvhi8LaBQQVgSK9YdYc32GnKmTiQuxkJVbR3Few52ewyDNhXkUHyBlo6ARGdur3TG\nY5JPQVWFBsnnRhfmoV6q470v/F3u/p1+hzDcrGNypoVl+aN6vUNYvKeFP79QiaM9wNycSO65PWnI\nZB74/TKfrG3k3Q+7jvi8Ii+Bxsa2wV7ekNbc4mPdZhtrN9mpORbsFZEQpyM/18K8yyNFI1DhotPb\ntKbuJikJgnBxUSgU3HHVGCrrWvlwUwVjkiPITAof7GUJgiAMGhGUGEDn0rjxpP70qOh88hpoc1B+\n3y+QfX4y75yNThfAn70AWQNIQFgCHklJSWkjY0elMSotGZu9hY1bS7rdt0GTjE5twR9ow+EpA7qp\nQzlNwKukrcaM7Feij3Cjt7hpauOMu3+n3yG0OzysK67lcE0L/3vHtDMCEwFJZsWHdaz8z3FUKgX3\n3T6SgryoIdOXYee+Vl5+u4aauuCIz+8uC474VKmGxvqGIkmS2bW/jcL1VrbtbCYQAK1WSV5OJAW5\nUWRlmofM5ysI51tv05q6m6QkCMLFx6TX8L3rxvH7t4p54aN9PP6dGZgNIggvCMKlSQQlLoDuMiH6\nU7pwy/wMnG4/m/ce7/bnJ09eo8MNVDz8OzyVNcTfnEdUdIBAUhaBEYngd4EpBrRmWuxOjKZwpk3K\nwulys27TNvyBwBn71WsS0Wti8UtOHJ5SglGNM6mUEDjxI79bhaPWhBxQYrC40Ed2PeE+GUAJ/v/u\n7xBWNzh4u7CU264c0/FYc6uPPz9fye4DbcRatDx8fxrpKUPjZP14g4dXV9Sw7eSIz7kWli0RIz57\nY7N7+XyDjTUbbDTavAAkJ+opyLVww6KReFzuQV6hIAy83jLhTp+kJAjCxWtUYjiLZ6fywYYKXvvk\nIPdfP14E5AVBuCSJoMQFdjbNzVRKJbddOZpDVfZeT14b3/6AplWFmCeOIjVbjxwSiX/i5eBvB10I\nGKMAUGsNzJk5hUBAYt2mbTg7XQBGheq4b8k4nnu/AVmKJyC5cbgPInNm0OIkjVrJrKxY1n3ZQFut\nGSQwxjjRhXvP2PZkAAXo8Q4hQEmZlaXzA+g0Kg6UOXjqHxXY7D6mTw7jwbuSMZsG/1f25IjPD1c3\n4BcjPvsUCMjs2N1CYZGV4t2tSDLodUry50RRkGthVJoRhUJBqFlDowhKCJeA3jLhOvccEgTh4ndt\nTgr7K+3sKG1k/c5jzM1OGOwlCYIgXHCDf4V3iTnb5mZ9nbwGDldw9NE/ogoLYcySdBQaDb6Z1wYD\nEiodhMSDQoHHr+CQ1YBareSLzdux2VtO21c0DU0mZCkeSfLi8BxExt/ra/H4JFQePa01ZpDBNMKJ\nNsTX7bad7/6Fm3XYHd0HJlocXprb3Gzd7uD192qRJbjtpniWLIwd9CaHsixTtMXO6+/V0tQsRnz2\npb7Rw5oNNtZutNHUHPy9yEgxUpBrYc5lERgM4sJLuHT1Nn1JEIRLh1Kp4HuLsnjslW28vaaU8BAd\nkzMsg70sQRCEC0oEJS6gc21u1tPJ600zEzh4zR3Ibg+jvpuHwaTAN3UBstIPCiWEJYJSRUCCvcd1\nePxKEkNdJEbIOFp1XUaKZsQns2KNB6MeUhKaOXhUSVMr6LTKbhtaAnhbNbz/YRMowJzQjsbUcxCj\n892/yZkW1hXXdrtdmFHPK28dZ1tJC+Ghah66N5XxY0J6fV8vhDNGfC6K44arxYjP0/n8EttKglkR\nu/e3IctgNKhYOM/CgjwLqSNFNokgwNfrOSQIwsUlMlTP/UvG8/TK3Tz7/h7uXTyeqaOjB3tZgiAI\nF4wISlxA59rcrKeT1yM/+hXusgrirp1JdJKKQOpEpKgokP0QmghqHbIMBxt0tHlUONtsPL96R0fZ\nSM64OJZekcGbq+tYscaDLMu4fOUYdGZ+ddd03iksY1MP/Sw8zVqcDQZQgjnegcbYfZmHUgF52Qld\n7v4tyx/F4ZoWqhscXbb1e5Q0HjNQ4WghK9PMQ/emEhk+uP0Zmk+M+Pz8xIjPmVPDuWNpQr9GfHp8\nAeqs7QR8gYv+YqP2uJvCIivrNjXR2hYMTo3JMFGQZ2HWtAh0up6nqgjCpay7nkPnornFR/lRJ+WV\nTo4cdWJt8vGDu5NJijech1UKgjDQxqZE8qOlk/jLe7v5+wd7+d51WcwYGzvYyxIEQbggRFDiAjIb\ntT1mHvSnuVnnk1frvz7GuuIjTGNSSM8JRQqLwT8mGyQvGC3BXhJApV1DY7saj9vB+59tQZKCx7a1\neti09zgVdQGczpEAODyl+F1trNneTCAgcbDK3u063E06XFYDCpWEOaEdtb7nvhN5k+O5bcHoLo+p\nlEr+945pvF1YSkmZlRaHF7XXREuNBikgc/1Vsdx6Q/ygTq/oacTnxKzQPp/bpW9Im4fIkJ77hgxn\nHq/ElzvsFK63sb80GGAKMatYtCCGgjlRJCWIiyFBGAhNdi/lR50cOerqCEScLJE6KTpKO0irEwTh\nXI0eGcFDt0zmT//cyfOr9hEIyOSMjxvsZQmCIAw4EZS4gD7YcKTHUoizaW7mKj9K5c/+D6XJyJgb\nRqHQG/BNKwgGJLQmMAVT/mqaFRy1a9GqAny2+auOgMRJKoUBpzMJUNLuLcMvtXX87GSwoDNZBpdV\nj8euR6GWCEl0oNJ23WeoUUuby0tkH/XRwSaeY1gy28fzb1SxaVsLRoOKH3w3mRnZgzure+feVl5+\n59xHfJ5t35Dh5miNi8L1VtZvacLRHgxITRgbQkFuFDOnhKPRXDyBF0EYTLIsY7N3zYA4ctSJvaVr\nqVxUhIbpk8NITzaSlmwkPcU46FlmgiCcm4zEMH7yjWz+tGInL/1nP/6AxJxJ8YO9LEEQhAElghIX\nSG/9JHQaJbMmxOHpR5q/5PZQfs//IDldZH43F2OYGt+0BchqCZQaCE0kIMu8v/EYkXEZBPw+1m7Z\nynFb11IJpUKHWT8GUOH0HsEXaO7y82aHl3CzluYTgQlZBmeDAW+LDqUmQEiiA6VG7vKcCLOOx++c\njsvj71d9dF29myeeq6Cy2kVasoGH70sjLmbwRuHVNXhY3mnE55VzLSy7Pp7QkP5/Tc61b8hQ53IH\n2LTNTmGRldIjTgDCQ9XccHUs+XOiGBGrH+QVCsLwJssyjTZvl+yHI1VOWlq7BiAskRouyw4jPeVE\nACLZSHiYCEAIwsUkLT6Uh7+ZzR/fLeHVTw7il2TmiakcgiBcxERQ4gLprZ+Exyfxq1e3E9XLeNCT\nqn71F5z7S4ktyCZ2lIlAxlSk8LBg1CAsCZQqVn5RSWh0Bgpg/ZYd1NV3LcNQKDSYdWNQKjS4vJV4\nA7Zuj+X2Bk+GZRna64z4HFpUOj/mhHaUavmM7SdnWggxatFqVH02btuyo5m/vlKJ0yWxIM/CXcsS\n0Q7SHfbTR3xmZZr57rLEc2rKeK59Q4YiWZYpr3RSWGRjw9YmXG4JhQKmTAilINfCtElhqNVi6ogg\nnC1ZlmmwertkQJQfddLm6FoKF2PRMnNqOOknsh/SRhoICxUBCEG4FCTHhfCzZVN48t0S3lh9CH9A\nomBa0mAvSxAEYUCIoMQFEmbWERmqw9bDBSv0nebf9N/PaXjtPQyp8aTnRSNFxuNPzzrR2DIeNHra\nPQGM4ckY9Dq27NhNXX3Xu/YK1IToxqBS6nB5a4iOdFLd0P163F4JWQLHMRN+pwa1wY853oGimziD\n2aDmprlpvL2mNNhL4UQzzdODLH6/zJvv1/Lhpw1otQoevCuZebOi+vkunl/djfi845YEZk0/9xGf\nvX3O/ekbMhS0OwMUbWmisMhKRZULCN6dvW5BDFfMsYhadUE4C7Isc7zBc0YGxMnSp5Nio7VMGBPS\nUX6Rlmwk1Cz+iRaES1lijJmfLpvCH98p4Z01ZQQCMgsvGznYyxIEQTjvxBnPBaLTqMjOjO7Sa6An\n3aX5e6pqqXjoNygNOsbemInSZMKbnQf4wRAJ+nAkGQ7U6wgJ0XGg7AilR46etmclYcYxKDCAopFZ\nk5TcPG8KK784QvGhYFPGzqSAAketiYBbjdrowxzfjqKHZAaHy8/v3yzpMlHj9CBLk93LU89Xsr/U\nQXysjp8+kEZy4uA0QyyvdPLS2+d/xGdvn/PZ9A250GRZ5uDhdgqLrGz6yo7XK6NUwmXZYRTkWZg8\nPhSVUmRFCEJvJEmmrsHDkUon5VUnsyBcOF1dAxAjYnRMHhd6KgAx0oDZJP45FgThTAkWEz+7dQpP\nvlPCP9cdxheQWHR5ymAvSxAE4bwSZ0EX0MmmjyWlVpra3MhnVkAAZ6b5S14fh+/7BYFWBxm35WCK\nNuCbWhD89DRGMAdHRpXbtDh8GhoarWzftf+0vSow6zJRYCQsxMH/u2kEPr+ELCtYlp9J7qR4Hnt5\nGyeXJPlPBCQ8ajQhXkxxTvpKHqhtdHT7eEmplTFxsTzz0lFaWv1cPi2cB76TjNGgwuML9FnqcT6d\nPuIzZ2o4d9ySQIzl/GUwdP6c7W1uIvpo+jmYWh1+vthsY02RjepjbiB4x7Yg18K8WVGiWZ4g9CAg\nydTVeyivdJ6YhOGkosqJ03Wq+a9CAfGxOqZODO0owUgdacRkHJrBSUEQhqa4SGMwMPF2Cf8uOkIg\nILF4duo5Z3UKgiAMNSIocQGplEqW5WdyY146jc0u/vLPnTS1ec/Y7vQ0/5rfP0d7yT6iZ2cRNy4M\n/5jLkELNoFRDaCIoFNS2qKlt0WDUSATaa5G7RDwUmHQZaFSheP1NVNYf5pcvKvF4pY4SiyVzUjvK\nDiSfgrYaM5JPhTbMQ1KGxKSMeHaXN9HU6qaHWApSNz+QZaitlPntjnKUSrjrm4lckx+NJMt9lnqc\nT92O+FyWxMSxIef9WJ0/Z5VWQ8DrG1IZEpIks/eQg8L1VrYUN+P3y6jVCmbPiKAgN4rxY0JQiqwI\nQegQkGRq69xd+j9UVLlwe7oGIBLi9EyfbDwxBcNA2kgjBsPQ+e4LgjB8xYQb+Nmt2Tz5TgmrNlXi\nC0jclJcuAhOCIFwURFBiEOg0KhKjzUwZHdNnmn/zmo0c/8cb6BNjyFiQgBwzksDIdECGsERQqWly\nKimzatEoZSaMcDM+NoUNu2o6xo8ataloVRH4Ai20e8sBOn7WucQiOzOa1ZuP0VZjRvYr0Ue40Vvc\nTBmdyLL8TNqcXkqrmnn78zLsbWf2TFAqugYmpIAC53EjvnYNkREaHr4vlTEZZvQCI5UAACAASURB\nVABWfF52wcZmnj7i8+5bE7lybv9HfJ4rnUZFtMVEY2Nb3xtfAPYWH2s32lizwcbxhuDnlzBCF8yK\nuDzqrKaMCMLFKhCQqTkRgDiVAeHC02mcs1IBifH6jukX6SlGUpIMGPQiACEIwsCxhBn4+a1TeeKd\nEj7ZUoXfL/ONKzJEYEIQhGFPXIUMor7S/L3H6jnyg8dQaDWMuWk0qtAwvBNzQCGDOQ40Rtq9CvbV\n61EA40e4MWhkGuzejhNogyYZndqCP9CGw1MGPeQ5lJRauaNgPB/+y4HsB4PFhT7Sg16rQpIkXv/s\nIFv2Hu8IZnRHoTi1e79bRfsxE5JfSUyskif+Z0xH1/gLNTaz84hP5TmO+BzuApLMrn2tfLbeyvZd\nLQQCoNUomHt5JAW5FsaOMomTGeGS5ffLVB9zdZmCUVntwus79XdSqYSR8QbSUk5lQKQmGdHpBmda\nkCAIl7aIEB0/X5bNk+/upHB7NX5J4taCTJTi33JBEIaxS+fqbAjqnOZ/el8F2e+n/IFH8NtbSF86\nFfOIEHxT5oNaBfowMETgDcCeOj0BScHYGDdh+mDA4OQEiHaXBb0mFr/kxOEpBXoOKDTU+/jtn4/g\n9YAxxokuPFhW4vYGWFt8rF+vJyAFyzUkh46243qQQR/pJiRR5r/bKjpKMwZ6bOb5HPE5XFmbvHy+\n0cbnG2w02oKfZUqSgYJcC3k5EZiM4qsvXFp8fomq2q4ZEEerXfj8pwIQKhWMTDCcGsGZbCQ50YBO\nKwIQgiAMHWFmHT9dls0f39nJuuJaAgGJ2xeOEYEJQRCGLXFlMgToNKozLsJr//QSbVtLiJyewYgp\n0QSyZiKHmkGth5ARSCjYd1yP268kOcJLbEigy/7io1KoqQ8jILlxuA8hEzj9sB18DjXtdSaUConw\nJCcKw5l9LvpDlsBZb8TbpkWhlDDFO9GY/DS10aU0Y6DGZp4+4tMSqeHbS/s34vNCN9wcCH6/zI49\nLRSut1KypxVJBr1OSUFuFAV5FjJSjCIrQrgkeH0SR2tcbNrexq69TZQfdVJV48YfOBWAUKsVJCcY\nTgQfgoGI5EQDGo0IQAiCMPSFGrX8dFk2T727k6JddfgDMndePVb0hBIEYVgSQYnz6Hxd2LZs2Max\np19GFxvJ6GtSkEekEUhMBoUKwhKRUXKoUUuLW0W0yU9KhK/L87fu81FTH4ZGHQDpCDK+jn4Peq2y\nSwmGt1VD+3EjKpWCqZdpKLOeW0Ai4FHiqDMheVWo9H7MI9pRarqWinQuzTjfYzM7j/jUahQsvS6O\nG66K6zPFOiBJrFh7+II13BwIxxs8rNlgZe3GJuwtwd+FUalGCvIszJ4eIRrtCRc1j1fiaLWrI/uh\n/KiTqloXgU5xWI1aQcrIrhkQIxP0aNTD4zsuCILQHbNBw8PfnMyf/rmLzXuP4w9IfPfaLNQq8bdN\nEIThRQQlzoPzeWHra7Rx5P89ikKlZMzNY1BFReEdNy3YsCEsAVRaquwa6ts0hOgCjInxdBnVuavM\nz3trPRj18MCNIUSETqXF4cGgU+Py+DEbNXywoYKSUit11RLt9QbUGgX/8//SeKdo3zm9fm+rhvZ6\nI8gKdOEeDNGubseHdi7NuGluGoeqmqltdCDJwcZxCdFmbpqbdlbH/rojPlesPXzBGm6eTz6fxLaS\nFgqLrOzaH2ykaTKquPqKaApyo0hJunRKVYRLh8cjUVF9Ivhwogyj+pgbqVNlmlajID3FRNpIA5Mn\nRBITqSQp3oBaLe4eCoJw8THqNTx0y2T+/N4uth1oIBCQuWfx/2fvPuPjKs/8/3/OmV6kkTSj3iXb\ncpFtyQ1sbNkYixrALJhiyiY/khBgEzaBNMKm7v4TAksqWQgEktACmECAFLBxNxgbW26Ai3q1ehtN\nP+f8H4w00lhyl5DL/X69eIA0mrnnjGTp/s51X9c0EUwIgnBWEaHEKBitja2mqlR89fsEW9rJuXYG\nMVnxBItLQK8HWxIY7bS6dVR1GDHpVQpT/Az9nXOgJsQL7/gw6uFL11pIcYY/OXA0JMZqjKxJ77Xz\n0keHiY3R84NvTMAey1H7PBx9veBtteDvNoGkYUvtwxgTPOrthx7NWLW+kroWd+RzqgZ1LW5Wra88\noWsWCmn8Y20LL//tMB6vQla6mTtPcsTnZ9VwczTVN/lYs7GNdVs66HGHAJg6yU5piZP5c+LF2Xfh\nnOH1KVTVRldANDT6oib8mIwyk/Js4QaU/Y0oM1LNkck6iYkxZ8z0G0EQhLFiMen5xo0z+fWqPew4\n2MrvXt/H3csLRTWYIAhnDRFKnKbR3Ng2Pf4nejZ+SPzMbDIuTEOZNh/NHgOmGLA66fXLfNpiQpY0\npqf4MekH/zqvalL44999SBL8v6vNZCWP/JiapvHcqkZe/2czrgQDP7x/IumpZvxB5ah9HkaiBCU8\nh22EvHpko4I9rQ+d8eiNNGHwaMbpXrNd+3p4+qU6Gpr82G2nPuJzrBtujhZ/QOWDjzpZvbGdTw6G\ng5xYu55rL0tiWYmLjFTzOK9QEE6Px6tQVesZMgXDS8NhH9qQAMJskpk80U5eVrgPRH62lbRUMzpx\nfloQBAGzUc99K2by29f2sKu8jd/8dQ//cd10jGfYmyuCIAgjEaHEaRqtjW3vtl3U//wJjM5YCq6d\ngJo5CSUtE3RGiEnDr8jsbTKhalCY4sduGgwAGtsU/vCml5ACn7/KzISM6Jd1oNdFjNXIsy81sHpj\nO2nJJn74wEQSneHqiWP1eThSsE9PX5MVTZWxJ4TQJ7iRRgjjByaEOoccZzmda9bU4ufZv9SzfVd4\nxOflF7u4Zfmpj/gcq4abo6W6zsPqje1s+KCDPk/4gPzMqTGUlriYV+wQDfmEs1KfR6FySPVDRbWH\nphZ/VABhMctMnWTvH8EZ7gORmmwSAYQgCMIxmAw6vnbDDB5/fR97Ktr51ao9fO36GZiMIpgQBOHM\nJkKJ0zQaG9tgRxcV93wPNJXJN0xBn5xMoGAmyDpwZKKgY2+TiYAik+/047INdnBr7VL5/Rs+vH5Y\neamJaXmDL+nQXhft3X6CbXbcnXpyMi384P4JxMUaotYxEBqUHWyjs9dHrM1Il3uw8aWmga/djK/D\nBBI4s/yUzI9nfZmbkQzsMdze6OaZJ3vNxmrE51g03DxdXp/C5m2drN7QxqEqDwDxDgOXX+Vi2SIX\nKUnjG5QIwslw94Ui4UNljTcSQAxlteiYVmCPVD/kZVtJTTKJDvKn6VyYKCQIwskz6HXce910nvjb\nPsoOtfGLV3dz3w0zsJjEn/yCIJy5xL9Qp+l0N7aaplH1jR8TaGwm64qpxE5IJFh0ERgMEJuGpjPx\nabMJd0BHakyQDEco8rVdvSpPvu6l16Nx3WIjsydHhwwDvS40FdyNNkIePXpLiKIL5GGBBIBOllm5\nbBLXL86n2+3H7Qvy33/aAYAakug7bCXkMSAbFGypHubNcnFr6ST0OjkcfByl+sEf1KJ6bJzoNdM0\njQ1bO3ju1cbIiM/P35jBgrlxozba8sggJj7GTPEkV+TjnwVN0yiv9rB6QxubPuzE51eRJZg9I5bS\nxS7mzHCc9NEUQfis9bhDUQ0oK6s9NB8xzcdu0zFzaky4+qG/D0RKolGMqh1F58JEIUEQTo9BL3P3\n8kJ+/9YnfLS/hcde2cXXVxRhNYs/+wVBODOJf51GwelsbJv/8Be63t2IY3IaWSVZhAoXoNliwOoC\nUyxV7Qba+vTEmRUmJgYiUy3cXo3fv+Gls1fj8guNLJxpjLrfgb4NqiLhbrCh+PTorUHsaX3sqw7h\nDypHDUxMBh1J8VYcQQWzUYe7G9xNNrSQjMEWxJriwWDQuO2ygkiQUTIjle8/s/2Yz3Vov4jjXbPy\nqj6efrGeAxUnN+LzZB0ZxHyW7yr2eUJs+KCT1RvbqK7zApDoNLL8CieXLHTiSjAe5x4EYXx09wQH\n+z/UhisgWtujA4gYu46iaTFRFRBJLhFAjLWzdaKQIAijS6+Tueuaqeh1Els/buZ/Xy7jGzcVYTMP\nf1NKEARhvI1pKHHw4EHuuecePv/5z3PbbbfR1NTEt771LRRFITExkUceeQSj0cibb77Jn/70J2RZ\n5sYbb2TFihVjuaxRd6obW/fuT6j7ya8wOGxMvr4ANXsyako6GG1gS6SpR09tlxGLQWVaio+Bamaf\nX+Opv3lp7tQoKTKwbO7wXzDdbj9tHYFwIOHXY4gJYEvxIEmDfRscdtMx12vUyyQanDTVhSsgLC4v\npvjwCNIlxelYh5QCJsZbcR6nUebQfhFHu2ZdPUFeeK2O9zaf2ojPUzUQxIw1TdP49FAfqze28f5H\nnQQCGjodXDDLQWmJi6LCWHFuXjijdHYHoyogKqo9tHdGT9lxxOqZNT02UgGRn2PFlWAQAcRn7Gyc\nKCQIwtjRyTJfvGoqOlliy97DPPJiGfffXBSZxiYIgnCmGLNQwuPx8JOf/IT58+dHPvbrX/+alStX\ncsUVV/DYY4+xatUqli9fzuOPP86qVaswGAzccMMNlJaWEhcXN1ZLGzMns7EN9bip+Mp30UIKBTdM\nRZ+RQXDSjHBjy9h0unw6DrYa0csaBS4PnT1eHHYTsiTzzNte6ltU5k7Vc82ikd95DAYk+hpiUPwy\nRocfa5I3UmURH2PinW217KloP2p5b59H4bfP1rCnLIDJLOPK9uHFT0KMiYtmpnP1/Kxhz/14jTJH\n6hcxcM1CIY03323m5b814fGqpzTicyyM1rnsnt4Q695vZ83GduqbfACkJJlYtsjJ0oVO4h3inQth\n/HV0Bgb7P/QHEB1d0QFEvEPP7Bmx5OdYIyGEM14EEGeCs2WikCAInx1ZlvjClVMw6GTW72rk5y+V\n8cDNxThsIpgQBOHMMWahhNFo5KmnnuKpp56KfOzDDz/kRz/6EQAXX3wxzzzzDLm5uUyfPp2YmPDm\nc9asWezcuZOlS5eO1dLGnaZpVH/zf/DXNJBxySTipqYSnHEh6A3gyMCjGNh3ODzm8XBDOX/7ZxUd\nPX7iY0zEWgrodpuZnq9jxVLTiBuB+iYfP3y0nKBfxhTvw+LyMfRmVrOBdWWNkf8fWt57/eJ89h3s\n5unnGjncEmDqJDv3fyUXm02ObM4z0uJobe0d9rgDRy8272nCF1CGff5oPTbK9vXwh1EY8TmaRuNc\ntqpqfLS7k1Vv1rF1ZxehkIZeL7HognhKS1xMK7CLZn7CuNA0jfbOIUcw+qdhdHaHom7njDcwt8gR\nNQUjIU4EaGeqM32ikCAI40OWJG6/rACdTua9HfX8/MWdPHBzMfEx4t8EQRDODGMWSuj1evT66Lv3\ner0YjeFk1ul00traSltbGwkJCZHbJCQk0No6cvnpuaL1hdfpeGs19vwkci7JJVQ4P9xHIiaVoGxh\nb4OZkCrR1VrLPzbvj3ydz5+OppiJsfm47TLniGX+FTUefvy/5fS4Q9x6fSoBU29U34YZE5zsPjTy\n9d28p4kN73fQUmMATWLSFAM/+M/8yIzrI99hG6gisJj0eP0hHHYTK5dNYvmiXF5cfYj9NZ10uf1H\n7bHR1Ozj2ZcbRm3E52g6nXPZHV1B1m1pZ/XGNppbw+fsM9PMlJa4WLwggVj7+D8/4fyhaRqt7YGo\nCRgVNR56eqMDCFeCgQuKHVEVEHGiguesciZOFBIE4cwgSRIrl03EoJP517ZaHn5xJ9+6pZiEWPN4\nL00QBGH8Gl1qQ4fSn8DHh4qPt6LXj80fV4mJY3tcoGv3fqq+9yiSxcTUG6fS4ppAXHI6prgk7KkZ\nbDqg4Q1CfpLG42sORr7OYsjGpHcRUtx4gzXEOzMxG8Mvny8QorPHT12djx88cgiPV+GBeyay/Iq0\nqM/Hx5ro7PGzvqxh2Lo0FdprjQR6jEiyhjXVTasS4mcv7uTbd8zFFWeJPJ6iqLyxpZqt+5po6fQi\ny6Cq4HKYmDkxiS8vL+S7X7gg6nEHvhbA41X48ys1vPxGPcGQRtE0B/fdNYGJufaoNR3t68eaLxBi\nT0X7iJ/bU9HOXddbhq1HUTS2lXXw5jtNvL+tHUUFk1HmiqXJXHN5KoWTY0V5+wkY65+/c8XRrpOm\naTQ1+zhQ4eZAeS8Hyt0crOil+4gAIjXJTHFhHAUT7BRMiGFSvp14x7lZynu+fU/9x43FWC1Gtu5r\noq3LiyvOwoWFqfy/q6eh0x27yut8u1aCcL6RJIkVF+ej00n8/YMafvZCOJhwxVnGe2mCIJznPtNQ\nwmq14vP5MJvNNDc3k5SURFJSEm1tbZHbtLS0UFRUdMz76ez0jMn6EhNjRjyWMFoUj5f3r74bUzDA\n1JWz6HWmEDdnDoeaA2zf08bsmWm09BhwWkMYg520doYnMpgN6ZgNySiqB7f/AH0BhYrqdpwOc+SI\nweFGhb4mGyDxn1/K5qI50c9FCSpUVLuxmPQkxESX9yoBmb4mG4pfh84UwpbqQWdUAahu6uXuh9fi\nHHJ84a0PanlzU2Xk69XwTWnr9vPeR3Vs2dPIwhmp3LR0AnpZprfbS1tQoavXx96Pvbz41yY6u48c\n8alF1jveI+1aOj2Ra3+kti4vFdXtkaqR1vYA721q473N7bR1hM/e52ZZKC1xUXJhPDnZ8bS29tLW\n5h7zdZ/txvrn71wxcJ00TeNwiz+q/0NlrQd3X/TRqeREI9MK4iLHL/KyrcOqdUIBP62tR29Se7Y6\nX7+nll+UwxXzMqP64XR09B3za07mWonwQhDOXpIk8W8leRh0Mm9sruJnL+7km7cUkyz6zQiCMI4+\n01BiwYIFvPPOO1x77bW8++67LFq0iJkzZ/LQQw/R09ODTqdj586dPPjgg5/lsj4zld/9GaamRpIv\nysU6JR3mL6LLB79b20VWdi5NPQZsRoUpyX4UJXw22O2Jx2JIR1F99PoOoKHgsBmxmPSRIwaBHgN9\nh20ggT3NTb27HXACI2/wrWZDJJQI9Broa7aCKoUbYiZ6kUbY9w8cX1AUlY+rO4/5PH0BJVI+fNPS\nCby8tpwPyto4XKUn5NMj62DF1clcf2XqiCM+x3uk3fHOZdssRrbu6GL1xjbK9vWgaWA2yVy62EVp\niZP8HKuoihBGlapqNLX4qaz20NjSwr79XVTWePF4owOI1CQTRdNiBwOILAt2mzgudD76rCYKCYJw\n9pEkiWsW5qLTSby2oZKHXwgHE6lO23gvTRCE89SY/bW6b98+Hn74YRoaGtDr9bzzzjs8+uijfOc7\n3+Hll18mLS2N5cuXYzAYuP/++7nzzjuRJIl777030vTyXNK26u90vvp3TOlxTLhyEr2FF6C32Pnd\nPzqwO1zMLJyCTlKYnupHL4Ne1pGZmEVNUzyqGsDt349G+J34LneAH/9xO32+IP4uI54WC8jhQMJg\nVaJGv420wW/v8ZPutFFXAX0tBiRJIzbNi2w//julZYfa6O4LnNBzLjvYRl+fwpp1XQR6TICEwR7A\nkuiDGPuIgcSZMNLuaOeylYCM3hPDV7/7SaQh4KQ8K6UlLi6aF4/FPLiugX4bMQ5REimcHEXVaDzs\ni6qAqKr14PWpkdtIEqQlm8JTMPoDiNwsKzar6BkgCIIgnJir5udg0Mn8ZW05D79YxjdvLiI90X78\nLxQEQRhlYxZKFBYW8txzzw37+LPPPjvsY5dffjmXX375WC1l3HnLq6n+zs+QzUam3zqDzrTJ2DOy\neP6DHtp8Zq5YOhtVVUm1d2HWm/EHFbZ97KP2cDw6nYqkq0L1RQcB7T1+fB0mvG0WJJ2KPb0PvTn8\nrunA6DeLSc9H+1uGrUcNSezfJRHy6jGYVEouthHrsLF+yESOo+lyB0iINR117NwATYOGGo2KnR40\n1YRsVLAmeTFYw5v5owUMZ8pIu4GmnDv3t9HcpKC4zXh7dfQQxGbVcdUliZQudpGdER06HFmZkhhv\nYUa+8zM7eiKcXRRVo6HJF2k+WVnjoarWi88fHUCkp5jJzwk3n5w100lCLFgsIoAQBEEQTs+l87LQ\n6WReWH2Qh18s44Gbi8hKPvfeHBQE4cwm6nrHmOr1Uf6V76J6vExeWYQvLRP7zGK2HPLyfmWIKy+Z\nj8Gg5/3tO1lwXR7PvXuAXQd8aGoukqQxMauDFRdP48d//IgudziY0DTwtpnxd5qR9CoxGe5IDwiA\n+BgT72yrZdeh9sjXDAh69PQ1WdEUGYM9gC3Zw87KHpbOTiczyU5dy/F7H3h8oWN+Ptinx9NiQQ3q\nkGQVS5IXkyMQNZb0aAHDmTLSrvGwH1+blZYDtsgZ/amT7JQudjJ/djwm48gBw5GVKS2d3s/06Ilw\n5lIUjfohAURFtYfqOi/+wODPrixBRpo5Mv0iP8dKTqYlqgrnfO2TIAiCIIyNS2ZnoNdJ/PlfB3jk\npTLuv7mInJTY8V6WIAjnERFKjLHaH/8S7yeHSLkgC8esHLQLF1HTqfD81l6WLpqP3WalbO9+shI0\nHn6hjMY2iDEVANDrO8gHH/dS3dQcFUh4WiwEuk3IBoWYDDeyIXpiidVsYN0RVQ+aBr4OE7728Ogn\nS6IHU9xgULD7UDs/unMur62voOxQ27AwYyhfQBnx40pAxttqIdhnADQs8QGMCV5k3fCJKnF204gB\nw3iOtPP7VbZ81MnqDW3sLw83hYuN0XPt5UmULnKRnnrssVlnwtET4cwQCmnUNXqjKiCq67wEgoM/\nC7IMWWkW8nKs5GdbyMu2kptpHfFYkyAIgiCMpcVF6eh1Ms/841MeeWkX37hxJvnpjvFeliAI5wkR\nSoyhjrfX0PKnVVhTHeRePZngjPl4MPP4e+3MmzWTRGcCFTX1HKqsJG6yi8ZWBbt5CiDTFzhESA2/\nG9rUEZ42omnQd9hKsNeIzhTCnt6H1SpjNenpcvuJjzEzY4KT3YeiN8aqIuE5bCXYZ0DSq9hT+9Bb\nooOFzl4fbk+Q2y+bzI1LFTp6fKzZUc+e8rYRqxaG0lTwtpvxd5lAkzDbFebOs/BxfTdHG/A6OTv+\nqBv0gaMTZQfb6Oz1ER9jpniSK/Lx0VZV6+HdDW1s3NoZaRw4c1oMpSUu5hU7MOhPbJN4phw9ET5b\nwZBKbUP0EYyaOi/B0OB3v04HWemWSPVDXraV7AzLUStuBEEQBOGzdtH0VHQ6iaff+pRHX97F11fM\nZFJm3HgvSxCE84AIJcaIr6aeqvt/gmzSM+WWGaiTiyExhSff6SQtM4/crAxa2jr44KPdaJrKrnI3\ndnMBsqSnz19BUOmKuj9NBXejjZDHgN4SwpbWh6zTWDgjlesX50dGv3W7/azf2RD5upBPR1+jDTUk\no7cGsaV6RqxcGHo0wmTQkeq0cfulBdQXpfH9Z7aP+Bw1LTy9w9tqQVNkJL2KNdHDT782k6QEGw89\n1T1ioGE26lhZOvGo104ny6xcNinqeY12hYHXq7Dpw05Wb2yjvDoc+iTEGbjykkSWLXKSnHjyx0TO\nlKMnwtgJBFVq6r1U9h+/qKjxUFvvI6QM/kzp9RLZ6Zb+8CEcRGRnWDAYRAAhCIIgnNkunJqCXpZ5\n8s2PeeyVXdx3w0ymZMeP97IEQTjHiVBiDKiBIBV3P4jS28ekFdMxFxYQzJ/Kv/b56NO5KCmcTG+f\nh/Xvb0dVVeJtNhRlArJsxBOoIaC0R9+fIuFusKH49OitQexpfUgyXFSYEmmgOPAOvMNuIs5uoqPX\nT6DbiKfVAhqYnV7MCX6ONqnyaEcjEuOtOEfYaId8OjwtFhSfHiQNc4IPc4IPV5yZpATbMY9hLJyR\nitVkOO51HO2RdpqmcajSw+qNbWze1onPryJLMGdmLKUlLmbPcKDTnfooz/E8eiKMPn9ApaZucAJG\nZa2H2gYvypAiI4NeIicrugIiK918wtU1giAIgnCmmTM5CZ1O4v/e2McvX93NV6+fTmGuc7yXJQjC\nOUyEEmOg/qeP07frExJnpZN40SSChfPAHEufMZaL5k4kEAyydvOH+PwBJPSYDJPwawa8gXr8oeao\n+1JD/YGEX48hJoAtxYMkgckgc9tlBcMmOpgMOgpznfzr3S4CvUYkWcWW5sFgi25OKUugAQnHORpx\n5EZbDUl428wEeowMjvj0ouvvazF0832qxzAGxmmOVoWEuy/Ehg86WL2xjZp6HwCJTiPXXeFk6UIn\nrgTjaT/GgCOfsytucPqGcOby+1Wq6jxRFRB1jT7UwR6UGA0S+Tk28rIskUkYmWkW9PpTD7IEQRAE\n4UxUPDGRr14/g9+8tpdfr9rDvddNZ+YE13gvSxCEc5QIJUZZ5+pNHH7yeSxJdiZcV0ho5gKwxOKz\npJOWYSOgSOzYtZveXjcJMVYshkl4fAaSEtwcqI9uTqkGJXrr7ahBHUaHH2uSN1LpIB2l5KGu0cvO\nD1QCvUZ05hD21L5hjTABFhelcdm8rBPa+N+0dAKqorF+SxddjXo0VcLhkJgx20RTj4/OXm3EwOFk\nj2EcOU4zIdZE8aTEUxqnqWkanxx0s3pjOx981EkgqKHTwfzZcZQudjFjagw6efQ3k0c+5/wcJ73d\n3lF/HOHUeX0KVbXeSP+HihoPDY0+1CE/JiajzKQ8G/nZ1v5GlFYyUs2nVUkjCIIgCGeT6XlO/nPF\nDH69ag+//etevnJtIbMLEsd7WYIgnINEKDGKAo3NVN73AyS9jsm3zITps9ESkgnFZLK32UZQlZmY\n6GfBdRNo787g9fUSlY0qc6fouX5pIq+uy6DsYBsdPT4sehPtdRbUIJjifVhcvqijF/6AMqxx4qYP\nO/jdH2vx+VWuWubCENdHWbmfHk8QiXBlhPMUNvq7P+5l64YQ7YcNWC0yd96aw+ILwkcdTqSq4USP\nYRw5TrO9x3/S4zS7e4Kse7+DNRvbaDgcPnKSmmyitMTJxQucxDmOf2xkNAw8Z7NRjxjeOH48XoWq\n2sERnBU1HhoP+9GGBBBmk8zkifaoCoi0VPOYhFaCIAiCcDaZmpPA12+cbQH71wAAIABJREFUyS9f\n3cP/vbGPL18zlXlTksd7WYIgnGNEKDFKtFCIinsfQunqIX/5VCzFhYSyC9Bi0vikPZa+gExabJAM\nRwhFkfnXBzKVjQrT83WsuMSETpYi77Dv3d/Nr5+qw+dVcKYHUW2+YY+XEDvYODEYVHn25Qb+ubYV\ns0nmga/kcuEcBy+vLcegl5GAuBgTU7PjuaV0ElbT4Mt+rFChqdnHsy83sH1XN7IEl1/s4pbr0sjP\njae1NbzVHq2+D6czTlNVNfZ+2su7G9rYVtZNSNEw6CVKLoyntMTFtAL7UStLhHNHn0eJVD4MHMNo\nbI7uhWIxy0ydZA9XQPT3gUhNNokAQhAEQRCOoiArnm/cNJNfvLKbJ9/8GEXRmF+YMt7LEgThHCJC\niVHS8NhT9H5Yhmt6CilLpxGcNhdsLircLjo8euItISa4Aqiaxstr/HxcpTAxU8dtl0W/I1tR5eUX\nT9Ti9al85Y5M2kOdrPmob9jjDfRuaGnz8+j/VXGoykNmuplv35NHeqqZF9ccjKo66Oz1s2XfYSxm\nPSuXTTrmUYnevhB/XlXHxve7URSYVmDnjhvTiIuTMZkG1zqavR9OZZxmR2eAtVvCVRHNbQEAMtPN\nlJa4WDI/gRi7+PY+V7n7QpEAoqLaQ2WNl6aW6O8fq0VH4WR7pPohL9tKapIJWQQQgiAIgnBSJmbE\n8cDNxTz28i6efvsTQorKoplp470sQRDOEWLXNgq6N35I46+ewZRgZcKKmYSKLgJrPI2hNOq7DVgN\nKtOS/UhovL4hwI4DIbKSZb5wlTmqSd6OPd38/PFKFFXj61/OYdEFCShquNvxSM0id+zp5pdPVePu\nU1gyP4G77sjEbNKdUNXBaxsqhh2VWL29nve3ddJUrUMNych6FVuql26Tm9//o4XO3gAJsSbmz0jD\n6w2w61Dbafd+GHCi4zQVVWPnnh5Wb2xjx55uVDV8/n/pQielJU4K8m2iKuIc0+MOUdl/9KKixkNl\ntScSQg2w23TMnBoTrn7o7wORkmgU3wuCIAiCMEry0mL55i3FPPqXMp79534UVWNJcfp4L0sQhHOA\nCCVOU7C1ncqv/heSDFNWzoTiC9Dikuk0ZnLwsAmDrDE91YdeB//aGmDLniApTpkvXWvBZBzcMG36\nsINfPV2NTpb47lfzmT3DAYzcLFKvk3n5jSZeffswer3E3XdkUbrYGdmAHavqoKPXR2Ore1hoMTDi\ns+uIEZ+SDH2+8H8QDi/e3lwV9bWn0vvhSMcbp9ndHWLNpmbWbm6nvTMIQF62hdISF4suSMBmFeM2\nzwXdPcGo/g+VNV5a26MDiBi7jqJpMVEVEEkuEUAIgiAIwljLTonh2ytn8chfyvjzOwcIKSrL5mSO\n97IEQTjLiVDiNGiqSsV//BfB1g5yr5qM9YIiQhkT8Foz2ddsRwKmpfiwGDQ2lAVYvS2IM1biruVm\nrObBDdQ761t58rk6TCaZb/9HLkVTHcMea6B3Q1dPkF88WcmeT3tJdhn55j155OdEH2s4VtWBpsFv\nXttLV194o3e8EZ8n43i9H47nyHGacTYzSdY4Du2WWPXSx2hauCfAZUtclC52kZ99+r0shPHT2R3s\nP3oRDiCq63y0tEV/zzpi9cyaHhupgMjPseJKMIgAQhAEQRDGSUaSnW+tnMWjL5Xx4ppDhBSNyy/I\nGu9lCYJwFhOhxGlo+u0f6dm0jYTJiaReUURoylxC9jR2t8ajqBKTk/zEWVQ+/DjIm5sCxNok7rrO\nQqxt8IjDqrebeOGvTej0Gsakbl5Yv49PGkc+CvHpITf/+0QV7Z1B5hY5+Nqd2dhtw1/CY1UdAHT1\nBdA08Hea8HaYQZXQGRUsSV4M1tApX4+j9X44UQNVIRdNyeCfa1vY+lEPFb0+wEdBvo3SEhcXzYvD\nbBJVEWeKE+0r0tEZGOz/UOulotpDR1cw6jbOeCOzZ8SSn2ONhBDOeBFACIIgCMKZJt1l49u3zuKR\nl8p4ZV05QUXl6gU5470sQRDOUiKUOEW9H+6i/pEnMDrMTLylGKXoIjR7Inu7UvCFZLLiAqTEhNhT\nHuLVtX6sZrhruRmnIxw0aJrGc6saef2fzUh6FVuGG51Rpb1HGXYUQtM03lrdwp9fbUBT4Y4VaVx7\nWfIxG/YNVh20DquYCPbp8bRYUIM6JFnFnOTF5Ahwunu/ob0fjnS8zWsgqPLhji7e3djGvv1uINwn\n4HPLEllW4iI7w3J6ixNG1dEapd54cT5d3cqQBpTh/zq7o8MuZ7yBuUWOqCkYBRMTIlNdBEEQBEE4\ns6UkWMPBxItlvL6xEkVR+eJ1M8Z7WYIgnIVEKHEKgh1dVNzzIKgak2+ZiTR3IUpcCgd8mXT7dCTa\nQuQmBDlYG+L5f/kw6uFL11hIcYY344qq8fvn6nh3QxsGk4o1rRf5iOMSA0chQkH47bM1bN3RRVys\nnvvvzqWwIOa4axyoOiiZkcr3n9keftyAjLfVQrDPAGiYHH7MLh+y7uSPaoxkYCLIUMea8qGTZeoa\nvKze2M6699tx9ykAFE62U1ri4sLZcRgNp9Y4UxhbL68tZ/X2etSQhOIzUN8mUf1JJ2++tge/P/r7\nyZVg4IJiR1QFRJzDME4rFwRBEARhtCTFWfj2rcU88lIZb26ppsMd4Jr52bjixJtJgiCcOBFKnCRN\n06j6zx8RaGoh+9KJ2EvmEcrIp5FcDveaiDEpTE7yU3tY4dm/+5Ak+MLnzGSlhDfrwZDKr5+uYfO2\nTjLTTPSaW5D0w0OBzl4f+w5284fnmmhq8TOtwM437solIe7kNnOJ8VbibSYaqiX8XSbQJPSWIJYk\nL3qTekL3oddJxFoNdLkDxMeYmT8jtX/6RvuwiSBHenH1QdaVNUb+v73Hz+pt9VRXBult07O/PDzu\n1BGr57orkllW4iQt2XxSz1EYe5qm0dwaoLLWw8HKPt59vxufOxZNPSI0MqrMK45jYq4tHEJkWXDE\nigBCEARBEM5VLoeF79w6m9/+dQ+bdzeydV8Ty+Zk8rn52VjN4m8AQRCOT4QSJ6n56ZfoWrOJuAlO\n0q+dQ6hgFl3GbA61WjHqVApT/LR0KDz1ppdQCP79SjMTM8OX2e9X+fnvKtm5t4cpE208cE8uP32h\na8SGlDq/jYd/XUMwqPFvVyaz8ro0dLqTO1+hqhrvb+uicb8Vv1dD1qtYEj0Y7MFhRzVkCVQNzEYd\nmqbhD6rYLQZmTXJy+2WTCSla5PhFRlocra293LBk8EgGQHu3L3I8Q1FVXlxziA27BgOJkE9HoNuI\nv9fI9nI/kuSnuDCW0hInc4ocGPSiKuJMoGkah1v8kekX4T4QnkglS5gO2aCgtwbQmxV0JgWdWUGv\n17jztimn3FdEEARhwMGDB7nnnnv4/Oc/z2233Rb5+KZNm/jiF7/IgQMHAHjzzTf505/+hCzL3Hjj\njaxYsWK8liwI5634GBPfu2MOn9b38Me39vGvD2vZtLuRaxbmcnFxOnqd+BtPEISjE6HESXDv+pi6\nn/wag93IpFvnECpehM+WwZ62BGQJpqf66XUrPPmGD68fbik1UZgfvsR9nhD/86sKPj3UR3FhLN++\nNw+TSR7WkFJTwdNiIdBjwGaV+ebd2cwtijvptR6q6uPpF+s5WNGH0SAxdboRn76Hzr7giLdfXJzO\nZXMzIwHDkf0fdDKRjaYvEKKl04PDbsLpMI94PEPTNNbtbEBTINBrxN9tRPGHr4WkVzHH+3noK1OZ\nmn/yz00YPaqq0dTip7J/BOdAEOHxKlG3S00yUTQtPAUjK8PEC+s+psszPEw7Vl8RQRCEE+XxePjJ\nT37C/Pnzoz7u9/v5/e9/T2JiYuR2jz/+OKtWrcJgMHDDDTdQWlpKXJz43SIInzVZklgyK4NJqXbW\nfFTP2x9U89KaQ7y3o54bFuczuyBRNK8WBGFEIpQ4QaEeNxV3fQdNCVFw01zkixYTjEtnZ0cqqgbT\nUvyowRBPvuGl16OxvMTInCnhkrWuniA/fqycqlovC+fF87UvZkeqAoaOwWxrD+A5bCfglcnLsvDN\ne/JISTq5DV5Xd5DnXmtk7eZ2ABbMiePfb0wnyWXCH1To6PGx5qM69lR0DDt6MXTax0jvdA/0h9hT\n0U5rp5eEWBNWs4G6FnfkNu09flZvr0enGOhrsxDoNYImARoGWxCjw4/BFsLlMJOfdfzeGMLoUVSN\nxsO+qAqIqloPXt/gMR5JgrRkU3gKRn8DytwsKzZrdK+QA80jT3cZqa+IIAjCyTIajTz11FM89dRT\nUR9/4oknWLlyJY888ggAu3fvZvr06cTEhH+fzJo1i507d7J06dLPfM2CIIQZ9DquuDCbhTNSeXNL\nNevLGvjdG/uYkO7gpqUTyE93jPcSBUE4w4hQ4gRomkb1N/8bf10TmRfnE3PpQkKp+ex25xJQdOQl\nBLDKIR5/zUdHj8alFxhZVGQEoLU9wA8fPURjs59LF7v48u2Z6IZMzRhoSJkZ6+J3f6wl4FO5ZFEC\n113lIj7+xF+eYEjlH2taeeWtJjxelZwMC3euzKBw8uDG32TQkeq0cftlk094lONQL68tj9qItvf4\no46eqIpEoMeAv9uEGgjfp6xXMDoCmGIDUc08xeZ1bCmKRsNhHxXVA9UPHqpqvfj80QFEeoqZ/Bxr\n/xQMC3lZViyW478uQ8O04/UVEQRBOFl6vR69Pvp3YFVVFfv37+e+++6LhBJtbW0kJCREbpOQkEBr\na+sx7zs+3opePza/fxITRdg+3sRrMP4GXoNE4D+znawoLeBPf/+ED/Y28T/P7WDhzDT+/aqppDht\n47vQc5j4ORh/4jU4OSKUOAGtz/+VjrfWEJsTT+aK+QQnFXMwmE+P30BKTJBEa4An3/DS3KGyqMjA\npfPCFRINTT5++L+HaOsIct0Vydx+Q9qwsrVQSOP5vzbwt3+1YDRKzL3QRI23ge8/UzlsUsXR7NjT\nzbN/qafhsB+7Tcddt2dSWuI6Zg8Kk0F3Uuf+/UGFsoPD/9DTNAh5dQS6TQTchsGqCHsAkyOA3hqK\n6l8hS7C4KE1sXkeRomjUNXrD1Q/9ozir6jwEAoMhkCxBRpo5Mv0iP8dKTqYFi/nU/jAfCNOuX5x/\n0uGWIAjCqfjpT3/KQw89dMzbaNrxp0l1dnpGa0lREhNjxFjjcSZeg/E30mtgBL501RQWz0jl5bXl\nbN7dyAd7m7hkdgafW5CD3SKaYY4m8XMw/sRrMLJjBTUilDgOzyeHqPmvR9FbDRTcMZfQrIUc1uXS\n1G3DYVbIjffzzFs+6ppV5k7Rc80iI5IkUVHj4cePldPTG+K269O4/qqUYffd0Rng0Seq+PRQH2nJ\nJgpny2wvb4p8vr3HH6lMWLls0rCvr6738Mxf6tj7SR+yBJdf7OKW69KItY/+y9rt9tMxtCoiJBHo\nCfeKUIP9VREGBZMjgDE2gNUq4wsow+5ncXE6t19aMOrrO1+EQuEAYmgFRHWdl0BwSAAhQ1aahbwc\nK/nZFvKyreRmWjGZRr/J1MmGW4IgCKeiubmZyspKHnjgAQBaWlq47bbb+OpXv0pbW1vkdi0tLRQV\nFY3XMgVBOIZJmXE8dMdstu9vYdX6Ct7dXseWvU18bkEOS2dliIbngnAeE6HEMSh9Hsrv+jZaIMjE\nW2YhL15Gjz2XA50uLAaVKUleXnjHR3m9wvR8HSsuMSFLEp8cdPM/vyrH61P5yh2ZXLYkcdh97/m0\nl8eerKK7J8SCOXF88bYM/r/nt4+4jh37W7l6QQ4x1vCRELcnyH8/vp8D+wOgSVhiFBYutPPF6zMi\nFRVHHs84leMaQznsJuJjTDQfVvB3Gwm6DYAEkoYxJoDR4UdvUSJVEQumpyBLkijvPw3BoEptg2+w\nAWW1h+p6L6HQYACh00FWuiVS/ZCXbSU7w4LJKH6xC4Jw7khOTmbNmjWR/1+6dCnPP/88Pp+Phx56\niJ6eHnQ6HTt37uTBBx8cx5UKgnAskiQxb0oyxRMTeW9HPW+/X83La8vDzTCX5DN3cpJohikI5yER\nShxDzYMP46uoJX1hDnFXX4IveSI7OzPQyxrTkr38dZ2fjysVJmbquPUyMzpZYseebn7+eCWKqvH1\nL+ew6IKEqPtUVY2//qOZl15vRJLhzlsyuGpZIq1d3qhKhKE63X5+8Mw2ZhckkmJx8vSLdfh8GrJe\ni4z4/Kiil5g1MiuXTYyahhEfY8RmMeLxBaOmYxzvSMhQ7Z0B1m5up2m/FU9feEMsGxVMDj/G2CDZ\nqTY8PgOdvcqwxpmivP/EBIIqNfX94zf7Q4jaeh8hZTCA0OslstMt/eFDOIjIzrBgMIgAQhCEc8u+\nfft4+OGHaWhoQK/X88477/Cb3/xm2FQNs9nM/fffz5133okkSdx7772RppeCIJy5DHqZyy/IYuGM\nVN7aUs3anfU88bePWb29jhuXTmBihpigIwjnE0k7kQOYZ5ixOqMz9PxP26tvU3nfD7FnOJj+0LUE\n51/Oh+5CAqqe6ak+Nmz3snl3kKxkmbuus2A2Smz6sINfPV2NTpb41r15zJ4R3V241x3iV09Xs2NP\nD854Aw/cncvkCXYgXNnw0FNboxpHDhXy6fC0WFB8eiRJw5TgwxzvRxqyH5UlSHXZaGjtO+5zXVCY\nwu2XFRw1KFAUjZ17u1m9sZ0du7tRNTAZZVIzZFSzB3fIQ0LsYAARUjQRPoxgpDNl/oBKTd1g/4eK\nGg91jV6UIaddDHqJ7MzoCoisdPM5Xdoozt+dGHGdTpy4VifuZK7V2d6867P4G0IYH+I1GH+n+hq0\ndHpYtaGSj/a3ADC7IJEbluSTLI6InjTxczD+xGswMtFT4iR5D1VT/Z2fojPrKfj8BYRmLeJj3yT8\nqoFJiX627QkHEikJMl+6NhxIvLO+lSefq8NilvnefROYOskedZ/lVX38/HdVtLYHKJoWw9e/nEts\nzODlNxl0FE8aPmZRDUl428wEesKjQa1xIfTxfegMw7MkVeOEAgmA9/cd5kBt57CqiZY2P2s2tvPe\n5nY6uoIA5GdbKV3sZNEFCVgtOmIcFiqq26MCCJ088hjR853Pp7C/3B2ufogEED7UwSEYGA0S+Tk2\n8rIskUkYmWkW9HpRvigIgiAIwrkvKd7KPcsLKa/v5uV1h9hxoJVdh9q4eFY611yUK5phCsI5ToQS\nR1C9Psrv+haq10/BrcXoL7mMKl0B7R4bGY4g5RUeVm8L4oyV+PJyM1azxGt/P8zzrzUSG6Pn+9+Y\nQH724OZc0zTeWd/GH16qR1E0br42lRuuTokaCzpgoN/Cjv2tdPT68Xea8HaYQZXQGRUsSV4M1hCy\nFA4gTtdAI01V0chzJrF6Qxu7P+lF08Bqkbn8YhelJS7ysqPDBrNRLwKIEXh9ClW13kj/h4paDw1N\n0QGEySgzKc/WP4IzXAWRkWo+5qQUQRAEQRCE88GEDAcP3jabHQdaeXV9eBT9lr2HuXpBDpfMTscw\nRuN8BUEYXyKUOELtDx/Du7+SlAsySVhxOa3x06juTcRpDdHe0sffNgWItUncdZ2FWJvEn19t4PV/\nNuNKMPDD+yeSnmqO3JfXp/DEn2vZuLWTGLuOb3w5l6LC2KM+9sCYxSyHk18/U0XQLyPJKpYkL0ZH\nINJEcjQCCQAlIOPvNvLGa26UULjCYvIEG6UlLhbMjcNsEv/wH43Hq1BZ64mqgGg87GfoYSizSWb6\nFAeZqcZIBURaqnnEQEoQBEEQBEEIN8OcMzmJmRNcrCtr4K0tVbyyLtwM8/olecybkowsmmEKwjlF\nhBJDNK36Jy3P/RVrSgzZ/28ZfTlz2Nubhc2oonn6ePU9PxYTfHm5mbgYiSf+XMe7G9pISzbxwwcm\nkug0Ru6rrtHLI7+roq7Rx6R8G9+8OxdXgvEYjw6NzT6eeameHXt6QJIxOfyYXT5k3ei1/dBUCLgN\nBLpNhLzhl1+SVS4pSeCa0hSy0i2j9ljnij6PEmk+OdCIsrE5uveHxSwzdZI9qgIiNdlESnKsOFMm\nCIIgCIJwkgx6mUvnZnLR9BTefr+a93bU8/s3Pwk3w7x4AgVZ8eO9REEQRokIJfr5aur55EsPIht0\nTL5zAaHZS9jhnoBep2FT3fzxnz4MevjStRZcDolf/r6azds6yc2y8P1vTCAudvCs26YPO/jdH2vx\n+VU+tyyRO25MP2aDQq9X4dW3D/PWuy2EFI3CyXY+f1M6Hx5q4KP9LXS5Ayf1XDKT7Hh8ITp7fcTZ\nTdgsBjo6grQ2ygR6DGhqeC16SxCTI0Bymo4v3ZolGlQSbkZaVesZ0oTSy+GW6ADCatFRONkeqX7I\ny7aSmmRCFhUQgiAIgiAIo8pmNnDT0oksnZXBaxsq2PZpCw+/WEbxRBcrLp5ASoI4UiwIZzsRSvRr\n+/MrhNweJt40E/1lV1IWmEoIAyl6D398ywvAFz5nJiVe4me/qWTn3h6mTLTxvfvysVnDlzEYVHn2\n5Qb+ubYVs0nmgbtzuWju0VNcVdVY/0EHz69qoLM7RKLTyOdvSmf+7DgkSSI/exJXL8jhh89sp9M9\n8lSOoZxDxn2GFI2Wdi8f7/ewbksn9RXh4xmSTsUU78PkCKAzhpsdzJ6cfF4GEj3uULj3Q38VRGW1\nh+a26ADIbtMxc2pMuPoh20pejpWURKOYoS0IgiAIgvAZSoyz8JVrCymd280ra8spO9TGnop2lhSl\nc/XCHGKtx65IFgThzCVCiX5pi3JxhuZhu+ZyDpmL6PbbSbV4eO4tN8EQ/PuVZtKdEj967BCfHuqj\nuDCWb9+bh8k0OLXi0f+r4lCVh8x0M9++Jy+qv8SRDlb28YcX6zhY6cFolLh5eSrLL0/GZIyuqIix\nGpk9efhUjiNJwH03zCAjKYaKag/vbmxj09YOvD4VSYLiwlguWZRAVWcru8vb6exViY8ZHOl5ruvq\nCUb1f6is8dLaHh1AxNh1FE2LiaqASHKJAEIQBEEQBOFMkZ/m4Du3zmLnwTZeXV/Oezvref/jJq68\nMJvSOZkYz8M32gThbCdCiX7y9GJsiTE0x0+nzptEksXPS/9w4/XDzaUmMhM1/uvnh6iq9XLR3Dju\n+1JO5EjGjj3d/PKpatx9CkvmJ3DXHZlHbRLZ2R3k+VUNrN3SAcBFc+P49xszovpRHGkgNCg72Ep7\nz8gVEw6rmbI9Hn6xuZ7K2nBlhzPewNWXJnHJQidJrvBI0YtIYMXFCt1uf9RIz3NJZ3cw0vth4BhG\ne2cw6jaOWD2zpsdGKiDyc6y4EgwigBAEQRAEQTjDSZLE7IJEZk5wsr6sgTe3VPPahkrWlTVwfUk+\nF0wTzTAF4WwiQol+Wkwy7Tj4pCuNeHOQ19/tptejcW2JkZwkje/99BCNzX4uXeziy7dnopMlFFXj\n5TeaePXtw+j1EnffkUXpYueIG9tgSOXva1p55c0mvD6VnAwLd96aQWFBzHHXNjCV4/rF+Tz3zgHe\n33c4vGYNFJ8Of7eRnj4Tz+xqQJZhXrGD0hIXxdNjR5z0YDLozomRnpqm0dkVHNL/IVwB0dEVHUDE\nO/TMnhFLfo41EkI440UAIQiCIAiCcDbT62SWzclkQWEKf99aw+rt9Tz19ie8u72OG5dOYEq2aIYp\nCGcDEUr0a/LFcLDLhc2g8O76Ljp6NC6dZyA/WeXBnx6irSPIdVckc/sNaUiSRFdPkF88Wc2eT3tJ\ndhn55j155OeMvNHfsaebZ16qp7HZj92m467bMyktcaHTndym2GTQ8YUrJ6OTdLy/rYvOZhklEK50\nSHIZKS1xsfSiBBLiz70zdZqm0d4ZHBI+hIOIrp5Q1O2c8QbmFjmipmAkxBmOcq+CIAiCIAjC2c5q\nNrBiyQQuLk7nrxsr2fpxM4+8VEbRBBc3LMknzWUb7yUKgnAMIpToZ9BpJMbC+o2dHG5XWTTTwISU\nEA/+rIKe3hC3XZ/G9VelAPDpITeP/l8VHV1B5hY5+Nqd2dhtwy/l0BGfsgRXXpLIzdemEmM/+cuu\naRr79rtZvbGNrTs8BEMGdDq4cLaDy5ckMn1KzDkz/UHTNFrbA0NGcHqpqPHQ0xsdQLgSDFxQ7Iiq\ngIhziABCEARBEAThfORyWPjy1dMonZPJK2vL2VUeboZZUpTGtQtzcdjOvTfuBOFcIEKJfnGmEG+u\n66SyQWHOFD0TU4J8/5FyvD6Vu27P5PKLE9E0jbdWt/DnVxvQVLhjRRrXXpY8LAzweBVefauJt1e3\nRkZ8fnFlJtkZlpNeV1d3kLVb2lmzsZ2m/tGU6SkmSktcLFmQgCP27N6Ea5pGc2uAylpPVBVEr1uJ\nul2i08iFs+Mi/R/ysixn/XMXBEEQBEEQRl9uaizfWlnMrvI2Xl1XwfqyBj74+DBXXpjNpXMzz8me\naoJwNhOhRL8NZUE+qQxQmKdjQqKfHz9WiaJqfP3LOSy6IIE+j8Jvn61h644u4mL13H937rB+ECON\n+PzCTelc2D/i80Qpqsbuj3tYvbGd7bu6UBQwGiSWzE+gdLGLKRNtZ2U/BE3TONzij6qAqKz14O6L\nDiCSE41MnxwTOX6Rl20l9hSqSwRBEARBEITzkyRJFE9MZHqek027G3ljcxWvb6xkfVkD/1aSx/zC\nFNEMUxDOEGKn129Kjg6T2Y7a18HDj1ejkyW++9V8Zs9wUFXr4ZHfVdHU4mdagZ1v3JU7rE/Bwco+\nnn6hjkNVxx7xeSxtHQHe29zOe5vaI+MqczIslC52UnJhwohHRM5UqqrR1OwfnIDR34TS440OIFKT\nTBRNG5iCYSEv23pWPU9BEARBEAThzKXXyVw8K4MLp6Xwj601vLu9jj/8/VNW9zfDnJqTMN5LFITz\nntj99UtP1FFd08svnqrGYpb53n0TmDrJztrN7Tz5XC2BoMa/XZnMyuvSohpUHjnic+G8eO5YkX7M\nEZ9DKYrGR3u6Wb2hjbK9PagamE0yy0qclJa4mJhrPeOrIhRVo/HVwwzwAAAamUlEQVSwLxw8VIf7\nP1TVevD61MhtJAnSkk3hKRj9FRC5WVZsVlE+JwiCIAiCIIwti0nP9YvzI80wP9h3mEf/sosZ+U5W\nLMknPdE+3ksUhPOWCCX6bdrawWO/rybWruf7908gI9XM48/WsGZTOzarjgfuzmZuUVzk9sNGfGZa\nuHPliY34BGhu9bNmU7gqorM7PMJyQq6V0hIXi+bFY7GcmZt1RdGorOnjo7L2yDGM6jovPn90AJGe\nYiY/x9o/BcNCXpb1jH1OgiAIgiAIwvkhIdbMFz83NdwMc105eyra2VvZzqIZaSxflEuc3TTeSxSE\n844IJfpJMhROjuWu2zPQyfCd/zlAdZ2XvGwL37w7j5SkwX+gRhzxudiF7jjTL4IhlW1l3aze2Mbu\nj3sBsFp0XLE0kdISJ7lZI48UHS+KolHX6KWi2htpRFlV5yEQ0CK3kSXISDNHpl/k51jJybRgMYsA\nQhAEQRAEQTgzZafE8MDNReypaOeVdeVs3N3Ilr1NZKfEUJAVR0FmPBMzHFhMYrskCGNN/JT1Wzgv\ngeuuyuatf9Xxm2eq8XhVLl3i4s5bMjAawn0hokZ8yic+4rOhycfqTW2s29IRGWs5ZaKN0hIXC+bE\nYzKdeN+JsRIMqdQ3+qImYFTXeQkEhwQQMmSlWZg62UF6sp68bCu5mdYzYv2CIAiCIAiCcDIkSWLm\nBBeFeQls2t3E5r1NVDf1UtnYwz+31iJJkJMSQ0FmPJOy4piU4cBqFtPfBGG0iVCiXyik8fgzFbz0\nej1Go8R9X8xmyQInMHzE5/QpMdx5S8YxR3z6AyoffNTJ6o3tfHLQDUCMXcc1lyaxrMRJZtrJjwcd\nLcGgSm1DfwBR66Gy2kN1vZdQaDCA0OkgK90yOIIz20p2hgWTUSYxMYbW1t5xW78gCIIgCIIgjBad\nLLOkOJ0lxen4AiHKG7o5UNvFgdouqpp6qGrq5V/bwiFFVtJAJUUcEzPjsFtESCEIp0uEEv3+9k4z\nL73eSFqyiW/dm0d2huWURnxW13lYvbGdDR900OcJT5qYMSWG0sVOLiiOw2D4bKsKAkGVmnpvVAVE\nbb2PkDIYQOj1Etnplv7wIRxEZGdYPvO1CoIgCIIgCMJ4Mhv1FOY6KcwNvznpDypUNHSzv7aLg7Wd\nVDb1UNPcy7vb65CAjCQ7BZlxFGTFU5AlQgpBOBUilOg3a3osBqOBZQvjsFp0w0Z83rI8lWuPMuLT\n61PYsq2T1RvbOFjpASDeoefyq5K5ZJGL1KTPpmGOP6BSXecNj+HsDyHqGr0oQ6ZwGvQSOVnRFRBZ\n6WYMehFACIIgCIIgCMJQJoOOqTkJkdGhgaBCRWMPB2o7OVjXRXlDD3UtbtbsqAcgPdFGQWYck7Pi\nmZQZR6ztxCbyCcL5TIQS/XKzrMybnczB8g7+8GLdcUd8appGRXW4KmLj1g58fhVJgtkzYiktcTF7\nhgO9fuxGefr8CtV14QqIypqBAMKHOjgEA6NBIj/HRl6WJTIJIzPNMqbrEgRBEARBEIRzldGgY0p2\nPFOy4wEIhhQqG3s4UBc+7lHR0E1Dax9rdzYAkOq0Mrm/iqIgMw7H/9/evQdHWd97HH/vJbu539lw\niYkQIdagQAArNxGBsbanapFKQOJxpoepZZjWjtpGFNOOmJkwVsCRCtXW0mAwSuPtVIRIQWi5dYon\nxBTEQgTCJRdIgJDLZi/nj2yWRBIIEXgeyuf1z16eZ3e/+3PdfPfD7/c8OruHyHkUSgS0enwUFh/m\njdVfBU/x+T+zksn42ik+zzZ62bz9JCWba6k41ARAYnwID3wnickTEkiMv/xpaFOzl4pDTW3LLwIz\nII4ca8Z3bgUGToeVIYMiAqfgbJsFkdwvFJtNAYSIiIiIyJUQYrcFlm7EwTjweH1UHDsdOCZFHV8e\nOcXGz46w8bO2kKJvfHgwoEhPiSMuSiGFiEKJgPfWVlH47jGiIs8/xaff72fvv89SsrmWv/+jDrfb\nj9UK386MYeqdiQwfGn3R04H2VGOTN3j6zfYZEEePt+DvEECEOq2k3xQRXIKRlhpO/36hl60GERER\nERG5dHablcHJsQxOjuW/xt6Ix+vj4PEzfHG4nr2H6viy8hSf/t9RPv2/owC44sICAUXbko/46FCD\n34HI1adQIuCOzFiio0MZOzIqeIrP02c8bNp2gpJPT1B5rBmAvi4nUyYkcPf4BOJivtmBbM42ejhw\nsG0GRHsIcbSqpdM+YaFWbhkS2WkGRL8kpwIIERERERGTs9uspA2IIW1ADN+9IxWvz8ehqgb2Hqrj\ni0P1fFlZz5bdx9iy+xgAiTGhwYAi/YZYEmONO2OfyNWiUCLghgFhZA53UVV1mt17zlDyaS3bd9Xj\n8fix2y2Mvz2OqRMTGZoeibUXgcCZBg8HDjYGZ0HsP9jE8erOAUR4mI2hN0cGZz8MSg2nn8vZq9cT\nERERERFzsVmtDOwXzcB+0dz77VR8Pj+Hqs8ET0G673A9fy87zt/LjgOQEO1sWx4SmE3RJzas27MA\nilyrFEoENDV7KXjnEO9/fDQYFiT3C2XqxATuGpNAdFTPh+r0GU9w6UX7DIiqWnenfSIjbAy7Japt\n9kNqOINuDKdvH4e+ZERERERErhNWq4Ub+0ZzY99o7rk9BZ/PT2VNQ1tIcbjtuBRbPz/O1s/bQoq4\nKGenY1IkxSmkkGufQomA4o+qWPO/x3E4LNw1Np6pdybyrcERF/2fvP50a6fjPxw42ETNic4BRFSk\njeEZUZ1mQLgSFUCIiIiIiMg5VquFlKQoUpKimDr6Bnx+P0drzgYDii8O17O9vIrt5VUAxEQ6ggFF\n+g2xxMZFGPwOxKz8fj9en5+WVi8tbi9ujy9w6Q3c58Pt8RJis5I5pM9Vna2vUCLg3kmJZNwcx+Ab\nQ4gI73pY6k61BpZeBEKIrxo5UdfaaZ/oKDsjhkYHA4i0G8NJjA9RACEiIiIiIpfEarGQ7Iok2RXJ\n5JHJ+P1+jp5oZN+hOvYGZlPs3FPNzj3VwcfYbVbCnDbCHHZCnTZCHXbCHDbCnHZCnW3XQx22wHU7\nYc6266EOW+B223Wnw4ZVv2GuGr/fj8fro6XVh7u1LShwt/oCl4Hg4Lz7Om//+rbg/Z620MHX8ewJ\nF7Dgv0cxsF/0FX7H5yiUCIiPc5A+JIqamjP4/X5O1rcGg4e2ZRhN1J3qHEDExdgZeVtbANG+DCMh\nTgGEiIiIiIhcfhaLhQGJEQxIjGBSZltIcfxkI18crufLw/U0uX2camih2e2h2e3ldJ2bZre3d68F\nONvDjI6XgbCj7TIQcnz9skPYEeawE2K3Xt6BuIx8fj9erx+vz4fX137dj9fbdtvT4XrH+33BbZ0f\n6wyr5cTJxrZAwOPF7fZ1CAYCMxSCIULnYKGHmcFF2awWnCE2HCFWQh02YiIcOEJsOEOsgUsbjsB2\nZ4fbzhArMZFOUpOiLk8hPaRQIuBkfSvvr6ugbE89+79qpP60p9P2hLgQRg+P6XQWjPjYb3b2DRER\nERERkd6yWCz0S4igX0IEdw0fQJ8+bf/I2pHP76fF7aWppS2oaHJ7aG5pu90UCC+aWzw0dXvpoaGp\nlZr6ZjxeX6/qtNsshDrOhRvtAca5221Bh8Nu6/QDvz0w8HQKDLoOD84PEr6+rw9fYL+O2y9XEHCp\n49EeBIQ57cRGOs6FBXYrTkf7dRtOh7XD9cD2EBsOhw2nPRAsOALbA0GD3WbeEKgrCiUCPt5Ywzsf\nth1AJjE+hG+PiOk0AyL2G57+U0RERERE5GqzWixtP/yd3/ynX6vHR7P7XGDR7O4QbrR4z7v99dCj\nqcVD7akmmlu8XKkswGa1YLNZsFmtwet2qwWH3YY1uC2wPbCtbb/A/he63sVzd75uISEugpZmd4fZ\nB1+foWDFZr22QoMrzTShRF5eHqWlpVgsFubPn89tt912VV//B99JYuLYJCLDfMREK4AQERERERHp\nKMRuJcTuICr8mz2Pz+/H3eqlqcUbXGrS1OLB3eoLBgf2DsGBzWppuz8QEnQdJFiwWiyGL6XvaraK\nXJgpQomdO3dy8OBBioqK2L9/P/Pnz6eoqOiq1hAWZmN4ij5AIiIiIiIiV5LV0r6cww44jS5HDGaK\neSPbtm1jypQpAKSlpXHq1CkaGhoMrkpEREREREREriRTzJSora0lIyMjeDs+Pp6amhoiIyO73D8u\nLhy73XZFaunT5+oeafRapXHqOY1Vz2msekbj1HMaq57TWImIiIgRTBFKfJ3/IodAratrvCKvq/U/\nPaNx6jmNVc9prHpG49RzGqueu5SxUnghIiIil5Mplm+4XC5qa2uDt6urq+nTp4+BFYmIiIiIiIjI\nlWaKUGLcuHGsW7cOgPLyclwuV7dLN0RERERERETkP4Mplm9kZmaSkZFBVlYWFouF3Nxco0sSERER\nERERkSvMFKEEwJNPPml0CSIiIiIiIiJyFZli+YaIiIiIiIiIXH8USoiIiIiIiIiIIRRKiIiIiIiI\niIghFEqIiIiIiIiIiCEUSoiIiIiIiIiIIRRKiIiIiIiIiIghFEqIiIiIiIiIiCEsfr/fb3QRIiIi\nIiIiInL90UwJERERERERETGEQgkRERERERERMYRCCRERERERERExhEIJERERERERETGEQgkRERER\nERERMYRCCRERERERERExhEIJIC8vjxkzZpCVlcXu3buNLsfUFi1axIwZM3jwwQdZv3690eWYWnNz\nM1OmTKG4uNjoUkztgw8+4L777mPatGls2rTJ6HJM6+zZs8ybN4/s7GyysrLYsmWL0SWZzr59+5gy\nZQqrVq0C4NixY2RnZzNr1ix+9rOf4Xa7Da7QPLoaq0cffZTZs2fz6KOPUlNTY3CF1w71EMZTb2IO\n6nuMpX7KeOrVeu+6DyV27tzJwYMHKSoq4oUXXuCFF14wuiTT2r59O19++SVFRUW8/vrr5OXlGV2S\nqb366qvExMQYXYap1dXVsWzZMgoLC1m+fDkbNmwwuiTTevfddxk4cCAFBQUsXbpU31Vf09jYyPPP\nP8+YMWOC97388svMmjWLwsJCUlNTWbNmjYEVmkdXY7VkyRIeeughVq1axdSpU3njjTcMrPDaoR7C\neOpNzEN9j3HUT5mDerXeu+5DiW3btjFlyhQA0tLSOHXqFA0NDQZXZU6jR49m6dKlAERHR9PU1ITX\n6zW4KnPav38///73v7nrrruMLsXUtm3bxpgxY4iMjMTlcvH8888bXZJpxcXFUV9fD8Dp06eJi4sz\nuCJzcTgcvPbaa7hcruB9O3bsYPLkyQBMmjSJbdu2GVWeqXQ1Vrm5udxzzz1A58+aXJh6COOpNzEH\n9T3GUj9lDurVeu+6DyVqa2s7fWDi4+M1bbUbNpuN8PBwANasWcOdd96JzWYzuCpzys/PJycnx+gy\nTK+yspLm5mYee+wxZs2apR+NF/C9732Po0ePMnXqVGbPns0vf/lLo0syFbvdTmhoaKf7mpqacDgc\nACQkJOi7PaCrsQoPD8dms+H1eiksLOT73/++QdVdW9RDGE+9iTmo7zGW+ilzUK/We3ajCzAbv99v\ndAmm98knn7BmzRr+8Ic/GF2KKb333nsMHz6cG264wehSrgn19fW88sorHD16lEceeYSNGzdisViM\nLst03n//ffr378/vf/979u7dy/z587Vu9xLou/3ivF4vv/jFL7jjjjs6Le2QntPnzDjqTYyjvscc\n1E8ZT71a7133oYTL5aK2tjZ4u7q6mj59+hhYkblt2bKF5cuX8/rrrxMVFWV0Oaa0adMmDh8+zKZN\nmzh+/DgOh4O+ffsyduxYo0sznYSEBEaMGIHdbiclJYWIiAhOnjxJQkKC0aWZzq5duxg/fjwAN998\nM9XV1Xi9Xv2L4AWEh4fT3NxMaGgoVVVVnZYryPmefvppUlNTmTdvntGlXDPUQ5iDehNjqe8xnvop\nc1Cv1nvX/fKNcePGsW7dOgDKy8txuVxERkYaXJU5nTlzhkWLFrFixQpiY2ONLse0lixZwp///Gfe\nfvttfvjDHzJ37lz9Ye7G+PHj2b59Oz6fj7q6OhobG7X+rhupqamUlpYCcOTIESIiIvRH7iLGjh0b\n/H5fv349EyZMMLgi8/rggw8ICQnhpz/9qdGlXFPUQxhPvYnx1PcYT/2UOahX673rfqZEZmYmGRkZ\nZGVlYbFYyM3NNbok0/roo4+oq6vj8ccfD96Xn59P//79DaxKrmVJSUncc889PPTQQwA8++yzWK3X\nfVbapRkzZjB//nxmz56Nx+PhV7/6ldElmcrnn39Ofn4+R44cwW63s27dOl588UVycnIoKiqif//+\nPPDAA0aXaQpdjdWJEydwOp1kZ2cDbQdt1Gfs4tRDGE+9iYj6KbNQr9Z7Fr8WQIqIiIiIiIiIARSh\niYiIiIiIiIghFEqIiIiIiIiIiCEUSoiIiIiIiIiIIRRKiIiIiIiIiIghFEqIiIiIiIiIiCEUSoiI\niIiIyBVTWVnJ0KFDyc7OJjs7m6ysLJ544glOnz7d4+fIzs7G6/X2eP+ZM2eyY8eO3pQrIleZQgkR\nEREREbmi4uPjKSgooKCggLfeeguXy8Wrr77a48cXFBRgs9muYIUiYhS70QWISO/t2LGD3/72tzid\nTiZOnMiuXbs4fvw4Ho+H+++/n1mzZuH1esnLy6O8vByAO+64g8cff5wdO3awfPly+vbtS1lZGcOG\nDSM9PZ2SkhLq6+t57bXXSExM5Nlnn6WiogKLxcK3vvUtcnNzu62nuLiYkpISLBYLVVVVDBo0iLy8\nPEJCQigoKGDt2rV4vV4GDRpEbm4utbW1/OQnP2HIkCEMHjyYxx57rNv3uWTJEvr378+RI0eIiopi\n8eLFREZG8tFHH7Fq1Sr8fj/x8fEsXLiQuLg4MjMzmT59Oj6fjzlz5vDkk08C0NzczIwZM5g+fToV\nFRXk5ubi9/vxeDw88cQTjBo1ipycHFwuF/v27aOiooLp06czZ86cy/8fUERE5Do1evRoioqK2Lt3\nL/n5+Xg8HlpbW3nuuee45ZZbyM7O5uabb2bPnj2sXLmSW265hfLyctxuNwsWLDiv32lqauLnP/85\ndXV1pKam0tLSAkBVVVWXPYCImIdCCZFr3Oeff86GDRsoKioiOjqa3/zmNzQ3N/Pd736XCRMmUFpa\nSmVlJatXr8bn85GVlcXYsWMB2L17N4sXLyYsLIzRo0czevRoCgoKyMnJ4eOPP+b222+ntLSUtWvX\nAvD2229z5swZoqKiuq2nrKyM9evXExYWxuzZs9m8eTN9+vShpKSEN998E4vFQl5eHu+88w6TJk1i\n//79LF26lEGDBl3wfZaXl7NkyRKSkpJ46qmnKC4uZurUqSxfvpw1a9bgcDhYuXIlK1asICcnh8bG\nRiZOnMi4ceP44x//yKBBg/j1r39NS0sL77zzDgALFy5k5syZ3HvvvXzxxRfMnTuXDRs2AHD48GGW\nL1/OkSNHuO+++xRKiIiIXCZer5eSkhJGjhzJU089xbJly0hJSWHv3r3Mnz+f4uJiAMLDw1m1alWn\nxxYUFHTZ72zdupXQ0FCKioqorq5m8uTJAKxdu7bLHkBEzEOhhMg1buDAgcTGxlJaWsq0adMACA0N\nZejQoZSXl1NaWsqYMWOwWCzYbDZGjRpFWVkZQ4cOJS0tjdjYWABiY2MZMWIEAElJSTQ0NJCWlkZc\nXBxz5sxh0qRJ3HvvvRcMJAAyMzMJDw8HYMSIEezfv58DBw5w6NAhHnnkEQAaGxux29u+fmJiYi4a\nSADcdNNNJCUlBV9jz549JCYmUlNTw49+9CMA3G43ycnJAPj9fjIzMwGYMGEChYWF5OTkMHHiRGbM\nmAFAaWkpixcvBiA9PZ2GhgZOnjwJwO233w7AgAEDaGhowOv1atqoiIhIL508eZLs7GwAfD4fo0aN\n4sEHH+Tll1/mmWeeCe7X0NCAz+cDCP4d76i7fmffvn2MHDkSAJfLFewtuusBRMQ8FEqIXONCQkIA\nsFgsne73+/1YLJZu7wfO+5Hd8bbf78fpdFJYWEh5eTkbN25k+vTprF69GpfL1W097Y1E+3MAOBwO\n7r77bp577rlO+1ZWVgbrv5j25+r4HhwOB7fddhsrVqzo8jHtz52WlsZf/vIX/vGPf/Dxxx+zcuVK\n3nrrrfPGBs6NY3to0tXri4iIyKVpP6ZER2fOnAku8exKVz1Cd32N3+/Haj13uLz2fqS7HkBEzEMH\nuhT5DzFs2DC2bNkCtM1EKC8vJyMjg+HDh7N169bgcRN27tzJsGHDevScZWVlvPvuu2RkZDBv3jwy\nMjL46quvLviY0tJSmpqa8Pv97Nq1i/T0dDIzM9m8eTNnz54F4M033+Szzz67pPd34MABqqurAfjn\nP/9Jeno6t956K7t376ampgZom6L5ySefnPfYDz/8kLKyMsaOHUtubi7Hjh3D4/EwbNgw/va3vwHw\nr3/9i9jYWOLi4i6pLhEREemdqKgokpOT+fTTTwGoqKjglVdeueBjuut30tLSgr3FsWPHqKioALrv\nAUTEPDRTQuQ/RHZ2NgsWLODhhx/G7XYzd+5ckpOT6d+/P7t27WLmzJn4fD6mTJnCyJEje3SarJSU\nFJYtW0ZRUREOh4OUlJQup1J2NGTIEJ5++mkqKysZPHgw48ePx2az8fDDD5OdnY3T6cTlcjFt2jRO\nnDjR4/d300038dJLL3Hw4EFiYmJ44IEHCA8P55lnnuHHP/4xYWFhhIaGkp+f3+Vjc3NzcTgc+P1+\n5syZg91uZ8GCBeTm5rJ69Wo8Hg+LFi3qcT0iIiLyzeXn57Nw4UJ+97vf4fF4yMnJueD+3fU7999/\nP3/961+ZNWsWycnJ3HrrrUD3PYCImIfFrznJInKZFBcXs3XrVl588cXL+rztZ99YvXr1ZX1eERER\nERExlmJCEbkkJSUl/OlPf+py2w9+8INeP+9nn33GSy+91OW2rKysXj+viIiIiIiYl2ZKiIiIiIiI\niIghdKBLERERERERETGEQgkRERERERERMYRCCRERERERERExhEIJERERERERETGEQgkRERERERER\nMYRCCRERERERERExxP8DqNRD6RIn94oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i5Ul3zf5QYvW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "Leaz2oYMQcBf", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] / california_housing_dataframe[\"population\"])\n", + "\n", + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZjQrZ8mcHFiU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Identify Outliers\n", + "\n", + "We can visualize the performance of our model by creating a scatter plot of predictions vs. target values. Ideally, these would lie on a perfectly correlated diagonal line.\n", + "\n", + "Use Pyplot's [`scatter()`](https://matplotlib.org/gallery/shapes_and_collections/scatter.html) to create a scatter plot of predictions vs. targets, using the rooms-per-person model you trained in Task 1.\n", + "\n", + "Do you see any oddities? Trace these back to the source data by looking at the distribution of values in `rooms_per_person`." + ] + }, + { + "metadata": { + "id": "P0BDOec4HbG_", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 338 + }, + "outputId": "6a048e66-a1b8-4689-aa93-888b6703a02b" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "plt.figure(figsize=(15, 5))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEvCAYAAAAHJcVpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4W9WdL/yv7rJi+SJbyr1ckjih\n5GrMLSFAEidcpvR4Cgk0EzoUSpk30Id5HihkaKZ0Oj3DtbxAX6Z0GAI5zKQYTJ+czJkeEkISmkIS\nSJw4MYU4TrgkjhNLtmxZ1tWS3j+MZNnee2tL1m1L388/rbekvbcX8f5prfVbv6WKRCIREBER5Yg6\n1zdARETFjYGIiIhyioGIiIhyioGIiIhyioGIiIhyioGIiIhySpvLi9vt/Sl9rrLSBKfTk+a7KR5s\nv/FjG44P2298lNp+VqtZ8Lgie0RarSbXt6BobL/xYxuOD9tvfAqt/RQZiIiIqHAwEBERUU4xEBER\nUU4xEBERUU4xEBERUU4xEBERUU7ldB1RurWfcWLTf3+Kc85AyueoKtfjmnmTodOoodWocdlsG6rK\nS9DvCeD4aSdUUOHCSWaEwhGUlxpg0GngD4Zgd3oAlQrWihIYdPJTK/3BEPrc/ti5xI5Fj9t7vUAk\nAmulKanr0DCx9iWi3EgYiA4cOIAHH3wQs2bNAgDU1NTgRz/6ER555BGEQiFYrVY888wz0Ov12LZt\nGzZv3gy1Wo01a9Zg9erVGf8FAKDH7cPD/99HaTlXd18A//vPX8V+fnPXSagACG3aZCkzwGTUwu70\nwB8ceodRr8GSeZNwx4pZ0KjFO5yhcBiNu9pxuM2OHpcfljIDFs6qRgRAywlH7NiiGituu/5ivL37\nJD48dg6+QOib66ixeN5kfD/BdWiYUJsvqrHi9uUz2YZEOSSrR3TFFVfgxRdfjP38D//wD1i7di1u\nuukmPPfcc2hqakJDQwNeeuklNDU1QafT4bbbbsPKlStRUVGRsZuPSlcQEiO2c2CPy48el3/EMV8g\nhPcPdUClUmFtfY3oORt3tWPnwTOxn7tdfrx/qGPEe7pdfuw8eAbHv+7F6S73qOuEsetQB9QJrkPD\nhNo8+jPbkCh3UvoaeODAAaxYsQIAsGzZMuzbtw8tLS2YN28ezGYzjEYjamtr0dzcnNabFdJ+xpnx\na6TicJsd/mBI8DV/MITDbXbZ5+qwu0Vfaz4ufh0aJtXmh9scbEOiHJLVI2pvb8ff/d3foa+vDw88\n8AC8Xi/0ej0AoKqqCna7HQ6HAxaLJfYZi8UCu136YVtZaUq5VEW0ZlHjnpMpfT7Tevr90Oh1sFZP\nGPNap2MAPf1+gU8JC0ts5u6UuI4UsZpPhUqqzZ39PrZhDrD9xqeQ2i9hILrwwgvxwAMP4KabbsLp\n06fxgx/8AKHQ8LfHSET4KSl2PF6qRfusVnOsYOplMy3Yvv+rBJ/IPovZgFAgKFjYNRQMwWI2oNsl\nLxipVeLBqFLiOmLi269YSLV5pdnINswytt/4KLX9Ui56OnHiRNx8881QqVT41re+herqavT19cHn\n8wEAzp8/D5vNBpvNBofDEftcV1cXbDZbmm5f3MxplRm/RioW1VhFM7IMOg0W1Vhln2uqtVT0tdrZ\n4tdJB38whC6nR/FDV1JtvqimmtlzRDmUMBBt27YNr776KgDAbreju7sb3/ve97B9+3YAwI4dO7B0\n6VIsWLAAx44dg8vlwsDAAJqbm1FXV5fZu//Gsw8szuj5VSLHq8oMmGabAINuuBmNeg1WXDYVty+f\nKXnO25fPRH3dNFSVGaFWAVVlRqy4bCqWXzZ1xLH6umn42Q9qseKyqTDqhx+WRr0Gy2VcJ1WhcBhb\ndrZh4yv78Q+/24+Nr+zHlp1tCIXDGbleNgi1eX3dtIy1IRHJo4okGENzu914+OGH4XK5EAwG8cAD\nD+CSSy7Bo48+Cr/fjylTpuCJJ56ATqfDu+++i1dffRUqlQrr1q3Dd7/7XcmLp9q1FOqWhsJh/L9v\nteAvX6YveaHhmguwZN6UgltHJKdbv2Vn24gMs6j6ummKzzBLxzoipQ6N5Au23/gotf3EhuYSBqJM\nSncg+vf/8xkO/OV8Om4NAPDTOxbikgstid+oMIn+EfuDIWx8Zb/gfEpVmRG/uvfKoh/KUuqDIF+w\n/cZHqe1XUBvjCWnc1Z7WIKRSAdNs4nMzhazPPXZ9VJSz34c+t/yMPyKiRAoiECW7LkeOqdUTYDbp\n03pOpSgvNcBSZhB8rdJsRHmp8GtERKkoiEDU5/bLToWWo7REi41/e1nazqc0zDAjomwqiKKnpSY9\n9DoVAsH0THddNtsKvbYgmiZl0Uyyw20OOPt9qDQbsaimmhlmRJR2BfG03br3VNqCEADsbemEWq3G\n2vriLSiqUauxtr4Gt143g5WqiSijFB+IMjE/FI4Au5s7oFGzoKhBp4Gt0pTr2yCiAqb4r/tSGV7j\nxWKYRESZp/hAVF5qQKU5M9ltTFUmIso8xQcig06DORdkZtEpU5WJiDJP8YEIANaunIVM5BQwVZmI\nKPMKIhBp1GrRwqSpWjx3Em5fPrNgqk8TEeUrxWfNAYDd6UEojUWhK0r1WLtyFhp3teNwmx09Lj8s\nZQYsqrHi9uUzizalm4goEwoiEEGV3v7Qohortu79YkT16W6XP/Zzsad0ExGlU0F8tbdWlECjTk8w\nMhk1uPW6GaJrk5jSTUSUXgURiABAm6acAo8vhB6Xj9WniYiypCACUZ/bD38aS/z0e/ysPk1ElCUF\nEYhKDFqkaWQOALD949Oi1adNRi20mnTn6BERFa+CCERe/yDCadxn9rMve3DLkoswXWBjvNNdbjTu\nak/fxYiIilxBBKLyUgPKJujSdr5gCPj9e23w+IKCr483YYFrk4iIhhVE+rZBp8GFk8w4erInbef8\n7Kse9A0IB6JowkKyValD4TDXJhERjVIwT78upyet5+sbCKKiVLiYaqoJC4272rHz4Bl0u/yIYHht\nEof6iKiYFUQg6vcEcK7Hl/bzzp8hXEx1/gzLN5l68ofWpPZN4tokIipmBTE098XZvoyc99sXWqBR\nq3H0ZA+c/T5UlBowoUSHoye7sefw2aSG1qT2TUp1qI+IqBAURCAqnZCZ/Yhe/t9/QVWZAfNnVqP+\nsmnYeegMdjd3xF5PpuxPeakBljIDugWCEdcmEVExK4ihuanVpWldRxSv2+XH7uYO7Dx0BkfbHYLv\nkTO0ZtBpRNcmJdpugll2RFTICqJHZNBpcNW3J+KjT89n7BpH2hxwipT2kTu0dvvymQCGApez34dK\nsxGLaqpjx0cr9iw7fzCEPrcf5aUG7gtFVMAKIhABwIKZ1RkNRL0DflSU6tHrDox5Te7Qmkatxtr6\nGtx63QxZD9holl1UsVQAL/YATFRsCuavWpXh30SvU2PRrGrB15LdydWg08BWaUo4HFesWXZMcycq\nLgUTiCZlOuMsDNx6/Qwsq52KylIDVCqgqsyI+rppokNr4yEny64QFXMAJipWBROItv75i4ye3z8Y\nxpb3TuBo+9BcUfkEPebPsGRsuCiaZSekkLPsijUAExWzgghEHn8Qn36RvvI+Qox6DT5qPRdLv+51\nB7D78NmMDReNJ8tOyYo1ABMVs4IIRFveOwF/MJzhqwiX924+bs/YcNHty2eivm4aqsqMUGd4KDBf\nFGsAJipmis+a8wdD+PyrzPaGamuq0dwmvIaop9+P/9h+HN9fWQO3J5DWVONks+wKRbJp7kSkbIoP\nRH1uP5z9Y1Oq08Vi1uNvb5yDr859IlgVAQA+bD2HQ21d8AfCGUk1jmbZFYtiDcBExUrxQ3PlpQZU\niswppEPtbBvMJr3ocFGULxBmqnGayUlzJyLlU3wgAgBNBur76LUqrLhsamw46PblM7F47iTZn2eq\nMRGRPIodmotffS82ZDYeP7rl26ibPTH2s0atxp03zMbxr52yrseK2kRE8ii2RxS/+j4Tfv/eCWzZ\n2YZQeDgbTyqjazSmGhMRyaPIHpEvMCi6+j5dnO4Adh48A49vEHfeMDs2TzE6o0uv08AXGDsEx1Rj\nIiJ5FBmInC7x1ffp9lHrORz/2jkiEy4+o6vUpMPWvV8w1ZiIKEWKDESVZeKbzGWCUNXr+JRqphoT\nEaVOkXNERr1W9lxNOkllwjHVmIgoNbICkc/nQ319Pf7whz+gs7MTd955J9auXYsHH3wQgcDQYtJt\n27bh1ltvxerVq/H2229n9KaBkeVvsoVFN4mI0k9WIPrtb3+L8vJyAMCLL76ItWvXYsuWLbjgggvQ\n1NQEj8eDl156Ca+//jreeOMNbN68Gb29vRm98ehcza/uvRLfvqAyo9eKYiYcEVH6JQxEJ0+eRHt7\nO66//noAwIEDB7BixQoAwLJly7Bv3z60tLRg3rx5MJvNMBqNqK2tRXNzc0ZvPF5njycr10lHJpw/\nGEKX08PFrkRE30iYrPDUU0/hH//xH7F161YAgNfrhV6vBwBUVVXBbrfD4XDAYrHEPmOxWGC3J06v\nrqw0QatN7cFutZoBAJ2OAfRmeLjMqNdg1ZUX4O5bLoVGIxy7fYFBOF1+VJYZYNRrxxwvn6DDf24/\njv2tnbD3emGtKMFVcydLnjOTou1HqWMbjg/bb3wKqf0kA9HWrVuxcOFCTJ8+XfD1SER4awSx46M5\nnan1ZKxWM+z2fgBAKBhCxQQDnBkMRgtmVKFhyYXo6RkY81p8hYcelz9W9PS26y9G055TseMG/cj1\nRl1OL7btPQWPNxDLxMuW+Paj1LANx4ftNz5KbT+x4CkZiPbs2YPTp09jz549OHfuHPR6PUwmE3w+\nH4xGI86fPw+bzQabzQaHY3ibhK6uLixcuDC9v4EIg06DhTXV2N3ckbFrtHf0wR8MCQ7LRSs8REVT\nvY9/3YvTXe7YcaFFr8BQJt6t181gth0RFS3JMaHnn38e77zzDt566y2sXr0a69evx+LFi7F9+3YA\nwI4dO7B06VIsWLAAx44dg8vlwsDAAJqbm1FXV5eVXwAA1tbPwgRD5h7kPf1+2Hu9Y477gyHRCg8d\ndrfg8dGYiUdExS7pBa0/+clP8Oijj6KxsRFTpkxBQ0MDdDodHnroIdxzzz1QqVS4//77YTZnb/xy\nMBSBSpX+CtxRkQjw/FtHUDvbNmKfoT63eIWHsLzRSWbiEVHRkx2IfvKTn8T+/2uvvTbm9RtvvBE3\n3nhjeu4qSX1uP9y+wYxeo6c/MKa6QnmpeIUHtUpeMGJNOiIqdoqsrDBaeakB2iz9JvHVFaSqcU+1\nlgoeN+o1UKuAqjIj6uumsSYdERU9RdaaExK3W0NGdbt86HH5MLlqAoCx1bijRU+Hs+ZGHm9YejHc\nngBr0hERfaMgApHd6UGW4hAAYOfB07jzhjkAMKYad3yAETtuMhREsxMRpUVBDM0hg4kKQo6e7BlT\nGSG+6Gl89QQWQxXGChNEFFUQX80tZQbZyQHpILQNuD8YQo/Lh52HzuBou2PE4tb4TLtiJ7YAmG1E\nVLwKIhBt3ftF1oIQMDLlOv7BOjp7Tmgfo2IntgAYYBsRFSvFfwWVWlSaKfEp19EHq9QmfVL7GBUT\nqf9WbCOi4qX4QCS1qDTdRqdcyw2C46meUEhzKVL/rVhhgqh4KX5oTmpRaTpd9e2J+Nub5oxIOpAb\nBCvNBgSCIdF6dUIKcS5F6r8VK0wQFS9lPtHiGHQaLJhVnfHrnDjTN+ZY9MGayIAviMc3fYKNr+zH\nlp1tCMlY9BQ/5BfB8FxK4672VG4/L0gtAGaFCaLipfhABADZSN4WGjqSerDG8wXCSQWTQp5Lid/i\nnRUmiAgogKG5bCUriA0d3b58JgKDIfy5pVN25l6irR/kzKXEp44ridQCYCIqTorvEfW5/ejpD2T8\nOkJDR9F5nKPt3UmljyeamJca8iuUuRQu9CWiKMUHopIslMtZMneS4NBRdB6n151cIEwUTDiXQkTF\nRPFDc30Dme0NVUzQYd0Ns8dkqo1nSFBOMBErpsq5FCIqNIoPRL5AMKPn9wZCeGt3O+ovmwZLmTEW\nQBKlbpeZ9KidXQW1Wo2WE91JBxPOpRBRsVB8IHr34zOJ3zQO/mAYu5s7sLu5A1Vxa3mk1sSoVEC/\nJ4BjJ3uwqMaKf7rnipS3fojOpRARFSrFzhGFwmG8seM4Dh/PXnmfaPr1lvfaJOdxIhGMSNfeuvcU\nJ+aJiEQotkfUuKsdu5s7cnLtD46cBVQq3L58BoCheZwelw8qkQrgidK1iYiKmSIDkS8wmPVCp/HC\nEWB3cwc0alVsHudURx+effOI4PuVvvaHiCiTFDk053Rlr9CplObj9lj9uIunlhf82h8iokxQZCCq\nLJNX4y3Tevr9+I/txxEKh7n2h4goRYoMREa9VlaNt2z4sPVcrHYc66gRESVPkXNEwMgFn90uX07v\nJT4ZgWt/iIiSo8geETC84HPD3yzK9a2MqR3HOmpERPIpNhBFdTm9ub4FJiMQEY2D4gPRNFtp9q5l\nnSB4nMkIRESpU3wgMpv00GTht7h67kRs/NvLmIxARJRmik1WiOr3BCBj5+1xM+o00Gu1TEYgIkoz\nxfeIznS5kcSedCk7erIntkU3kxGIiNJH8YEoW3NEiXZVJSKi1Cg+EOl1mqz8EsyMIyLKDMUHoj63\nH1mYImJmHBFRhig+WaG81ACTXgVPIDMzRZVmA759QSUall6ckfMTERU7xfeIDDoN5lxoydj5w+Ew\nPmo9h8dfPYAtO9sQSiJFzx8MocvpiSU5EBHRWIrvEQHAjVd+C81t3Rk5d99AEMDwbqsAsLa+RvIz\noXAYjbvacbjNjh6XH5a4LcY1asXHfiKitCqMp2I28re/cbjNkbCH07irHTsPnkG3yz9iy/BolW4i\nIhpWEIFo1+GzWbtWojRufzAkunusnCBGRFRsFB+I/MEQjn/Vk7XrVZqNKDFoRed++tziu8dyLRIR\n0ViKnyPqc/vhdAezdj2TUYtfvv6J6NxPeenQ7rHdAsGIa5GIiMZSfI+ovNQAi1mfsfMb9ZpYgdPp\ntlKc7nJLzv1wy3AiouQk7BF5vV5s2LAB3d3d8Pv9WL9+PebMmYNHHnkEoVAIVqsVzzzzDPR6PbZt\n24bNmzdDrVZjzZo1WL16dcZ/AYNOg4U1Vuw61JH2cy+aVYWbrroARp0G5aUG/PL1TwTfF79DKzBy\n91hnvw+VZiMW1VSzSjcRkYCEgWj37t2YO3cu7r33XnR0dODuu+9GbW0t1q5di5tuugnPPfccmpqa\n0NDQgJdeeglNTU3Q6XS47bbbsHLlSlRUVGT8lwiHM5M2d/hENw6f6IZRr0btLKvgcBswPPdjqzQB\nGN49llW6iYgSSzg0d/PNN+Pee+8FAHR2dmLixIk4cOAAVqxYAQBYtmwZ9u3bh5aWFsybNw9msxlG\noxG1tbVobm7O7N0jmqXmyOg1fIEwPvr0PIx64eYSm/thlW75uPiXqHjJTla44447cO7cObz88sv4\n4Q9/CL1+aF6mqqoKdrsdDocDFstwhQOLxQK7XTiNOZ363H70DQQyfh0AiIh0vObPsLDnkyIu/iUi\n2YHozTffxGeffYaf/vSniMQ9kSMiT2ex4/EqK03QalN7cFutZgCAubwEljKDaMp0OgWCYUy3laLD\n4UY4DKhVQKlJj9YverDnyFlYK0pw1dzJuPuWS6HJxrax4xBtv1x7ZeuxWMUKYDgBxFSix70N83J4\nZ4nlSxsqFdtvfAqp/RIGotbWVlRVVWHy5Mm45JJLEAqFMGHCBPh8PhiNRpw/fx42mw02mw0Ox/AQ\nWVdXFxYuXCh5bqfTk9JNW61m2O39sZ893uykb+t1apzucsd+DkcAV1xvrMvpxba9p+DxBhKWAcql\n0e2XK/5gCB+2CCeZfNhyFjddMT1ve5j50oZKxfYbH6W2n1jwTPi1/eDBg9i0aRMAwOFwwOPxYPHi\nxdi+fTsAYMeOHVi6dCkWLFiAY8eOweVyYWBgAM3Nzairq0vjryCs1+2HL5iNjSAAlUre+4q5gkIy\ncz1c/EtEgIwe0R133IGf/exnWLt2LXw+H37+859j7ty5ePTRR9HY2IgpU6agoaEBOp0ODz30EO65\n5x6oVCrcf//9MJsz33X8X+9+nvFrAEB1uQGOPnkPxtFZdMUglbkeLv4lIkBGIDIajfj1r3895vhr\nr7025tiNN96IG2+8MT13JoPHH8RfvsxOeZ9wBLCY9ejpT5wYUYwP0Wih1yg51cqji3/jPxdVSIt/\n/cEQk1mIJCi6xM+W904gMJid0tu9/X5cdekkfNR6LuF7C+khKkeiQq/xi31HK+TFv8wIJJJHsYHI\nHwzh86wWOzVg5eXTYNBrcLS9+5uHpgEmow4D3iB63f6CeogmQ85cj9gwZSEv/k2ll0hUjBQbiPrc\nfjhlDJOly4AviF++dhCWMgPmz6hCfd10WMqMMOg0RT/0ko65nuji30Ixnl4iUbFR7PhA9OGXLb5A\nOFbodPfhs9h9uCP2ICn2Cgos9DoWMwKJ5FNsIDLoNJg/oypn1z/cZi/aFG0hty+fifq6aagqM8aq\nldfXTSu6YcooqS9KxZjMQiRFsUNzAFBfNx27s7g7a7xulx9vbD+OH948hxPPKOy5nlQUS0YgUToo\nOhBZyoyoNBvg7M/NMMdHredgMmo58Ryn0OZ6xqOQMwKJ0kmxgSgUDuOdD05iIEvlfcTkYuK52JMj\nlIK9RCJ5FBuIRqfG5kp04rm81JDxhw3XpSgTe4lE0hQZiHyBQdHU2GyrKDVg+yencbTdkfHgILYu\nxeMbxJ03zOa3bSJSJEUGIqdLPDU22yaU6LC7ebiCdKYWLUqtS/mo9RyOf+1k74iIFEmRT6zKsuyu\nIRIz1ToBHp/wHNWfj3bC40/f/JXUuhRgOAA27mpP2zWJiLJBkYHIqNeKLqDMpgFvUDQ4+AIhbHnv\nRNquJXcBbzFvQUFEyqTIQAQMpcYuv2xqTu+hzx1Aeale9PXPv3KmLShIVS+Ix1X7RKQ0ig1EGrUa\nMnYjzyhLmRFzvlUp+nqv25/WoBCtXmAxi/eMuGqfiJRGsYHIHwzhSJsj8RszaFFNNdbdMBtGvXAz\npjsoRNel/M8fX4UlcyeJ3hOz54hISRQbiPrcfvRmeQhK/c1W4RazIVZHzWTQ4uq5kwXfn6mgYNBp\ncNfNcxRZ2y2ZrcSJqDgoMn0bkN56IBNslUZs+JtaBILh2KLVUDiMLTvb0HJiKK1arRraybUqbi1R\npiht1T4X4xKRGMU+AeRO3qdLl9OHXze2oKrcGHvgRxeYRrcPD38zZzV/RhXW1tdk5QGrlC0oom3V\n7fLHttNgujkRAQoORMDQ5P10W2nWrtdhH8CW99oASC8wPXqyh0NPcRJtEse2Iipuig5Eg6GI6ILS\nTDl8whErOiq18Znd6eFcyDe4SRwRSVHsHBEA9Lh8WZsjiupzB2JzMmJzVHqdBi80HeVcyDfSsZU4\nERUuRT8Zdx7KfvXtSrMhlhggNkflC4Q4FxKHW4kTkRTFBiJ/MISj7dlfRzShRBd7cI7eHttiNsCo\nF36oFvtcCLcSJ1KmbCy5UOzQXKIioJnS5RzAV+f7MckylKkWn0IdGAzj8Vc/FvxcdC6kWPelUVq6\nOVGxy+aSC8UGovJSAypKDXBmeaLbH4zgn177ZMRaoWgKtT8Y4lxIAtwkjkgZxPY/A9K7xQ2g4KE5\ng06DhTXVObu+0NxPtudCWKWAiDIh20suFNsjAoC19bPQ0m5HjyuQs3s43ObArdfNGDFvFD3u7Peh\n0mzEoprqtM6FsEoBEWWSnCUX6RzZUHQg0qjVuOevLsEzv2/J2T2M/o8iNhfiD4bQ3ecZMzcSXZOU\nzJxJNrvMRFR8sr3kQtGBCADMptzOu4j9R4nOhUTr0Y3uvdx2/cVo2nMq6V5Noi5zfO+MiCgV0WmG\n+C+8UZmYZlB8ICqfIL4xXTYk+o8i1ns5/nUvTne5xxwHpHs1qXSZU+l1EVFxy8Y0Q5TiA5G9z5uT\n68qpsC3Ve+mwuwWPJ+rVyOkyRwNPqUmHrXu/GNPremDNIhm/IREVs2wuuVB0IPIHQzhzXviBnmnR\nCttSpHovYZHdZRNNBEp1mRfMqsI7H5yMBR6DXgNfYDi7JdrrMpXo0bDkQsl7JyICsrPkQpGBKBQa\nnnfJdq25qGiFbbFvCKFwGNs//hoqFZLa0lxszil+eE2syxyJREYEqPggFG9/ayduumI6h+mIKC8o\nMhBt+q9PBXsE2RStsK3XaVBi0MLrHxzRdW3c1Y7dh88mfd7Rc05SqdrxXWYA2PjKflnXcPR6055+\nyXkoIkqV4gKRPxjC/tbOXN8G9DoNnn+7BT39gTE7szYsvVh0bmi0ilI9XAOBWK+mYenF6HIOp3kn\nStWOBpMup0d2yaPqipK0pV9yTRNRflHil0LFBaI+tx/23twkKMTzBUKxoa/ofE80SHh9g7KCQlWZ\nET+/qw5e/2AsseDxVw/EHujzZ1Th6Mluwc+OTmpIZuv0q+ZOTts/UK5pIsoPSv5SmN93J6C81ABr\nRUlO70Gtkn7986+dqDQnTitfVFMNs0kPW6UJW/d+MWYr7d2Hz4oGltEbykmVFzLqNSMqXt99y6UJ\n700O7rxKlD+iXwqVuAWN4npEBp0GV82djG17T+XsHsQy3qKc/X5cdekkfNR6TvD1qrKR+fhSD/To\nsN9oQkkN0fM1H7fD2e9HpdmA2tlDQ4VuTyDWVddo0vP9I9tlQIhImNIXuisuEAHA3bdcin63Dx8c\nOZswKORCpdmItStnwWTUjshsmz/Dgvq66bCUGUf8o0glzVtqIa1KNfJ/DTo1TBkICNx5lSg/KP1L\noSIDkUajxp03zAFUKuxu7sj17YyxqKYaJoNuxGIwocy6KKkHusVswIJZ1Tja3p1wdXO252uyXQaE\niIQp/UuhIgNRVMPSi7CnuQP50ikSqrag1aiw89AZyQlEqQd67Wwr1tbXwL9MOhMmV13zbJYBISJh\nSv9SKCsQPf300zh06BAGBwdx3333Yd68eXjkkUcQCoVgtVrxzDPPQK/XY9u2bdi8eTPUajXWrFmD\n1atXZ/TmG99vz2oQKjNp4fI7LVxpAAAdnklEQVQMir5+56rZmH1B5YgMFbm9lEQPdKHVzfFpmrnq\nmnPnVaL8oOQvhQkD0f79+3HixAk0NjbC6XTir//6r3H11Vdj7dq1uOmmm/Dcc8+hqakJDQ0NeOml\nl9DU1ASdTofbbrsNK1euREVFRUZu3B8M4fOvejJybjGzp1fiVKdLsPurVgHPNx0d0SsaDEVk91KS\neaALpWnOn1mNSrMePf1j92bKRtecO68S5ZaSvxQmTJ+6/PLL8cILLwAAysrK4PV6ceDAAaxYsQIA\nsGzZMuzbtw8tLS2YN28ezGYzjEYjamtr0dzcnLEb73P74RR46GbSsS+6MX9GleBro9cSNe5ql9VL\nGS36QJdT0XtEqndzByaUCKeMK6FrTkTpIecZkm8SBiKNRgOTaeibblNTE6699lp4vV7o9UMPvaqq\nKtjtdjgcDlgsltjnLBYL7HZ51QVSUWrSQadNsKAnzXyBMK5dOAX1ddNgMUv3MA63OVBi0MKgF/7H\noNdpYpWyk9nuW2ouyOML4rpFk2GMu6ZRr0EkEkEoHJZ1fiKibJOdrLBz5040NTVh06ZNWLVqVex4\nRKSip9jxeJWVJmi1qUXtHQc7EBjMfppCdVUpHvz+ZfjtOy3440dfir7P2e+DWq+LpVCPplIB/7Xv\nKxz87DzsvV5YK0pw1dzJuPuWSyXX+XQ6BtDTL9bL8kOr0Y4oduoLhPD+oQ5MMBlwb8O82HGr1Sz9\ni1JCbMPxYfuNTyG1n6xAtHfvXrz88sv493//d5jNZphMJvh8PhiNRpw/fx42mw02mw0OhyP2ma6u\nLixcuFDyvE6nJ6WbNpeX4MOW3KRtv/3e51izfBYOJKh3V2k2wukcgNcv3NPx+kMjAlmX04tte0/B\n4w1IplqHgiFYzGJpmgYcPn5e8HMftpyNVdy2Ws2w2/sl75+ksQ3Hh+03PkptP7HgmXBorr+/H08/\n/TR+97vfxRIPFi9ejO3btwMAduzYgaVLl2LBggU4duwYXC4XBgYG0NzcjLq6ujT+CsOcLvG5l0z7\nU8s5bHnvRMLrL6qphrWiBFVlwkN4YmWCEpXGkSrlM+dblaLzZmJzUkREuZawR/THP/4RTqcTf//3\nfx879uSTT2Ljxo1obGzElClT0NDQAJ1Oh4ceegj33HMPVCoV7r//fpjNmek6VpbJL/CZCZ992SN6\nfbUKuG7hlNg6IbHc/lQ3xgPE0zQbll6Mz792KnZRGxEVJ1VEzmROhqTatbRazXjh94dyuifR4rnC\nteSW1U7Fnatmx34eTrWOK/UzswotJ+zCqdalBvzi7sthNiUumipU7n3LzjbBdqmvmxYb8lNqtz6f\nsA3Hh+03PkptP7GhOcVWVrh9+Uy4PUHs/4vwnEimaTRDD/dEi8fEcvs1apVgwHC6/fjl65/IKt8u\ntHZHyYvaiKg4KbZHZLf3o7vPi5/+dl+a70qeilI9nrjvagBIafFYfE+p2+UTfE98LyZZUptjKfXb\nVD5hG44P2298lNp+KScr5LMuZ+42yOt1B/DG9uPQalQpLR6L9pR+flcdKkqFh+HGs6ePEhe1EVFx\nUnQgmmYrzen1P2o9N+5Np9zeIHrdqWW6JbsYlogoHyl2jggATEYtDFrAL16HNOPGW9l65yHxhAux\nTDclbwlMRDSaop9ajbvacxqEgPGtz/EHQzja7hB9ff4Mi2CAU/KWwEREoyk2EEnVXMum8gkGlBgS\ndyyFhtGkiqICQH3ddMHzSFX05jAdESmNYofmEj3EsyVRurXUMJrUropVZUZYyoxjjufblsBS2XlE\nRHIoNhBJPcSzTWpL7kQb4yW7q2K+bAnMeSoiShfFPjEMOg0WzqrO9W2MMHpoTHoYzQ5/MITbl89E\nfd00VJUZoVYN9YTq66aJLkCVqjWXzX2HOE9FROmi2B4RAAzm2R47Pa6RQ2N9br9oj63b5Y+9N77y\nQolBC69/EIOhCMR2g8h19YRE81TjySIkouKj2EDkD4ZwpE084ywXIgD+78dfY93KGmjUapQYtFCr\nhAucqlUYkeSg1aiw89AZWUNdud4SON/mqYhI2RQ7NNfn9qNvIJjr2xjjg8NnY8NTXv+gaJXtcGTo\n9ahUhrqyWT0hPusvOk8lhFW+iShZiu0RlZcaYDHrBStY51rzcTtuvW6G5D1azIbYAzufh7rEkhIW\nzKrGrkNjNyfM5jwVERUGxfaIDDoNamfbcn0bgpz9Q/M/Uvdo0GkQ+maOS85QV66I9dRUQFJJFkRE\nYhTbIwKAhqUXYffBM8i3JZwVpfpYb+f25TNx/OtenO5yj3hPZ48HD7/0Ea6ZPxkNSy/Oi5Ts0aR6\nakdOdONX916Zs3mqfMa1VUTJUXQgcnuCeReEAOCSC4dL8wyGIvD4hOeyfIFQbA1RsuuJskFuUgIT\nE4ZwbRVRahT911FeakC2n9F6rVrymnqtCmtXzor9LKcCxOE2BxqWXpSxoa5Uq3QzKSE5XFtFlBpF\n94gAINvb+g2Gw5BavlQ3ZyJMBl3sZzkVIJz9Prg9wbSnZIt9Q39gzSJZn48uns23nlo+yueEE6J8\np+geUZ/bj8Esr2lNtIZWq1ahs3sg1vuQqoQQFd+7SGdKttg39E3/9WnsPfG9JaGeU7KVH4pVPiec\nEOU7RfeISgxaqFTZ7xVJ+dPRTvzpaCeq4uYHog/tPx/thC8wdngsE70LqW/o+1s7sapuKrbu/QKH\n2+zodvlh1KsBqOAPhMbMbeRy8axS5EsNQCIlUnSPyOsfzKsgFC9+fiD6MH/2/iVYMncSqsoMGe9d\nSH1Dd/R6seW9E7HeEgD4AmH4AiHRuQ1uPS4tX2oAEimRontE5aUG6LUqBAbzNBphqBfUsPRimAxa\nmAxa3POdb2clvVfqG3p1RQk+/6on4Tk4t5GcXNcAJFIqRQciABjM4yAEDKVo//69NtzznW/HjkV7\nF/HSHZykEg3mzqjG7oOnE56DdeOSw2FMotQoNhCFwmH8x/bjyK/628I+/9oJfzAk+FDK5NoTsW/o\nP2qYi5a2roR7OXFuIzVCXzSISJxiA9Gb75/Ah63ncn0bsvS4/DjV0YeLp5aPCEb+YAj/sf34iN9D\napO9ZIl9Q59QohftLcXj3AYRZYMiA5EvMIgPjykjCAGASgU8++aRWG/ntusvRtOeU2g+3iVatDWd\n8zNC39Dje0s9Lh8M+qHrBIIhzm0QUVYpMhCd6x4QTIPOV9GtIKK9HaHac6Nlen5GqLcEgHMbRJR1\nigxEgCrXNyBKrQIqzQb0uPxQiWyK12GXDkJA+udn4pMh4o3uLXFug4iyTZGBaFKVCUa9Gr5A/qUq\nXLtwMm5fXoNTHX149s0jgu8R2ywvXrrmZ4SSIZYsmIpbrv4WC3ESUV5Q5JPIqNdi8bzJub6NMabb\nSvE3K2cDAMwmnWjBULVEh66qzJDWRa5CZX627T3FQpxElDcU2SMCgO+vmIXjX/WiwzGQ61uBQavG\n4vmTcfvyGSN6H3qdcJyfai0VnCNaPHcS7rxhdsKekNw1RyzESURKoNhANBiKwBcYzPVtAABKjFo0\nXHMRmvacGpES7Q+OHDqM1p+7ZcmFaHy/HZ9/5USv2z8iS01quCzZNUdyCnGWlxqYoEBEOaXYQCRn\nn59s6XUH8PimjxMGxrkzLACAX772SSyQXH3pJHx/ZQ1MhsT/KaLDbFGJ1hxJlfmpKDVg+yencbTd\nwU3ciCinFPvEKS81oHyCPte3EdPrDiRMnjjwadeY+ZoPW89h695TCc+faJhNaNM7qUKcBp0Gu5s7\nuIkbEeWcYgORQafBnAsrc30bSRFb+yQWSOKlut9N/H5CKgBGvQZGvQadPZ6U74WIKJ0UG4gAYN2q\nGskMNKVw9vtg7/VKbued6rbd0YWrv7r3SiyeOwm+QEhyMTA3cSOibFPsHBEAmAw61M624uDnwkNW\nuWDUaxAOh5PamkKv0+D5t47A2R8QnatJx7bdn3/tTPie8Sykzcb2FkRUeBQdiELhMHTa/OoSXTN/\nMgZDYew5fFb2Z+J7KVIJCOPZ70ZucofcoBYfdLQaVcYqiBNR4VN0IGrc1Y59rV05vQe9ToVgMAJL\n2VBQaFh6ER5/9WNZn7WUGeDxBQWTHITW+STa70aqRyKVQQdgxNbmUoRSyE1G3Yh1UemsIE5EhU+x\ngcgfDKH5eG6DkArAM//PkqE5FZUK1oqSpNLKf7BqNl5oOir4mlTR09H14eSsL5Ia2pO7kBYQTiEX\nC25cNEtEcig2EPW4fKJbKGRLBMAf/nQKrae6YwHAaNBAzuxQVZkRF00pE+2lJDNXI3d9UbS3c/Rk\nNxy9XtkLaaOkUsiFcIdXIpJDViBqa2vD+vXrcdddd2HdunXo7OzEI488glAoBKvVimeeeQZ6vR7b\ntm3D5s2boVarsWbNGqxevTpjN77zkPSmbtnywZHhuaBEO57GW1RTDbNJfIO6+TMssudq5JbxiQ7t\n3XdrCU5+2Z10UkGyi4i5wysRyZHwa7DH48E///M/4+qrr44de/HFF7F27Vps2bIFF1xwAZqamuDx\nePDSSy/h9ddfxxtvvIHNmzejt7c3IzftCwziaLsjI+fOJJVqaC5mydxJaFh6MYDhdT4W89ADO5qO\nfvRkN7bsbEMoLL1INpX1RUa9FrZKU9JDZlIp5EK4wysRyZEwEOn1erzyyiuw2WyxYwcOHMCKFSsA\nAMuWLcO+ffvQ0tKCefPmwWw2w2g0ora2Fs3NzRm5aacrf8r7JGPRzGpEIhF81HoOj796AFt2tgEY\nGj5bMKsawNhN9La815aR9UWpkKrUMN1WiqoyI9SqoWHHdFYQJ6LClnBoTqvVQqsd+Tav1wu9fqi8\nTlVVFex2OxwOBywWS+w9FosFdntm1vdUlklngOWr5hPDvbj4eZxbr5sh2sP74MhZ7Dl8NqPri5Ih\nlUI+GIpwHVGB4JowyqZxJytEIsJT82LH41VWmqDVpvaP/Or5U/B//vxFSp/NJ0dPduN/XD8LPf3C\nQXV0D8lUose9DfNGvOeBNYtgKtFjf2snHL1eVFeU4Kq5k3H3LZdCoxHu9Fqt5pTv+cHvXwZfYBBO\nlx+VZQYY9cP/jKalfFblGU8b5qtQKIxN//Up9rd2wt7rhVXGv6VUFWL7ZVMhtV9KgchkMsHn88Fo\nNOL8+fOw2Wyw2WxwOIa/1Xd1dWHhwoWS53E6heudJWK1muHx5jZjTohKBZgMWgQHByF3hwpHrxdO\n5wAsZnk9vA9bzuKmK6aP+ZbasORC3HTF9BHfYnt6hPdqslrNsNv75d2gBC2A/j4vxn8m5UlXG+ab\nLTvbRvSuu5xebNt7Ch5vIK1rwgq1/bJFqe0nFjxT+oqzePFibN++HQCwY8cOLF26FAsWLMCxY8fg\ncrkwMDCA5uZm1NXVpX7HEnyBQRxJIo04WyIRYMA3CEtZiezPVJqNsFaUiM69jNbt8qHH5RN8Lbq+\niEMphcEfDEnOD2bieslWeCdKh4Q9otbWVjz11FPo6OiAVqvF9u3b8eyzz2LDhg1obGzElClT0NDQ\nAJ1Oh4ceegj33HMPVCoV7r//fpjNmek6Ol3+nK8hknKuxwuDTj1mYzwh0Xmc+LmXHpcPKtXwsNxo\nOw+exp03zEnnLWcU5xuSk+wGiOkiJwOTa8IoE1QROZM5GZJq19JcXoL7/uW9vA5GaolAAgAVpXrU\nzbGNebhEH9r/98DXI9YoxTPqNXj2/sUwGXQp3Vu2uvW5eqBmQybbcPTwWFR93bSMlkzyB0PY+Mp+\nwSHiqjIjfnXvlWn7IqHUoaV8odT2S+vQXK4Z9VrUzrYlfmMOSQWhylID/unuK7C2vkb0gXztgsmi\nn/cFQtjy3onx3mLGRSs+cPM9+XI5PCaVns81YZRJii3xc/vymQgOhvDBkc5c30rSLptjhdk0cnfZ\n0b0HvU76O8LnXznhD4by9uGQTMUHGpbr4bHxVHgnSpViA5FGrcYdK2rw0bFOKGkOdfHcSYJ/1KPr\nxSWaX+p1+/N6zD7XD1SlkqqSno2SSYkqvBNlgiKH5qL63P6cBSGjXoPyCfrEb4xTVWbAnTfMHjMc\nl2wxUSD/67hls+JDIcmX4TFmYFI2KToQlZcaUG5KbcJ+vALBEP6u4dKktipfVGMV/MNOtpjo0Lnk\nP5SynQYM5M8DVYmi9QdZMomKhWKH5oChh53RoEWfJ5j1a1eajZhg1CVMSugb8CccZ0+0aV08o16D\na+ZPlvVQEstae2DNooSfTQfON6SGw2NUbBQdiPzBELxySxik2aKaalgrSmAx6wXTyC1mAx7/4eXw\n+gcTPkik6sUZ9RoEgiFUmg2Y861KfH9lDUwGef/ZxPYpMpXo0bDkQlnnGA8+UMdn9AaIJI5r1ZRN\n0YGoz+2HayC7vSGLWY/a2cPrf2pn2wQDSO3socy4aHZcoj8Usd5Dw9KL4fYEkv4Dk5p32t/aKVgm\nKNH5Uv1D5wOVMqWQ16oVE0UHovJSg2iPJFMGfCN7YImGn+T+oUj1HuT2gOJJzTs5er2ys9b4h075\nTO7uxJTfFB2IDDqNaI8kU/zB8Ih/6ImGn5L9Q0lX70Fq3qm6oiTt25ATZRvXqhUOxX+lje50mm2j\nV7kLpbvm6yr5q+ZOTss25P2eQNaz8YiiUtmdmPKTontEAGDvTW0rifGSsygz14s6xYYN777lUtEt\nIuJJ3X+3y4dfbPoEvW4O11Fu5HrxL6WP4gPR9gNf5+S6FaWGhP/Qc/2HIjZsKHeDs0Rp5c5vvnFy\nuI5yIdu7E1PmKPrrq8c/iEPHc7Mv0YQSXcJ/6AadBgtmVQu+tmBWVUb+UIQWr6a6Sl5qeE8I96yh\nbOPi38Kg6B7R799rQzCUm10sPL6grKKjYoUX4o+nYw1EprLbRg/vlU3Qo9ctnKXIGnKUbVyrVhgU\nG4g8/iAOHu/K2fW7XX70uHyYXDUhdmx0QPEHQzhywiH4+SMnuvHX1waxde8XaQkemcpuG/2HXmLQ\n4pevf8JxecorXKumbIoNRFveOyFrB9RMiu6UKtYbWbZoqmSywpb3TuCj1nOxY6kGj2TTWH2BQXQ5\nPUl9e4z/Q+e4PBGlkyIDkS8wiM+/6sn1beDoyR74gyG888FJwd5IKByRSFYwiP4Oya6BkJudFw2Y\nR092w+70ptwDYw05IkonRQYip8sPZx5sE+7s98Hu9Ij2Ro62d2P+jCrsPjx2y+8536oc0Rsafd7R\ncy1S80hys/PSNXzHcXkiSidFBqLKMvnVqjN6H2YjoFJJ9kbq66ZDo1EL1pD7/GtnwuAhJwlBThpr\nJlahc1yeiNJBkYHIqNeKPnjTzaBVwz8oPBcVq8At0RuxlBlFew9y5lrk9mISDZflenEtEZEYRQYi\nYPjB+/7BM8hkAveVcyfiugVTsOOTMzhxuhe97pH7C2nUalkBRaj3kCh4JNOLSTRcluvFtUREYhQb\niDRqNW69bgYOftaF3oHMzRf96Ugn9FoN7vvupaLzNKlO3icKHqn0YsSGy7gKnYjylWIDETD0oO7L\nYBCKiu99CD3kxzt5L3bedPdiooHx6MluOHq9zHYjoryg6ECUzBbb4yF3DiXdk/fp7sVEA+Z9t5bg\n5JfdzHYjoryg6FpzydZCS1Uu51AyUUvLqNemVHuOiCgTFN0jAoaHm5qP29HTn5meUS7nULhmh4gK\nnaJ7RMDwg/p//vgqXH3pxLSe22I25E0l31QraBMR5TvF94jitZ3uHfc5KksNmD+zCqsunw5LmZEP\nfiKiDCuYQCSV6iyHRg388p4rGXyIiLJM8UNzUaUmPQz61H+dUBjY8clpBiEioiwrmEC0de8p+ALj\n2xbi8Ak7dxglIsqygghEUqVwktHvCaLPndtCqkRExaYgAtF454eiLKy5RkSUdQURiKIVFsbr0osr\n0ef2c3iOiCiLCiJrTqoUTjJaTjiw90hnyjuXEhFR8grmKduw9GIYx5E1BwB9A0FEMLznT+Ou9vTc\nHBERiSqYQOT2BMadNTfa4TYHh+mIiDKsYAJReakBFaX6tJ4zWnWbiIgyp2ACkUGnwaJZ1Ul/rtJs\ngMUsHMC4cykRUeYVTCACgLUrazDdVprUZy6bbUXtbJvga9y5lIgo8woiay5Ko1bj53fVYcvOEzjS\n5kDvgB8WsxELZ1UhFIlgf+t5+AJDcz5GvQZL5k0aUVk72a2+iYho/FSRSCSSzhP+y7/8C1paWqBS\nqfDYY49h/vz5ou+12/tTuobVak74WX8wNGb/Hn8wBLvTA6hUsFaUjOntCH2mEMlpP5LGNhwftt/4\nKLX9rFaz4PG09og+/vhjfPXVV2hsbMTJkyfx2GOPobGxMZ2XkE1o226DToNpNuGGEPsMERFlVlrn\niPbt24f6+noAwIwZM9DX1we3253OSxARUYFJayByOByorKyM/WyxWGC3j78YKRERFa6MJiskmn6q\nrDRBq01tLkZsrJHkYfuNH9twfNh+41NI7ZfWQGSz2eBwOGI/d3V1wWq1ir7f6fSkdB2lTtTlC7bf\n+LENx4ftNz5KbT+x4JnWobklS5Zg+/btAIBPP/0UNpsNpaXJreshIqLiktYeUW1tLS699FLccccd\nUKlUePzxx9N5eiIiKkBpnyN6+OGH031KIiIqYGlf0EpERJSMgqo1R0REysNAREREOcVAREREOcVA\nREREOcVAREREOcVAREREOaWojfGS2euoWLW1tWH9+vW46667sG7dOnR2duKRRx5BKBSC1WrFM888\nA71ej23btmHz5s1Qq9VYs2YNVq9ejWAwiA0bNuDs2bPQaDR44oknMH369Fz/Sln19NNP49ChQxgc\nHMR9992HefPmsf1k8nq92LBhA7q7u+H3+7F+/XrMmTOH7Zckn8+H73znO1i/fj2uvvrq4mi/iEIc\nOHAg8uMf/zgSiUQi7e3tkTVr1uT4jvLPwMBAZN26dZGNGzdG3njjjUgkEols2LAh8sc//jESiUQi\nv/71ryP/+Z//GRkYGIisWrUq4nK5Il6vN/JXf/VXEafTGfnDH/4Q+cUvfhGJRCKRvXv3Rh588MGc\n/S65sG/fvsiPfvSjSCQSifT09ESuu+46tl8S/vu//zvyb//2b5FIJBI5c+ZMZNWqVWy/FDz33HOR\n733ve5F33nmnaNpPMUNz3OsoMb1ej1deeQU2my127MCBA1ixYgUAYNmyZdi3bx9aWlowb948mM1m\nGI1G1NbWorm5Gfv27cPKlSsBAIsXL0Zzc3NOfo9cufzyy/HCCy8AAMrKyuD1etl+Sbj55ptx7733\nAgA6OzsxceJEtl+STp48ifb2dlx//fUAiufvVzGBiHsdJabVamE0Gkcc83q90Ov1AICqqirY7XY4\nHA5YLJbYe6JtGX9crVZDpVIhEAhk7xfIMY1GA5NpaIfepqYmXHvttWy/FNxxxx14+OGH8dhjj7H9\nkvTUU09hw4YNsZ+Lpf0UNUcUL8LKREkTa7Nkjxe6nTt3oqmpCZs2bcKqVatix9l+8rz55pv47LPP\n8NOf/nREG7D9pG3duhULFy4Undcp5PZTTI8o2b2OaIjJZILP5wMAnD9/HjabTbAto8ejvcxgMIhI\nJBL7NlYs9u7di5dffhmvvPIKzGYz2y8Jra2t6OzsBABccsklCIVCmDBhAttPpj179uD999/HmjVr\n8Pbbb+Nf//Vfi+bfn2ICEfc6Ss3ixYtj7bZjxw4sXboUCxYswLFjx+ByuTAwMIDm5mbU1dVhyZIl\nePfddwEAu3fvxpVXXpnLW8+6/v5+PP300/jd736HiooKAGy/ZBw8eBCbNm0CMDSU7vF42H5JeP75\n5/HOO+/grbfewurVq7F+/fqiaT9FVd9+9tlncfDgwdheR3PmzMn1LeWV1tZWPPXUU+jo6IBWq8XE\niRPx7LPPYsOGDfD7/ZgyZQqeeOIJ6HQ6vPvuu3j11VehUqmwbt06fPe730UoFMLGjRvx5ZdfQq/X\n48knn8TkyZNz/WtlTWNjI37zm9/goosuih178sknsXHjRrafDD6fDz/72c/Q2dkJn8+HBx54AHPn\nzsWjjz7K9kvSb37zG0ydOhXXXHNNUbSfogIREREVHsUMzRERUWFiICIiopxiICIiopxiICIiopxi\nICIiopxiICIiopxiICIiopxiICIiopz6/wHIY+b9nf/bogAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "jByCP8hDRZmM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "s0tiX2gdRe-S", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize=(15, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kMQD0Uq3RqTX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The calibration data shows most scatter points aligned to a line. The line is almost vertical, but we'll come back to that later. Right now let's focus on the ones that deviate from the line. We notice that they are relatively few in number.\n", + "\n", + "If we plot a histogram of `rooms_per_person`, we find that we have a few outliers in our input data:" + ] + }, + { + "metadata": { + "id": "POTM8C_ER1Oc", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "3dd0db6c-6b88-49d2-d9c5-01ea41bd8be9" + }, + "cell_type": "code", + "source": [ + "plt.subplot(1, 2, 2)\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAFKCAYAAAA5TzK7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGtRJREFUeJzt3X9M1Pfhx/HnwXG70N5Vjt01celM\n7ZKSNfwYoaMc0pUqa8rmvi4WCwTX5suSklLbLreqI05dDC1oWawdq53OSTQqSrfKTAOk+6Jz4epi\nLyHYxNh2zcKwhbsFivKjnMr3D7ObWAU8zyK8X4//ePPheL/f5Jn7fNpr35bx8fFxRMQIcTM9ARH5\n6ih4EYMoeBGDKHgRgyh4EYMoeBGDWGd6AtMVDJ6b8pqkpET6+4e/gtnc/rQX/2XaXrjdjut+b069\nw1ut8TM9hduG9uK/tBf/NaeCF5HJKXgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGD\nKHgRgyh4EYPMmv9abrr+t+b/YvI6u9Y+GpPXEbmd6B1exCAKXsQgCl7EIApexCAKXsQgCl7EIApe\nxCAKXsQgCl7EIApexCDTCv7MmTMsWbKEvXv3AhAOh/H5fDzxxBM89dRTfP755wA0NzezfPlyioqK\nOHTo0IRrS0pKKCsro7u7G4DTp09TXFxMcXExGzZsuBVrE5GrTBn88PAwmzZtIicnJzJ28OBBkpKS\naGpqorCwkJMnTzI8PEx9fT27d+9mz549NDQ0MDAwwJEjR3A6nezfv5+Kigrq6uoAqK6upqqqigMH\nDnD+/HmOHTt261YpIsA0grfZbOzYsQOPxxMZa29v50c/+hEATz75JIsXL6azs5PU1FQcDgd2u53M\nzEwCgQB+v5+CggIAvF4vgUCAsbExenp6SEtLAyA/Px+/338r1iciV5gyeKvVit1unzDW09PDX//6\nV1auXMnPfvYzBgYGCIVCuFyuyDUul4tgMDhhPC4uDovFQigUwul0Rq5NTk4mGAzGak0ich1R/eex\n4+Pj3HvvvTz33HP89re/5c033+Tb3/72l6653s9OZ+xqSUmJX+kZYZMdyDdbzIU1xIr24rKogv/6\n17/Ogw8+CMCiRYt4/fXXeeSRRwiFQpFr+vr6yMjIwOPxEAwGSUlJIRwOMz4+jtvtZmBgIHJtb2/v\nhEeGa5nO6Z+x/KNO57Ta25nb7Zj1a4gV0/Yi5qfHPvzwwxw/fhyADz74gHvvvZf09HS6uroYHBxk\naGiIQCBAVlYWubm5tLS0AJef/bOzs0lISGDhwoWcPHkSgLa2NvLy8qKZiojcgCnf4U+dOkVtbS09\nPT1YrVZaW1t59dVXqa6upqmpicTERGpra7Hb7fh8PsrLy7FYLFRWVuJwOCgsLKSjo4OSkhJsNhs1\nNTUAVFVVsX79ei5dukR6ejper/eWL1bEdJbx6TxA3wamc0vmdjtY6jsck9832/8XV6bdxk7GtL2I\n+S29iMxOCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7E\nIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIApexCAKXsQg0wr+zJkzLFmyhL17\n904YP378OPfff3/k6+bmZpYvX05RURGHDh0CIBwO4/P5KCkpoaysjO7ubgBOnz5NcXExxcXFbNiw\nIVbrEZFJTBn88PAwmzZtIicnZ8L4F198we9+9zvcbnfkuvr6enbv3s2ePXtoaGhgYGCAI0eO4HQ6\n2b9/PxUVFdTV1QFQXV1NVVUVBw4c4Pz58xw7duwWLE9ErjRl8DabjR07dnzpOOft27dTWlqKzWYD\noLOzk9TUVBwOB3a7nczMTAKBAH6/n4KCAgC8Xi+BQICxsTF6enpIS0sDID8/H7/fH+u1ichVpgze\narVit9snjH3yySecPn2axx9/PDIWCoVwuVyRr10uF8FgcMJ4XFwcFouFUCiE0+mMXJucnEwwGLzp\nxYjI5KY8LvpaXnnlFdatWzfpNdc7lPZa49M5wDYpKRGrNX56E4yByU7gnC3mwhpiRXtx2Q0H39vb\nyz/+8Q9+/vOfA9DX10dZWRmrVq0iFApFruvr6yMjIwOPx0MwGCQlJYVwOMz4+Dhut5uBgYEJr3n1\nI8PV+vuHp5xbLP+os/14YdOOSJ6MaXsR0+Oi7777bt59910OHjzIwYMH8Xg87N27l/T0dLq6uhgc\nHGRoaIhAIEBWVha5ubm0tLQA0N7eTnZ2NgkJCSxcuJCTJ08C0NbWRl5eXpTLE5HpmvId/tSpU9TW\n1tLT04PVaqW1tZXXX3+defPmTbjObrfj8/koLy/HYrFQWVmJw+GgsLCQjo4OSkpKsNls1NTUAFBV\nVcX69eu5dOkS6enpeL3eW7NCEYmwjE/nAfo2MJ1bMrfbwVLf4Zj8vl1rH43J68wU025jJ2PaXsT0\nll5EZi8FL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQ\nBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYpBpBX/mzBmWLFnC3r17\nAfj00095+umnKSsr4+mnn44c9dzc3Mzy5cspKiri0KFDAITDYXw+HyUlJZSVldHd3Q3A6dOnKS4u\npri4mA0bNtyKtYnIVaYMfnh4mE2bNpGTkxMZ27p1KytWrGDv3r0UFBTwhz/8geHhYerr69m9ezd7\n9uyhoaGBgYEBjhw5gtPpZP/+/VRUVFBXVwdAdXU1VVVVHDhwgPPnz3Ps2LFbt0oRAaYRvM1mY8eO\nHROOc96wYQOPPfYYAElJSQwMDNDZ2UlqaioOhwO73U5mZiaBQAC/309BQQEAXq+XQCDA2NgYPT09\npKWlAZCfn4/f778V6xORK0wZvNVqxW63TxhLTEwkPj6eixcvsm/fPpYuXUooFMLlckWucblcBIPB\nCeNxcXFYLBZCoRBOpzNybXJycuSxQERunSmPi76eixcvsnr1ah566CFycnL485//POH71zuU9lrj\n0znANikpEas1PrrJRmGyEzhni7mwhljRXlwWdfC/+MUvWLBgAc899xwAHo+HUCgU+X5fXx8ZGRl4\nPB6CwSApKSmEw2HGx8dxu90MDAxEru3t7Z3wyHAt/f3DU84pln/U2X68sGlHJE/GtL2I+XHRzc3N\nJCQk8Pzzz0fG0tPT6erqYnBwkKGhIQKBAFlZWeTm5tLS0gJAe3s72dnZJCQksHDhQk6ePAlAW1sb\neXl50UxFRG7AlO/wp06dora2lp6eHqxWK62trfz73//ma1/7GitXrgTgvvvuY+PGjfh8PsrLy7FY\nLFRWVuJwOCgsLKSjo4OSkhJsNhs1NTUAVFVVsX79ei5dukR6ejper/fWrlREsIxP5wH6NjCdWzK3\n28FS3+GY/L5dax+NyevMFNNuYydj2l7E/JZeRGYnBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9i\nEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQ\nBS9iEAUvYhAFL2KQaQV/5swZlixZwt69ewH49NNPWblyJaWlpbzwwguMjY0Bl8+cW758OUVFRRw6\ndAiAcDiMz+ejpKSEsrIyuru7ATh9+jTFxcUUFxezYcOGW7E2EbnKlMEPDw+zadMmcnJyImPbtm2j\ntLSUffv2sWDBApqamhgeHqa+vp7du3ezZ88eGhoaGBgY4MiRIzidTvbv309FRQV1dXUAVFdXU1VV\nxYEDBzh//jzHjh27dasUEWAawdtsNnbs2DHhOOcTJ06wePFiAPLz8/H7/XR2dpKamorD4cBut5OZ\nmUkgEMDv91NQUACA1+slEAgwNjZGT08PaWlpE15DRG6tKU+PtVqtWK0TLxsZGcFmswGQnJxMMBgk\nFArhcrki17hcri+Nx8XFYbFYCIVCOJ3OyLX/eY3JJCUlYrXGT39lNymWZ83PlLmwhljRXlw2ZfBT\nud7hszcyPp0DbPv7h6e8JpZ/1Nl+2qhpJ6ZOxrS9iPnpsYmJiYyOjgLQ29uLx+PB4/EQCoUi1/T1\n9UXG//PuHQ6HGR8fx+12MzAwELn2P68hIrdWVMF7vV5aW1sBaGtrIy8vj/T0dLq6uhgcHGRoaIhA\nIEBWVha5ubm0tLQA0N7eTnZ2NgkJCSxcuJCTJ09OeA0RubWmvKU/deoUtbW19PT0YLVaaW1t5dVX\nX2Xt2rU0NjYyf/58li1bRkJCAj6fj/LyciwWC5WVlTgcDgoLC+no6KCkpASbzUZNTQ0AVVVVrF+/\nnkuXLpGeno7X673lixUxnWV8Og/Qt4HpPIO53Q6W+g7H5PftWvtoTF5nppj23DoZ0/Yi5s/wIjI7\nKXgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMo\neBGDKHgRgyh4EYMoeBGDKHgRgyh4EYMoeBGDKHgRgyh4EYNEdZjk0NAQa9as4fPPPyccDlNZWYnb\n7Wbjxo0A3H///fzqV78CYOfOnbS0tGCxWHjuuef43ve+x7lz5/D5fJw7d47ExETq6uqYN29ezBYl\nItcWVfB/+tOfuPfee/H5fPT29vLUU0/hdrupqqoiLS0Nn8/HsWPHWLhwIe+88w4HDhzg/PnzlJaW\nsmjRIhoaGvjud7/LT3/6UxobG9mxYwcvvfRSrNcmIleJ6pY+KSkpcvrr4OAg8+bNo6enh7S0NADy\n8/Px+/2cOHGCvLw8bDYbLpeLb3zjG3z00Uf4/X4KCgomXCsit15Uwf/gBz/g7NmzFBQUUFZWxurV\nq3E6nZHvJycnEwwGCYVCuFyuyLjL5frSeHJyMn19fTe5DBGZjqhu6Q8fPsz8+fP5/e9/z+nTpyMn\nxf7H9c6nvNb4dM+yTEpKxGqNj2a6UZnsQL7ZYi6sIVa0F5dFFXwgEGDRokUApKSk8MUXX3DhwoXI\n93t7e/F4PHg8Hj755JNrjgeDQRwOR2RsKv39w1NeE8s/6mw/bdS0E1MnY9pexPz02AULFtDZ2QlA\nT08Pd9xxB/fddx8nT54EoK2tjby8PB566CGOHj3K2NgYvb299PX18a1vfYvc3FxaWlomXCsit15U\n7/BPPvkkVVVVlJWVceHCBTZu3Ijb7Wb9+vVcunSJ9PR0vF4vACtWrKCsrAyLxcLGjRuJi4tj5cqV\nvPTSS5SWluJ0OtmyZUtMFyUi12YZn+5D9Aybzi2Z2+1gqe9wTH7frrWPxuR1Zoppt7GTMW0vYn5L\nLyKzk4IXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiC\nFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxiIIXMYiCFzGIghcxSFRHTQE0Nzezc+dOrFYr\nzz//PPfffz+rV6/m4sWLuN1utmzZgs1mo7m5mYaGBuLi4lixYgVFRUWEw2HWrl3L2bNniY+P55VX\nXuGee+6J5bpE5Bqieofv7++nvr6effv2sX37dv7yl7+wbds2SktL2bdvHwsWLKCpqYnh4WHq6+vZ\nvXs3e/bsoaGhgYGBAY4cOYLT6WT//v1UVFRQV1cX63WJyDVEFbzf7ycnJ4c777wTj8fDpk2bOHHi\nBIsXLwYgPz8fv99PZ2cnqampOBwO7HY7mZmZBAIB/H4/BQUFAHi9XgKBQOxWJCLXFdUt/b/+9S9G\nR0epqKhgcHCQVatWMTIygs1mAyA5OZlgMEgoFMLlckV+zuVyfWk8Li4Oi8XC2NhY5OdF5NaI+hl+\nYGCA3/zmN5w9e5af/OQnXHkI7fUOpL3R8SslJSVitcZHN9koTHYC52wxF9YQK9qLy6IKPjk5me98\n5ztYrVa++c1vcscddxAfH8/o6Ch2u53e3l48Hg8ej4dQKBT5ub6+PjIyMvB4PASDQVJSUgiHw4yP\nj0/57t7fPzzlvGL5R53txwubdkTyZEzbi5gfF71o0SLee+89Ll26RH9/P8PDw3i9XlpbWwFoa2sj\nLy+P9PR0urq6GBwcZGhoiEAgQFZWFrm5ubS0tADQ3t5OdnZ2NNMQkRsU1Tv83XffzWOPPcaKFSsA\nWLduHampqaxZs4bGxkbmz5/PsmXLSEhIwOfzUV5ejsViobKyEofDQWFhIR0dHZSUlGCz2aipqYnp\nokTk2izj03mAvg1M55bM7Xaw1Hc4Jr9v19pHY/I6M8W029jJmLYXMb+lF5HZScGLGETBixhEwYsY\nRMGLGETBixhEwYsYRMGLGETBixhEwYsYRMGLGETBixhEwYsYRMGLGETBixhEwYsYRMGLGETBixhE\nwYsYRMGLGETBixhEwYsYRMGLGETBixhEwYsY5KaCHx0dZcmSJfzxj3/k008/ZeXKlZSWlvLCCy8w\nNjYGQHNzM8uXL6eoqIhDhw4BEA6H8fl8lJSUUFZWRnd3982vRESmdFPBv/HGG9x1110AbNu2jdLS\nUvbt28eCBQtoampieHiY+vp6du/ezZ49e2hoaGBgYIAjR47gdDrZv38/FRUV1NXVxWQxIjK5qIP/\n+OOP+eijj3jkkUcAOHHiBIsXLwYgPz8fv99PZ2cnqampOBwO7HY7mZmZBAIB/H4/BQUFAHi9XgKB\nwM2vRESmFNXpsQC1tbX88pe/5O233wZgZGQkcsZ7cnIywWCQUCiEy+WK/IzL5frSeFxcHBaLhbGx\nsUnPiE9KSsRqjY92ujcslmfNz5S5sIZY0V5cFlXwb7/9NhkZGdxzzz3X/P71DqS90fEr9fcPT3lN\nLP+os/20UdNOTJ2MaXsxWQdRBX/06FG6u7s5evQon332GTabjcTEREZHR7Hb7fT29uLxePB4PIRC\nocjP9fX1kZGRgcfjIRgMkpKSQjgcZnx8fNJ3dxGJjaie4bdu3cpbb73FwYMHKSoq4tlnn8Xr9dLa\n2gpAW1sbeXl5pKen09XVxeDgIENDQwQCAbKyssjNzaWlpQWA9vZ2srOzY7ciEbmuqJ/hr7Zq1SrW\nrFlDY2Mj8+fPZ9myZSQkJODz+SgvL8disVBZWYnD4aCwsJCOjg5KSkqw2WzU1NTEahoiMgnL+HQe\noG8D03kGc7sdLPUdjsnv27X20Zi8zkwx7bl1MqbtxWTP8PqknYhBFLyIQRS8iEEUvIhBFLyIQRS8\niEEUvIhBFLyIQRS8iEEUvIhBFLyIQRS8iEEUvIhBFLyIQRS8iEEUvIhBFLyIQRS8iEEUvIhBFLyI\nQRS8iEEUvIhBFLyIQRS8iEGiPnlm8+bNvP/++1y4cIFnnnmG1NRUVq9ezcWLF3G73WzZsgWbzUZz\nczMNDQ3ExcWxYsUKioqKCIfDrF27lrNnzxIfH88rr7xy3YMpRSR2ogr+vffe48MPP6SxsZH+/n5+\n/OMfk5OTQ2lpKY8//ji//vWvaWpqYtmyZdTX19PU1ERCQgJPPPEEBQUFtLe343Q6qaur429/+xt1\ndXVs3bo11msTkatEdUv/4IMP8tprrwHgdDoZGRnhxIkTLF68GID8/Hz8fj+dnZ2kpqbicDiw2+1k\nZmYSCATw+/0UFBQA4PV6CQQCMVqOiEwmquDj4+NJTEwEoKmpiYcffpiRkZHIkc/JyckEg0FCoRAu\nlyvycy6X60vjcXFxWCwWxsbGbnYtIjKFmzo99t1336WpqYldu3bx/e9/PzJ+vfMpb3T8SklJiVit\n8dFNNAqTHcg3W8yFNcSK9uKyqIM/fvw427dvZ+fOnTgcDhITExkdHcVut9Pb24vH48Hj8RAKhSI/\n09fXR0ZGBh6Ph2AwSEpKCuFwmPHx8cjdwfX09w9POadY/lFn+2mjpp2YOhnT9iLmp8eeO3eOzZs3\n8+abbzJv3jzg8rN4a2srAG1tbeTl5ZGenk5XVxeDg4MMDQ0RCATIysoiNzeXlpYWANrb28nOzo5m\nGiJyg6J6h3/nnXfo7+/nxRdfjIzV1NSwbt06GhsbmT9/PsuWLSMhIQGfz0d5eTkWi4XKykocDgeF\nhYV0dHRQUlKCzWajpqYmZgsSkeuzjE/nAfo2MJ1bMrfbwVLf4Zj8vl1rH43J68wU025jJ2PaXsT8\nll5EZicFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQ\nBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYhAFL2IQBS9iEAUvYpCbOj32Zr388st0dnZi\nsVioqqoiLS1tJqcjMufNWPB///vf+ec//0ljYyMff/wxVVVVNDY2ztR0RIwwY7f0fr+fJUuWAHDf\nfffx+eefc/78+ZmajogRZuwdPhQK8cADD0S+drlcBINB7rzzzpma0gT/W/N/Mz2FL5ntB1zKzJvR\nZ/grTXWI7WQnYl7pz3X/E4vpzAnT3TMTaC8um7Fbeo/HQygUinzd19eH2+2eqemIGGHGgs/NzaW1\ntRWADz74AI/Hc9vczovMVTN2S5+ZmckDDzxAcXExFouFDRs2zNRURIxhGZ/q4VlE5gx90k7EIApe\nxCC3zb+Wu1mmf0x38+bNvP/++1y4cIFnnnmG1NRUVq9ezcWLF3G73WzZsgWbzTbT0/zKjI6O8sMf\n/pBnn32WnJwco/fiSnPiHf7Kj+lWV1dTXV0901P6Sr333nt8+OGHNDY2snPnTl5++WW2bdtGaWkp\n+/btY8GCBTQ1Nc30NL9Sb7zxBnfddReA8XtxpTkRvOkf033wwQd57bXXAHA6nYyMjHDixAkWL14M\nQH5+Pn6/fyan+JX6+OOP+eijj3jkkUcAjN6Lq82J4EOhEElJSZGv//MxXVPEx8eTmJgIQFNTEw8/\n/DAjIyOR29bk5GSj9qO2tpa1a9dGvjZ5L642J4K/mqn/pvHdd9+lqamJ9evXTxg3aT/efvttMjIy\nuOeee675fZP24lrmxD+008d04fjx42zfvp2dO3ficDhITExkdHQUu91Ob28vHo9npqf4lTh69Cjd\n3d0cPXqUzz77DJvNZuxeXMuceIc3/WO6586dY/Pmzbz55pvMmzcPAK/XG9mTtrY28vLyZnKKX5mt\nW7fy1ltvcfDgQYqKinj22WeN3YtrmRPv8KZ/TPedd96hv7+fF198MTJWU1PDunXraGxsZP78+Sxb\ntmwGZzizVq1axZo1a7QX6KO1IkaZE7f0IjI9Cl7EIApexCAKXsQgCl7EIApexCAKXsQgCl7EIP8P\nfIzt3Nflkr4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "9l0KYpBQu8ed", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Clip Outliers\n", + "\n", + "See if you can further improve the model fit by setting the outlier values of `rooms_per_person` to some reasonable minimum or maximum.\n", + "\n", + "For reference, here's a quick example of how to apply a function to a Pandas `Series`:\n", + "\n", + " clipped_feature = my_dataframe[\"my_feature_name\"].apply(lambda x: max(x, 0))\n", + "\n", + "The above `clipped_feature` will have no values less than `0`." + ] + }, + { + "metadata": { + "id": "rGxjRoYlHbHC", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "2362c5b0-6479-41b0-c6a6-f9a5a5849f8c" + }, + "cell_type": "code", + "source": [ + "# YOUR CODE HERE\n", + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"rooms_per_person\"]).apply(lambda x: min(x, 5))\n", + "\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFxdJREFUeJzt3X9MVff9x/HX5ccNYbu0XnqvG4u1\nybJFM5mG2DohNEWhiSTL6CwWiDaZrJkpLjbBKtOta2JSUUfDMKQudkSi0bLeNY6ZRkhbTNp5y9Ld\nhOnSpNU/FuIPuNfhj/Fj3JH7/WP53tnVcqncH+97eT7+0sO993w+H7g+PefAwRGJRCICAAAmZaV6\nAAAA4IsRagAADCPUAAAYRqgBADCMUAMAYBihBgDAsJxUD+BegsE7cXutRYvyNTY2EbfXW4hYw/lj\nDeODdZw/1jA+4r2OHo/rCz+W8UfUOTnZqR5C2mMN5481jA/Wcf5Yw/hI5jpmfKgBAEhnhBoAAMMI\nNQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwz+duzgPux\ntfW9VA9hVl0t61I9BABpiCNqAAAMI9QAABjGqW8gSayfmpc4PQ9YxBE1AACGEWoAAAwj1AAAGBbz\nGvXg4KB27Nihb33rW5Kkb3/72/rxj3+sXbt2aWZmRh6PR4cOHZLT6VRvb6+6u7uVlZWlTZs2qba2\nVuFwWC0tLbp69aqys7O1f/9+LVmyJOETAwAgE8zpm8kee+wxdXR0RP/+s5/9TA0NDdqwYYNeffVV\n+Xw+1dTUqLOzUz6fT7m5uXr66adVVVWlgYEBFRQUqK2tTR988IHa2trU3t6esAkBAJBJ7uvU9+Dg\noNavXy9JqqiokN/v19DQkIqLi+VyuZSXl6eSkhIFAgH5/X5VVVVJkkpLSxUIBOI3egAAMtycjqgv\nXbqkbdu26datW9q+fbsmJyfldDolSYWFhQoGgwqFQnK73dHnuN3uz23PysqSw+HQ9PR09Pn3smhR\nvnJysuczr8/weFxxe62FijVcGNLh85wOY7SONYyPZK1jzFA/8sgj2r59uzZs2KDh4WE9++yzmpmZ\niX48Eonc83lfdvvdxsYmYj5mrjwel4LBO3F7vYWINVw4rH+e+VqcP9YwPuK9jrNFP+ap78WLF6u6\nuloOh0MPP/ywHnroId26dUtTU1OSpJGREXm9Xnm9XoVCoejzRkdHo9uDwaAkKRwOKxKJzHo0DQAA\n/itmqHt7e/Xb3/5WkhQMBnXjxg398Ic/VF9fnySpv79f5eXlWrlypS5cuKDbt29rfHxcgUBAq1ev\nVllZmc6ePStJGhgY0Jo1axI4HQAAMkvMU9/r1q3Tzp079e677yocDuvll1/W8uXLtXv3bvX09Kio\nqEg1NTXKzc1Vc3OzGhsb5XA41NTUJJfLperqap0/f1719fVyOp1qbW1NxrwAAMgIjshcLhonWbzP\n+3M9Zn7SZQ3T4V7a1lm/13e6fC1axhrGh6lr1AAAIHUINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBg\nGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADD\nCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhG\nqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBC\nDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYNicQj01NaXKykq99dZbunbtmrZs2aKG\nhgbt2LFD09PTkqTe3l5t3LhRtbW1evPNNyVJ4XBYzc3Nqq+v1+bNmzU8PJy4mQAAkIHmFOrXXntN\nDzzwgCSpo6NDDQ0NOnnypJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt\n26a2traETgYAgEwTM9SXL1/WpUuX9MQTT0iSBgcHtX79eklSRUWF/H6/hoaGVFxcLJfLpby8PJWU\nlCgQCMjv96uqqkqSVFpaqkAgkLiZAACQgXJiPeDAgQP6xS9+odOnT0uSJicn5XQ6JUmFhYUKBoMK\nhUJyu93R57jd7s9tz8rKksPh0PT0dPT5X2TRonzl5GTf96T+l8fjittrLVSs4cKQDp/ndBijdaxh\nfCRrHWcN9enTp7Vq1SotWbLknh+PRCJx2f6/xsYm5vS4ufB4XAoG78Tt9RYi1nDhsP555mtx/ljD\n+Ij3Os4W/VlDfe7cOQ0PD+vcuXO6fv26nE6n8vPzNTU1pby8PI2MjMjr9crr9SoUCkWfNzo6qlWr\nVsnr9SoYDGrZsmUKh8OKRCIxj6YBAMB/zXqNur29Xb///e/1u9/9TrW1tXr++edVWlqqvr4+SVJ/\nf7/Ky8u1cuVKXbhwQbdv39b4+LgCgYBWr16tsrIynT17VpI0MDCgNWvWJH5GAABkkJjXqP/XT3/6\nU+3evVs9PT0qKipSTU2NcnNz1dzcrMbGRjkcDjU1Ncnlcqm6ulrnz59XfX29nE6nWltbEzEHAAAy\nliMy1wvHSRTv8/5cj5mfdFnDra3vpXoIaa+rZV2qhzCrdPlatIw1jI9kXqPmzmQAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQa\nAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QA\nABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYA\nwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMNyYj1g\ncnJSLS0tunHjhv71r3/p+eef17Jly7Rr1y7NzMzI4/Ho0KFDcjqd6u3tVXd3t7KysrRp0ybV1tYq\nHA6rpaVFV69eVXZ2tvbv368lS5YkY24AAKS9mEfUAwMDWrFihU6cOKH29na1traqo6NDDQ0NOnny\npJYuXSqfz6eJiQl1dnbq2LFjOn78uLq7u3Xz5k2dOXNGBQUFOnXqlLZt26a2trZkzAsAgIwQM9TV\n1dV67rnnJEnXrl3T4sWLNTg4qPXr10uSKioq5Pf7NTQ0pOLiYrlcLuXl5amkpESBQEB+v19VVVWS\npNLSUgUCgQROBwCAzBLz1Pf/q6ur0/Xr13XkyBH96Ec/ktPplCQVFhYqGAwqFArJ7XZHH+92uz+3\nPSsrSw6HQ9PT09Hn38uiRfnKycm+3zl9jsfjittrLVSs4cKQDp/ndBijdaxhfCRrHecc6jfeeEMf\nf/yxXnzxRUUikej2u/98ty+7/W5jYxNzHVZMHo9LweCduL3eQsQaLhzWP898Lc4faxgf8V7H2aIf\n89T3xYsXde3aNUnS8uXLNTMzo6985SuampqSJI2MjMjr9crr9SoUCkWfNzo6Gt0eDAYlSeFwWJFI\nZNajaQAA8F8xQ/3RRx+pq6tLkhQKhTQxMaHS0lL19fVJkvr7+1VeXq6VK1fqwoULun37tsbHxxUI\nBLR69WqVlZXp7Nmzkv7zjWlr1qxJ4HQAAMgsMU9919XVae/evWpoaNDU1JReeuklrVixQrt371ZP\nT4+KiopUU1Oj3NxcNTc3q7GxUQ6HQ01NTXK5XKqurtb58+dVX18vp9Op1tbWZMwLcba19b1UDwEA\nFiRHZC4XjZMs3uf9uR4zPx6PS99v/kOqh4Ek6GpZl+ohzIr38/yxhvFh6ho1AABIHUINAIBhhBoA\nAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAA\nGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDA\nMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACG\nEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADMuZy4MOHjyov/zl\nL/r3v/+tn/zkJyouLtauXbs0MzMjj8ejQ4cOyel0qre3V93d3crKytKmTZtUW1urcDislpYWXb16\nVdnZ2dq/f7+WLFmS6HkBAJARYob6ww8/1Keffqqenh6NjY3pqaee0tq1a9XQ0KANGzbo1Vdflc/n\nU01NjTo7O+Xz+ZSbm6unn35aVVVVGhgYUEFBgdra2vTBBx+ora1N7e3tyZgbAABpL+ap70cffVS/\n/vWvJUkFBQWanJzU4OCg1q9fL0mqqKiQ3+/X0NCQiouL5XK5lJeXp5KSEgUCAfn9flVVVUmSSktL\nFQgEEjgdAAAyS8xQZ2dnKz8/X5Lk8/n0+OOPa3JyUk6nU5JUWFioYDCoUCgkt9sdfZ7b7f7c9qys\nLDkcDk1PTydiLgAAZJw5XaOWpHfeeUc+n09dXV168skno9sjkcg9H/9lt99t0aJ85eRkz3VoMXk8\nrri9FpDJ0uG9kg5jtI41jI9kreOcQv3+++/ryJEjev311+VyuZSfn6+pqSnl5eVpZGREXq9XXq9X\noVAo+pzR0VGtWrVKXq9XwWBQy5YtUzgcViQSiR6Nf5GxsYn5zeouHo9LweCduL3eQsSbeuGw/l7h\n/Tx/rGF8xHsdZ/t3Nuap7zt37ujgwYP6zW9+owcffFDSf6419/X1SZL6+/tVXl6ulStX6sKFC7p9\n+7bGx8cVCAS0evVqlZWV6ezZs5KkgYEBrVmzJh5zAgBgQYh5RP32229rbGxML7zwQnRba2urfv7z\nn6unp0dFRUWqqalRbm6umpub1djYKIfDoaamJrlcLlVXV+v8+fOqr6+X0+lUa2trQicEAEAmcUTm\nctE4yeJ9OoHTPPPj8bj0/eY/pHoYSIKulnWpHsKseD/PH2sYH6ZOfQMAgNQh1AAAGEaoAQAwjFAD\nAGAYoQYAwLA535kMQObb2vpeqocwqz+2/SDVQwCSjiNqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYR\nagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQ\nAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAzLSfUA8B9bW99L9RAAAAZxRA0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwbE6h/uSTT1RZWakTJ05Ikq5du6YtW7aooaFBO3bs0PT0tCSpt7dX\nGzduVG1trd58801JUjgcVnNzs+rr67V582YNDw8naCoAAGSemKGemJjQvn37tHbt2ui2jo4ONTQ0\n6OTJk1q6dKl8Pp8mJibU2dmpY8eO6fjx4+ru7tbNmzd15swZFRQU6NSpU9q2bZva2toSOiEAADJJ\nzFA7nU4dPXpUXq83um1wcFDr16+XJFVUVMjv92toaEjFxcVyuVzKy8tTSUmJAoGA/H6/qqqqJEml\npaUKBAIJmgoAAJknZqhzcnKUl5f3mW2Tk5NyOp2SpMLCQgWDQYVCIbnd7uhj3G7357ZnZWXJ4XBE\nT5UDAIDZzfsWopFIJC7b77ZoUb5ycrLnNa67eTyuuL0WgNTi/Tx/rGF8JGsd7yvU+fn5mpqaUl5e\nnkZGRuT1euX1ehUKhaKPGR0d1apVq+T1ehUMBrVs2TKFw2FFIpHo0fgXGRubuJ9h3ZPH41IweCdu\nrwcgtXg/zw//JsZHvNdxtujf149nlZaWqq+vT5LU39+v8vJyrVy5UhcuXNDt27c1Pj6uQCCg1atX\nq6ysTGfPnpUkDQwMaM2aNfezSwAAFqSYR9QXL17UgQMHdOXKFeXk5Kivr0+/+tWv1NLSop6eHhUV\nFammpka5ublqbm5WY2OjHA6Hmpqa5HK5VF1drfPnz6u+vl5Op1Otra3JmBcAABnBEZnLReMki/fp\nhHQ4zcOvuQRi+2PbD9Li/WxZuvybaJ35U98AACA5CDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBih\nBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1\nAACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYlpPq\nAQDAXH2/+Q+pHkJMXS3rUj0EZBiOqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj\n1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYfxSDgCAKVtb30v1EGL6Y9sPkrYvjqgBADCMUAMAYBih\nBgDAMK5RA0AcpcP11a6WdakeAr6EpIT6lVde0dDQkBwOh/bs2aPvfve7ydgtAABpL+Gh/vOf/6y/\n//3v6unp0eXLl7Vnzx719PQkerefkQ7/wwUA4F4SHmq/36/KykpJ0je/+U3dunVL//znP/XVr341\n0bsGANwDBy/pJeHfTBYKhbRo0aLo391ut4LBYKJ3CwBARkj6N5NFIpGYj/F4XHHdZzJ/MB0AsDDE\nu1VfJOFH1F6vV6FQKPr30dFReTyeRO8WAICMkPBQl5WVqa+vT5L0t7/9TV6vl+vTAADMUcJPfZeU\nlOg73/mO6urq5HA49Mtf/jLRuwQAIGM4InO5aAwAAFKCW4gCAGAYoQYAwLCMDfUrr7yiZ555RnV1\ndfrrX/+a6uGkrU8++USVlZU6ceJEqoeStg4ePKhnnnlGGzduVH9/f6qHk3YmJye1Y8cObd68WbW1\ntRoYGEj1kNLa1NSUKisr9dZbb6V6KGlncHBQ3/ve97RlyxZt2bJF+/btS8p+M/KXcli4bWkmmJiY\n0L59+7R27dpUDyVtffjhh/r000/V09OjsbExPfXUU3ryySdTPay0MjAwoBUrVui5557TlStXtHXr\nVlVUVKR6WGnrtdde0wMPPJDqYaStxx57TB0dHUndZ0aGmtuWxofT6dTRo0d19OjRVA8lbT366KPR\nX0JTUFCgyclJzczMKDs7O8UjSx/V1dXRP1+7dk2LFy9O4WjS2+XLl3Xp0iU98cQTqR4KvoSMPPXN\nbUvjIycnR3l5eakeRlrLzs5Wfn6+JMnn8+nxxx8n0veprq5OO3fu1J49e1I9lLR14MABtbS0pHoY\nae3SpUvatm2b6uvr9ac//Skp+8zII+r/xU+gIdXeeecd+Xw+dXV1pXooaeuNN97Qxx9/rBdffFG9\nvb1yOBypHlJaOX36tFatWqUlS5akeihp65FHHtH27du1YcMGDQ8P69lnn1V/f7+cTmdC95uRoea2\npbDk/fff15EjR/T666/L5UrOvYEzycWLF1VYWKivf/3rWr58uWZmZvSPf/xDhYWFqR5aWjl37pyG\nh4d17tw5Xb9+XU6nU1/72tdUWlqa6qGljcWLF0cvxTz88MN66KGHNDIykvD//GRkqMvKynT48GHV\n1dVx21Kk1J07d3Tw4EEdO3ZMDz74YKqHk5Y++ugjXblyRXv37lUoFNLExMRnLm1hbtrb26N/Pnz4\nsL7xjW8Q6S+pt7dXwWBQjY2NCgaDunHjRlK+ZyIjQ81tS+Pj4sWLOnDggK5cuaKcnBz19fXp8OHD\nBOdLePvttzU2NqYXXnghuu3AgQMqKipK4ajSS11dnfbu3auGhgZNTU3ppZdeUlZWRn57DYxbt26d\ndu7cqXfffVfhcFgvv/xywk97S9xCFAAA0/hvKQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAw\nQg0AgGGEGgAAw/4P1DJKJgyt6msAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RpT25Brd2PDP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 969 + }, + "outputId": "80aa9d24-a1f6-48a8-f562-188f66b448a5" + }, + "cell_type": "code", + "source": [ + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.80\n", + " period 01 : 189.06\n", + " period 02 : 166.71\n", + " period 03 : 147.16\n", + " period 04 : 130.70\n", + " period 05 : 119.84\n", + " period 06 : 114.26\n", + " period 07 : 110.32\n", + " period 08 : 108.47\n", + " period 09 : 108.45\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " predictions targets\n", + "count 17000.0 17000.0\n", + "mean 193.4 207.3\n", + "std 50.7 116.0\n", + "min 44.7 15.0\n", + "25% 161.0 119.4\n", + "50% 193.4 180.4\n", + "75% 221.0 265.0\n", + "max 430.0 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionstargets
count17000.017000.0
mean193.4207.3
std50.7116.0
min44.715.0
25%161.0119.4
50%193.4180.4
75%221.0265.0
max430.0500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Final RMSE (on training data): 108.45\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAGkCAYAAAAG3J9IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4U2X6//F3kqYbXegKlCIKtYCC\nUBYFFMtqC+JXFARFwG3Gn6MojqijDjrDVwdHZ8bvqKOO44KIOnZARUF2EQVEpFBAZSlFpWXvvtA2\nTZP8/ihkWFJooelJ28/rurwuT07Oee6cJyUnd57nfkwul8uFiIiIiIiIiEgjMxsdgIiIiIiIiIi0\nTEpKiIiIiIiIiIghlJQQEREREREREUMoKSEiIiIiIiIihlBSQkREREREREQMoaSEiIiIiIiIiBhC\nSQkRA3Xp0oVDhw4ZHcYZ3X777Xz88cenPf7yyy/z+9///rTHDx8+zOjRoxus/cmTJ/Ppp5+e8/Ev\nv/wyffv2JTU1ldTUVFJSUvjDH/5ARUVFvc+VmppKXl5evY6p7fqJiEjT0KVLF0aMGOH+HBkxYgRP\nPPEE5eXl53Xe//znPx4f//jjj+nSpQtffvnlSY9XVlbSu3dvHnvssfNqt66ys7O55557SElJISUl\nhTFjxrBy5cpGabs+Xn31VY/XZMOGDXTv3t3dbyf+11Ts27ePLl26nHQPc+utt7J9+/Z6n+tvf/sb\n//73v+t1zKeffsrkyZPr3ZZIffkZHYCINC9t2rRh0aJFRodxkpSUFP70pz8BUFVVxYMPPsgrr7zC\nww8/XK/zLF261BvhiYiIj5s7dy5t27YFaj5Hfvvb3/L666/z29/+9pzOl5uby5tvvsn48eM97m/X\nrh2LFi1iyJAh7se+/PJLwsLCzqm9c/Hwww9z/fXX889//hOArVu3ctttt7FkyRLatWvXaHGcj3bt\n2jX5z26LxXLSa1i8eDH33Xcfy5Ytw9/fv87nmT59ujfCE2kQGikh4oOqqqp45plnSElJYejQoe4b\nAoCMjAxuvPFGUlNTGTVqFN988w1Qk02/6qqrmDVrFpMmTQJqft1ZsGABY8aM4aqrruKdd95xnyct\nLY3U1FSGDh3KQw89RGVlJQA5OTncdNNNDB8+nOnTp+NwOOoV+759+7jkkkuAml97HnjgAZ544glS\nUlIYNWoUu3fvBqCkpIRHHnmElJQUhg0bxkcffVTrOTMzMxk3bhzJycnMmDEDh8PBAw88wFtvvXXS\nc/r37091dfUZ4/P392fChAmsW7furHF06dKF119/nZSUFBwOx0kjW959911GjRpFamoqv/nNbygo\nKGiQ6yciIr7N39+fQYMGsWPHDgBsNhtPPfUUKSkpjBw5kj//+c/uf/t37tzJzTffTGpqKtdffz1r\n1qwB4Oabb+bAgQOkpqZSVVV1Whu9e/dmw4YNJ43qW7x4MVdeeaV7+3zuFd59912uu+46Bg0axOLF\niz2+zszMTHr27One7tmzJ8uWLXMnZ/7xj3+QnJzMmDFj+Ne//sXQoUMBeOyxx3j11Vfdx524XZ97\nmE2bNjF27FhGjBjB+PHjycnJAWpGjDz44IMMGTKESZMmnfOI048//pipU6dy22238fzzz7NhwwZu\nvvlmpk2b5v4Cv2TJEkaPHk1qaipTpkwhOzsbqBmFOWPGDMaNG3fSvRXAtGnTePvtt93bO3bs4Kqr\nrsLpdPJ///d/7pEnU6ZM4fDhw/WOe9SoUVRWVvLTTz8Btd/PPfbYYzz77LNcd911LFmy5KR+qO19\n6XQ6+d///V8GDx7MuHHj2Llzp7vd7777jhtuuIFRo0YxcuRIlixZUu/YRWqjpISID3rjjTfIyspi\n4cKFLFq0iGXLlrmHcT711FPcddddLF26lLvvvps//OEP7uOKioro1q0b7733nvuxrKwsFixYwKuv\nvsoLL7yAw+EgPT2dF198kTlz5rBq1SpCQkJ48cUXAfjrX//KgAEDWLlyJbfddhubN28+r9fy9ddf\nM3HiRJYtW8YVV1zBnDlzAPjzn/+M2WxmyZIlzJs3j5dffpnMzEyP59iwYQNz585l6dKlbNy4kS+/\n/JLRo0efNCJjxYoVXHPNNfj5nX0AmN1ud/+6cLY4XC4Xy5Ytw2KxuB/bsmULb731ljumuLg4/va3\nvwENf/1ERMS3FBcXs2jRIpKSkgCYM2cOhw4d4vPPP+eTTz4hPT2dRYsW4XQ6eeihh5g0aRJLly7l\nmWeeYfr06ZSVlTFr1iz3r/iefu329/dnwIABfPHFFwCUlZWxY8cOd5tw7vcKhYWFmM1mFi5cyBNP\nPMHf//53j6/z6quv5oEHHuDdd99lz549QM1oSJPJRGZmJnPmzGH+/PnMnz+fLVu21Ona1fUepqys\njN/85jc89NBDrFixgilTpjBt2jQAPvroI/Ly8lixYgUvv/wya9eurVPbnqxbt46ZM2fy6KOPArB9\n+3Zuvvlm/va3v3HgwAGefPJJXnnlFZYuXcrgwYN56qmn3Md+9dVX/Otf/+L2228/6ZwpKSmsWrXK\nvb1ixQpSU1PZs2cPS5cudffViBEjWL9+/TnF7XA48Pf3P+P9HMD69euZP38+I0eOdD92pvflmjVr\nWLduHZ9//jnvvfce6enp7uOee+45Hn/8cRYvXsxrr73mk1N5pOlSUkLEB3355ZdMnDgRf39/goOD\nuf7661m+fDkACxYscH+49OnTx/3LAdR82R4xYsRJ57r++usBuPTSS7HZbOTn57Nq1SpGjRpFmzZt\nALjlllvc509PT2fUqFEAXHbZZXTq1Om8Xkvnzp3p3r07AJdccgkHDx50v8YpU6ZgNpuJjIxkxIgR\n7hhOlZKSQlBQEEFBQSQnJ7NlyxaSk5PJzs52/1KwcuVKd9xnUlZWxgcffOC+TmeLY/DgwaedY/Xq\n1aSkpBAVFQXATTfd5B550dDXT0REjDd58mRSU1MZNmwYw4YNo3///vz6178Gaj4Txo8fj5+fH4GB\ngVx33XWsW7eOffv2kZeXx7XXXgtAjx49iIuL4/vvv69Tm9dee607+b5y5UqGDBmC2fzfW/dzvVeo\nrq7mxhtvBGruDQ4cOOCx/b/85S/ceuutLFy4kNGjRzN06FB3TYJNmzbRr18/YmJi8PPzq3Mtqbre\nw2zatIk2bdq4R4aMHj2a7OxsDhw4QHp6OiNGjMDPz4+IiIiTpric6uDBg6fVk/jzn//s3n/hhRdy\n4YUXurcDAwMZMGAAUJOwuOKKK+jYsSNQ81m/YcMG94jMnj17EhkZeVqbgwcPZvv27RQVFQH/TUqE\nhYVRUFDAwoULKS4uZvLkyYwZM6ZO1+04l8tFWloabdq04cILLzzj/RzAgAEDCAgIOOkcZ3pfbty4\nkeTkZFq1akVgYOBJyYyoqCgWLFjAnj17uPDCC90/xog0BNWUEPFBpaWlPPvss7zwwgtAzRDNyy67\nDICFCxfy7rvvcvToUZxOJy6Xy32cxWIhJCTkpHOFhoa690FNhry0tJQVK1a4f11wuVzY7Xag5heg\nE89xvvNXj7d/PIbjQ1pLS0t58MEH3XHZbLZai0+d+KEfGhpKbm4uAQEBjBgxgkWLFjFu3Dhyc3O5\n/PLLPR6/bNkyNm3aBIDVamXEiBHuXzbOFkfr1q1PO19BQQGxsbHu7bCwMPLz84GGv34iImK84zUl\nCgoK3FMPjo/MKygoIDw83P3c8PBw8vPzKSgoIDQ0FJPJ5N53/ItpdHT0Wdu88sormTFjBkVFRXz+\n+efce++9/Pzzz+7953OvEBwcDIDZbMbpdHpsPyAggLvuuou77rqLkpISli5dyqxZs4iPj6e4uPik\nz7fjSfqzqes9TElJCTk5OSd9Hvv7+1NQUEBxcfFJ9xZhYWEcPXrUY3tnqylxYr+dul1YWHjSawwN\nDcXlclFYWOjx2OOCg4MZOHAgq1evpk+fPpSUlNCnTx9MJhMvv/wyb7/9Nk8//TT9+vVj5syZZ63P\n4XA43NfB5XKRkJDAq6++itlsPuP9XG0xnul9WVxcfNr9zXGzZs3itdde44477iAwMJCHHnqoSRUN\nFd+mpISID4qNjeXOO+88Lft/+PBhZsyYwbx58+jWrRu//PILKSkp53T+G264gd/97nen7QsLC6Os\nrMy9fbxWQkOLjY3llVdeITEx8azPLS4uPun/j3/IXnvttTz77LOEhoaSkpJy0i9IJzqx0OX5xHFc\ndHS0+xcQqBlyevwGs7Gun4iINL7IyEgmT57MX/7yF1577TWg9s+EqKgoiouLcblc7i+ARUVFdf4C\nb7VaGTJkCAsWLGDv3r0kJSWdlJTw5r1CQUEBO3bscI9UCAsLY/z48axZs4bMzExCQ0MpLS096fnH\nnZroOP4ZXp+4YmNj6dSpk8fVq8LCwmptuyFFRUWRkZHh3i4uLsZsNhMREXHWY1NSUlixYgWFhYWk\npKS4+79///7079+f8vJynnvuOf7617+edcTBqYUuT3Sm+7kzva7a3pdnurbR0dE8+eSTPPnkk6xd\nu5b777+fQYMG0apVqzq3LVIbTd8Q8UHDhg1j3rx5OBwOXC4Xr776Kl9//TUFBQUEBwfTqVMnqqur\nSUtLA6j1F4LaDB06lOXLl7s/bFauXMm//vUvAHr16sWKFSsA2Lx5s7uoU0MbOnQoH374IVAzlHTW\nrFn8+OOPHp+7fPlybDYb5eXlrFmzhr59+wIwcOBAioqKmDt37klDDL0Vx3GDBw9232wAfPjhhyQn\nJwONd/1ERMQYd9xxBxkZGXz33XdAzWfC/PnzcTgclJeX8+mnn5KcnEx8fDxt27Z1F5LcvHkzeXl5\nXHbZZfj5+VFeXn7W4szXXnstb7zxBsOHDz9tnzfvFSorK3nggQfcBRAB9u7dy9atW+nbty9JSUmk\np6dTUFBAdXU1CxYscD8vJibGXSAxJyfHXVupPnH17NmT3Nxctm7d6j7PI488gsvlolevXqxatQqH\nw0FBQQFff/11nV9XfVx55ZWkp6e7p5h8+OGHXHnllXWqXTVkyBAyMjJYuXKl+/5k7dq1zJw5E6fT\nSXBwMF27dj1ptMK5ONP9XG3O9L5MSkpi7dq1VFRUUFFR4U6G2O12Jk+ezJEjR4CaaT9+fn61/hgk\nUl8aKSFisMmTJ59URPGZZ55h4sSJ7Nu3j2uvvRaXy0X37t257bbbCA4O5uqrr3bXM3jsscfYvHkz\nkydP5qWXXqpzm5deein33HMPkydPxul0EhUVxcyZMwF45JFHmD59Op9++ik9e/Zk4MCBtZ7nxGkR\nAN26davzklMPPvggM2fOdP9KMmjQILp06eLxuQMHDnRXqR48eDCDBg0Can49SE1N5YsvvqBPnz51\navd84jjusssu4+677+bWW2/F6XTSrVs3/vjHPwL1u34iItL0hISEcPfdd/Pcc88xf/58Jk+eTE5O\nDtdeey0mk4nU1FRGjhyJyWTihRde4A9/+AP/+Mc/CAoK4sUXXyQ4OJguXboQHh7OlVdeySeffEJc\nXJzHti6//HJMJpPHmknevFeIi4vjtdde46WXXuKZZ57B5XIREhLC448/7l6RY8KECdxwww1ERERw\nzTXXuFfXGj9+PFOnTuWaa67hkksucX++du3atc5xBQYG8tJLL/H0009z9OhRrFYr06ZNw2QyMX78\neNLT0xk+fDhxcXEMHz78pF/3T3S8psSpnn/++bNeg7Zt2/LMM89w7733YrfbiY+P5+mnn67T9QsJ\nCeHSSy9l165d9OrVC4B+/frx+eefk5KSgr+/P5GRkcyaNQuARx991L2CRn2c6X6uNmd6Xw4ZMoTV\nq1eTmppKdHQ0ycnJpKenY7VaGTdunHvqq9lsZsaMGQQFBdUrXpHamFwnTuYSEWli3njjDQoLC92V\ns0VERKRxpaen8+ijj5606oSISF1pzI2INFkFBQX85z//4ZZbbjE6FBEREREROQdKSohIk/Thhx8y\nduxYfv3rX9OhQwejwxERERERkXOg6RsiIiIiIiIiYgiNlBARERERERERQygpISIiIiIiIiKGaJJL\ngubmel72p7mLiAimsLDc6DAE9YUvUV/4DvWF7/BmX8TEhHrlvI3FW/cQev8bT31gPPWB8dQHxlMf\neHam+weNlGhC/PwsRocgx6gvfIf6wneoL3yH+qLx6ZobT31gPPWB8dQHxlMf1J+SEiIiIiIiIiJi\nCCUlRERERERERMQQSkqIiIiIiIiIiCGUlBARERERERERQygpISIiIiIiIiKGUFJCRERERERERAyh\npISIiIiIiIiIGEJJCRERERERERExhJISIiIiIiIiImIIJSVERERERERExBBKSoj4GJvdwZHCcmx2\nxzk9v7bj63LeE59jszvYd6SUnw8Us+9I6Vnj8XT+U89Xn9dV1zaM5osxiYiIiIg0FX7eOvGGDRuY\nNm0aF198MQCJiYn86le/4tFHH8XhcBATE8Nf/vIX/P39+eyzz5gzZw5ms5nx48dz0003eSssEZ/l\ncDpJW5VFRmYuBSU2IsMCSEqMYcLQBCzm0/OHpz4/ItSfVkH+lFfaTzp+3OBOzF/90xnPe+K58kts\nBFhN2B0unM7/thfob2Zgj3bcMuzik+LxFHevi6NxAVt351FQYiPA3wK4qKxyEnWW11Xfa2OU+vaX\niIiIiIiczmtJCYDLL7+cl156yb39+OOPM3HiREaOHMkLL7zA/PnzGTNmDK+88grz58/HarUybtw4\nRowYQevWrb0ZmojPSVuVxcr0fe7t/BKbe3vi8MSzPr+gtIqC0qrTjt+VXUTOkbIznvfUc9nsrtPa\nq6xysmrTfswm00nxeIr7i037TznWcdL+M70uT850babd0qdO52ho9e0vERERERE5XaP+nLdhwwaG\nDRsGwJAhQ1i/fj1bt26lR48ehIaGEhgYSO/evdm8eXNjhiViOJvdQUZmrsd9GZl5Hqdi1Pb8U+3P\nLfP4+PHz1udcAJt35Z40VaQ+x3pq/2zOdm0qq6rPqf3zUd/+EpHmK6+ogpfmbyP7UInRoYiIiDRJ\nXh0pkZWVxT333ENxcTFTp06loqICf39/AKKiosjNzSUvL4/IyEj3MZGRkeTmnvlLTkREMH5+Fm+G\n7rNiYkKNDkGOaci+OJh3lIJSm8d9haWVWPytxES3qtPzT+U8fdDDSecF6nyumuNs7njqE0dt7Z/4\nujw527UpLLHRrpH/LurbXy2J/o3yHeqLxlFaYWdLVh5/+2Azj01Mws+i6VsiIiL14bWkxIUXXsjU\nqVMZOXIkOTk5TJkyBYfjv78eulyevynV9viJCgvLGyzOpiQmJpTc3FKjwxAavi8cdgeRoQHkl5z+\nRTciNBBHlf2k9s70/FOZTZ4TE8fPC9T5XDXHBbjjqU8ctbV/tut4tmsTERbQ6H8X9e2vlkL/RvkO\nb/aFkh0nu6hdGFd2b8u6Hw6x7Ltsrh1wodEhiYiINCleS+e3adOGUaNGYTKZuOCCC4iOjqa4uJjK\nykoADh8+TGxsLLGxseTl5bmPO3LkCLGxsd4KS8QnBVgtJCXGeNyXlBhNgNVS5+efKi7G8y/2vS6O\nIsBqqde5AHp3iXHHU99jT+TpdXlytmsT6O/VAV8e1be/RKR5mzDsYlqHBvDp2l84mH/U6HBERESa\nFK8lJT777DPeeustAHJzc8nPz+fGG29k2bJlACxfvpxBgwbRs2dPvv/+e0pKSjh69CibN2+mb9++\n3gpLxGdNGJrA8L7xRIUFYjZBVFggw/vG17rCxKnPjwwNoENsCFFhAScdnxAf7vF4Vy3nMgEBVjOn\nLiAR6G9maJ/2p8XjKe5hfdoztE9792OB/hYC/S2YOPvraohr0xh8MSYRMUZIkJXf3HgZ1Q4ns5fs\nxFmHUZ8iIiJSw+Sqy3yJc1BWVsbDDz9MSUkJdrudqVOn0q1bN373u99hs9mIi4vj2WefxWq1snTp\nUt566y1MJhOTJk3if/7nf8547pY6PFhDo32HN/vCZndQXGYjPCSgTr+4n/r8E7cBZrzxrcdpBlFh\ngTzz6ytOauPUY3MLy7FXO7H6mYmJCD5jPJ7iPvV89XlddW3D6L+L+vZXc2Z0X8h/afpG7bx5XWb+\n6xvSd+UycfjFDO/bwSvtSO30b5Dx1AfGUx8YT33g2ZnuH7w27jkkJIR//vOfpz0+e/bs0x5LTU0l\nNTXVW6GINCkBVguxEcHn/PwTt48UllNQS72HwtJKiststR4LEB9b9y8fnuI+9bH6vK66tmE0X4xJ\nRIxx64hEduwt5KOvfqJXQjTRrYOMDklERMTnqUS0SDMWHhJAZFiAx30RoYHuEQwiInL+wkMCuHnY\nxdjsDt5ZurNOxbtFRERaOiUlRJoZm93BkcJybHaHCjKKiDSygd3b0r1TJNt/KWTttoNGhyMiIuLz\nGr9svYh4hcPpJG1VFhmZuRSU2IgMCyApMYZxgzsBkJGZR2FpJRGhgSQlRqsgo4iIF5hMJm5L6cqM\ntzbw4aosuneKIiJUo9JERERqo6SESDORtiqLlen73Nv5JTb39sThiYxN7qyCjCIijSAqPJDxgzsz\nd3km7y3fxdQbe2AymYwOS0RExCdp+oZIM2CzO8jIzPW4LyMzzz2VI/YsK2iIiEjDSE5qT2KH1mTs\nzmPjziNGhyMiIuKzlJQQaQaKy2xnXWVDREQaj9lk4o6RXbH6mXl/RSal5VVGhyQiIuKTlJQQaQa0\nyoaIiO9pExnMDYM6UVpu599f7DY6HBEREZ+kpIRIM6BVNkREfNOIfvFc1C6Ub388zNasPKPDERER\n8TlKSog0ExOGJjC8bzxRYYGYTRAVFsjwvvFaZUNExEAWs5k7RnbDYjbx7rJdlFdWGx2SiIiIT9Hq\nGyLNhMVsrvMqGza7QytxiIg0kvjYEK4d0JHP1v3CvNVZ3Jba1eiQREREfIaSEiLNzPFVNjxxOJ2k\nrcoiIzOXghIbkWEBJCXGMGFoAhazBk6JiHjL6IEXsikzl6+2HODybm3o1jHC6JBERER8gr6FiLQg\naauyWJm+j/wSGy4gv8TGyvR9pK3KMjo0EZFmzc9i5s5R3TCZ4J0lO7BVOYwOSURExCcoKSHSQtjs\nDjIycz3uy8jMw2bXDbKIiDdd1C6MlH4XkFtUySdrfjI6HBEREZ+gpIRIC1FcZqOgxOZxX2FpJcVl\nnveJiEjDuX7QRcRGBLEiPYc9B4qNDkdERMRwSkqItBDhIQFEhgV43BcRGkh4iOd9IiLScAKsFu4Y\n2RWXC2Yv3om92ml0SCIiIoZSUkKkhQiwWkhKjPG4LykxWqtwiIg0ki4XRDAkqT0H8o6y6JtfjA5H\nRETEUEpKiLQgE4YmMLxvPFFhgZhNEBUWyPC+8UwYmmB0aCIiLcq4wZ2JDAtg8bd7yT5canQ4IiIi\nhtGSoCItiMVsZuLwRMYmd6a4zEZ4SIBGSIiIGCAowI8pKV35+7ytzF6ykxlT+mhpZhERaZH06SfS\nwtjsDiUkRER8wGWdoxhwaVv2Hipl2Xc5RocjIiJiCI2UEGkhHE4naauyyMjMpaDERmRYAEmJMUwY\nmqBf50REDHLL8Iv58ed8Fqz5maSLo2kX1crokERERBqVvomItBBpq7JYmb6P/BIbLiC/xMbK9H2k\nrcoyOjQRkRYrJMjKpGu6UO1w8s6SnThdLqNDEhERaVRKSoi0ADa7g4zMXI/7MjLzsNkdjRrLkcLy\nRm1TRMSX9e0aS5/EGHbvK+bLzfuNDkdERKRRafqGSAtQXGajoMTmcV9haSXFZTZiI4K9GoOmj4iI\n1G7SNYnszC5k/ld76JkQRXR4kNEhiYiINAp9ExBpAcJDAogMC/C4LyI0kPAQz/sakqaPiIjULjwk\ngJuHXYytysGcpbtwaRqHiIi0EEpKiLQAAVYLSYkxHvclJUZ7fRUOX5o+IiLiqwZ2b0v3TpH8+HMB\n674/ZHQ4IiIijUJJCZEWYsLQBIb3jScqLBCzCaLCAhneN54JQxO83nZdpo+IiLR0JpOJKSldCPC3\n8OEXuynSv40iItICqKaESAthMZuZODyRscmdKS6zER4S4PUREscdnz6S7yEx0VjTR0REmoLo8CDG\nJXfm/RWZvLc8k/tu6I7JZDI6LBEREa/RSAmRFibAaiE2IrjREhLH2zRy+oiISFMypHd7EuPD2ZyZ\nS/ouz1PfREREmgslJUSkURg5fUREpCkxm0zcPqobVj8z7y/fRVmF3eiQREREvEbTN0SkURg5fURE\npKlpGxnMmKsuYt7qPfx75W5+fd0lRockIiLiFRopISKNyojpIyIiTdE1l3egY9tQ1v94iG178owO\nR0RExCuUlBARERGf8vzzzzNhwgTGjh3L8uXLOXjwIJMnT2bixIlMmzaNqqoqAD777DPGjh3LTTfd\nxLx58wyOuuFZzGbuHNUNi9nEnKW7qLBVGx2SiIhIg1NSQkRERHzGt99+y+7du0lLS+PNN99k1qxZ\nvPTSS0ycOJEPPviAjh07Mn/+fMrLy3nllVd45513mDt3LnPmzKGoqMjo8Btch9gQrh3QkcJSG/NW\n7zE6HBERkQanpISIiIj4jH79+vHiiy8CEBYWRkVFBRs2bGDYsGEADBkyhPXr17N161Z69OhBaGgo\ngYGB9O7dm82bNxsZuteMHngh7aNbsTpjPzv3FhodjoiISINSoUsRERHxGRaLheDgYADmz5/P1Vdf\nzdq1a/H39wcgKiqK3Nxc8vLyiIyMdB8XGRlJbu7Zl8+MiAjGz887NW1iYkK9cl6Ah27twyMvfc3c\n5Zm89PBgAv11C+eJN/tA6kZ9YDz1gfHUB/WjTzQRMYTN7tAqHCJSq5UrVzJ//nzefvttrrnmGvfj\nLpfL4/Nre/xUhYXlDRLfqWJiQsnNLfXKuQEigvwY3rcDyzfm8OYn25gw9GKvtdVUebsP5OzUB8ZT\nHxhPfeDZmRI1SkqISKNyOJ2krcoiIzOXghIbkWEBJCXGMGFoAhazZpSJCKxZs4Z//vOfvPnmm4SG\nhhIcHExlZSWBgYEcPnyY2NhYYmNjycv774oUR44coVevXgZG7X03XN2JLbvzWL4xh35d29ApLszo\nkERERM6bvgGISKNKW5XFyvQup6NIAAAgAElEQVR95JfYcAH5JTZWpu8jbVWW0aGJiA8oLS3l+eef\n5/XXX6d169YADBw4kGXLlgGwfPlyBg0aRM+ePfn+++8pKSnh6NGjbN68mb59+xoZutcFWC3cPrIr\nLhfMXryDaofT6JBERETOm0ZKiEijsdkdZGR6nvOdkZnH2OTOmsoh0sItXryYwsJCHnzwQfdjf/7z\nn5kxYwZpaWnExcUxZswYrFYr06dP56677sJkMnHfffcRGtr85/B27RjB4F5xrN5ygEXf/MKYQZ2M\nDklEROS8KCkh4gNaSn2F4jIbBSU2j/sKSyspLrMRGxHcyFGJNCN2G5asTdhL4yH0AqOjOScTJkxg\nwoQJpz0+e/bs0x5LTU0lNTW1McLyKTcNSWDrnnw+X7+Xvl1iiY8NMTokERGRc6akhIiBHE4nH6zc\nzZbMPIrKmn99hfCQACLDAsj3kJiICA0kPCTAgKhEmgFHNZbMjVQu/4xfVvxIWM9uRP7pOaOjEi8J\nCvDjttQu/H3eNt5evIPfT+nTLD8zRESkZVBSQsQgDqeT/30nnZwjZe7HjtdXAJg4PNGo0LwmwGoh\nKTHG/RpPlJQY3axHiYh4hdOB+aetVK/6jF8+28yRjAPggsC+g4yOTLzsss7RDLi0Det/PMzyjTmM\nvKKj0SGJiIicEyUlRAzywYrMkxISJ2rO9RUmDE0Aal5jYWklEaGBJCVGux8XkTpwuTBnb8fx1Wfs\n/XQjh77LweVwEdS1M/GPT+XiW0aSl+f53xdpPm4ZnsiPPxewYM3PJF0cQ9tITX8TEZGmR0kJEQPY\n7A4ydufVur+gGddXsJjNTByeyNjkzi2ijoZIQzMd3INrzUL2LfiGA+t+wWl3EtCxPfGP/obI66/B\nZDZjMpmMDlMaQUiQlVuv6cJrC37gncU7ePTW3pjV9yIi0sQoKSFigOIyG0VlVbXub90qoNnXVwiw\nWppl0kXEW0y5OZi+XczBj1ez76ufcVRWY20TxQXT/x/RE/4Hs1Uf6S1R3y4xJF0cTcbuPFZn7Gdo\n73ijQxIREakX3cGIGCA8JICoWgo+AvRSfQUROcZUdBjTd8s48tEKclbtwX60Cr/WoXR49C7a3DYO\nc1Cg0SGKgUwmE5NTurAru4h5q/fQs3M0UeF6T4iISNOhUs0iBjhe8NGTDrEhTBx+cSNHJCI+p6wQ\ny9fzyH/qMTKm/YufFu7AgYX20++m54aFtLtnkhISAkDrkAAmDEvAVuVgzrKduFwuo0MSERGpM42U\nEDHIiQUfC0oqCQ/xJ+niaCaOSNTSbiItWUUZlq2rKPx4EXuX7aIi9ygmfytt/9+ttJt6B9ao1kZH\nKD7oqh7t+G7HEX74qYBvfjjElT3aGR2SiIhInSgpIWIQFXwUkZNUVWD+YQ0ln3zK3iU7OHqgBCxm\nYibdQPsHf4V/XBujIxQfZjKZuC2lC0++9R0ffrGb7hdFNvvaRCIi0jwoKSHSgGx2R70TDCr4KNLC\nVVdh2fktZQsXsHfR95T8XAgmE1FjrqH9I78h8KIORkcoTUR06yDGDe7M+ysyeW9FJvfd0MPokERE\nRM5KSQmRBuBwOklblUVGZi4FJTYiwwJISoxhwtAETcUQEc+cDsxZm6j8/BP2fraFwl25ALQefhXx\nj91H8CWqLSP1N6R3e77bcZhNu3JJ33mEvl1jjQ5JRETkjJSUEGkAaauyWJm+z72dX2Jzb08cnmhU\nWCLii1xOzL98T9XyBWR/spG8bYcACO2fRPwT9xPa9zKDA5SmzGwycfvIrvzh7Y28tyKTrh0jCAmy\nGh2WiIhIrZSUEDlPNruDjMxcj/syMvMYm9xZtSJEBFwuzPszqf7iE/Z+/C2HN+0Hp4tWPboQ/8T9\nhF19BSaTyegopRloF9WKMYMuYv7qPXz4xW5+NfoSo0MSERGplZISIuepuMxGQYnN477C0kqKy2yq\nGSHSwpkO/4Lzq8/Inv81B9dn43I4CUroSPvHpxKROljJCGlwKZd3YOOOI3zzwyGuuKQNPTpFGR2S\niIiIR5rsLnKewkMCiAzzXOE8IjRQ1c9FWjBTwQFMC9/gwPTfsenR9zmw9hf828bQ6cU/0v3L/xA5\ncogSEuIVFrOZO0Z1xWI28e7SnVTYqo0OSURExCONlBA5TwFWC0mJMSfVlDguKTFaUzdEWiBTSR5s\nWMrhD5ewb/VPVFfYsUa1psNDdxNz6w2Y/b04x9/lxOV0eu/80mRc0CaUkf07suibX5j/1R4mX9PF\n6JBEREROo6SESAOYMDQBqKkhUVhaSURoIEmJ0e7HRaSFOFqMedNKcj/8jOwvsrCX2rCEtiL+8btp\nc9fNWIKDvNe2sxrK86GigBJbBAS29V5b0mRcN/BCNmfm8uXm/VzeNZYuF0QYHZKIiMhJlJQQaQAW\ns5mJwxMZm9yZ4jIb4SEBGiEh0pJUHsW8dTUFaZ+QvXwXlQUVmAP9iXvgTtr+ZjJ+4aHea/uEZAQu\nF5j9CAyPospzqRtpYax+Zu4Y2ZVZczfxzpKdzLzzcvz1+SQiIj7Eq0mJyspKRo8ezb333suAAQN4\n9NFHcTgcxMTE8Je//AV/f38+++wz5syZg9lsZvz48dx0003eDEnEqwKsFhW1FGlJ7DbMP66leN5H\n7F28nfLDZZisfrS5czxx0+7CGuPF4oIekhG0ioKgCALCwiG31HttS5PSuX04I/p1YPnGHBas/Znx\nQzSKT0REfIdXkxKvvfYa4eHhALz00ktMnDiRkSNH8sILLzB//nzGjBnDK6+8wvz587FarYwbN44R\nI0bQunVrb4YlIiJyfhx2LJkbKf1oHnsXbqM0pxjMJqLHj6b9w/+PgPh23mv7eDKivAA4noyIhqDW\nYFL9avHshqs7kbE7l2XfZdOvaywXtQszOiQRERHAi6tv7Nmzh6ysLAYPHgzAhg0bGDZsGABDhgxh\n/fr1bN26lR49ehAaGkpgYCC9e/dm8+bN3gpJRETk/DgdmLM2Ufl/T7L97pn88OoaSnOKiRg1hB5f\nzqPT3//ovYSEsxrKDkPe7pqkhNkCIW0hKgGCI5WQkDMKsFq4fWQ3XC6YvXgH1Q4VQxUREd/gtZES\nzz33HE8++SQLFiwAoKKiAn9/fwCioqLIzc0lLy+PyMhI9zGRkZHk5uae9dwREcH4+bXM+ZAxMV6c\nlyz1or7wHeoL39Fc+8LlclG9eyv5ae+zZ/635G8/AkD08IF0fWY64X26e61tp72K8vyDVBQcAZcT\ns5+V4Og4AiNiMZlrT0Q0176Qc9etYwTJveL4assBFq/fy/9cdZHRIYmIiHgnKbFgwQJ69epFhw4d\nPO53uVz1evxUhYXl5xxbUxYTE0qu5gj7BPWF71Bf+I5m2RcuF6aDe7Av+4ic+evI3XIAXBDSpzvx\nv3+AsP69qQLvvG5HNZTnQUUh/52mEYszqDVlTjNl+UdrPdSbfaFkR9N20+AEtu3JZ+E3v9C7Swzx\nMSFGhyQiIi2cV5ISq1evJicnh9WrV3Po0CH8/f0JDg6msrKSwMBADh8+TGxsLLGxseTl5bmPO3Lk\nCL169fJGSCIiIvViys3BsWoB+9JWcfi7fbicLoK7diL+9w8QPvRKTCaTdxp22I8VsDwhGRGsmhHS\nMIID/Zic0oWX5m9j9uKd/H5yH8xmL72XRURE6sArSYm///3v7v9/+eWXad++PRkZGSxbtozrr7+e\n5cuXM2jQIHr27MmMGTMoKSnBYrGwefNmnnjiCW+EJCIiUiemwsM41yzkwL+XcWDdXpzVTgI7xtH+\nsalEXjf8jFMmzounZESraAhUMkIaVq+EaPpf0oZvtx9m+cYcUq+4wOiQRESkBfPq6hsnuv/++/nd\n735HWloacXFxjBkzBqvVyvTp07nrrrswmUzcd999hIZqWKiIiBigtADTt0s4+N4i9n/9Mw5bNf5t\nooh7+DfETBiNyc9LH5mnJSOsJyQj9Au2eMctwy/mx18K+GTNTyQlRtNGy1mLiIhBvJ6UuP/++93/\nP3v27NP2p6amkpqa6u0wROQsbHYHxWU2wkMCCLC2zEKy0kKVl2LetJLD731CzqrdVB+149c6lAse\n/xWxU8ZhDgzwTrtKRoiBQoP9uXVEIv/89EfeWbyTRyYmYdb7TkREDNBoIyVExDc5nE7SVmWRkZlL\nQYmNyLAAkhJjmDA0AYu3hqmL+AJbBebvvyJv7jyyl++iqrgSS6sg2j98J23vnoglpJV32nXYjxWw\nLELJCDFSv66xbNh+mIzdeXy15QBDktobHZKIiLRASkqItHBpq7JYmb7PvZ1fYnNvTxyeaFRYIt5T\nXYV5+zcUvp9G9pIfqcgrx+Rvpe09k2g39Xaska29066SEeJjTCYTk67pws7sIv7zZRbdL4okpnWQ\n0WGJiEgLo6SEiI9qjOkUNruDjMxcj/syMvMYm9xZUzmk+XBUY9qdTmnah+z9bCtHD5ZispiJnXwD\ncb+9G/+2MV5qV8kI8V0RoQFMHH4xb32+g7cWbefRib21GoeIiDQqJSVEfExjTqcoLrNRUGLzuK+w\ntJLiMhuxKn4mTZ3TifmXbRyd/yF7F2yi5JdCMJmIuuEa2j9yL4EXxnunXY/JiBgIDFcyQnzKwO5t\n2ZKVx6ZduSzbmM3IKzoaHZKIiLQgSkqI+JjGnE4RHhJAZFgA+R4SExGhgYSHeKnAn0hjcLkw79tJ\nxadpZM//lsLMPABaD7+S+MfvJ7hbgnfadScjCmu2LVYIVjJCfJfJZGJKShd27yvmk69/ovtFUXSI\nDTE6LBERaSFUxU7Eh5xtOoXN7mjQ9gKsFpISPQ9ZT0qM1tQNabJMh37GPvt5sn71CFtnLaIwM4+w\n/r24ZNE7JL77oncSEo4qKDkI+btrEhIWfwiNg8gECNJUDfFtocH+3DGyK9UOF28s/BF7tdPokERE\npIXQSAkRH2LEdIoJQ2u+nGVk5lFYWklEaCBJidHux0WaElP+fqpXfMy+D1ZyeNN+cEGrHonEz3iQ\n8EGXe6dRRxUczYPKopptiz8ER2tkhDQ5PROiSe4Vx1dbDrBgzU/cNESfAyIi4n1KSoj4ECOmU1jM\nZiYOT2RscmevF9YU8RZTcS6Orz7jwNzFHPw2G5fDRVDnC4j//QO0TknG5I3kgJIR0gxNGJrAjl8K\nWbohm54J0SR28NJqNCIiIsdo+oaIDzFyOkWA1UJsRLASEtK0HC2GlR+y/76pbL7/XxxYtxf/tjF0\nevl/6b56HhGpgxs+IeGogpIDkJ9Vk5Cw+ENYHER21jQNafIC/f341ehLwARvLtpOha3a6JBERKSZ\n00gJER+j6RQidVB5FNJXcnj2PPavzqK6ohprdGs6PPT/iJk4BrO/teHb9DQyolUMBIT5TCLC6YK8\noxYsQS6jQ5EmLCE+nFH9O/L5+r38+4vd3Dmqm9EhiYhIM6akhIiP0XQK77DZHbqezUFVJaZtX5M7\n+9/krNiFvawKS2gwHZ64h9g7b8YSHNjwbVZX1aym4cPJiGonHCzxY1+RFZvDTIHNRdcoo6OSpuz6\nqy7i+5/yWbvtIEkJ0bWO4hMRETlfSkqI+Kjj0ynk/DicTtJWZZGRmUtBiY3IsACSEmOYMDQBi1kz\n2JoMhx3z9m/Jn/M+2Ut+xFZYgTnQn7hpd9L2N1PwC/PC8oXVVVCeC5XFNds+mIywVZvYX+zH/hIr\nDqcJs8lF+3A7SZ38KSs2OjppyvwsZn49+hJmvpPOO0t30rl9OGGt/I0OS0REmiElJUSkWUtblcXK\n9H3u7fwSm3t74vBEo8KSunI6MGVtpnjue+xduIWKI0cxWS20uWs8cdN+hTU6suHbPC0ZEQCton0q\nGVFeZSKnyMqhUj9cmLCaXXSIrKJ9mB2rBYL8AygzOkhp8trHhDAuuRMfrsrinSU7uX9sD+8UjRUR\nkRZNSQkRabZsdgcZmbke92Vk5jE2ubOmcvgqlxPTLz9QlvY+ez9Op2xfMZjNxEwYTdz0ewiIb9vw\nbVbbjk3T8N1kRHGlmZwiK3lHLYCJIKuT+PAq2oZWY9HAH/GC4f06sCUrjy1ZeazddpBBPeOMDklE\nRJoZJSVEpNkqLrNR4GF5VYDC0kqKy2yaIuNrXC5MB7Io/+h9sv/zDcU/FQAQOWow7R+bSlDChQ3f\npsdkRAwEhPpEMsLlgvxyCzlFVoora5JooQEOLmhtJ7qVwxdClGbMbDJx17WX8NTbG/jgi9107RhB\nTOsgo8MSEZFmREkJEWm2wkMCiAwLIN9DYiIiNJDwkAADopLamI5kY/vsQ7L/vZqCHUcACE++nPgn\nHqBVj64N32C1rWY1DZtvJiOcLjhc6kdOkZVye80wiMjgajq0ttM60OkLIUoLERUeyMThibz1+Q7e\nWrSdRyf2xmzWG1BERBqGkhIi0mwFWC0kJcacVFPiuKTEaE3d8BGmwkNULZ3PvrnLyN16EFwQ2udS\n4mf8ltArejV8g6cmI/wCINh3khHVDjhQYmVfsR9VDjMmXLQJsdOhtZ2QAC31KcYY2L0tW3bnsSkz\nl2Ubsxl5RUejQxIRkWZCSQlp0rTMo5zNhKEJQE0NicLSSiJCA0lKjHY/LgYqLcDx5QL2v72QQ+n7\nwOkiuOtFxD/5W8IHD2j4gnrVNjiaC7aSmm0fS0bYqk3sK/bjwLGVNCwmF/HhduJb2wn0UzJCjGUy\nmZiS2oXd+4v55Ouf6H5RFB1ivbDqjYiItDhKSkiTpGUepa4sZjMThycyNrmzEli+orwU17rFHHhr\nPge+2Yur2klgx3bEP/4AEaOHYWrov2FPyYhWMeDvG8mIo8dW0jh8fCUNi5MLIu3EHVtJQ8RXhAb7\nc8fIrrw4fxtvLPyRJ2/rh9VPn7kiInJ+lJSQJknLPEp9BVgtKmppNFsFro0rOPTGhxz4eg8OmwP/\nNpG0f/Reom8ajcmvgT+STktGBNaspuEjyYjiCjPZRVbyy2ted5DVSYfWVbQJ0Uoa4rt6JkST3CuO\nr7YcYMGan7hpiEadiYjI+VFSQpocLfNYO01nEZ9kr4KtX3PkzffYt3IX1eV2/FqHcMETdxM7ZRzm\nAP+Gba+68ljNiBOTETHgH2J4MuL4ShrZRVZKtJKGNFEThiaw45dClm7IpmdCNIkdWhsdkoiINGFK\nSkiT09SXefRG4kDTWcQnOaphxwYK3nqX7CU/UFViw9IqkPhH7qTN3bdiadXAf6c+nIw4vpJGdpGV\nimMraUQdW0kjXCtpSBMT6O/Hr0ZfwrPvb+LNRduZeeflBAXollJERM6NPkGkyWmqyzx6M3Gg6Szi\nU5xOTHsyKJr9DnsXbqUyvxxzgJV299xKu/vvxC8ivGHbq648Nk2jtGbbh5IRdgccPGUljbahNStp\ntPJX8UppuhLiwxnVvyOfr9/Lv7/YzZ2juhkdkoiINFFKSkiT0xSWefQ0GsJbiQNNZxFf4XK5MO39\nkZK5c8j+ZCNHD5Zi8rMQO3kMcQ/dg3+b6IZt0IeTEZXVJvYXHVtJw1WzkkaH8Crat67WShrSbFx/\n1UV8/1M+a7cdJCkhmqTEGKNDEhGRJkhJCfFptU11ONdlHr1dc6G20RBjBl10xsRBSr8OHCmsID42\nhNDg+s2vb+rTWaR5MB36if0vzeWnD9ZQml0EJogaM4L4x6YScEH7hm3MXgnlvpmMOHUlDX+Lk47h\nNStp+Ck3KM2Mn8XMr0dfwsx30nln6U46tw8nrFUD14gREZFmT0kJ8Ulnm+pQ32UeG6vmQm2jIcor\nq2tNHOSXVPLoa+txAWYTtI8J4fdTeuNfx5UImup0FmkeTPn7qfjoPbLfX0XR7nwAIoYPpP3vpxHc\npXPDNuajyQiXC4ora1bSKDi2kkbw8ZU0Qqsxq16ENGPtY0IYm9yJtFVZzFm6k6k39sCkIikiIlIP\nSkqIT6rrVIe6LvPYGDUXzjSNYufewloTBwDHB3M7XZBzpIw/vbuZmXdeXqd2A6wWel4czapN+0/b\n1/PiKE3dEK8wFediW5RGzpwl5P9wGICoQb1p8/g0Qnpd2rCN2StqClhWHU9GBB1LRrQyPBmRd9RC\nTpGVElvN31lYYM1KGlHBWknjfGVmZnLvvfdy++23M2nSJDZu3MgLL7yAn58fwcHBPP/884SHh/Pm\nm2+ydOlSTCYTU6dOJTk52ejQW5wR/TqwNSuPjN15rN12kEE944wOSUREmhCV5Refc7YaCTa7w9Dz\n1eZM0yiKymx0vSCizufan1tGaXlVnZ9f23cffSeSBne0iOoFs/l50q/Y8ug75P9wmJAeF9N13j/p\nv+rfDZuQsFdAUQ4U/lyTkPALgvALIOJCCDBudITDCQdK/PguJ4gfDwdSYrMQFVxNUlwFvdtXamnP\nBlBeXs7TTz/NgAED3I89++yz/OlPf2Lu3LkkJSWRlpZGTk4Oixcv5oMPPuD111/n2WefxeFomH/T\npe7MJhN3XXsJQQEWPvhiN7lFFUaHJCIiTYiSEuJz6lIjwcjz1eb4NApPIkIDuWVEIsP7xhMVFojZ\nBGGtrLWey+mCfUfK6tSuze5gy+48j/u27M5vsKSLtHAVZTiWp5Fz211k3P8qRzbtJ7hTBy6e/Te6\nLf2AsCv7Nlxb9gooyva5ZITdAXsLrXybHURmbgCVdhNtQ+3061BOj3Y2woOchsTVHPn7+/PGG28Q\nGxvrfiwiIoKioiIAiouLiYiIYMOGDQwaNAh/f38iIyNp3749WVlZRoXdokWFBzJxeCK2KgdvLdqO\n06mCriIiUjeaviE+p6FrJDRWzYUzrQpyWedIggP8TqqDYTGb+N0/1+Ppvs1sgvjYkDq1q0KX4lVV\nlbg2rODg6x9wYM0enHYnAe1jaP/Y/UTdkIqpAWuy1EzTyIWqYwk567FpGlZjp2lU2k3sK7ZyoMQP\np8uExeyiQ+sq4sOrCdBKGl7h5+eH3yl1dZ544gkmTZpEWFgY4eHhTJ8+nTfffJPIyEj3cyIjI8nN\nzaVLly6NHbIAA7u3ZcvuPDZl5rJsYzYjr+hodEgiItIEKCkhPqehl/xszCVEj6/+sXlXLgWlNsym\nmlEP2/bk88HKTCYMTTipDkb7mBByPIyIaB9T91U4VOhSvKLaDlvXcPi1d9i3KhNHZTXWqHAuePge\noifegNnagB8fPpqMKLPVrKRxpOy/K2nEt64iLqwaPx8cZ1hy1Mn67+1s+LGaXl0d/M+VzauezNNP\nP80//vEP+vTpw3PPPccHH3xw2nNcrrMniSIigvHz0lIoMTGhXjlvU/LbW/sw9a9f8snXPzOodwcu\nigtv1PbVB8ZTHxhPfWA89UH9KCkhPulcl/xsrPPV5viqIA6niy8373ePgqitsObvp/TmT+9uZn9u\nGU7Xyatv1FVjJl2kBXA6YPsG8l6fTc6yH7GXVeEXGkyHh+6hzV03Yw4KbLi2fDAZ4XJBUaWZnCay\nkobL5eKXQ07WbbWzNasapxMC/aFTvD/QvKZu7dq1iz59+gAwcOBAFi5cSP/+/fn555/dzzl8+PBJ\nUz48KSws90p8MTGh5OaWeuXcTc1tKV14cf42nn93I0/e1g9rI2Xx1AfGUx8YT31gPPWBZ2dK1Cgp\nIT6pvkt+euN8NrvjnNq22R1sy/Jc4yEjM4+xyZ3d5/P382PmnZdTWl7FviNlxMfWfYTEibyZdDnX\n6yBNjMuJKWsr+W++Tc7CDGxFlZiD/Imbdjvt7r0dS2jdphPVyWnJiOBjyYhgQ5MRucdW0ig9tpJG\neKCDDj66koa92kVGZjXrttrZl1tTy6JtpJkre1rp08WP+PbBze6GKDo6mqysLBISEvj+++/p2LEj\n/fv3Z/bs2dx///0UFhZy5MgREhIaNtks9dczIZrkXnF8teUAC9b8xE1D1CciIlI7JSXEp9V1yc+G\nPJ/D6SRtVRYZmbkUlNiIDAsgKTGGCUMTsNRh/nxuYXmtS3/WVuMhNNifbhdGejymLho6iQOer8Nl\nCdEM7xNPZFigEhTNhcuFad8uit5+i+yPv6Mi9ygmq4W2d95Eu9/ejTWq7qvGnJW9/Fgy4mjNtg8k\nIxxOOFTqR06RlcpqM+AiulU1HVrbCQ/0vcKVhaVOvtlm59sf7ZRX1ly2Hp0tXHWZlc7xFky+lj05\nRz/88APPPfcc+/fvx8/Pj2XLljFz5kxmzJiB1WolPDycWbNmERYWxvjx45k0aRImk4k//vGPmBuy\nzomcswlDE9jxSyFLN2TTMyGaxA6tjQ5JRER8lMlVlwmYPqa5/fpTVxoK1Dg+WJnpcSrE8L7x7qkX\nnvrixC/xtSUlosICeebXVzSJL/S1XQeAqHomarxJfxfn4fAvlM2dTXbaGsr2l4DZRMxNI2n/yH34\nx7Wp9+lq7YvakhH+rc7zBZw7uwP2l1jZX2TF7jRhwkXb0JpkRLC/b30sulwu9uxzsHabnR9+cuBy\nQXAg9L/UyoAeViLDTv8b9ObfRVOfJ+vN66J/i06Wta+YZ9/fRFRYIDPvvJygAO/+FqY+MJ76wHjq\nA+OpDzzT9A2ROrLZHWRk5nrcd+rUi1Olrcqq9Uv8ceda46Gxp1Cc6TpA7TUyznQ+TQHxHaaCgxz9\nz7tkz11Jyc+FAESNSqb9E9MI7HRBwzXkg8mISruJnGIrB4+tpOFndnFB6yra++BKGrYqF5t21UzR\nOFRQM2qjfYyZq3paSUr0w+rXPEZFSPOVEB/OqP4d+Xz9Xv79xW7uHNXN6JBERMQHKSkhcoL6LK95\n4hdt4Ixf4iNDA+jdJabeNR7OdyrJuTrTdTjR2RI1RsUvtSjJx/bpB2TPXkzhzpr3a+ur+xD/5HSC\nLz17cqnO7OVQlgt230lGlNnMZBdZOVJmAUwEHFtJo50PrqSRV+Rk3TY73223U1kFZjMkJfpxZU8r\nF7Y1N5spGtIyXH/VRXy/J5+12w6SlBBNUmKM0SGJiIiPUVJC5AR1WV7T4XTyxoLvWbd1v/uLdpcL\nImr9Em8ywYPjexIfUwTreoEAACAASURBVP9CgaeOvqjvCIVzdabrcKLaamQcZ1T8coryEuxLPyLn\njY/J23oQgNDe3Yh/ajqhl/dqsGbs5aVQuPeEZEQraBVtWDLC5YKiippkRGFFzcddK/+alTRiQ3xr\nJQ2ny8WuvQ7WbrWzc2/NqhmhwSau7uXHgB5Wwlr5WOZEpI78LGZ+fd0lzHwnnXeW7qRz+3DCWtW/\noLOIiDRfSkqInOBMy2telhBFgNVyWq2F/BIb3/xwiEB/C5VVpy/BFxkaSEzroHrHcj5TSc7Xma7D\niY4najwxMn45xlZO9ZcL2f96Goc35oDTRauuFxL/1EOEJQ9ouF/cq47C0TyKjpyYjIgB/4YrUlsf\nThfkHbWQXWilrKrmPdb62EoakT62kkaFzcXG7XbWbbOTV1wzfaRj25opGpcl+OFn8aFgRc5R+5gQ\nxiZ3Im1VFnOW7mTqjT004kdERNyUlBDh5KkY/11es6ZgpdlU8yVn6+5ccLnYtie/Xuc+1zoS9ZlK\n4ul1nO8X/hOXGc0vqfT4nDO9tnOJXxqI3Ybz2xUceHUuB9f9jKvaSeAFbYn//TQiRg9v4GREbs10\nDcDaKgy7NdKwZISnlTRijq2kEeZjK2kcynewbpud9J3VVNnBzwL9utVM0egQq2SdND8j+nVga1Ye\nGbvzWLvtIIN6xhkdkoiI+AglJaRFO1PNA4fDyZcZB3Aeq333/9k787C46rP9f2aHYWBgWBLWhOwr\nZCExIWhITOrWGOsSbaxWba1v1bd9bav2rRrr9lp/ttZWTbXWLVbrklpr41prYhayk0DIvsqasAww\nrDNnzjm/Pw4giSwDzDAs38915bqAMxyemTNzcr73eZ77dtZ5WL+ntNN9uT0yC6aN5FBhDdV1zUSF\nhzBzQkyPfSRa8WWUxJfn0VvvhvYxo05XM5/vKiL/uNPn59aT+gV+Qvai7NnEmedepnT9EWSPjGWE\ng4R7byfmmmXoDH5a7J4jRmDWOiMiE0YExW3aI0NprYmS2pYkDZ1KQoREkn1gJWnIisqBk9qIxrFi\nrasq0qZjyRwT5001YQsVd44FQxe9Tsctl03mwZd38OZ/jjJpVFSvuggFAoFAMPTokShx5MgRCgsL\nWbJkCS6Xi4iIiEDVJRD0C515HshK5x0RrZ0T5+KICOF7F00E8Eu3QlcjFOd2KATSu8FiMhAfHcYN\nF03qUSdGT+oX9BFFQT24g4rn/kLxZ/vxNkqYomwk3XcrsTdeg97ip/ntTsQITMHpjGiSdBTXmCir\n+zpJY1SUh8QICfMAktzrm1R27JfI2SdRXaedPMYlGchKNzEl1YBhIJlbCAQBJMYeysolE3jpw4O8\ntO4A96ychV68/wUCgWDY4/Nl26uvvsq6devweDwsWbKE1atXExERwe233x7I+gSCgNGV58HeI5VU\n13c8etCRIAFnL7T9NZbQfoSisw6F/vRusJgMPXpuvtQv6AOqCif3Ubn6BYr/tRdPnRtDWAhJv7iJ\nEf91Iwarn+5CDjAxos6tp6h9koZRIdnuYeQAS9IoLpfZnC+x57AXrwxmI8yfbmRBmon4aCHKCYYn\nmdNGsvdoJbuPVPDpzkIuOW9UsEsSCAQCQZDxWZRYt24d77zzDt///vcBuOeee7juuuuEKCEYtHTl\neVDT4CbSZqam3vONbY5wC/Omx7O94HTAF9rtRyg661Do6nk4g+zd4Ev9gl5SfJTqP/+Zove20exs\nQm8xEf/jlcT/9w8xRvqhi01VNRHiLDHCpqVpBEGMUFWobtJTVGOmukl7D4WZZVIiJWJt8oBJ0vDK\nKvuOe9mcJ3GqTPOxiLbryEozMWeKiVDLAClUIAgSOp2OGy+eyNGSWv6x8QTTUqNJjut5OpVAIBAI\nhg4+ixJhYWHo282m6/X6s74XCAYbXXkeOMJDSBvr6NBDYtbEWH58VTrL5o/qt4V2Vx0KXT0PHfDp\njkJWLp3Qa28Jf9DTDovO8KeR56ClogjXy3+m8O1NNJ6uR2fQM+J7lxP/i9sxx8X0ff+qqkV6NlSe\nI0bEgqn/578VFSrqDRTVtEvSCNXEiKjQgZOk4WpQ2FrgZVuBhKtBa6eaNEob0Zg4yoB+oBQqEAwA\nwq1mbr5kEn9Ym8+L/9rPA9+fg2kgtTkJBAKBoF/xWZRISUnh2WefxeVy8dlnn/HRRx8xduzYQNYm\nEASU7jwPrl08DoNB3+nogb8W2n2lq+ehqLB+TykGg77P3hLBpCsjz+GCrqac+jdepnDNv6krqgWd\njpjli0n81f9gSfaDi32bGFEBUpP2syCKEbICZXVGigdwkoaqqnx1WmFznkT+MS+yAiFmOH+GiQVp\nJmIjxSJLIOiM9HExLJyRwJd7S3l/0wmuWTR8zucCgUAgOBufRYlVq1axZs0aRowYwQcffMDs2bO5\n/vrrA1mbQBBwuvI8GEyjB9cuHoesqHy5p6RDzwt/e0v0N10Zef70u7ODVVb/UF9N09q/UvjyOmqP\naearUReeR9KqXxA6PrXv+x9gYoRHhpKWJA2vokPfkqSRHCkRahoYSRqSV2XPES9b8iWKyzWBZIRD\nT1aaidmTjFjMoitCIPCFaxeP4+Cpaj7ZXkj6uBgmJEcGuySBQCAQBAGfRQmDwcDNN9/MzTffHMh6\nBIJ+xRfhYaB0RHSFQa/nojnJrM8t6XB7dZC9JfpCd0aezR5vP1fUTzTV4173DkV//jvO/WcAsM+b\nTuKqX2CbMbXv+1dVzcCycWCIEU2SjqIaE6fPTdKwS5gHiJZWXaeQky+xbb9EYzPodDBtjDaiMS7J\ngE6MaAgEPSLEbOSH357C42/s5i/rDvDQLXMJtQyg6ByBQCAQ9As+n/mnTJly1gWXTqcjPDyc7du3\nB6QwgaA/GQzCQ3fYbRaiO/GWiAoPwW6zBKGqvtOVkWd1XTPVLnfPso0HOp5mpP/8k+LVf6MitxhU\nsE0fS9Kqu4lYkNH3/beKEQ0V4G0VI8JbDCz7X4xwNWtJGhUNWpJGiFEhKdJDfLgXwwCYflBVlePF\nWopGwQkZVQVrCCyabSJzuglHxAAoUiAYxIxLsnPpvFF8uPUr/vafo9xy6eRglyQQCASCfsbna/lD\nhw61fe3xeNi6dSuHDx8OSFECwVAnEIaN3XlkDNbRja6MPKPCQ4iKsFBX2xSEyvyMV0LO+YySZ17l\nzNZTqIqKdWwiSQ/8DPvSC/p+F34AiRGqCs4mA0XVJmqatfelzSyTPICSNNySSu4hL5vzJU5XaSMa\nibF6stJNzJxgxGQcAEUKBEOE5Vmp7Dtexeb8MmaOi2HmhNhglyQQCASCfqRXNxjNZjMLFy7k5Zdf\n5kc/+pG/axIIhixdGTb6Ix2jK4+MwUp3YkuI2UhdEOryG4qMvHsjp//4F8o2HkWRFEISYkj83//G\n8Z1L0PX1faGq4KnX0jRaxQhLOFhjwRTS9/p7gKJCeUuSRkNLkkZUqExypIeoUGVAJGlU1ihsyZfY\ncUCi2QN6PcyYYCQr3cTokXoxoiEQBACjQc8Pl03h4Vd38eonhxibaCcizBzssgQCgUDQT/gsSqxd\nu/as70+fPs2ZM2f8XpBAMJTpyrDRH+kYg8mcsycMRbEFVUHdv5Mzz7xAyWcHkN1ezNERJPz8NmKu\nvwq9qY9DKW1iRAV4m7WfBUmM8CpQ5jJSXGvC3ZKkEWfTkjTCLcFP0lBUlSNfaSMah07JqEC4VccF\nM4zMm2bCbhMjGgJBoEmKtXHVwjG8/cUxXvvkEHdeOV2IgAKBQDBM8Pmqd/fu3Wd9b7PZePrpp/1e\nkEAwVOnOsNGf6RhDwSOjPUNKbFFVOFFAxTN/ovjDvUgNHowRVlJ+/iPifng9+pA+en90JkaExYKx\nf8UIjxeKa02Uur5O0ki0SyTZB0aSRpNbZedBiS35EpU1Wj2jRmojGmnjjBgNYkEkEPQnS+ckk3es\nkj1HK9m8r4zz0/wQdywQCASCAY/PosTjjz8eyDoEgj4TCJ8Gf9KdYWMw0zHqGj0Ul9eTFGcj3Dpw\nW2YHvdhSchzn6tUUvbcdd20zhlAzif99IyPvvAVDuK1v+x5AYkSjR0dRrZakoao6THqV0VEeEgZI\nksbpKoUt+R52HfLikcBogIzJRrLSTCSPGAAFCgTDFL1Oxy2XTebBl3fw5udHmZQSRWxk/xvwCgQC\ngaB/6VaUWLhwYZftcxs2bPBnPQJBjwm0T4O/CLUYsdvM1NR7vrEtWOkYHq+Xx9bkUlJRj6KCXgeJ\nsTbuu3EWZuOQyrQILpUl1Pz5eYre2khTZQN6k4H4m69k5M9vx+SI7Nu+OxQjIjQDy34WI5z1KgWn\nLVS2S9JIjvQwcgAkaSiKyv6TMlvyJY4WyQBE2nQsyTBx3lQTNqvoihAIBgIx9lBWLpnASx8e5KV1\nB7hn5Sz0A8H9ViAQCAQBo9tVx5tvvtnpNpfL5ddiBILeEGifhr7SXjTpSJCA3qdj9LU75LE1uRSV\n17d9r6hQVF7PY2tyeeiWuT3en+Acaiupe+1FCtd8RkNpHTqDnrirv0XC//4P5vi4vu17gIgRqgrO\nRgOFNSZqm1XAiM0ikxIpERMW/CSNhiaV7QckcvIlquu0EY2xiQay0k1MHWPAEOwCBQLBN8icNpK9\nRyvZfaSCT3cWcsl5o4JdkkAgEAgCSLeiRGJiYtvXx44do7q6GtBiQR999FE+/vjjwFUnEHRDIH0a\n/DUOcq5o0p7oiN4ZNvqjO6Su0UNJRX2H20oq6qlr9AzoUY4BTaOLxrdeo/AvH+A6VQ06iL4ki8T7\nfkbImJS+7XuAiBFakoaxJUlDe8+NsMNIaxORAyBJo7hc64rIPezFK4PZCPOnGVmQbiI+WoxoCAQD\nGZ1Ox40XT+RoSS3/2HiCaanRJMf1ccRNIBAIBAMWn/uzH330UbZs2UJlZSUpKSkUFRVxyy23BLI2\ngaBbAuHT4M9xkK5EkyibhVU3ZfRq4e+P7pDicm1koyMUVds+ebSjx7UNa9yNNL3/FsXPv0v1Ye24\nR50/k8RVd2Od2seuHVUFT11LtGd7MSIWjP03+tOWpFFjwi1rSRojWpI0UpPCqKgIXpqGLKvkH/ey\nOU/iVJlWR7Rdx4I0E3Mmm7CGiK4IgWCwEG41c/Mlk/jD2nxe/Nd+Hvj+HEzGgTOSKRAIBAL/4bMo\nsW/fPj7++GNuuOEGXn/9dQoKCvj3v//d6eObmpr45S9/SVVVFW63m9tvv51JkyZxzz33IMsysbGx\nPPnkk5jNZj744ANee+019Ho9K1as4JprrvHLkxMMfew2C44IC1UdCBO99Wnw5zhIV6JJbYObJre3\nx6JET7pD2nd7tNbT2vmRFGdDr6NDYUKvgyRxV8p3JDeez96n+Nk3qMwrBSBi5kSSfn03tjkz+rZv\nVQV3HTRWgLflvRQEMcLt1VFSa6TEZUJuSdJIaknSCAlykoarQWFbgZetBRKuBq2WSaMMLEgzMWm0\nAX2w2zYEAkGvSB8XwwXpCWzMK+X9TSe4ZtEgjoEWCAQCQaf4LEqYzdrCSZIkVFVl2rRpPPHEE50+\nfv369UybNo1bb72VkpISbrnlFmbNmsXKlSu55JJLeOqpp1i7di1XXHEFzz33HGvXrsVkMnH11Vez\ndOlSIiP7aP4mGBZYTAZmTojtcDyiNz4N/h4HCYRo4kt3SLQ9pK3bo8rlJsSsB3S4PfJZnR+Jsbaz\nPCVaSYwd2CkcAwbZi3fTp5T84RXO7DgFKoRNTCHpwZ8TsTCzS5PgbulQjLC3jGn0nxjR6NFRVNOS\npIGWpJHi8JAQIRHMkBtVVSk8rbApXyL/qBdZAYsJzk83sSDNRGyUuKMqEAwFrrtwHAe/cvLJ9kLS\nx8UwIVlcHwoEAsFQw2dRIjU1lTfeeIOMjAxuvvlmUlNTqaur6/Txl156advXZWVljBgxgu3bt/PQ\nQw8BsGjRIl5++WVSU1OZPn064eHhAMyaNYvc3FwWL17c2+ckGGa0+jHsOVJJdV0zUeG982kA/4+D\n+Fs0ga6FjogwM6EW4ze6PZo9X7fUt+/8uO/GWZ2mbwi6QJGRd2+i7Pd/pmzTUVRZJTRlBEn3/w+R\nly3xjxjRUAFy8MSI2mY9RTWmtiSNUJNCst3DiCAnaUhelb1HvWzJkygq197XI6J0LEg3M3uSkRCz\n6IoQCIYSIWYjt357Ko+/sZu/rDvAQ7fMJdQi0qEEAoFgKOHzWf3hhx+mpqaGiIgI1q1bh9Pp5Lbb\nbuv296677jpOnz7N888/z80339zWcREdHU1FRQWVlZU4HF/PrTscDioqOr5T3UpUlBWjcXgalcXG\nhge7hAHJT787m2aPl2qXm6gICyHm3l2whNtDiY0Kpby66RvbYiJDGTs6um3fvh6LO1fMxBpqZltB\nGZU1TcREhjJvWjy3LJuKoZvVXWfPaUF6Ih9sOvGNx9fUe3h0zS7qm7zd1pV/vIrbrkpn9b0XUlvv\n5lSZi9HxEUGJJu0r/fW5UFWVpt1bOf7IUxR/fgDFIxMyMooJD91F0vevRmfo/XlJVVU8LicNFSXI\nbu39Z7HHYI1NwGgJ9ddT6LaGsho4XKpS2aI5R4XBpAQdiQ4DOl33n6tAHYuqWpkvdjSwYVcTdY2a\nkeasSRaWzgtjyhhz34SgIYLbLbNpexX/2VhO2lQ73/1OcrBLEgj8wrgkO5fOG8WHW7/irf8c5eZL\nJwe7JIFAIBD4EZ9XbitWrGD58uVcdtllXH755T7/gbfeeouDBw9y9913o6pfzx23/7o9nf28PdXV\njT7//aFEbGw4FRWdd6cItDd0XW0TXb1K3aVqpI2N7rCzIW1sdNu+e3osrlgwmkvmJp/1d53Ohk4f\n353Z5rL5KTQ2edhzpJIqV/NZv1tR09zJXs+msqaJ46eq2jo/EiJD8DR5qGjqOLZ0oNJfnwvlxAEq\nfv8MJR/txdskYYq0kfyrW4i96bvozSYqnb08L6kquF2agWVrZ0SIHawxuI0W3C4vdPmO7juKCmfq\ntCSNRkkTyhxWLymREvYQBZ0ClZXd78ffx0JVVY6XyGzJkyg4IaOoYA2BRbNNZE434YjQAx4qKwfX\ne9afKIrKwaP1bMhxkrOrmsYmrXskIT40YJ8LIY4LgsHyrFT2Ha9iU34ZM8bFMHNCbLBLEggEAoGf\n8FmUuPfee/n444/5zne+w6RJk1i+fDmLFy9u63w4l4KCAqKjo4mPj2fy5MnIskxYWBjNzc2EhIRw\n5swZ4uLiiIuLo7Ld1W55eTkzZvTRGE4g6IBzF/qRNgszJsSwcsn4s1I1/DkO0h6LyeDz6Ed3ZpsG\nvZ6VSyawLHM0v355J9X1HY+cdEVvPS2GG2rpCar++CxF/9iOVOfGGBZC8s++R9ztP8Bg7UMEZxdi\nRH+NaXhlKHWZKK414pH16FAZYZNIjpSwWYJnXumWVHIPayMaZVUti+wYPVnpJmZNNGIyiq6I0jPN\nbMhx8uVWJ+UtokxstJlLL3SQPd/BjLRYIWILhhRGg54fLpvCw6/u5NVPDjE20U5EmPA+EggEgqGA\nz6LE7NmzmT17Nvfddx87duzggw8+4Ne//jXbtm3r8PG7du2ipKSE++67j8rKShobGzn//PP59NNP\nWb58OZ999hnnn38+6enp3H///bhcLgwGA7m5ufzqV7/y2xMUCFo5d6FfXe9mfW4Jx4prWXVTRpsw\n0brgv2rh2C47KgJFT8w2m9xeanohSEDvPS2GDVWlOFevpvjtL2l2NqG3mEj40QpG3vVjjPY+3Clu\nEyMqQG65wx9iB2ssGPvnAtvt1VFca6S0JUnD0JqkESkRYgyeGFFZo5CzT2LHAYkmN+j1MGO8kax0\nE6Pj9cN+RKOu3suWndVsyHFy+LjWaRVi0bN4gYPszGimTrSh1w/v10gwtEmKtXHVwrG8/cUxXvvk\nEHdeOX3YnxcEAoFgKNCjwXuXy8Xnn3/OJ598QlFREddee22nj73uuuu47777WLlyJc3NzaxatYpp\n06Zx77338vbbb5OQkMAVV1yByWTi5z//OT/4wQ/Q6XTccccdbaaXAoG/6GqhX1Rez5v/PsINF006\n6+c96WzwJz0x2+zK9DLEbCAsxIjT5cZi1sQHjyQTFW5hUkoUV5w/JnBPYhCj1jlxvfg8RWs+o7G8\nHp1Rz8iVlxF/708wxUb3YccdiRGRLZ0R/SNGNLQkaZxpTdIwKKQ4pKAmaSiqypFCmc15EodOyahA\nuFXH0rlG5k8zYbcN7xQNr1dlT0Et67c42ZlXi9erotfBjKnhZGdGc94sOyEWIS4Khg9L5ySTd6yS\nPUcr2byvjPPTEoJdkkAgEAj6iM+ixA9+8AOOHj3K0qVL+a//+i9mzeranT8kJITf/e533/j5K6+8\n8o2fXXzxxVx88cW+liIQ9JiuFvoAe45WsmKxPCA6B3oSI9pVukdWWvxZ3R6yovDmv49y6CsnOQWn\nOVRYfZZPxXBHbayj4Y2XKfzLB9QX1YJOR+yyhSQ88AssSfF92HEnYkRYDBj6R4yobdJTWGOiqlE7\n5YeaFJIjPYywBS9Jo9mtsvOgxJZ8iYoarTtj1EhtRCNtrBHjMB7RUFWVE181sT6nik3bqnHVa8a1\nyYkhLMqM5oJ5UURHibZ1wfBEr9Nxy2WTefDlHbz5+VEmpUQRG9k/ZsACgUAgCAw+ixI33ngjWVlZ\nGDpwl3/xxRe59dZb/VqYQOBP7DYLkTZLp94LtfWeHsd9Boqexoh25YFh0OvbntObnx8np+B02++d\n61MxbPE00fj3Nyla/S61xzV/G8eiDBJ/fQ+h4/vQTRJkMUJVoarRQGGNCVez9p4Jt8ikRErEhMkE\nq+P5jFNhc57E7kMSbgkMesiYbCQrzUTyiOCLgsGk0ulh4zYnG3KcFJVqhrUR4UaWLY0jO9NBakqo\naFUXCIAYeygrl0zgpQ8P8tK6A9yzcpYYXRIIBIJBjM+ixMKFCzvdtmnTJiFKCAY0FpOBGRNiWJ9b\n0uF2R8TAMn3sidmmLx4YPfGpGDZ4PTR//B7Fz7yBs6AMgMjzppL44N2EzZjW+/2qKrhrWwws+1+M\naE3SKKwx0dSSpBFt9ZLcmqQRhOt2RVE5cFJmc77E0SIZALtNx+IME/OmmrBZh+9ioqlZZntuDRty\nnOQfrENVwWTUkZkRyaIF0cyYGjGsu0YEgs7InDaSPUcryT1Swac7C7nkvFHBLkkgEAgEvaRHnhKd\n4UuMp0AQbFYuGc+x4lqKyuu/sW2gmT72xmyzKw+MnvhUDHkUGc+GTyh5+iUqdheCCuHTUkl68G7C\nF8zt/X5VFZproTE4YoQkQ9k5SRojw7UkjTBzcM7RDU0q2w9I5ORLVNdpNYxN1JOVbmbqGAOGYXpn\nU1ZU9h+qY32Ok227a2h2awkjk8aFsSgzmsw5kdjC/PLfs0AwZNHpdNx48USOldTyj40nmJYaLeJq\nBQKBYJDil6se0U4qGAwY9HpW3ZTBm/8+wp6jldTWe3BE+CfuM1D4y2yzJz4VQxZVwbtjI6W/e54z\nOcdRFRXrmHiSHvgZ9m9l9/48FmQxotmro6SmJUlD1ZI0kiM9JNm9WIKUpFFSoRlX5h724pXBbIR5\n07QRjfiYgSP+9TdFpU18uVUbz6iqlgAYEWNm+UUOFmZGEx83DD6HAoEfibCaufmSSfxhbT4v/ms/\nf5wYF+ySBAKBQNALxK0YQb/jluSgRG2CJkzccNEkVizueQ3t6x5s9NSnYkihqsj7d1P25DOcXn8Q\nxasQkhBN4i/vwHHlt9H11uSzTYyoAFlbYBIaBdbofhEjzk3SMBsURtm1JA1jEA6nLKts39fER5sb\nOVmq3fmPjtCxIM3EnCkmrCHDU7x21XnZvMPJ+hwnx042AmAN1bP0gmiyM6OZPD5MCPsCQR9IHxfD\nBekJbMwr5eV/7efKrNRglyQQCASCHiJECUG/ISsKb39xjD1HKnC63DgiLEFLf+hJB0L7uqtcbiJt\nZjLTEvhO1ui2uoMptPhKT3wqhgrKiYOcefJpSj/Zi+yWMUdHkHjXD4m5cQU6Yy9Pf52KETFgMPmv\n+E7+dG2zlqThbEnSsLYmaYR7CcY0RF2jwrYCLzn7JFwNWmfGxBQDWekmJo0yDEvzOUlS2JVfy4Yc\nJ7vza5Fl0OthdloEizKjyZhhx2IWiTcCgb+47sJxHCupZd3mk8RHhjJ/2shglyQQCASCHuAXUWL0\n6NH+2I1giPP2F8fOulM/WNIfzq27pt7DRzmn2HeskvtunMXaDSeCLrT4Ior0xqdisKKWnqTiqT9Q\n/M/teBskjBGhjPrZDcTe+n30Ib3sdFFVaK7RDCwVCdD1qxhR2aAladS5tWMWEaIlaURbg5Ok8dVp\nbUQj76gXWQGLCb41z8rM8RAXNfwW3KqqcuREIxtyqti8o5r6Bs3QMzUllOxMBxec5yDSHtj3iUAw\nXAkxG7nzyuk8umYXr35yiISYMEaNFP4SAoFAMFjwWZQoKSnhiSeeoLq6mtdff5133nmHuXPnMnr0\naB5++OFA1igYAgyW9IdzF/dd1V1UXs+jr+2muKKh7Wf9LbT0pvvEXz4VAxG16jTOP/6Rore/xONy\nYwg1k3THSkb89DYMtrBe7jR4YoSswJl6I0XnJGmkRErYQ5WA/u2OkLwqeUe9bM6XKDqj/f0RUToW\npJuZPclIcmIEFRV1/V5XMCmvdPPlVm08o+yM5tkSZTey/OI4suc7GJ08ND9rAsFAY6TDys++O4tH\nX9nBc//Yx6qb5mALFUKgQCAQDAZ8FiUeeOABrr/+el555RUAUlNTeeCBB3j99dcDVpxgcNN+gT/Q\n0x86W9wvmpnYoTlkKyWVDR3+vL+ElsHafeJv1Lpqap9fTeHrn9Fc2YDebCD+xmXE3/NTjI7IXu40\neGKEJENpS5KGNACSNGrqFHL2SWzf76W+SUUHTB1jICvNxPhkw7DzRGhsktm6q4YNW6soOKSl+ZjN\nOi6YF0V2ZjRpR81LogAAIABJREFUk8MxGIbXayIQDATOmxbP5QtG88GWU7zwwX7uuiZ9WI6QCQQC\nwWDDZ1FCkiQuvPBCXn31VQDmzJkTqJoEg5yOFvhp42KICjfjrPN84/EDIf2hs8W9rKhE2szU1H+z\nbtDWrR3RH0LLYOk+CSRqUz3FTzzL0efeo7HMhU6vY8SVi4m/7xeY43vpwt6hGOFoMbAMrBjRLOko\nrjVR6jKiqDoM+uAlaaiqyokShc15HgpOyCgqhFoge5aJBWkmHBHDa0RDVlTyD9SxIaeKbbk1eDza\n8Zg2yUb2/GjmZ0RiDR3anzeBYDBweVYqp07XkX+8ivc2nuDq7LHBLkkgEAgE3dAjTwmXy9V2R+zo\n0aO43Z3fQRYMHvxt0tjRAn99bgnJcbYORYlgpz90tbjPP1ZF2lgHG/NOd7hdrwOlg7VifwgtXXWf\nOOuaOVFSy5hE+9AUJiQ39W+toehP71J3ygk6iLloHgmr7iEkNaV3+wyiGFHv1pI0yuu/TtJIivSQ\nEOHF2M9rf7eksuewl815EmVV2ohGQoyerHQTMycYMZuG113Hr4qbWJ9Txcat1VTXasam8SMsLMp0\nsHC+g7iYwZfGMxA4deqU8KMSBAS9Tsety6bwyKu7+GjbV4weGU7GJBEVKhAIBAMZn0WJO+64gxUr\nVlBRUcGyZcuorq7mySefDGRtggATiDSMrhb4jc0Si2YmkH/cOaDSH7obLblo7ihOltVTVF7/je2J\nsbYOf94fQovdZsERYelwvEQHPPnWXqKDmHASEGSJpnV/p+jpNdQcLgcgduEMRtx/N9apE3u3zyCJ\nEaoKNc16igZIkkZVrcKWfIkdBySa3Jrglj7eSFa6idR4/bAa0aipldi43cmGHCcnC5sAsIUZuHhR\nDNmZ0UwYYx1Wr0dvufnmm9tGPgFWr17N7bffDsCqVatYs2ZNsEoTDHHCQkzceZVmfPnSRweJjwkj\nMaaXvkICgUAgCDg+ixLz5s3j/fff58iRI5jNZlJTU7FYxB2iwUwg/Ai6XuC7uWhuCisWjx9Q6Q9d\nLe6jwkNwRISw6qYM3vz8KHuPVFLT4CY2MpS0sdFcnT2mJX2j/2M2LSYDMyfEnnUMW2nt3hgyHhOK\njPuLjyl+6i9U7dWej33meBJ/fQ+pl17QO3NFVWknRnjpTzGiosFAUbskDXuITHIQkjQUVeVooZai\ncfCUjArYQnUsnWtk/jQTdtsQELJ8xO1R2LW3lvU5VewpcKEoYDDA3Jl2sjMdZKTZMZmGz+vhD7xe\n71nfb9u2rU2UUDubfRMI/ERSrI1bLp3M8//cz7Pv7eOBGzOwhvgldE4gEAgEfsbns3NBQQEVFRUs\nWrSI3//+9+zdu5f//u//JiMjI5D1CQJEoPwIulvgtwoRAyn9oavFffuOhxu+NZEVi8ZRW+9m7Oho\n6mq1O6jBjNlsFT/2HKmkytXc6eMGrceEquLZvoHSJ5+nfNtxUME2MYmkVT8nYtH5vdynAk010Hiu\nGBEDhsBdsMoKnK7TkjSavXpAJSbMS3KkhD2kf5M0mt0qOw9JbMmTqKjRFocpI7QRjfRxRozG4dEF\noKoqB482sCGnii07a2hs0mI8x6VaWZTpYMGcKOwRwr2/t5zbTdJeiBCdJoL+YO7kEZwqq+OTHYX8\nZd0B7rxqOnrx3hMIBIIBh89X4I8++ii/+c1v2LVrF/v27eOBBx7g4YcfFu2Xg5RApWH4usDvCn97\nXPhC+8V9Vx0PrYJKiNlIXQc/9zfdvRZeWWXJ7CSWZY7mtU8OkXukssP9DISEkx6hqkj7dnP6//2R\n018eRJVVrCmxJP7qJ0Quu7h3C5ogiRGSDCUuEyU1JiRFh06nEh8hkWyXsPZzksYZpzaiseughFsC\ngx4yJhlZkG4iZcQgE6z6QFm5my9zqtiw1cmZCs3nJjrKxCWLY1g430FyQmiQKxyaCCFCEAyuyh7D\nV2fq2Huskg9zTrFsQWqwSxIIBALBOfh8JW6xWBg9ejRvv/02K1asYNy4ceiHwoz6MMWXjobe4usC\n/1wC4XHhKwa9PqgdD+fS3WvR0faGZqnT/UXaLEFPOPEV+fhBzjzxe0o/zUORZMxxduLvupW4712D\nztCLY9KZGBEWA/rAiRHNko6iWhNlLUkaRr1KSqSHxH5O0lAUlQOntBGNo0VaJ4A9TMfiDBPnTTUS\nbh0e5/GGRi9bdtSwPqeKQ8e0KN8Qi57sTAeLMh1MnRSOQUQH+pXa2lq2bt3a9r3L5WLbtm2oqorL\n5QpiZYLhhEGv57blU3nk1Z28v+kko0ZGkDY2OthlCQQCgaAdPl+RNzU18fHHH/P5559zxx13UFNT\nIy4qBjH+6GjojN4u8APhcdFTfO14aPZ4Ka9uDJh40d1r0dH2rpg0KmrAj24oJV9R/uRTlP5rO94m\nL4YIKyeWXsh/UucT2RDGzPXHeyZQdSRGWKO1fwEUI+rdegprTJTXGwAdlpYkjfh+TtJobFbZvl8i\nZ5+E06WJIGMT9SxIMzNtrGFYLMC9XpW9+11syKlix55aJK+KTgfpU8LJznRw3qxIQkMG9udiMBMR\nEcHq1avbvg8PD+e5555r+1og6C8irGbuuHI6//d6Ln/+YD8P3JTBiMHSOSgQCATDAJ+vzH/2s5+x\nZs0a7rrrLmw2G8888ww33XRTAEsTBJredjT4Sk9GGgLlceFvWjsU8o9XUVHdFJBuju5ei2WZozvd\n3hEhZgMrl473S22BQKk6TdVTT1P87kakeg/GMAvNV1/CX2PPw2syAz0UqFQFmqqhsarfxAhVhZom\nTYyobtL+RphZS9KIs/VvkkZphczmfIncw14kL5iMMG+qNqKREBP8z1CgUVWVk4VNbMhxsnG7k1qX\nZraYFB/CogUOLpjnIMZhDnKVw4PXX3892CUIBG2MHhnBjRdN5OWPDvLce/u474YMLOahf04UCASC\nwYDPV+hz585l7ty5ACiKwh133BGwogT9w0AaWQiUx0Vf6MjPoT+6Obp7LYrL6zvd3hFZafFYLb6Z\n9fWnn4daV0P1s89Q9NfPcFc3obcYSfzhd4j6yR08+M5+vB08xy4FqnPFCF3gxQhFhcoGA4XVJuo9\nWk2RLUkajn5M0pBllX3HvWzJlzhRqplmOiJ0LEgzMXeKCWvI0O+KcFZ7+HJbNRtyqigs0UxfI2xG\nLlsSy6LMaMaMChWeBv1MfX09a9eubbuB8dZbb/G3v/2NUaNGsWrVKmJiYoJboGDYkZUWz8kyF+v3\nlPDKxwe57fKp4rwgEAgEAwCfr9SnTJly1olbp9MRHh7O9u3bA1KYoP8YCGkYgfS46Cmd+Tlccf6Y\nbrs5gD4v6rt7LZLibJ1uDzEbsFqM1NS7e9T50p9+HmpzI7V/eYGiv/yTpvJ6dEY9I6/9FvH3/RxT\nTDTl1Y09EqhURdGEiH4UIzpK0ohtSdKI6MckjbpGhW0FXrbuk6ht0EY0JqQYOD/dxKRRBvRDfESj\n2S2zPbeWDTlV5B+oQ1HBaNQxf3Yk2ZkOZk23D5skkYHIqlWrSExMBODkyZM89dRTPP300xQWFvLY\nY4/x+9//PsgVCoYj310ynqLyenYcLCc1PoKL5qYEuySBQCAY9vh8xX7o0KG2ryVJIicnh8OHDwek\nKMHwI5AeFz2ls26IpmZvp4tlp6uZv356mEOF1X1e1Hf3WoRbzZ1uz0qL71XnS390gKiSm/o31lC0\n+m3qi2tAryPusgXEP3gvlqSEtsf5LFC1dEY4nUfBK4FOH3AxwiNDaa2J4loT3pYkjYQIiaRICaup\n/8wrC09rxpV7j3qRFbCYICvdxII0E3FRQ9u4UlFU9h+uZ0NOFTm7amh2ayLQxLFhZLfEeIbbAucZ\nIvCdoqIinnrqKQA+/fRTLr74YjIzM8nMzOTDDz8McnWC4YrRoOfHV0zj4Vd38u7646SMCGfyqKhg\nlyUQCATDml5duZlMJhYuXMjLL7/Mj370I3/XJBimBNrjwhe68nM4VFhNVLgZZ53nG9ssZgNbCk63\nfd+6qJdlhRsumtTjOrp7LbrabtDre9T5EnA/D9lLw/vvUvSHNbiOaX8nOnsmCb/+JaETxn7j4d0K\nVEZdS2dEJSgyql6vxXpaHQETI5okHcU1Jsrqvk7SGBXlITFCwtxP61+vV2XvUS+b8yWKzmgL8bgo\nbUQjY7KJEPPQ7ggoKWtmw1YnX251UlGlfQbjYsws+5aD7EwHCSNCglyh4Fys1q/PQzt27ODqq69u\n+160zAuCSVS4hdu/M43/9+Ye/vR+Ab++eQ6OCHEOEQgEgmDh8+X02rVrz/r+9OnTnDlzxu8FCYYv\nA8Hjoms/Bzfzpo4kp5340B1f7i0FnY6VS8b3qGOiu9fCn69VwPw8FIWmf39I8e9epLqgFIDIOZNI\n/PW9hM2c3uWvdiS6ZEyM5przoqDyKKhyS2dEDI7kFErLG6itdWO36fz6nqlz6ylqn6RhVEi2exjZ\nj0kaNXUKWwskthV4qW9S0QFTUw0sSDcxIdkwpBd3rnovW3ZoPhFHTjQCEBqiZ8n50WRnOpg83jbk\nR1QGM7IsU1VVRUNDA3v27Gkb12hoaKCpqanb3z9y5Ai33347N910E9/73veQJIlf/vKXfPXVV4SF\nhfHHP/4Ru93OBx98wGuvvYZer2fFihVcc801gX5qgiHA+KRIrrtwPG/8+wjPvreP//3eLExGYXwp\nEAgEwcBnUWL37t1nfW+z2Xj66af9XpBAEEyPi+5GB1YuHY81xEj+8Soqa5qICg9hYkokWzsRKhQV\n1ueWYNDrejUG0d1r4Y/Xyu9+HqqKO2cDJf9vNZU7TwIQPnUUSat+Qfj5833axVmiS10TDlMTxmYn\nNFa0iRFYo5HR8dK6Q2zJK/GbF4aqQnWTnqIaM9VN2gVqmFkmJVIi1ib3S5KGqqqcKFXYnOeh4LiM\nokKoBbJnmcicbiLaPnRHNCSvQm6+i/U5VezOc+GVVfQ6mDU9guxMB3NnRGKxDN3nP5S49dZbufTS\nS2lububOO+/EbrfT3NzMypUrWbFiRZe/29jYyCOPPML8+V+fM9555x2ioqL43e9+x9tvv82uXbuY\nP38+zz33HGvXrsVkMnH11VezdOlSIiMjA/30BEOAxbMSOVXmYkvBaV7/7Ag3XzJpSAu9AoFAMFDx\nWZR4/PHHAaipqUGn02G32wNWlEAQLLobHbBaTKxcMoHbrgrl+KmqtgX74cLqDhf1rfRmDKK/kjD8\n6efhydtF2eNPc2bzYVBUwlJHknj/T7BfvLTnF3qqgsVTTZxcBV75LDECfUsayudH/OaFoahQUW+g\nqKZdkkaoJkZEhfZPkoZHUsk9rI1olFVqIxrxMXqy0kzMmmjEbBqaF8uqqnL0ZCMbcpxs3uGkrl4G\nYFRSCIsyozl/ngNHpG8JMoKBw8KFC9m8eTNutxubzQZASEgId999N1lZWV3+rtls5sUXX+TFF19s\n+9n69ev5yU9+AsC1114LwNatW5k+fTrh4eEAzJo1i9zcXBYvXhyIpyQYYuh0Om64aCLFFQ1szi9j\nTHwE2TMTg12WQCAQDDt8FiVyc3O55557aGhoQFVVIiMjefLJJ5k+ves2bIFgsOGLt0WI2XhWh0Jn\ni/pWejIG0Z9JGK30xs+jvWhiOHWY048/Rdnn+ahehdD4KBLv+TFRK77TczFCUaDJqflGqB2LEa1/\n3x9eGLICZS1JGu4gJWlU1Srk7JPYvl+iyQ16HaSPM5KVbiI1QT9k79xVVHn4cquTDTlVlJzWRL3I\nCCOXfyuO7EwHqSnBTQUS9I3S0tK2r10uV9vXY8aMobS0lISEhI5+DQCj0YjRePYlSklJCRs3buTJ\nJ58kJiaGBx98kMrKShwOR9tjHA4HFRUdnxcEgo4wmwzcceU0Hn51F2/8+whJcTbGJYobbwKBQNCf\n+CxK/O53v2P16tVMmKDdfTxw4ACPPfYYb7zxRsCKEwiCQW/8Gq5dPA5ZVvhybylKByEMPRmD6I8k\njFbaCwu+Puf2oklYdRnLD3yMsqUA2SNjibaR+NObib7penTGHjpA+ihGtNJXLwyPDCW1JkpakjT0\nLUkayZESof2QpKGqKkcKZTbnSxw8KaMCtlAdS+YYyZxuwm4bmiMKTU0yW3Nr2JDjpOBQHaoKZpOO\nrLlRZGc6mDE1AoNhaIoww43FixeTmppKbGwsoL3nW9HpdKxZs6ZH+1NVldTUVO68805Wr17NCy+8\nwJQpU77xmO6IirJiDJB3QGxseED2K/Cd3hyD2Nhw7r0xgwf/vJXn/7mfp+9aSJQwvuw14nMQfMQx\nCD7iGPQMn1cNer2+TZAAmDJlCgaDMAQSDF164tdg0Ou1lA2djvW5Jd/Y7usYRMCTMFroqhuju+f8\n9hfHyNt5kKsOfoI5Zy9So4Q+zIL7ymVkPH4Peou5Z8UoMjRVny1GhMVCqKNDMaKV3nphNEk6impM\nnD43ScMuYe6HU1qzW2XXIYnN+RIV1doCKmWEnqx0E+njjBiNQ29BLisq+w7WsSHHybbdNbg9WgfK\nlAk2FmU6mJ8RRZhV/H8y1HjiiSf45z//SUNDA5dddhnf/va3z+pq6CkxMTHMmTMHgKysLJ555hmy\ns7OprKxse0x5eTkzZszocj/V1Y29rqErYmPDqaioC8i+Bb7Rl2OQGBXKVdljeXf9cR55aRt3f3cm\nRsPQFIcDifgcBB9xDIKPOAYd05VQ0yNR4rPPPiMzMxOAjRs3ClFCMGjoL38GLWVD16tYU7ckc6Kk\nNjBJGOfQ224Mt9NJ6trnmbxhO5LLjRJiovj88/lk6lLsMZHM1Rvw2RZTkVs6I5w9EiNa6akXhqtZ\nS9KoaNCSNEKMCkmRHuLDvfTHdWd5tcLmPIldByXcEhj0MHuSkaw0Eykjh+a5tLCkiQ05Woyns0YC\nID7OQnamg4XzHYyI7aGJqmBQsXz5cpYvX05ZWRn/+Mc/uP7660lMTGT58uUsXbqUkJCe3Ym+4IIL\n2LRpE1dddRX79+8nNTWV9PR07r//flwuFwaDgdzcXH71q18F6BkJhjoXz03hZFkduw6V8/YXx7h+\nqX+7EwUCgUDQMTrVl15H4NSpUzzyyCPk5+ej0+mYMWMG999/PykpKYGu8RsMV+VJqG49J1D+DN0d\ni56IIO1rrHK50evocAQkOiKER289r8+iiluSuf/FbR12GHT2N9TmRqqf/xPFL31Ac1UDOpOB8oxZ\nrJt+Ke6QMAB0wC+um8GYRHvXNXYkRlijfRYj2iMrCv/aWsiWvNJviEAGvR5VBWeTgaJqEzXN2r5t\nZpnkfkrSUBSVg6dkNudJHCnSzBvtYToy00ycN9VIuHVo3YWLjQ3n6HEnm7ZrMZ4nvtJiH8OsBhbM\njWJRpoOJY8OGrEfGQCKQ/1/0pSX13Xff5be//S2yLLNr165OH1dQUMATTzxBSUkJRqORESNG8Nvf\n/pbHHnuMiooKrFYrTzzxBDExMXzyySe89NJL6HQ6vve973H55Zd3WUMgXxfxf3Rw8ccxaPZ4eWzN\nbkoqG/jhtyeTOS3eT9UND8TnIPiIYxB8xDHomK6uH3wWJQYSw/Ugize477SKAp/uKGT9ntJvbF+S\nkdQnfwZ/Hos3z0mQ6Iy+1txKeXUj//vCNjr64Ot18H8/mtfWjaF6PbhefZmiP71DY5kLnUFHw+x0\n/jH9MurC7N/4XVWlc+GnTYyoAlXpkxjRntjYcIpLa84SgRQVyusNFNWYafBoNUSFyiRHeogKVQKe\npNHYrLL9gEROvoTTpb3SYxL0ZKWbmTbGMOQ8EzySwq68WrbsrGXbbieKAgYDzJpuJzvTQUa6HbNp\naAkwA52BJEq4XC4++OAD3nvvPWRZZvny5Xz7298mLi4uIPV1hxAlhi7+OgZnnI08/NouvLLCr743\nm1EjxWy4r4jPQfARxyD4iGPQMX4Z39i6dStr1qyhrq7uLCMpYXQpGEic2xnR2eLTn/4MvcUtyVTU\nNJF7uLzD7XodqICjByMgvuCTF4MiU/fuWxT/YQ11p6pAB7FLM0hYdS9/PylR14GI0trd8Y1RkG+I\nEYYejWn4Qqv/h1eBohojxbVfJ2nE2bQkjXBL4JM0Siu1rojcw14kL5iMMG+qkQVpJhJih9aIhqqq\nHD7ewPocJ1t2VNPQqHWCjB1lJTvTQdZ5UURGiBjP4czmzZv5+9//TkFBAd/61rf4zW9+c5Y3lUAw\nUBnhsHLrsin8cW0+z763jwdvnoMtVJzPBAKBIFD4LEo89NBD3H777YwcOTKQ9QiGKf7yfDjXK6Gz\nPiB/+jP0FFlRePPzo+w9UklNvbvDjgXQavdpHKKHdOnFMD4a+d/rOPzbF6k9dBoAx/ypJD50L6HT\nNJf7a1O1xf2eI5U4Xc3oOhk3OXiiEq/LjtFd3U6MiIPQKL+JEa14vFBca6LU9XWSRqJdIske+CQN\nWVYpOCGzOc/DiVLttXFEtIxoTDFhDRlaXRFnKtxs2OpkQ46T0+WasOWINPGthTF857Jkwq39E6Mq\nOBtZUTl6ooFdebXsKXCROSeGqy6NDWpNP/zhDxk9ejSzZs3C6XTyyiuvnLX98ccfD1JlAkH3zBgX\nw/KsVP65+SQv/LOAu1bMQB/omT+BQCAYpvgsSiQmJnY7pykYunQnGvRWVOiN50Nnf6ur5Ipz6UlE\npz+RFYWHX91FUXl9t491RIT4XZBopbXr4mtDTgvLjIUkPP0cBXu+AiByxhgSVv0C27y5Z/1u+8jU\nEyW1/PatvWdtDzXrWDrFytKpYRibqwIqRjR6dOw+oXCywoqq6jDpVUZHeUjohySNukaFbQVetu6T\nqG3QhI8JKQay0kxMHm0YUhevDY0yObuq2ZDj5MAR7b1rMetZON9BdqaD6ZPDMeh1xMaGiXbFfqSx\nSWbvfhe78mrZne/CVecFwGTUEbawh5G8AaA18rO6upqoqKizthUXdz+yJhAEm2ULRnOqzEXe8Sr+\nvvE412T7p2NRIBAIBGfT7VVLUVERABkZGbz99tvMnTsXo/HrX0tOTg5cdYKg051o0FcjyZ6kQJz7\nt6LCzUwa5WDl0vFYLSZq692dJleci68Rnf7mzX8f8UmQgMDW2F5YcG3bSv0fnqNi6xGcKoRPSCDx\nvv8hYuniLvdhMRkYk2hvGwUJNev41tQwlk6xYrXoaXAreENjMIZF+12McDXrKawxUdmg7TfEqJIc\n6WFkPyRpFJ7RRjT2HvEiK2AxwYI0EwvSTIxwDB3fBFlW2bvfxYYcJzv21OCRVHQ6mD45nOxMB/Nn\nRRIaOrRGUgYDp8vd7MqrZVdeLfsP1+OVNUEsym5i6QXRZKTbSZsSTnJSZNAFIr1ez1133YXb7cbh\ncPDCCy8watQo/vrXv/LnP/+ZK6+8Mqj1CQTdodfpuHXZFB55bRcfbyskdWQEGZOC44UiEAgEQ5lu\nRYnvf//76HS6Nh+JF154oW2bTqfjP//5T+CqEwSd7kSD3kZLQtedDed6Prglmdc/PUxOwem2xzjr\nPOQUnCb3SAVZafFccX5qp14JX5sw+tefoSe4JZk9Ryu7fIyO/qtROnKAM4/+ljPr96HKKtbkaJLu\nvR37dy73OR3BYjIwd3IMZk8tS6dasZr11DUpvLOzDkIjWbHYfxdvqgrORgOFNSZqW5M0LDLTUoyY\n5aaAJml4vSp5x7xszpMoPKONJ8RG6chKM5ExyUSIZeh0RZwsbGRDjpON25zUuLQ774kjLSxaEM0F\n8xzERpuDXOHwQpY1745debXs3FtLcVlz27axo6xkpEcwZ0YkqSmhA6475/e//z2vvvoqY8eO5T//\n+Q+rVq1CURTsdjvvvvtusMsTCHzCGmLiziun8+ia3bz04UHiY8JIjAkLdlkCgUAwpOhWlPjiiy+6\n3cn777/PFVdc4ZeCBAOH7kSDZZmjfRYVOqKrzoZWz4doe8hZcZkd0eyR24SQzrwSFs5M5KI5yX32\nrOgLtfVuauo9nW6PtJn52Yp0YqOsAa3RW3SKM//3JGUf7USRFELiIki86xYcN6xE15OYVEWGxiqu\nnqaiU23UNyu8u9PF3mKFqWNjuNZPba5akoaRohpTuyQNLymREpGhCnHR4VT4NrXTY2rrFXL2SWwr\n8FLfpKIDpqQayEo3MT7ZgH6IRFs6ayQ2bdN8Ik4VazGetjADlyyOJTvTwfhUq4jx7EcaGr3sKXCx\nc28tuftc1DdoJqJms445M+xkpNuZnRZBdNTAFoj0ej1jx44F4MILL+Txxx/n3nvvZenSpUGuTCDo\nGYmxNm65bDJ/er+AZ/+ezwPfn4M1JPgjUgKBQDBU8MsZ9b333hOixBCkO9GguLy+W1GhMyNJtyTj\nkeRuUyDO7cToij1HKnnoB3Pbvta8Er7uOvBlnMSfnOt9YbdZiO7k+YImqCTFBS52TK4op+KJJyl5\nbxNysxdzpJXEH3+X6Nt+iN7cA1fxFjGCJieoCjqdAWxxmCLtLAyXuNxPwo9XgTKXkeIaE25ZS9IY\n0ZKkYQtgkoaqqpwsVdicJ7HvuBdFhVALZM8ykTndRLR9aIxouN0KO/bUsD7HSd5+F4oKRoOO82bZ\nWZQZzay0CEzGofFcBwOlZ5rZuVcbyzh4tB5Z0yGIjjKxYE4UGel2pk8Ox2IePMfkXCErPj5eCBKC\nQcucSXGcPC+FT7YX8pd1B7jzqulDRpgWCASCYOMXUULtLOJAAPgvWaK/6S46MinO1n205Dmc6wvR\n2QX2zAkxAD4bV4ImhNQ3etq8EvrymvfmmLX+js1q4v1NJzv02eiskyM5zsbKJeN7XKcvNDmdVP3u\nKSre+QKpwYMxzELKnVcR9z93oLf2IH1E8UKjs02MQGcA2wjNwFKnxwLE9UTc6AS3V0dJrZESlwm5\nJUkjqSVJIySASRoeSSX3sJct+RKllZroER+jJyvNxKyJRsymwX/xqSgqB47Ws2GLk5xd1TQ1a89z\nwhgr2ZlycnPKAAAgAElEQVTRLJgbRYRN3P3rD7xelUPH6tuEiNIzX59Hx6da2zoiRieHDpkulaHy\nPATDl6sWjuGr03XsPVbJupxTXL4gNdglCQQCwZDAL1ef4kKjY/pqAhlsuoyOnBBDuNXc5faOFvPn\ndj40e7RFUYjZgEeSz+psqKpt9tm4Es4WQiwmQ6/iPntyzL4WIcz8fcMx9hytpKbeQ4jZQLNHbntc\ne5+N9qkXTlczdpuZmeNjWLl0gt/fE97Gegp+/f9g3Xo8NU3oLUZ0385m2hP3Y46K9H1HirelM6Il\n2lNvgLCvxQh/0ejRUVRj4nSdERUtSSPF4SEhQiKQWl5VrTaisX2/RJNb8x9JG2cgK93MmAT9kDi/\nlZ5pZkOOky+3Oimv1EaIYqPNXLbEQfZ8B4nxIUGucHhQV+8ld5+rLbazoVE7T4RY9Jw3q3Usw06U\nve/i3kBgz549ZGdnt31fVVVFdnY2qqqi0+nYsGFD0GoTCHqDQa/nv5ZP5eFXd/HPTScZPTKctLEx\nwS5LIBAIBj3illgA6YsJ5EDhm9GRZ5swdre9PV15VFgtRn51w2xiI0PbxIyuOjU6wh9pFb4cM1lR\nePH9fWzJK6HK5cagB7ndNEF7QaI9rT4b/ujk6ApV8lDz0l8o/NM7eCrq0Rn1uM6bwQdp36Y+NIIl\nu8tZucQHUaKfxIjaZj1FbUkaOkJNCsl2DyMCmKShqipHimS25EkcOCmjArZQHUvmGJk/zURk+MAX\nDbujrt7Llp1ajOfh4w2AtvhdnBXNokwHUybYBpwx4lBDVVWKy5rZlacJEYeO1qO0NPvERpu5YJ6D\nOTPsTJ1ow2wa/O+5c/nkk0+CXYJA4HfCrWbuvHI6//fX3bzwwQFW3ZTBiF7cBBEIBALB1whRIkD0\nJFliINM+OrKjRXR329vTlUdFTb0bs1F/1u921akR77Di8cpU17m7FEJ6gq/H7FzhQvbR3qC9z0Zv\nOzm6QpVlXG+9QfEfXqehuBr0OppmTmbdzMupskV3+Fw6pE2McGqRF3ojhMX6VYxQVahqNFDULkkj\n3CKTEikREyYTqOaEZo/KroMSW/Ilyqu11WHyCG1EY8Z4I0bj4F6kS16FPfu0GM+debV4vSp6HcyY\nGk52ZjTnzbITYhn4553BjORVOHikZSwj38Xpcu2cp9PBxLFhZKRrHREpiSFDogunKxITE4NdgkAQ\nEEaNDOfGiyby0ocHefa9fdx3w2xCzOKSWiAQCHqLX86gNpvNH7sZUviSLOHvRWkg6W4R7csiuzuP\nio48KLrqxPDK6llCiFuSqapt7HX3gS/HzG6z9Mjnoj2dPce+4vZ4qXn/H1Q/+wquY+Wgg6isaawZ\nt5SSiPhvPL7T91+HYkS0X8UIRYUzdVqSRqOk7dNh1ZI07CFKwMSI8mqFLfkSOw9IuCUw6GH2RCNZ\n6SZSRg7uRbqqqhw/pcV4btpejatei/FMTgxhUWY0F8yLGvApDYMdV52X3fmaN8Te/S4amzSlMjRE\nz/yMSOak25k1PQJ7xNAYyxAIBLBgejwny1x8kVvCqx8f4rbLpw55oVEgEAgChc+iREVFBR999BG1\ntbVnGVv+9Kc/ZfXq1QEpbjDTmwX4UKc7j4qOhISuOjEMeoiLsiIrCm9+fqTP3h2+HLOuhIvu8Md4\nSXtkRWHTC2/hePtvNB8pA8A8bTTjHvslphkzaX5xG/jy/msVIxqdQKsYEQOhkX4TI7wylLpMFNca\n8ch6dKiMsEktSRqBMa9UFJVDX8lsypM4UqiN1ESE6Vg028S8aUbCrYO7Xb7S6eHLrVqMZ3FZMwAR\n4UaWLY0jO9NBasrQMUgcaKiqSmFJM7vyNCHi8PEGWv9bHBFrZvECrRtiykSbSDARCIYw1104nsLy\nenYcLGf0yAguPi8l2CUJBALBoMRnUeK2225j4sSJoh3TR3qzAB8O9MSDoj1ddWJ05wPha5KGL8es\nJz4XFpMeyav4bbykPc27d3D8gSex7j1JM6AbPYKN8y5jf9wkltRGsNKX919HYoTVv2KE26ujuNZI\naUuShqE1SSNSIsQYGDGisVllxwGJnHyJKpf2N8Yk6MlKNzNtjAGDYfAu1JuaZbbn1rAhx0n+wTpU\nFUxGHQvmRJKdGc2MqRGDfgRloCJJCgWH69uEiFbDUL0OJo+3kZEeQUa6naT4oT+WIRAINIwGPbdf\nMY2HXt3JuxuOMWqEjcmjHcEuSyAQCAYdPosSVquVxx9/PJC1DDl6uwDvisEaL9pKTzwofKErH4jc\nwxXIikr+sUqfOyi6O2ZdCRftSY6zce/1s6hv9Pj1WHkOFlD66G8p/3I/KCqGBAfb51/MroR0Wmcf\nWj0jOn0u2aOh7rRmYBkgMaKhJUnjTGuShkEhxSEFNEmjrFJmc57E7sNeJC+YjHDeVCNZaSYSYgff\nZ6UVWVHZf6iO9TlOtu2uodmtjQZMGhfGogXRLJgTSZhVzDIHgppaid35Lnbm1ZC3v67ttbeGGsia\nG0VGup2Z0yNEjKpAMIyJtFm444rpPPFmLn/6534evGkO0XaRaCQQCAQ9Qae2n8XogieffJIrr7yS\nsWPHBrqmbqmoqAt2CT3CH0KCrCj8a2shW/JKBmW8aKAor27kf1/YRk/uuS/JSOo2/aSrY/b1sSjF\n6WrGYja0/U5kmIUZE2JYuWS8X4+LVHiS0488+f/Ze+/AuM4ybf860/tIo2LJKpYs2XJTsS07tuw4\nthOnQBqbYkj5CBCWEvhgCZCFDR+wZIEQli0sLD9CCRvCJhAgBQgBJ3aILTtxk+Qm2ZKLii2rT9H0\nmfP740ijNpJGsmRJ9nv9Zc2cOec958yM573f57lvWv98ADkSxZCZxKE1W/nbgmsYbsSgkuCbf78u\nVlkSOxeTGn2we1rFCKdPRWOPlk6vMkkzaqPkJIWYZ5meJI1IVKaxXctru100tCgTRodNoqJYyzXL\ntZgMc3fFuum8Lxbj2dkdAmBeqo7NFQ6uq0ghM332tYClpVnn3PfzYGRZ5myTL1YNceqMN9aWkTlP\nz5o+k8qliyyzviJlOu9FWpp1WvZ7uZjO6zKX3/9XAjN5D3YeaubZv5wkL8PKlx5YhVYzd8XwS0F8\nDmYecQ9mHnEP4jPW74eEl3fefvttnnnmGZKTk9FoNCJnfAJMRdLClRAvOh2M1U6hkojF7w3m8Ml2\n7rpOEdecngBGvQZfIDxEgBjrnqlVKj56ZzG3rM2JCRf9+5rqCpZwWysXv/kUF17aTTQYQe8wk/2p\n+zF/8IM8+/MDCXlG6FUy6RoXOKdHjOhP0mjs0eLqS9Kw6SPkTGOShtsb5Z1jYSqPhHB6lJu8OEfN\nhlIty/LUczbq0uUOs/vdLnbu6aL+rBcAk1HFtk0pbK5IYekis2gNmGKCoShHTrhjQkRHlyIAqVSw\nvMgSS8vIyhArnwKBYHQ2r8zizAU3u49c4NnXT/Kh9ywR39cCgUCQIAmLEv/93/894jGXyzWlgxHE\n50qJF50OxmqniCdIgCLo/PPP9xMIhelyB2PiRco41SeDqyf6jz1YuJjKNJWIs4f27/wr55/fQdgX\nQms1kPvIdlI/9UlURmVyNK5nRCTUl6YxSIwwp4JhasSIqAytfUkavr4kjRRTmJxpTNJovBhhT3WI\nwyfDRKKg18IN15hYtQjmOeZmxVAoFOVAjZNdlV0crHESiSgT4tUlNrZUpFBeZkevm5vnNlvp6gnF\nRIia424CQaXKxmJWs2md0paxqtgm2mIEAkHCSJLEgzctpqndw+4jF8jPtLJlVfZMD0sgEAjmBAn/\n4srKyqK+vp7u7m4AgsEgTzzxBK+99tq0DU6gMNfjRafbByOed0JJgYOahs5RDSkvdHlj/+4XL/qr\nTyKRKDetzY2NNxKN8sKb9UPSPTaUZnHb+txxxYuJnm/U66XzP79PyzOvEnT5URu15Dx8O+lf+AfU\n1qElT4l7Rmj7xAj7lIgRob4kjZZBSRoZViVJw6ybevPKcFimuj7M7uoQjReVyWNaksSGUi1rlmjJ\nybbNuRI5WZY5edrLrspOdr/bjadXSQfJzzWyucLBpmscJNlFfORUIcsyp88pbRn7q5w0nBv4/Gdn\nGigvtbGmLImiAvOcNkIVCAQzi1aj5lPvK+brz+znVztOkZNupTDbPtPDEggEgllPwqLEE088wZ49\ne+jo6CA3N5empiY+/OEPT+fYBH3MxXjRQChCl8vPjgNN1DR0TqsPxmjmmb/acXJcQ8p4vFV1nl2H\nz8fGG5Vl3jzYEnu+0xXglbdP4/UFh7TOxBMvEj1fORSk6//7MS0//g3+jl5UOjVZH7iBeV/6AprU\nlLivCUdkblidzW0VeUr7Sb9nRFcDQ8WIpBG+E5PBH5Zo7tFywaUhIitJGjlJQbLtYfTTkKTh9ETZ\nezTEvqNh3F4ZCViWp2ZjqZZFuWpUc7Astq0jwFt7u9hZ2cWFi8rnOdmu4Y6b09m83kFezuwVF+ca\ngUCUmhMu9lc5OVjjoqtHactQq6FkqZXyMqUtYzZ6cwgEgrlLit3AJ+5YzndfqOIHLx3hqw+tIWkW\n/k4TCASC2UTCosSRI0d47bXXePDBB3n22Wc5evQof/3rX6dzbII+5lK86OCJ+XARZbp9MIa3U2zf\nWojPH2bP0dYJ7Wd45YRhlNL5Q3XtbCqdT1qSEb1WPSnfDzkawfnsszT/57N4LziR1CoybltP5lce\nQ5sdv+xzuPiRl27g3nXJpKXCdIgRvUGJxh4tbX1JGjp1lAV2JUljqn28ZFnmzIUofzsc5NjpCFEZ\njHq4bqWWDSVaUuxzr43B64tQeaCbXZVdHKvzAKDTSWxal8zmihRKllrF6vwU0dEVjLVlHDnhJhhS\nPsw2i4bNFQ7KS+2ULbdhNs2e70yBQHDlsTTPwT2bC/n1znp++NJRvviBlWimw+1ZIBAIrhASFiV0\nOh0AoVAIWZZZsWIFTz755LQNTDCU7VsLMRl17Kk+P2XxotPB8Il5PC6XD4ZapeKBm4o4ca6LLndw\n0vvx9/WbD6fLHeCrP30Xh01PSUEKNQ2dcbeLe76yjPul39P01I/xnO0ACdK3lpH51cfQL1o05nj6\nr3GyScV966xsWmxCq5HxBMGSkjklYoQsg9OvJGl09SVpmLRRcpKCzLOGmWofyVBY5lBdmN3VQc53\nKBPJSNSLRtNJUb6G924omFMpM5GITM0JN7sqO9l3qIdgUDmnFUssbF6fwvryJExGMTG+VKJRmfqz\nXg5UOTlQ4+RMoy/2XG6WgTV91RCLFppRz1HzU4FAMDe5aW0OZ1tdvHuijRfeqOf+G69eU3KBQCAY\nj4RFifz8fJ577jnKy8v50Ic+RH5+Pm733OrjnsvES3yYqkn9VHk+jGXIOZgut5/TLU4WZtmnXZjQ\na9WsKkqfVBtHIsgoFRE7D58fdZvhvh+eHX+l5Vv/hfOE0hKSsq6I+f/vCxjLysY9XiAU4XRTBw+s\nt3LtYhNatUS7O8wfqnqpbZP554eL0F+CICHL0NGrJGm4A31JGoYIuUkhUkxTn6TR5YqypybEu8dD\neP0AMsFwN4HwRcJR5ftl5yFQq+Q5kTJzrtnHzspO/ra3m26n0i6QOU/PlgoH1613kJ4qSngvFZ8/\nQvUxJS3jYI2THlcYAI1GYuUKG+WlNspL7eJaCwSCGUWSJD50y1JaOnp541AzeZlWNhRnzvSwBAKB\nYFaSsCjx9a9/HafTic1m449//COdnZ187GMfm86xCeIwFfGi/UzUA2E88WIsQ87BSMBTz1eNm3Yx\nVQw3hEyy6DEbtfT6gkPSN0aLEDXo1PiDkXGPM9rr+30/fO/so+WJ79F18DQASSULyH78HzBt3JjY\niURCRJytPHazHa1aos0V5g/Vveyt9xHpG/9kTU8jUbjoGZmkkZsUwm6MXykyWWRZ5lRThN3VIY6f\niSADFqPE5lVq3qquodfrGfGa2Zwy0+MM8bd3uthV2RVbqbeY1dy8JZUtFSksWmgSsXCXSFtHgAPV\nLqUto9ZNOKx80Ow2DVs3prCm1E7pMitGUX0iEAhmEXqdmk/9XTHfeOYA//N6HdlpFhZkWMd/oUAg\nEFxljCtKHD9+nGXLlrFv377YY6mpqaSmpnLmzBkyMjKmdYCC6SNRD4RExYuxDDkHM9yzYfjxpprR\njDD7RRajXoMvEOb1/U3sPNQy4vUbijOQJInDJzvocvkZzdJxtAjSLRYn5x/4EO27j4MM1kUZZP/j\nI1hvuSWxE4iEwNsBvm5MQIcvysuHPOxrUMSIfiZjetqfpNHs1BCa5iQNf1DmwIkQe2pCtHUr+85J\nV7GxVEvpIg3dbh8v7R4pSMDsS5kJBKPsr+phV2UXh4+6iEYVA8W1K+2Kd0GJHa127rSbzDYiUZlT\np3tj/hDnmv2x5/JzjZSX2Ckvs1OYZ0Il2jIEAsEsZl6yib+/fRn/8Zsa/ut3Nfy/h9ZgNelmelgC\ngUAwqxhXlHjppZdYtmwZP/zhD0c8J0kS69evn5aBCaaXsVothq9KJypejGXICaNXElyuVfDhVSaD\n/7aadNx3wyLUKmlkxGaf+HLXdQW0d3v5jxdr4govDque0kWp1NR30u32s1hycvOBVwj811HaozLm\nbAfZn38Y2913IyVSGRIJQm8n+JUYXtRaMKXx15qL7Kn3jdh8Iqan/pBEs1PLeZeGqCyhVk1fkkZ7\nt9Kisf9ECH8Q1CpYVaRhY6mWBRkD453tKTOyLHPiVC87Kzup3N+N16dUkBTmm9hS4WDjWgc2a8LF\nZ4JheH0Rqo4paRmHaly4PEpbhlYjsbpEackoL7WT6hA/5gUCwdyipCCVOzbm89LuM/zo5WN8bnvp\nnPJJEggEgulm3F/QX/7ylwF49tlnp30wgsvHWK0Wg1elJyJewMhWiWSrgZLCFFYVpvKvv64e93gz\nyWgVFf3otWoyU82YDNq4E+dVRWncd8Niepc20/Yv36HzT/vwh6MY0q1kf/oBkh/6IJI6gUlrJAi9\nHeDv6RuYDkypYLCDJHHHtWZ6/RFqz3XT4wlMyPTUE5Bo6tHS5hlI0shOCjLfFkYzhb+PorJM7Vml\nRaOuUWl9sZklNq/Ssm6FBqtp5MFma8rMhbYAb1V2squyi4sdimFqSrKWW7amcd16BznzjTMyriuB\n1rYA+6udHKx2cqzOQ7iv9CfZrmXbphTKS+2ULLNi0Iu2DIFAMLe5dUMeZ1vdVNV38Lu3TnPPltll\nVC4QCAQzybgzpAcffHDMfuj/+Z//GfW573znOxw8eJBwOMzHPvYxiouL+eIXv0gkEiEtLY2nnnoK\nnU7HK6+8wi9+8QtUKhX33nsv99xzz+TORpAwia5KJype9DNWq0TKLF4FH8xYvh0vvFlPU9vIFoOc\ndAt3r0yh5YtfpvXFN4n4w+iSjGR/9C4cn/wEKn0C5zeOGBGJRnnhjVND2mjWL8/gA9sWY9KP/lGW\nZejxq2galqSRmxQkfYqTNLx+mf3HlRaNTpcywcyfr2JjiZbiAs240ZfxRK2ZSJnp9YbZ824POys7\nqa3vBcCgV7Flg4PNFSksL7KINIdJEInI1DUobRn7q5w0XxhoyyhYYKK81MaasiTyc42iLUMgEFxR\nqCSJh29dxjf+5wCvvdNIXqaNNUvSZ3pYAoFAMCsYV5T45Cc/CcCOHTuQJIl169YRjUaprKzEaBx9\nhXDfvn2cOnWKF154ge7ubt73vvexfv167rvvPm655Ra+973v8eKLL3LnnXfygx/8gBdffBGtVsvd\nd9/Ntm3bSEpKmrqzFIwg0VXpyZbUx2uVmI2r4BNhtKoRfTjAprf/yNFv7SXcG0Rt0uG5eRMdd32Q\n4luKUY1XohlPjDCngt4+JNozXhvNnqOtGA2auJ4csgztvWqaBiVp2A0RcqYhSeNCR4TdNSEO1YYJ\nhkGjhrXLlBaNrLTE7+141SrTSTgsc/ioi12VneyvchIKy0gSlC6zsrnCwbrVSWLFfhL0esMcPtrX\nlnHEhadXqZzR6aRYZGd5iQ1HsmjLEAgEVzYmg4ZP/V0xT/ziAD/74wnmp5jISrPM9LAEAoFgxhlX\nlOj3jPjpT3/KT37yk9jjN954I5/4xCdGfd2aNWsoKSkBwGaz4fP5eOedd/j6178OwJYtW/jZz35G\nfn4+xcXFWK2KG/GqVas4dOgQW7dunfxZXYVMJtYzkVXpscSEksKUCR1ztqyCT5bhVSOqaJj3NrzJ\ngso9hJ0+ZL0Gz6Y1vLz8Pbi1ZjjSSVhfP7qJZ1wxIg30NoYrBhNpo4lEodWtJGn4wypAJtUcJicp\nhN0wdUkakajMsdNKi0ZDizLRdNgkKoq1rF2mxWycvOoxlSkzYyHLMqcbfeza08nf3unG5VZ8DLIz\nDWzZ4GDTOofwMJgE5y/62V+lmFSeOOUh0hdek5KsZcOaZNaU2VmxxIpeJ3qqBQLB1UVWqpmPvHcp\nP3zpKP/1uyN85YPlmAzamR6WQCAQzCgJu7K1trZy5swZ8vPzAWhsbKSpqWnU7dVqNSaTMql48cUX\n2bRpE7t370anU37gp6Sk0N7eTkdHBw6HI/Y6h8NBe3v8yVc/yckmNJqrc8UyLW1olFQkEuVnrx5j\n39ELtPf4SEsysm5FJh++bTlq9fg/+D/zgdX4g2G6XQGSbXoMupFviU/duxKTUce+oxfo6PGRmmTE\nYtRy9HQnuw63TOiYiRxvskx0v/5gmNbOXkAiI8U07musdiMGvQafP8C2s5UUVe4k3OkholERXF/C\nyyW30qkfWuFT09DJx+4yDtl3JOjH234ef4/yPlfrDJjSstDbU0ZtlbrQ0UuXe/Q2GrVOi81uouEi\n1LfKBMKKsejCdFicqcJqVANTM7l29UbYdcDHm+966XIpIsfyAh3brjFTVqSfkbL74Z+L8ejoDPD6\nrov8+c2LnGn0ApBk03L3bVncvHUeRQUWEeM5AcLhKDUnXDz/SgOV+ztpahkwYl262MqGtSlsWJNC\nYb5ZXNfLyEQ/FwKB4PJQviSdW9bl8tq+Rp5+9TifvrsElfhuFAgEVzEJzwg/+9nP8tBDDxEIBFCp\nVKhUqpgJ5ljs2LGDF198kZ/97GfceOONscdlOb7D/2iPD6a725vosK8o0tKstLe7hzz2qx0nh1Qx\ntHX7eOXt03h9wQnFbGoAt9OHe5Tn79yQxy1rc3B6Arz+biM7D5+/pGOOd7yJkGhk6eDtn3/jFHuO\ntOIPKku4Bp2KiuJMPnD9olEdsf3BMOvO7mP5238h3NpDRCURXb2EP6y6lfPG+H2hHT0+Gs52Kqv+\n4aAS7TmsMiKit+EOSbg74sdhAkRCERzW+G0089OSqG9V0dYQJSpLaFQyuUkhsvqSNPwe8I++64Rp\nuqi0aFSdDBOOgF4LG0q0bCjRMs+hAkJ0doYu/UATJN7nIh7+QIR3DjnZVdlJzXE3URk0Gon15Uls\nqXCwcoUdjUb5Udgxxr0QKLg9YQ4dcXGg2snhoy56vX2fJb2Ka1YpbRmrS+wk2/tXAGVxXS8jiX4u\nJrtvgUBwady1qYBzrW6qGzp5dc9Z7tiYP9NDEggEghkjYVHihhtu4IYbbqCnpwdZlklOTh73NW+/\n/TY/+tGP+MlPfoLVasVkMuH3+zEYDFy8eJH09HTS09Pp6OiIvaatrY2ysrLJnc1Vxlgl/Qdq27it\nIm9Ks7D1WjV2i56ahs64z1+uaM/hJBpZOnj7Nw62DHnMH4zy5sEWVJIU9zXuP79O0ze/T1F9K2EJ\npJKF/KX8Vhos2WOOTadVY9XL4GoBv1N5cIw2jdGI10aTbLexvKiA/NwsWj0S+r4kjcwpTNIIR2Rq\n6sPsrg5xrlWpikhNkthYoqV8qRajXhn/ZNqHLgfRqMyxOg+7KjupPNCDP6CcQ1GBmc0VDjasScZq\nETGeiSDLMs0X/ByoVoSI2lOeWMRvWoqOTesc3HBdBtkZanRa0ZYhEAgEY6FSSXz8jhV8/ef7eXn3\nGRZkWCkrTJ3pYQkEAsGMkPCv8ZaWFp588km6u7t59tln+c1vfsOaNWvIy8uLu73b7eY73/kOzzzz\nTMy0sqKigtdff5077riDv/zlL1x77bWUlpby+OOP43K5UKvVHDp0KKEKDAG0d3vjrpwD9HiCfO1n\n+1m9ZGjFwKVOHieaxjHdTDSydKztAQ7VtQ95jbeykuZ//ld6as4BoFuazZtr3sPRpKE+GAadOlZ1\n0U+6Tc2tpRb07nMgAWp9n4Fl4mLEYPq9Nxo7ouTm5DA/Q6nOMGkj5CaHSbdMXZKG0xNl79EQ+46G\ncXtlJGBZnpoNpVoW56pjZaYTrVK5XLRc8LOzspO/7eumvVOJ8UxP1XHbjQ42VziYP88wY2ObS4TC\nUU6c9Cj+EDUuWtuUz74kKcJOealSEZGbZUCSpGldnRcIBIIrDYtRy6f+rphv/vIgT796nP/3wXLm\nOWY2Hl0gEAhmgoRFia985Svcf//9/PznPwcgLy+Pr3zlKzz77LNxt//Tn/5Ed3c3n/3sZ2OPffvb\n3+bxxx/nhRdeYP78+dx5551otVoeffRRPvKRjyBJEo888kjM9FIQn8ETwbHo9gxUDGzfWjglk8fJ\npnFMFxMVScbaXnlNAKcngLXxFOe//hSd+2oBsC+ZT/aXPsXLUh5H45h+ptgNdPR4CYRk5tnU3FZm\nYd1CAyqVRKszQsr8bLSmpEmJEQBRGTq9WhYXlTA/XxFMbPowC5LDOKYoSUOWZc5eiLK7OkRNQ5ho\nFIx6uG6llopiLalJI98nE61SmU5cnjC73+lmV2Unp84oLV5Gg4obrk1hc4WDpYsso/pdzNZKj5nA\n5Q5zsEYxqaw65sLrU6pLjAYV68uTWFNqZ1WxDbtNGLMJBALBpbIgw8oHby7iJ384wfd/d4QvPbAK\nszC+FAgEVxkJixKhUIjrr7+eZ555BlDSNcZi+/btbN++fcTj/aLGYG6++WZuvvnmRIdy1TN8Ijge\nh+s+UmUAACAASURBVE92EIlEh/hATHbyONuiPScqkoy1PUCurw3Pp/8vZ3dWgQyWvFRyPv8w1vfd\nBZLE9miUusYemtqG9sa3tPeSYVNz6/oBMaK5K8QrVR4OnwvwL39fQLp54spBvCSNtL4kDdsUJWmE\nwjKH6pQWjfMdyj4zUlRsLNWyqkiDXjv6RH4iVSrTQSgc5W97O3j5tWYO1rgIR2RUEqwqtrG5wsHa\nsiT0+tFFt9la6XE5kWWZxhY/B6oVIaKuoZd+a595aTq2blCqIZYVWdBOVV+QQCAQCGJUrMjkXKuH\nvx5o4t9/Xc2j7y+bUiNwgUAgmO1M6BvP5XLFnNNPnTpFIDD6irNgehiv/SAeXW4/h091xH1uMpPH\n2RTtOVGRZLTtk73d3F79KqZDx+mIRDFl2sn+9APYH/w/SOqBfYQjMl7/UDPHjL7KiGv6xIimPjHi\n0NkAMpBim3gFSTAC551amp1awlEJlSQz3xYiOymESTu+GWwidLmiVB4J8c6xEF6/ktZRUqBmY6mO\nhVkqguEoTo9v1OqBmWrlkWWZU2e87Krs4u13uvD0Km0zedlGNm9wcO01DhxJia0yzaZKj8tJKBTl\naJ0nJkS0dSgtLioJli6yUF5qo7zUTnamQaRlCAQCwWVg+/WFeHxB9h67yPd/e4TP3lOC9ipNmhMI\nBFcfCYsSjzzyCPfeey/t7e3cdtttdHd389RTT03n2ARxGK/9IB5JZj3dnqmbPKpVKu67YTF3XVcw\nIyXvw0vtJyqSbN9aSDgSZdfh85gDHu448keS9lcRDUXQJJto33IdJU9+CYPZpBzL5Y0da/D1z7D3\niRH5A2LEy4eVyojBssFEKkh8IYnmHi0X3JpYksaC5CBZthBTsWgiyzKnmiPsrg5x/EwEWQazAa4v\n17K+WEuyVUUkGuV/3zg1bvXA5W7lae8M8tbeLnZVdtLSqhwzyaZh+53ZXFNmIT93YgLIbKj0uJz0\nOEMc6GvLqD7mjpl+moxqNq5NprzUzspiGzZh/CkQCASXHZUk8eH3LsUfjHD4VAc/evkYn7hzBZoE\n4t0FAoFgrpPwr8/8/Hze9773EQqFqK2t5brrruPgwYOsX79+OscnGMZYE8F4ZosAZYtTqanvGHXy\naNRraOv2Tlhc0GvVl9XUcqxS+4mIJGqVihuXOUh55ofMe2c/UX8ItVVP19aNvLzoBnwqPcu8Uf62\n9+SIY9157UKWZBm5tlDH2oUGVJJEY6dSGVHdGCAiK6vNsgwOq55VRWnceW3+uNfXHVDR1KOlzaMG\nJPSaKDn2IBlTlKQRCMocqA2zpzrIxW5FMslOV1o0yhZp0GoGVsMTrR64HK08Pl+EvQd72FnZybE6\nD7IMOq3ExrXJbK5wULbcRkaGbVLmirPNtHWqkWWZs00+DlQ72V/ljPlsAGTO07Omz6Ry6SJLLApV\nIBAIBDOHWqXi43cs599/U8PhUx38/E8n+Mity2Lm0gKBQHClkrAo8dGPfpTly5czb948CguVFehw\nODxtAxPEZ6yJYEVxBipJUibS7gAO6+AVbinua0wGDf/8zP450U8/3mQ5EZEkGgjQ8f0fcuEnvyXN\n5UcyavFuvYbfL7kZt8Yc2+7Hrxyjub13yLGO11+gIjfC52+0I0lwrjPEK4c9VDUOrYzoj0ksKUwB\n4Ks/fTfu9fUHI5zvieIMWXD6lY+iWRchNylEmiUyJUka7T1R9tSE2H88hD8IahWsLNJwbYmW3AzV\niNL8iVYPTEcrTyQqc+SEm517Otl3qIdgULmgyxZb2FLhYH15MmbTpQses820dSoIBKMcrXUraRnV\nTjq7lVYjlQpWLLHE0jKyMkT6iEAgEMxGtBo1n76rmH99voq9xy5i0Gt4YNti0UonEAiuaBIWJZKS\nkvjWt741nWMRJMhoE8G7Ny/kxV2nkWUZWVZWSvu5e/NC6hp7aGn3EO1bzTcZNEMMG2dzP/2lltrL\n4TBdP/k5zT94jkCnB5VOjeGmtfxy4TY6tPYR25/vGBAk5idpuK3MzJp8AypJJqrS806zzG8re+hy\nBZD6KiOGs+/YxSGVK/3XNyrLmC0OVAYHdpsSlxvwuVmdpybFLF9ykkZUlqk7p7Ro1J5Tjm8zS1y3\nUsu6FRps5tEFp4lWD0xlK09ji49dlV28tbeLrh5lMp2ZrmdzhYPr1juYlza1IsFsM22dLF3dQQ7U\nuDhQ7aTmuJtAUGnLsJjVbFqntGWsKrZhNom2jCudSETmXLOPk6d7KS+TSU0WkxiBYC5i0Gn47L2l\nPPncYXYeasGk13DXdQUzPSyBQCCYNhL+lbpt2zZeeeUVVq5ciXqQ8d/8+fOnZWBXGxOJJBxtIvir\nHSeHTLC63MEhfw8WIKIyeHzxK11mYz/9ZEvtZVmm539foPl7P8V3vhtJrSLzPeVkPP4FOqwZdDz9\nTtx9RmXI6hMjyvOVNo1zHUqbxvaby7htWwYrl/dwusXJd5+viruP4a00GrWawvxckjMWYjaZiMoy\nZxpbOFbXQFePk87y7EsSg3wBmXePh9hTE6LTqagkeZlKi0ZJgQa1evwJymSrBybbytPjCvF2X4zn\n6XM+AMwmNTduTmVLhYOiAvO0rg7NJtPWRJFlmdPnBtoyGs4NtGVkZxpYU6ZUQxQVmBO654K5i9sT\n5uTpXmrre6mt91B/xhvzCqk+3stjj+TN7AAFAsGkMRu0PPr+Mr79y4P8ce85THoNt6xbMNPDEggE\ngmkhYVGirq6OV199laSkpNhjkiSxa9eu6RjXVcNkIwmHixhjVxK0D6maGI8ut5/TLU4WZtlnjTAx\n0cmyLMu4//gaTd/6L3rPtIEE6ZtXMP+fPodueQkAjlAEh1VHlzs45LVZSRpuX2lmTb4RgLMdioFl\ndVNASdKwKqXveq2ahVn2MSNGAQx6HUWF+SwpyEOv1xEOR6itP8Pxk6fx9A5MKCcrBl3ojLCnOsTB\n2jDBMGjUsHaZhrXL1JiNIewWVcKT08tRPRAMRdlf5WRXZSeHjriIRkGthjVldjZXOCgvtaPTXp72\noZk2bU2UQCBK9XGlGuJgjStWSaJRS5Qus7K6ry0jM33utZwIEiMalTl/MUBtvYe6ekWIaL7gH7JN\nTpaBJQVmlhRauPn6LIIB/yh7EwgEcwG7Wcfn37+Sbz13kN/sasCg17BlZdZMD0sgEAimnIRFierq\navbv349Op5vO8Vx1TDSScDQRY8vKrFErCbrcgbjtBaMhAU89X0XKLPKYmMhk2fPW2zR/43u4jjcB\nkLK2gKx/+iyGNQOmrJFolN++1YA3MFDNkJWs4fYyC2vyFdHhTHufgWXTwHUdfqyxxpWSZKEwP5+C\n/Bw0ajX+QJDqY3XU1p8lEAyO2H5wxcd4lTORqMyx00qLRkOLcg7JVoltJVrKl6j5w94GfvjSxISu\nfqajekCWZWrre9lV2cXud7vx+pQxFywwsbnCwcZrkkmyJRbjOR1cbtPWROjoCsYiO4+ccBMMKR9i\nm0XD5goHa8rslC23YTLOPhFFcOn4AxHqz3hjVRB1Db2x+FsAg15FyVIrRYVmlhSaWbzQjMU88F+6\n3aalvV2IEgLBXCfFbuDR7WV8+7lD/PL1Oow6NeuWZ8z0sAQCgWBKSViUWLFiBYFAQIgSU0D/hNOo\n10zYJ+FXfz3JzsPnY3/3ixiRSHTUFXuHVY8syyMqAkaj36hxsEAy1kryRFpPLoXxJsveQ4dp+dp3\n6D5wCoDk4myyHnsE05YbGG7UMFgMyu4TI8r7xIgOL9jT57O35iLNzl5UEmNOzIePKy8rndXFizGY\nk5AkCXevl+N1DTScbSIciWDQxb9GyVYDFpOWX+0YmfrRLyh4fDLvHA1ReSREj0e5UYty1Gws0bIs\nX41KJY1o45moV8hUVg+0tgV4a18Xuyq7aG1T3puOJC03bU5lc4WD3CzjpPZ7JRKNytSf9XKgysmB\nGidnGn2x53KzBtoyFi00o54KF1TBrEGWZdo7g0oFREMvdfW9nGnyEo0ObDMvTcfqEjtLCs0UFZjJ\nzTKK9hyB4CohM8XMo9vLePJXh/nJH05g0GkoW5Q608MSCASCKUOSE6zr//CHP8yRI0coKCgY4inx\n3HPPTdvgRmMy8X+zgeFVDnaLjh5PfKFAJcE3/35dbPU2Eo3y+91n+fPeszHRYDApNgMlhSnsPNQy\n4rkbyrMB4q7m56Rb8PrDdLn9SBB33wadGpNeTbc7OGSSDEyq9eRSGS6C+OtOcv5r36bjbzUgg60w\nnezPP4zltveNECP6X//40/swaSLcVmahPE8RI063B3n5sIeugJavfWgNapVqVMElLc065H0oy3DR\nDY3dWrxhRbgz6yI0NTeyr6qBLpcvJmzIsswbByd2n9Yvz8diyKTqZJhwBHRaKF+iZUOJloyUgWvd\nf27xxKkUm4EnPnrNtLcn9HojVB7oZldlF8dPKj4mep2KdauT2FzhoHipdUon1cPvxVzC549Qfczd\n15bhpMel+LxoNBLFS6yUl9ooL7WTnjo32jLm8r24nITCUc6c81Hb4KG2XhEh+ltyQLn/hXkmpQqi\nwEJRoZlk+8QqiabzXqSlWadlv5eL6bwu4v0/s1zp96C+2cl3XzhMNAr/cE8JS/McMz2kEVzp92Au\nIO7BzCPuQXzG+v2QcKXExz/+8SkZzNXG4Entb99qGDLhHE2QALCZdRj1A7dneJvHcLrdfm5YnY1a\nJY1Zdh/vuXBE5nSLk6fGMGzsN20cvOoOXNKK/GTpL7UPNjVz9mvfou31dyEqY85OJuczD2B9//1I\n6tHf2r1uF+8vN7K6T4xoaAvySpWHI8399yPIr/56kgdvWjJuWX9UhjaPmqYeHb1BRRxINkbISQqS\nbIyyJied95anDBE2ItEokjTyPt157UK++tPBxpsSWrUDgyad2jNWIExqksTGEi3lS7UY9SMn9pM1\nBL1UIhGZqmMudlV28e7hHoIhJUWkeKmVzRUO1q9KwijaDABo6whwoFrxhzhS6yYcVpRAu03D9RtT\nKC+1U7rMKq7XFUSPK0RdXwVEbb2HhrPeWDsOQLJdw7rVSSwpMFNUaKZggQntZfJVEQgEc4fCbDuf\n/rsS/uPFav7zt0f4/AfKKJg/MkFMIBAI5hoJixJr166dznFcccTzfuj1h8Z/YR89niD//Mx+Vi5O\n485r80dt8+gn2WrAYTOMWXY/2nNqFSzMspMyjmHjYMYyzxzLsHEqWj1C7R20PvEdWn+/CzkcxZhu\nIefj92D/yMNI2jFWlEM+6O3AEXbjyDPQ0KZURhxtGSkOHT7Vwb1bI6OOMRyRaerR0OzUEgirAJl0\nS5icpBBWfXTItsOFjdHaI9q6vX0Ro1r0mnT0mjRUkg5ZlglFerhvWzJrl5tQjZFGMdn0jMlyptHL\nzsou3t7XFVvlz8rQs2VDCpvWOUhLEe1ekajMqdO9MX+Ic80Dff75uUbKS+yUl9kpzDOhEm0Zc55I\nVKapxadUQPQJERfaBj6PKgnycowUFVooKlD8INJTddOaMiMQCK4cluc7+NjtK/jhS0f4919X89h9\nq8hOt8z0sAQCgeCSEMH100Q8A8uxSLbo6fYM3aa/8sDrD4+6+t3PYAPGsVb3R3tuLMPGeIxlnhlv\nRX4qUkY0Xg+tT/4brc//mYg/jD7JSPaHbsXxqU8hGc2jDzbkg952CPZFomqM7KgL8Ku3ukZ9idMT\njFtVEAxDs1PLhbMyoYgelSSTZQ+RbQ9h1E7ATZSh90KWZXrcGpLMi5CjdiRJRVQO4w+1EghfJNkq\nsbIoc0xBon+f052e0dUT4u0+n4izzYrvgdWi5j3Xp7G5wkFhnumqn2B5fRGqjrnYX+XkUI0Ll0cR\nbLQaidUlSktGeamdVIcQbeY6vd4Ip04rFRC1Db2cbOjF5x8QJs0mNauKbYoXRKGFRXkmUQUjEAgu\nidVFaXz4PUv56R9P8N0XqvjSA6uYN8vMmgUCgWAiCFFiGhgrnjMeKTYD/3j/Sr757KERwgRA7bnu\nUVe/VRJcVzZ/hAHjZCoSRhpJKtUd/mB0xLZjmWfGW5G/lJQRZ5ebO+rfJGP3biLeIFqzjpyPvpfU\nz30WlT057rkEQhF63S7skgt1qFd5UGsEcxpozWxaE+GVd9rw+MNxX++wDT2HHq/MuS41PQEDMhI6\nDeQlB8myh7iUeX4oLHP4ZJjd1SFa2qNAMlHZiz90kWC4E1Cu/crF2ZdwHy89PSMQiPLu4R52VnZR\nfcxFVFbiKK9ZZWdLRQqrSmxoNVd3uXlrW4D91U4OVjs5VuchHFFEqmS7lm2blLaMkmVWDHoxIZ2r\nyLJMa1tAScRo6KWu3kNji3+IQJuVoaeo0MKSQjNLCsxkZRpEBYxAIJhyNhRn4g9GeO6vJ/nu/yrC\nhMNmmOlhCQQCwaQQosQ0MFZffzxWLk4lEpXpiSNIAPR4AqxfnsGeo60jnrtuZRYP3lgU+3uyFQkQ\nv61guA/GwJjTgPimjMNX5McSaUZr9XjhzXrefOccW069RdG+t4i6fGDQYH7vOpb8y+Oo0+PHYUWi\nUf669xS5Zh/L5iur0G29kJKZg1pviRlfvrjr9KiCxOBz6PbCvvogBpOSpNHr9RLydvJ/bszB5Uy8\nHWc4Xa4olUdCvHMshNevDKu4QE1FsYb9deepOuWm2x2dlKAwVekZ0ajM8VMe3tjdyb4DPfgDikCy\neKGJzRUpbFibjM1y9X6FRCIydQ1KW8b+KifNFwbaMgoWmCgvtbGmLIn8XKOYlM5RAsEoDWe91PUZ\nUtbW9+JyD3xv6HQSyxZb+hIxlHYMm/Xq/UwIBILLy/Wrs/EGwvz+b6f51xeqeOz+VdhMogJPIBDM\nPcSvp2lgrL5+JclCQ48nMMJsciwvgA9sW0xKsok91efHXP2eaEVCPAa3FSSy6j7eivxEzRf9gRC8\n9Ds+vuvPRLs8oFWh2rCCV0regzclmyeS04g7xQ75aD13lpsXyYCOk62KZ8SJC0FuKNfEzn8skaS/\n8mTbuiIOt+hx+tUYzWY6uno4VldPY/MFZICwizs35CVyOWPIskx9c4Td1SGOnYkgy2A2wPXlWtYX\na0m2KqLR4tzF3L350uM4xzPpHI2WVj9vVXaxa28n7Z2K8KLSREnOjHDNajsP37l4WtNVZjO93jCH\njigmlYeOuPD0KgawOp0Ui+wsL7HhSBY/Cucind3BWBpGbb2HM42+WMULQFqKjo1rk5UqiEILC7KN\naDRCcBIIBDPHresX4POH+fO7jXzvhSq++IFVmAzi571AIJhbiG+taWCsvv60JCOP3b8Kjzc4wmxy\nLC8AtUri1o0LuX7lfHyBcNzJ6mQqEsaivwXkrusKJmyeOZhEzRdlWcb50qs0ffuHFDZ1IKsktGsW\n8ZdV76VOPx8A1TARIxCK0Ovqa9MI95Jlg7o+MaL2wkBryaG6djaVzictyTiqSKKSJPIXZFFYVMyx\ni8pHo629g8PHTnKxvXPItnuPnOeWtTkJXc9AUOZgbZjdNSEudinVBtnpKjaWailbpEEbZ1IzWUFh\nsrg9YfbsV2I86xqUdheNBnS2ADpbCI0xDBK8c7IX65uqaU1XmW20tPpjJpXHT3qI9nUzpSRr2bAm\nmTVldlYssaLXXZ1CzVwlHJY51+xTvCD6TCnbOwe+M9RqWJhrYkmhEslZVGAWHiACgWDWIUkS92wp\nwBcM81bVef7jxWo+t71s2uO/BQKBYCoRosQ0sX1rIXWNPTS1eYY83tTm4aW3T8ed1MWrSihdlIIs\nyzz+9D663AEc1oF2jOFMJg4ynvfERFtAxptAJ2K+6HpjFy3f+DfcJ1tAAuPKPHauvoUqU/6Q7ftF\njEg0yo69p8i1+FmaqQXgggue3d1FbetIn4sud4Cv/vRdHDY9JYWpJFt1MT8MrUbDooW5LF20ELPJ\nSCAiM88Sxqxy8exv9hLPvrK9x88vX6/jofcsGbVqoL0nSmVNiHePh/AH+4SnIg0bS7QsyFDNuBlk\nKBzl8BElxnN/tZNwWEYlQdlyKxvXJfOnQ3V09458P01G4JpLhMMytfUe9lcpQsT5iwPXYFG+KVYR\nkZdjnPF7KEgclyfMyQalAqKuoZdTp70EBvnl2Cwa1pTZY1UQBXkmITQJBII5gSRJPHhjEb5AmHdP\ntPGD3x3h03eVXPVeTwKBYO4gRIlpIhyR8Y4SATrapC4RT4ex2jEsJi16nRp/MDLimMPNJ8cSHibb\nAjKWueZobSC3WpzU3XIvzurTADjKcrlw590845kf12Bz5eJU9AQ4f/ocNy2SAS21F5TKiLrWIIYx\nJhFy37nsPNRCTroFX0hiSWE+RQV56HRaQuEwHmcbNxRbMGhlAiHNqBUeAHuOtmI0aIZck6gsU3dO\nadGoPafcB5tZ4rqVWtat0GAzz+wPBFmWaTjrZVdlF2+/0x1LhcjJMrClIoVN65JJSdbR1u3lV29P\nTOCay7g9A20Zh4+66PUq986gV3HNKkWEWF1iJ9muneGRChIhGpVpueDvM6PspbbBQ8uFgfezJEFu\nlmFILGdmul6ITLOMkydP8slPfpKHHnqIBx54IPb422+/zcMPP0xdXR0Ar7zyCr/4xS9QqVTce++9\n3HPPPTM1ZIFgxlCpJB6+dRn+YISahk5+/OoxPn7H8qu23VIgEMwthCgxTUymaqGf/sqDibZjvPT2\nmbiCBIw0nxxNeIhEZWrqOxI+JiRWWTFccNGfO037E/9CbeUxAJKWZJD9+Yd5SbuUHQdb6E+d6Meg\nU3Pnugy2LdVD91nm2+DEhQCvHO6lbkhlxPiTCpvFTEHBIjZnzUeSVPj8AWpPnsKu93Hv5nzUKqU2\nIpGY1P5rEo2q2H88xJ6aEB1O5fV5mUqLRnGBBo165LgmkpAymTSVwXR0BXlrrxLj2W/IaLNquG1b\nOpsrHOTnDl31T7TlZq4iyzLNF/rbMlzUnvIQ7SuJSUvRcd16B+WldpYXWdBpxQ+62Y7PH+HUGS91\ng1ox+oUlAKNBRelyK0sKlCqIRQvNmE1XZqXPlYLX6+Ub3/gG69evH/J4IBDgxz/+MWlpabHtfvCD\nH/Diiy+i1Wq5++672bZtG0lJSTMxbIFgRtGoVXzyzhX8+2+qOVjXzi9eUyo6x4sTFwgEgplGiBLT\nxFRM6iYibIwlYBh0au68dmHs77HFjnZ6PCPbH+Ids58JVVY0N9P7tW9zdsd+kMGal0L2Zx7Aes99\nBCJw+Ol9I45bkK7l7nIbRRkRCPUSlAz82x9bqGsdWYkSDEWoWJFBXWMPnS7/kOdSHcmsWFJAzvwM\nJEkiGPRTd+o0R2rPYLdoY4kig9m+tRCvP0xlnOQTAKdH4tdv+Dh+BoIh0KhhzTKlRSM7Pf6kZywR\nJxyRh4gPl5Km4vNH2Hewh12VXRypdSPLoNVIbFiTxOaKFMqW20Y16Uuk5WauEQpHOV7nUdIyqp1c\nbFfe55IERQVmxaSy1E5ulkGsmM9iZFmmvTMYS8Ooq/dwtskXE5UAMtL1rCm1U1SoVEHkZBlRiwSU\nOYVOp+Ppp5/m6aefHvL4j370I+677z6eeuopAKqrqykuLsZqtQKwatUqDh06xNatWy/7mAWC2YBO\nq+bTd5Xw3ecPs/vIBQx6NR+4fpH4f00gEMxqhCgxTUxkUjfaKvhYwoZOq8ZiGiglH0vACIYieLxB\nTHrNuNuOJkhAfDEl0WqOYGsbF/75SdpefRs5EsWUaSPn4/dge+jDSFpln06nd8i4CtO13L7Swoos\n5fmgZEBnn4csGejwXhh1jA/epESk/uK1WvYdv0h25jyWFxUwLy0FgI6uburqz3D6XEvML2I0IUWt\nUvHgTUXUNXYPuQ9adTJ6zTy0ahtVJyHZKrFtjZa1y7VYjEP/4x9+f0cTceoae/D6Q0PEh6gs8+bB\nlhHbDh9nP5GozLFaNzsru9h3cCDGc+kisxLjuSYJsymxj30iySuzHacrxKEjLvZXO6k66sLnV66H\n0aBifXkSa0rtrCq2YbeJtozZSigU5XSjYkhZ1ydEdA+K49VqJBb3tWAs6WvHSBJtNnMejUaDRjP0\nu+rMmTPU1tbymc98JiZKdHR04HA4Yts4HA7a2+P/n9RPcrIJjWZ6hNW0NOu07FeQOOIeKDzxiY18\n6Ye72XGgmTSHmftuWnLZji3uwcwj7sHMI+7BxBCiRBwSKZVPZJvxJnXjrYKPJWz4gxFeevtMbGI6\nkcqMsbYdi3gr5ONVc3Q1txP57x/S+sLrREMRDCkmsj98O8kf/ziS0TJk+/5xOYxRbi+zsLxPjDh+\nPsCuk0E+8r4i0KrRM3ZSiV6rxheM4IuauP2mzSTZlC+F5gsXOVbbwMWOTvRaVVwDy3gtKv334Y0D\nreg0aeg16ahVytispgB3bbGzPF+NathKbLz7W1KQQk3D0CSPfgabovaLD6N5ZAwfZ1OLj117u3hr\nbxed3cqEbV6qjjtucnBdRQqZ6RNvt4jncTLbKyRkWaaxZSAto66hF7nvRs9L03H9RqUaYlmRRRiA\nzVK6naGYD0RdfS8NZ72EwgOf1mS7lvXlSYoIUWAhP9eIVrTYXBV861vf4vHHHx9zG1mO980+lO5u\n71QNaQhpaVba293Tsm9BYoh7MJTP3FXCt587yP/+pQ45HOHGtbnTfkxxD2YecQ9mHnEP4jOWUCNE\niUEkUio/kXL68SZ1ibQ93HntQnbXnI9r+jh4YjqRyoxEvBIGk2IbPfFjNIFDE/Rz+8k3Of/jfyLi\nC6Gz6cl++BYcn/kMKlty3OPoZT+P3uQgw6r8qDzWEuCVKg+nLoa4oTx7yDmMJvjctbmQxm4tjd0G\nSotXEI1GaTjbxLG6BnpcA18OgdDI6wnxW1Sa2yJI0RySzZnIsoQsR1CpOlmSH+GhW/JGbaOId393\nHj4fd9vRiHff+8fZ3NpLbZ2fXZVd1J9VfmSbjGq2bUphc0UKSxeZp6Rc83LHk06UYCjK4aOuJkUe\nXwAAIABJREFUmBDR1qFU+6gkWLrI0teWYSM7U7RlzDYiUZnGZh91Db197RieWFsNgEoFeTlGlhRa\nWFJgpqjQTFqKTtzHq5CLFy9y+vRpPv/5zwPQ1tbGAw88wKc//Wk6OgZ8kNra2igrK5upYQoEs4pk\nq57Pv38l3/rlQZ5/sx6DXsOm0vkzPSyBQCAYgRAlBpGISDCZZIp4k7rxfB3WLZ+HTq0CSRoSWzeY\n4RPoiZTbD962y+1ntMUlCfjM3SVkp8dXtoYLHKpwmC21Oyl6529EewNIJi0LHtxK2uc/RygpjQ5P\nAHsoMnTFPdgLve0Q8pJhhRPng/z+kJv6thAGnZrrV2eNOIfhgo/RYKDNq+fdJi2RqIRKkjl95iyH\njp3C6xvqLZFi0yPLciwSdDD9VSXhiExNfZg9NSHOXlCuf6pdxTUrNBRmSyxfvAS30xf/ojH2/VVJ\nDOl/nwhyFEK9WvAZeOzr9USiysRtdYmNLRUplJfZr4oYwx5niAM1ighRc9wda8swGdVsXJtMeV9b\nhtUivuJmE73eMCdPe2OtGHUNvbEWIwCLWc3qEltfIoaFwnwTRsPsrs4RXB7mzZvHjh07Yn9v3bqV\nX/7yl/j9fh5//HFcLhdqtZpDhw7x5S9/eQZHKhDMLtKSjDz6/pU8+dwhfvFaLQadmrVL5830sAQC\ngWAI4hd7H4l4Iyj/TjwNYyzGanvodAV44hcHAdBrJXQ6VVxhYnhbxkTK7Qdv297j499/XRV3ku6w\nGUgbZ5V8+9ZCiETg979j0VuvIzu9SDo12X+3jnn/+CjMX8Dzb9Zz+GTD0OqSa+ej9nZASFnlP++W\n+PmuDhraB/rF/cEIkiSNWo0QljV0hYxc7NIgI6FVR8l1hJhvC9F8unuEIAHEDC3jVYqsyE9n16EI\ne4/4cXsV5WBpnpqNJVoWL1D3OVjrMeg0jFWUNdb9nYggYdCp8QUiRPxqAi4dIbcWOapci4W5RjZX\npHDtNclXfA+9LMucbfIpJpVVTk6dGSi/zskysnK5lTVldpYUWkY17xRcXmRZ5vzFQJ8PhIe6hl6a\nzg8VQLMzDSwpNPcZUlqYP08/og1KcHVy9OhRnnzySVpaWtBoNLz++ut8//vfH5GqYTAYePTRR/nI\nRz6CJEk88sgjMdNLgUCgkJVq5nPbS/nOrw7z9KvHMeg0lBSkzPSwBAKBIIYQJfpIJOkCmHTM53AS\n9XUIhGSI634wegrCRMrt9Vo12WkWVhWlTyppQY5Gcb74MsXf+W9857tAoyLzplIy//Ef0BStAOBX\nO04O2XeqSWZVmhe1s1F5QGcmqE/h316sptM1MlEjnuDj9Klo7NHS6VXewkZtlJykIPMsYdR9+kUi\nlSP9zyVZHCSZ53O0wUTNqSAGHWwq07KhREtq0sQrD8a6vw6rntJFqdTUd8bGZTJohnhKAERCKhx6\nB+daw3jcyntArZUpKNLyse0LWZhrnvC45hKBYJSjtW72VykVEf1eGSoVrFhiiaVllBWnib69WUAg\nEKXqaA/7DrRT19BLXX0vLk849rxep2J5kUVpxSg0s3ihWVSyCEZlxYoVPPvss6M+/+abb8b+ffPN\nN3PzzTdfjmEJBHOWvAwbn7m7hO/9upof/P4In7u3lKLc+O20AoFAcLkRvwj7SNQocvRt9ARDEQLD\nWxNGYaK+DnqtCrtFT0ePb1pSECaatCDLMs7X36DliX+n93QrqCTmbSoi87H/i27lNbHtBlegLMnQ\ncftKC0sydQCcuBCiYHEBOqOFnm7vuIJPWpKJDq+apm4troByjW36CDnJIVJNEYa3mcerHAHodPqx\nW/Tcs3kRefMWsLs6xMUu6HZBhkPFhlItq4s06HWTX7Ed6/6ajVruu2ER924pjI1Lo5Z44c16Dp7o\n4OKFKBGPAb9HxTFC6HQSG9YmsbrUwjUrHZgMV+7Htqs7yIEaV6wto79CyGJWs2ndQFtGogkigumj\noysYq4KobejlTKOXSGTg+bQUHdcuT+6rhLCQl21ErRZVEAKBQDBTFOUm88j7ivn+b2v4jxdr+OJ9\nK8nLsM30sAQCgUCIEv0kahQ52ja9/hBf/dn+MY0vh5OorwMoZn5f+cg6et2+aUlBmEjrh3v3Ppq/\n/l3cx84CkLomj6wvfAL9hq0MVwacbj/pZpmHNzgo6hMjqpv8vHK4l3OdIb6Zu4h049iiUIrNiB8L\n7zbp8YWUa5piCpOTFMJuiI4QI4aj16pJsRtiBqXdbhm7KRO1KpVIRI0kQXGB0qJRkK1OyETPHwzT\n1u0dN32lrrFnRAVEU5uHF96s574bFpOebCISkak+5qK1QUvTUSOhkPJGWLHEwub1KawvT8JkvDL7\n6mVZ5vS5gbaMhnMDbRnZmQbWlCnVEEUFZjGhnUHCYZkzTV5q63s52aAIER1dA1VNGrVEQZ6ZlcXJ\n5M7XUlRgJiVZN4MjFggEAkE8SgpS+Pvbl/Ojl4/yvReqeez+VWSlXtmVlwKBYPYjRIlBJFItMHwb\nnVaNPxiJpSQkYnzZT6K+DqBUYmSkmHBPoF8+kdjS4fS3fgRCkRGT7t6qI7R87Ul63q1VxrRiPtmf\n+wjGG28F1bD9yzKEekmlnS/comTIVzf6eaWqlzMdymQmxTZQgRJPFNJqNRQtzKN0WSGnu7RIyGRY\nQ+QkhTDrJuYU+fwb9bx12Ilek4PNkAyyRCgcYn6ql4dvn0eyNbEWjf70lZqGTtq7fWOKUOGIjNc/\nsh0FlPdPecF8Kt/t4W/7uuh2KmXumfP0bKlwcN16B+mpE4/xnAsEAlGqjyvVEAdrXHT1KNdIo5Yo\nXWZldV9bxmRiTAVTg8sdpq7B05eI0Uv92V6CwYHPnN2m4ZqVdor6WjEK8kzotCoRgSUQCARzgDVL\n0vEFlvDMa7X86/OH+dIDq0lLMs70sAQCwVWMECUGkUi1QDwhwR+MjNjXRIwvx/N1AFhVlDauuWI/\nE4ktHUwgFKHL5WfHgSZqGjpjr11nDVD25+fp3HkIAFtBKrmfeRDT+7aDethbqE+MUNI0fKiAFpfE\nT3e1c7YjPGTT4X4V/YLPiXNuMudnsXjhAjQaDWpJZr49SLY9jF4zMTEiEJR553iQQyeSsRqUGKxw\ntJdA8CLBSCdStxaNOgVIbFV3Iukr8XxKomGJoFvHmXNaHjtwElBaE27eksqWihQWLTRdkXGHHV3B\nWGTnkRNugn3VIDaLhs0VDtaU2SlbbrtiK0JmM9GoTPMFP7X1vdTVK0LE+YsD71tJggVZxj4zSqUV\nIyNNxHIKBALBXGZT6Xz8gTDPv1nPd58/zD/ev5pkq1gMEAgEM4MQJeKQiFGkXqtGp1HRPUplw0SN\nL0GZlMuyzJ4jrTGhw6BTU1GcMSH/iEQnzv2VFBaTjt++1UDVyQ66PQOTEau7ixve+gPJR47RGZWx\nZCeR84m7sdz/EJLOMPSgw8QIAHQWMKeRkaqn8Kwad3BsvwpfSM3KkhVk5Q8kaeTYg8y3hdBMcK7a\n0RNlT02Id4+H8AdBlvWEIp34wxeJRAfaKXo8Qb72s/2sXpKYaDOR9BWLSYdep8LnjxLq1RJw6Qj3\nalCCVmW05hApGVEqyh3cty173HafuUQ0KlN/1suBKicHapycaRyIT83NGmjLWLTQjFqkLVxWfL4I\nJ08rcZy1fbGcXt+AsGoyqli5QonlLOozpBRikUAgEFx53Lg2F28gzCt7zvK9F6p47P5VWIxXdpqX\nQCCYnQhR4hJI1BwzUdQqFfdvK+LuzYW09/hAlklLNk3IP8LtDXKgti3uc/0T535TxcMn2+l0BVCr\nIDIocdTgdXNL1Z/IqDqMHI5iSDPjvn4jBV9/DL11mCGSLEOwT4wIDxUj0CqlgGoYtQJFlsHpV5I0\nuvqSNEz9SRrWMKFwhC5XYi0oUVmm7lyEPTUhas9GkAGrSWLdChW7Dh+j19cb93XdnsRabhJJaOkX\noWRZ5unfnqKzUU/Qo4OoMvFW68PobEF0thAqtUwA2Hm4BbVaGrfdZ7bj80eoPuZmf7WTgzVOnC6l\nMkajkVi5wkZ5qY3yUvsV25YyG5FlmYvtQWobPH2mlL00NvuGxNJmztNzzSo7SwosFBWayZ5vEEKR\nQCAQXCXcsTEfbyDMjgPNfO+FKr7wgf+fvfcOj+s8z/TvM3POdMygd4IFIAFWsItFkkmJsmTZsrW2\nSlxiO3bsTWQl3sT7yzq7vuzYTq4UpzjFye5qLUeOrVi2HCeSpViyCiVTlERSIAFWNDYQvc0A00/7\n/XEGgzaoBAiS+u7r4iVx6jdnzgznfb73fZ4tuJ2iPBAIBNcW8a0zhrl6MMzWHHOujIxzzIWRkY13\nzvUSDE/fvfHSO1fGrXlEkHAkotzV8CIV7xzBTGo4st1Ebt/O91fcSVDysFqTKRy5U0YxIgu8+Wkx\nItPrGi3aoS9i53JQYXgkScOlU5GtkufRMUyDH708uxGUWMLk6BmVNxpU+kJWtbWixMbujTLn2i7y\nekMvg5Hpo1dh5pGb2YhQnd1xDr45wMHDA/T0JQEnkmzgzE7gyEpidxqTH3gWz3290tOXSI1lDHHy\n3DCaZh3/gF/mzlvz2F4boHZdFm6x035NSKoG5y9FU14QlhARHBodm3IoEjWrfVRXpkYxKr0E/GJX\nTCAQCN6tSJLEr925mnhC59DJTv7u6QZ+76FaHDfY7xGBQHBjI0QJ5u/BAHOP0lwsJo5sZCIny4Xb\nKU8aQbBrKvtOvcyao4cwY0lknwPtzp38uOq9dEpWZ0S212Ep5/MQI8aiG9AdlmkLKuOSNCqyVQLu\n0YL9qZdnHkHp6jd4oyHJsXMaSRVkO+xYJ3PrJoXyQjtPvtTEK+/MLnIVZh65ke0SHpcySZQwdImA\nLcAffauFcy1WN4bDIaU6IpLIbm3GhJD5jPvMhfmYnmZCN0yaz0fSaRmX2+Pp61ZWuNm+KcD2zQGq\nVniwid32RWcgqNI4pgui9VI0LQwB5OUo7NmeTU2V1QWxssKNIt88Y0ICgUAguHpsksSn3ldNLKnx\nTmMv//jvp3j0wxuR7eLfC4FAcG0QogRzMy+cyFyiNBeL6bwOxrJlTT6xhJYeQbDpOrvO/YraI69i\nDsewu2Vsd9by8/X3cJ68cfcNhpP8+BfH+dDWLPJH6mZnFngKQJngL5EBVYeOIYUrIQVVl6ZN0pju\n9dQ19rG2YgVvndJpuWLNwWf7JA7sULhlvYLPLc34GJJExvjVmUZunnqlJR3vaVloyCSHHGgRhXda\nE0hSgk1rfbiyVXpjgwSjmTtWMjGfcZ/ZcDWC2wjRmM6J00McPRGirmGIobC1867IEts2WSMZ22sD\n5OeKCMjFRNdNLl2JpXwgLENKqxvHwmaDVRWetCFlTZVPvCcCgUAgmBV2m43P37eev0820NDaz//7\n+Rk+f996scEgEAiuCe96UWKu5oVTMRtzzMViOq8DgGyfg+01hTx8RxWabpLrU1hed4idb78Ig8NI\nih3XbWt5sfYeTttKJt1/U7mTD27xsqrAKnAuhyQqVqyclRgRVyWuhBQ6hmQMU8JuM6nITlI2TZJG\nptcjIeOQC9DVQn7wC6sQW1Vqo3a1ydYaJ54J84/THZNMggRMP3KTUHXqGnvR4naSQw6SwwqmbhX1\nisvggfeVcsfePF6su8hLx7qnPB5TcTXjPtPx5EvNvFrXnv77bAW3rp6E5Q1RH+J0YxhNtw5aTkDh\nrtvz2LE5wMa1Wbicor1zsQhHNBpbI1YXRGuE5vMR4onRbiKf1872Wn+6C6JqhUe8HwKBQCCYN4ps\n4wsf3shfP3WCI2d7cDlkPnVPtUhbEggEi867XpSYi3nh9cq0Xgc+J3/0mR1keRyYpkn0+Rf4te99\nG72zH8ku4b2lioNb7+aYUoGVCmFRlu9leTbcudbFygJr5vzohTjPnggT02X++HNrmG5fP5yQaAsq\n9IStJA2H3aAkK4FLCpOb5cA5TZzG2Ndjlzw4lSIc9jwkyQYY7FhnJxLv5NzlTupaEvzHG5N3/6c7\nJrlZTmpX59PQ0j+rkZv+wSTPv9LNxZMO9KQ1oiLZUz4R/iSKS2ffrevI8tmn7VjJ8zvZvDofE6hv\nnt1zzxfdMHjyl028dqIj4/UTBTddN2lsjXD0RJBj9UNc6Rwdy6hc7kmnZayscItdk0XANE06uhKW\nF0RqHKOtIz7uNstKXVYXRKWPmiovpcVO8UNRIBAIBAuKU7HzxQdq+Yt/reP1+g48TpkH91eKf28E\nAsGi8q4XJRY6QWMpcCp2NlXlj9sRH2FbTQFZHgdDrx7iyjf+inBjG0iQs30FJ/bewwvmShwOGReQ\nSOoEfA7u25bH3koFB1ZHwtELMZ45EaF90Grbt0laRrHGNCEYt9E2IUmjPBDn4NFGftbUM6sRAtlm\nY3nRMpIJBdmeBYBuxEmo3eze6MDA5I1T04/bTGdCurW6gI8dWENi/9Q+C/GEzlt1QQ4eHqDhzLDV\nXSHZUHyWT4TiHfWJyPVb58l0ApcEfPGBTZQXWq/nwX0L4/EwFU+90sKrxzMLEmAJbp29UdraVI7V\nh6g7OUQ4Yo3DOBxSWoTYvslPbo4YAVho4gmdlgvRcaMYI8cfwOW0sXFtFjWpWM7qSi8+77v+61og\nEAgE1wCPS+b3H97Mn/+wjl8cuYzbJXPfnhVLvSyBQHAT867/lbtYCRrXihHPgPpma4feJoFhWrvy\nW9YU8AF/mMb3f5TQ8WYA8mrLKf/9z+C88/1U6PCeVGGMaRIbDuInhE1PYJLkRFuSnx4doj2ojXvO\niWKNaUJvxE7bmCSNQCpJI9ej868vN83Ks2MoYvDmKY23TqkMRXKR7YA0RCTeic+TYOeGfO6/bQVf\n++6RjMfinXO93LdnBVkeq4ieyYR04siNYZicbgxz8HA/h48F063yNVVe9u3JpTM6wOsNk4WfkfNk\n2u4Mv4uCMc+1mOM+040k6UkbakSBuIMvfbUZIzUNkJejsHdHDjs2B9hQk4XTIcytFgrTNOkbUNNp\nGOdaIlxoi6aPPUBRvoOtG61RjJoqLxVlbux2sSslEAgEgqXB73HwpYc386c/qONnr5/H7bBzYPuy\npV6WQCC4SXnXixJw/SRozIeJJp1Gyi9hpyPM5v/7OOcO1QOQXVPIskc/gfuDD4JsjWM4bVCY7YZk\nGCK9OPVUu7jTj+TN50zDZdqDA5Oec6QI1w3oGraSNOKaDTDJ92osy1YJuKyKaybPjg/fvoqufolD\n9SoNLRq6AS4H3L5ZYc8mBb/XTSicne4o6BmMTj1uE07wtcePpP0zZmtCeqUzzsHD/bz25gB9AyoA\nhfkO7ntvLvv25FJaZHln6EYeDoc0rchxPQhcYzs2TBO0mIwakVHDCoY6uoY1qzxpk8oVy9zXfWvm\nQiWILDaqZnDhciwlQIRpbI3QP6imr5dlidUrU5GcVV6qK33kZotYToFAIBBcX+T6Xfz3j27mz35Q\nx5MvNeN2yuzdONl7TCAQCK4WIUpwfSRozIdMBb8/1Mf7jj1LzpmzDJqQtTyHZY88iO/hT4JjjDGl\naUJyGCJ9oI2KEXgLQLa6IKYSaz78niouDii0hxRUQ0KSTEr8KssCKp4JSRpTjzRIhKM+/v7HcbpS\nukdRro1baxW2Vcs4HaMF8tiOgum6EcBKCck0yjGxK2EorHHo7UEOHu6n+UIUALfLxoHb8ti3J5e1\nq32TvBNGzpP79qxgOGmQ5bCluzJGuB4ELrtkR1E9DPSBFpExjVTXg2Ti8CXZsM7HIw+vJi/n+h9N\ngoVJEFlMQkMqja2R1ChGhJYLEZLq6Ocg2y9zy9ZAugti1XIPDmXp1y0QCAQCwUwU5Xj40sOb+fMn\n63j8+bO4HDLbqguWelkCgeAmQ4gSY1jKBI35MLbg90RC3P3OcxQ11INh4inOouiT95L/+d9C8mSN\n3iktRvSClirsJ4gRI0wUa5wuFz0RF0farCQNeRZJGhNFBEly4JQLccoF2CSF7kHYWGln7yaFqnL7\njLv103UjjCVTcoqqGbxTP8TBw/280zCEppvYJNi60c++Pbns3JyN0zl1sTiuOB5OkJs1uTieSuBK\nqDr9oeiiCF6maXKlM86x+hDH6oc41xzGMC2xxCYbOPwJFK+K7Na4Y1spv353zYI+/2JzNZG9C41u\nmFzpiHOuxfKBaGyJ0NkzKpDZJFi+zE11pTctQhTmO677LhSBQCAQCKaivNDH7z20mW/96Dj/55lT\nfPGBWtavzF3qZQkEgpsIIUosEEvRWh7wOSmWNbb86hkqThwFVceV5yH6nh08s+4evvS5O5BG1mKa\nkBiG6MxixESShkJf0kPPgB2QcNoNyrOTlPg15Bk2fJ2Knc2rC3jteAinXIRiz0GSJAxTI6524HYF\ncTizWVVWNevCbaTr4J1zvQyGp09OKch203w+yquH+zl0ZDBtJrii3M2+vbncdkvurFvn51Icjwhc\numHw5EtNC77Lr2oGZxrDHKsPcbQ+RHevZUoqSVBd6WXrJj998SCt3YMEwyMdG8U3xEjSWGYT2buY\nRGM6Tecj6VGMpvMRorFRMwiP286WDX5qqqxxjNUrvbjd13+XlUAgEAgEc2FVqZ/f/cgm/ubH9fz9\nvzXw3x/eQlV5YKmXJRAIbhKEKHGVLFVruR6J0v+3/4f7/9+PMeMqDr8T454dPL3qAFdMPwfWlFvi\nyIgYEekFfUSMCIA3f1oxwjQhGLNxOagwGLNOE6/DYFl2kkKfxmxSIROqSd05jY7uMrJcpQBoRoRE\nspuk3g+YxFR46VgYmP2u99gxiq89foRgODnpNj6Hi1deD3Lo7Qu0d1mvO9sv88H3FrJvTy4rK+bW\nETOb4jiTGLWQu/yhIZW6k0McrQ9x4tQQsbhVHLtdNnZvz2ZHbYCtG/0E/CMiS8kN48MwFbOJ7C1f\noOcyTZOu3iSNY7ogLrXHrOSVFKVFTnZt9VKd6oIoL3GJiFSBQCAQvCtYuzyHR+7fwD/820n+5if1\n/I+PbaGiKGvmOwoEAsEMCFHiKrnWreVGPEHvY9+n/TvfRxuKIXsV/B/ayS/W382JSBY5WS4OrMnn\n4f2VEB+asxhhmNAXsXN5UCGctIrYbJfOslSSxmyaGfqCBm80qBw5oxJPgs0Gm9fIbK2G7/68mWR8\nsogwXWE/FVkeB9trCtPH2zQgOewgOaQwGFO4dLILhyJx684c9u3JZfN6/7wTDWZTHE8c/ZmvkDGC\naZpcbh8ZywjR2BpJF8hFBQ7uvNUyqVxX7UOZomXlRhtJmsh8I3tnI8YkkgatF6M0tqZSMVojhIZG\nk2YcDol1ayzxobrSR3WlF3+W+MoUXJ/ohklff5KO7gSd3XFu2Q55YhNTIBAsMJtX5/ObH1jLY8+e\n4a+eOsGXP76VkjzvUi9LIBDc4Ihf2FfB1RadI48xm51sU9O49I9P0PTNfyDZN4TdaWfZh7ZR+PuP\nYl+9kc+NPI7XgdOIQvDiqBjhCoBnejEiU5JGQSpJw+8yprzfCIZp0nRJ51CDyrmLOiaQ5ZG4fbPM\n7o0Kfq+NnsEoochkQQKmLuxn4oF9lXR1ahyvDxMetINpiQ4un86G9R5+5+Nr8PuuPtlgPsXxfIQM\nVTU4lRrLOFYfoqfPOl42Cdau9qXSMvyUl7jeFT4Fc000ma5zKRTSODdiSNkS5vylGJo+2gaRn6tw\n686clB+ElxXLPMjyzX+MBTcWw2GNju4E7V1xOrritHcl6OiK09mdQNVGz+eGsxG+/OjKJVypQCC4\nWdm1vph4Uuf7LzTyV0+d4A8/vo28gGvmOwoEAsEUCFHiKphP0TnCbMc+TMNg4GfP0f5n/0C8vR+b\nbKP0rnWUfOkL2DfuZKR1wSnbKHSrMNw5JzEiqUNHSOFKSEEzJGySSalfpTxbxaNYP3CnE05iCZOj\nZ1XeaFDpC1q3X15spWhsqpKRx3QmzHfXOxOXrsQ4eLif198aZCCoAjI2RcfhT+Lwq9gVg9bBYX7+\nlrIgHSvzifuc7esNhlSONVgiRP3pYeIJSwTyuO3cujOH7amxjCzfzB/XG31cIxNzSTQZ6VwyTdAT\ndtoHTS41DvDcf9QTjYwWbHY7rKzwUJMypKyu8pKf65j0eALBUqCqBl09ibT4MCI8dHQlGAprk27v\nctqoKHNTVuKktMhFYYHC5tpcEqp+03wPCASC64t9W8qIJTR+crCVv/zRcb78iW0EvOLfUYFAMD+E\nKHEVXE2RPdPYh2mahF48yJVv/g3R8x1INomS26oo+b3PI+/cZ81EQMozYsiK9hwjRiQduQRjJgFT\nJtMqYqrElaBC5/BoksbynCRlfhVH6qzIJJxsqszjwPZlqJqDo2cMjp1TSaog22HHWpm9tQrLCjP/\nCJ5PYT+W4JDKr1IxnucvxQDweuwcuD2Psz0dRPTYpPGS+YyFTMVc4z6ner2mCSsLcnjmFz0cPRFK\nR5KC5VmwvTbAjs1WhORsd+pnK3LdiKLFbCJ7h8Map5qGeenVQYaDXrS4nO6aAdBlg221AdattsYw\nqlZ4p01aEQgWG9M0GQiqdHSNdD0k6Oi2BIie3gTGhEAjmw2K8p2sXuWhrNhFabEz9V8XOQEZSZLS\n3wPPn+jlB7/KnBAkEAgEC8X7di0nmtB47s1L/NWPTvA/Pr4FERYqEAjmgxAlroL5FtkzjX3c7Rik\n54//iuFT50GCgm0VlP2336D0gYfoG7SK8VExohf01EiEK4DuzuOp1y5zvOlixuJ0OGGZV/aGU0ka\nssGyQJLiDEkamYSTQw1Rjp4JotitYeVsn8SBHQq3rFPweWYuoOda2A9HVQ4d6efY8TAnTg9hGNYu\n947NAfbtyWV7bYBgOM4f/p/WjH4X8x0LycTY4liTbAwORijIdk/7Y380KaSP3m4NKelCjSj8sjkG\nxLDZYEPNyFhGgLLi+bU/ziRyLZUh60Iy4o9hGCZtHbFUIkaElosxLl0ZEXYUwMTmMJDPChCCAAAg\nAElEQVTdGrJLQ3bryA6Dz39y7Q3tryG4MYnFdDq6E6lRi1TXQ7clQox0RY3FnyVTXeVNCw+lxS7K\nil0UFTim9I4Z4XqKzxUIBO8OPnz7KmIJjVfq2vn2j+v500dvW+olCQSCGxAhSlwlcy2yYeqxj4Ke\nNu7++bO0nr8IQO76Ysof/Riuez8CihNJlqcQI7JTYxoOnnqpKeOPUqc7i6qVKxmMWUKJ16FTka1S\n4NMzJmmMFU4kZBxyPk65CLvN6rtQ9SESWjdb13q5c/vsf+zOZtfbNE3ONA3z+E8vcvGCiqFbC8zJ\ntXH/e0u4fVcu2f5Rn4iFHAuZCd0w+OlrrTS09tM7GJu2uB8YTHKsYYiLZ+xcOe0mqVpbnz6vjdt3\n+dNjGV7P1X0MZ+Nt8tPXWm/YYiUW12m5EOVcS5jG1giNrZF0tCuA222ndl0WVSs9HG66TNSIY7OP\n32bO9S/seSAQjEXXTXr6Mo9bWONl43EoEiVFo4JDaZEzLUL4vPP7PlgIjyOBQCCYK5Ik8bG71hBL\naLx5upsv/e3rfPbeGpHKIRAI5oQQJa6S2RTZE5lYRGcP9nD3kWfIaWyyrq/MY9lvP4DnIx8HZ2pn\n1zSJB/tgoG28GOHNB7s1wzfxR6kkSawoL2V9TSW52QEGY5DttsSIHPfkJI2xrf2hcILQsB2PYyUO\nex6SZMM0dRJqN3GtB8O0OjaON0V5YN/cf+xmSoXo6knw2psDHHxzgK4e69hIdhNnTgKnPwlOg7DN\nQ7a/aNJjXc1YyHRMHHeYbify1+5YzYXLMY6eCHKsfojWS6NjGeUlLnZstrohqiu9804BycRM3ia9\ng9EbplgxTZPe/mQ6DeNcS5iLbTGMMRvKRQUOtm0KpFIxvGzbXMjAgBUra3spsijngUBgmiZDw9q4\nToeRsYuunsQ409QRCvIc1K7PmiQ85Oc6FjxK9mo8jgQCgeBqsEkSn3n/WjxOhZfrrvDNJ47x4dtX\ncffOChGbLRAIZoUQJRaIuUQvjhTRb73awF3HnqPo1EkwwVseQP7QHaz5b48ieVNZbqYJiRBE+hie\nQowYYeRHqWy3U7WygnVrVuHzejBMk4tt7exf72F5wWQTovGt/UlyfIV4nMVkuTekro+TULtJan2Y\n6OPuOzCc4AcvNPLpe2vmNQYQieocPjbIwcMDnGmyCkunw0ZWrobpjiN7tHHiyVRF9Hw6VqZjKj+N\nhtb+cbczDVCjMi+8GOSl504yGLJM6GS7RO26LLalxjJKChdvl36mThEk6botVlTV4PzlmNUFkRrH\nGAyN7iwrssSaVVYaRk2V5QeRHRifpjJW4Fno80Dw7iOpGnSmxy1SwkPq72M7dEbwuO2srHBPGLdw\nUlLouqa+JdeyY0wgEAgmYrfZ+Ph713Dr1nK+/a91/OSg1VX6mx9YJ5I5BALBjAhRYglQ+wbY+4sf\nsvqp/8TUDdyFPvQDOzl/54Pce/c2JJvNEiPiIYj2pTsjXDkFxG2BSWLECB63i11b11FRvgyn04Gm\n6ZxrucCZpvM47QYf3XtLxvs99UoLLx/rxikX4HcVYhoOIjGw28MEI+1oRmja1/PGqS7cLnnWYwC6\nbnLi9BAHDw/wdl0QVTORJNi4Not9e3KpWuXg608cZfK+4+Qiemwnw1w7VqYioer8ywuNHD7Vlb6s\nfyjBq8c7ADBUCTWikIwoaNFRQ0Wf12T/XsvnYvN6Px73tdmZn6lTpCDbfd0UK8GQSmOqA+JcS4TW\ni9FxMYY5AZnd27KpTokQqyrcKMrsC7v5dC4J3n0Yhkn/oDpqMJnye+joTtDbn8Sc8OVjt0NxgZO1\nq32UjfF5KC12EsiSr4t43sXsGBMIBILZsn1tEd/47E7++T/Pcby5j68+foRff+8adq0vXuqlCQSC\n6xghSlxDtNAwXX/zv+l64t8wEirOHDflD92G9OufxbtsBZsVuyVGxILjxIiRzois4jzivcOTHjem\nSrQFFbqGZVZXZhFPJKk/3ci5loskktZj7NpentG7oeWKxjtn3QTctakRDY242kVC6ybbB7dtzqeh\nJUH/UHza1zbTGEA8qXG6aYi6+jBvHA0SGrI6CsqKnezfm8ftu3IpyBsdQ5mpiJ7OuHG+u/7RhMqT\nv2zm3KUBBoaTY44T6HE7akRBjcjoidGPjd2ho/hU8golvvXFHbidc/tILVQaxnQdAnabbUmKFd0w\naWuPca4lkh7HGBnLAbBJsGKZm+oqX6oTwktBnmNBCry5dC4Jbl4iUT0lNsTp6BzT9dAdJ5mcLHvm\nBBTWrfGNdj0UuSgrcVKU71zQkavFQnQKCQSC64Esj4NHP7yRQw2dPPlyM//32TOcaOnj1++uxutS\nZn4AgUDwrkOIEtcAPRqn+5++R9f//iFaJI6S5WTFQ7eS97uPIpWlfixmFCNywJs3ZWfEUNxGW1Ch\nN2Ilabhkg7JAgkPvNHLlSg+qmiTPP/lHqaqZnGjWeKNepa3HAHIwzChxtYek1gdYA/zBMNy9YxkP\n7a9iYCjOs4cv8tbp7oxrmWoMoHcgwT/8sJlz5+IkY9aOt8MJ77sjn/1786ha4ZlUhM5mx+/JKQw9\nwTJunKrYz3T5iMBxqKGTeNJqzzYN0iKEGlEw9dRuvWQie1QUn4ri1bAr1rHas7V8ToLEQqdhzNQh\ncC2KlUhUp+l8JD2K0XQ+Qiw+agbh9djZtslPdaWX6iofq1d6cLvE7q3g6tA0k+7e0TjNsd0PwZT4\nORanw0bZmE6H0iJXuvvhWnU3LRZjvwfsDgU9qYoOCYFAsCRIksRttaVUV2Tz2M/PcORsD81XQvzm\n+9eydkXuUi9PIBBcZwhRYhExkiq9//wjOv72u6iDYWS3wvIPb6Pw9x5FWrUBJGnMmEYv6KlZeneO\nlaZhH68mx5Ma3QNRTNlD17CLYNz6selz6Cwbk6Tx0Tur+PDtKycVp4PDBm+eVHnrlEokbj39upU2\nzl5qZig63isBRrsSnIqdkjwvn7qnhua24IxjAImEwdvHgxw8PMDx00NYcxgSii+Jw59E8Wr4in2s\nXumd8thNV0RP7zLfi64bNLT2jyv2H9i3iqcPns8oAoyYV+qqhBp2oEYUtNjoWIZkN3D4EyhejcIi\nG1tq8jl9YYC+YHLexf1iRfdN1SGw0GMNpmnS2ZMY7YJoCdPWER/X9l5W4qSm0uqCGIk4FIZXgvlg\nmibBIW3yuEVXgu6+BPoEqwdJgsI8B1s2+CkrdlJWYhlNlha7yMtRrotxi8XEqdgpyPfSm6GzTiAQ\nCK4lhTkevvzxrTz35iWeOXSRb/3oBHfvXMaHb6+cMeZYIBC8exCixCJg6jr9P36G9r/4RxLdg9gc\ndsrv2UDx7/02tg07QLKNdkZEesFQAWlKMWJkV703olBRXkFOtlXMZ7s0KnJUctzGpCSNkeLUNE1a\nr+gcqk9y6ryOYYLHBfu3KezZqJDrt/HkS25eOjb5dUxs7Z+ug2Hz6jyaz0c5+MYAh48NpnfInV4D\nmzeOI0sdF9M407jHdEV0fyg6pXHjWO+Hkb+/dOwKjZeDtPWEx13+y6NX6OlWaTgdJjSQhZEcXYvd\nqaF4NRSvit01mlSyfV05H3lPJdodEoMDEQpyPHMu7pcyum++Yw2JpEHrxWjaC6KxJcJQeHQX2umw\nsb7aMqKsqfKxptKL3ye+XgRzI57Q6ewe7XZIixDdcaIxY9Lts3x2qlZ4050OpcVWwkVxoRPHHLxI\nBAKBQLB42G02Prh3JRtW5vHYs6d54Ugbpy8M8Pn71lNe6Fvq5QkEguuARa0ampqaeOSRR/j0pz/N\nJz7xCTo7O/mDP/gDdF2noKCAb33rWzgcDp555hmeeOIJbDYbDz30EA8++OBiLmvRME2TwZ+/RPuf\nfJvY5W4ku0TpvtUUf/FzyDveA7YRz4hBiPTNKEYAaAY8dyxEoKiGUo8bwzC4cPkKpxtb2VrlZ/OY\nXfWxowlgo67RGtHo7Ld+zJfm27i1VmFrtYwizy+xYOxtB4bjeOwuvGTx2otJnu5vBqwYvPcfyGXj\nejd/+7PjszKsnIpMRfR0LvM2CYwMT9jeawkSpg5qVEmPZrzWnAAUkEwUr5r+Y1MmP4hTsaHpBl95\n7C0GhhPkZs1v5OJGiO7rG0jS2DraBXH+cnTcbnRBnoNb1+WkUzGWl7uR5Rtj93mhfDwE80M3TPr6\nkxmFh74BddLtZVmipNDJxrXO8WMXxS4hfAkEAsENxKpSP3/0Gzt56pVmDp7o4BtPHOWB91RyYMcy\nbDd5B5tAIJieRftFF41G+eY3v8nu3bvTl/3d3/0dH/vYx3jf+97HX//1X/P0009z//33853vfIen\nn34aRVF44IEHuOuuu8jOzl6spS04pmky9NqbXPn6XxFpvAQSFN2ygrLf/RTybfeArMxZjEhqcCWk\n0B5SCOR5UTWNs83nOdt0nnA0BsDxpiQfeU8lsl1K+xMEh8HvKcEu5aMbNmw22Lxa5tZahRUltoxt\ny3Np7bfbbNy7cwXNjQnarigMROyAiizD/r253LE3j3VrfNhs0qwMK+fDdB0bmQQJPWkjnvKG0KIy\nMDqW4QwkyM6DhC2GNIOukFANDmbowoC5jVxcb9F9mmZysS1qdUCkkjHGFoeyXaJyuSdtSFld6SUv\nJ7PPyXy4ViLBQvt4CKZnOKyNi9Mc8Xvo6k6MS1wZIS9HYeParNGuhyJLhCjId2AXYz8CgUBwU+B0\n2PnkPTVsqszne/95lh+90kJ9az+fff9acv0iOlQgeLeyaKKEw+Hgscce47HHHktf9vbbb/P1r38d\ngP379/P444+zcuVKNm7cSFZWFgBbt26lrq6OO+64Y7GWtqCEj9Zz5et/wVBdIwD5taWUf+GjON77\nX8DhmrMYEU1KtIWsJA3TlLBLBidONdLYepFEcvwu4siu+otH23j9RBinspwsVwBMCdVIUloQ5/Mf\nLCbgm7rgmlgQTrVDr2oGdSetGM8jx4MYBoAN2aPi9CdRfCr5y31sqMlK32c2hpUzFaRTXZ+pu2NT\nVR71zb30DyXRYiNpGcrksYwRk0qnTn7Aut+rde1THqMRpurCmOvIxVJH9w2FNRpbIjS2WqMYzRci\n45II/FkyO7cEUgKEj8oVHpyOhS/ar7VIsFg+Hu9mVNWgqydBe6rToT/YwfmLw3R0JcaN94zgdtmo\nKHNTVjISq2kZTZYUOYXpqUAgELyL2Lw6n2+U3sI/P3+W+tZ+vvrdI3zynmp2ri1a6qUJBIIlYNFE\nCVmWkeXxDx+LxXA4rB3WvLw8ent76evrIzd31IU3NzeX3t7M8/bXE9EzzbR//S8Y/NVxAHJqCij/\n/Edwf+jXwO2bQozIBU9eRjFiKG7jclChb0ySxrLsJDmuBM/84vIkQQIg2+ehvlninbN5ZLnKAND0\nMHGtG1UfINFlw+XM/OU+m4LQNE1aL0Z59fAAv3p7gOGw1b/vcBnYfQkc/iQ2eXqfiKlGQx7Yt4on\nX2qa8vlnWt/E7g7ZJnP6XJhj/QlCl5OYxmhahuJVKSiWiJiRcesFxo2pnGjqIxhJ4JBtJNTJ8+uZ\nBAmY38jFtYruMwyT9s4451ojKS+IMO1dox0akgQVZS6rC6LSiuUsLnReEyPAaykSLKWPx42OaZoM\nBFVLeBgzctHeFae3Lznpc2GzQVGBk9WrPJPGLXIC8k1vMikQCASC2RHwOvjdBzbxWn0HP3q5mf/9\nH6epb+nj43dV43GJ8TyB4N3Ekn3iTTNzhTfV5WPJyfEgy0tTQERaL9P4P/6EzmcOggn+FTlU/db9\nFH3u89j8uZiGQTzYS7SvA0NNgiThzi3CnV+KXRnf8m6aJl1BONdh0pcySc/xQnWpRHmuHUmSATd7\na8t45lfn0/ezSS6cchE2s4BfvKUj4SCh9ZLQetCNSPp28aSOJkmUF2Qxkcf+/WTGgtDjdvDBvat5\n8WAPL7zazcW2qLWubIWHPljM9q0B/vTJwxmPzeBwHLtDoSB/fKrGFz+6jXhSY3AoQY7ficshT/v8\nn7t/44zXA1xuj3L4aJA3jvTTcDqEntIRPF4ZxZtEl+M4fBom4MtxU+LOYjiapD8UJz/bza4NJXzq\n3rU88fxZTl8YYDBsiR871hXReDnI5a4hDMMqsiqKsojEVHqD8UmvOz/bTeWKPFyOuX2cMh2XqyUa\n1TjTPMyps0OcPBvidOMw4cjojrXHbWfnlhw2rPWzscbP2jV+fN5r/zUQT2o0tE5OfAFoaO3nv37E\nPafjUZDhHB9LZ1+EgeGpfTwynbfvNqJRjcsdMS5fidLWEeNye5S2KzHaOqLjol1HyMlW2LDWT0WZ\nh4pyDxVlbpaVeigtdqEIk8nrgpk+FwKBQLDUSJLEvs1l1FTk8Nizp3nzdDdNbUF+8wPrqK7IWerl\nCQSCa8Q1rUY8Hg/xeByXy0V3dzeFhYUUFhbS19eXvk1PTw+bN2+e9nEGB6OLvdRJJDt76Pizv6X3\n336JqRt4S7Oo+MRdZH36NyG7kP64AcFLEOmf1BkRsyvEggnAKooME3qGZS4HFaKq9eM9162xLEcl\n22UgGTDmkHDf7goi0ST1zUniiRwUewAAn0diwyqD5946gcnkVmmAwYEI3gmRSwlV54368eMKpgHJ\nsMKPf9zL9x8fwDRBkSX27shm3548Nq/3I8uWT0TeNH4IelKdMoZOBoZDMfoyPP8Ib9R3cOeW0ozX\nmyb88ldd9F2yc/zkEB3d1hokCVYsc7Fjcza7tmazYpmbH/yyiVfrwmmTzd7BGL2DMfZvLePuHcvS\n4yD/9NP6ceLHwFCCF966PO55DQMudg6zbAqH6E2VeQyHYswmfC/TOMrIcZlreJ9pmvT0JTmXMqNs\nbI1wqS02bue6pNDJ9lp/2pCyvNQ1bj4/Fo0Ru/YfJ3oGo/QOxjJe1xeM0Xqxf9adJwUFWTNGH+qq\nTm7W/M7bmwldN+npGx23GNv9MBCc3I3lUCRrvKJ4xGTSGrcoLXZmFLMKCjzviuN4IzCbz8XVPLZA\nIBAsJMW5Hv7wE9v4+eGLPHv4In/x5HHu2VXBf7ltFbJdCN0Cwc3ONRUl9uzZwwsvvMCHPvQhXnzx\nRW677TZqa2v5yle+wtDQEHa7nbq6Ov7n//yf13JZ06L2B+n6m3+i+1/+A0PVcOd7qXj4VgKf/y0o\nWGZV89EBiPaBoTHdmIZmQOeQTFtQIanbAJMin8aybBWfc/JOJEAkZnLkjMbF9jJ0zUSxw8pSG7dv\ndrB+lR1NN3ipziCenHxfl8NOQYbCbiT9wTRBi8okhxwkwwqYVrFatdLNXbcXsHdHNl7P+FNkIfwQ\nZkqfuNITTl9v6BLqiEllRCFoSHQ09eJy2ti5JYDhiNMXDxKKBanrGMT0FVBUtJKGlr6Mj9/Q0s9D\n+6vSfhZTtfRnIhpX2b+llIbWgTmPXEwcR8n2Odm8Jp+PHVg9a/8EVTVovRS1EjFarVGMwdCoGKXI\nEtUp8aE6ZUiZ7Z88KnQ9cK3NPpfax+NaYpomQ8PaqODQPTpu0d2TRNPHd6NJEuTnOqhdnzVJeMjP\ndWATJpMCgUAguAbIdhv337aKDaus6ND/fOsypy8M8Ln71lP2Lu9mFAhudhZNlDh16hR//ud/Tnt7\nO7Is88ILL/CXf/mXfPnLX+app56itLSU+++/H0VR+NKXvsRnP/tZJEniC1/4Qtr0cinRwxG6/uFx\nuh77V/RYEmfAxbL/spvcRx6B8tXTiBH5YB9/WBOaRHtIpn1IQTckbJJJeUClPKDiyhA9CdDeq3Oo\nXqWuUUPTwSHD/h0etq02KckfY9xos7NnYwmvvDO5s2DPxuKMxdbwkIkx5CXUZ8fUrILYpug4slSK\nSiX++HdqAUs8kBVp0mNcrR/CdAVpts+FZMhIES9DAxJazPLYALDJBv58nUd+bTVb1gf4yWstvHSs\nO33fkRGPaFybVeTmdOJI5vsmuHtnBQ/dsRq7Q0FPqrMuZif6JwyGE7xa107LlRBf/fT2jMLEYEi1\nOiBSqRgtF6NoY1ILcrMV9mzPtkSISi8rl7tR5BtjN2EpRIJr5eNxrUgkR0wmx0ZrWt0Pkag+6fYe\nt52VFe60x0NZiZVwUVLkWhQjU4FAIBAI5kNVWYA/+o2d/OjlZn7V0Mk3/vkoD+6r5M5t5cKXSCC4\nSZHM2Zg4XGcsZnuwEU/Q890n6fj776ENRVG8DsrvraXgd34LKjcBJsSCE8SIHPDmg228GBFNSrQF\nU0kaSCh2S4wo9atkqrl03eRkq8ahBpULHVbnRJ5fYu8mhR3rFJYv82d87SO78HWNvQwOJ8jJcrK1\nerxpZWhI5dCRQV59Y4DWS1a/vmQzUbKSOP1J7C4dSYI7t5UhSdKsEhGuJsrxyZea0gXpSMeGGlGQ\nNReR8MgpaWJ36Sg+FYdXxeYwuGtHOR87sIaEqvOVx97KKGzkZjmRJDJel+d38cefuyXdKTHVY2Ri\n7H3n0ho90/Ps31LKxw5Uc7k9NjqK0RKhu2+0/cVmg5XLPFYiRqobIj9XuaH/cR7tHpksEswlfWOu\nberXKoJ0ITAMk/5BNS04jJpMJugbSDLx21u2SxQVOigtsjoeLAHCEiECWYtvMrmYIwOCuSHGN6Zm\nMY+LOP+XFvEeLD0L/R6809jLE784RzimsmFlLr9x71pysq5tdPqNhvgcLD3iPcjMdL8fhLXtGPqf\n/jlt3/gbkn0h7E6Zig9spOh3/yvSup3WZn1scLwY4cmz/kwQI0JxG21jkjTcisGyQJKiLI1MY3HD\nUYO3TmkcPqkyFLGqjOoKO7fWKtSssGOboZCYmEQxUmypqsGRukFePTxA3ckQum4Vt9s2+XnP7hwu\nDvbRcL6fwWE9XRAapsnLs0xEmC5CdCbu2bGCi+dVzjRGiYZsmEaqG8IlsWd7gK2b/FwO9nPmcn9K\naBm/qz0wFJ+yyA+GE+xeX8wbp7omXTd2F162S3hcyqxFifnu4GfqyDB0CT1uR4vJPP/8MM//ez3x\nxOgIj89rZ9smPzVVPmqqvFSt9OByXt8F9FyZ6rxdbK7mvF0sIlF9kvDQ0ZWgoyc+Lq51hJyAwvpq\nX3rMYqT7oSjfid1+4wpVAoFAIBCMZVt1AZVlfh5//iynzg/w1e++zaffV8O26sKlXppAIFhAhCiR\nwjQMLvx/fwy6Qdmd1ZT87mexbb3dquIndkZkECNME/qjdtqCCqG4VVhlOXUqslXyvVYXwkQudVkj\nGvXNGroBTgVuq1XYu0mhIGfu7dROxU5BtpvG1ggHDw/wxtFBwhGrjXtVhZt9e/K47ZYcsgOWz8Bt\n5I3bNQb4ymNvZXzs40293L6phIIcz7wKR9M0udwe51h9iKMnQjSdj6R2ee3k5ynsqA2wa2s2a9f4\nxowg5E+5q/3SO5Pb/kfIyXLx0bvW4HbJ07bq/+vLzbT1hGdce57/6tr8/V4HHtnFQL+BlhIijOT4\nY1hSJLO+OovqSqsLorTI+a6Z5b8eRYLFQNNMuntHOx06ukcFiNDQZKNal9NG+ZhOh7Jia9yitNiF\nx31zCVQCgUAgEExFts/J7z1Yyyt17fz41Ra+87NT3LqxhI8eWI3bKUoZgeBmQHySU0g2G5v+/ovY\nswPYbzkAspzqjOi3xAgpsxhhmNA9bJlXppM0PBoV2SoBlzFJjNA0kxPN1ohGW7e1M16UI7G31sG2\nGhmXY36FaE9fgoOHBzh4eIDOHmtXPiegcP89eezbk8fycnfG+40tCHsGo1N6LPQPJfjq40fJm2ac\nYyKqanCqMczREyGO1Yfo7bfGEWwSrF3tY3ttgO21fspLXOPayoejSa70hCkv9JHlcUwqWBOqPqWR\nJcCmylw8TnnaXfiEqnP4ZOe06wfI9jn46qe3k+VxzHjb9GMnDJovRixDylQqxnDYNXoDyUR2q8hu\nHdmtUVAg86e/XXtNRwlupBGGGwnTNAkOaVanQ+dIwoUlQnT3JjAm+NnaJCjId7Bqg98atyhJiRBF\nTvJybuzxHIFAIBAIFgpJkrhzWzlrl+fw2LNnOHSyk8a2QT73gfVUlQeWenkCgeAqEaLEGBwf+Khl\nYBkbhND0YoSmQ8eQwpWQTFK3IWFS5FNTSRqT262DwwZvnlJ565RGOGYiSbB+lTWisbrcPq/iIxrT\nOXzM8ok402Tt+DscErfvymHfnjw2rcsaF/84E9MZUI4w3TgHQDCkcqzBEiHqTw+nRxI8bju37sxh\ne22ArRv9ZPkmn3pJTeNPvl9He28Yw7QKtrICH//rk1txyKO3n8mg8sD2Zen/n2oXvncwSjyZOfFk\nLEORJLGENq0o0TeQ5FxLmHMtlhBxoS2KPsZnsDDfQe16P+d7+xjWotid4ztntq/LbEi6GExMAZnO\nM0QwNfGETmf3mK6HkXGL7jjR2OTzKstnZ80qb7rTYWTcoqTQiaKI4y4QCAQCwWwozffyvz65jf84\ndIHn37zEn/7wHd6/ewUf3LtCRIcKBDcwQpQYSywIkZ6UGGHLKEYkNIkrIZmOkIJuSthHkjSyVVzy\neDHCNE3OtxscakhyqlXHMMHjgv3bFPZsVMj1z/3LU9dN6s8McfDwAG/XBUmq1nNuqPGxb3ceu7dn\nz7u1e7pEhIkcb+rjI++pxCHbuNgWS49lNF+Ipm9TWuRkx+YA22sD1FT5kOXpBZI/+X7duHEKw4S2\nnjB/8v06vv6ZnenLpxNP8vwucv2uSZdPYpYi0MR4Sk0zudAW5dU3Q7xzop9zLRH6B9X09bIsUbnC\nS02l1zKlrPSSm2MJGrqxnCd/2cTx5j5C4SS5VzkWMh8mpoDMJDLdyFxtN4humPT1JycJD+1d8XHv\n+QiyLFFS5GRTqtNhRHgoLXbhzyDCCQQCgUAgmDuy3cZH3lPJxlV5PPbsGX5++CKnzvfzufvWUZIn\nokMFghsR8Ut5LOGUMWIGMSKSStLoTidpGFRMkaSRUE2ON2ocqlfp7Ld2TUvzbdbHRy8AACAASURB\nVNxaq7C1WkaZoTgf/1hWYRUMGjz1TA8vvNrFYMiaPy8pcrJ/Ty7v2Z1LYf7COBGPjU0cGI5PcvcH\nq5mku1PjH//5EqfPjRblNpsljlhjGQHKimchDqQYjiZp783s79DeG2Y4mkx3KyxEnGRBthuXw048\nOTk6cSw1y3KpPzVsdUG0Rmi5EEkLQQABv8wtWwNpQ8pVyz04ptj5ttts/PrdNTx0x/yL5asptBOq\nzvGm3ozXjYhMN8Mox1y7QYbD2vhYzVQHRFd3AlWb/AHIy1HYtDYrLTiUFTspLXJRkO+YU2eSQCAQ\nCASC+bNmWTZf/8xOnnypicOnuvj6947y8B1V7NtSJsYfBYIbDCFKjCW30uqQsI0WZsGYlaTRH7UO\nlVsxWJadpMg3OUmjP2TwRoPKkTMqsYRVpG9eLbO3VmFliW1OX5C6YfDEc00cPhoi2GtDT1hr8nns\n3LM/n/178li9yrPgX7pjExF6gzG+/eMTDAwnMTQJNaygRhTUqAymxOvtQXxeO7fvymHH5gBbNvjx\neuZ3Sl3psUY2MmGY1vVrV+SmLxsrnkxlZDmRiQX93o3FvPxOe/p60wQjaUOLyWhxGS1m5+dNUX7O\necAaJ6kod1NT5WXHlnxKC+0UFTjm/B7Mx9hxIcYupht7GRyOEwonbgrDyUzdIL88coWhkMHmFcVp\n4aGjy/J7GA5PFqbcLhvLy92ThIfSYudNl4IiEAgEAsGNiscl85sfWEdtVT7f/8U5/uXFJupb+/mN\ne9cS8M7eD0wgECwtQpQYi91KpTBN6IvaaRtUGEqJAX6nzrIclXzPeD8AwzRpvmylaJy9qGMCPrfE\nXTtldm9QCPjmNqKRSBocOR7kyWfa6OrUAAUwUbxJHH6V995eyK/fXbEwr3caFLuNRMSGMxFg6FIM\nPTF6qtgcOqsrXXzyQyuprvTOOYIw025/eaEPm0RGYcImWdePZS5xkpkK+s2r84knDaSkQnTYEiL0\nuJyOJrWe2MTt13nfbSVsqvGzepU3PRpzrfOHF2LsYrqxl4ljKjcipmnS1ZvgjWP9JIIO9KQdPWnD\nUK0/L7REeSElMIElGhYVOKmu9FJalPJ5KLHEh5yALHZZBAKBQCC4QdhRU0hVWYDvPneGhtb+dHTo\nltUFS700gUAwC4QoMQbdgO6wlaQRSyVp5Hk0lmVI0ognTI6eU3mjQaV30Kqklxfb2LtJobZKntE/\nYSyGYXKuJcKrh/s5fHQwbZRnd+o4/JYYYbNbz9HQ2k9C1RelzT6RMKg/M8Sx+hDH6ocYDFljGZJN\nxp2lI7kTFBTa2bkpb17GiNPt9md5HJQV+DJGdJYV+KY0mpxN18FTr7Twy6NXMFQbWlyhrdvGhZND\n6AkbMDp7aFN0FJ+G7LJSMWwO6z0/0ZnEHihgw9pr5/0wloUau1iIsZfrgVhMT49YtHfF6Q/qXLgY\npqM7kTJWHS+uSHYD2a1jd+i8/7ZyqldmUVbsorDAMSZ+ViAQCAQCwY1MTpaT3394My8fu8JPDrby\n9z89ye21pfzanVW4HKLkEQiuZ8QndAzvXHETVa0kjeIsK0nD6xi/dd89YI1oHDurklDBboPtNTK3\n1iosK5pbUdfZHefgmwO8dniA7j4rLjMvR+H2PTm82XIBm3Oyi/9Ct9n3DSRTIkSIk2eH034Jfp/M\n/r25bK8NsHm9H7vMVUdIzrTb/78+uXXK9I25klQNWi9GOd04zPOvhIgO+zH1MQWoZFqRnC4Nu9sS\nImxy5vmRwfDSmkEu5NjFfMZelgJdN+npS9A+xuehoytOe2ciLZaNxaFIlBa5KC5y0NjRR8JMYlcM\nbA4jLejl+V08dF/pDSO+CAQCgUAgmBs2SeKuHctYu8KKDn29voNzlwf53H3rqCwV0aECwfWKECXG\nkOPRyZM0ygMazjEFqmGYnLmo80a9SlObNX8e8EncsV1h13oFn2f2XRHhiMYbRwc5eHiAcy0RAFxO\nG/v35rJvTx4bqn2oukHLY1cWpc3eMExaLkQtIaIhxIXLsfR1y8tdaZPK1au8k0z7rkYImd1uv8zX\nP7OT4WiSKz1hygun7pCYyEBQpTEVy3muNcL5i1E0feQ9tCPJBooviezWrF3zCbGcs2GpzCAXcuxi\nLmMvi41pmoSGNStKM9X1MNIB0d2THPP+WUgS5Oc62Lw+a9TnodjFxnV5SGYSW+p8ffIl/YbvBhEI\nBAKBQDB/ygt8fOWT2/nZr87zwtuX+dN/qeO+vSv4wJ7lIgJdILgOEaLEGFbnJ8f9PRo3efuMyuEG\nlYEhq0CqLLNxa62D9avss3ba1zST46dCvHp4gKMnQmiaiSRB7fos9u3JZdfW7HHmeU7bwrbZx+I6\n9aeHOVof4p2GEKEhK71DliW2bPCnhAj/giV4ZCIUTmQsqmHybn+WxzHO1HIium7SfDFM/Zkh2toT\nNJ+P0tM3+t7ZbLCqwsOaSg99sWGaunqQpuiCmIgETHXLpTKDXIyxi/mYbc6XRNKgqyc1btE51mQy\nQSQ62WTS67Gzarmb0pFozRLL76G40InTMfmHREGBi97e0e6JG6UbRCAQCAQCweKhyDYe2l/FxlV5\nfPe5M/zHoQucTEWHFt0Ext4Cwc2EECUy0NGrc6hBpa5RQ9VAkWHXBplbNymU5M+uADRNk/OXYxx8\no5/X3x5kaNgSAspLXOzfm8vtu3LJz526CyBTYbW3tpT7ds/O5LKnL5H2hjh5bhgtFW2Y7Ze589Y8\nttcGqF2fhdu1+DvHumHwwtG2KY0ss33OaXf7h8MaTecjVhdES5izLWF0bfR6hxO21/rTsZxVK7w4\nnTaefKmJN491I83hLN9eU0jLlRCD4evLDPJ6L7QNw6R/UE1Fa1qCw8h/+waSk6JlZbtEUaGD9dU+\nS3godqW7H/xZV2cyeT11gwgEAoFAIFha1i7P4Ruf2ckPXmzirTPd/NHjR/nogdXctqlEmFoLBNcJ\nQpQYw7lLGi8fTXK+w/JyyPNL7N2ksGOdgsc1uy+t/sEkr781wKuHB2hrjwOWP8P7DxSwf08eq5a7\nZ/UFmKmwKi/NnjLxQTdMms9HOHrC8oe4nHpugJUVbrZvCrB9c4CqFZ50m/u14qlXWni1rn3K66MJ\njZ++1srDd1QhIdHRneBcS5jGFkuIuNIZH3d7m0PHERhjSKkYrFzv4yMHitO3Sag6dY09c1qny2Hn\nU++r4d9/df66a/+/XgrtSFQbJzh0dMWt8YueOMnkZMUpJ6BYwsNI10NKeCjMd845tWWuXMtuEIFA\nIBAIBNcvHpfC5z+4nk1VefzLC03883+eo76lj0+9rwb/LEeFBQLB4iFEiTE88XycpAprKuzcVqtQ\ns9w+qwI+ntB5qy7IwcMDNJwZxjSt0Yjd27PZvyeXLRsCc0rjGMt0hVU0pnP8lJWWUdcwxFDYah9w\nKBLbNvnT/hDTdWQsNtN5SQCYBgwHJZ59oZdDB2MMhyAcGW3pdzltbFqbRXWVl+XLnPzk0DmG4pO7\nGCb6PYTCCQaGk5NuNx23birB45Sv666Ea1Foa5oVrTlOeEh5PYyM/ozF5bRRnup0KC0eER5clBQ5\n0xGqAoFAMFeampp45JFH+PSnP80nPvEJOjs7+cM//EM0TUOWZb71rW9RUFDAM888wxNPPIHNZuOh\nhx7iwQcfXOqlCwSC65Rd64pZXZbNd587w/HmPlo7jvCZe2vYVJm/1EsTCN7VCFFiDI8+4MYhSxTk\nzGyAYxgmpxrDHDzcz5vHgqkoQqip8rJvTy57d+Tg8y7s4Y0nNU43B2lqjXPi5DBnmsJpM8CcgMJd\nt+exY3OAjWuzxnlUzJeEql/1rvzY5AjTBEOT0GMyWlxGi9nRE3YsJwfoRKcw38G2TQFqqrxUV3qp\nKHODZPLUKy389K3zDMUzCw0T/R7cTnnKcRGbBLduKub0hWBG0WGxuxIW4rheLaZpMhjS6OiO09E5\nknBhiRDdvQmMCcEvNgkK8h1UbvSnfR5Gxi1ysxXR/igQCBaUaDTKN7/5TXbv3p2+7Nvf/jYPPfQQ\n9957Lz/84Q/53ve+x6OPPsp3vvMdnn76aRRF4YEHHuCuu+4iOzt7CVcvEAiuZ/ICLv77R7fw4pE2\n/u31Vr79kwb2by3jof1VYtxTIFgihCgxhrKCmb+IrnTGOXi4n9feHKBvwDLXK8x3cN97c9m3J5fS\nIteCrknXTc40D/PDZy9x4UKCZHxUMKlc4WZHbTbbawOsrHAv2FiGbhg89UoLx5t6GRhKkOt3smVN\nAQ/fUTUnx2JVM+jp1bBFPYSCoMXkSbGc9tQIhuzScXg0vvnILZM6AZ58qTnjOMVYsn1OkppBQtVx\nKnZiCS2jIAGWUHHvrhV89IBzWnFgobsSFuq4zoV4Qqcz1eUwbtyiO040NjlyNstnZ80q76Rxi+JC\nJ4oi3KoFAsG1weFw8Nhjj/HYY4+lL/va176G02n5+uTk5HD69Gnq6+vZuHEjWVlZAGzdupW6ujru\nuOOOJVm3QCC4MbBJEvfcUsG6VHToq3XtnL1oRYeuLPEv9fIEgncdQpSYBUPDGoeODHLwcD/NF6IA\nuF02DtyWx749uaxd7Zu3IJBp1zwS1ag7mRrLODk0Os4gSSheFcWnonhVtu7y8fCBkgV5jWN56pWW\ncSJA/1Ai/fePHVgz5f2CQyqNrZGUF0SYlgtRVM0ErPERyZ6K5UwJEXanjjSmzs3zTzaSnGn8Y4Ro\nQuNr3z2SLvTvv20VeVPEaOb5nenjfS09B+Z7XGdCN0x6+5LpTocR4aG9K07/oDrp9rIsUVLkZNNI\nrGaRNXZRWuzC7xNfCQKBYOmRZRlZHv995PFY39e6rvPkk0/yhS98gb6+PnJzR9OacnNz6e2d/t+M\nnBwPsrw4u6EFBVmL8riC2SPeg6XnRnoPCgqy2FhdxBPPn+GZ18/zzSeOsXZFLvu2lXNrbRl+743p\nN3EjvQc3K+I9mBuiApkCVTV4p2GIg4f7eadhCE03sUmwdaOffXty2bk5G6dz/jvHE3fNfQ4X2Yof\nPergbHM43T6fm6Pg9yQwlDiyRxtXxE/0UVgIphMBxj6fbpi0tcc41xJJCxGdPaMCgE2CFcvcVFf5\nWL3KTUtPH43tAwTDcRyKnXhychRkJiPJseMfmXDKNhKakX68sYX+1DGaBde8PW+2x3U6hsLaOMGh\nPeX10NWdSIk/48nLUdi0NistOJSl/B7y8xyzjrMVCASC6wld1/mDP/gDdu3axe7du3n22WfHXW9O\njPrJwOBgdFHWVlCQNaUZteDaIN6DpedGfQ/u37OCNaV+nn/rEmcvDnD24gD/92cn2VSZx+71xdRW\n5aEskpi50Nyo78HNhHgPMjOdUCNEiTGYpknz+f+/vTuPjrJO8wX+fWvfk8pSCUlIgASSEGQJi4DQ\nbtitPXO1VXoINLHvHS+nnW7OtHPVMxiX2KcdzsXTo7a2I7Yzc3WwxbQ09jDjiootrQFE6ACBEAhh\nSchSWStVldrf+0ctqUoqEJbwVqjv5xxPKlWV4lcpk3rfJ8/z/Tmx6+tu/Hlfb6RDYUqeFrfclIbl\nN6YhLVV5Vf6trZ+ewMd/7oDXoYDXbkSPV46z8ADwYMY0XSSkUmcQUfXbvYh3mDU8R+FqGK0IIPqB\njnYf3vpDC861etDY5MCga6j9X6+To/wGUzALosiA6VN00EaFHN6KjEhXiEGnwh93nxpTkGSKQQ2z\nURU3tDJFr4RMJoN7IH7w5S8eXBi5LHVg5YWKK9Gvo9cbQFunO1J4iA6ZHLCPLORoNTIU5GlHFB4m\nZamvSq4IESW2QECEw+nHgMMH24APA/bg5SUL5NBKs4PxuHr88cdRUFCA9evXAwAsFgu6uroit3d2\ndmLu3LlSLY+IJrCZU9Iwc0oaegfc2Hu0A7X17Th4ogsHT3RBq1ZgYUkmlpRlY/rkVMiYpUV0VbEo\nEeXJTSdwtNEOAEg1KXD3dy24ZWkapuZfnZN+m92Hg4dt2HuwD3sP2hHwG4I3CCKUBg+Ueh8M5gCq\nf34DdOpg8cPt9SNtlDEEs3HkuMOVChYB1LB2e+FzyeEbVMA/qIDfIwMg4L9bugEAudlqFBcZUFKk\nR0mhHrmTNBcdYYkelxhLkKQ/EMAf/tQEp3vkyTgAlE1NR+2R9ri39Q64YHd6E2IbTSD4fQ2/jqII\niD4Bfq8cAY8MSqjw6v9rRVuHG9Yuz4gsDJkMyMpUo7hQj9xsTXDcYlKw+JBqUjBkkug64feLGHD4\nMGAPFRfswcu2yMeh68L3sTvi5+fsO2jDhvVTr/2TGEc7duyAUqnE3//930eumzNnDp588knYbDbI\n5XIcOHAAVVVVEq6SiCY6s1GNO2/Mx5035qOl047ao+3YU9+BL+va8GVdG9JMaiyemY0ls7KRm6GX\nerlE1wUWJaKkm5VYtsiMW5amYW6ZCXL5lZ3siaKIljYX9tf1Y3+dDQ0n7JGDR5lChDrVA6XeC4V2\naCzDGwDe3nkC//uvZwIInsiPPoYwctzhcrg9ATSdduJ4kx0NJx1oOaqD2x11lCuIUGh9KJqqw30r\n8lFcqIfJOPb/dUbbbeJimQ7DMxjCNCo5ls2ehB8sn4rjZ3svWrC51tkRYYOD/siIRWu7C+5OI2wd\nSvg9ckCM/X/rL50DSDEpUDLdEOx6yBrqesjKVF/2lrJEJA2vNxAsHDj8wQ6GULEheNmPgejrQsUG\nhzN+AXY4mQwwGhQwGRXInaSGyaCAMeY/OW5dNgnAyEyZieLIkSPYtGkTWltboVAo8PHHH6O7uxtq\ntRqVlZUAgMLCQjzzzDN45JFH8OCDD0IQBPzsZz+LhF4SEV2pPIsBP7QU4f6bC3H8bB9q69vx7fFO\nfLDnDD7Ycwb5WQYsKcvGjTOzkHqV/1BIlExYlIjyf35y5X9V8voCOHrcjv11/fimrh8d1uDYgSAA\nxYV6LJiTgjllBmx+vw49ccYOAKDhTG9kFwkAkXGDQ03d6OobvOIxhO5eTzALIhRI2Xx2MLK1KABk\npClhyRYxGBiEV+ZCRroS5SUZl7xLxJXsNnGhDAa9RhHJYBjvgs3F+P0iOrqixy2GPvb2jzwhkMsV\nUGkCgMILvUGG6VP0uPfWfEzO0UKv448jUSJyuwNR3QqjdzIM2P2Ry+Ftoi9GoRBgMiiQkabE1Hzt\nUGFBL4fJqIBRr4h8NBqC12k18ot2pmVmamC1TtyixKxZs7Bly5Yx3ffOO+/EnXfeOc4rIqJkJhME\nlBaYUVpgxto7ZqCuqRu1R9px+FQ3aj4/id/vOomZBWYsmZWN8hmZ0Kh4TEd0KfgTcxX027z4NrRb\nxl+O2CJZC1qNDEsXBLfsLL/BhBTTUB5FaYEZX40yetBnd8dkRchlMqxZMQP/83+oUHesHXkWA4y6\nsaUB+3wizrQMouGkPRJKae0eymeQy4Fp+TqUFBlQXKRHcaEeGWnBxx6tw2GsrmS3iQtnMAx9f8KF\nmfHMjRBFEf0DvuBWmqGAya5eP5rP2tHR6Ykp6ADBAlRGmgpzy4zBcYtI3oMG6WYlvP6A5OMkRMlI\nFEUMugKxnQvhAkOczoXwfx7vxcMTAUCtksFokCMnSz2icyHczWCKus5oUECjlnEEi4hoAlEp5VhY\nYsHCEgsGnB5809CJ2vp21J/uRf3pXqiUx1E+PROLy7JRNtU8btu+E11PWJS4DKIo4mxrcCzjm7/0\no/GUA+HA76xMFW5floKFc1NQOsMApSL+L6LVd8zA/uMdcMc52B2eFRHuODjU1A1r7+AFOw5sdh8a\nm4IdEMebHDhxygm3Z+gvdiaDAgvnpgSzIIoMKJyig1oVf41XMvZwpbtNRGcwDBf9/QkXbK5GboTb\nE0BbR2jcoi3Y7RDeZjNeW7VeJ8e0Am2k4JATGrfItqhH/Z4CgFomzTgJ0fUkHPB4wc6F6NGJAR/s\nDv+IIuJodFoZjHoF8vO0Q10K4cJCVOdCdPHhQj/3RER0/THqVLitPA+3leeho9eJPfXBgMw9Rzuw\n52gHTDolFs3MwpKybEzJNrIITTQKFiXGyOsN4MhxO775Sz/21/VHug1kAlA63RDaLcOEvEmai/7C\n8QcC+OPuUxAEGYCLb405WseBKIr4zsx8NDQ5QuMYdrS2D53ECwKQn6sJBlIW6lFSpEe2RX1NfiFe\nqNOhx+aCtdeJPMvoc7+XOpox1gJKICCiq8cTU3AIj1t09XgwfDc5hVxAlkWFsmJDKGQy2PUwe1Y6\nvG4X31yIroJIwGM4byFmJOLSAh6HE4RgAdFoUCArUx0pJJiGdTJEX2fQy0ctKBMREcWTZdbhnmVT\ncfdNU3CqzYbaI+3Yd6wTn+5vwaf7W5CdpsOSsiwsLstGZqpW6uUSJRQWJS6gr9+L/YeCRYi6+oHI\njLBOK8eyRebIWIbRcGnfxosFOEaPHkR3HIgBwOdSwDcY3BVje5Md2/zHIvfVamSYU2YMFSAMmD5N\nD71Out0mRtvKUwTw622HLpovcSWjGQ6nD61tsYWHtnY3zne64PHE6U5JUaKs2BDZVjMcNGnJUMcN\nPDWnqGC1xi+6ECWzeAGPwa0qYwMebVEFiKsZ8Dh8TEKvl0N+kfwFIiKiq0UQBBTmpKAwJwUVt0/H\nkeYe7AltL/re7ma8t7sZ0/NSsKQsGwtKLDBolRd/UKLrHIsSUURRxOlzg5GxjBPNzshtOVlqLJyb\nggVzUlBSZLjs3RDGEuAol8kgiiKs3R7sq+vBuRMy+FwG+N1yAEP/rkzpx+K5ZsyZGRzHmJyrTZiD\nb7VSDr02flECGFu+xMVGM7y+ADqsnkinQzjv4XyHG/0234jH06hlyMvWDBUewmMXWWpotcx2IIom\niiLcnkBkLMI2rFMhdqvKUPeC04/BwbEVGEYLeDSFOxeiAx6NCpgM8jEFPBIRESUKhVyGuUUZmFuU\nAafLh28bO7GnvgMNZ3pxoqUfb3/aiNmFGVhSloXZhRns0qOkxaJElA3/dByNp4KFCJkMmFUSHstI\nQW625qr8G6ONNYgBoLPTh23/fR6t571oOOmI2r1BHdqW0w+5xgeF1g+FxofMNDUeXjc1IcMS3V4/\nnK6LJ79fLF9CFEU4HAF0dvjxl7petEYVHjqsbgSGBdzLBMCSqUZhgW5YyKQaaalKjltQUhJFEc7B\ncAeDLyroMX7nwuUEPJqMCkyepIVWIzDgkYiIaBidRoHls3OwfHYOemwu7D3aga/r23Gg0YoDjVbo\n1AosKLFg6axsFOWlQMb3SEoiLEqEiKKI/Fwtsi3Bjoh5s0zjskVjOMDR2uOBb1ABnys4iuF3ywFR\nwLazwS4Kc4oSSxakoqRIjzM9PTjQ3Ibhv5uu1baXl+NCmRLRegdc6Le7YdKpY3Iezre7IuMX4d1M\nopkMCsyYph8xbpFtUUOpZJWZrl8jAx5H71wYymnwwT+2BoYRAY/BbgV5bMBj1HXRAY+ZmUZYrQPj\n+OyJiIgmvjSTBnctLsBdiwtwrtMeDMesb8eXdefxZd15pJs0WFwWDMjMydBLvVyicceiRIggCPjZ\n/yoYl8f2B0ScbRnE8VAgZVuDDg57dMCNCLnaj6kFWtx9Sy6Ki/TITFdF/oroD2Si5nM5DjV1o6tv\ncFy2vbza4u2eIYpAwCtDwCuD3yNDwCOHLKDA4882oad3ZFeFUiEgOyu4o0W48BDe4eJSczyIEtHw\ngMe4W1XGBD764HD4GfBIRER0nZhsMWCypQgrby5Ew9le1Na3Y/9xK96vPYP3a8+gINuIJWXZuLHU\nErM7H9H1hGd248Dh9KHxlDO4LedJB443OSIhmQBg0MmRnQN44IJP7kZGhgLzSzNGDX0MZyv85H4t\nmk53X9G2l9eCze7D+XYXUuWpaLH2w++Vwe+RI+CVAeLIVjR9GjC71BgpOIQ/ZqSrEiYjg+hiwgGP\n0V0KkYDHcHEhakzCNuCDc4z5C+GAxxSjEpNztDFdCjE5DAx4JCIimpBkMgEzp6Rh5pQ0rP2uH3Un\nu/D1kXYcOdWDM+0nUPP5CZRNScOSsmyUz8iEWpW45wJEl4pFiSskiiLOd7hx/KQDDSftaGhyoOW8\nK2ZrybxJGpQU6VFcFNwVIydLDZlMgNvrjxvgOBqNSjGmbS+vBa83gLZO97CQyeC4xYA9+kQrmMUh\nyEQoNQHIVQEICh9MKXLMLk7Bj/+6CHqmDlMCiQ54jB2R8I24LrqbIbrweCHhgMfMdCWMBgY8EhER\nUSy1Uo5FpVlYVJoFm9ODb451ora+HUeae3CkuQdqpRzlMzKwpCwbpVPMo+5kRzRRsChxidzuAE6e\nDo5hBMcx7DEn4WqVDGXFBpQUGVBSpMeMafpRRw3USnnCFBniEUUR3b1enA8FS7a2DRUerF2eES3k\nMhmQnalGcaE+1PEQ7HrITFcCMj9SjcECxaUUYoiuRHTAY6SY4PBhYGBk58JA1OjEpQY85mSph3Uu\nyIcVGxjwSERERJfOpFPh9vl5uH1+Htp7nNhT347a+nbU1negtr4DKXoVbpwZzJ/IzzJIvVyiy8Ki\nxEV09XhiuiCazzpjAuMy01WYW2YKdUIYMCVPC7l8Yp1wOAf9MZ0O59uHOiDcnpF//U01KVAy3TA0\nbhHKfcjKVI9pq9RELsRQ4goERNid/hGdC36xD+0djvg5DNco4JGIiIhovGWn6fCD5dNwz7KpaDpv\nQ+2Rduw71oFPvjmHT745h0npOiybm4v8DD2K8lL4B0CaMFiUiOLziWg+50TDSQcaQ10QXT1DAYwK\nuYDCKXqUFAZHMYoL9Ug3qyRc8dj5/SI6utyRHS2GCg8u9Pb7RtxfpRKCwZKhgkPOpKEdLsZjVxJK\nLj6fCLsjXDgYCniM2aoyPCIRuu5KAh5jwx0Z8EhEREQTlyAIKMpNQVFuClavmI7Dp7pRW9+Bv5zo\nwrufnQAAyGUCCnNMKCkwoyTfjMJcE5QKFikoMfHsMkQURTz89FG0tg/tsTIETAAAGGRJREFUFpFi\nUuDGeSkoDo1iFE7RQZXA202Kooj+AV9MwSG8vWa71T3iL8aCEO70MMaMW+Rma5BuVnKGncbEEwp4\njJe5MHyryvEIeMzLNSDg9zLgkYiIiJKOQi7DvOmZmDc9Ey6PD50DHuw5dB4NZ3pxorUfjS392PHV\naSgVMhTmmFBaYEZJgRlTJ5mgkCfueQ0lFxYlotxYngq704/S0ChGdqYqIWe/3Z4A2jqGCg6RIkSH\nGw7nyJM9g16Owin6SNdDbrYaOdkaZFvUbD+niLgBj1GdC7aYcMerH/AY6WaICnjUaeUX/RnMzDTC\nah24Gt8CIiIioglLo1JgfokZ+enBUWmny4vGc/04dqYXDWd70XC2Dw1n+4DdzVApZZiel4qS/FSU\nFqShINvAwEySDIsSIYIgoHJlrtTLiAgERHT1eGIKDtZuH06fc8Da7Rlxf4VcQLZFjbJiQ2RbzfC4\nhcmoSMjiCo2fuAGPo3QuDESNTnh9DHgkIiIiuh7oNErMnZ6BudMzAAD2QS+On+1Fw5k+HDvbi/rm\nHtQ39wA4BY1KjhmTU1GSb0ZpgRmTLQZ2TdM1w6KExBxOH1rbhgoP4bGLtg533B0A0lKVmFViQE6o\n4yEcNGnJUCdMwOalbnVKFzZawONonQuXFfBoUKBgMgMeiYiIiK5XBq0S84stmF9sAQD0OzyhIkUv\njp3pxaGmbhxq6gYA6DWKYJGiwIzSfDNyMvWQ8Y9LNE5YlLgGvL4AOqyeSMEh3P3Q2u6GbWBkyKRG\nLUNejibS6RDOe5hdlg6HY1CCZzA2/kAANZ+fxMFGK3psbqSZ1Jg3IxOrbitiO1hIdMBjZKeI6IDH\n8PaUUQGPdocf4lUMeIy+jgGPRERERMkpRa/CotIsLCrNAgD0DriDBYpQoeLgiS4cPNEFADDqlCjO\nN6M0P1ioyE7TsQOWrhoWJa4SURTR2+8LhUvGbqvZ0eVGYNjYvUwALJlqTJ+qC+5yESk+qJGWqoz7\nQ67TKeBwXKMndBlqPj+JT/e3RD7vtrkjn69ZMUOqZY2b6IBHm330ToboAsQVBTyGuxaichiixyQY\n8EhEREREl8tsVGPJrGwsmZUNAOjqGwwVKPrQcLYX+xs6sb+hEwCQYlChNN8c2t0jFZmpWhYp6LKx\nKHGJBl1+tHUMFRzOd7gi22wOukYG/pkMCsyYph8xbpFtUUOZwDt5XCq314+Djda4tx1s7ML9Nxcm\n7ChHOODRFtWlMBCzRaV/xJiE3eGL+3rHM14Bj0RERERE4yUjVYvlqVosn50DURTR2TsY6aJoONuH\nPUc7sOdoBwAgzaSOKlKYkZ6ikXj1NJGwKBGHPyDC2uWJLTyEdrro7vWOuL9SIWBSljpSeAh+1ERC\nAJNBv92NHps77m29Ay70292wmHXjvo5wwGNsuGP8zgV71OjEpQY8Ts7RQasVojoXGPBIRERERNcn\nQRCQlaZDVpoOt8zNhSiKON/tDBUogoWKr46046sj7QCAzFRNJDSzpMCMVINa4mdAiSw5zpjH6I3f\nt+DAIRvaOt3wxTlJzUhTYs5MIyaFt9acFCw8ZKSrkr5tPsWgRppJje44hQmzUYOUy/hF5A+IcDj9\nUdtS+mAb8A9dHqeAR5MxtnMh+jpVqLuF21ASERERUbISBAG5GXrkZuhx+/w8BEQRLZ324LajZ3px\n/Fwfdh9qw+5DbQCA7DRdMDSzwIzi/FSYdCqJnwElEhYlQkRRxLd1NvT0eTBlshY54cJDKOdhUpYa\nGnVijh8kArVSjnkzMmMyJcLmzciAXJChr98bk69giyokhAMebQND111qwKOJAY9ERERERNecTBCQ\nn2VEfpYR3104GYGAiDMdA6Euij40tvThi4Ot+OJgKwAgN1OPkvzgqEdxfioMWqXEz4CkxKJEiCAI\neOnZ0shlGt1oAY9ypwEZQibarS643AHIRDkUMjnef8+Jd98+OKbHHmvAoynqOgY8EhERERElDplM\nwNRJJkydZMJdNxbA5w/gdPtAZNzjZEs/Wq0OfPZtCwQAk7MMKMk3Y8bkVFhStUgzaaDT8FQ1WfCV\njpJsxYgRAY9RXQq26M4FR+yYhMt9sYBHOQA5FAoBeoMCxlR5TNcCAx6JiIiIiJKHQi5DUW4KinJT\n8NdLp8DrC+DU+f7IuEfT+X6c7bDjk2/ORb5Gq1Yg3aRGukmDtBQNMkwapJk0SE/RIN2kQYpBBRnP\nG64LLEpcJ8YS8Bj+aI+67lIDHnOy1MM6F+TDwh0Z8EhERERERKNTKmQozjejON+Me5ZNhcfrR1Nr\nP0612dBtc6O734UemwvWfhdarI64jyGXCTAb1chICRUrogoWaaFihipBd/+jWCxKJKDhAY/BnAU/\nAuhDW7tjROeCze6D/RoFPBIREREREV1NKqUcpVPSUDolLeZ6URThdPvQ3e9Ct80VKla40WULFi26\n+11oONs36uMadcpgsSJUsBgqXgSLFgatkn9ETQAsSowzn0+E3RG7U8SIboaogEeb3QeH89IDHrMZ\n8EhERERERNcRQRCg1yih1yiRn2WMex+vL4CeARd6+l2hYoV7qIhhc6HFasfp9vi75qmUslBnRahY\nYVJHui3STRqkGtVQyHnuNN5YlLgE4YDHSAZDVGEh+rroooNz8GL5C0HhgMdUkxL5ufEDHvNyDRAD\nXgY8EhERERERITgKkmXWIcusi3t7QBQx4PAEx0JC3RXdUZ0W3TYX2rqdcb9WEIBUgzqq00I9IttC\nq+Yp9ZXidzDKt4f6ceKUIzbgMarYcPGAxyCFQoDJoEBmumpYuOOVBTxmZhphtcav8hEREREREVEs\nmSAgxaBGikGNaTmmuPdxeXzotrljChXdtmD3RbfNhVPnbTjZ2h/3a3VqRajTItRlYdbB6fTE3Gfo\nNG/ofE8YcVv0/YXYe0fdZ+i62PuM6XGiPhEw8gsEAdBpFFhSln1NO0RYlAgJBEQ8/9ppOAdjgxkY\n8EhERERERHT90qgUyM1QIDdDH/d2fyCAvgHPULEiUrwIdl9Y+wbRYrVf41WPn7xMA6ZOil/AGQ8s\nSoTIZAL+b9UM9Np8DHgkIiIiIiIiAIBcJgt2QaRo4t4uiiIcLh96bC7o9Br09TkhQgzdFv/+sZ9H\nXR52ZfQ9xWEXxKELI+4jDr9z1HVxboo8lk6twJTs+Pkd44VFiSiTc7WYnCv1KoiIiIiIiGiiEAQB\nBq0SBq0yNHKvlHpJEwrbAIiIiIiIiIhIEixKEBEREREREZEkEmZ8Y+PGjairq4MgCKiqqsLs2bOl\nXhIRERERERERjaOEKErs27cPZ86cQU1NDZqamlBVVYWamhqpl0VERERERERE4yghxjdqa2uxYsUK\nAEBhYSH6+/tht18/W6oQERERERER0UgJUZTo6uqC2WyOfJ6Wlgar1SrhioiIiIiIiIhovCXE+MZw\nw/dtHc5s1kGhkF+j1SSWzMxru2csjY6vReLga5E4+FokDr4WRERENBEkRFHCYrGgq6sr8nlnZycy\nMzNHvX9vr/NaLCvhBPe8HZB6GQS+FomEr0Xi4GuROMbztWCxg4iIiK6mhBjfuOmmm/Dxxx8DAOrr\n62GxWGAwGCReFRERERERERGNp4TolCgvL0dZWRkqKiogCAKqq6ulXhIRERERERERjbOEKEoAwKOP\nPir1EoiIiIiIiIjoGkqI8Q0iIiIiIiIiSj4sShARERERERGRJFiUICIiIiIiIiJJCKIoilIvgoiI\niIiIiIiSDzsliIiIiIiIiEgSLEoQERERERERkSRYlCAiIiIiIiIiSbAoQURERERERESSYFGCiIiI\niIiIiCTBogQRERERERERSYJFiQmisbERK1aswFtvvSX1UpLec889h1WrVuH+++/HJ598IvVyktbg\n4CB+/vOfY+3atfjhD3+IXbt2Sb2kpOZyubBixQps375d6qUktb1792Lx4sWorKxEZWUlfvnLX0q9\npOvexo0bsWrVKlRUVODQoUNSLycp8X05MfB9QFo7duzA3Xffjfvuuw9ffPGF1MtJSg6HA+vXr0dl\nZSUqKiqwe/duqZc0YSikXgBdnNPpxC9/+UssWbJE6qUkvT179uDEiROoqalBb28v7r33Xnz3u9+V\nellJadeuXZg1axbWrVuH1tZW/O3f/i1uvfVWqZeVtF599VWkpKRIvQwCsGjRIrz00ktSLyMp7Nu3\nD2fOnEFNTQ2amppQVVWFmpoaqZeVVPi+nDj4PiCd3t5evPLKK/jDH/4Ap9OJl19+GbfccovUy0o6\n7733HqZOnYpHHnkEHR0d+PGPf4yPPvpI6mVNCCxKTAAqlQqvv/46Xn/9damXkvQWLlyI2bNnAwBM\nJhMGBwfh9/shl8slXlny+f73vx+53NbWhqysLAlXk9yamppw8uRJHgBR0qmtrcWKFSsAAIWFhejv\n74fdbofBYJB4ZcmD78uJge8D0qqtrcWSJUtgMBhgMBjYJScRs9mM48ePAwBsNhvMZrPEK5o4OL4x\nASgUCmg0GqmXQQDkcjl0Oh0AYNu2bfjOd77DAx+JVVRU4NFHH0VVVZXUS0lamzZtwoYNG6ReBoWc\nPHkSDz30EFavXo2vvvpK6uVc17q6umIOOtPS0mC1WiVcUfLh+3Ji4PuAtFpaWuByufDQQw9hzZo1\nqK2tlXpJSemv/uqvcP78edxxxx1Yu3Yt/vEf/1HqJU0Y7JQgugyffvoptm3bhn//93+XeilJ7513\n3sGxY8fw2GOPYceOHRAEQeolJZU//vGPmDt3LiZPniz1UgjAlClTsH79etx11104d+4cHnjgAXzy\nySdQqVRSLy0piKIo9RKSFt+XpcP3gcTQ19eH3/zmNzh//jweeOAB7Nq1i8dE19h//ud/IicnB//2\nb/+GhoYGVFVVMWNljFiUILpEu3fvxubNm/Gv//qvMBqNUi8naR05cgTp6emYNGkSSktL4ff70dPT\ng/T0dKmXllS++OILnDt3Dl988QXa29uhUqmQnZ2NpUuXSr20pJSVlRUZbcrPz0dGRgY6Ojp4sjBO\nLBYLurq6Ip93dnYiMzNTwhUlJ74vS4vvA9JLT0/HvHnzoFAokJ+fD71ez2MiCRw4cADLli0DAJSU\nlKCzs5PjZGPEogTRJRgYGMBzzz2HN954A6mpqVIvJ6nt378fra2teOKJJ9DV1QWn08nZPQm8+OKL\nkcsvv/wycnNzeSAqoR07dsBqteLBBx+E1WpFd3c381bG0U033YSXX34ZFRUVqK+vh8ViYZ7ENcb3\nZenxfUB6y5Ytw4YNG7Bu3Tr09/fzmEgiBQUFqKurw/e+9z20trZCr9ezIDFGLEpMAEeOHMGmTZvQ\n2toKhUKBjz/+GC+//DLffCXwwQcfoLe3Fw8//HDkuk2bNiEnJ0fCVSWniooKPPHEE1izZg1cLhee\nfvppyGSMyaHkdtttt+HRRx/FZ599Bq/Xi2eeeYajG+OovLwcZWVlqKiogCAIqK6ulnpJSYfvy0TB\nLrnvfe97+Ju/+RsAwJNPPsljIgmsWrUKVVVVWLt2LXw+H5555hmplzRhCCIHIImIiIiIiIhIAiyh\nEREREREREZEkWJQgIiIiIiIiIkmwKEFEREREREREkmBRgoiIiIiIiIgkwaIEEREREREREUmCRQki\nIiIiIho3LS0tmDVrFiorK1FZWYmKigo88sgjsNlsY36MyspK+P3+Md9/9erV2Lt37+Usl4iuMRYl\niIiIiIhoXKWlpWHLli3YsmUL3nnnHVgsFrz66qtj/votW7ZALpeP4wqJSCoKqRdARJdv7969+Jd/\n+Reo1WrcfPPNOHDgANrb2+Hz+XDPPfdgzZo18Pv92LhxI+rr6wEAixcvxsMPP4y9e/di8+bNyM7O\nxuHDhzFnzhwUFxdj586d6Ovrw+uvv46MjAw8+eSTaG5uhiAIKC0tRXV19ajr2b59O3bu3AlBENDR\n0YFp06Zh48aNUCqV2LJlCz788EP4/X5MmzYN1dXV6Orqwt/93d9hxowZmD59Oh566KFRn+eLL76I\nnJwctLa2wmg04oUXXoDBYMAHH3yAt956C6IoIi0tDc8++yzMZjPKy8uxcuVKBAIBrFu3Do8++igA\nwOVyYdWqVVi5ciWam5tRXV0NURTh8/nwyCOPYMGCBdiwYQMsFgsaGxvR3NyMlStXYt26dVf/BSQi\nIkpSCxcuRE1NDRoaGrBp0yb4fD54vV48/fTTmDlzJiorK1FSUoJjx47hzTffxMyZM1FfXw+Px4On\nnnpqxPHO4OAg/uEf/gG9vb0oKCiA2+0GAHR0dMQ9BiCixMGiBNEEd+TIEXz22WeoqamByWTCP//z\nP8PlcuH73/8+li9fjrq6OrS0tGDr1q0IBAKoqKjA0qVLAQCHDh3CCy+8AK1Wi4ULF2LhwoXYsmUL\nNmzYgI8++giLFi1CXV0dPvzwQwDA73//ewwMDMBoNI66nsOHD+OTTz6BVqvF2rVr8eWXXyIzMxM7\nd+7E7373OwiCgI0bN+Ldd9/FrbfeiqamJvz617/GtGnTLvg86+vr8eKLLyIrKwuPPfYYtm/fjjvu\nuAObN2/Gtm3boFKp8Oabb+K1117Dhg0b4HQ6cfPNN+Omm27CG2+8gWnTpuEXv/gF3G433n33XQDA\ns88+i9WrV+Ouu+7C8ePH8dOf/hSfffYZAODcuXPYvHkzWltbcffdd7MoQUREdJX4/X7s3LkT8+fP\nx2OPPYZXXnkF+fn5aGhoQFVVFbZv3w4A0Ol0eOutt2K+dsuWLXGPd77++mtoNBrU1NSgs7MTt99+\nOwDgww8/jHsMQESJg0UJoglu6tSpSE1NRV1dHe677z4AgEajwaxZs1BfX4+6ujosWbIEgiBALpdj\nwYIFOHz4MGbNmoXCwkKkpqYCAFJTUzFv3jwAQFZWFux2OwoLC2E2m7Fu3TrceuutuOuuuy5YkACA\n8vJy6HQ6AMC8efPQ1NSEU6dO4ezZs3jggQcAAE6nEwpF8NdPSkrKRQsSAFBUVISsrKzIv3Hs2DFk\nZGTAarXiwQcfBAB4PB7k5eUBAERRRHl5OQBg+fLlePvtt7FhwwbcfPPNWLVqFQCgrq4OL7zwAgCg\nuLgYdrsdPT09AIBFixYBAHJzc2G32+H3+9k2SkREdJl6enpQWVkJAAgEAliwYAHuv/9+vPTSS3ji\niSci97Pb7QgEAgAQeR+PNtrxTmNjI+bPnw8AsFgskWOL0Y4BiChxsChBNMEplUoAgCAIMdeLoghB\nEEa9HsCIk+zoz0VRhFqtxttvv436+nrs2rULK1euxNatW2GxWEZdT/hAIvwYAKBSqXDbbbfh6aef\njrlvS0tLZP0XE36s6OegUqkwe/ZsvPbaa3G/JvzYhYWFeP/99/HNN9/go48+wptvvol33nlnxPcG\nGPo+hosm8f59IiIiujThTIloAwMDkRHPeOIdI4x2XCOKImSyobi88PHIaMcARJQ4GHRJdJ2YM2cO\ndu/eDSDYiVBfX4+ysjLMnTsXX3/9dSQ3Yd++fZgzZ86YHvPw4cN47733UFZWhvXr16OsrAynT5++\n4NfU1dVhcHAQoijiwIEDKC4uRnl5Ob788ks4HA4AwO9+9zscPHjwkp7fqVOn0NnZCQD49ttvUVxc\njBtuuAGHDh2C1WoFEGzR/PTTT0d87X/913/h8OHDWLp0Kaqrq9HW1gafz4c5c+bgz3/+MwDg6NGj\nSE1NhdlsvqR1ERER0eUxGo3Iy8vDn/70JwBAc3MzfvOb31zwa0Y73iksLIwcW7S1taG5uRnA6McA\nRJQ42ClBdJ2orKzEU089hR/96EfweDz46U9/iry8POTk5ODAgQNYvXo1AoEAVqxYgfnz549pm6z8\n/Hy88sorqKmpgUqlQn5+ftxWymgzZszA448/jpaWFkyfPh3Lli2DXC7Hj370I1RWVkKtVsNiseC+\n++5Dd3f3mJ9fUVERnn/+eZw5cwYpKSn4wQ9+AJ1OhyeeeAI/+clPoNVqodFosGnTprhfW11dDZVK\nBVEUsW7dOigUCjz11FOorq7G1q1b4fP58Nxzz415PURERHTlNm3ahGeffRa//e1v4fP5sGHDhgve\nf7TjnXvuuQeff/451qxZg7y8PNxwww0ARj8GIKLEIYjsSSaiq2T79u34+uuv8atf/eqqPm54942t\nW7de1cclIiIiIiJpsUxIRJdk586d+I//+I+4t917772X/bgHDx7E888/H/e2ioqKy35cIiIiIiJK\nXOyUICIiIiIiIiJJMOiSiIiIiIiIiCTBogQRERERERERSYJFCSIiIiIiIiKSBIsSRERERERERCQJ\nFiWIiIiIiIiISBIsShARERERERGRJP4/Qkq2OGH2BekAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "I2MA1oyj2nrJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "ea8f2cef-3ee3-4b7c-90ef-07c09de33d75" + }, + "cell_type": "code", + "source": [ + "_ = plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXtgE+ed7/2dkTQjyZJtSZaxjUm4\n2AYCNtiQlIRwDTSXd+lLG3Ip22TbJN3dt2lPe053e0s3Tfq2Z7dvd3O6fbe77ck2adKUDS09m5Nu\nuyEhQEK5BTBgIGAbE27GxrIlW5IlzUgzOn+IEZI8MxrdZfv5/JPgGY1mNDPP73l+l++PikajURAI\nBAKBQCgpdKlPgEAgEAgEAjHIBAKBQCCUBcQgEwgEAoFQBhCDTCAQCARCGUAMMoFAIBAIZQAxyAQC\ngUAglAH6Un65y+UryvfYbGZ4PIGifFexmGrXNNWuByDXNBmYatcDkGsqd5xOq+K2abFC1ut1pT6F\nvDPVrmmqXQ9ArmkyMNWuByDXNJmZFgaZQCAQCIRyhxhkAoFAIBDKAGKQCQQCgUAoA4hBJhAIBAKh\nDCAGmUAgEAiEMoAYZAKBQCAQygBikAkEAoFAKANKKgxCiMGFBYz5OehoCkOeIBprLWAMOvQP++Ef\n5zGnoQqMQYcxPwcTq8flQR8+OnQR0YiIllttMBponL04ioWzqyFEgSF3AJFIFP4QjyFPEAtvsaPS\nysAXCMNo0MEf4DHsDeLCgBeVJgNumWHFwEgANVVGePw8lsxzIBASAAqYXWfFsDeEiwNeiEIUl657\nMTQWQoPdBJbRw2jQQ2+gEAjwGBrjUGlmUFttQpCLwF5lRIXJAKvJgPNXR/HhRQ9qqhiA0sNuNcDI\nGHBlyAuOFwEdcN0dAKPXYek8B/pHAvD6OTQ6LaB1FPxBAWuW1MMXCOP9E/3wBwU4qlmM+UIws3os\nbanFiDeEvqsecBERs5wVGBnjYLUwMDF6jPk5GPR6XHX5IAgCWIMerF6HcT4Cg4GGzWqEEBZRZWUR\nFQWcvuiGnqYQjVKosjAwGxlcG/ZiPCCCZQDGoEckEoHJzOIWpwXXR8bh9vEwG3WwGBmAohClAZ6L\ngBNEzLSZMTbOwxeMgAvzoCkKOoqCrdIEhqbRMMOCiwN+DHv90NE6zKgygROjoEQRkWgUXEREdQWD\nICegqoJBNAqYjToYDHqEuAhCnIDZ9Rb0DwUwMh6E18dj+fwamE1GuH0h3FprgdloQGfvMNxjAVhM\nDKoqWRhpCuO8AJqi4PFxqKliQVE6CKIAvY4GKGBkjIOZ1aPCpEed04JrQ37MclbA4+Mxw2bGvJmV\n6LvmxXX3OOY2VMFZbYKJ1aPf5YeOpuELhREOCzAZDZhTZ8VYgIfby8Fujd2bs5fcMJsY3FprgWs0\nCB1NQxDF+HPvGg0C0SicNjP4sICeK6MIh0XMsJvQ4LSADwv46JoXVrMBDU4LWIMu/k5VWViwBl3S\ne5b4t3TvZLp9pf1MrB5BLoIqCwsAcHkCAEXBWW0CAM3fW+5k+7v6AjyuDvnRWGuB1cwU7dxy5ezF\nEbx34hrWLG3AwtmOvBxTDSoajUbVdjh8+DC+/OUvo7m5GQDQ0tKCp556Cl/72tcgCAKcTid++MMf\ngmEYvPnmm3jllVdA0zQefvhhPPTQQ6pfXiylLqfTWrTvygRBFLF993kc73FhxMup7kvTgCgW6cQI\nhEkKTQENNRUIcpGY0a9ksbS5BlEAJ3uH439rb3HikfVNqJtRlTQ2JL6TqfvqaFp2vxEvB5oCxCjA\n6CkIYhTCjXdVRwMGPQ2OFxWPlW8KMd7J/S5qv6t0fXwkgu+/2ol+lx9iNHZ/ZjoteObxDjB67etB\ntWvSes8yweUN4uv/fHDC33/whTvhrDRldUwJNaUuTQb5V7/6FX784x/H//bNb34Tq1evxv33348X\nXngBdXV12Lx5Mz75yU9ix44dMBgM2LJlC1577TVUV1crHnu6G+Rtu3qw6+jVUp8GgTAt2bC8EV/+\n9LKksUHpndywvBFbN7Sk3U/r9yYeK98UYrzL5HoTr+87L32AK0P+CfvMqrXg+Sfu0Pz9atek9Z5l\nwhN/t1tx20vfWJ/VMSXyLp15+PBh3HPPPQCAdevW4eDBgzh58iRaW1thtVphNBrR0dGBzs7O7M54\nGsCFBRzvcZX6NAiEacvxnmGE+Ej832rv5PGeYXBhIe1+Wr9XOtZkINPrla7PF+DR75pojAGg3+WH\nL8AX9Nyy/Z3PXhzJaXsuaPIZnD9/Hn/5l3+JsbExfPGLX0QwGATDxOIADocDLpcLw8PDsNvt8c/Y\n7Xa4XOo30WYzF02jVG1WUgoGhsfh9qm7qQkEQuHw+ELweDnU3xgb1N5Jjy8EHWOAs6Yi53c38ViF\nIp/jXabXK12fbzwMUcH/KkYBHy9i7q3az1PumrTes0x4+a1zqtsPnXNh9e2zMzqmVtIa5NmzZ+OL\nX/wi7r//fly5cgWPP/44BOHmrEPJ453GEw4AReveUY4uayEswG5l08aOCQRCYbBZjbBVsvGxQe2d\ntFmNEPgwXC5fzu9u4rEKQb7Hu0yvV7o+K0PHY+up0BRgZWjN56l0TVrvWSasWODEvhPXVLfn8vvm\n5LKeMWMGHnjgAVAUhVtuuQU1NTUYGxtDKBQCAFy/fh21tbWora3F8PBw/HNDQ0Oora3N+qSnOqxB\nh/YWZ6lPg0CYtrS31MDI3FyTqL2T7S018czdXN/dxGNNBjK9Xun6rGYGM50W2X1mOvOTba31nmVC\numzqQmZbpzXIb775Jn7+858DAFwuF0ZGRvCpT30KO3fuBAC8/fbbWLVqFZYsWYJTp07B6/VifHwc\nnZ2dWL58ecFOfCrwyPombFjeCEclm3bfAiZlEghTBpoCGp0VcFSyoCnAUWnEPctmYv2ymXBUGuN/\n27C8EY+sb5rw+ZvvpPq+qe8uTcX+zugp6BLeVR0NGG+sFNW+t9yR+120/K7PPN6BWbWW+O9DU7GE\nrmce7yjoueX6O//gC3dm9Pd8kTbL2u/346/+6q/g9XoRDofxxS9+EQsXLsTXv/51cByHhoYG/O3f\n/i0MBgPeeust/PznPwdFUfjMZz6DT3ziE6pfPt2zrCWyqUPuG/Siq3cYw94QvONhmFkdFs91YMPy\nRgyPBgtSh+z18/jPD65kdG0Wkx6fu38BPhoYw76uQQS5CPhIFCZGh4aaCtgsevDhqGIdcp2jAh+c\nvY6E3BtNrFjgQPcVL3zBMCIiYKABe6URFBUFHxZgZPQYcIeQPrAykQoWYBPqkBscFRgY9sE7HkYe\n8lTimFkaAa6wtW4mAxAMZ/aZjy2sgaPSiD8cVs66pQD82X0tcFSa4nXIx3pc6OpzT9h3wS1VWL10\nJurtJrywvQu+NCfUNs+OFQvr8lKHrDQ2TOY65EKOd6WqQ9ZyTfmsQ5ZKqQ6dugo/B1hYYEVrY15K\n1nIqeyokxCBnj9NpxdVro0kvfj5f9sSHG0B80PnuL45kFDuTSg/SlSZI15P6Qg15Avjmzw5lZDhp\nCvjvf74CtTZz/DosZgPe2PdRUq2i2WiQLcnQek1y9Y+MXocBd35yI+zW2MDl9uXRyidgMenx/z51\nB3bsuYBzlz3w+DjYrEa0NTlwstcl+721NlO8XOUrP94HLiw/YXBUsvje51ckDdrffvGQ7LPjqDTi\ne5//GMb8nKZ7Le2fj+d9qo4N5JpyoxClVBJqBpkodU1CBFHEi2+cwv6T/ZoL4bXOHlONDMvoAEQR\n4kU4bhgcLbAGGne31eOR9U1pSxM2r5qjeD1VFhb2SvmkDaWEkWoLCz4iggsLYA061NrME16wES+H\nES+HhhozgiEBo+McKIqCqJQWmnLOD66Zh9++1zfhmIAkBqFDiBfA6GnwkexWuW4fj3q7GUBhDLI/\nGME3f3YIHC/CZmWwYlEdtm5shpk1QEdTsgPSisX18efn7rZ6vHusX/bY7S3OpOdszM/BrTCR8/hC\n8WdT6V7L7V9rM2u9VAJBM+nGqwfXzCuYp4MY5EnI9t3nJxgC6d+ps7dMVWxSjx3ib2bUZ7Iy/tqn\n2zGnoSr2ubGA6mD82ts9OHTmuuL1tLc4ZY3DTKdFdoUb4CL4zs8/iF/r5lVzFV+wa8Ox1axBB4QF\nbevwEW8Ig+5xxWMKIiDwAhprLbiaxQo8kQF3ADoaceWnfBPiYwd2+3gcOD0Is1GPrRta4vG34z3D\n8PhCsFmNaG+pwRObFsHtHgcAPHpPM6IADpwaiB/HyOiwsrVuQvxOzdjarMb4RFHpXsvtTyAUAi2T\nx0JNBolBnmRkOnvLxHjnU6zEoL9p7NUGY4OexuEEY5zI8R4XHlwzT9E4bFk7Fzv2Xoj/nTHEVqXS\nJEK61mAooviCSWSqH/DW4Stpj3ltODdjLKHFGBsZHfiwEHM5z7PjwJnBmEZ4hiQ+Q1s3tODBNfOS\nPCu6hIwlHU3jMxvn46G1TWlDJ2rGNjEbNvFej3hDsuc42bKUCZMLLZPHQkEMchmi5l7OZPbGhQV0\ndg/J7itnvNWOnQlGRgdnwgxSbTBWikECMYP6y53d+NwDC2SNA4D4312eAP5xR1fSil7i3GUPbFYm\nr7HY3iujad2ratrj+V71mlk9vvXYsrhBpGlK0Z2sRuIzpCXMkbhPkFPPvFOaWCWupnU0Hb+nbm8I\nu45dRdf5EcX9CYR8o3XyWAiIQS4jtLiXtc7eBFHEazu7FY2QnOtFawwvHXe11iU9tFxYwLr2mRDE\naMLgymI8FI67OpVIdKNK8eBUWIMOjEGnMlHhsGJRHQ6cHszpuhIZ9XO4c1Ed9qscU6khCGugVSci\n2eD2cUA0Gv/dH72nGRRFxZ8lrUlxNqsRFjODbbt6ZJ9DCelZ7ewegtvHx+P5DpWQSKKxTWfoWYMO\n9Y4KPPbx+eDW5b+LD4GghpbJYyHQPffcc88V9BtUCOSzRkSFigq2aN+VC6+/2xtzsXKxVV6QE3Dh\nmhdBLoLWubFidL2OxvBYCBeueSd8fmVrHdqbnfFjvaeiNmOvNOKBO2+Ntdi7gdqxtWCzMLi7rR6P\n3tMMmqIgiCJef7cX297pwe8PXoJ3nEfbPAee+pPbcMfCWuw6qm0FN+rjsKZ9ZtK5pqLX0zh4ZjD+\n2yVir2TxX7a0IchFcPm6L6tSp4nHNOJLW9rARwRcGx5HRCb+PKe+Eh4ZWb9oNJqXc0jl5PlYGdxt\ns23Q0TRa5zqwZulM3N1Wj7Ao4NJgehf6ytY6nLvsUXwOV7Q2IBDgbz6rNzwS0vXIPbOp6HU0KkwG\n1fuZyf5cWIDbG4JeT2s+psRkGRsygVxT7tAUdeP9acDdrfV44M5b0d7sBE1ROR+7okLZ5U1WyGWC\nltgwEHMrb141B2YTg/0nr8nO3rTEgpc0OyasNgRRhCCKWblTV9w2A392/4K08es9x69Bp6Px4Jp5\nmlfjbh8HlyeAxlqVcgEdBbPRIHu88VAYb+z7CFs3tgAUhT2dmbtyU2mbZ4eZja3cN6+ag23v9OLc\nJQ9G/Vz8fvw/Dy7BP+84gf2nBuOudKXM8Hzg9vET8gNYgw6OKiP0NA0jo5N16QOxMMPdbfXYvGoO\nvvPzD2T3kZoxaHm+Cp2NChSm7R6BkIiSV65QEINcJqjFb93eEF7b2Y1zlz3xgWflkpl4/sk74A/w\nE1x5WmLBcvO87bvPY0+n8qpajU0rZ09wUysN2p3dLqxe0oC2eQ7sOa7t+370m5PomF+rmh2uVFMc\n4sUEQ9UMHU1p6kGtxobls+L/b2YNeOpPbpsQcxURWzEmGsFCGeNEUidwO49cSTsJqTDq465ktRwF\nj5fT9HwVozQpk4RFAmEyQAxymaAWv2UZXVKscsTL4c19FxAI8rIDj5ZY8IneEWxZKyQJN2SbYe2o\nNMJeaUz6m+oEw8fFy5Iaayvg8gTTxlRTV3+pwiVazl0yVNKq9vmXj8A1Kp/Jq4aR0U24XuDmbFoQ\nRWzb1YOTfSNweYIZHz9XRrwhvPrWOfRcGdU86XD7uLS1wFIzBoEPp32+EvMZ8qmgJFHKWlECoVAQ\ng1wmaK3BTERp4GENOrQ11aiuitze5BWMazSY9YpRLvMw3aQgiht1zRl+5/EeFwRBRFffSNxbMP8W\nm6bs8MRV22/39mVljIFYDNjlCcBpM8vKNKau3ErBQYVSMiUoADs/uIytG5XrvqVmDFqe1faWGuh1\nlGJyWK4u5VLWihIIhYIY5DJCLrOvubEShz+UL11SG3g2LGtUNchVFgZVFjYpW1YN1kDDzOrh8ctn\n1E7cP/MJhhakOHTiv7VmT0urNi4s4HjvcPoPKMCFRTz70hHYrQwqTAwCoXDc4LTNc6Crr3ANzAuF\nGEU8vp8uw1QQRUSjUdmYdOIzUUiXcilrRQmEQkEMchkhV4N5stelmJHLGHSKA4+90giHygq1vTm2\nqlXSbE1l1ZKGeIwxUUhfzS2YOLC7vdk1ckgll6QoaSU/5Alg1J97xqbbxyeVlaVOFiYjiW59pfKk\n7bvPy9Y4r1xch8/cOz/uNSikS7mUtaIEQqEgBrkMYQ067Dnen1M2sNqANavWgq0bWzTFjY2MDnfd\nkELU0XR8Na6lY0viBMPlCeBHvzmZszhHJsaYZWiEw+KEFV6VhVWdrORKITOpE2H0FPhIfr8oMZQh\nl2Ea4iOKz8y5y6Px/y+GS7lUtaLlQiFi84TSQgxyGaI1wYrjBdWBLWmF6guhuoLF0paaG5nGtKrG\nNAB8ZUsb5t9qy/hlTx0oWIMOjbVWVJiyV8uiKaDOYcbAcEDTSpsC8MxnlsW9CInXUCh3ukQxjHFH\nc01ObncjQ8uKslAUsPPIlfgzknovPV5thrYYLuVMhEamEqTca+pCDHIZolXC0mZN7mqUiDSQPrhm\nnuKApTZoOiqNqsZYbnauNlBEhCgCoQwb7yYgRm82gtCCvdIYT7qSI9WdTuVxVWuzMFja4sSZj9xw\neYJ5FwGxW1n82f0L8NHgEVnhkXTMqrWgeVYVdsu4ncUosKezHzSFJKUvKT6+eV2zJkNbTJdysWtF\nSw0p95q6EINchmiVsEzsatQ2z4ENy2ehysJM6PurNHvOZtBUM7pqA8WGZY056WRn6gaWzl+ur7M0\niUhcXVnMDH77Xh9O9AzD48/Nlb1wth2PfXw+zBYWP9rWiQ/OXs/rqrl1nh2/O3ARgWB2E5xAKIJP\nrZ6LqBjFeyeuyZ5bopgJcDM+vuf4NRgZ+VVY6jMz3V3KhUCrgBBhckIMchmSzqUqZbcmdjW6OVjq\nJgykat2d1rXPvFFG5NY0aCoZ3Ygg4NAZpUYWLmy6a3ZOOtlaDRpNAWvaZ2LL2rnxkpsRL3fDiFDg\neCFpEpG4unrs4/Px8LomvLLzHA6dzqxsSII10Ni6sRkA8Npb53Dow+yOo0Y4EsV7J7J3t3t8IfgD\nYdx7xy3Yq5CEpqToFdsmXzN+7rIHfCQCRh8bVtRcyiT+mR1aYvONRT4nQv4gBrlMkVtdtDU5sLqt\nHv/0v04pDphKf0/MbE1d5VZbWLQ1OfDx22fBXmlUdVMrzc4PnL4OXkHcY8TLYfvu81jaXJNxByIj\no8OKRTNw8PQAuHB6qyxGgXVLG7Bj74WUvs43z02aRARCETx2IytYgg8L6L44imxZsagOZtaAABfG\nWwcuZn0cJVgDjXOXPTkdI9G1nI9mIhJXh8bx/Vc78fwTdyT9PXHSQ+KfuUHKvaY2xCCXKUqriyGP\neiKWEokJN9t29SZlcHv8HN47cQ0Xrnnx7GeXA5BfwajNzpWMscSB04NYv2wmNixvjCeZVZoNmF1v\nhYnV4dAZeUNvYnSgAE3GWOIftp9QXeElntPZSx7cdqsND9/ThN/tv4gjZ69jbDz7WHfXeRf+9T9E\nBPkwIgXI7uLCIrhw+vtvMerR1FiJE+fdE7YlupbzndzW7/LDF+AVs/CVPCxykyPCRPIRmyfeifKF\nGOQyJzVhJdsWiVJbvV/uPKfYBerKkB+vvdMNg04nu4LJtT3jyd4RPP/k7QhHBBw8HTN8J8+7obYw\n8vh51a5VcmRiUD0+DvtPD+Lgh4Oq/Ys1H88fzmubRzm0xNP9ocgEY2y3suiY70wS+BCjUcWM62wQ\no8BH18ZQ56iYMOCre1gG0X3ZQ1bLGsg2Nk+8E+UPMciTjGxLdtpbavDGvgtphSsOprieU2PQuayo\n3N4Qtr3TO8FgpTOExSgjyocxzidqPZOz/T2WNNck5RFs331eNtM6V17d2Q2Pj58w4KerHpCeNUEQ\n8di9C/J+XlOFbMu9SHZ2+UOmRZMMaVVjYtVfQCNDgwJQbWGwrr0Bm1fN0VTbrOR6Pt4zDC4sYPOq\nuYpZtumgKODo2fwnOU1FKox6VFUYZLfZrSzWdcyEo9IImorF2Rl9+j6tJ3tj9xDIrZlIOtw+Pq5V\nvuvoVWzffR7ATe9OOt47cQ2/fLsbQrnNksoMyXum1U2tlp0tPReEZLiwgCFPoGi/D1khTzKUVjWS\n21FyZwpCFIyexpifR1ffCLiwmFPZkRSDBgAuS/emGAV4oQjL3SmAx8+jbZ4DJ89P1MXumO+Mdbxa\nJ+DVnedwUGNGuOdGR6dam1lzrXs+SEwo1OJhkWqhdTSFTXfNxtUhPxprLZrU4QjykGYcmVEq9z4x\nyJMItVlu9Iadk9yZYSEK3JCkkBowqDWol1Dap1CZuQR5olHIGuNGZwW2rJ0b/3dnt/ZVrs3Kxu+h\nxcyAzSF2nEldeOKAL8U5O7tdcKcRNdnTeRW7j12FGI1930ynBc883hEvqyJoh2RnZ0ap3PvEZT2J\nUJvlpusnrAUjo0NN9cQ+v8DNDE5plUMoDVdd49ix9wIEUcTLvz+b0X3vmO+Muzf/1/t9OSVyzXRa\nNO+bOOBL8c/v//kKrFxcp/o5Qbxp9MVoLOnw+692Zn3O0xm193aqNuPI1t1cSvc+mWpOInLNcuZ4\nASsX1+Hc5VF4fCEwhuTVcIgXcHVoHLNqLQiEIhMyOKVyic2r5gBAXHSjlFBA3qUpy53O7iGcu+TB\nVde4pv1ZA42VbfXx1SkXFnDg1IDsvjQNLJvvxJGz8gNSrc2EtnkObFk7F99/tRNXhvxpvz91wJee\no09vbAFjoLH3+DXN9zBdWVW5UU4lRtNFOS1Xd3Mp3fvEIE8i1GJwjJ4GH1Ff8dgrjXh4fRPG/BxC\nYQH/8PoJ2f0CoTCe/ezt8RaLeh0l+4A/+7k78Ot3e/HhJQ9GfRysZgbeQO5tDTNhuhljYGLbRzXk\nGoS4PAHF1bEoAj2X5YVRqi0MXvjKGvBBHlxY0KRNbmRoiNFoPEFL7jlqcFagX+PkQowCp/pGsGxB\nbckNnBrlWGI0XZpx5OpuLqV7nxjkSYY0m+3qG8HwaDA+yw1HBLx3Qn7VI2E26vHdXxyB28vBYKDA\nK4htjHg5BLlIfBaY2jNZesBTV2mFMMasnganMtHQ00CaeYjqsfmIiKoKBqPjxZ1IFANHJSvbIESI\nqk9jlOq4x/w8Lg544agwaE4KC/Eidh/rB03FssDlniM2w6z9f/39Wfz7vgtFM3DZrHLLucRoKjfj\nyEcf7lL22iYGeZIhzXL/4kET+i6OxAcJQRRx4ZpP1oVI00C93Zy0TckYA7EEGhMbezTUHnCtLtNs\nqaowwJtG5CNbY0wBeP7JO/DGvo/w4aXcpCjLlebGatnB4/0MhVYkKAr4m58dgN3Koq2pBjar9naa\nR88NgVLwZ2STtV8MA5ftKjcfRoGQHflyN29ZOxfdl0fR7/InJRUmJlQWApLUNUkxMvqkGkQdTePZ\nzy5Ho7Niwr6iCPRn0LpQjAJBLgJAeyvIQtAyqxrVObiHaJXS3CiAf/xNFw59eB3eKbg6BoDuy25s\n29WTVM/LhQV09U3M3taCGI1lf494Oezp7EeFSXscd9TPw+PPXpJUiUIm2Uir3BEvJ1tXLQcXFnCh\nfyytUSAUBrVa90zczTv2XsCVIf+EpMIdey/k61RlIQZ5ChERonFDmgusgYLlRtKMVjEHLejULGQK\nNA30XBnNqRXi3UvqFcU1WD2NAbf2ScpkxOMPJxkQyVjkKxEvEAqDNRRuCNEiQJNvAydl5voCfEaZ\ntoIoYtuuHnz7xUP44esnQCk86qTEqLDkI5ucCwvo7JbvXNfZ7SJZ1gRlEuNb+VrNcuEo3th3AVs3\ntGQt1SmHQU9B4LWlYYliZprUiSRqNjN6ney5h6eRCtSRs9cRjog4fWEEbi+XcW9pJdw+DmnC0VlB\nU8AdC2doal2ZLwMn1wFNaTIo5/pMjRkr/b5TtcSonMg1m3zMzymGYtwJ4jqFgBjkMkNrAokgiPF+\nv1J8K9O4nhrHe4ax6a7ZCHIRbF41F4IYxXvH+7MayG0WFrfNtmF/gZsuSIjRKNxjIfgCYTyyvgnd\nl0cnxNangj2urGBARaMYC6hPXMbGw0kNOjI1okpiMXYri2g0Kvu85VKOFgXwwJ23ovfqaNrVfKKB\ny6XEKNWgqnlmUicBajFjmopdj32KlhiVgnT3OddschOrV5y0JubXFAJikMuETBNIXvrdmQlZnHs6\n+zGr1qJqkGkqNiDbK42Yf0s1Dp4elB04R7whfOelDzDmv9kkYPXSeuw9rp7JnYpBT+FvPrsMJtaA\nMxfdGPUXPl476ufR2TuMzt5hNDorMB6cmjHiQsS+JRc0FxbjnoZoNCrbx7q9RXnb3UvqcLrPk1XI\nwW41wlltUvXMOCpvGrhcS4wCXAR/7NKe6Ja6ylXzTEWjwF89uhRzZ1aRlXGOZHqfs80mD3IRxYWH\nlF9TqDp4YpDLhEzKJLiwgEOn5Q1jIBTGuvYGHDxzXXZVs6Z9Ju69fRaqLCzCkQgOfzgIQWG1KBlP\n6VykfsZHzw1pNqzhSBT/49ddePazy9E2z473TxZnlSxR6EzwqYaz2oQgFwEf5uJx0IfWzQNFUbIu\nwF/t6pE9jk5HY9mC7EIdksGTcz22NTmwYVkj7JXGuIFTKssDtGVg/9s7PaqqZdUWBt5xXtH1qVa3\naq80EmOcJ4pVSlZlYeFQuJ+OSpbUIU91Mi2TGPNzcI0GZfd3+zjc3VqP1Usb8NbhK+i9MopRP5c0\nmEizyf/+y2OKxliOA6cG8fcZUyFdAAAgAElEQVRPr8Smu2bjuZeOaF79XBnyY9uuXqzraFQ1yFUV\nBnBhIW+9eQmZkziBSR3wHlwzDzrGAIEPgzXobkwM5e/nodPX8fdPrwRw06CmKsNJGBkd+LAwweBp\ncT3mWmIU4iM4d1m57M1uZfGdz90UyZE7VinrVqcLIT5StFIy9fvpLOj9JAa5DMi0dq7KwsJZbcKQ\nZ6JRjkaB7716DFHEZnNLmmsmrCgAwBfgcVWD7GEiIV7Atre78dSmRRmvfk70DGNlq7p28X95sA0H\nP7yelwQyQv5IHPCcNRVwuXwA1BW/QryAQfd4kkG1mBm8se/ChJX25lVz4A+EVQ2ekusx17pTj1c9\nEXLBrTZYzUxaF+V0kaUsFWr3Kd9yllKLW2NC8xWWoXF3a33B7ycxyGWAidUrZnXKZZGyBh1WLK7H\nm/vka+Kk8IcUV9bR1ASXztUhf1ZJN529sbT/R9Y3ISKI2HtcW+xtdJwDo9cpJgiZWD0anBZsWVuB\ns5c8mqUUs8FqNsCXJhGq0GjpvFUuyA14gijiD4cuqX7u/9/RhdsXzsAj65vin1Va8ZpZ+fK0dOQq\nc2irVP68kdFh68ZmTecxXWQpS4Xafcp3KZlci1uOF9FzZSxv36EEqUMuIVLt4nd/oez+VXJ5PbFp\nETYsb4RDQ41wat2kIIr44Jx8nV06QrwIlycAHU0jnEGnISlRR2mVfM/ts8AadNix90JBjTEA+AJh\naK+ILgyCIKDCODkGbIOeBh8Wkp6h7bvP49CH6s/Q2HhYVkhDWvHmw2DlWndqZPSKn7+7rT7jiUI+\nr41wE7X7lM+wgFoI5MqQH9vekc+ZyBfTfoVcym4sqUkKiSRmkcqh08Vm5Kvb6vHsS0dUvyd1hbN9\n9/mkMpiMoShwYUE19pZKW5MDrEGHR+9pvpEgFOuHa7fGMiWf+sRiDFz3Kr4M+abUTSnCAhAWSr9C\nvlmWw2LUz8nmFHBhEc++dASOShYrl8zEx5fPzOg+FVouMld3MXE3Tw6KcZ/SaTkc7x3Gw+uFgj3L\n09Ygl7obi5oaTFWFAc9+drmm1HqnzayYESiR6NJRmwECAE1TuGvxDPyxSzn5atfRy7j3jlszEiHZ\nsKwRgLJrT6ejSyrTOV25u60OD6yYjSAfwfMvH1Xdd8TL4c19FzDsCWR0n9zeEFyeABprrbmeriy5\nuouJu3lyUIz7VGVhVUVhxvx8QYVBpq3LOhud2nyipgYzNh7WLIHJGnRom+dQ3adtnj3+4KYzes99\ndjn+5M7Zqsd7/+Qgdh29ollS01FphL3SOOG8U117+ZTpJGiDF6JwVBnx/knt9eXnLnkyuk9RAP+4\noytJVztRojLxv3KyhFobzefiLi6nvsUEdQoZFmANOixtqVHcbq8k7RfzTjl0Y1FTgwGAPxy+hMc+\nPl/Tan310pnYo5JctWH5rPj/qyXBOCqNcN6Y+dnTKH519bnR1lSDPZ0TRSFS0RrjYQ06LGmumZBQ\nQSgch05fh8mgy6jhxKifw52L6jJSXpMmvNFoFBRFobN7CG4fH38HpP/arQw65tfG3ZCF9mLJKd6V\nqm8xmRSUB1s3NOP81THZznmk/WIByFeLrlxQU4MBgPdPDIDR61QL3iW3u5LrG5i4OtVaM9kxv1a1\n/MjjC8Xc0NEo9p8eBC+T4GVkdLi7Tb1UQBqErFUmAMgp2cpi1GHhbAf6ril32yFM5HjvMMYyUFCz\nWY349MYWmIx6HDl7PSPN8f2nBpOyyxO76QCA28cnPXeFFoKQU7yT/l0sF3apw2eEZKTOedve6Ym/\nG/Y0OT35Yloa5FxLJfJ1Duliv4mrdbnZs1pSmITcjC4xOcLtC6G6gsXSlIctJkmorF9t0NN45+gV\nnOobkTXGAFBh1MfEJGQGldRByGkzYdEcO072Zp/UNc4JOHJuCHYrg3q7eUp3c2INNLgMstzVGPXz\nsKnEzVJpb6mBmdVj64aWjEVitJZ6He9xIaogup0vL5aa4t0fuwaKZiCLpUBF0I6OpvHYvQvw8Pri\nei2m5fQrHy26CnkOEh5fCG5vKN7W7Zs/O4Rvv3gI23b1YDyo3B4OiLkAZ9XebKidGIfT0TQeWd+E\ntnl2VFUw8Pg5dJ0fxvbd5+MxPh1N47GPz8eapQ2yx+fCsRpktQmF28uh+7JHNvaXGsMf8gSxp7M/\np8YY0YRV1oA7gFIvLoyMDhQARp+/E2EMFD52Wy0qTNnV7cpB01CMm9E0oEs4fROrgxiNxp8Tq5nB\nsgXqz3E2uH3KORaZtlxUikGrKd6FeKEo+SXpwmeFbPVHSE+xy9im5QoZKI9Sh3SrUJvViF1HryTF\nh6XBQQSl6paVGmr/Zk9fvMxoxMuh2sJg8Vw7AsEIOnuHJxxXEEQ8du+C+N83rZyN/acGwEcyLxSK\nAvjRb7rA6CksW1CLP93YAjNrSJvpnS9K2dHJxOjw02/cg+MfDuLlt86Bz1NTjRm2ChxOU/+bKaII\nhCMCZtaYcW04kFQSpqOBcEJ+YZATsPtYP2jqpthMqselyszAG+Rz+v3VOklp9WKlcwWrKd7JUYj8\nknIInxHKB91zzz33XLqdQqEQ7rvvPlgsFlRXV+MLX/gCduzYgffffx/33HMPdDod3nzzTXzrW9/C\njh07QFEUFi1alPbLA4HidOGpqGAnfBdNUWid68CapQ24u7UeD9x5K9qbnaCVOosXAJqisGReDTz+\nEC4NTkwguOO2WpzqG0GQmzhLHg/GmsMH07gAB0YC6LkyFj9GiBdw+bpf0Z17+boPYwEeC2+txvbd\n5/H6rvMYD2nL+FZCEIGrQ+PY3dmPsXEedXYzfn9QXeVpshMRonjr4Ef446lBcHlQ5HJUGrHitlpc\ndflln4dcuXzdL6tepmRUx/w81ixtgF5Hg6Yo3DbbhiFPAB4fh9FxPuc+yStb61FfU4EL17wy2+rQ\n3px+Vf76u73YdfRq/PcKcgIuXPMiyEXQOtcBvY6GnxPQrbGenuMjuLu1Pq/eCb2exsEzg7L31F5p\nxAN33gq9LjMPi9x4N9mZStdUUaE8mdS0Qv6Xf/kXVFVVAQB+/OMfY+vWrbj//vvxwgsvYMeOHdi8\neTN+8pOfYMeOHTAYDNiyZQs2btyI6urq/FxBAcm2RVc+UXrhwmFRcfbs8gTR3lwDt29YdrtEpvKM\nYhTY09mP3iujee+UFOKF2CpcjCrG8KcS+WiS0VBjxl/+34vhrDZhzM+pZtMXEzmxmVzOTeqfLLV8\nTPRUZePF0lpJsfXe+RjxBHDusgceH4dqC4sAF5F9bwqRX0IaUxASSWuQ+/r6cP78eaxduxYAcPjw\nYTz//PMAgHXr1uGll17CnDlz0NraCqs1Vvjf0dGBzs5OrF+/vnBnPkXgwgJO9Mob1e7LHtgUyo8o\nOpYda2R0iEajeUvwkShk28Ku8yNom+fIeABn9FRWrvPJzLXhAPZ0XsVj9y4AYyiflI9MxGbSsXJx\nHR5e3yTbUSkbIQhBFPHLnd2KEz4pN2PP8X509Y3A5QnCZmWwYlEdtm5sxhv7PiqqgSyH8BmhPEhr\nkH/wgx/gb/7mb/DGG28AAILBIBgmpiDlcDjgcrkwPDwMu90e/4zdbofLlf4FtdnM0OuLMwN0Oguj\nEpQrA8PjcPuUBg4O65bNwrtHr0zYJrkSpZl8Y61FtnsTy9Dgyqyd4Yg3hE2r5+HQh0OaBVAAgI9E\nUWvTHvObKrx38hpMJiaj36rQrFzSgMaGmAdM7RlWg6aB+1bMxp9vboUujVu2MYPjvvjGKRxQqZGu\nqTZh/5nkrmJuH48DpwdRYzPjqc2tEEHhdN8whkeDqKk2YcXiejyxaVHa88yWL396GUJ8BB4vB1sl\nCyOTW3pPuY53uVCKaxrzc7g44MXs+sqiVN+o3vU33ngDS5cuxaxZs2S3K5UlKP09FY+nOGUpTqc1\n3jKu3BDCAuxW5RKsT66aDQrRWMKMNwRKQUwkGApjXXsDuvrcSbPscETAeye0qzAVi1+/041QFgZm\nuhljIDb5+sOBi6olEVazHo/fuwD//O+nC6rT7aw2YklTDTbdeUv8nVJ7hu1WFi23VOPQmesTtq1Z\n0oAtq+fC7c6fN4YLC9h/Ul1YZtEcOw4rlDu9ffgS9p/sh9vLJa2azawhr+ephB6AbyyIXEarch7v\nsqXY18RHIvj+q53xrngUYoueZx7vAKMv3GRJ9ch79+7FlStXsHfvXgwODoJhGJjNZoRCIRiNRly/\nfh21tbWora3F8PBNt+vQ0BCWLl2a00lPF9LFkMysIe62u9A/hr9//YTscdw+Dus6GvHw+uYk954g\nirhwzSerOlNKeq+OKbrjCfKo+TksRgaz66ywFLi15O231WHL6rngwgJGxgLx50zpGV7SXIOtG5ph\nMRniLtlqC4sFt9rw4Np5eT+/dNKwKxfXYcOyRuxVUJgL8ULc6yStms1GPakHnmZ875VjSWG7KGJV\nK9975Ri+++THCva9qlnW9913Hx555BE89NBD8Pv9uOeee2AwGBAMBrFgwQK8/PLL6OjowOrVq/Gj\nH/0ImzdvRiQSwY9+9CN85StfAcuqL/FLmWVdTtw224YgF8GYnwfHR2CvNGJlax0eWd8Uz/rW62hU\nVjCKGZkAcPK8C6N+HrcvrIXhRiiApiisXlIPjy+Ey9fLxyiHeAFLmmtwdajwq47pQICLtTrMdy5B\nKmN+DgMj4/i3Xb34jwOXcPDMIIbHQtiydi5CfExEIcgJ8S5So14Ow94QPn1PM1YtacCoj8OIN4Te\nK2M4/OF1DI+FcNtsW0bVDVxYgNsbgl5PT0iIVM1atrL4r48shYnVq75HE6/5Zkb5ZKDcx7tsKOY1\n+QI8fr2nT3abNxDG+o6ZOeUS5JxlnciXvvQlfP3rX8f27dvR0NCAzZs3w2Aw4Ktf/SqefPJJUBSF\np59+Op7gRUiP1i4maisRIFl2cOuGFnBhAS5PAKAoLG9xqnZwyjfplLKqK1gYdKXuSjx1KFbN9ZAn\nmBQ2SFWVEgQRe45fi4dVRsd57Onsx/mrY2iZVZWkf52pIpUWiUm1d6RjvjP+Xqm9R6lM1npgoo2d\nHR/JlNqlbm9rUm5AkQuaDfKXvvSl+P+//PLLE7bfd999uO+++/JzVtMUtRIs6eXavCqmvNXVN6IY\nTz3e40I4IuDwh9fjpTeMvjjGTypb2bxqLp7910OKLunWuXYclokrEiYnx3uGsemu2YpNKq4M+TGk\nkDOiVXAjncTkzXdkTvy4SlnL0v939Y1geDRY9HKnQlJODTMmI1azep15uu25MG2VuiYLcquCJc01\nWDDbpmiQR7zchESuQpcLUVRMulLyPLIGWrFBxUxnBcKCCC6S27LOoAOIsmB54PGFcHXIrxq/VXKn\na1mBqtcVuyAIIrr6RpIM0PNP3gF/gJddIUpeqb940IS+iyOosrD47Xt9U6IeWK1hBomFp6fBaYGO\npiDIZM/qaAoNTkvBvptMl8ocub7Nu4/1432VGl61tTBNp++otHyBE6uX1oPNoO5VSqxP1P19ZH0T\n1rU3oKoiNqOUjHUgFMGx7tylMz+1Kv9JQdMNOk+OE5vViMZaC6qzWElqWYGqJWuNeGOCKana02/s\nuyCrQ6ykbf3I+iZsWN4IR6URNBVTR9uwvHFS1QOrNcyQtLG19peerrAGHdYsrZfdtmZpPWm/OF3J\nVnBBbS0sisDtC2sREUQc75EXJDl6zgW7lcFdi+uwemkDBEFEOBLFz/73GYyOa0us6Ox2QRCj6Oob\nibfnk4y2J4uaVTn+cPhiXo4zHaEp4FuPL8P+U4Oaelqno72lBlYzg6Ut2npkp3423SCn1qFNqa94\nqis80ds04uVgZGhQFI0QF0ly6xar7WIhUGuY4fGF8Mud3ei+7CGu7DR8ekMLaJpGZ48rXhve0eIk\n7RenM+lKOOSos5sw6Fav1T1ydghr2huwcnEdjvUMyUo8un18XEnrsXsXYMgT0GyMY5/n8jLQq+EL\nkhl+tsx0WjC3vgp19gocPD2Qk8wna6ARvdEBSq25uxwrF9dpGuTUkrWU+orLyXsmfj52zbHrTnXr\nTrYELgm1hhmMQZckmEJc2cpoTbTNN2RaVKZwYQF8WIC9UrsL0F7Jgtfohnr/+DXsPz2o2MtY4r0T\n1/DKznN464PLeXNvEkoHhVgM/88/sRBcWIA/wOes5MaFRbx7rB/bd5+PN3df196AagsT/045bBYG\nn7l3/oTVmRaXMkUBNguLhhplw5mNvKdcy8PJ5OJlDTqsWCzvblXynZE2j8rwYQEjYyHN42qukBVy\nmZGaxMUy2udMC2+xqUoGJiK9mkqrCyRsf69MGhoQcuO2W6tRU2XCmYtuPPuvR2CvZNHWVJM3gZZE\nF7HU3N3lCeCf3ziDQZkSOIuZSVp1pCtrkvp4C4KI473D8Pg5jKmUsbc1OeLH1+ptSlxVaymzKkee\n2LQIgSCflGW+4JbqpJKzRCZrWVchkZS6+l1+iNFYWGSmMz9KXWoQg1xmyLvVYs3u+bAAm9WIJc0O\nmE0MDnYNJJV1bF41F+cue6Z8FyVCdnx4aRTAaPzfI95YWGGm0wzkwSCnGrPfvteHzu4hRWMfCIXB\nhYW40UxX1iTtk9iURG1CuWHZTQVstRh0Iomrai3nU47odBPdrQAUx4bJVtZVDL7/amdS2EXqL//9\nVzvx/BN3FOx7iUEuI9TcamZWj289tgzOahNYgw5OpxX/18dumRDfyETwgEAAgH5XfjTl1YyZHB4f\nFzfgWtolxv5fW5Kjo9IIe6Ux/u90ojoSUoKZ1vaNiZSbEEeqrgFp86gNX4BHv0s+B6Lf5YcvwMNq\nZgry3cQglxFqbrVRPwdGTye9OHJCIqmt3BgDnZe+vITyQkcDQpndVi3GLJFEA6727EsrbwCakxzl\njEziu+H2hsAyOlAUBY6PTBAP0XI+0rs3WVzbpM2jNq4O+RU9L2I0tn3hbLv8DjlCDHIZUWVhFeN5\nWt1KidmBrtEg/sf248QgT0HKrSu0xaTHJ1fHFLJco0FNhjPRaKq5lBOffS1uZ6lHuCCKSQZRR9N4\ncM08rF7SAESjcNrMqKmxxIVBEg241vMBJo9ru1SZw5ONWpspp+25QAxymSDF3AIKgveZuJUk8f3f\nH7wIj79wnX8IpaNY2tVa8Qcj+NvXOrHgFhs6u4dUJwyOhBUkEHMRXh3yY9FcO96XaRWa+OxrcTuH\neAHvHusHRVFxg6i0iv3iw+2yyUzpurBJ55ONa7vUqEn0EiCr0JXJ9lwgBrlMUIq5GRkd7m6r1+RW\nEkQRr70d07D1FrAFH4Egx9Wh8bTdu+5aXIfH7p0P1qADH4ngu784mpTJajHpwehpePw87FYWbfMc\nWNc+E74AjyAXmaBTraZBnWgQt+3qTaqLl1axZhODzStny56rFhdvJq5twuSgysIqyvIadChoAhwx\nyGWAejKXDg+umZc2FsVHIvjqP+3HeKg49XKMDpAZAwkERXQ0BROrg/5Gly+5TFZ/MAKajqm6+YNh\nHDgziD3Hr8XVuOxWBh3za+M61XxExHd+/oHs93l8Ibi9Iew6egXvnZAv3Tt0egD33zFLdhWrxcWb\niWubMHlQKjsudDly+WQcTGPG/JxiXMzt4/Hazm4ICj5KLixgYGQc/y0HY0xRwB23OTMS/iDGmJAp\nghiNC4ioZbJKjzoXFuOiJZKXUGoxKulUO6tNiuI5NqsRu45eSWoHmcrwaDCeMKaE5OJVa4kqB8le\nnpz0D6urzKXbngtkhVxiBFHEziNXFPV4AWD/6UGYjPqkBBFBEPHLnedwvHcYo/7cakijUaDSzMJs\n1MMfjOR0LAIhHcd7hrF4tj2tKE26Y0ju6LYmef3stiYHus7L67VL1FSbcl7FkuzlqYU/jURwuu25\nQAxyidm++7wmzec/dg1g86o5MLMGCKKI//aj93AhTSPtTDje44JBR7QxCYXH4wvBajaoTkK1HMPt\nDWHP8X6c7I2Fe6TjSUlj69pnYm+ad2vF4ty795Ds5anFnIaqnLbnAnFZl5BMujmFeAHb3ukFAGzb\n1ZtXYwzEmkGQjGxCMbBZjWhwWmA2Zr8esFmN2HXsKnYdvRovE5SMe9s8B7ZuaIG90qjozqYpYF3H\nTDyxaVHW55CKmmtbjsmkkT2dYAw6KKXs0HRse6EgK+Q8kqlST6bdnM5d8sAX4HFCoW1iOmxWFkEu\nLFuXbLOy8AfC4CNlVk9DKBqMni7K/W9vqQEA6HNYDrTNsyu6o7v63HFJTqXSpTVLG/DYx+dDpyv+\nmmSyCIlMV8b8nGJZoSiioJnzU9YgJxrHQpPpCyadm4nVaxI6kBj1c7g65MdomiQUJf7iEwtxtHtY\ndoCKZayWm9wEoZjcsbAWH150a2o0YbMwsJgZBEJhuH1cvNd1OlbcNgOPrG/CyFgIo+Pq+QpGRgcg\nihAvxt3RVRUGdLQ4sXppQ5KmdSKJ5UY347suuH0c7NbkGuhSUEghES4sYGB4HEKCRnjqduJWV6fK\nwsKhMC47KgubOT/lDLKccVy5ZCY23XlLwWafWl8wuXMzsXoA2gyszWpEY60l6+48/9+/ncDa9plY\n296AfScHkgrciTEmnPloBKxB25Dw9IOtmFtfBS4swDUaxAuvd6Y1sADw6Q3N0NF0WrdfZYUBy+bX\n4sE1czHm57HzyGWcOu+Gx8/h4JlB1a5mcuVG0WgU0Wjsv1oolOEqlJBI0tiSMvHQ0TRZlWcAa9Bh\nSXMNdh+bmH+wpNlR0InMlDPIcsbxzX0XEAjyBZGxy+QFkzs3rcYYiLn6rGYGFabsDLIoAruP9cNi\n0hdUbYYwOYnlEGjLI2D0sWeaNejQ6LTAYmY1GeQgF4HVzODXe86r7ucdD2NPZz90N2rxEhW80knB\nJpYbpb5zUtkUIL8aLbThKpSQSLpFQTnKe5bzal0pvbXQaa9TamqUzjgWInlCqyi+2rmlq/+VElAe\nWd8ELiwgEMot+YqUNhFyxWIyxP+fCwsYHgum/YzNwqDKwoILCzj7kVvT9xzvcaGze0jTvnYriw3L\nG+PuaK3jQWJylWS4RrwcorhpuLbvvjmByCUZSxISkSNbIZF01+kL8JrHxWIkmgmiiG27evDtFw/h\nmz87hG+/eAjbdvUoai0UGy4s4ESvfH7Cid6Rgv42U2qFXAoZO61KPWrnlm6xGo0CK1vr0HN5FCyr\nyygRjEAoBL/d24cn/+Q2AIDLE9DUwKTCZMCYnwMfETGmUdpVa34FRQFfeXgJGp2W+N/SjQdubwj/\n+cEp7D/ZD7eXg83KKGrJH+8ZxuZVc/HGvgs5rZ61amRnQrrrvDrkTzsuOqqMRXNpl+NqPZFSyqFO\nKYNcChk7rS+Y2rk5KlksmmvHH08OyBpniga+/8oxRBFbLdNl2HqPML04e+lmJjMobY68a8Pj+MbP\nDsFuZcAaaHDh9A+xkdHWPtRuNcJZndyFR+2dq7aw+N2Bizh05nr8b2phII8vhH97pwf7E2LX2RqS\ndEIimbpy0417jbWWtONisYxkMZpx5OoKL6Uc6pQyyIWYfWpBi1KP+rk5sXVDC3QUJZs5mujJEaMo\nv957hGmHJOn62QcWwFltgpHRyTZ4SCRR/lIrWrO35d5vtXduPBROMsbpqLawOHfZI7stU0OiJCQi\nuXIzXaWmG/esZkZ1e+waitOxqpCrz3zF/0tlRwBA99xzzz1XsKOnIRDIvwTZbbNtCHIRjPl5cHwE\n9kojNt5xCz61eg5ojTP5TKEpCq1zHViztAF3t9bjgTtvRXuzc8L3yZ3bytY6PLK+CTRFYfFce3x7\niIukTSCwWxmEeAFGho5nkRIIxeLKkB9BLoL2ZidGvEFcHMxM45fRU6BpGqJKzEZtm8SsWgue/uRi\n2fc79Z1jDDQEMZpxUmN7ixO9V8Zkt3F8BHe31qMiIa6uBb2ORoXJAP2NWujX3+3FrqNXEbzhNg9y\nAi5c8yLIRdA616F6rHRji9p2j4/Dfxy4lNdrU7xmPY2DZwbj15iIvdKIB+68Nf57JFJRwaa1F7n8\nfqmk+z1zoaJCeYVNRbXWARQAl8tXsGMnui0aG6oL+l2Zks6lEuAi+N4rRzHoDqge5ytbWnHknCvJ\njZYPaqpZDI+SODUhPY5KI773+Y/B7Q3hmRcP5/XYdisLikofR3ZUGvHsZ5cjyEUmvFPSu8YYdPj1\n7vP44Oz1tDkbRkaHCqMeHh8X93ZtXjUH3/n5B4q1qd/7/MdyWjlxYQHffvFQzsfnwgJ0jAECH9Zc\nh5yv79bKtl09sqvPDcsbFd3jTqdVdQwv1DUUIhPc6bQqbptSLutEyrkJd7pz++17fWmNMU0BM50W\n/PLtnnyfXlpjTFHaXYmEqY3kZrRXGhXFFLKlY36si5Lc4J3IiDeE5146glH/TTfllrVzsWPvzQQs\nVoNLXeLutnpsums2rg750VhrgdXMAEBB3Zj5cuWyBh2cNRWKxktu7Cm2i7YQzTgK5Qovth2ZsgZ5\nssKFBU3SmLNmWPDv+z7K6wCoFWKMCRKMQQcTq8eYn1PsuqQV+sZEz145cYA+3uNSfdY9N8oLpWSk\n7sujSb2WtRpj1kDh3GWPbByykF2dSt1XuZgdqwrRjKPUv1++mLIu60TSuTvKiYGR8bSuP4tRjzUd\njfj9gYvFOSkCQYXqCj1GxyOwWQywmFkEQuGsJooUgC9vacX8W+0TBmguLOCXO7tVFboSyaWTlByJ\n7tRCCVpk48qVI5fxrlzFOrRcU75+v0Kj5rKeckldcmhJCCgHBFHE379+Al6VGs06hwnffepj+Ldd\nvRgPEYEPQukJ3ShfCvEivOM8ls+vgXc8rHlVmkjPlVGM+nncNtuWlDwjiFHMqrUgGo3CO84jyAuq\nSY/5XmWM+XmsWdoAvY6ekIwlwYUFuL0h6PW0bGJSOvKVSJTLeKd0baVGyzUVMhErn6gldRGXdRmx\nbVcvrrrGFbc31Jjx/NoQuRoAACAASURBVBN3YGQsBNdoemUkAqEUHP7QhXCWXaNSpS3lSlnMRn2s\noYXKcfK9QlaLQ+ar3Ib0Vc6NqfD7ldc0aBqjJXb89CdboaNpmFg9bNbJERMhTD/4iIiqCianY0iS\njnJSlmqTVol0iTiOShbrOmbCWW3UdD5qcUgtcpuZkGlfZUIyk/n3Iwa5THB7Q/HEFDmsZgNMrB6/\neqcbX//pASKfSShrFsy25fR5jy/mBVISrFCCNdAwMrRqlUIsVt2Gxz4+H3e2Nmg6rlK2cSn08wlT\nF+KyLhN2Hb2iut0XCONb//OgJhlBAqHUbFkzB13nRxDgsstzsFmNQDSa0cST0SjHaa80wnljBf3E\npkUIBPl4dnG1hUWFyYBAKJxUh6yUbVxK3WPC1IMY5DKACwvo6htJu1+hjTFFAdUVLMxGHYY8AZDJ\nPSEVrbHZHXsvZG2MgdiK1GkzK5ayKJ2b1mNLq12dTj7uqDXbeKqU2xDKA+KyLgPUZtnFpKqCQVuT\nHRRNEWNMSILRU7CY9JqMsd3K4Owled3nRGwWFmvbG7B+2Uw4Ko2gqZiqktRCkTXosOAWddc3deMz\nKxfXpZ2wJh47ldS4o9Y4pCSqIUehdY8JUw+yQi4D1GbZxWTUz+O9hEbwBIJEOBIFH9G24l14q11V\nzpUCYK0wwOPn0HV+GB3za/H8k7fDHwhPWJF+emMLjvUMyRpbu5XFVx5eAnsli9/u7VNdva+4rRZ/\ndv/CghjIYopqEKY2xCCXAWrSdQRCOaClgshuZdEx34nNq+bi3GWP4gQzCsA7Hqu1l8qcxGgUn9k4\nf8K+ZlaPla31ePfYRAWw9pYaNDot2LarR7ZLWiLnLo2Cl9pF5plSlNuUq4AHITeIQS4T5GbZZqM+\nSf6PQChnljTXxBWRMp1g7u8awENrm2SNS0SUd0VHoZ7lnMjoOI+//ucDuHtJPT59T3NG9cFaKYbu\ncb5qngnaKPbEhxjkMiEiRLFhWSM23TU73rVGr6NuvHzESBPKn67zI+DWxVahiRNMtzeEKguD5sYq\nHDknbzy5sIiLA2OYf4s9/rdYf+Be7FMIo5zsHcHaJQ2a8y/4iIjdx/pBU1RZSSlmglTzLCHVPAOY\ntNdUjpRq4kMMcolJd+NTXWF6HYXX3+3FgdPXEcwhi5VAyDeJZT6pz64giPjg7HXVz/9g2wnMqrXg\nmcc7wOj12L77vGqzCo8vBFBUxvkXnd0uPLhm3qRz9aareZ6M11SulGriQ3wcJUaLyk9ixqeOpkFR\nFDHGhLKjsoKBiY3N8bmwgCFPACE+jO+9ehTP/OsH+N/7L6U9xpUhP77/aqcmV7TNaoSz2qSY5ayE\nx8dhTEWEp1zRUvNMyJ1Sir2QFXIJyWbGqzVmRiAUm1E/j+df/gAVJgaBUBhur7retBL9Lj/6Xb60\nrmiprCg1/6LawmI8FFYUCbFZ2UlZH0xqnrWRa9y3lGIvxCCXkExvPBcWcKF/rCxqlgkEOdw+Hm5f\nbp3VxCgw6uNBUfK9t2kKWLO0IW6I5UI7v32vTzGprGO+c1K6dtWqMUjNc/7ivqWc+BCDXELUbnyi\n+y/xQRvxcvFG7qnYrSxa5zmw7+S1vHa6IRCKCQXgp2+eUXyG17TPxGMfn1gilZjl/Mj6JkSjUew/\nNRhvA2lkdLjrRju+yQqpeVYmX3HfUk58iEEuIWo3ftTP47u/OIL2FifEaBS7E+owlQaq9pYa/OnG\n+aAppK3LJBDKlShiVQdKbLrr1gl/S3VT6mgaf7pxPrasbYq1Ko1G4SxBB6BM3afp9p8KLQYLQb4T\n3ko18UlrkIPBIL7xjW9gZGQEHMfhC1/4AhYsWICvfe1rEAQBTqcTP/zhD8EwDN5880288soroGka\nDz/8MB566KGCnvxUIPHGj3hDSdukGZ6R0eZukYawrRtboNPR6Ox2we0j7m3C1GJgOIBqS6xtohY3\nJaOni264MnWfZrp/MWqeJxP5jvuWauKT1iDv2bMHixcvxuc//3n09/fjiSeeQEdHB7Zu3Yr7778f\nL7zwAnbs2IHNmzfjJz/5CXbs2AGDwYAtW7Zg48aNqK6uLvhFTGakG7/prtl47qUjsi0YtTaVONk7\ngofWxtxzG5Y14s7bZuB7rx7LKrGGML0x6ICPLarDPcsa8U+/PVVyWVcJCkBjrSX+byU3pRiNgqao\nkgloZOo+JfXFuVGouG+xJz5pDfIDDzwQ//+BgQHMmDEDhw8fxvPPPw8AWLduHV566SXMmTMHra2t\nsFqtAICOjg50dnZi/fr1BTr1yYvkljKx+rgISJCLYDTHsoURbwi/+M+z6Lk8hlE/h6oKRnNLOq0Y\n9DTCEdICcipz+4JabLrr1riLt62pRrUeuJjUOcwIchEwN1Yrnd1Dsvvt7xpIeu6LaeAydZ+S+uLc\nKVTct2yVuh599FEMDg7ipz/9KT73uc+BYRgAgMPhgMvlwvDwMOz2myo7drsdLleaOkKbGXp9cR40\np9NalO9RQxBEvPS7Mzh0egBDniBoGhBFwFltxO231cFpM2HIE5zwOclwa+HwhzcHqNHx3LJdUzHo\nkXdjrJRJSygdff0ePPvSEGxWBpVmBoPuQKlPCUAsuzocEfDN/3kINVVGsIxeMaNbaRLa1TeCv3jQ\nBCNzc+jLZmwI8RF4vBxslWzSsQBgYHhcMVTk8YWgYwxw1lRkvb8WymG8yzeJ1yT3+3/x4XaYTQwO\nnR7A8GgQNdUmrFhcjyc2LYJOl5lXRBqrD566BtdoCM5qI+5sbcjqWJmg2SC//vrrOHv2LP76r/8a\n0YQRNKowmir9PRGPpzgvutNphcvlK8p3Acqzqm27epJmcJJEr2s0hD8cuIhZCa64RO5aPAMUReGP\nXQPxjNFMkYx/LoQLoEUSjcbUaciau3xw+2KNHzw+Hp4MS5i09ktOh8WoR4CLQIzG3NQmox6BUATD\nYzHD5RoNqR9AgeHRIPoujsTdkJmODVpivUJYgN2q7D4V+HDSd2a6fzqKPd4VA+ma0v3+m1fOxv13\nzEoaf93u8Yy/77V3upMSaV2jIby57wL8AU62CUqm16JEWoN8+vRpOBwO1NfXY+HChRAEARUVFQiF\nQjAajbh+/Tpqa2tRW1uL4eHh+OeGhoawdOnSnE58sqH2sESEaFpBjyFPAGyCi1kq03j0hhj+Aytu\nwTd+dgh8Fi7oXI1xISnjUyNkSH2NGf2u3Cba9XYzvvvUHQiEIrg65Ee1hcEPXz+BfEzfc60jTRfr\nlSbjSm5+OfcpqS/WjpZYe65xXy4s4MApef30A6cGFZug5IO0a++jR4/ipZdeAgAMDw8jEAjgrrvu\nws6dOwEAb7/9NlatWoUlS5bg1KlT8Hq9GB8fR2dnJ5YvX16Qky5X1GQw1bIAJbiwmORqC/ECaIqK\nz7z5sIhwHuPBBEL+obCuvSGnI3z10TboaBo6HY0Dpwfxw9dPYNSfn/BLrvFEpUl1Z7cLv3y7G99+\n8RC++bNDONnrwqxaCxyVLGgKcFQasWF5o2LZzCPrm7BheSMclUZN+09HiiVp6fIEFBNpQ7wAVwE9\nu2lXyI8++iieeeYZbN26FaFQCM8++ywWL16Mr3/969i+fTsaGhqwefNmGAwGfPWrX8WTTz4JiqLw\n9NNPxxO8phJK7uh0D8umu2ZnLIIvfVZK6rCYGbAMrTnrmkAoNgPD4/jKljYcOD2YdTLht148jBm2\nCgx5AnlLSKSpmKBILgZObVLt9nFJK2JJsWxdewPuveOWtElBpL44PUWTtKSo3LbnQFqDbDQa8Q//\n8A8T/v7yyy9P+Nt9992H++67Lz9nVmaki12ke1iCXCTjHrHSZ6UH7Y19FxSNcT5ixARCrohRoPvy\naFZhFQk+HM17i9E1SxsmqHtxYQEDw+MQwoIm46dWWqMUO+/qc+Ph9c2ajSupL1amWJKWVRVMTttz\ngSh1aSRd7ELLw3JTBOSmBKYYBWwWBkFekE3Ykj6rtgJnDTT+68NL8He/Op6PSyUQsoaigNOX3AXP\nnq80GyCKUfhD8pmGNBUTyrHLKCwlTa59HOxWbTXKarFepUS2QjcjmE4UK9aerqIlyEVgNRfGKBOD\nrAGtdYJaHpZEt1RiHbKSGL702SFPQHEFHo6IMBQwFZ9A0Eo0Chw6rd73OFdsFhatTXa8f0I+8UY6\nj796dCnmzqyKv3tSuGnnkStJ7mW5xCCl0JScpGLbPDu6+kZIF6YiUAxJyyoLC6NCaNDI0KS5RKnR\nGrvYsnYuui+Pot/lhxiNzdJnOi3YsnZu0mcS3VLSTCvdg2Zi9aiyMLLJLTYri2jhwhoEQlmxtKUG\nJ3vVKxbslca4MZZrziLH8Z5hbF41B2/s+0gxNKUU600taZSYalnSxRbKSKV4sXalAbWwAy0xyBrQ\nGrvYsfdCUuxLjMYaru/YeyGtOpDSgyaIIrbt6sHxHpdipqnZaABDVsiEEmGggWIk/xsZHVYsmoFR\nXyhti8dEQ5gablJzL297pxcHTg/G/6ak8JUa6003GS+1IcuVfLU2zBeFjLWP+TlwCnoP/I37SPoh\nlxAt7uhCyd+lDiZyjAd5VFlYMAYKfJjIXhGKQ1WFASZWj0H3RHW5fNPRXAOrxYBDZwZVqwxSeyWr\nvZepGPQ0zl1yy25L9w4rTcZ/s6cPVAk1tfPFdNLaJv2QJwHpXMq5puTLzUDb5jlw8vyw4mck3D4e\n23efx+0La7G/q7DxOwJBYjwYxth4uODfwxpoWC0M3tPQUnRN+0w8vK4JI2MhVFlYTfX/EtEoFJXJ\n3CrvsJrRT+zHDNw0ZMFQBJ+5d/6kWC0XW2u71N4E0g95EpAudpHrrEpuBppJT+MDpwfBamzTSCDk\ng2L1GOHCIg6fGUy7352LZoCmgG+/eOjmpLapBjYrk9bFDQB8RITNwsp2XKMA7Pzgcqy1acrKVs3o\nK0nd7j89iLOX3OiYX1v2q+Vi1f+qucWLTdn2Q55K5GPmpRS7yGVWlYlbTQ2OCIYQpijpxHBYAw0j\nq8e7x5Kzp/d09kNreoWj0oi2Joes5KUYBfYcvwadjp7golWbjKvh9vGTwu1bLBeumlv8y59elpfv\n0EqphFrKd1qWRwQhlhglydp9+8VD2LarB0KelTQeWd+EdR0zYbOwoDKQv8vErUYgEOTpUgjvCCmv\nuU4hzZoLR7Bl7Vys65ipmomdKtEoTcblMGrwWuVT9rEQqF1fvly46dziIb4AnW3KkGmxQn7pd2cK\nnpAguVu6zg/D4+dQbWHQNs+uyR2V7QybQJguGBmdaqezmA68tven0mxAOCJOEBXxByP4u9eO4+lP\nLlbs/6zkolVycYrRaFLXoEyOWU4U2oWbzi3u8XJFNVbSeN7ZPQS3j4fdyhQlvDDlDTIX/j/tvXt8\nE/eV//2RRpqRZMm2JMuAMYSLMSSAuZMAIQQKubV03dxo2SRPNmm2u2n6pPtq2mbTvJqkTS+5bJ52\ne3na0NBbSktK9seLPttdGkJISQIkYMCQBMwlCWAMli3ZsixpJI30/CFG6DJ3jayLv+9/EjTWaL4a\nzfd8z/l+zjkc9h4VLiCgpyAhN9wyEIyKhrhykQp3EwgEYNnssYhxCew+1AOhPALaZEA0rizDwB+M\nipYj7vYGQRkNcKsM0UqlLRovqazFFtylLh6iZCtPjxCu1OfIhcWdtQyGBouv5uf54+snshZS/PZC\nIpksuP2iFFVvkAeDLLwDwjdSr5WpHirEdatawHEJHDzRh8FgFIyMR0AgVDMWmkI0xsHpsGDONDdi\nsQQOnewTNMYAFBtjAKi10QiEhEVeiSTQ6w9r1oPkakwyDdnvtx/PynFWes5ioSW3WEv+r5LPkdPg\nWGgTRqrDMxvj8HansBP3dmdPUdsvVr1BrrMz8NRb0evPN8p6rUz1SnnqPNWPwWAU9XYGc6a5YTQa\n8ObB7rw9MAKh2jBRBsS5JNy1qVBo+/LJCIZioCgjnnjpXYRE6gvLhbKFmNvqxluHewQLhBgNQHOj\nHa0T6wFoD9HmeoOMmcI/3TIDNotpxJW7YoxUbrHSzymVsjkXr0SXMTaWgNcfQnNjcToZVr1BZswU\nrpk1Dtt2n847pmZlKhduEUutqLczqlOe/EEWuw6ex8p5TaizM0TwRah64lzKOppNBtx+/RRQRiO2\nHvgIOw+cE62sVW+nYTSIpxYJwZiMMFNGNHlqcK53OO/4eI89Xc52/epWrF06Ced6g2hutCtqKCDn\nDZZLi8WRyi1W8znl8v3EZPL55I4XQtUbZAC4b+1MhMJRTSsvpeGWGquwQa6xmiV/VEOhKA4cE/nB\nXgpfEwijhQu+MB76f3bj2jnjsKtDOg9/MBgVDWGLwcYTeP1AN1bOb4IBBnT3BZFIXC51+a175gPQ\nXipSiTdYDi0WRyq3WMvnlPr7MZukRVtyxwthVBhkXlilZeWl5AFjYxxCEeGKRaFIDKxAv1X+gd9/\nrFe0RvVgMCraUIJAqFbiXBJvyhhjAHDYzDBRBkVFP3LpPOnD0w9cDUetFYc/vJDnAWsJ5450RatC\nGLHewiUsQ6kVuWsq5jWPijxkHn7lpSZMLfWA8bmD0qtAFoMClX/4B17K2LpqLZgx0anoWgmEakKJ\n5zuv1YP50xsFjzV7alBvFw8x895ZnZ3BlZNcWcZY6XOfixJvsFwYidzikfwcPVHSD7lYjAoPWStK\nwy1qV4FKK3PNa23ALddcgb0fkPrUBEImdqsJd91w2VPN3Y5qXz4FF/uH8ZNXj2BgWKhlqbh3pjWc\nK90iVb03WOyaziMloioXsZZS6uyMaNqbu1ZeE1QIxCBLoNTQqi2bKVeZy2lnsGBGar+qfzBS4CgI\nhOqCMgDP/OuS9F5u5naU3WbG1t0f4YmX9sEXYMHQwoZsxiUVtRBqF9iZ+81iES813uBItTocKRFV\nuYi1lMKYKcyd1pBVhpVn7rTievWjKmStFjXhlnWrWrB6YTPctRYYRcpmsjEOvf4QrIwJrlrhVVa9\nncaT9y3C+tWpIvZ1dgYuh7y6k0AYLXBJYMsbp7Je47ejtu7+CDv2n0N/gEUSlxXYFpqC0ZD6L2M2\n4O2jF/CtF/dgw9YjeSV01YZZ+e0nYY9KWflcsfMlcXn/evPOk7LvZWMcevqGVZXiVLuVp5WR+hw9\n4JLCmyZir+sF8ZBlUBpukVoFCq14bRaz4AO8cEZjej+LD1nNaWlQ1fmJQKh2Dp7ow52rLosl2RgH\nrz8kuhVUYzGhbaob737Ym37NNxTFtt2nEQyxWdWXuEQCyWQyK8fZQlNYOnts3nMvtf3ktDP49r0L\nFaVLKTmflDAsa44ZYuFyVGbf5XIgVd1RuLvY3qMXsW7lNFIYpFSoDbcISfaFFJv9ARbNjTXoG4hk\nPPRGJJJJRONxbNl1OsuAT2i0Yzgcw0CQRb2dwUCQFc3PJBCqncFgFINBFu46S9oQSdWC9w2xGDoh\n3HzinSMXsqovbd55Mi9cGYlyMBoMqlovDg6zCLNxVQZZ6/71SBX5GA14/SHR7mKRKFfUwiBk6SQB\nH2Lm05a0hFukVryZxhhItZjbeaAb3/tdR17I6mxvEHOmNeD7/3wNnvinRaArIOxDIBQLV21qL1cq\nXJxJrc2MqEhBB36SBdQrrPn9ZiG0CLm0nE+rKpwgglihc6XHC4AYZAG4hH7tGrU0L+/2BgVf7zzZ\njzo7gzAbJ3WuCaMaq4UCl0gq7iMeYoXrBKS5NMmqTV3SO61H6fkynYVKSreqBDz1VjBmsVreRnjq\nrUX7bBKyFkBp+EdJWoKW1opioejM3ElPvQXeAaLAJoxOzvUO44+vdSkuKxuTSB1laCOQTIKNcZoK\nWbQvn4xQJI5jn/gxEGQLTuuR0q0I6VHaWhpES/eWa/GNcoYxU/A4rYKlVT1Oa1FFacQg56BEVGGi\nDIrTEqRSoiy0UXCvwgDhwghOhwV2G41X3zyFYFh7croRAOlXQah0PjzjFzVEqkgCT2x8L/0ci6W8\n5Hq8QsZxycyx+MKaVtgY7VOrlG5l046uPGfhjY5uTGi0C34PYl56sXOcKxk2xiEcEZ5fw5G4YOVF\nvSAGOQcl4Z8dB86pElBkrnh9gQjq7DTmTWuAwWgQbF4uptWa19qArbtPF9w3mRhjQjXgD7CYN60B\nviFhsZZS+M4+/HO8asF4rF7YLJtZIRRJe/voBVgtJl2EVLkCUSlnIRSJYeW8JnSe8kle80jlOOsJ\nn8rFFdEQZqKk8mKxam0Tg5yDXMjKyphUpyVQRuOlcFMSh7r6MBBk0XmqH7OnurFk5hgcPzMA35B4\n6I0xG7FgeiNuuWYivve7A4UNkEAoMUaD+LaMGgwGoONEHxizERyXgF5NeA6f6MfTD1wtmVlRirrV\ncobixsUTceeqaaBoM8LDEYTZOOJcElSGna0kNXapUrmkbQCp1DWiyFXdCrNxzWkJb3Rc9ob7A6kW\ni0DqJouFqYFUu693jl7ABx/7SKMJQsUz3mPH2V5h4aIaeKMu1rtWK5nPsZgnNFLdkjJRsr9togz4\ny1un8fbh7jwPOM6Ji+DKrfkFULrFA2OmROtE2CzS3fsKpTxjFCVGquqW3mkJQGp1K+Uw8BMPMcaE\naqC50YZPLRgPt8hzVGqUCKH0TndSghIF9uadJ7Ft92nBKl+VpMYuZSoXG+MwHBaea4fDsaJ+NvGQ\nBZASVVBGqKpbDcjXriYQRhN7jvZiQqMdT92/GL/f3oV9CpqnGAzAw7fNBgwG/OjPnUW9PiXpSmrr\n1/MUKqbi94Q7jnvhH2LhdDCYPz3lAcsZsbVLJ1VMK8RSRCAyP9svIhQcCJI95JIh1ihbbfcSLalP\nBEI1c7Y3iB++3KG4lZ3LwaSLgYh14ikUd626dKX25VMQjsRx7Iz/knEUf7/eYiq+NkVmjQo5IxZm\n45oWEaWglH2U6+wMaNoIViADhjYbyR5yuaGlnKbYg0AgjFbOefPzPMUIhmPp1CSxDk5aMBqB5W1N\nuGHRBLhqLYqMUoiNYdNrJ3DsEx/8Q1E4HTSumTkW69dMg40xC75HbD+U4xK4cfHE9Bwi50FL7ave\ntmKqrBGrlFaIWiMQehETUQiKVXvTC2KQC0DMgxYi80HoD8gX9KBNBnicNnSrmLQIhGolMzVJT5IJ\n4OarJ4o+x5kGkq8/8FZnT1alPN9QFO8cvQCbSLqTVCj5zUPnsevgeTgdNGqsNEKRmKgHrUTZrcSI\nVUorxFItHrz+EMSKMiYSKGota2KQRwjeq167dBIe/9U+DIWkS/lZGTO+escc/PjPh1V5EgQCQTke\npzUdghQyvrkd2qTU4WJKZalQMi/Y9A1Fswp7CCmKleyrrlvVApuVxtuHz0saMTXORKmKiGRGIina\nDC4aG5HPF/OOlR4vBGKQdUbuxxtm4wjKGGMAGByO4vEX94ItcoiEQBjNXDNrHEyUAZt2dEkaX75D\nmxRiYqM6O6O5olimkVeyr0oZjXigfTZuXjyhYCNaLkVEGDMFT0MNvN6hEfk8s0l6bHLHC6FqDHKp\nS8Hl/nidDhozrnDl7SupEXgRY0wg6MeERjtCkXiW53jf2pn46SsHBdujqkVIbMQlEnj1zVMIsdpS\nZTKNvNJ91Ug0rstcWElFRPTEIxM5kDteCBVvkMtlFZf74+X3lTq6vLi2bVz6eojAi0DQF6MRgnt+\nlBHgLr1uoSm0TqjD566bimAomjZWMS6huGOUHEJio9x5QS25Rl5J44nOU/3w+sMFzYWlqERWLkRl\n8oyjpJa1OCO5ihPzwqV+vJEol3c961a1IJFM4p0jF0gbRQKhQBIJ3vuNpUss5oacI1EOrx/ohsFg\nyJoX/IHCawRYaCq96M5Eal5gRNJqcsk18mobT+TOPUojiaXMAy41x88OyB5fOL2xKJ9d0QZ5pFZx\ncl64ksIfmddDGY0wGgzEGBMIKpDqUuYdCMPGUEgmgUQiAe9AWPDv3ursQfvyyenntrmpXnWNAAtN\nIRrj4HQwmDHRKdrdSWpeiMUSWDprLI6fGYB/KIJ6O4MaqxmhSEw2pxlQ13jiYFcf2pdPxtbdHymO\nJJYyD7jUxGU8ZLnjhVDRBnmkVnFyXriSfeHM65ErpUkgjDbGOq244Bc2ojxS/mQkyqUXuP6guGgy\nEuXwvd8eQDTOwRdg4XFaQZvULdptjAmP3b0g3ah+MMiCMhryFv9yRu3uG6en3680D1kMublw02sn\n8M7RC+nX5CKJpc4DLiXOWktBxwuhog3ySKzilHrhcvvCmdfjHQgrDpNl7oMRCNXKcEQ+80Avenyh\n9P/3XloEqOlANXDJAL/65ilJj1OpUct0GtSkI2Ui16Ho2Cc+wfdJRRIrpYiI/sj9EHRoVSZCRRvk\nkVjFKfXC+R9pbtGAzOvhEkm89P99gA8/8Sm+pbwxZsxG3bvaEAjlwlBYWQnNYqGmHaTTYcGOA+fy\nurcJeZwjZdSk5sIZE51Z3nEmUpFEtRUJK5XcqIRYHWseueOFUNEGGSj+D16pF87/eNuXT8Gm17pw\noKs3Ldqw0EYc+8SPrx3eDTambXUV54q3KiMQCMppm+rC4RPSTRzCbDw9wY+UUePnvM5T/egbCKfn\nwvblU3DsjF9zJFGr117uiGmDWsbXSb7PTJE8ZFGKvYpT64XbGBNsFlOWgjISTRRcbYvTo6M7gTCK\nmNCoT9/lTJbMHAM2lhAt8tEfiOCJje9iMBjNCmOPhFHj58Iv3WbFqY/7s+bC0bofLIWYNigalxZt\ntU6sL9o1VbxB5inGD54PZbQvnwJAmRdOBFsEQumx0EZMba5F64Q6HDrRn35ubRaTZiPtrmVgYUxZ\noWoh+L7lpSqkYaFNeXPh6N0PFkZqnj56ygcDhHeKDQDoIi5gqsYg64lYKOOp+xchGIpJeuGF9j4W\nK3JAIBCUE4kmsKvjPFYvbMbTD1ydV6O647gXviHh59RCU4I6kLapbnSe7FN9LUpSMHP3MfWuPDha\n9oOVIq0NYkU1QhEGmAAAIABJREFUPslL7y1pP+Rnn30WBw4cQDwex5e+9CXMnj0b3/jGN8BxHDwe\nD5577jnQNI1t27bht7/9LYxGI+68807ccccdRbnoYqO02IjQQ1NI7+MJjXZMba7Fro7zBY6AQCAA\nwHsf9mLt0knpCZSNcVi9oBlrl07CKztP4m0BsdOy2WNhMBjyvMmV88Zj10H1z6aUcEpo8W+zmDEc\njsI/FNW98mC17gerRU6VHmJjiAgUbrHQVGn7Ie/duxcnTpzA5s2b4ff78bnPfQ5LlizB+vXrcfPN\nN+OFF17Ali1b0N7ejp/97GfYsmULzGYzbr/9dqxZswb19cWLtxcDJWlOQp1g5rV6cPv1U/Dqm6c1\np3CEInHcunwy3vugF8OR0qpOCYRqYHA4im/8/B0saxsLLpHE4ZP9GAhG4a5lMGdaAz5z7WTs6exJ\nG962FjdWzW+Gq9aS502yMQ71dgb+oLrFtpRwSmjxn2kkRkv96JFGShs0p8WNd472CL4vmSxxP+RF\nixahra0NAFBbW4twOIx9+/bhqaeeAgCsXLkSGzduxOTJkzF79mw4HKk+kfPnz0dHRwdWrVpVxMtX\nh5IwkJI0px0Hzgl60MfPDBQkIuET+IkxJhD0g40nsDMn6tQfYLHzQDc+u3wKnn7gavgCEezYfxaH\nT3jxRkc3XA4a86c3Yt2qFsS5JHr9IdTZGcxtbZDdQ85FTDg1FIriwDFlepNqrx9dCsT21VfOG483\nRCIhbCxZ2pA1RVGw2VIfvmXLFlx33XV46623QNM0AMDtdsPr9aKvrw8ulyv9PpfLBa+3PMRNHJfI\na68mFgaSS3OyMiZRD7rbW5ii0+lg8MHHwgn8BAJBf/Ye7cHNiyfg9Y5zWZOwbyiKHfvP4dgZP8KR\neHremDOtATUWCsMRYSUuZTSg1mbG4HBUVDjFh6n3H+tNC8DkqPb60aVAbF+9f1C6YhxlNBTtmhSL\nunbs2IEtW7Zg48aNuOGGG9KvJ5PC299ir2fidNpgUlm2Tgsbth4R9GhtVhoPtM/O+/tlc8Zj2+7T\nAq83wVpjERWDFJqZ1HqFC3uOCIdKCASC/vT6wwjFE9gjUjjjXO/ldEXeq7Yy4nMWl0hiSVsT2le0\nwFnLwEJfnmIj0Tj8ARZb3zqtugNUQ70VUye5s84nhcfjUHV+Hv4ac6+9HNA6JiU0Z/z/iR7pvsu+\nUBwzWopzLYq+8d27d+MXv/gFfvWrX8HhcMBmsyESicBiseDixYtobGxEY2Mj+vouKxB7e3sxd+5c\nyfP6/SHJ43rAxjjsFdkPePvwedy8eEJeGGjtkokIhaN5oYy1SyYiHo3B5RD2oNWU3wMuF6lPyeiT\n2HOkR1RuTyAQisN3frUXYRX9iuX+dt/RC1i75AoMDSYwhGzhVn+AhRYHq22qG0ODYUibihQejwNe\nr5K/vEy5tLEVQ8uYtNLnk64Z0ecbLuhapBYWst/00NAQnn32Wfzyl79MC7SWLl2K7du3AwD+9re/\nYfny5ZgzZw6OHDmCQCCA4eFhdHR0YOHChZovWi8Gg6xo5xc+DJQLH8p4+oGr8f1/vgZPP3A11q9u\nzepnLMS4hhrR67DQRrgcDIwGwF1rweqFzXj+y0txzcyxlwrjp8QCxBgTCCPL4LC+dbRz5xVeuMUv\n4tVG0iw0la6FoDdsjEOvP4RNr3WlrzGJy1HEzTtPFuVzyxm3Q1pFLXe8EGQ95L/+9a/w+/346le/\nmn7thz/8IR5//HFs3rwZTU1NaG9vh9lsxte+9jXcf//9MBgM+PKXv5wWeJWSOjsDT701XUQ+E7my\ncWIpAmJigCUzx+C7vz0geK5INIHH7p4D2mTMUm0eP+PXODICgVAK5Bq+ZM4rehQKisY4BENRwRaP\nWsn1iA0iXnvHcS+um9MET7111AjKbBbp71nueCHInnndunVYt25d3uu//vWv81676aabcNNNN+lz\nZTrBmClcM2uc4J6w1rJxuWIAu82Mrbs/wk//64joe4wGoK6GhsNGp18rtIgIgUBQv1VUKHLd1zLn\nlcEgq7gmgYU2Cua+FqP/cG66lZjkxzfE4omX3i27EHYx8ThtoE0GROP5XwptMsBTRGFddX+zl7hv\n7UysXtgMd60lK2RcaNk43oPeuvsj7Nh/TrILSCIJhNnL6UxsjEM0noDTQYu+h0AgyJNIprxWpdAm\n5X/c1GCD087AYLhUOpMWf6+7lsmaV7hEAtvfOyu6Z2w04NJ5U/PR0tnjBP9O73rTar320RbCZswU\nlrUJ34tlbeOKGikoLxldkaCo4pWNU/rjdtpp1NlTFWA2vXYCxz7xwT8UBUOPjjAQgVBMlPYMt9AU\n3HUMur3KBKU9fSEkAdTbaUxrrsfeDy4K/p0BwMO3t6G58fI23eadJyVzllfMbcKNiyem5yMukYBR\noEKY3vWmC4nMlUM+tN5lRYUwiMTwxV7Xi1FhkHmKUTZO6Y97+iQnXn3zVF6/ZKGauQQCQRt8+Fqs\nJvySWWNFWycKwQctB4JR7P3gomh43FVryQplSi3UjYaUMV6/pjUr/FtIvelMIyWHVK0FufB/KfOh\nR0oJzsY4HD4hXLP88Il+3HE9V7SFwKgyyHrCPwBWxiRbu9pCU7CYjapzDwkEgjp4YyJkjCc02rF6\nQTN2qay0JXT+XHLDylIL9UQSWL1wgqgRUeM4CBmpZXPGY+2SiZLnFysbuWLeeKyc24Qfb+nU3D+5\nWCjtMVAoSqo1lrS5BOEyYsXgpQzyklljNXWJIRAI+hGKxDAcicFsAqI6VqdNpSVNznpNrsnMjgPn\ncPcN0wv+bCEjtW33aYTCUUkjJdWOkTIay65/ciQal+0xoNd11dkZOB20YM/rejtT2uYShGzEisFP\naLQjFImlE/8TScDlYDB/uifVJaaAVTmBQCic/gCL7/++Q/fzslEOwVAMNsac+vel6NnMKS78/ZBw\nUaLOk/1gVxYW+lTSCEfs/HLh8XLrn+wPjJzXypgp2KxmQYNss5qIqKtckHoAQpE4vn3vIoTZOKyM\nCWE2npVvrLUlI4FAKG/qLgk2c6NnDpv49KqHEdEjtCoWHi+3/snOWukeA3p6rWyMEy0m1TcQBhsr\n3h7yqEh70gu5ByDMxtHotMFho9HotKVvmlR1LwCgiivcIxAIBSJV7nLetFQYN7MiVxJAICQeF9fD\niPBh8ULOz1fqYmPC4lLeYJe6KIiFNonOoXqH0b0DYbAC+eBAqsCTmLHWA+Ihq0CuE1TuA5CpfGxf\nPjlPYc3DkXqZBIKu2K0mBMOFbxTzteXNJiPYWP4kPaHRjvVrWlXn9uphRKTEWXLnL/fa1UKMWBhd\nrjGSgsZJWiEGWQCxPDepB6Btqiv9HhNlyPuxT5/oBKsxxYmmDIgSq00gKCakU09x/qnjjbGFTm1B\n1dekeiOvXz0NlNGI/sGQovRHXleilxERMlLL5jRh7ZKJku8bKcWynoxUGF2uElcxK3URg5yBklVj\n7gNQb2dQYzWj81Q/dh08n1Zdn+293Bu5P8DinaMXwJiMYOMKKxhcwmahEIuTXGUCQQ3FKqVpY0x4\n7O4FebWd5VTVQKoq15c/Nws1VjPiXFJVdTExhIxUc1O9ZDeiQsRgxUJNsY9i1JPIJCoSvs88TvKQ\nRwAlq8bcB2D7e2ezqvHwqmshDBoewJBII3QCgTDyDARZ0CZjWqyZaUTEomc8jJnCz/7PEfiHoqpD\nxHIGS42RKnaerRrjWo6h84/OD8oeb2sR1wQVAjHIl1C7amTMFOrsjKr8YjaawDiXDT2+/LJ9zZ4a\n9A1GSOUuAqGMcTossNtobNrRlWVEZkx04s5PpaJnYlqRVJvV1OtKQ8TFMFhqtTBK0XKt5Rg6Z2S6\naskdL4Ty3L0vAUpWjWreI4Sr1oKvr5+Lq68ag7qaVM4ir94MRWJIFlEsQCAQCmdeawO27j6d1zv4\n7aMX8M3/9x0AwDP/uhTLZo2Fu5bvfy7elOJgV5+owhlAnnJbjyYPUlkfhYjN1F6rnBMk9b0UkxqL\nuaDjhUA85EtoWTUq2TfKxGYx4Xu/OwBfgAVtTj2g/F6XUBI6gUAoH5bOGov25ZPxxEvvCh6PRBNp\n7+7+z1yVDt1GYxye2Pie4HukQsRqonZqalkD+iuWtexLl7JEpRRWmYY/cscLgRjkS2hJITBRBtGy\nmanKXfH0j91mMWUJvYRSKAgEQnniqmVw943TFUXFMg1Qo9OWKiRBU4JhbPrS1pcQSgyWu86iupY1\noL9iWYtxLVbovFA+7hEXxPHH3XXWonw2McgZqF01bt55MsvI8oxz2fDNf5wPymhIN6D4zm+EV8gE\nAqH8CUViePXNU/jssitEjSuPsAFSvx2lxGBJ1bJWYmz1UixrMa6F5FEXk5hML0+544VADHIGalaN\nUiGaHl8IT7y0Ly1o6B+MaO4/SiAQSg8fjj5+ZkBWeJlrgAaDLCIilZ/YKCcampUzWABE56C3OnvQ\ncbxXk6JbC1qNa7nVzAYAp4Mu6HghEIMsgJJVo1zoKlMteNuKqaSWNYFQBXR78yNiueQaoDo7A7fI\n8++qFfYe+T3h9uVTAAgbLKmFvhZFd6FoMa6lqJktl5ZlgHQtY7njhUAMskaUCroOdvVh7dJJmDHR\nibePXsg7rqVYCIFAKA1SBUfq7TQWzmjMM0BqvEex1KGn7l+EYCiWZUTUikqLXfSjEONa7GIfgPK0\nrEBYWmArd7wQiEHWiJJCAADQH4jgyY3vwR9kL6U+GBCNcenV4+oFzfj3X+7VsMNEIBCKhUVkn5hv\nrZqL087gyfsWwWETDmcq9R7V5OUqnYN4Rkq5PBLGVQtKv1uxe6j0eCEQg1wA/MPUcdwL35D4KtV/\nKYeZ30daOmss7r5xOhgzhV5/iBhjAqFMcF/ympLJJF4/kN/DfLzHLijkXDDDIzlRK/EetaQO5Rt6\nBiE2jjCbv5gYCeWymipdI4ma75bkIVcomQ/Zy9uPC4akhTh+ZiD9/3V2Bk67Gf5grFiXSSBULfV2\nGoHhKGpraAwElYUSxbxcAGib6sb61a3gEgkYDIY8j/b266dgy67Tgp6uEmMk5T1qSR0SMvT/8+5Z\nbNt9Ou8cxVQul2MJzEyUfrdcIoEd+89InquuhnjIZQ1jpnDvLTNgtZjSD6rUBOELRHC6exBTxtfB\nRBnAxomPTCBoIpnA3JYG3LlqKp774yFF+6lLZo/F+6d9gs/nnvcv4rbrW2BjTKIebe7rQt3dtBij\nQvJyMw39fWtnIhSOjqhyuRxLYGai9LvdvPMk/n5Y2rHqGwgXLWxNDLJO5K5U/7r3Y9EbazAAz//p\nEFy1DNgop1urOAKh2qBNRsQTCSREdI8Dw3F0nOjDB5/44am3Shpk3jMWM8ZASp38x9e6cP9nrgIg\n7tFmvr5pR5cuxkhL6tBQKIpzvUE0N9rTRoKiRla5XI7do3JR8t0q7Wl90R/G5Ka6YlwmMch6wzed\neP8jv+jf8OEykgZFIEgT5xKKWilGohzO9gbR3FiDvoHLTVosNAVXLYPzfaH0eeRC28fO+FPVtRQY\nEb2NkVLxVzQex/d+14FubxCJZGqxMd5jx7fumZ/+m5ESV5VrCcxc5L5bpb0JOFIYpDjoKUDIPJfa\nphMEAkEYtX2NwxEOz/zLEgwOR8FxCbxxqBtvHe5RdQ7/EJtnRMTmCr2NkdLUoe/9riNLXJZIAmd7\ng/je7zrw829+SvHn6UG5lsDMRe67VZpGVsw98VFpkPUUIAidq62lAU4HTRpGEAgjjH8ogjAbR7PH\njk07uvD3Q+qMMQDU1TCwXmqxJzdX1NkZ0We93s5oNkZS3u1QKCpaoKTbGxTsTFdMpMLBbS3uslNd\nS21DKEkjc9YWb4ExKg3yn14/kZXSwO/5JJNJ/OOa6arOJSRmeKOjGxMa7cQgEwgjDO+RKd0PFMIf\nZPGd37yHea0eJJJJ7BSYK4DU/jBjplBjFTbINVazoBEqNDJ3rjcoGjlIJIGPewJoqreoPm8hCKVf\n2SxmHD7hxa6O7rJTXYuxblULBoNRvHesV/RvzCZSqUs32BiHt48Ii63ePnIBt1/fovghkXroh8NR\nXHNVI7rODmIgyMLpYECbKPT4QpqvnUAgSGO1UDBRBvQPRhRrNITSoHjDK9XH+LYVUwGkGk8IEYrE\nsvai9YrMNTfaRVO3jAZg0rhaRItYTUqI3HDw9nfP4I2D59PHy011LQZlNOLGqydIGmQYimeQy3ep\nUiS8A2HR4vCRKAfvQFjxuaT2j3xDUez7oBcwAGOcNiQSCfT4QrDQRlhoKt24fEKjHS5HeeyxEAiV\nzrneYWzeeRJ1dkbUmOaSBOCwCRd7EGsK4Quk9oel5wA2az7ho2n9ARZJXDZSm3eeVHSdPA4bjfEe\nu+Cx8R57SfdseVFr56l+weMHu/rAxqSbc5Qag4xuQe54IYw6g4ykzLcpdzwDXgQgeioAvgCLHl8o\nXfgjEk0gEuVwzcyxePqBa/DUfYvxnS8uxpJZY2AafXeDQNCdjuNeRGMcYgrz++trGAyF1BXmMRiA\n7e+dhd1mFp0DkkngR68cwqYdXQixMUk1tloj9a175mPCJU8ZSHnGExqzVdalQonQrZyJyqio5Y4X\nwqgLWXucNlhoo+DK10JT8MgoInP3f9TUks0ks1rX1t0fYc/Ri6rPQSAQ8vENsTh4wgtOoUR7bmsD\nOk/2CYa4xWpaJ5LAGx3doIwGyTnANxTFjv3nEIrENamxxfabaZMJT923WDAPWe69xaZSVNdisKx0\nXQi544Uw6gwyY6awdPa4LKEGz9LZY0V/uGL7P7dff7k9mi8QUVyXmn8I6+yMZvEJgUDIxwDgN/9z\nXPZvXLUWLJvThLVLJoIyGgSN6rLZY5FIJPHmofOCe7ZvdfbgmX9dCiDVm1hs3/rYJ35VRkrpfrPD\nRuPKSa7s93IJbNrRVbIyllp7I2uhGIsOuaIfxSoKAoxCgwwAX/jUNBgNBnQc98I/lBJczZ/ukSwt\nJ1ca7rYVU+H1h/DjLZ2KxCT8Q0hylgkEeQyA4sWukr+rs9Nom+rCfWtnwucbliwa0T8Ywa4MgVIm\nkSiHV14/gfs/cxWuaxuHb298T/DvBoIslswcK1jvXshIFVKKcuNf3i95GUstvZHVoEYgp9Zo02ZK\nUjRHFzHaMCoNstq+nVJq6v3HerF26SQ4bDSaGx2KQ9j8Q6i2pymBMNoY47Liok+52FIJA8Eo3jh4\nHgaKwh0rpoAxU6JzglSuMXC5spfHaYNb5FmutzP4wprWrHr3YkaqkOpfbIzD3qPCuddKK4fp4XUW\n0htZCUoWLFpV7YNBVjKtrJiVx0alQeZRWlpOyosdCEbx5Mb3sGBG6kZnrgz7AxHB90xotKf/jjFT\nmDutQbDVG4FAAHr98sbYbqUQDKtX7+7cfxaHjl/EnJYGrF44Aa5aS96cwJgpzLjChXdEurllVvYS\nW5CH2Di27j6NdataZI1UIdW/BoOsaKaI3HuL0bGpGOU7Q2wcb3UKRywyFx1aowx8URitxwuB6HoV\nIKem9gcvpy/wK8Nv37sQThHxQigSR5y7vAQjvZ4IBHEUJT4kDXDahVOX6u00pDJHfUMpb/lbG/bh\n8Q178eK29/HJhQDYGAc2xqHXH8Lt10+FhRb28DL3gNetasHqhc15fxuJcuk5gjdSYh6j1HwjJ4qy\nMibR89KXInJi6JWWVWz++FqXaDoav+iQizJIqdrlVODFVImPag9ZKUrV1JmrszAbx4DIjctcqbIx\nDodP9BXjsgmEsmbRjAasXTYFSCZBmyk89uJe1bWreYKROGwinkuN1QzKaFC0LdQfYNH/wUXs/eAi\nKCNgooyIxhJw1TLw1Fuz6kfzZO4BU0YjblsxFQe7vILqbCVhYzlRFAD0+kNZHnamdytWZ0GKYnZs\n0rtnwLEz4o17+HKlhUQZhmW678kdLwRikBXCh5j3H+sV7RaTeaOVSv+JqIswGmHMRvxfN18JG2PG\nUCiKg11ezcaYJ8TGBcVf3d5hTGi0q9ZpcImUoQMuGeoAiwmNdoQicck9YD0aTgiJouZOcyORTOLx\nDXvzQsq54Vkh2Cgn+tnF6NgkFQKPc0lNRlpuvpxxhVNWmyMXZfCLbDUqPV4IxCArhA9Fr106CU9u\nfA9+Ae8380Yrlf4TURdhNBLnEvjzrpM41R1Ad++wbts2YucJhliMdVnR6w8XZPhDkTi+fe9ChNl4\n2piwMQ79g5c9Vj3ycIVEUa++eQqvC+yJclxCtDJWJq5a8c8uRu6w2B7u8TMDCEVimvappa7TQlNY\nv2YagMJSr0wyCwS544VADLJKaDOFqyY5ZdMX2BiHlfPGX3pYfKIraq3FRcRk+QRCJcAlgDcPqu/E\npJVUpTx11biE6A9E8NH5AFx1FnCJBDbtOCVYm8BmMQsaDSljIBTa5feb2RiHjuPC9ZU7urwIDMuP\nTeqz9c4dlgqBZ4b91aZkSV3ntW3jYGMu6wi0pl5NHuso6HghEIOskMzwS3+AvVQn14BojMu60blh\nGqeDRutEJ25cPAtjXTWCP+z25ZOx+/B5sDHlJdmIMSYQSsOPtnQCACijIasaWKYHKLTXnJldkYkS\ndbPXHxJNuxocjsFpZwSjdgDgUlBnAdBuwHIXEmyMw+nuQVVRPzX71EqvU2vqVVimEpfc8UIgBlkh\nueEXXuW3dNZY3H3j9PSN3rSjK+vvfENR7H3/Ig6d6MO1beME90+CoRiiKowxgUAoPWKlOcV6FfPZ\nFVRGZJaNcXh5+/GsiFum18jvD4t5x0AqWja7xSXY+3nZrLG4K2N+kkKtARNyPmqsdDocrSaKp2af\nWu11qk29GhTRCGUeb25UfDpVjFqDrEb5JxV+4WtSs7FUpyixB4dPexDaP2lfPpnsIxMIVYKYEco0\nOrwx6zjeK+r5vtXZg1icw5sChjb3825cNBG0iRL0GtXmECs1YLlOim8omjUWFX16NO1TFyPHGQAu\n+KVb5F7whzATbt0/FxiFBllL8rtki7VABC9vP45jZ/zwXcrfk0Js/0RrkwoCgVAZZBodJaroSJRT\n1HTGXcvAVWtJe40UbQYXjRW1oYSUk5IL7ylLecxtLe4RbYAhxRintaDjhTDqCoNoSX6XStRnaApv\nH72QPp8WDnb1oX35FKya35Rup0YgEKoLXhylxphF4/JbWfNaPVkisHENwloVPVGTrpkE8MVPXynp\nMa9e0KzPhemAzSpcYEbp8UJQZJC7urqwevVqvPzyywCAnp4e3H333Vi/fj0efvhhRKOpMMW2bdtw\n22234Y477sCf//znol20VrRWb+GVfcXCPxRBMBRFMknEWgRCpWGhU80IXA5GtJqXhabQvjzVGU6v\n2gPuWgarFzbr1rBBDXLVCzNxOSyYPdUt+vfuWgtctRY9Ly8Lvtqa0p7TBpk5WO54IciGrEOhEL77\n3e9iyZIl6df+8z//E+vXr8fNN9+MF154AVu2bEF7ezt+9rOfYcuWLTCbzbj99tuxZs0a1NfXF+/q\nVVJI8ruQsm/6xHrsEalvq4Z6O4P/2XcGuw8L12clEAjlCWM24vv/fA2iMQ7ReAJPvPSu4N9FYxyC\noShsjElV7QGxfsy5YtKRRk265rzWBjhs9Ii1ZOTRWps7JhOVkDteCLIGmaZpbNiwARs2bEi/tm/f\nPjz11FMAgJUrV2Ljxo2YPHkyZs+eDYcjlaM1f/58dHR0YNWqVUW6dPUUkvwupOwDgONn/ILn4ysG\nKVEa1ljNePMQMcYEQqURiycQjXHpXGG5+YVLJPDqm6cwHFGWEz2/1QPGbMThk/15rWL16G1cSFnL\nXCel3s6gxmpGKBK7dK3Z6UjFbsmYi9bmEnKlR7WUJlWKrEE2mUwwmbL/LBwOg6ZpAIDb7YbX60Vf\nXx9crsuNsl0uF7xeZfskIwVjptDW0oA3OvI7K7W1uDVJ6MVWfbwNljPG4xpsCCl8OAkEQnmhtjpf\nblokD2M2otFpSxuzVM/dJN45euFSGDyJJACDDhoTNsbBF4hgx/6z6DzVr7mzU66TYmVMCLPx9H9z\n59Jit2TMHaPW2tzjPTWS55Y7XggFq6yTIjv1Yq9n4nTaYDKNTMjF5arBxr+8j6OnUyXmjEYgkQAa\nnVbYrWYcPd2PXQe74am34ppZ43Df2pmgKPkf5kN3zoPNSmPv0R54/WEYLp1XKaFIHIFh6bw3AoFQ\nniyb04TmpsvbcpnzQd9AGA0Z80lMosRlbQ2NF/5tBQDgF6924vX9Z9PHMj0y3suzWWk80D5b9Lo8\nnuxqUpFoHH0DYfxl92ns//BiXktLpecVguMS+J9330/NgQNhRXOoFglX7pik6Okbhm9IfHuSos3w\nNAgb1uG4tO2y1FhUXYsaNBlkm82GSCQCi8WCixcvorGxEY2Njejru9y1qLe3F3PnzpU8j18m30sv\nPB4HfvrKwayVKW80zSYjTp8PpF/v9YexbfdphMJRRaXcAKB92STcvHgCTncP4vk/HVJ1bYPBqGSV\nHQKBoA/1dhozJjqRSCbx7ofihTbkzhEYjqbDrWuXTITXO5T1N/x8kOkF+nzD6PWH4BXp7dw/GMGp\nj/tRZ2dwqEv+2t4+fB43L54g6OV5PI70NeVWGCzkvGLkev1a5lA5MsekBC7GweUQ3z7gojHR8318\nxid57o/P+FBj0h6qkDLmmjYhli5diu3btwMA/va3v2H58uWYM2cOjhw5gkAggOHhYXR0dGDhwoXa\nrlhnItG4aPiip29Y8HW5npm5MGYKU8bXKVYe8rhrLZh7qaUagUAoDrTZCAOS2PfBRZzqHkSzp0Y0\nxVDMFrlrLXjqvsX4/j9fg6cfuBrrV7eKhneFeh4r6XOsVIHNi1DlyEzzVILS8/IU0ne4mEhlxsiJ\nyJQUBikWsh7y0aNH8cwzz6C7uxsmkwnbt2/H888/j0cffRSbN29GU1MT2tvbYTab8bWvfQ33338/\nDAYDvvxJw+0XAAAaqElEQVTlL6cFXqXGHxD/kSupqqMULY0iLlfTMaDjuBe+IXUl5wgEgjzRWCJd\nnjZlnMSNjpgN4dXCDhut6RqU7DErVWArqWylJt9ZzXkzKUbbRr3QKiIrZWEQWYM8a9Ys/P73v897\n/de//nXeazfddBNuuukmfa5MR5y14j9yMeOn9ofJqxX5XMODXX3wDUUkk+GXzByTFlGsX90KLpHE\nGx3dxBgTRhUmCoiXxpESZeF0Dz7qGSqoyYIQUkZCjQJbSaqQlnxntSlIxWjbqBcjKSLTi1FROtNC\nm0RXpuM9dsHOLEp/mGK5bk/dvwi+AIsfvXJItFathTGlQ15sjEPnyT7BvyMQqplyM8ZAql/z0w9c\nranJgpRiWcpIiCmwKaMBZpMRbJSDq1Z5qpCafGd3znmVpkPp3baxGKiteZ0reFN7vBBGhUEGxFem\nt18/BVt2ndacGyeX6zanpQFvHBTOMe482Q92JQfGTOlWvYdAIBTOmUuLdH4iF2oxyP/71TdPqc53\nzTUSUuHlRCKJxVc14sZFE2G3mhFm87tGiX2G1Baau9aCthY3Vi9ohqvWAsZMXerx3KWqmMZI5xcX\nG7tVektC7nghjBqDLLUy1RrWUJLrtnrhBFGD3B+IwBeIYJy7RtVqlkAgFBdfgIUvEEGj0yrZYtDp\noBFihV18NT1+pRbkSQB/P9SDj84P5XWKk8sbFjKWuUY4Ey3FNCoxNCyFPxgp6HghjBqDzCMWvtDS\nykuJoMFVa4FbwtBuf/cT3HLNJFgZE2ZMdGb1RSUQCKXj51uPYvrEeuw8cLmQUG6LQbHtKECdqEnJ\nglysU5xUapEaY1lIMQ2geO0QR5oai3TzCLnjhTDqDLKeyAka7DZaVqTxVucF/P3wBaKsJhBGCIvZ\niEhMvnpPt3cYfQPaU1zUiJq0ZGgAyr1wJcaynBXTI4lHRkUtd7wQRl37RT2Ry3Xbuvs0duw/h0hU\n/OHnjTAxxgSCNLQpNV0V2qI0EkvAblHmi7Ax7Q+mkKhJqvPQulUtWDlPXQtWtXnDUijJkx4NEA+5\nghETNLQvnyza+YVAIKiH7w1cZ6dhoozwDmjfy6PNFFbMaMSR0/26iyktNIVr28ZliZqUKLEpoxF3\n3zgDMBgE6+0LUW9ndDOUlaCYHgk89VbQJgOiAiU0abMBnvoS5iETpBHbo+n1h4hqmkAoAn6JfVul\nDARZ3LBoAmpsNHa8+4ng5AuItz+UwsaYcNuKqVliKzViqfWrp4EyGrIW+TaLSTA9M8TG8eqbp3Tr\n/lRtimktMGYKjS4bzvXmV3HMrb6mN8Qg60TuHo2cSIPsGRMIxcFCU4jGODgdDILhGFiB/WKnw4Id\n+8+KZkDwLJs9FgaDIavFYDTOIRiOi75nIMhm7beqFUsJLfJNlAGbd57EW509WQuESJRTJO5SilbF\ndCFtHMsNNsZhOCS86BsOxcDGuKKNkRjkIiEV/lk6ayzOXBzCOa9wHW0AaPbUSB4nEAj5LJ01FuvX\nTEMwFIPdZsYzfzgo6Fm2tbglC/G4c0LKmS0Gv/Ob9yQNcu5+qx5iKf4aDnZ5BT12NSlWSlCqmFZT\nFKVSGAyy8AeFhbj+YLSo4jZikIuIWPgnkUyKGluXg8Hc1gZwnPjfEAiEfFy1DNatakEwFEsX7BAy\nxhMa7Vi9oBm7RPZpDQAevr0NzY0OsDEO/YMh1NkZNDpt6PWHZGsF5O63qi0vKWbkVs4bX3YqaC15\ny+WOlZE2i3LHC4EYZB0QC9cIhX8A4PENewXPU2+n8cQ/LcJf3vkYOw8pE3UQCIQUjInCd37znmzB\njlAkDrvVDKeDFswjdtVa4Kqz5lWsmjOtAYlEUnS7yWgAVswbn7ffqlYsJWbkOC5RVnWjC81bLlf6\nBqRLY/YNhDU3GJGDGOQCUBquyQz/SIm9BoJR/OG1LnSeIjWtCQS19Pgu5wxLFezwBSJ4ZedJDEeE\nw86ZKYs8/QE2q0CIECvmNuHuG6YLHlMqlpIycp2nfGhraRBUYBdDBS23L1ytectDIenmHnLHC4EY\n5ALQEq6RE3tpbZxOIBCUwdBGwYp4jNmI5XOaVKcsGg0pY7x+TeEVs+SM3OoFzXkKbL1V0EodjXLu\n9FQIk5tqCzpeCMQgK0SouLyWcI3WijwEAkEfYiIpTjAgbTDVpCwmAdy4eKIiEZOcWErOyLlqLUWv\nG63U0ajWvGXaTEluS9BFHFdlyuBUEonGRavjyMF3P3l8w178+y/34vENe7FpRxd8gYhsuEaM9uVT\n0lWHCARC8bDQFNy1DIyGVHeja2aOASeSb8hGE/AOhCUrVgnh0tEblKv+xxu53G0wLXNbLmyMw7ne\nIUlHI/dz1q1qweqFzXDXWtLf8eqFzRWdtzwYZEVTUhNJ6FYZTYiq9pD50EvnqX54/WFNknxRgUUi\nqTlcEwxF01WHCARC8bi2bVyWN+n1h7D3/Yvib0gmVUex9PYGlew3S4WV1ZJ5LikFudC+sJJQfKXl\nKNfZGVhoo2DJYwttLGoovqoNcqGSfEmBxcl+tE11CxYWaJvqkvzh1dkZyQ5QBAKhMPh9XX7xzRsR\nucmUPy5kFOdMc8MA4NCJ/qJWsVJi5KTmtoe/sEDV5+WeSwwpR0MoFF/JOcoxEYdJdLtDJ6rWIOsh\nyZcVWCycAIoyouO4F74hNr3v0HmqH5t2dIn+8Mg+MoGgD2J7fSvmjRdUPIdZ8YIe/HGHjZY0irdf\nPzIen9h+s9zcFolKj1HpuXJRGwmo1Bxl70AYnEgAk0sk4R0Io9ljL8pnl/cypQCUSPLlkOt+wgss\n5kxrAHB5YuB/eJt3nhQ9N7/34nJUphKRQCgH6mrMGOuypjskGQ2pwh/rVk0V/ns7A5dDOIfU5chv\n1MAbxUxDJPTaSCI3t/lVRN7kBGwGjfvCcosGPfa8i0U0Jr2gkTteCFVrkPVoJaZEYMHGONESfEp+\neIYCW8kRCNXG1VeNgYVWNjX5gzFc8IWz2pie7Q1iy67Tgn/PmCnMn94oeGz+dE/F7HFKzW1OFYI0\nqXO5HAyeum8xnn7gaqxf3aoqzKyHQ1Qy5CblIk7aVWuQlaoV5ZBTESr54Qn1QOXDOSOxj0xTxOoT\nKgPGbMSnl1wh2UM8E7HewVKL4UpXBsvNbRZa+U6k1LnmT/eg2WPXtEghvZW1UbV7yMBlYUbnqX70\nDYQ1iTDkBBZSeYP1dgbb3zuLzpN9WaKG9uVTFO/bFIKrlsH8Vg+CkRj2HpVQlhIIZYLBYICVpmBA\nKr9XDrH0FKlKUZnPNEWbwUVjFeEZZ6Jnm8RitFys5Bxl2iR9bXLHC6GqDTL/4H3pNitOfdxfkAhD\nTGAh9cOrsZqzytzxe8vhSLzovZKXzBqDe26cARNlwB9eO17UzyKUP3aLCUGRUpHlRCTKods7LGuM\nDQZgfEMNQpGYYJlMJV4YY6bgaaiB1zsk+jflmrKjtU1isc+VSaX2Vq6rka5TLXe8EKraIPNYaFNR\na6oK/fDaprrQeapf8O+PnfGLFrYvFN4r5hXem3Z0YdfBHt0/h1AZ1NXQmNfqBgwG7D16QXEoWAt6\n9fj+7fbjYExGsBK5+skkcM47jAmNdsHnqFAvrFJSdpS2SRzpcwHFM/TFRqkSvxiMCoNcbIR+eINB\nFrtEmp/7h1hcM3Ms3hGop1sIBgBfvdQ2DlCX0kCoHupqaDx+zwJwiWS6DWExU+yumzMWV185Fs/9\n6ZDi91hoSrCvL5B6PpQSisSwcl4TOk/5dPXCKjVlpxzR29AXG6k6Ee7afCW+nhCDrCOZPzy5mrTr\n10yDzWLCwa4+9Aciguez0BTYKAfabEQSQDSWAGM2go0Jew6uWgs8GT98tTV5eSijQbS8YKVAGSGa\nS1jtDIWi4BJJNDptRV+UrZjXhLvWtCLOJVUVu1k2eywMBkM6h18IC21EMgnR3zuQMt43Lp6IO1dN\n080Lq9a2ggRlSO9/F1eJTwxykZATNdgYc9qr9gUi2HHgHDpPZlcAal8+BcFQNL0i4yecV3aeEKwQ\npqYxuoWmYKUp+IPRtIDGXctg+kQn9ujsuctBm40wGqBbOJWmgBf+7+vAcQl8dD4As9mI3YfP49gn\nPgwMl/8+aqFk7p9qXZQpYeW8Jtx94wwAqQWQ2O99QqMdoUg8z4OljEZcN6cJT7z0ruCecTSWwJP3\nLUY0FsdP/+soBoLie8V6emHV2laQoJxS7X8Tg1xElNxUxkxhnLsGd98wHezKfAGJjbl8i/hJYP2a\nVjjsFrx9+Lzkj0VqUbCg1YM7V7UgzMZhZUwIs/H0JH78jH9Ey3pGYwnR9BVN5+OAP77WhXtvmYHD\np/txqKsPA0EWtNkIgyG1/1jNZC7M5Np9CiG3F+y0M1gwI79ustTvPc4lBT1YT71VMpLkqbeCMVNY\nOKNxxBS71dpWkKCcUu1/G5LJ0k1PUupGPfF4HCP2WUIUQ6np8Thw7vyA7Hkvi1NSk2SqdVgSkWgC\nbhGhyqYdXYr2HPmJ213LYMZEp2CPWaG/V4vDZlbdFNxdy8DKmHDOO6z+AwFcc1Uj1i6bjJ/9nyM4\n3xeSf4MGjEbAbJQWL6mh0PvJc93cceg82S/okbpqGTxx7yJJUYva37vY9a1e2Jzer839Hed62loR\nmxuUXFO5Uur5rhhU05g8HofoMerJJ598cuQuJZtQSH+VsRA1NcyIfZYQJsqIGqsZJko/dWZNDQM2\nEpM9r9FgwOwpbqyY2wRfgMVHPUOIcymrGGY5nD4fQJiNY/YUd/o9V01yIszGMRiMgo3GwdAUTJQR\nHJdMtbC7qhEPrL0Kn102GdfPbcItSyahraUBe9+/gDCbL9Rx1zL493+cj6TBgI971D1U7loLnrpv\nMQLDUZztDSp+X5jlEFBpxHksNIVHvjAPLocFV17hxM6M1LVC4KMALkfKcH5j/TwsunIM3jioz/m/\n9vm5uG7OeBhzKgnl3k+ng0FDvRVmyoAwy8FoSG1ZuBwMlrWNw/rVrfAPsTh9PpD3GWsWX4E5U915\nr2ei9veee32uWguWzR6Ldata0mPJ/B1fO3scbllyBeZN8+SNVS1ic4OSaypXSj3fFYNqGlNNjXiE\nhYSsRxHHz/gFX88VqgiFawAIej2ZnpKUEKK50YH1q6eBMhqw/1ivoPclxLzWBjhsNP7plhlpEZxv\nKII6G42WCbXoPNWPaCzf7VZaWEKIa9vGwcaYAaSEcnp15koCeOTzczFlfF267CqS4mIoC03Bxpgw\nEGSzUunEruW5TQexrG0cvvCpaVleo1j4jfdkM7cs+HsrFn6+b+1M+Hzaog5iqAkPjpRit1JTdgiV\nDTHIVYCSEKEWoUru5Cc3EcrtmfOT3Nqlk/DkxvfgF6hne9lbE35v7gQpFlpUY4zr7TQCw1HRPX69\nOnO5HAymjK+DiTJg046udI4rI1K3ObeXr9R4gZQaeeeBbhgNBsGwau79ZMxUOkUv97cj9n1TOkZ5\n5K6vHCjHayJUL8QgVzBqiheMhFBFqVfhsNFYMEPYyK2Y24QbF08UfW/uBClYlKXFjcMnvIoKr1ho\nCk/dtzjPQ8xk3aoWcFwCbx46L7gHnhnynTHRiY8vBNAtsO9ss5gFjSqvLrfQFKIxLm9/NHe8UtcC\nAB3HvbKpOUp/O8QgEQgjBzHIFYya4gUjWVtWySSea0gb6q1om+pOGwS+IYdcqFDUkzMaFHm1y2aP\nhcNGS4qUKKMR69e04sS5QUGRWOYiAgC+9eIewfMMh2MYCkVFc1wZsxFf//xcNEkU9KeMRty4eKJo\n0RkglZsrl5pDCl8QCOUHMcgVSiQaV128oJxqy+Ya0qmT3BgaDINLJLLCuUpLFkp5zr5ABLU1Zjhs\nNMJsHL4hNi2sUjr2zTtPChrjCY12rF9zuTVdrz8Ev4hnPhBkca43KLp1MDgcw0//62g6pUhsvHKp\nTLTZCLuMCpoUviAQyg9ikCsUf0D9nnA5ClV4Q2qhTRiCfp6bnJBJzdilDFgoEkecS4LfWpXbGmhu\ntEsaU39Qfrxy+9psLIGtu0+Lvp8UviAQypPyqZJOUIWzVn2/UT4MDKQEWqU2xrnIeW5i/W2l4A0+\nP9bcfytBTbN1uV61DhstejwTufGuW9WC6+eN0/R+0quWQChPiIdcoVhok+I94WJ0rilGsZNy9dzU\nCuLE+nC3L5+MXn8I7csnA4Bk+pfceCmjETctvgJvHuwRVJRLvb+Se9UqpVzbJhIIUhCDXMEo3RPW\nU8BTzLZ05VqyUMqA2SwmmKjsQhG5fbjtNhpbd5/GEy+9m/WdffveRfjub/YLpn8pGW8h31c56Qn0\npFLaJhIIQhCDXMEo2RPWW8BTTHVuOXtu61a14PiZgbxqYWd7g9i886Tg2Pk+3LlpTpnfmVj6l5Lx\nFvJ9laOeQA+IepxQyZAlYxUgtS+qZv9TjmLs8eayblULVi9shrvWAqMhVTpz9cLmkntucS6JUES4\nFKfU2OW+s/blkwsab6Hfl5Y99XJlJH6fBEIxIR5ylaNnGHgk9njL1XPTOna59wVDsYLGW67fVyko\nVw0CgaAU4iFXOXKqXzWT90iqc8vNc9M6dqXvK3S85fZ9lQKiHidUOsQgjwL0CgPradwrDa1jH83f\n2UhDvmtCpUNC1qMAPcOa1arOVYLWsY/m72ykId81oZIxJJNJrV3qCmakGk5XU3NrnlKPSe88z1KP\nRw1Kx547pmrIja2U+6T1HlUDZEzljcfjED2mu4f8/e9/H4cPH4bBYMBjjz2GtrY2vT+CUAaM5i5A\nWsc+mr+zkYZ814RKRFeD/O677+KTTz7B5s2bcerUKTz22GPYvHmznh9BIBAIBEJVoquoa8+ePVi9\nejUAYOrUqRgcHEQwGJR5F4FAIBAIBF0Ncl9fH5xOZ/rfLpcLXq9woj6BQCAQCITLFFVlLacXczpt\nMJlGRtwitZFeqVTbmKptPAAZUyVQbeMByJgqFV0NcmNjI/r6+tL/7u3thccj3mrOf6kVYLGpJoUe\nT7WNqdrGA5AxVQLVNh6AjKnckVpY6BqyXrZsGbZv3w4AeP/999HY2Ai73a7nRxAIBAKBUJXo6iHP\nnz8fM2fOxOc//3kYDAY88cQTep6eQCAQCISqRfc95EceeUTvUxIIBAKBUPWUtFIXgUAgEAiEFKS5\nBIFAIBAIZQAxyAQCgUAglAHEIBMIBAKBUAYQg0wgEAgEQhlADDKBQCAQCGUAMcgEAoFAIJQBRa1l\nXQr27duHhx9+GNOmTQMAtLa24otf/CK+8Y1vgOM4eDwePPfcc6BpusRXKk9XVxcefPBB3Hvvvbjr\nrrvQ09MjOI5t27bht7/9LYxGI+68807ccccdpb50UXLH9Oijj+L9999HfX09AOD+++/H9ddfXzFj\nevbZZ3HgwAHE43F86UtfwuzZsyv+HuWOaefOnRV7j8LhMB599FH09/eDZVk8+OCDmDFjRkXfI6Ex\nbd++vWLvEU8kEsFnPvMZPPjgg1iyZElF3yPNJKuMvXv3Jr/yla9kvfboo48m//rXvyaTyWTyP/7j\nP5J/+MMfSnFpqhgeHk7eddddyccffzz5+9//PplMCo9jeHg4ecMNNyQDgUAyHA4nP/3pTyf9fn8p\nL10UoTF985vfTO7cuTPv7yphTHv27El+8YtfTCaTyaTP50uuWLGi4u+R0Jgq+R7993//d/LFF19M\nJpPJ5Llz55I33HBDxd8joTFV8j3ieeGFF5K33npr8tVXX634e6SVURGy3rdvHz71qU8BAFauXIk9\ne/aU+IrkoWkaGzZsQGNjY/o1oXEcPnwYs2fPhsPhgMViwfz589HR0VGqy5ZEaExCVMqYFi1ahB//\n+McAgNraWoTD4Yq/R0Jj4jgu7+8qZUy33HILHnjgAQBAT08PxowZU/H3SGhMQlTSmE6dOoWTJ0/i\n+uuvB1D5c51WqtIgnzx5Ev/yL/+CL3zhC3j77bcRDofTIWq3210RPZpNJhMsFkvWa0Lj6Ovrg8vl\nSv9NOfegFhoTALz88su455578G//9m/w+XwVMyaKomCz2QAAW7ZswXXXXVfx90hoTBRFVew94vn8\n5z+PRx55BI899ljF3yOezDEBlfscAcAzzzyDRx99NP3varlHaqm6PeRJkybhoYcews0334yzZ8/i\nnnvuyVrhJ6ukUqjYOCptfP/wD/+A+vp6XHnllXjxxRfx05/+FPPmzcv6m3If044dO7BlyxZs3LgR\nN9xwQ/r1Sr5HmWM6evRoxd+jP/3pT/jwww/x9a9/PetaK/keZY7pscceq9h7tHXrVsydOxcTJkwQ\nPF7J90gtVechjxkzBrfccgsMBgMmTpyIhoYGDA4OIhKJAAAuXrwoGzItV2w2W944hHpQV9L4lixZ\ngiuvvBIAsGrVKnR1dVXUmHbv3o1f/OIX2LBhAxwOR1Xco9wxVfI9Onr0KHp6egAAV155JTiOQ01N\nTUXfI6Extba2Vuw92rVrF15//XXceeed+POf/4yf//znVfEcaaHqDPK2bdvw0ksvAQC8Xi/6+/tx\n6623pvs0/+1vf8Py5ctLeYmaWbp0ad445syZgyNHjiAQCGB4eBgdHR1YuHBhia9UOV/5yldw9uxZ\nAKl9o2nTplXMmIaGhvDss8/il7/8ZVrdWun3SGhMlXyP9u/fj40bNwIA+vr6EAqFKv4eCY3p29/+\ndsXeox/96Ed49dVX8corr+COO+7Agw8+WPH3SCtV1+0pGAzikUceQSAQQCwWw0MPPYQrr7wS3/zm\nN8GyLJqamvCDH/wAZrO51JcqydGjR/HMM8+gu7sbJpMJY8aMwfPPP49HH300bxz/+7//i5deegkG\ngwF33XUXPvvZz5b68gURGtNdd92FF198EVarFTabDT/4wQ/gdrsrYkybN2/GT37yE0yePDn92g9/\n+EM8/vjjFXuPhMZ066234uWXX67IexSJRPCtb30LPT09iEQieOihhzBr1izB+aASxgMIj8lms+G5\n556ryHuUyU9+8hOMHz8e1157bUXfI61UnUEmEAgEAqESqbqQNYFAIBAIlQgxyAQCgUAglAHEIBMI\nBAKBUAYQg0wgEAgEQhlADDKBQCAQCGUAMcgEAoFAIJQBxCATCAQCgVAGEINMIBAIBEIZ8P8DfYdo\nMT1U4dkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "WvgxW0bUSC-c", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "8YGNjXPaSMPV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The histogram we created in Task 2 shows that the majority of values are less than `5`. Let's clip `rooms_per_person` to 5, and plot a histogram to double-check the results." + ] + }, + { + "metadata": { + "id": "9YyARz6gSR7Q", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_dataframe[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"rooms_per_person\"]).apply(lambda x: min(x, 5))\n", + "\n", + "_ = california_housing_dataframe[\"rooms_per_person\"].hist()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "vO0e1p_aSgKA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To verify that clipping worked, let's train again and print the calibration data once more:" + ] + }, + { + "metadata": { + "id": "ZgSP2HKfSoOH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "calibration_data = train_model(\n", + " learning_rate=0.05,\n", + " steps=500,\n", + " batch_size=5,\n", + " input_feature=\"rooms_per_person\")" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gySE-UgfSony", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = plt.scatter(calibration_data[\"predictions\"], calibration_data[\"targets\"])" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From b27be1b06b43403c999d883fbc6e83623b7e070b Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 10:38:55 +0530 Subject: [PATCH 04/11] Created using Colaboratory --- validation.ipynb | 1537 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1537 insertions(+) create mode 100644 validation.ipynb diff --git a/validation.ipynb b/validation.ipynb new file mode 100644 index 0000000..ce61f52 --- /dev/null +++ b/validation.ipynb @@ -0,0 +1,1537 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "validation.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "4Xp9NhOCYSuz", + "pECTKgw5ZvFK", + "dER2_43pWj1T", + "I-La4N9ObC1x", + "yTghc_5HkJDW" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Validation" + ] + }, + { + "metadata": { + "id": "WNX0VyBpHpCX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Use multiple features, instead of a single feature, to further improve the effectiveness of a model\n", + " * Debug issues in model input data\n", + " * Use a test data set to check if a model is overfitting the validation data" + ] + }, + { + "metadata": { + "id": "za0m1T8CHpCY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), to try and predict `median_house_value` at the city block level from 1990 census data." + ] + }, + { + "metadata": { + "id": "r2zgMfWDWF12", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "8jErhkLzWI1B", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First off, let's load up and prepare our data. This time, we're going to work with multiple features, so we'll modularize the logic for preprocessing the features a bit:" + ] + }, + { + "metadata": { + "id": "PwS5Bhm6HpCZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "# california_housing_dataframe = california_housing_dataframe.reindex(\n", + "# np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "J2ZyTzX0HpCc", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sZSIaDiaHpCf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **training set**, we'll choose the first 12000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "P9wejvw7HpCf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "16b173b1-d7de-44ab-dbf7-af7563601aac" + }, + "cell_type": "code", + "source": [ + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_examples.describe()" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean34.6-118.527.52655.7547.11476.0505.43.81.9
std1.61.212.12258.1434.31174.3391.71.91.3
min32.5-121.41.02.02.03.02.00.50.0
25%33.8-118.917.01451.8299.0815.0283.02.51.4
50%34.0-118.228.02113.5438.01207.0411.03.51.9
75%34.4-117.836.03146.0653.01777.0606.04.62.3
max41.8-114.352.037937.05471.035682.05189.015.055.2
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 34.6 -118.5 27.5 2655.7 547.1 \n", + "std 1.6 1.2 12.1 2258.1 434.3 \n", + "min 32.5 -121.4 1.0 2.0 2.0 \n", + "25% 33.8 -118.9 17.0 1451.8 299.0 \n", + "50% 34.0 -118.2 28.0 2113.5 438.0 \n", + "75% 34.4 -117.8 36.0 3146.0 653.0 \n", + "max 41.8 -114.3 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1476.0 505.4 3.8 1.9 \n", + "std 1174.3 391.7 1.9 1.3 \n", + "min 3.0 2.0 0.5 0.0 \n", + "25% 815.0 283.0 2.5 1.4 \n", + "50% 1207.0 411.0 3.5 1.9 \n", + "75% 1777.0 606.0 4.6 2.3 \n", + "max 35682.0 5189.0 15.0 55.2 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 3 + } + ] + }, + { + "metadata": { + "id": "JlkgPR-SHpCh", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "95d0c540-fb50-4a7a-969e-1773a8ddee19" + }, + "cell_type": "code", + "source": [ + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "training_targets.describe()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean198.0
std111.9
min15.0
25%117.1
50%170.5
75%244.4
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 198.0\n", + "std 111.9\n", + "min 15.0\n", + "25% 117.1\n", + "50% 170.5\n", + "75% 244.4\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "5l1aA2xOHpCj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "For the **validation set**, we'll choose the last 5000 examples, out of the total of 17000." + ] + }, + { + "metadata": { + "id": "fLYXLWAiHpCk", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "5a289359-5068-408e-c1e5-4656f907e6fa" + }, + "cell_type": "code", + "source": [ + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_examples.describe()" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean38.1-122.231.32614.8521.11318.1491.24.12.1
std0.90.513.41979.6388.51073.7366.52.00.6
min36.1-124.31.08.01.08.01.00.50.1
25%37.5-122.420.01481.0292.0731.0278.02.71.7
50%37.8-122.131.02164.0424.01074.0403.03.72.1
75%38.4-121.942.03161.2635.01590.2603.05.12.4
max42.0-121.452.032627.06445.028566.06082.015.018.3
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 38.1 -122.2 31.3 2614.8 521.1 \n", + "std 0.9 0.5 13.4 1979.6 388.5 \n", + "min 36.1 -124.3 1.0 8.0 1.0 \n", + "25% 37.5 -122.4 20.0 1481.0 292.0 \n", + "50% 37.8 -122.1 31.0 2164.0 424.0 \n", + "75% 38.4 -121.9 42.0 3161.2 635.0 \n", + "max 42.0 -121.4 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1318.1 491.2 4.1 2.1 \n", + "std 1073.7 366.5 2.0 0.6 \n", + "min 8.0 1.0 0.5 0.1 \n", + "25% 731.0 278.0 2.7 1.7 \n", + "50% 1074.0 403.0 3.7 2.1 \n", + "75% 1590.2 603.0 5.1 2.4 \n", + "max 28566.0 6082.0 15.0 18.3 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 5 + } + ] + }, + { + "metadata": { + "id": "oVPcIT3BHpCm", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "a9bd9657-16ac-428c-8fb3-21e6660b1ffa" + }, + "cell_type": "code", + "source": [ + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "validation_targets.describe()" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean229.5
std122.5
min15.0
25%130.4
50%213.0
75%303.2
max500.0
\n", + "
" + ], + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 229.5\n", + "std 122.5\n", + "min 15.0\n", + "25% 130.4\n", + "50% 213.0\n", + "75% 303.2\n", + "max 500.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "z3TZV1pgfZ1n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Examine the Data\n", + "Okay, let's look at the data above. We have `9` input features that we can use.\n", + "\n", + "Take a quick skim over the table of values. Everything look okay? See how many issues you can spot. Don't worry if you don't have a background in statistics; common sense will get you far.\n", + "\n", + "After you've had a chance to look over the data yourself, check the solution for some additional thoughts on how to verify data." + ] + }, + { + "metadata": { + "id": "4Xp9NhOCYSuz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "gqeRmK57YWpy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's check our data against some baseline expectations:\n", + "\n", + "* For some values, like `median_house_value`, we can check to see if these values fall within reasonable ranges (keeping in mind this was 1990 data — not today!).\n", + "\n", + "* For other values, like `latitude` and `longitude`, we can do a quick check to see if these line up with expected values from a quick Google search.\n", + "\n", + "If you look closely, you may see some oddities:\n", + "\n", + "* `median_income` is on a scale from about 3 to 15. It's not at all clear what this scale refers to—looks like maybe some log scale? It's not documented anywhere; all we can assume is that higher values correspond to higher income.\n", + "\n", + "* The maximum `median_house_value` is 500,001. This looks like an artificial cap of some kind.\n", + "\n", + "* Our `rooms_per_person` feature is generally on a sane scale, with a 75th percentile value of about 2. But there are some very large values, like 18 or 55, which may show some amount of corruption in the data.\n", + "\n", + "We'll use these features as given for now. But hopefully these kinds of examples can help to build a little intuition about how to check data that comes to you from an unknown source." + ] + }, + { + "metadata": { + "id": "fXliy7FYZZRm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Plot Latitude/Longitude vs. Median House Value" + ] + }, + { + "metadata": { + "id": "aJIWKBdfsDjg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Let's take a close look at two features in particular: **`latitude`** and **`longitude`**. These are geographical coordinates of the city block in question.\n", + "\n", + "This might make a nice visualization — let's plot `latitude` and `longitude`, and use color to show the `median_house_value`." + ] + }, + { + "metadata": { + "id": "5_LD23bJ06TW", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 498 + }, + "outputId": "0d1b97a0-9c10-4b8a-aed7-b0ca6d2af1ea" + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize=(13, 8))\n", + "\n", + "ax = plt.subplot(1, 2, 1)\n", + "ax.set_title(\"Validation Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(validation_examples[\"longitude\"],\n", + " validation_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=validation_targets[\"median_house_value\"] / validation_targets[\"median_house_value\"].max())\n", + "\n", + "ax = plt.subplot(1,2,2)\n", + "ax.set_title(\"Training Data\")\n", + "\n", + "ax.set_autoscaley_on(False)\n", + "ax.set_ylim([32, 43])\n", + "ax.set_autoscalex_on(False)\n", + "ax.set_xlim([-126, -112])\n", + "plt.scatter(training_examples[\"longitude\"],\n", + " training_examples[\"latitude\"],\n", + " cmap=\"coolwarm\",\n", + " c=training_targets[\"median_house_value\"] / training_targets[\"median_house_value\"].max())\n", + "_ = plt.plot()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAHhCAYAAAA2xLK+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xec3VWd+P/X+ZTbprdk0jupJJSQ\nhBBaCCkIIsgqRZTV3fVnd3dF3VUerq6u7vLgqw99iOt+97uIIixqqBKqoUkJ6ZDek8lkJtNnbr+f\ncn5/3Gk3cyeZNBDu+/l4wGNyy+dz7p3knPM+5X2U1lojhBBCCCGEKBjGe10AIYQQQgghxLtLggAh\nhBBCCCEKjAQBQgghhBBCFBgJAoQQQgghhCgwEgQIIYQQQghRYCQIEEIIIYQQosBIECDOiltuuYXf\n/va3Ax5/+OGHueWWW4773p/97Gd861vfAuBTn/oUW7duHfCadevWsXjx4hOWY/PmzezYsQOABx54\ngJ/85CdDKf6QLF68mCuvvJLly5dz2WWX8clPfpKXX355SO/dt28fa9euPWNlEUKID4rvfOc7LF++\nnOXLlzNz5szeenb58uXEYrGTutby5ctpaWk57mvuueceHnroodMpco6pU6dy9dVXs2zZMi677DI+\n+9nPsnHjxiG9t3+bJcTZZr3XBRAfTDfeeCMrV67ktttuy3n88ccf58Ybbxzyde6///7TKsfKlSu5\n8MILmTZtGp/4xCdO61r53H333cydOxeAN954g3/6p3/ia1/7Gtdee+1x3/fCCy/gui4XXXTRGS+T\nEEK8n333u9/t/Xnx4sX8x3/8R289e7KeeeaZE77mH//xH0/p2sfzm9/8htraWrTWPPPMM3z+85/n\npz/96Qnr/P5tlhBnm8wEiLNixYoV7Nixg7q6ut7HDh8+zPbt21mxYgUAv//971mxYgVLly7ltttu\no76+fsB1Fi9ezLp16wC49957ufzyy/nIRz7C66+/3vuaZDLJV7/6VZYtW8bixYv593//dwAeeugh\nHn/8ce6++27uu+++nBmGI0eO8JnPfIZly5Zx7bXX8thjj/WWcdGiRfz617/muuuu49JLL2XVqlVD\n+swXX3wx//Zv/8Z//Md/oLXG932++93v9pbrzjvvxHEcVq9ezS9/+Ut+/etf86Mf/QiAn//85yxb\ntowlS5bw2c9+lq6urpP9yoUQoiDcfvvt/PjHP2bFihVs2LCBlpYWPvOZz7B8+XIWL17Mfffd1/va\nqVOn0tjYyJo1a/j4xz/OPffcw4oVK1i8eDFvvfUWAN/85je59957gWyb87//+7/cdNNNLFq0qLeO\nBvjP//xPLr74Yj760Y/y29/+dkiz0UopVqxYwT/8wz9wzz33AENvswZrQ4Q4UyQIEGdFcXExS5Ys\n4fHHH+997Mknn+Sqq66iuLiY1tZWvve973Hffffx3HPPMXbs2N5KOJ89e/bwq1/9ipUrV7Jy5Up2\n7tzZ+9xDDz1EPB7nmWee4dFHH+WRRx5h3bp13HLLLcyePZs777yTv/7rv8653l133cW8efN49tln\n+eUvf8n3v/99Dh8+DEB7ezuGYfDkk0/yz//8zye1hGjBggVEo1H279/P888/z7p16/jjH//I008/\nzdatW1m1ahWLFy/m6quv5pOf/CTf/OY32bJlC7/97W9ZuXIlzz33HJlMhgceeGDI9xRCiEKzZcsW\nnnrqKS644AJ+8YtfMHr0aJ555hnuv/9+7rnnHhoaGga8Z9u2bcyZM4enn36aW2+9lV/84hd5r712\n7VoefvhhVq5cyQMPPEBjYyO7d+/mv//7v3n88cd58MEHhzTD0N/ixYvZvHkzqVRqyG3WYG2IEGeK\nBAHirLnxxht58skne//8xBNP9C4FqqqqYv369dTW1gIwd+7cnFmDY61du5aLLrqI6upqTNPkwx/+\ncO9zn/70p7n33ntRSlFWVsaUKVN6O/T5OI7D66+/zq233grAqFGjmD9/Pm+++SYAruv2lnPmzJkc\nOXJkyJ/ZMAwikQixWIxly5axcuVKbNsmGAxy7rnn5v2Ms2bN4qWXXqK4uBjDMDj//POP+10IIUSh\nu/zyyzGMbBfm29/+NnfddRcAY8aMoaamJm8bUFRUxJIlS4Dj1+3XXXcdpmkyfPhwqqqqaGhoYO3a\ntcybN49hw4YRDAb56Ec/elLlLS4uxvd94vH4kNusobYhQpwq2RMgzpoFCxaQTqfZvHkzhmGQTCZZ\nsGABAJ7n8dOf/pTVq1fjeR7xeJwJEyYMeq3Ozk5KSkp6/1xaWtr784EDB/jRj37Evn37MAyDxsbG\n4+476OjoQGs94HptbW0AmKZJJBIBsp163/eH/JlTqRStra1UVlbS1tbGv/7rv7Jt2zaUUrS0tPCp\nT31qwHuSySQ//OEPWbNmTe9nveKKK4Z8TyGEKDRlZWW9P7/zzju9o/+GYdDc3Jy33u5f5x+vbi8u\nLu792TRNPM+jq6sr557Dhw8/qfIePnwY27YpKSkZcps11DZEiFMlQYA4awzD4Prrr+ePf/wjpmly\n/fXX947crFq1itWrV/PAAw9QWVnJ7373u5xZg2OVlpYSjUZ7/9ze3t778/e+9z1mzpzJz3/+c0zT\n5Oabbz5uuSoqKjAMg87Ozt5KvaOjg6qqqtP5uAA8++yzjBs3jtGjR3PXXXdhWRZPPvkkgUBg0M1n\n999/PwcOHOCRRx6hqKiIH//4xxw9evS0yyKEEIXgzjvv5FOf+hS33HILSikuvfTSM36P4uJiEolE\n75+bmppO6v3PPvss8+bNIxAIDLnN+vGPfzykNkSIUyXLgcRZdeONN7J69Wr+9Kc/5Yx0tLa2MmrU\nKCorK2lvb+fpp58mHo8Pep3zzz+f9evX09bWhud5PPHEEznXmj59OqZp8tprr3Hw4MHeytqyrJzg\noeexRYsW8fDDDwNw6NAh1q1bx8KFC0/rs65Zs4a7776br3/9673lOueccwgEAuzYsYONGzfmLVdr\naysTJ06kqKiI+vp6Xn755ZzGRgghxOBaW1uZNWsWSikeffRRksnkGa9DZ8+ezZo1a2hrayOTyfQm\nkziRnuxA999/P3//93/fW96htFnHa0OEOBNkJkCcVePGjWPYsGG9P/e49tpreeqpp7j66qsZM2YM\nX/3qV/nc5z7Hj370I4qKigZcZ/r06dx8883ccMMNlJeX86EPfYhdu3YB8LnPfY4f/vCH3HvvvVx1\n1VV88Ytf5Kc//SnTp09nyZIl3H333dTV1eVM8X73u9/l29/+No888gi2bfP973+fESNGHHcvQT53\n3nknwWCQeDzOiBEj+MEPfsDll18OZPcqfOMb3+CRRx5h7ty5fOMb3+Bb3/oWs2fP5sorr+RrX/sa\n9fX1fOUrX+HLX/4yy5YtY+rUqXzzm9/kS1/6Er/61a+44447TvYrF0KIgvKVr3yFL3zhC5SXl3Pz\nzTfz8Y9/nLvuuosHH3zwjN1j9uzZ3HDDDdxwww2MGDGCa665hl/96leDvv7222/HNE1isRiTJk3i\nv/7rvzj33HOBobdZx2tDerLsCXE6lNZav9eFEEIIIYT4S6a1RikFwEsvvcRPfvKTIc8ICPGXSJYD\nCSGEEEIcR1tbGwsWLKC+vh6tNU8//TTnnXfee10sIU6LzAQIIYQQQpzAQw89xP/8z/+glGLixIn8\n4Ac/OCMJJYR4r0gQIIQQQgghRIGR5UBCCCGEEEIUGAkChBBCCCGEKDDvSopQ1/Vob3//5ratqIi8\nb8svZX9vSNnfG+/nstfUlJz4RQXg/dxevJ///knZ3zvv5/JL2d8bZ6q9eFdmAizLfDduc9a8n8sv\nZX9vSNnfG+/nsous9/PvUMr+3ng/lx3e3+WXsr+/yXIgIYQQQgghCowEAUIIIYQQQhQYCQKEEEII\nIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBCiAIjQYAQQgghhBAFRoIA\nIYQQQgghCowEAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFE\ngZEgQAghhBBCiAIjQYAQQgghhBAFRoIAIYQQQgghCowEAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGE\nEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBCiAIjQYAQQgghhBAFRoIAIYQQQgghCowE\nAUIIIYQQQhQYCQKEEEIIIYQoMBIECCGEEEIIUWAkCBBCCCGEEKLASBAghBBCCCFEgZEgQAghhBBC\niAIjQYAQQgghhBAFRoIAIYQQQgghCowEAUIIIYQQQhSYIQUBqVSKJUuW8Mgjj9DQ0MAdd9zBJz7x\nCe644w6am5vPdhmFEEK8T0h7IYQQ7w9DCgJ+8YtfUFZWBsBPfvITPvaxj/HAAw9w9dVXc999953V\nAr7bOuOKhnaF673XJYFEymfXwQzt0b+AwgghxBAUUnshhBDvZ9aJXrB371727NnDFVdcAcB3vvMd\ngsEgABUVFWzduvWsFvDd0pWEV7cHaOgwcH1Fadhn2kiPCya473pZfF/z++djbNyeoTPmEwnB9IlB\nbvtQMeGgrOASQvxlKpT2QgghPghOGAT8+7//O3fddRePPfYYAJFIBADP83jwwQf5whe+MKQb1dSU\nnEYxzy6tNX98weNwW99jXUmDdfsMhlUFqal5d8v/wBOtvLQ21fvnRArWb0sTDFj8w18PP+nr/SV/\n9yciZX9vSNnFqSiE9uJEpOzvjfdz2eH9XX4p+/vXcYOAxx57jPPOO48xY8bkPO55Hl//+tdZsGAB\nF1988ZBu1NwcPfVSnmX7mwwOtwQAlfO4r2HjHofzJwVpaoqyt1HRGjMoDWumjvQxzsKgvO9r3twU\ny/vcph1xdu5pp7LshLFbr5qakr/o7/54pOzvDSn7e+P93hgVSntxPO/3v39S9vfG+7n8Uvb3xplq\nL47bm3zppZeoq6vjpZdeorGxkUAgQG1tLY899hjjxo3ji1/84hkpxHutI2FwbADQI5mGWNLn0TU2\nR9r7XvfOQZ8lcxwqi/Wg1/W1Zt02h12HXJSCaeMszp9mY6j89wJIO5po3M/7XCIFjS0eZcUmr21O\nsb/ewzRh9uQAs88JDHj9vsNpfv98jLa2NCNqLK5eWEI4JMuJhBBnXqG0F0II8UFx3CDgJz/5Se/P\nP/vZzxg1ahQtLS3Yts2Xv/zls164s23nYdh6yKA9pkkmHayAiW3ndpJLwpqn1/ocaTdzHm/qMnh1\nm8X185y81/a15jerkmzc2benYO02l+0HPG5bHkINEggEA4rKMpN4auBehNIixYgak1+ujLJtf7/r\nbs1w6QVBbrqqqPexF9+K8YfnOkmm+oKUDdtTfPHWKqorhj6TIIQQQ/FBby/Eu8dxNJ6vCckeOCHO\nqpPuDT744IOk02luv/12ACZNmsS//Mu/nOlynXWb9ileetsgldF4no9pKlwXMoaHYShMSxGJKCbX\nery+08x7jYZ2g464orwodzbA15rHX0ywbksGwzJyOvzrtzvMmmhx3lQ77zUNpbhoVpD6Jhf/mEmG\nQEDx21Vxth9wc67p+fDa5jQXTgsyYZRFOuOz6tVoTgAAcKjB4fEXu/jMjZUn81UJIcQp+aC0F+Ld\n0dru8vvnu9hzyMF1NWNH2CxbWMTMKaH3umhCfCANOQj40pe+BMCNN9541grzbvE1rN+l6Yw6eF5f\nR9k0FQHbQGuFHTCpjPiMqvBxBkkQ5PqK1DETATsPZnj0hRgHG7rTejpgWiZWIPtVa2D7QWfQIABg\nyYIwAG9tSdHY4vWmK23p8GntzN5QK43Rb1OC48CmnWkmjLJYszlBa3v+tKL76zLZ78DXvPl2giNH\nHUpLTC6fW0QwIKMuQojT90FqL8TJaW53eW1DHNeDOdNCTBkbHNL7XE/zy993sL++r1Hdvi/DkWaX\nL95iMH5U35LXzbvSvLE5TVunR2mxweIFMGP8mf4kQnzwFeS6kM441Lf4OQEAgOdpMvjEo0mCoQBa\nh9hzRDGsHA41DbxORZFPTWnfNdIZzUOrohxtzV3T77keylCYVnZGQQ2y/wCgsR027FHEnQjTpgVp\nW9eBm/AHXT6Uo+c1J3htV8zl5w+1sftgpvexl9+Kc8cN5UwZJyMuQgghTt5zr0f540tRYolsG/j8\nG1Eunh3hUx+pOGEb9vrGRE4A0KMz6vPS2gR3dAcBa95O8fBzMVI9zVeTx+5DLVx3WYQlCyJn9PMI\n8UFXkEO/vq8HBAA9PC/7XDyaIpV0qGuG+dNMQlbu6y1DM2usi9nvG3x1Q3JAANB7Tzf7uFIwfUL+\n2Gt7HTy4Gjbszu5X2F5nUlpdTlFZBDt4zMzBsUuFLLhgWraSnD87TE1F/iVMk8YE+N0znTkBAEBD\ni8vvnulE68E3OgshhBD5NLY4PPliV28AANkZ6lfWJ3hlXXwI7x/8UMy2zuxzWmte3pDqCwB67uPC\n65tTOK60X0KcjIIMAgCO19c1TQMNpJIZNDBrvMGy8zNMrnUZXuYxYZjHktkOc8bndvgHy+oDoNEo\nYN4Mm9mT+4KAjKN54+0Ub7yd5rV3NIn0sWUxCYdtfN8fGAh0s0y49IIQ40ZkrxsMGFxzWQlFodyR\nl3EjbT68uIRdBzL5LsP+eoe9h/I/J4QQQgzmzxsSxJP5G9Z3dqXyPt5fecng3ZHS4uxzsYSmsSX/\n+tzGVp/6pnf/cE8h3s8KcjlQWRFUlEB7nvSwvuejNViWied64HvsqIe2pM24WphQ7RCy81d0Y2oH\n/zqHVZp8ZHGYOVOs3mnRP29K8ae30rR2ZoMHw0xRVBIkXJS7JMcOWGit8b2+IGPWZJuSIhPLhDnn\nBJgxMTdF6OUXFTNhdID12xxa21OMHGZz1YJiTEORGWS0xPez6VCFEEKIk+EeZxTeGWTmvb/LL4rw\n6obkgE5+OAgLz8vukwsGFKGAQSozsJ0K2lBSNIRls0KIXgU5E2CZivMmKY5dU6O1znb8uynT4FAL\nvLwV9rYE2d4Y5MWdYRo68y+1uWBGkHPGDQwEKkoNPvORYs47x+4NAA42ujz5arI3AIBsABLrTOJk\ncitB3f0/3/exAiajam3+5oZSrpgbAqV4eUOa3z4dH7CecuyIAH93cy1/c1MV11xWSjBgYFmKsSPy\nzygMrzSZOUn2BAghhDg50ycFBz1Ac7A2p79gwOCvbyhjyjgbs7uJHTXM4qZlpczobpcCtmJKnjYW\nYPJYm6qTOEhTCFGgMwEAV8xR7K7zOdgESqnuAMDHc/s65eGwjX/MV5R0TLYeCTK8NIFxzKCDoRSf\nvamUR/4UZ/chB8eB0bUWVy8IM6Y2txJc806aZJ4ZUq0hmUhjB/ru66Td3rX62tdEIja7Djo89FyC\naLwvkNmyJ8NNSyJcOP342RiWLyrhcKNDR7TvswYCcOX8YmxbRlKEEEKcnNnnhLhwRpi1W5I5j08Y\nZbPskqGdbjpxdIA7/7qK+qMuqbRmwmgb08xtk/5qaRHRhGb3QQfPzx7fOXVCkI8vlU3BQpysgg0C\nlFJ8crnFv/x3Ci/PChjDAO37DK8dWLF0pUyOtFuMrhy4/jAcMrhgZpiRw4OMGW4wZWz+EZBEavDp\nUd2vPE7GJdrZt6lKGQZNbZrn3kznBAAA8RSsXpvm/GmB455KPGNSiC9/oprVa2I0t7uUFBlcPDvC\n+TOkEhVCCHHylFJ89mOVjB8VZce+NK6nGTcywDWXllAcyT973t+uA2n+vCFBR9SnotTgsrlFAwIA\ngOKwyZduLmX7Poe6Rpfh1SZXLayitTV2Nj6WEB9oBRsEAIRsg6XzLZ5d4+L3dLxVNoNPSRgmTAzn\nrYQAnDyBQ1uXx2+fTrHviJfdV2DAlLEZPnlNmHAod560tsoE8p82HDB94tEUnueRiKZ7ZwGUUtgB\ni2AQjrTm3wB1+KjH0VaPEdXH/9WOHxXg03JomBBCiDPEMBQrLi1lxaUn9741byd5aFVnzsbit3en\nuf3aMi6YER7weqUUMyYFmDEp0HtfIcTJK8g9Af0tviDAHdcEuWCazcTRJuNrTZbONfnm7WEmj8k/\nih+2PUZXDOyEr1ydYm+915t5yPVh+wGPR14cuO7n8gtDjKoZ+PWPHm7ytdsijC7PEO9K9QUAhiIY\nDqCUYuJIE3uQ35xpQcCSClEIIcRfHq11Tipq39c8/0ZsQGahWFzz/BtxSVstxFlU0DMBPaaPM5k+\nbuB05dThaTqSBvF033Om0kyqcbCPeXlb1GNPXf48x7vrPDKOJtBvvX04qPjbG4pZ9VqKgw3ZgGL8\nSIsPXRKivNTkCx8vpaHF5eEXUhxpAV8rLBNqqxRJR2FFwoQtjet6OP2OLZ440qSq/MRTr0IIIcS7\n5WB9msf/1M6+ujSGAVPGhfirayrxXKhryD+zfajBoTPqU14qbZoQZ4MEAcdRHtEsmpSkPlZMc7uD\nbcGYCocRZQM7+7G4Jp1/dQ/JjB4QBABUlpl84pqiQe8/otriKx8vYu9hnyOtHr4Pr7wDTV0ACtMC\n0zIxDEU6kWF4lcF1lw2cOu3huppX13fR2eUxbVKYaRMHf60QQghxJrR3uvzsN4056T+bWmPUNzl8\n6fbh2BZ520/bUtgysy3EWSNBwAkUBTWXjIbm5uMfdjKi2qSm3KC5Y+BmgeGVBkXhgRWZ42re3ObR\n2JrNznPBZIMxw3PX+SilmDzGZPIYk/ufcUhlBk6NBoMWC2eZXHNxkGAgf4W5c3+S+/7QzOGj2Zo2\nYLUzZ3oRn79tuFSyQgghzppnXu3Ie8jXgcNp1m+JMWlsgG17Bx5UOWlMgKJIwa9aFuKskX9dZ4ht\nKebPsrGO+UYDNiw8N9B7PkCPeMrn/z3l8vQan417fNZs8/nPJxxWvjz4ib2tXYMc8qUVwyqtQQMA\n39f85rGW3gAAIOPC2nfi/P6Z1iF+QiGEEOLkHR3klF+AhiaHm5aWMGp47pKfsbUWNy0tPdtFE6Kg\nyUzAGbRkXpDisGLDToeuuKai1GD+TJvzzhm4wXj1Bp9DTcccVoZi3Q6fEeVpFs7JzfW/bb9HPOnj\ne5BJZUgnMyjDIFQUIBgMUFU2+Gj+ui1xDtTnDy627U7mfVwIIYQ4E4qLBh9vLI6YjKkN8M9/W8Or\n6xO0dnjUVJosuiAis9RCnGUSBJxhC84NsODcwAlfd+honhyjZM8BeHGjw8Wz+2YPnnzN4Y0tHn53\nzBAIBbACFq7jkYgmKQm4TB1TNui9OqL5NywDpNL5yyGEEEKcCZfNLWHN5hjJY87HKS81WbIwO9of\nsBVXLRh8j1wPX2s2bk9z+KhDWbHBJefL+TZCnCoJAt4jzuCzo3TFfKIJTWmR4uBRj7e29wUAPQzD\nIBAyCARtWtrjrNkJF50DZp4Bl4tmRXj0OYNofGCHf/SIEwcsQgghxKk6Z0KYWz5UxdOvdNDQnG38\nxtQGuHFpBVUV+VNx5xNNePzXHzrZfdChp0l8eX2KL99uU3Hi+EEIcQwJAo6xp87h1U0Zmtt9ImHF\nrEkWNy0tPuP3GVkNTR0DH/c9H1N5vZmEtu7zBw8YNBimQbAoxB+ejXK0s5JrL3IHBAIVZTaLLizh\nmVc76Z9yubLMZMVl5WfmAwkhhBCDWHxxGYvmlrBxWwLbUsyZFhn0MM7BrHwhxq6DuWmEjjS7/Oqx\nFr56a9mAvXdCiOOTIKCfnQcdHliVoCvR99ieQx5pt5OrLjTYsDVOOqOZN7uIYOD09lRfs8Bi6/4M\njtd3Ha01mbTDrAkWoUE2+eZj2SapdIb9TQavbgFbpxlbazJmeN+v99brqqiptNmwLU4i4VFbE2DZ\nolImjZM0oUIIIc6+gG0wf86pDar5vmb3wfx723YfSLO/3mXi6KHPKgghJAjI8fKGTE4AAKCBF9+K\nsfqVGA1HsxXQo891sGRhCWUVYZrafcqLFZfMCQ44B+B4isMGf/shi/tWpemKZ+/jZlzG1yo+urhv\njeO5kwze2Orlnw3ovp3WGsM08TyfN7b5NNansC2YMsbiK5/IXkspxdJFZSxdNPjeASGEEOJUbduX\n4dVNKZrbPIojBrOn2Fw5N3xGRuh9nc1ql4/nQywh+9uEOFkSBPTT0JJ/A20yDfGuvj+3tLs8vKqd\nojIHO5RdU//mOw63Lg8zbsTQv9LRwy3++VMm67dnaGn3qa0Oc95UG6NfhTlmmMmCmT6vv+PhHVPH\n9VSsTsaltCJCIp7piQtwXNi23+V/Huvg1qWy7l8IIcTZ8/buNA88FSPee6SOz55DLp1RzQ2LT3/B\nvmUqRg+z2BYbOBtQW2MxbYK0c0KcLAkC+gkFFTAwF7/WGv+YHrjW2VSdPUFAY5vPE6+k+NLHB5/q\ndD3N06+n2HXIJZWBkdUGV1wQYN7M4KDvAfjQxTaTRxls2OWxdb+P64EyugOAtEMwaBEI2fieTzKe\nW0Fu2ZMitsiiWA5cEUIIcZa8vCHVLwDI0sBbW9NcvSBEccTM+76TsWRBhMNNDl2xvnY6YMHShWUn\nNRMvhMiSIKCfqWMtjjQPHGXwHA83zzyk7+cGBgcaPBrbPGor81d2v1mVZNOuvk1NTW0+B454fOZ6\nxdja4/8qpo41mTrWJJbwuft3LumUB1pTXB7CtrPvNUwDx82dzYgnNR1RX4IAIYQQZ4XWmsaW/Mtx\nuuKarfsc5s86/SBg5qQg/99N5byyPklLh0txxOCimWFWXFFBc3P0tK8vRKGRIKCfaxeFaOvy2bbf\n7V2DX1YEdS3xvK83rdxKzfUgnc5/qu++epete50Bj3fENC9vyHD7NUP7VYSDCu37ZFIOruuRSjqE\nIjYl5dm1/246NwgYXmUybJCgRAghhDhdSinCAciT8A7TgKrSMzcINWlMgEljZOmPEGeCBAH9WJbi\n0x8uYv8Rlz11LuUlBrMnW/yf+1Js35O7Y9gwDYKRUM5jI6sNRg/P3+HeU+fiDHJm19G2wQ/zOtY7\nezJ0tMbxut/i4eNkXHzPp6g0jNdv2ZJScMl5EZkmFUIIcVZNmxCgoTU14PHxIy0mjZGsPUL8JZIg\nII8JIy0mjOz7au768jj+8zckBvNsAAAgAElEQVR17D6QwvOgssKmI2WT9vo6/OEAXHZBANPI3+Eu\njgzeEQ8Hc59zXM26XZqWLogEYO5UKOs+dv2VjaneAKC/VCLDonNN9tsm7V0+ZcWKOefYfHRJKS0t\nsZP5+EIIIcRJuf6KCB1Rn637MmS6J73HjTD5+NIiyd8vxF8oCQKO4Wt456DJ4VYTT0N1ic+SC03+\n5mM1Oa+ra3T58+YMbV0+JRHF/FkBpo4bfLRj3owAL6/P0NiWu25SAbMm9v0aOuM+D78EDW19r9m8\nD1Zc5DN9nMHR1vzrLj1PU1Ou+PBluRuTh1r5ZhzNpr2ajAMzxkNliewhEEIIMTS2pfibG0o4cMRl\nT12G6nKT2ecEMJTiaKvL27sdQkHF/Fknl05bCHH2SBBwjNVbbHY39H0t9W0mR6M+y2ZnR+V7+Non\nFndo6/BpaIaumEcm43PulPyZfixLcdOSEI++mKK+OduRj4Rg7nSbyy7oe8/qTbkBAEA0CS+9DVPH\naIpCio48+59MA2oqTq3j/s4+nz9t1HR0Txj8eQucP9ln6VwlIzhCCCGGbPxIi/HdM+laa373fJy1\nW9Mk09nnV69Ncf3lYc6bevyseEKIs0+CgH4Otyr2Ng5c09/YBpv2Wyyc6nLgSIY/PBfNObrcsAw6\nopq6RpdPXaeYMTH/pqUpY2z+8RMWm3Y6RBOa2VMsKkv77qe1pq4pf9maOmB3vWb6RJv65oHrgSaO\nsph0CqclxpI+z63XRPtteUhl4M3tmmEVcP5kCQKEEEKcvFc3pnl1Qzon8XZzu88jq5NMHR8YsBRW\nCPHukjUf3VwPNh0KUlxsUlpiEAmDZfVVXS1Rg4yj+dXjXTkBAIDv+nieRzwFr25KH/c+pqG4cHqA\nKy4M5gQAvdfKn1yot4wfvizCpDE2dsDEsi0sy6Sq3OJjSyOnNGq/fhc5AUAPrWFn3XEKI4QQQhzH\n1r2ZPCfvQFuXz2ubBm4iFkK8uyQI6PbG3hBH232aGhO0NiexLEUkbOB178K1DHh1fYK2uElpZTFl\nVSUUlUUwjOxXqL1sVdfSPvRMP8dSSjGyKv9zlSUwdYxiw06ne7mQgVIKZRh0JRQvbRjkPPUTSDuD\nd/QTUkcLIYQ4RamBx+70Sg6STlsI8e6RIAA42qF4fWOc3Ts7aWxIUH84zo6t7XR1OYRDinTaZXSV\nx6b9iqLSCIFQADtoEy4KUVpVjGEYaJ2t0IrCp/eVXnZutsPfX9CGi2dkj01/c4uDM/C4AbbsdWjr\nPPkAZOyw/KckA3RETz2gEUIIUdhqq/K3h5YJU8bJamQh3mvyrxB4aaNLW2vukEUm43OkLsbEyWUE\nTJ+KsENH3Byw5MayLcIlIZLRFAqYPeX08iHXVhrcsdTnje3QHoOwDedNhrHDspVpa2f+7ECJFOyu\n85hflrvEKJH0ee71GIk0TB1nM31i7masc0aDZWhcP/dz+Z5PR5dPc4dPTbnEikIIIU7O4nlhdh9y\naWrPbbdmTbaZNu74B36tfSfOaxvjdHR5VJaZXHphMefPiJzN4gpRcCQIAI62ZpfSBEIWppkd1Xcy\n2Ww/ra0pTFOx+7CPp/Ovubcsk5Jik4Xnhbhybijva05GScRg6YX5nysOKzqiA0fubROGVyre2uaw\n57Df/ZjHph2ttLRlP99zr8Psc4L87Y1lmGb2s/haoX0Px9EY3WccaF/jej5oONqmqSk/7Y8khBCi\nwAyvNPnbG4p54a0UR5o8bFtxzjiLFQvDx33f6je7eHhVO+nuWe8D9bBtT4pbr6vgsrklx32vEGLo\nJAgA8DWRkiCW3TeKbgct0kmHRNzBDtrsaghQWp4dIU+lXFynb2Sjoszgyx8tpziS/7Tgodh12GfD\nHuiIQVEIZo2H8ycPHIGfNcnicNPAhZYTR5n8+R2fzXtyl/A4aQvIBgGeDxt3pPnjqzGWX1LMG29n\niCY0lvJxHT1glqMoDGOHS/YGIYQQp2ZEjcXtHyo+8Qu7+b7mxTWx3gCgRyqjefHNGIsuKO4dsBJC\nnB4JAgAzaGP5uR14pRSBkEU6mSGdSVNRXoxp+ti2jW2bxKIZHCfb4b7kXPu0AoAtB3yeehNS/Sq9\nA43Z9J2XnpsbCCxdECSW1Gze5RBNZM8HGD/S5NzJFo+/NnANvxWwsB0LJ9O3cXjTjgzrdsZJZMCy\nDdAKJ+1iBczejc4AM8cblBbJUiAhhBDvjqOtDnWNeTa+AXVHM7R3eVSVS9dFiDNB/iUBgYAJyYGP\nG4ZBIGTjpF0M5eK6EAgYGKZBKGyB9pg5XlFdDvevStPalT3Ma9ZEk4XnDtw/kI/WmrU7cwMAyKYK\n3bgHFkzX2FbfdQylWDw3SFOnItPgo5WiPWnwxvb811dKYdq5QUBDq4vZL2YxLYPisjCm7xIIGhSF\nYNo4k2Xz5a+HEEKId09R2CQcUiRTA5e9hoMGoaAMTAlxpkgvD7CP8y1oHzSKRMIjGfcwTYVpmkTC\nBrdcbhFL+Pz+T07vaYig2d/g0xXXrLi4b5Ow72vW7tTsO+KjyW70XTBD4fnQ3JH/3u0xqGvWTByh\n8DW8vV9xqEWxvwE6YgEMKxs5JNPZ/5SRLW+eT3HMH3ODE8/1iXYkqK4K8/VbA9i2wpCTgoUQQpyi\nLfs9tu7XpB3N8ArFotkGRaETd+BLi02mTQixcfvAkbmpE4KnnYFPCNFHggDAdx0810RrjWn1jeB7\nrkcimsQO2qTSHo7jk0n7hCMmJWEYN9zg/z7RPwDI0ho27HK5/HyTSMjA15rfv+Sz5UBfZ3z7QZ+9\nR+DmxQZBG5J58ilbJpREstdbtc5kZ31P5WdSXJKdwejq7EvmbygDj9woQGuNm8k9Q0DlWU/pe5pk\nymPjXk17DErCmoumKoK2BANCCCGG7rm1Lq++7eN1N0c7Dml2Hfb55DKLsiEsMb3tukpiiWZ2H8w2\njErBOeOC3HZt5dksthAFp+CDgCPNLjt2tNPRla2tDMPACpgEIwFM08RxPAzLJBQO0dGexOuu1cbW\naLTWA1Kf9eiKw57DPrMnG2w7oHMCgB576mHDLhhfC5v2DrzG2GFQU2aw+4hiZ/3AznggaBEKW6SS\n3dmNbEXKzwYNkK04J4ww8VImqYwiEjLYss/NWfffn+P6PLuu7z6b9mo+slAzukZGXoQQQpxYe9Tn\nre19AUCPhlZ4aaPP9YtO3J5UV1j809/Vsm5rgoYmh9HDbS6YGRnSElshxNAVdBDguJr/90hHbwAA\n4Ps+mZSPYZj4tgY0ShlEwhaGoTANmDjc5/JZPkpBKKCIJvIfthXtXtO4t37wkxFf2OgTCBhYZjZ7\nT08HfnQ1rLgo+/OBJgXkr/xs2+wNAsYMUyycFWD7QQ90dl3/5ReV8dq6DrYecPE9CB5O4AxyuPCx\nFWxrF7ywEe5YOmjxhRBCiF5v7/NJpPM/d7g5/6BZPoahmHdu0RkqlRAin4IOAv68IUFdY/4eseu6\nmHYQw1QYJvjaoLI6zKUzPOZP68nCo5gy2qC5I//Jumu2+sybphlk4L37PgrVc+Kwymb7KQ6kGV1h\nUBqx2VvvsXV3hvZOME1FqChAIND3a+sJGoI2zJtuMHOCxcwJVvdzmv9+tJM/b0j2jcoYNobh4fu5\nlbFhQKR44BkHh5uhpdOnukxmA4QQQhyfeZzBelNSewrxF6Wgg4CW9vyddwDf9bO5iLXOHiCGYtwI\nm/nTckf1r1lo8/Y+j1jimAsY0NwJ63Z4zBxvsGGXxs0zCNKT71ip7L18DV2pAM+vTbJ5j0s8BalM\n9jUOkE67lJSFCYVt0Brb9Jg4QjF/hsnsSblpStdtd3h5XerYW2JaBrg+PXFAOKiIlEYwrYFpTj2f\nQWcOhBBCiP4uOMfgz+/4dB3bJgLjayUIEOIvSUEHAdUV2U5vMBxAGYpMysHvGTJXABqUIhDM5s+v\nLh0YNNiWoqrcJJbqe04p1bu0Jp6CiSMN5s/QvLVd4/S7hGEojH7DJkoptNYYpoFlGzS1Z5cc9T8Y\nRfuQiGcIBE3SSQfDVASKQpjWwAhj+4HBeu+KBbPDjKw2sC2YNzPIQy9qDhwd+MraChheIRW3EEKI\nE4uEDBZfaPDcW7nLgiaPUiy+8NTP0xFCnHkFHQRUVAQpq1a9JwWHi33SyQyJrmS2I28YhIsswiET\n388ur8mnpkxR1zRwuYxpwIQR2Q708nkm08f6bD2g2dcArTGFYagB6/AV2U6/ZZu4jk++W7oZj+bG\nKKlEBu37HK1XdMSqKIn4jK3pe50/+EQHaQeunNu3/OeSmZrWLoj2y8oWCsCCGcjpjEIIIYZs3jSL\niSN81u3wybgwpkYxZ7IhbYkQf2EKNghIO5rn13m9AQBkMwOFIkG0r3EdD9PKdsZNO5vvPzPIwPol\n55rsa/DpiOU+Pm2sYtKovuuPqzUYVwvbDsIjr2nybvZV2Udd5zg9eCBcHMAOWsQ6kmjf5+D+dlbZ\nVXz8UpeK7hPaJ4wy2bQ7f6HbYtl9CD1ByORRBrcu9lm7K5vZqDgM50+CscNlL4AQQoiTU11msHz+\nwPZDa9heb3CgySTtQHmRZvY4j6qS/INs/bPdCSHOrIINAtZu92iLDnxcKYUdzHb6i4qDVFQGjz1q\na4CR1Qa3LrF59W2PxlafgK2YNEpx9dz8X++kEdkzANw8/XyFwnE8XMfvLk82r78yFH73pgLTyh5Y\nZpomqlIRbU/gZnxiKc0Tb1l88koXpeCSOQGee8slnsi9kRUwiaYtXt7sc+FURUn34Su1lQbXLTjB\nhxVCCCFO0Zu7TTbtt9Ddg2ANHXC41WDZeQ7DyvpaW9eDI10msYzC14qw5VNd7FMWOlGLLIQYqoIN\nAvIdztXDMBTFpWGCQYtg0CKdyVY6w8sGr3zGDDO4dcnxR80dV2Mo2HJQ4Xr5hzW0r4l2JLEtmDjK\npClq4ZM9wMzzfFzHw7D67mPbJqGwTTrpYJnZEf43d5pcPM3DMhXDhoVoOJrBdX1QYFsmgZCFUorn\n13m8vgWmj1V8eJElmRuEEEKcNfEU7KjvCwB6RFMGmw6YLJ2TnbnWGg60W8QyfW1dNGOS6DCYUOFS\nHJRAQIgzoWCDgMmjFK9szj8abwcsikuDeJ7GcTwScY/qMsXYKpfB8vUfz646j5c3Ohxp8bFMKC0y\n8Twb0xwYNISDmvPPz6b5XP22iVZ9dzRNA9M0sG1FOtMzU6AIhQN4nk9JiUU6ozjQAheT/WAjqy3a\n88x4aK3RGmJJWLtTE7A9PnRxwf51EEIIcZbtPWqSzORvQ1uife1hV0oRy/M6z1e0xA2Kg8dfLiuE\nGJqCXfA9qsakpMTGDpqY/TL0GIaitDxIIGBhWQb1dVEyGY8jzS4P/AkOHD25EYj6Zo/fPJVg844E\nLS0pWjs9Dh31SMZTA3L1A0wba3DtJUHiGZOGtvzXtG2DSROKKCvLdto9z6esIoJpKiJhRTQFv/6T\nwR/XKmZPsSk6Jv2/1rr35OMeO+t8PF9GV4QQQpwdIXvwNsYy+p5LOIMfkJkZZBZdCHHyCnLod18j\nPL0WHN8kGDTRAY3vabTvEykOYFlGNoe+Uihl4Lk+lm3SmdC88jaMv3po99Fa8z+PdXH0aF+etHQy\nQzASJBQJEu2IU1pR3Ls5d3gFXDorOxXaGjeZON7CMCAW8zja7PZukHJdjR0wGV4TAlI0JR2S8QxN\nzQbDasJoFA3t2f/2HvGorjQpSmlSKZ/2qI/WmmPjj1gSMg6Eg6f//QohhBAAR1p9Gls1E0YoJtXC\nhv0ebbGBqUJHVvY1SrY5tGBBCHF6Ci4I8H340yboiOfm5zcthWVZ2LbZmwrUdbMdZjfTl0XocCtE\nExrTyJ6yGwoMPiqxdkuKuiMDz09PJ9LYAQutNUVGknGjI1SXwbyp2U74jqMBHNtmWHX22tWVNuVl\nLjv3pNAaAoHsBI5hGlSWB4l2OXS1J+lsS1FWFsLrN1OaciDZkX19JGgQcTJE4wPLWlECwcDJfZdC\nCCFEPrGEzx9edtnboHHdbNs2fZzBvOnwxk5FZ7JnIYIGz2P3wQy2r5g3XVEZgZa4T8o9drGCpiKc\n59RNIcQpKbggYMdhaOrI33HPLs8xu3/WpJLZw8O0YfSOwmuteeA5l6NtPqYBY4crls+3GV45cGXV\nxu0DT+vtkYylCEYC+K7LRy/te7wjYVDfaXPsVGh5mcWI4TaNTU7vMiDoy+FvmApPa3zPJx7Pv14y\nkVZEIhbRuJPzuKHgvMkGhuRgE0IIcQY88orLzrq+UftkGjbs8gkHHD62EF7eavDOfognPDLde9wO\nNGg64rDsIsWYcpcjnRbx7qVBtuFTVeRTEZGZACHOlIILAhKD98t7O/q+n11n72Q8lKFw0hn8iJ3N\n0OP6HGzsG4nYflDTHnX4/A0BAnZuJ/pI82An9oLnefiuj3PMSEdTfGDmhB5lpSZamRQV2X1lRpOM\nOyjDoKjEJhZzsGyrt1I9VsoxmD/dYH+jTzwJ5cXZAOCScwvur4IQQoizoKXTZ++R/J31nXU+1yzQ\nNDQ5tHfkPqeBTXs1i2b5FIUNJle7xDMK14eSYHYGXghx5hRcz2/6WPjzNk08NbCjrVR2BgAgk3bR\nvo9lG8SSDqaVpqw8QDQxcJS9sU3z5laPy87Lfp1aa576c4KOuMIKWKCzswx+92ZcrTWqu6M/subY\nX8HgoxzhsIV3bGq1qJM9R8DXaE/T0Z6kqqZ40GsoBZfOsbjukuwUrW0x4NRiIYQQ4lS1delBD9dM\npMHxoKkj//PxFPzyiQwfWWQzcZQp6UCFOIsKLq4uCsGcCWCogRWLaWaX/biOh+t42EGLjuYYvq/x\nXJ+wctBe/gqpLdo38v70a0mefi2F6yuUyh70ZVomRr9hDKWyJyouvqhvJ25ju2LPYUVdg8/hoz5t\nHX7v/gQA55hK1XV96g9HsYMmyjCIRzPEo2kS3ct9smlAc8s7sgoqisFQioCtJAAQQghxRo2uUZQU\n5X+uqkQRsCBo539ea019s8tDz6c40OCRcSQIEOJsKbiZAIAr50BlCew8rElmwPcVnTGfWMLD9XxS\niQzptEs6kT1RTHWvu/e1ZrC0ZaVF2Q6+72s27hi4GRjAMAw8x8M04IJZET58WYTa6uyvoLFT8cKW\nIIl+h6NkMuB4muFVoNCknb7nXNenqTGBFbDx/ey8gutmDxOL2B4zJyr2Nii6En3lLYtoFs3Qcvy6\nEEKIsyYSMpg9weC1LbnLUi0TLpxqoJTCMjyUMrEsI5uAw8129n3Px0k6tOsA//m4Q02VzdTRsGK+\nIQdaCnGGFWQQADBnYva/LM2WvQ73PtyV97U9h3pNGGEQT+sB+wqqy2DBDIP12zPsOuTSkv8yKEMx\neVyAGxYXc8743FycWw5ZOQFAj2RSM6o4wzm1Lg+8bJLxLTxPE406ZByfQCB7mnA07eA6HkqBh8Gy\nCyCZ1uxoCHCkOU3A1GQyHpt3Q0MLXDTNxDKlQhVCCHHmLZlrsn13nLrGDK4LxcUml1wYYf6MIL6G\n9rhJUXEAw1DdZ9doEvEMmZSLYZq4jotpGXTG4a2d4GufDy8cmFpUCHHqCjYIONb0CTaVFTZt7cdk\nzjEN7KBNRQksX2AzcZTPK5s9jrTo3uxASy60+M3TSbbv79kvYGLZBr7n5xwIFrA0E4d5VJcP7Hx3\nJvKvzPK1Ip0B0wDfyXDkqIPvZ0fzTcvAsrJLeiw7O5oSigR7R0vCQVh6UYBX1iV44jWPzn6pQTfu\n1tx2tUlZUcGtCBNCCHGGeR5sPZhd8z95pObBP3aw+0Cm9/mODp/X1kWZM8Wkri2IHeobCFNKYVmK\nUNgiEU13z2x7vXv0AHbWZQe2wkEZvBLiTJEgAHBczdE2n6vmh3j2DUUi4aE1GJaBZZlUlBh8+NIA\nrgfVZYrPXm/T1qmxLEVNucFTr6X6BQBZSikM08gJAjpa4zz4SCtPvXCUZVdUc8tHRvY+FxhkfSRA\nOKBpj/ocadK4/dZHeq6Hb2uCIQvDMLCDFqGwTXGob9mS72teWJ8bAAAcbtY895bHX10pQYAQQohT\nt78Rnlmnae3KtjsvbARlVDJldvawzXhXiqb6Dlo7ff70ZgK7LJT3OrZtEgiZxDIOSqmcPW3RJLRF\nNaMkCBDijCnoIEBrzfNrXTbv8WjtglAAxo0MEgloosns9OSUsSbXXl7O/Y938IcXHVIZqCqF886x\nuPqi7Ne3rz5/Xn6lFIZh4DoOyViCzqY2ADq7XB5d1ci40WEWzq0AYGyVR0O7wbF7DiqKfKbUejzx\nuiaVOfYO4Do+ppVNZWpZ2fJksxBlO/fb9jk0tOb//AePZjcOy+ZgIYQQp8L14PHXfY62ZJekAli2\nSThi42QUkUiAUCiAHbQ4vLeFzTszTJ7ukS8vSU+b6bs+hqF6z8EBKAlDLOayanuGsmKD+eeGsSxp\nu4Q4HQUdBLz6tseLG73e8wFSmWzHeOoYxRdv6hupuP/JKFv2943ot3bB6nUu2/elqSrRtHd6aJ0/\n005tucv6t+rRfm6GA8eFN9Z19AYBs8e6RJOKvUct0q4CNFXFmkvOSWMY0NA2eIYEz9XZDES2wvPA\n9frKmnaP8z4/m5BUqlEhhBCnYuMen/qGVG8AAH0Z9krKgoSCAVJpTUlpmHBRgGTK5Uh9nPJhZQPa\nTM/ziXUmegOAcHEQ3d2c+W6Gnz3QQbp7xe7zr8e55ZpSpk7I3V8nhBi6gg4C3tnXFwD0t++I5s0t\nDnvrPRrbfI626ezyIKNv5EIDh45qduzJ7hJWpsIO2DmVmmlCSTA9IADokUj1VZpKwaJpDnPGuuxv\nMSgKwIThHj0DIdZxVu2YZncGI626X9tXhtmTA1SVZgOXY42uUXJKsBBCiFO2cWcmJwDo4ToeqYRD\nUVG2jUmloagkhOsmicU9ipIpApFwznsSsTS+p1EGREpCmKZBIOBTZDq8vSX3YIH6Jpf/faaLb/9d\n9dn7cEJ8wBX0gvBoIn/n3PHgydcybNzl0dCi8f3sacL91/dDX+pQAO1pPDe3IvQ8iHklg95/9IiB\n6yJLIprZYz0m1fYFAAATavN31pUBwZCNaSpCYZNwxCKe8vG6Aw/bUlxyrjEgJ3NlKVxxnmRaEEII\nceoGO50espt7K4o1kUi2q1E9rAjLzo49jq92mTzCp7JYY+CTiKdJJjKEi4OUV5cQKsqO8F822yDW\nEct7/cONLmu3JM/wJxKicBT0TEBFkaIjmi8Q0KTzrL/Xmpw19P4xI/za09Cvs60MRXOXYsq0Gg7W\nRUGDk0yjtWbMyBDXLxs25LJecb7BvkaPuqZ+11cQClnZA8mUoqUxSihikwla3P9Mhk9fk61EF8yw\nGFbus2G3TyKlqSxRLJxlUFla0DGgEEKI01Rdpth7OP9ztqmoKFV0JsC0oKwkwCGVbUvPGWsyd3o2\ngHj8Dc3mfQbFZZGc95uG5q0tGTrSAQJhyCSdAfeIxgcPQoQQx1fQQcD5U03qml2OGcBHMfg6+p4g\nQGuN7x5T+ajc2YEeSR0mXJx9baQkzOgaxec/UUtleWDIZbVMxV9dbvJ/n1GkMxoUBAJm7xkG2c3A\nikQsQ1FRgJ0HMrRFbWpqsu+fONJg4kjp9AshhDhz5kyxWLvNJd+q12lTQr1LWYsiFpYNtp19YFil\nSTLtc6ARpo2GhjZFU/8VP1oTj7l0ZHxQFuFiE8MwScX7DuqJhBSzp+bPNCSEOLGCDgLmTbdwXVi3\n06OlQxMJZTvL2/Z5OAMHHHIoUxEMB0inMvTEDIaZv5Pten21o8agNabw9ckvxakoUUwZbbC3Mc+h\nYolsgQ3DoPVoFDMY4MnXPKZOHPBSIYQQ4oyYPt7msvN9/rw50zugphRMnhBi+jkRsk2kwrYNPM8j\nnXZBKVa+6oMy6Upkz8EZXa05fzIk04rDTR5NrQ5ev8QWSikCIZt0sm+f3dxZIYZXFXQ3RojTUvD/\nehaea7Fglkk8mU0RaluK36R9Nu8ZuNEpWwlZvT/7vk9VbRntTV2MHmbSGjPxjhkN0b4mk8xdW5RI\nal5dH+XmaypPurxLL/B56i040JTt8HuuTyqZobMt0fsa19cYWrP3iE9Diyu/ZCGEEGfN9ZcFGTU6\nyKZdLmgYPzZEeZmF1tCVMNA6O3CVSrp43TPoh4+kKK0oArKZ6g42ZZcJ3bEM7vnf3ACgh2Ea1FQH\nKY/4zJ4S5OqFRe/ehxTiA0j6h4ChFCXdSxG1hgtn/f/s3XmMZMd94PlvRLwr77qrurv6Yl88xEsU\nKZEUrVuibMuybHg8NmyPbQwMrBfCLLAL24vFYoHB/GN4F2vYwIwxM4Zn1iNjNLZnLMuSrNOSKIki\nJd5Uk+y7u/qouyrvfEdE7B8vK6uqq4rdzUMS1fEBCDYzqzJfZTUjXkT8jiI9aVlaNSwvdgcdev1A\nbar+k9c0Ftxz9wi/9RHBP3434ZtPJ2wslJClKTrLtrxnku4ccvRqSiH8s0cM/+ufNAlCj7ibofXW\nmEiTabQR/Ncvd/i1D+5cASjTliePpyyuGsaGJA/c7uMpVzHIcRzHuX73HYSJkZDFliLRkm4MjbZk\nuZUvAKy1XJ5ZL1OXJlvnxZkFOHXJEnh5mezt/MIHy9x37FW6azqOc93cImCDJIOvvxwxW1eEZcHu\nMkxPF5m50KLV1ltqGq91BU6Mh7WGkSGfQlkg4nwVEAQKiLBG025srmBweP/rq23sk9Fpbb35tybP\nVUiNJU0yzs8pGm1FdZsNk9klzae+2OXi/Ppg+90XUn79oxHjw65ykOM4jnN9hIB9Q5rpqubbJ0PO\nLSnWChBaa1mab7O0sH5ibU3e9V5563ONBRabcHhaMjO/dX6bHBHcc9jdtjjOG8Vlim7w9PmA2brH\nxvZZBsWuPeUdu+oqJUk1xKnl6RMWIRWFQkChEKBUnrhbGSpv+p67jka8667Xd4z5f/5OFXtVyVJr\nLVma5ddqwWhLt2d44dFyE6cAACAASURBVNz2r/H3j8WbFgAAM/OGz3wzfl3X5jiO49xc0szy2HMp\nn388QSUt3nWox/6RlKX5FqdeXuTUK1e1rheQxJvDbn0PDkzAhx/wufMWxcY0u7Ga4GMP5+WwHcd5\nY1zXkrrX6/GzP/uz/O7v/i4PPvggv/d7v4fWmvHxcf7oj/6IILj+Kjc/zubq2+9+SyUplT3arc3H\nl2shQpWCpd62LG7TkAugUPQ5vD9ESTh6IOJj76ttaof+WpQixXve7vGV7/YGCck60+sNzQQYrWk3\nu9TbEtj8szXbhjOXt+Y9AJy5rGl1DeWCWyM6jnNjbpb5wll3aUHz6a+mzG3obL9nTPMrHw747vfa\nLC9uzosLQo9qrUDvqkXAkT2wazSfd37joyGnL2pOXdKUCoIHbvMIfLcAcJw30nXd5f27f/fvqNVq\nAPzJn/wJv/qrv8pf/dVfsX//fv7mb/7mTb3AH6ZtQuv7BMXC5ptoISEs5DX6J4cspQj8HSJoykXJ\n7/3LSf7335niFz889IYNZKWCHOz65/kJ679OIQRxLyVLMuYXtpY6ijN2rICUpDs/5ziO82pulvnC\nWff5xzcvAAAuLVo+/52U4dEyU9MjVIeKVGoRIxP5fxcrBUZqknIEo1V44Bh84uHNc+OhacVH3hnw\n7rt8twBwnDfBNRcBp0+f5tSpU7z3ve8F4IknnuADH/gAAO973/t4/PHH39QL/GEaKW2/CihHMD5k\nKZZ8glARRh6lcojvewgst+2FobJk/9T2r3tgkn6i0xtrdDigPFxiaKLK8ESV2liFsJjvsq31D7DW\nslTf+nONVAV7xrf/9QsB7Z5rwOI4zo25meYLJ7fSMJy7sn0S7/lZgybvZl+pRQyNlpiYqlAseSgl\neOjOkP/lFwX/888JPvqAdEUpHOeH7JqLgD/8wz/kD/7gDwb/3e12B8e5o6OjLCwsvHlX90N2x3RC\nKdx8PCmF5a4D8La9lsCXhJFPEHqDHIHpMcst/Zv/n3mnYN/Exu+FW3bBR9/5+ga2Rsswu5ihN3Rj\nsdby1ClJVAhQKj8R8AOPUrWIH3mI/mAqhKSwTQ6yFIJj+7ePBjMIvv3C9qFCjuM4O7mZ5gsnF6d2\nS8PNNWkGcwsZzWZKkhi6nYzF+Q6ddkIQSpablnrrxirlGWP5/Le7/N9/2eBf/4c6f/a3TZ55qXPt\nb3QcZ4tXzQn4u7/7O+655x727t277fPWXv//vOPjlRu7sh+B8XGYGLM8fRpW2xD6cGyP4NZpAVQQ\nfsL3XtIs1C2eglrB8p67PSYmosH3/95By3MnU+ZWDHsnFLcd8HZMKr6W+eWUv/gfSxw/1aPTs+zb\n5fPBByt89JEaz59KuLK8deCTUhAVQlqNDp6flzS9744S4+N5cvLJixkX5g27RgTVqkCqFGss1uYn\nAELmYUUrLfFj8Tv7cbiG18pd+4/GW/na38putvliJzfbtY+OWvbvWuH8la0lP6USmP7cAgzmwlYz\nxfMVz522PH/asn+X5KcfjLjtwLVLf/77v17in7633jV4cdVwYXaJ3/3lUe69rXjD1//j4mb7e/Pj\n4q187W+EV10EfP3rX2dmZoavf/3rzM7OEgQBxWKRXq9HFEXMzc0xMTHxai8xsLDQfEMu+Ifh3umr\nH6mwsNDkzmkYjTSf/lrK5VnNZWM5dQaO7VP82qMRfj/kZ89w/g+kLC6+tmsw1vL//mWd0xfXB9YL\nV1L+y2eXwaR0Mh9rwRiTT679vAAh87KlVlvwLe9+e4n7jxkuXGzyme/CuTnQRiCEpRxaRsbLeFKQ\nxBmNZjwozayk+ZH/zsbHKz/ya3it3LX/aLzVr/2t7GadLzZ6q//9e63X/s7bBPPL0N1QWE4p0Ei8\nbTbBpMwbh1lrMFZw5pLm//tCm996VDBc3jlAYWFV88Tz7S2PtzqWf/jGKtNjb80T7Jv1782P2lv9\n2t8Ir7oI+OM//uPBn//0T/+UPXv28Mwzz/DFL36Rj3/843zpS1/ikUceeUMu5MedsXBh2eOfnoGV\nVobph+akGbx4RvPZb8X8wnujN+z9nnsl4czF7ZqMwZMv9Hj/gz5GazZWCc0XAxajTb+tumD3ZIgU\nhi89A6eviA1fK2j2BFKCHypKlYBSNWTuchNrLW876PoEOI5z/dx8cfO671aPobLgWy9knLlkSY1A\neXKQm7adLNOkmR3kATTa8ORL8JH74fQlzYU5y2hVcMctEtWvpvfSmZTODhWs55ddHpvj3Kgb7rrx\nyU9+kt///d/n05/+NLt37+bnf/7n34zr+rEyuwpfOV6k3lWUhuG2aonVlZjTJ1dZO+E+MaOx1m4J\n/Vltar7xVI9mxzBclbz3vohS4do32HNL2Q79EqHeMuwdt9jtxjzLoC275ymWm5bvnIkwoeToIWi2\nNLPzyeC6jQFrNPW6xvMEI2NFSLrcfdiVB3Uc5/W5GeeLm9WhacX3T4Lw4VpFYPNTbEsQSMbGiySJ\nodmIqbct/+nzMScv2kG1Pt8T7Jn0efsRyeiQ7IetynzDa0OeXDFyScWOc6OuexHwyU9+cvDnv/iL\nv3hTLubHkbXw2HGod9dv3JWSjI4ViOOMmfMtAHqxxZj8CHTNy+cSPvWFNssbqvM8dTzhN3+uzL6p\nV4993D3hIQRsF0Y7XFU8c9KiTb7jb6xFkCcBS5WHBAkp8HyPF85klBckE2MBpZJHoaDwfcGFi+vb\nKbVagNfW9GKDkIJO5vPF78Mn3v3aPjPHcW5uN+t8cTNLtWXmOvK+rc1z0Ky2jI0X8X2F7ysCX3Ly\nUpteotAmQ0jA5k3Izl9OWGpFHNmtGBopkJn13jhxJ0Frw+23XDufwHGczdx27zVcXlXM17d/rlZb\nL7szOSI3dTK01vK5xzqbFgAAc8uGz36ze833vfNwwOG9Wwe1MIB33RXSaBt0ZvKdEMsgP0BnBgSE\nxQAvUCSpYHk55dSZNssrecOWasUjCvNr9TxBoeARhpK4m6H72y9nZyHTN1a1wXEcx7lJ2e03rdae\nNMb0u9xbglAwMVUkitb3If1AUaoWKFdCqsMFfF+BEIQFD2Msaao5cVGgbV7wQoh8o6tYDvmp+0o8\n+uAbF47rODcLtwi4hm6680ck+zf9hRAeunPzDfvckubsDh15j59J+d7xZNvn1ggh+O2fL/P22wIq\nJYHvwf4pj1/6YIl7joUsN7aPf7TWgsnDkpQnSdOMpJeSZbCwmNJoaoyxVKv54Fup5NWLfF+CsGht\n8HyVNwzbmpLgOI7jOFv4nmD36PbP9e/92T0Kdx8LmdpVIYq2bnJ5Xj7fKiUplEIgP+UOQo9eJ8n/\n66qoH6EU+/cWkdKFAznOjbrhnICbze6hjJdmobvNPbvJNHccVDz4Np/bDm7+KM2r7orAf/tqj04M\n77l3c/TkCy81+daTy3R7hgN7C/z6T09ggDixVMsS2c85WKzv/OLa5KcBaZwhhKC50qYyVMTzBL4v\n6CUQ9zSVimKoFqxfr7EkGZRKgjSG77xoeN/b19/TcRzHcXbyU3cJFuqW1db6Y3ZD7P7MAiw1E0Yn\nw21v2j1PDMJgpRSEkU+aaoJA0euYfE7dZuprtFxSsOO8Fm4RcA3FwHJkNzx/Lq+2sybyDO+5zzBZ\nLWz7fbvGFJ5i5yYqqeW7L2Y8fJc/qI7wt5+b5a8/e4U4yUe5x55Y4clnVvk//tUhhir5rom1lpfO\nZSyuaozO6/pv7UMg8gpBNt/ZV75Hp51QrkYkab5jkySWJEuxI3lIU6ed4YceNtZIKcg0PPYipMby\n6P1uEeA4juO8ur0Tkt/4sOHJlyw/OGdZbdktm2GdnqXY7lGqbJ07PU9SrQbU6/mumxAiD1ewebhQ\nXhHPIOXmE/qJEQm4hYDj3CgXDnQd3n0r3D0dM17OGCpopodTHrylx2RVs1CHLz0Nf/e44KvPQr1f\nwlgIwUht549XSMHCquXCbD5wLa8mfPbL84MFwJpXTnf49N/PAnmC1H/8+y5//vc92p18dyXPC9g8\n+AmRv7/nKaQQKCUxmSYIBCAwBipVj147JY01q/WEdkejpMBai9xQ1u34OUucutwAx3EcZ2fWWk7O\nZJyeyXjkTsFodefT8ImyJvA2PylEvvsfBJIoyuegLNMEkUeWZiglWFls0270aDW6ZFker7p7FB65\nx+UDOM5r4U4CroMQcGwq5dhUuunxVy7BF58SdOK1nXLBiUuWjz1gmR6HB++K+MzXt+vqK5FS4iko\n9zdDvvH4CvXG9kH4J87kK4vPfyfm+NmtRwtGW4RYL09qLYMKQaafHyCVZGwsHyiNhTgxGG0xVlOv\n5+8rFHi+wuj1RUWjA/Mrlr0T7jTAcRzH2WpmLuNvv9bj/BWNsTBUFlQrCmv9bU6q4fAey3JsuLic\nl9Nb27hao5QgSTK6rYTUE8Rxitkw9Vlj6XUS7n+b4tF3eoNGnY7j3Bh3EvAaWQuPv7RxAZCrdwTf\nfjl/7EPvjPjAAwUCXwyqGUgl8cM8GffALsnESH8QfJX3WhsbT13cuRui7cdc2n6zMN+XYAVGW6y1\nlCt+Xm2h/zXNZkaS5XkGAGEoMamhWPTotNcXO4UAht/ajUwdx3GcN1i7B197Dv76MfjLr1guLuYb\nTACrLcvMbIYntm5sTY/BfUclhcAipUBuE9IadzMay/kGWpZZsFtnSGtguKgZrbrbGMd5rdz/Pa/R\nfB1mV7Z/7soS9NJ8Z+MX3l/kD36zwvSUTxD6hFGAlJLpccHHH1lPCn7PQ8MMVbc/mDl2SwmA5FWq\n9Vjym3+d6rzmcuizMYOqWI5YXOyRZYZuN2N4yGdsrEBmBIWiwlpLWAiwFvSG0qCHdkO54P6aOI7j\nOLnlJvyXr+UbYScuCawKqI2WKZTW5zRroRIZjk4LShHUSnDnLYJf+aBCScHhyQxfbY0XiuOMuSut\nzaFEOxSn2KkCn+M418eFA71Gov/PdiGP4qoqZpOjPr//G3njriuLhpGK5O23eoNW6ADDtYCf+8gk\nf/3ZK3R76+E4tx0p8csf3wXAnjG5Y2t0IQRSSoLIw/e9/CKMQQhBuRZhrKTZzOj1NOWKolzyWFqM\nSdO8z4Dn5X8VklhjLURBvgD42IPumNVxHMdZ99gPYLGxeW6QUlAsh3kpz7WJ0Vh+4yMeaWaRkk1z\n3p4Rw/23JBy/5LHaUYCl006Zu9La1An41eQJwY7jvFZuEfAajdfyhKRLS1uf2z0K4VUlkIUQ3HXI\n565DO7/mJz46ye1HS3zjO8t0Y8Mt+4p85H1jBH4+0L3vvoDzs5rlxvoAKYBCyadSDel2EtrtLM83\n8CRCSWojxU3vkaYWKQSLCzFKClotQ6eTUSoFeQxmN6MQwG8+ClPDCsdxHMfZaHabeQ9AeYqwENDr\n5NV9OokkzeyOMfu37s44MpUxV5esNjSf+kKHON3mC7fJMJYSPv6ISwh2nNfDLQJeIyHg3bdbvvAU\nNDrrA9xo2fJTd1gyDT84nzfcun0fFK9zrDp2qMyxQ+VNj2ltefZURqcHv/yhkKdfzlhYMWgr6dqQ\n0fESQgisLdJqxFw4t0K5WiAIt//1riynJImmWvVYXs1o1XssXKqTpilSSuxohW5XwvBr/ngcx3Gc\nn1Di1TbgN9ywdzKPf3zS8LGHdt5QUhJ2Dxt2DwvefbfHN5/NNjWqnJ5QXJwHsyEeVsj8hPvF85K3\nH3k9P4nj3NzcIuAG9VJBkkE5shycgl9/v+WpU5Z2D2pFuO8wnJ2D//EdWG7li4PvvGR5+2F49x03\n/n4vnc/43HdS5pbzgbVUgPtv9fjEeyP+89cjSmp9cBVCUKlFTEyVWZxvEUbVbV8zzQy+L+j0bH/x\nYPthTYIs09RXm/zlV2v8wrstbzvowoEcx3GcddNjsFDf+niWanrdFCkFXuChlOD5M4Z33g4TQ9c+\nWf7ogyFH93k8dzIj03DLbsmlFY+WFhhjiHspQgqiKM89uLCAWwQ4zuvgFgHX6QcXJN8/49FLQCrJ\n1CgcmdRIYZkaExwcSwn9vCPiPz4lSLVAKTDG0uoJvnPcMl6DY9PX/55xYvnMN1OWNoT/tLvwzWcz\neloh1PaDarEcoi+3yJIMY/KkYT/wUEpirSVLNWkKQSCw1tDrpIPKRdZaslhjgM89mZdyiwK3EHAc\nx3Fy73kbzK9aLi2tzw3GGNIkIyoGg2o/Whs6PcmffSbj0QcsD9x27VuOQ3sUh/asz21zT+T/llJS\nKIabvnabpsOO49wAtwi4Dv/0TMZXnvNQKt9tz2LDqbZlblkwMhQSp3D8ss/0UMITL1kM+QIAQEpL\nlhkyI3hpxm67CEgzy+yyoVoU1Mrr56xP/GDzAmCNsXD2UkZtYvvrzQdGSxxn6CxvtR53U/zQw/O9\nwWltEmfE3WTwfWtlTK2xtBtdvOEyT520PPwaTjAcx3Gcn0ylAvza++HZ05aZRcvpi4aVVgZCDMJQ\nszQvMmGMoRsLvva05q5D6oY3lY5Ow3Nn1suPrhHA4T1v0A/kODcptwi4hl4CT54wjI/6BKFAAElq\naLYMq6sp2JTJCZ9mW3JqIcSQsLFmkOh37I17Kb1kayDll7+X8NQrmqW6JQzgyB7JJ94TUC1JOvHO\n16WEJcs0nrf1NKDbSfsNv/KGYVbnrduTXoa1FqXW+wUkccpaLSOxoaxRa7VLbbhML9ny8o7jOM5N\nzlNQ8A2vnNO0ewIp+3ORAOUJlK9I+xtRQkK9Dd9/OePhO70NjS37gag7lAAFOLwb7jsCT5+CtT6W\nSlqmRy0LyzATwfj4m/qjOs5PLLcIuIaXLwqKJS9vvtUXBgqvJkliTbOZsWtSEfqSOBUUC4p6urmg\nv5R5QdHlhmFja4ZvP5/yle9lgx2OOIEXzxriNOF3Ph5xYJdCimzLDgjA9ITg0moPWSn2Xz/X7aYs\nzrUZ3NhfVchUZ3ZwSiGEQEjIEo3y8l4B1lisNQgpsVimx17Pp+c4juP8JHrqpR6f/nJMN85LUfuB\nR6EUIsibVHq+xAsUOlsva/21pw2PH0+ZGMrnnqWGxJLnGLz/XsFYbetGmRDwkXfArfvg5RlodQwX\n5g2nrwjOXBF84znDU6da/Ow7LZ5y8UGOcyPcIuAamqm/aQGwRilBpayYm89oti1RCKQ772hIBZdm\nY1rdiHIh/5rnTultb/DPXDacuaQ5tk9ybL/kpXObewOMVOCRuzySVPMX/1inVA2RUhL3MhbnmnS7\nCaVyAcjzATa5qtRaVIxoxm2M1ijPQypJGqcUqwHVYn4U6ziO4zhrnjsR86kvdEj65TwtlribYIyh\nXC1iTd7FXimJ8gSmP4V1k7yR5kozn4ekMkgpWW3lOQa//VFDMdw632YGVuIAWfIoRXCoalluQJJA\nu53x4rmEgm/4yP2urLXj3AjXaeMaSoWddxbWInGkEoN76yzb2sxLSlBKEceGVy4LLi5L2rGg2dm+\nIYo2cHkp31359Y+E/NQ9HtPjgolhwT1HFL/+aMjUqGLflMf/9sseftxg5swSly+sksSaYqkw2NnP\n4zI3vI8QGGMHjylPIZUkLAYEYd5oTABRIRycYDiO4zjOmm8/Fw8WABulcUaWrXfxtcYONsbWQmM3\n2jg1za/Cd49vfU1t4J9eKXJh2aPeBm0FYSiZGJGM1Cy1Wt4n5+QVN1c5zo1yJwHXUA6379ALsHeo\nyeqywpOSNDOEytKLN3+9EBCGalDF4JWFIqdXJFjDxG7FUqOxpQ+K78H+Sdn/s+BnH/J5+bzgwqyh\nWhJMbeiSWCpI/tWvVOjGhn/732PmVvJBV2uNTjRZpgkLfv4eIl+wQD74WmuRUhBGPr1OQqlSQCmJ\n9BRRKaTRETxxAt517Pq6NzqO4zg/+RZWdp4XsyTD9/t5Z6zPM1Lm85YQ67kAV09+S82tc83XTxS4\nuGiJ+zlyUlpKBcFoDapFQatjKBQk3bYP6C3f7zjOztwi4BpuGU+ZWVKs9ja3APaVZvdoxrDf4lS7\nytFdPdptxWLdI03NoO15EEiklKSpJoxUP5HX4nmSQjli7z7LhfPNTa99ZFqydzIfROPU8p8/3+Pk\nhfXQoW89l/FLHwg5sGv96FNJQaeV0Gub/iC7/npGGyanh2is9gbHshtZ29+xkfngHBYCfF8hJTx9\nWnHHvoxK4fV/lo7jOM5bX7kgWFjZ/rmo4A+aifkePHDvMHFsWFhMmLm0udKEvKrGZ5oJ5lYFEzWL\nEGAMXJjP8+XWGAPNtkVJwUhVUAwtxkrCUOIWAY5zY1w40DV4Eu6cWqFWSFDSoIShEqUcGO3ghwHV\nqkfgGQqBZayqEQKCQBFFHlHkDXY/0lhz4MBa8648RtL3YGQkYO+EIvRhqAzvuFXxqx9ar4X82W/F\nvHJ+c+7A7LLhM9/sbQrzWa5rFlbzO/yrTxbSRKOUpDa89U7eWEuvEwMWa8APPKyxmH48ZzcRHJ9x\nf00cx3Gc3J1Hgm0fj4o+I+MlwijfXywVPYJAUql4HDxQ4MD+cFCYQik4erRMpZw/ICUsdEL++xMB\nn3nSZ7EhuLAkNy0ANur0LAhIsrwfgedJ6h0XEuQ4N8KdBFwHzxccnuygDVgr8NSGajvSp1bM6yNP\nDRnGK4aF5tXJSZZKRVEbWr+5T1JLIRIgJYcPRuzeZakW4YFjEG4YX09f3H5nY2bOcnJGc3Rf/ius\nliWV4vZ5BsqTSCVQngRhMdoOFidxJ84TuDyJlIKJXWUunUuJIoXvy/zkwEUDOY7jOH0femfEworh\nyePpoPpPoegzvmcIqSRB6GF0wq5Jj9n5jGbHsH+3x+6pCOlJrlzuMTFRoFIJKESKl0+0KBR8fF9h\ngcuriq+9KDi6e+edfW3AE4ZM56cDvhJ87QeK99+hqRXdpOU418MtAq5DEIWQGvKcps2DS2p8xqsZ\nSliKAYwPW1a6oHW+I68UhIHA9yOszeP1rbV4niVNQWeG52fWE3BPX7H8zAOWfeP9Ov7bJF+tXUVj\nww1/MZIcO+Dx/eNbv0Gq9XhMKQRpprESjNF0W3mgpRCCciXA9z1GxysUiwHGWAJPc9veneM/Hcdx\nnJuLEIK776gwG0s6rQQ/kBRK65tcYajYNVGiUlGUQs3zJyyvnEnZP+1RKvrcflvAWsxQGCr27yvR\nbG+eWxebgluMRQqLsVt3+H0FK3WD7yvCfg+f5Qa8eFHx8NFsy9c7jrOVi/O4DuNDRbbdDrcW6SmE\nyP/84jmYrwtKRUmlLKhWBOWS3FRi1Nq8cZfJ8pdcXU1YWWqxNN+ivtphpWn5zvH1agq7xrb/FQ2V\n4Y6Dm9dwB/eWCCN/UNBHCAgLPuVqkYUrTdJUE8f54GiModvuISR4vspv+PtHuFEpP4qQUnBwKj+h\ncBzHcZw1Y1VLGEqqw4VNCwDIQ3s8X7HWi3LPVF6cYuZyRrdrEGJth79fpW7b+v4CrGD/+NbTAIFl\n73Cbdk8grKUYSTwPKhWPiwtu08pxrpc7CbgO5aLHcEFS71o2Di/aSqQQXF60fO8HkswKpMwoRJax\nMX9Lz4AkNVhj8X1JmkEh0Jw/U19/vmtY6rVQskA3VhRCeM+9PpfmNY3O+usoCQ/c7lMI89e/vCw4\ndUXwwgXL0FiZNNVkicYL8kRkay1pnNFY7WxayyhPYXV/EPYl3W4K1qIGXYgtd+93A6rjOI6z2dSQ\nZc+o4cLC1tr8hUgigDSD5TpEAdQqkkZLo7Uh8iSd1KI1qMCSZls32aSwTNYMd+/P+CebMFcPSLSk\nFGoOT3bYPxZTKYKKO7RllaaR9PDp7FB623Gcrdwi4DrVCpJSYGjF+X10KQBPSf7mW3B2bn233hho\ndzRqRTAysl5RyNg88TZOLe1ORqmYnwqUygHt1obMJwuL812EKANwZK/Hv/iZAt9+PmWpbihGgrsO\nezxwe76z8rUXFMcvSDKTLwiigiFLNWmq8xwA+p2BlaDTSjctTMLQZ3zUp9WzCKHwPMnlmVVGJ6tI\nmfc+OD9r2TP6Jn6wjuM4zlvSuw5lLDUkni+JCgKtBUlqqfaTfdPM0orBIBiqSnqJpRtbpMjDdzo9\nS6Ascc9wdU+a6VHD9Kill6TceyDG2jwPQMn8lBtguJSwmATsLy1xolOlHitK0dbXchxne24RcAM8\nJRnaEBqzUIeZxe0Hm05XM2y9QQ6AAMJQEgSCbtdQb2iGd8HIeIlOO9lc0tNAo5MRBfmv58Autakc\nqLWWV85rvnvccG5BUygFg7rMUkrK1ZB2M6ax0qFcLRBEHjo1eL7E9xVxL+s3DIOVhua++4Y4N5PS\n7WRYC43VDkHgkaWGS0tv+MfoOI7jvIUZC199TvHKJUmqAQxRTzA57lEtK9J+SL7AkmYCrfOeNkNV\nw0rd0ktFXgJUw1LdkhmBFHn8fymCPSOGh49lm3oKCLHeoHONJy0XmkNMlHoIKYm7mkcf6DfFcRzn\nmlxOwOuw3IJMbz/YGGPR2pJlliSBJGWQGByGEqUEcQqep9izv8bddw+xf39psMPxZ/8geP7U1tpo\nxlr+61dS/tPnE46fzei0EpbmW7QavcHXSCkpVUKshW47Jkmyfgk1RaEUUhmKBouGJDbMXIzZMxWg\nPIUfSOJuRrcdY4xFuLHUcRzH2eCJE5IXLyjSDfNfL7bMLWQIYQc367K/a6+UQEpBsaAYHZEYBErm\nz6/tfxkr0EZw74GM996R4fe3KAPfQ+8QlWpQaCO40B7GmpSj+yUjFXdb4zjXy/3f8jrsHYNStH38\noZSCJBUkaX6EqTWsdVNXShAEguV6vl2SppZ6C4ZGIu65ZwTflyhP8amvZJyf25wU9d0XM549ublv\nABZazZg03ZpAlWWGTrOXhyOx9v6KQmm9DqnOQHoSa8AYQZqkdDt5laEDk6/ts3Ecx3F+Mm0Mgd2o\nF1va/YaVkM91oQ+hD80OgGSkosAKekk+J+oN05ZFcPaqHANPKXo63Nr/Rks6WUQpMqx2QxptH99z\nu1aOcyPcIuB150EThQAAIABJREFUKIZw67Rlu8pBhcLWZKmNg50U0OnknYXjWCOkotGC1abh8JEK\n1oLve/z7z6T8x88b2t38m0/O7LAlYqHbyU8OrLX0uhtKhYq8RKg1ZnC06vkKP1QolS8+jAGtNcOj\nEdZYslRTKxruvsUlWTmO4zjr4h1KVwObknylFJSKgsDP56U0M3jKYkW++YXNT8uv9dpdU2A1LtFN\nfeLMo5WGLMZVNB4SS7udsJyWWGm8UT+h49wc3CLgdfrA3ZZH7jBMDVuqRctQGYpFhbXQbmd0Ohlx\nrDd199XaEoagfJ84ziiEkolRhZQCIRVJBmEgEVKQZoaFhuDf/oPk1MV0EGu5rf5btFsx7ebm8CCj\nDZ1mQqveHTwuEIyMFigUPHS/SlAp0GAs1hiWG5bPfddVB3Icx3HWDZe23xwyxuB7FmPzMCAhLIWw\nHxZkYaSsCXyDIM8r6PY0jUayaX4c2qbRV+hBR0csJ1UW4xr1pIyxCmOg3jIsn7xIqXUJJdymlePc\nCLcIeJ2EgIdug3/xAcP/9NOGOw8CCIzJm4UZk+94xLFByjxXIArzAdEYQa+XMTYWUCkrhmsSIQRJ\nAsMjAaYfCFmqhLQ6GX/+uYyLS+yY82SMYXG2wdzFVYw2GJN/f5bqQVfHbiclSzXWGCanIqb3VQDL\n4lJeOejSTBNjDUHkY7GcvASd2A2sjuM4Tm5XLUVnW8NP282EizNtIL/xVxIKgUFYjfIs1aKmqOLB\nAqFeT9Da0u3mu1vlyHDn/q2vO140ZHrrPKSkYWrEknkFHn7ujyjb5hv8kzrOTza3CHiDXVnZ/g49\nyyyBbygVBIGfZ0t1uxlT4wGT43l8fqmQNzwxJj9GxVoqlRBjYNdkgajgE6d5B+DNCwFLmmQszTWp\nr6w3FDDarH+dGHwpcTdlaChgfKKEtbBaT2m1MoxOQYUMjVWoDBWxxtJoa5bqbhHgOI7j5BaXExbn\nWnTaMWmSEfdSVpfbLC+0mJ3t0utleNJQjAxSwFAxphgKCoGFNGbEq2+awnRmODSp+fBdKePVrfNN\nJbJk6Vrobf6PIH/t0aqlVpaMts6TfOOzfOkZwzbrE8dxtuFKhL4BVruSC8s+nVQiA0G5aGht07DE\nmrxCQpIYLs/GaG1ptPK8gDwUCAJfYqwh7mn8QFGqRkgJhVJebjRNU3zfp1wS7BnJd1pePtsjibcf\n9ayxiKu6Mfa6KWdPr7JYCQgKAVIKqlWfThvGdkX0OglCQJJofGkZG/K3fW3HcRzn5uOpfB7ZlHvW\npw1cudjm4fsL/QhVSzHohwkZ6IoCe+R5TvSODL7HWJDCMF7becMp9POSoFfzPdgfzgIwlV3kK3MB\n57+S8i8/LFx1O8e5BrcIeA20gefOwMVF8iZdQUCxlN8oFwp5PwB/VbNS3xxPb4xhZdUwv5AQ90Ns\nerFheTVjbMRHZ3ljr2LBZ3UlASRC9OMp+0GV3WaMP5I3Cvu1jwQIAf/Xn3WuvsQt1voVAGhtEEaw\nutJjzJfURksAlMqSdjsliDykFAShx3AhpRC4kdRxHMfJvesOn8eeSWh1tz7nKclyXdNsaSplhSdN\n3i9AQ72rCD2DSA3d7vrGlRBw/KKHJ+F9d27e0FpswDOn4HJdUyoIDk2LTVWAjLEcefpT+demVaaj\nZa5kIxy/mHDHXhfs4Divxi0CblCm4b89Bmdn1wchIWImxw17doVAHspTq0hWG2ZQ1ixNDWfPb5/V\nm2UWbewg9l4IQZxohMybrZw/ucitd04gpUD5CmstFkU7huGyYN+Ux4unty/XIOT6dXq+JEvNpq7B\nzUbCcH8RIKXo5y3kJxZBoPjET732z8pxHMf5yVOrKD74QMhnvhlvKt1ZKPmUqxHdTka9ZaiU8yIZ\npv9F9a7iQKXFxWSSMPKpImi1Mnw/v1k/tyB5+ULKlWUoFyAKBF95VtCJ1+NZryxY7r9dUC7l32Oe\neZrlv/wiwaNHODH1fubmygilefxlyR17f5ifiuO89bhFwA16/KXNCwDIE4DnF1NGhrxBaVDflxQL\neXfgLLP0ejuX9YlCSaNpB5V/tLEEYT54+oFHUAg4e6pOZbiQ36RrgxdGPHHS49F7Mx59KGJ2UbN4\n1cmDUmpww++HinIlZMRvcn5O5icY5CE/zWZMpRJibd7gzOaV2xiqCPZPub8ijuM4zmYP3R1wplFG\nSUGWWRotDWK9NPalOcueyTx6P1QZ5Ugzv+pTiWd5oX0rAGGYV8XTJs+Fa3QFf/1NBtXqPGWxUuY5\ncn2NNrx03vKOQzHm+edJ/82/xrZSTlwepzF6FN1KGK+AChTgkgMc59W4O7wbdHFx+8eNgeWVjD2D\n/gCWu/Zn7K5qPv89S8tuH1ITRYIkWz+yTBJDr2dQSvYrKECxElFfbCOVxGhLqRJSKgfMrlrmVgVn\nVorccXeZZicj68ZcuNjBeiFRwcf0a/57gQdCsHdS8Iv3L/HtE0W+/XIRKQXt/k6MlJJ+QSGMsdxz\ni2C7HgiO4zjOzaubCB4/W2RyYv2mf1xbFpczGk1DEHq0e/mpszGGUGkkljS1PL56jE6/grVY62Fj\nLQaL0XawAIB+g01jEL7YdIK9fH6F7v/ze/DM04PH4o5AKYHvS7SBoYLELQIc59W5gLkb9Gq3xEKu\nNw6rFTT3HcjYPWq5Y19eDu1qYSiYnIgAS5pqOt2MRjPFmHw3XkpBluUhRVExQKcGFShK5bx7Yqbh\nyy8EnJr1WekoMkIoVJjcO0alVsAPPMLIp1gOUf3k4E4qGa8ZHr27xa17enh+Pognccbtu1YR/esv\nR5YHjroFgOM4jrPZiYWAbra5IaZSgpEh1c9jE/05yrJYlyhhWFiVjJZT4mTjd62FwK6/xpZkXpsX\nuNik08VuWAAApOXh/qJCkFrFcGVrw07HcTZzi4AbtGd0+8elhIlRReBZioHm1ol4MJi96zZ4751Q\nK4NSEAaCiTGP248WGB2SDNckSknabY0xFjMY8PI+AsZAoRzSbPaoDRUol73+2CnoJFcPdAI/UJsG\nUiEESuW/6qEojzmKAnjHoWSwU2MtvONQh4dvbQF5EzTfnRM5juM4V1ntbH+D7fuSSllijMX3BGma\n0Yx90kzgy4yRSsbt+zLGh9Z26AVef56REjxPUiyHWxYCV29HVS+8uKnEqClVaL3/43lX4tQiBewf\ndacAjnMt7jbvBj10G1xcsJyb35AYDExNeJRL+cA4VU0ZLq7H5wsBuyd9Vm2A1gKl2HC0mXdUHK4J\n6g1Lr7fhKDQzJEnebbhZ75JlhuHhAkEgiWODNptCMAfWknrjeGP1BUEx0LzjQH3wWCnKr9EaS+Dn\n13Noqkc7LXKrq6rgOI7j3KBqWbC4ZDmwV9HtJ/TG+BwY75KKkG6s2D+l0ZllueXhKUEqLErmIT+e\nlycYW2PpdrJBWOyaIh32v/xVrBAIa8n23kLnF38L/4F3kl1O8TyBsIJbxpIdrtBxnDVuEXCDfA/+\n+XvgK88Lzi1IpITRYY+RofW78VasgM3VeuabCiHkYNdjI2Pz04FaNaDb7Q1OA9aqLujM0OuklKsR\n1kq0tnieQEmL2fpyAJvasPcf4f6DLYaL6wuDejcYfO2BCY2vLH7Bsn9ME6eSKLjBD8dxHMf5iTdU\n1LS2nEKDwFApSXZPSNJUoqrgdVOkNUShYKXuoa1ACpiesCy3oBBCnOS9BzINpZJPo5GiraE2HHBo\nLEV5gl5iGalAR46Q/ps/pf78kxB3Sd/+MPgBgbUUIoExgtGqRrl9LMe5JrcIeA2Uglv3S8JquO3z\nQvcgbkFYZqEheGXW5/KKxAhDMQLf2zg65cm3UliklHheXlFooyTOBmXWjDHEscZamB41XFje+v5p\nqun18pv9fBdFUClJwvFxZmKPveEcqx3F989XUErgKcs7dl0CIjqx4IvPeHSfgINTgo89YCkX3pjP\nzXEcx3nrOzqRcHlVUW8ZFhdTokgyOuJRjRI8TzE6HNCutygon7GxNrXFE1yo3kMzDiiFeUiq7+en\n0UJKShF0YqiU823/Tie/mS8WPBIki6sSJcAPDSIA6UnSe9615bqkkihlieOM589JRsqWPaPWNQ1z\nnB24RcBrNFXNuNjwSfXW7YYhu4S3NMMVuZ8vn9lNvKH6TxxDrWIIg7XHLAJIdX7KcOygx/mZlJVm\nXjEh6aXE/a6MOjOkqcFow1hZU/QtvY6hl4BSkihSFAJYWo3pdrN+gpakXJYcPhCCkMxloySZ4YVz\nBdomQIiEyWrGkRf+hnhiHy/XPkg3ya/t1CXDpx+T/PaH3CDqOI7j5FZbmu8900QphedJWu2My1fy\nU+z3vF2SZiVmVzwyBe890CBsNZlrFJDCEvkWYTVYxS27Us4vFPA8i+4YsAJPCSoVj+XllDQzLHU8\nMm3JgAuLikJomRi3m8qGAsSJJdN5/sDFRctSWxGFil3Dhve/LaVa/JF8VI7zY80dmL1GoQf7ainq\nqqo/w2KFQ94FhNUUerMk2eaBylhob2jwm+/UWwqyRxAIlFJ8+AHD3UcM77tf8qGHAw4fyLsRe57E\naM3PTP+ATrPNd16SdHp5edI0NXTaKednOnQ6Wb+iQr5waDY1s7NxP0RIciWZxKsNMTTsUygqxqZH\nOf22f4a/MIM5/tzg2pQSzC5bTl5xKwDHcRwn9+eftxRLAYWih/IlQehRqoQEvuKbz2iW6yY/Mhce\niVbI2hAHRtrUihm+Z+mmCiU1BV8TBNCNAQRpZjHWIoQgCASFwtZ9ym4MrdbmvjtpZmm08hN0o/N/\np6nFIri8ovj6cf/N/kgc5y3JnQS8DnuHM2pRyvxcA2MFVdlkj5pD9hcGQ16HsbDJQlzd9H1pZsEY\npLKUgpTxUpta0OOpi/lAFQVw7IBE27zKT/U+SZIKGj2PyWKL20ZXSVLB3509tql2sjZ5V+BEb66K\nYLTl5NmEVivjvnsqFAJDLxGMjfi02xrlKbrV3cwfeh+3nniWb/vvp9lM8QNFlmouLXkc3e3KhTqO\n4zjgBz5RKJmc8AZlPZeXNSvG0KtnxEke5iOF5dTKKCbqIAtQjWJ6WUCqJaUgJQMkeUPNKMzLe1pD\nP0E4r2rX7W6t8jMcZTTaAisEWkOrYzEGtDaDUNiNrqxIFhuCsaqbxxxnI7cIeJ2qoWEkPIcwWzsC\nGyAzWw9bPGW4d888ntwcZrOr2iHrJZxdGmJ3rU0nk0S+IQoltx4JefJ5zSP7rgCwf6iFFAbL5uSs\nq49I1wghOD/T4+D+iMlRSa2o6aU+1bIikBm+snSH9jAuHmdkNMTzJcuLHSyWyHf1lh3HcZxctSqZ\nGA+oNzTdnkFJGKopSkXJuTTve+N5Ag/NcjeAeJjpGvhSE5OH7GRastLxKYSaNBMUi/1FQL+oRam4\nucLdRuM1y7FyzOMnPOrdfI7NMku3kw4Kaqz1xgHQRlDvuEWA41zNhQO9XlJhg9K2T62kFVbSrc+N\nlBJ8tTXOvua3uad6FoFltlEAaymqLmApRoJySVKaHAMgVJqH9sxufVMLgQ+jQ/m/12ht0BouX+mh\nJISeRQhLqSxRyiAEWOlxoVXFxE2CQJCkGY3lDvNL6db3cRzHcW5KI8Me7eef5baVb/Cg9yQP6G8R\nvPQtOu2EKJIEvmS4JqiVNFJBQ5cQ/fw3AIEg0RIEDJcyAs8gBXhe3mAs8gwPHY1R27TnHC4Z7tqn\nOThh+OcPJYxEMfXVhGYjIcvyr1dKEEXrm1el0LBnZKdaeo5z83InAW8AXZ2GLEFm3cFjRgWY2i4q\nC4bE5GE9SQqVMOO23U2W2z7L7ZBCoNldy2/0pwp1VAqBTGllEWGWUvQSJJZl6fPxdyfM9SapiCYj\nYo537Znn6YVdg0RegF3jlnfdBsWCoNW1zMzCd1+ATiu/kfdVnodgAayl3bIUI58k6xHV53k8vZeX\nXu6ye9owMlriwkqX4xfh4z/cj9RxHMf5MSVOPsexQxGz6h00qBEQM1mbY+TKE1zZ9RBKpIS2w1TF\nEIaSWmQQCLSRCGEQWBo9n+FCShTCaM3SigXaauJYcGxfytEpgzApz5xTLNTzcty7hw3vOpoNGllK\nCb/0sOWlywE/OBvT7AiaPYkXqE29eA5P6S0lr63FFbxwbnpuEfBG8CP0+K3Y9gLoHkgfUxon6UQM\n1ySd/k26wLKrajkxV2OhGWCRgOXsYpnRQouSF3B0WNM1ERZBnCkkGYGCo2NNAmkIPcvp1kEqpZhS\nb5n33N7hhYUxstSSZZrdUwHFQhuAckFw20GICooTl0a4MlPnwP4Ia6GXCpSAY3sT6j3J6krG8VcC\nXrHTeL6m1cgo1zyCSDFUcuFAjuM4Tm7PlM9JdesgHDUhZIZ9TOzyya5cYGxvhUuXYor7JSdnQ3bd\nIsBmdHURTxqkUHgSwsCiDdSbGuFBt2NRSqBNfnd+ZLfh8C7Dalvgq63lqtux4OSsB57PbQcNx6ZS\nLixYXrpkqXcMhcBycNJw74H1sKLnz8JzZ2ClDcUQjuyGR+7IFxSOc7Nxi4A3ipSYyuTgPzMDL14O\n6WxoqGIRXG4EdHr5wLfWDL3RC1htD7G8HGPvkPhSkxlFagRxJgg8jS8MAQkl1SH0QkSvSz0ag0wx\nUUlY6UaAotmDbiIpBOtHn5PDhnMLisNHhykVLUlmafdgeiwhkJbVrsGsLPH9pWkAglCRpIYsSXnk\nnQWEjoHoh/AhOo7jOD/uGtHUlnw0gEXG2RtcoNkNmM+G+PQXljh8sEVZZGgUXRkSKIs1gmohz6Nb\nXDG8/HKbI7cGWJs3r6xE6/OXEDBc3hoWdHlV8eSZYMMcG3J+0ePhIz0+tmv7ENbnzsCXnoZU54uM\nVhfmV6EbWx59x+v8UBznLcitfd8kMyv+pgXAOoGSkCQGnRmstRhtEVJQrfg8fbaMMBoFWCuYa1VA\na3QrryvqkRKpjMrKeWJZxvMse4dbg1c3Gs7MF0g35FMVAkMxSEmNpBsLupmkWsxbtFsE1ULK/loT\nJfKBd2xEEoSSobLh+8926RpXXs1xHMfJ9XbYFDJ4pFGNi91REi25MCuYGoopez1qfpvxYBUh8hv/\n2UXN0qrluRMQFAIW57t5U0xjefmi4sz8zrcn1sILF4Mtc2yjp3h+ZudW98+fXV8AbPTyRWh3t/kG\nx/kJ5xYBb5I02znY0FrodA3NtqHTNRhjsMYSRpJ2T9BKJEpqLAJjoat9xttnuNSs4SdNRnqXUDqh\nWj9HQcQU/fXKRBZoJz4XltbPTZUwvH3fKtbkJwBnL8FqR+Y9DATEqaDoawqBwffgjsOKQwcilNU0\nW3D2fPJmflSO4zjOW4int79jVqRcknvR1mOoqpic8KlMTbCc5mWyI9mj27OcvSx5+ZzgsWcs7S74\ngSJN802oLIP5huRLzwacX9h+Hl3pCJZa29++LLUU2TZFhYyBldbWxwE6seD8wjV+aMf5CeTCgd4k\n4+WMkwsBxm4dxJJ0/WgzTfOKCWGQ11oOAoGne0wUM5a6ZQIf2knAebOLlo4gy9i//CzCGgqNWbLx\nu/DE1qoHrZ6HsXnWQdE2qZYs+8faZLJCuST4/9m78yDLrrvA899zzt3e/nKvrKqsVSWVpNJily0b\n4R1ovAHNAIPDTcMMA8xAxDDRQQdBhAk6Jmamo2GADv5o2vQMHdF09BgDxqZNA8abbNnGi3aVttqz\nqnJf3363c878cbOyKpVZJSHLqirpfCIkpe577777Xry4Z/ud329uSRN6kkaQk+ZlrBmw5+AwocoZ\nGzIY6fPQ85JaM9wxzanjOI7zxjQQZZTN0GLrKnFVt7mUVkkSy9QuxbGDdYRQtPIaNdVDCs3z04JM\nS6wtMuRZW1S2DwKJ2WjKrC3CZ//mMZ9DIwlvvR2aVXj0pObsjCHVgraWNJvRllo5UEyE7ZQIVAgo\nhdCNtz/mKctI7dX5bhznVuIGAd8jQxXDZD1jprV1aTLNDJ1OjqfYmK0Q5Lkl8C1ZVtwMx8o9fC/g\nWPg8s2YPs70yoT5EPWnhyZSlaB/j3bMok6CtR41V3pR8gyeCt3HEO8uCnSA2VSIxILQpQ3aZLPcZ\nq1aZHQjKYZGlYX45x2Y+99bO88LyPpRS5Eja/YQ0l6SZpTlcYveYAnbO1+w4juO8sciwjNSayLSJ\nKeHZDCUNvWCESlUzNqqZGjM0y4LUgEHR0RVI+swsX+l2XM7pb42lWo8QolgJuEwbwbdPwjPTUA0y\nzs5cPeHVo9vJ2TtV3TIQGK5qdiptIwTcNglLre2P7RuDiaHv8ktxnFuQGwR8D90/lVANLUtdRZwJ\nltYtk80+99yboZSl3VecmfOZWQkwxhYVEqVlf7PNsh6hK2tYIxAyYLrtMdWw5CXBYvMoNS9GdlaZ\nLK9ipcft9Xn2tz/BSAkW7BjfUO8m8Cy58VnJmozINUbrKVp2WOjVKQWSlb5gj7/I+eUyF/WejasW\nrHU9tLF4qigytnfMFVhxHMdxCgaLJqAvikmuVPhFus2NhBe7Gjm1UvF3IFNSU2z6PbtY3lwdv1wU\nDIoMdkpJggB6PcNVDyFEMXvf6srLb7BpbTWh3ghoNEIAqqHm2J5rh6+++55iE/ALMzBIBZ6y7BuD\nD771u/9OHOdW5AYB30NSwO0TKbdPQJJZnpvTjNavzKiPNTT1ssYY6MWSZj0kHeT4UlPOuvT9Cutr\nIRaQSoEXEdkErUqsVA5SFQGRyskszIy9lSPrn8LGZcZLS9xVPg/UURI6XpN+LAlMQkl5QB0pLdbC\noysHtl13P5OceGqFWqNIJ3rn3gEQvjZfmuM4jnNT0xshojvl2ZdSMFROECLEIinJAYHMODcreHS6\nvvk85UkiJZBCUKl4KAmVEvT7xXm11mgNWWZQSiKVLJJZ2K2TUjKLuW0yxLMJd0zmVMJrT1pJCR98\nAN7Rg+kly2gdJodfne/EcW5FLtj7NWKsYaS2PaQm9OGefX3ee3gOIST1MAEBkR2A9cBTJBkIDBk+\nMs+o6lWmsz3k1REGlAFLX1SId9+BXVlEAkNee/M9pLC05RhPn/W4sOgDFq3BkzvfLGcv9ZFKMTZe\n5vZ9llrkKqo4juM4BbvDXrfLpBRkNkBrgUCQaJ+SSnlhvgJsdOJtsRfO8xRRSSGlQCnwPYnZ2BiQ\nZ5osM5j8yux/ECl40VuP1TQfeovgzQey6w4ArlavwD0H3ADAcdwg4DWSanvN6oTNimZXtc9wdpHJ\n+gCBQClDXa8yEa3hK4MvYyazc2grqOoWfRMy2x9CJQNyEZLj0ylNENuAPDP0ZJPqYB6sJTcSg8dC\nOsT8uocUBkXGocntG4o7nZTZ2T5KScLQo1oPKQWuWJjjOI5TUOr6ne3UBKS6KIbZz3yUhLv25Rht\nsabI1FMUuDQYU5yr2CBcvP7yhuFeJ0V6xUEpBZVqwMhohVK5CEOSAu484Nonx3ml3CDgNeLJ68yc\nCANKcXdwikOjXayFiu2hpCYiYXejjxeEjMklAtMnI2RYrHE+30O9NY22korXY1WM8IU9v4jOc/q5\nT22wQrV1ifWehwGUlEgVUQo0hyZzmlHGykrMYJAzGOSsrSXMzRdrsf1+jjGWOPdJcxc15jiO4xTu\nm0qu+ZiUkOSCOFWkuShSUVNkwPO8rSFEJrebM/9SFh1/zxMEAfR7GVoXoUAASsmNFQhBuRIQhIq3\nHJUc3ffddWPSDE5ckDw/I9Au/4XzBuN6d6+RciDppoJMv3gGxRISI7KE0WyOmewI6/2A26MOuR8R\nZx5lP6FZ8jBeFWnWWFST1JM5Vvxh+sEw5e4iojrGAI9WXicfm2Ly5OfR+/dQCducPddn/wFBrEMC\nX1KPimqKZ2cta+sZa+tXqitKqfADTZZopLB4SmwUV3Gbgx3HcRw4Oql5fjann3qbLUPRubesrSZg\nfUabgl4SUgszslywGlcolQxpVhTIzDZSZV/OBhQGAm2KaJ9uJyeODVIJSmUPrS0CQakkMFqQZZZ9\nu0N+/F16W4rQf4zHzkienFZ042Ig8chpw9uO5BzZ7do7543BrQS8RoQQDJU9wrwHdmPmg5wyXSIS\ngrVZtAy40BlmKWkwECWkEOwqdRhPzlHxM1IT8LS4l6rfZzy7SLOckHgVAt3DCkVJxORGEPtNQtuj\nk4UgBHeNtjkx7VMpSbTJ8JQlkIbnzu18o/N8D2s1oQ/1yFAvbQ8bchzHcd64fuRNMWmaAQYhLNYa\nFub7LC6mzMzEtHsQZx6ZFsx1KvSTooiXEALlSTy/6Lz3uylpnOL7MIgt3a6m2ylGBsqTxb6B0NvY\nLAy1ahH+k2vxXQ0AppcE3zrtbQ4AANZ6kq8+59Ppv/LvxXFuJW4Q8BoKlGSsWWXX3HcY6p5jJLlE\nrTdHafYFopnn6YzfTq2UE+uAjhrFJ8NXhqpeZ6+apd9LmTeT1OhgylU8BaHMwCsWdHKjMNoyLyag\n2sAawylzO6iAldWc3Ei6rYRmZGgGhiSHoabH3j0heyZDwqC4oQohyJKcCzMxdT/mOpFMjuM4zhtQ\nri1LSzFZalFK4PuKXZNldu8p0+9rFhZTcm3opgFznSr9eGvqTykFxhjy3LKymtIfaLrdHGNASIHn\nSXxfIsTG//uSMFQMEksUCpSEU/OKb54O+OoJQ3fwj2uoTs4qcr39Nf1EcOKi22fgvDG4cKDXmheQ\njhygdu7bhN1FpDWk5RFW9z1AUptA9U2xEdjL8MlQWUygB+xRl8i8JhWvR47Pev0AJoVK3mLgN8it\nYikpE6mEga3gpT3WvXFWGOZCNyBJYiSG4ZJhKLQ8dR4mxgJ2TYR4GxuvRkd8ZuYSZi710LkhSSzn\nZiz377+xX5njOI5zczEaxsbKlCuKsWpM6GnW+wFKFckput2MVttQGpMYrVlcyjfbGigGAVoXq8zG\nwKWZmCyz+J5CSPAChefJzdl+peTGvgCDFwg8JfjGqY3U1XPwlB/xloMphydeXmB/kr2yxxzn9cQN\nAm6E5i5ceG+RAAAgAElEQVTm73w/3qCNMDlZeWhzt1ScewyX+vgSchNQG1xCAtJotCwxUopJVQWE\noMEqXp7SKo+SEWCkz6HGGpmtcKlyJ6fFnURY4kyChTxLWe36/McvBWgDeW544fSAiTGf0ZEAz5NM\nTgScObmCFxQ/jbm1G/g9OY7jODelVizZO26IAoMVPknuIYRmotohSSL6/ZQ4MfT6UApBa4tSdrNT\nr/WVzEAAaWIQUpDnuqghEEmCwOPyU4QoVqmlBKsNIgq2XE+cSZ6Y9tk3unPF4BdrVq4d9z9Sd3sC\nnDcGFw50A5QCH09J8lKdrDK8OQAYZArQ7G+sA2CFQgsfKyUWQa+xhyptlO4h0ewenGYl3E1KGRBo\nLVhPykwv+jxZfR8EHp3YY7WlGR6WrKxpZBCCkJspQEslj7mFlEFczJ4EgWJyssTwWA0Az/1CHMdx\nnBdZ6PmUSxLlKTwliEJJo+aTmhIT9Zh7DhQZhJbXYbCRTOhy59xaS5pqpNoejmOBKPIIQ7/o9G88\nRcmixoC1IOzO+9S6ieLs4ssL5bn/gGaosv08k03DXXvdPjjnjcF18W4AIQSNUkTkeygpwBqMzqmr\nNofqywjyy08k90pY6dHz6gQKov4K4VNfR0rBbO1OWuEkUKRWa/V9lnsel1Z8Aq+Iv5xdsrTXE24/\nENEYKm3bSCWExPMkq6tX1j9Hx6qMjVfwPMHU6Gv2tTiO4zi3gExDrOUO7QlUygIjQs6uNADNUF3Q\n7Rcz66VSURQsCASBL1FSEkaKSsWjUvU3z5Om+WZlYCGK+P8ihail18uYX8pot9Mdr02bl7c3oFqC\nDxzPuGO3plkxDFcNd0/lfOgtGcr1jJw3CBcOdIMoJamXI5J+i8z0EVdNXkirSa0EIRC9FvF6G//A\nLg7qM6jBGnqoQmotwcnHyA49AEFIe+Cx1lMsrIcYayj5hlbs024nvOOBCr1EEgaWXn/7DEet6qE3\ncjVrbdHWQ0oYGVK85143I+I4juNc0Ukkxu7cU7ZAGEjGhnKefW7ArvGQVgeUguEhj1IMcQJhoOh0\nMzxPEkWKNDX0+8UEWJ5bOp2UatXH8yXGCIyFNMlJk2LVetDPaDTCLe8d+YaDY/nL/hwjVfgn97/8\n5zvO640b795AxmjybPDiKugIAQEZOk7JPvHHJP/t0+Tf+RqeTlFJBz0ySaedM7R6kspf/AFrHcFM\nq0KuJcYKet2MCwsSY+DwwSrdxMMi6XYTOu3B5gzLZZ4SlKJiqbU/MGzs1WKiKSmFOI7jOM6myLdY\na4lTuLhgOH0hZ25Zk2VFGk8pYbhWbO71VVEdeKihCPytG4MrFY8wVAghCAKJ54nN2H9rodfLEGJj\nFcAUtQLCyCeM1Ea60CutpxKWo5MZpWCnK37l1jqGFy4Y2jtMoDnOrc6tBNxA/ThnMRkiMT4SS0UN\naPqd4iaIRQY+5X/6U+hnniQ98QTmrvuQ/Q7aK9FdTsj23EH4tT9GPfY1grs/ROhfLrcuWVnXTI5o\n1uMyQkCWGfoDi5QwP9Ni7/46Wkt8H8qR4fAew+lZTbd/5aZajdxNz3Ecx9mq5FkWVi3CxEwNZ3gC\nVnseM4uKaiUgzzS1qqRaLUJTm3UYGfLItSW5KopHIBAbQf+X56akvDJQ0NqSZxrPV3h+Eb4qpcXz\nPOJBTpoadg0bhiqKyVrC1MirV/I3zSyfflhzaqYY7JQjOLrP8KMPFnsgHOf14CUHAYPBgN/4jd9g\nZWWFJEn4lV/5FarVKr//+7+P53mUy2V+53d+h0aj8Vpc7+vGIIXpdpnMXIkDGpiI1HhMRGuAxcNg\nmuOU3nwc0+tiTz+LkJbADpgYLHKmcjvh3R+isnyKNDPUyoZGTZImUK1CvWR4/PkuB/ZHGCPQRlCu\nFKE+y0sD9u2NqFUVU6M55Uiwf0LzzLniJxH5hrv2uGVSx3FeHtdWvHEYA8OlHocnYgJV9N73DkNr\n4PPktCHWEa1uysSIAAyjQ4rAN7S7ckutgKuXwdNUY+0Oefv7OY2mQglQPsSGzRoC/RgOj1s++FbJ\n0tKrNwAA+MzXNE9fVVCzH8NjJy2+0vzIg27+1Hl9eMlf8pe//GWOHTvGL/7iLzIzM8PP//zPU6lU\n+N3f/V0OHTrExz/+cT75yU/yS7/0S6/F9b5uLPbUlgFAQdDRFZq6QyRihDX4uo/wfYJDt5GXa2Se\nj590CbIWC/MWdeiHOHj6s8SxQVUER3etUS3VqJcht7BrVPD8Cz3uvrNKFAmsgWYzZHGhx8JyzuSE\nYqXjUyllVCONrxSjNcM9UxkTTZcmzXGcl8e1FW8c3zltOTx+ZQAAoCQMlTOO7JI8dSFkdiHn6P6i\nk9HNPDxl6cdXzmEtmxuLjbEbm4oVvf6VzrwxFikEUSAYbcDFBUu5BIMYopJCCMvc6qvfTvViy+mZ\nnc978pIl19atBjivCy85CPjgBz+4+ffc3BwTExP4vs/6epHGstVqcejQoe/dFb5OxdnONxCLop9H\nRP4AlSV4duOGGEQkXYt3dIrg3FM0hcf+z/9bnvup3+HcxPeB0Fyal4weChkq51QqitwISoHgwF6P\nlfWc0SbMzBuqVcXQcESuBa2WYajp0R0YyqHhp98+oBy9hl+E4zivC66teOPwVEbgbe8kCwGV0JBn\nKdZaZpcs1VqxqVcbwUhVI4CRalEj4MySR24kSgq8yCMKFcrLabczrLUYbZDKZ6hmKJckeW6ZGres\n9z3WWzlaW3z50oOAXix4bs6jl0pKvuXIRMbQdeoErHct/eQa5xpAnBbZhRznVvey17Q+8pGPMD8/\nz8c//nF83+dnfuZnqNfrNBoNfu3Xfu17eY2vS+I6Ny5JDllOczC7eSxd63L+j77AsT/835j7ziWG\npypUJocZ+tJf8MyxH2Xu6Q7DY1WSXDJcicFKWrqKFxiOjGsePSnZNw4myxF+iO95CCmQ0uJ7lrWu\nolrSbgDgOM53xbUVr3/hdTbfWixSWEolj9Onltk1WcEAkS944LaEREOqBa2+YKRuWGoJLscFCSEo\nlxSt9Xhjtl1iNLTahnIoEBLWWhY/Ap1bTG5p9UCba7eni23B109FdJMrK+/Tyx4PHE7Yf409BKMN\nQaMCrd72x4ZquIQZzuuGsC9OFXMdzz33HL/+67/O8PAwv/qrv8rx48f57d/+bSYnJ/nZn/3Z7+V1\nvu6cmc85u7D9BhSQMOnNoP0KAkuQ9Wh0LxLMnOHE//1Zpv7Xn2T95ALizNN4734ns0+2mXnfT/PF\npwL2TA1x/1HJRLTOSPscj8u3Mjz/NONHR3hyboSJSo9qmDDdGaPdVyAsQ1VLGCoWVwXfd6TH/bfV\ntuV+dhzH+cdwbcXr24mzXUze2TGf/sXViMdPeaz3NKdOLHP49iYHDg9TCiH0LHuGk8v1MTEW5lcV\nM8v+lnMsLw/I8yubhKMQxkZgtS3wPUsY+iwupUgByvd45zHJD79l5znNv/wHy/nF7ccnmvDRd3HN\n9u4vvtjn89+JtxwTAn7snSU+8KBbBnBeH15yJeDEiROMjIwwOTnJnXfeidaab33rWxw/fhyABx98\nkM9+9rMv+UZLS53v/mpvkLGx2qt+/TUJzUjRiotqwAC+NNRUlzwoNs5ZIA6baCR7/LPsevA20laf\nfHGV3omLjL3PQw01OLanxxcf98nyjN3xGZpPfAt16QLD39dk+Et/Rvnun2O03mBXPM1SeJhd+hJt\nswc/VIzUDOsDhbWWSLS4OJNTCv3rXPlr53vxvb9W3LXfGLf6td/KXq22Am7d9uJW//293GsfrcCz\nMwET9a0FuzoDj7lWBCJndXEAQJwIPGkxVjLIBL1EbmaekwJG65r5VYU2RYffWotSCnPV7H6ew/SM\nIQxhfMSj3bH4viSJNcqHkzOGu3d3MFZQCq68Ls1hbrXMTtnQF9YtL5wfMFLdOQveO++xZJnkufOG\nTgyNCtx7SHL8toylpVc3acYb5Xdzs7nVr/3V8JKDgEceeYSZmRk+9rGPsby8TL/f58iRI5w+fZrb\nbruNp59+mv37978qF/NGIgQcGNZ0EkM3KSoihrJPmm1/bhbWaQ0dJhyeJt8/Rfbnn0PYFG/uHOZU\nn5Hqgxw7kLKQwKA2xOH1Z2mvD7jvkX/LcmWI0CRMMEPZjxlincx2GaorhIR0o+pjrWToDDx8T980\ngwDHcW4drq1441ASTi+UaA98hioZShjasc+ltRKVMszNp8SxQQgo13wCX+B5kGbQjeWW9NOBD82q\nYaVddNSzzJJlWwMU0txitMVaQRhI0tSgpMUPihCflTZ8+tESBslIVXP37oy9w3oj3fbOBCDEdcJy\nheAHjyve92ZJrsFX1141cJxb1UsOAj7ykY/wsY99jI9+9KPEccxv/dZv0Ww2+c3f/E1836fRaPCv\n//W/fi2u9XWpFlpqYXEjavWunZc/D8qkS20W/uATHP4nd7LwcIzVKek3H0dIQTmwHKutshqPQGOE\nIdWhdX6GkfsPsXhxiYNmjksvtDl8fJHHuRffF1RLmjT3KQVQ9/rMdyqUohSXwM9xnH8s11a8sRyd\nyJnpRaytlDGmqAg80rRcnMlYmO0wOdWg0VAoJQk2atj4Hiyue1gr2NXMNuraWLK8aAMDZVjpbJ0J\ns7YoTKZNMRDo9AABzaGAXs8SJwYEm9n2FtsenYHkfeGA4YpltKa5tLZ9JWCkqhkqX3sQkG3sXSj5\nELiMoM7r1Ev+tKMo4vd+7/e2Hf/TP/3T78kFvZHJ68wy2FaLS597gvq+YaJGRHl3FUYmyRaWGKSG\nlbzOveOznOjtYf6O97B/9QmC2VnM7AXOd25nVJ2h9f98kbWzR+Hv/g21j/wC2Y//AlIWFR5vb66w\nNKhxYb1CoiWTjczd+BzHedlcW/HGcsdewd99qsP+fSXKZUWWWZ47mfL0U6scu2+MJBd4KmT3hGKQ\nFJtppbD0+hqBIs1g31hGJGLeMdVi3UxweNzwB582gA9cnsa35JkhTzVRPUBKQbkkyTKL70OSQhBs\nTbc9yCSn5n3edjjlvn0pnVjSGlx5TjnQ3LcvY6cmN8vhqZmQC8semYHhquXAaMZtYzss0zvOLW6H\nbT3OjRIFwY5Ll6K9xsz/+YfEiy1MpunOrVIda5CvtCEzXPr9P+IjB05wPptgfinhfOVedFAhHK4i\n8wT19a+z8sXvUPnpf0r35EX0cpfws3+CuHAKay2jpXU8BYHKEVmf/voSf38i4NSiCwtyHMdxdmJ5\nx1sijk7lTNb6lOlS8lN+/Mf3sn9fhJSKsVFFp2cIPMMgKVYDQl/S6WmM8Hj0BckL5yw11eNgOE06\nGFAqB0Qlj6ikiCJFFHkEftFVGR728TyB70vaHcMgtlTKkijc3pXppUVrOlyxvP+eAfdOJexpJhwc\nHvDDxwbsbu6cGeihFyKevuCx1oVuHy4uCR49F3Buxc2KOa8/bhBwE/E9RbUUYZZWsLnGphnxY08x\n/y//d9onzhdPUlB7+3Hs0fvw0x7VeyfoP32JPKiwklRYnE/pdeDry4fI9xwgqISohUWqk03EHXfR\nONTEZBYx6FJ9+FPsqawwWWmDEPRiyR3ZM9xRvsTxsQt86QmYWXU/EcdxHOcKay0LbctoLacUWOpV\nyaF9Pm+/NyDybZEJKIChqmJ1LacWGbQ2KGEIAtCm2B8wPOTzyCmPmVYJqxNsZ5Z6tDVBvxCCMPJo\nNjzqdR8hBKutogOf55Ydp/OB8lUbhM/PpHzpK0t85rNzfPIzC3z8z9Z5+tT2QgALLcHMisJcFZlr\nbVEb4IU5NynmvP64Ht5NJgp8hkaarPz6v2L+n/0SS7/8a6RPPgOA36yw72c/hFetwj0PEP7gu5l4\n614a3/8mOj3Bvt0eCIuf9jgbHeNT4T8jN5JdBwLG3nY70eEpKgd3oaJiWbR+/js0RFHIJ8kEpxcr\n9AdQWZ9hLGjz1oNt/vZxN/vhOI7jXNHPLPEOCXJ8ZamFKUIIPAWeZ/A8ycWFIrtOoAyH8hdQQrC+\nnmKRNJsB35puoq0gUjn3TaxsO6+UguGRiCQ1zC7k5Fe99+rygOnzHRbm+2RZMTgIPcORiSJ8p9XT\n/Oe/7nLqQk6uiwHI2Us5/9/fdllY2fohnpnxuVbJgfXuy9sUbC0stWClU/ztODczNwi4CQVDTaZ+\n5ecpN0KE74ES1O7Yy22//CNU9o8DYKXCjE4xdOwQh9/cwLTWqZQku8Z8jpVeYK5f5tn5GtkP/Bj7\n3rEb2xxheDBNfvAudr33TqKJBrWaYPDw11nuBjx+cZjlbon5bBhlMsLeKlPNHp5vEfGtmULLcRzH\nefUl18mQ6UtDu5OhtcZTAp1DN4aF5YwwMIR5B5n38T2JNpahhsdy26OdFykPh0rpjudNUsPMfP6i\nWXpLPNDkmaHbyViY6zNUznnb4YSRatED/8ojMSut7Uk3Wl3LVx7dWgfAu04//+UkBjo5I/gvX1H8\nyZc9/uRLHp98WHFx+aVf5zg3ipvmvUlVj9/HXf/mf0HPzGDynNKu4c30ZEZIJBojYP6JOUY/+hbW\n7UFIEnxfElfG6XZyohC6OqD3lg8zkS5SXp1jfWgX3s/9c3bPneGJ+3+Ju77173jh8XkulHYBEIni\nBixNjpAwOaRRnQXy6NbOYe44juO8OtR1HhMYTp3s4vkSbXyEhHpVst6Gfj9noXo/t81/lYXag/T7\nIVEkqEaGgQ1JrYdGEQSCTjtDeQLPU/jKEidg7NaeeDzI6HYSolIRJpQkhiGvz/6RK/Obrc7Osf8A\n7Rdl5Jsc0pxe9NgpsWijfO3zACyswxeeUgySjXbawsyq4HOPCT767pyyqzLs3ITcSsBNTAdl/F1j\nlCZHtgwA8lIdz2SofID98E8Sj+0nr4wzHp+jESZ41hIPcqb2+szZ3bT9STydwOIlvLEJ8sYuqrft\nYayW8/xtP0mjUfwMGrLDveWzAOTSp0eV0XoO0v1MHMdxnEKtJPB2bBYsVa9Pzesx6Of0BjA6EuKp\n4vlDtWIg0I4mwKQoafCV4YGpVVayOsv9iIu9JkJYVpb7LC30WFvpUQoMoQdcTheqNb1uwupiD50b\n8vxKZ36ptTUGZ6h+7SFLs7r1Qxye0EzUt3f2A8/QrOU8fCZAXyNe6KnzcnMAcLVWX/D4WdeGOjcn\ntxJwM1OKuDaO1RqpU6yQpGGNwCbIPCPDp7aniUUyIpbwkhb37ioTrl7A8/ayb1zR8kbJEk08yAhy\nje33qI8M00+nkMLA6C7kzCr70uc5Pr5AIHNyFTBfvg1Q5FqQN/be6G/CcRzHuUlIIRgqGZZ7GosC\nBAJNIDNKKuPNR+GhExKlFI2qxVqoVzRCGNa7krXoDoY86HYzvJqkk3h8+xQcnhhjzQzjqaIjbi0M\nBprpmZSx8QpBAEmcszDTQV/V8de5wfeLzn45vNIRtxaO3lFjJaswiC3z830WF4pKxkM1yXveGr3o\nc8EPHUt49Lzh/HJxvkY559DEgHJoiDOfr56OeM+RZFvhsP72fcabevG1H3OcG8kNAm5imReS55ZS\nZwEv7WOkh6lZBrVxAtumH41SyS6RWMOd5jnWyzVKep5PnDzKgw+UqZUNvSRkPlbktVH04ipLn3uM\n0f/+B8jCKtJoqqEmnHmOd5/5HOU3v5ne4buZrR4lVk0kOQoJXnCjvwrHcRznJuLJjLo3IDMeFoEn\ncpQsZsmHGzC5u0KWWxpVi9aWfcMpxnhUqx7zizFhENAMBuwaq7HaGqfdzbgQ1ajVwLxoR208yMgy\nje8rwsij0YxYXe5vPn65P16J4PgRS5pbpIAnZ0osdj3GJ4snTO2rcfFCm6TV5gMPlhltbu8CBT4c\nnMjYNdzDV1uvoxxkjNcF5+c1WpXRwGQ9ox5ZatG2U21qlF/BF+w4rwE3CLiJaSNozD2Dl1+ZRgj7\nq/TSAd2hKQyWXEWUeksMnnmC6Mi9fPPsLg7ct5d6TWGwICH0Ybp0F6PqIVY/8XdMfeAYbV1CDE0A\nmvGn/it4ltapaVaO/xxCChQ57TTg6O4b9/kdx3Gcm5MnPYQo6su8mLES5Xk883yPo4d8RpqCcgSX\nVhS5hqXFAVobxiYz1tqC0aZCKc3ifI8wrFEtK8bGQpaWiul1a9kcBACE4ZWuixDQHC0T+YK9Qxl/\n9U3BaqeoYFwq50zt8TYjWqUSHDhY54H9HsOV7ZuFL+ulltDbOewn8jSPnQkIK0WQ/7nlgL3NjPsO\nJpyek3TirSsEIzXDmw5d+70c50ZygWo3sfLaxS0DACi2K5Xac7CyhLSWKO/TbsHC47P0Rcibu1+i\nWffwlcYaKKscJSyJLNP+gY8ydNsoph8T5W18ZSgvn9u82XnLM/iXTpIYj9iUODgsqEYux5njOI6z\nled5eGrnecSzCwHPvdCl3y8y+jxzKuPJU4L1vkevZ/B8RTywrPV9Ls3laAvDQ5I8t7TWYqJIMjFx\nZWpdyq1Vge3GSoGQUB8qEUU+KI/ptYBLy0VoTqcPi8sZ56YHW67NIphvX3/+s+Rfu9MusEhxpV3M\njeD8qk9fe3zgeM6+MU3oWyLfcmjC8KG3aAJXYsC5SbmVgJuYF3d3PK50RrRwmrg9oFTpczEbx56a\nIfjUX1I7spugM4NpTOCJDGNgLOpS9QZUKzmld+5n4T99gvr/+D/RHwimPvV/bZ5XAOM1gRqVxX4B\nx3Ecx7mGclTm7FyfRiXHV9BPBOcWAh49U8YPLEms6ceWQQKrLRgb16ytpSgJvifwymXKac5qS1Gr\neAwPW5KkaHsqFZ9SSTEYaEplH8+7PAiwVEJDrRlRqYWbqwMASimCwJCmVzb3rrfz4hyl6+U02mqk\nLFjoFnsEXizOJJVaQLpl/7BgoePxln05U2OGQWqQoliFd5ybmRsE3MSsCoDejo9FSRvVBeGXqT3y\nOebOzGG1of5jH8D++R8jVzLEv/x1FnoN3jQ6jTUZIs2xD76X3fFn6D3zOFPP/tGWc4qJKbxDd72s\nfMiO4zjOG1ucKT77nTr1ck6zopld8emnRWdbKUG9JjY65IJcQ7utyTKDlIbmUICHplyVICWVSk49\n9VldKUKA8txgLSgli5l+wJOWI5Oa3sAjFTvn3AxChVKCJNEYYzEG2t18cxAgsEzUr1PoAAh9iRIC\nY+2W9jDVgktLklRu3yenr5o3K7ltdM4twoUD3cRMY2LH41p6hNUS5fYC6WqLYOks8aU22coy0enH\nuX2fJv/AB1n6959gJOpQsV3WzQhKGGbrd9Nf7BCuXtx60koN9a4PI1w6UMdxHOdluNxBXm77nJ6L\nNgcAl+2bCqnWfIaGik68FFCqeExMNvF9hY67ZLkljXNmFyxCetTrxXN7vZwsK8JuTJrwpgMpP/bW\nhPfcnVEKrx2mao3F8yXlir8ZQtQfmI0QIsveoYyR6+wHuGx3w6cWSgappJ9I1roKtCKVO9fMqUdu\n9dy59biVgJuYKTWwSoHWm6VLrBBI3wMpUL0uXsey/O1prLWMHG4iOh2CQ3fQ6Qc0vv9u9tZbWHza\ng4iyP4ySIdNfucQdf/XbqG9/Abu2hChXUcffg5xwqUAdx3Gcl6ccwnBdsNqVmyMCnRu0tpTLknLZ\n48A+j4WllKEhRRgGVKze2NhruHPS8PSsz8JCQqUcYLQhjlO6XY/p6SvZf9o9y1g1Y3yjps2xfYan\nL1heXNTLGovRkKU5UdnH8yVCWDItmZ3p88EHYLLx8jrrQgiaZZ/mVZl9rIWVQc5CZ2ucTz3SHB7d\nudKx49zM3CDgJiZMBmEJdI7VurjJen7xX2OIF9aJ9gyz/PQalaky1oPlp6YJO5a9b76P8ac/z7OL\n/4LbxixpZln3R2nma9R/819gVpfwf+AnbvRHdBzHcW5Rz89IepmH8q50xqUUKGMYHwsQQqAUjAz5\nXJo1NBsCnUkyYzHaMNcfZr1niGNQEqxNmbnQZ/ZSjFISdXW8/1X9/fGGJZCaOFOIjcVra9isHaC1\nxZgiTaj0FULAwqplbsmyu/nKP68QcHwq5vSSYaWnMBYaJc3hsYxgozdlLSy2Jet9xXgjZ6jskms4\nNy83CLiJmVITay1CefCiLAw6SemtxFQ6CeWJCN3XLD22SLI8YPxtLcJ2laWvfQ17ocKlX/gVyrbF\n6Ys1HhxdQdxxlLn/998z9Zv/CpSPNQaLQQi1rQCK4ziO47yYtfDUtCTXW9sMIQRBoKiUroSWBoFA\nSpib6XPoQIlWD5Tv0Yo9ur0eQSBYXRmgc1104K1GCIHQBqkku0dg366t77Nv1PDsBbEZknS5tIA2\nBm2K2gRSFmsFRhcPPvS0ZLENb7vdMLxzVM9LkhJun0g333N61efJmYhMC3xpaPcFy21Z1E6QAbub\nOQ8eSVAu0ta5Cbmf5U1M1yfR5dFtx22es/TQCcbecRfl4TIqioiXE0xsyfuapJ3Q/vTn8ZRkX+tx\nDmbPMtSU7B2O+fyFQ/RkDfmjP4V96iHi3ir9ziKDzhKD7jJpsnNGIsdxHMe5LNOw1t25C6E1xMnW\nsJs8M6ysxHiexVhBHGssYDJNueSRppow8otOvS0688ZY6mV475sU8kUTVO+82yBFsXn48gDAWEu+\nsRogRLE6IKQgywxKCowVnJzz+KtvK7pbM4e+IqeWAp5fDFkfePRSxXrsk6Pw/eJacyO4sOrz14+H\nGAOnZgWPnZGsdr7793acV4NbCbiZCUF84G34Z7+NXJpGKEW23mHlO6epHNpFbTQEY9BpURRsMF9k\nEhosG+JLa4zcPQw6JWBAY+F52uXb2TMesJ5U2TtUo3fhDO3/9kUaP/wOAKzJyeIOQij8oHQjP7nj\nOI5zE1MSAs8SZzuvHntXxe/EsWFxvoc2lulLKZVamSS1BIEhKoWkqUFIgTEGz1N4viKJM8JIsnsy\n5NEz8PBzgqGK5d6Dhsg3/MOzliwxxGlRBEwpiTEWC1fCkwTo3IItViKUEvi+ZLVjeehZwYePXz9L\n0GWvdgUAACAASURBVPXkGmZbHi/elyClIAosaXbl2Hpf8h8+5zHIBCD4hxcsRyYNP3i/3jENqeO8\nVtwg4GbnBWRHvp9Sfw3VXkCVYOrdRzYfjldblIYF/ZkrL+lPL4MSrL+wCFgqJ89StW3C2/czVJL0\n8waJhLN7f4LRf/dz1N77NuRV1UzyrO8GAY7jOM41KQlTo4ZnLm5fDShFgiAojqep4eyZDpaiIz47\nl7DX8xkMNDrXIKDbLZLuD/oZQhSz934oiOOc+TXwPEG3k7PWUUXV4czS61+JtTfaYozG9yVKCYSU\nWL31moQQIARSFtcxvy45vexx2+grGwisDSRxvnPtAfmiw54n6KcWsbGBIc0Fz1xU1EqW7zvqsgo5\nN44LB7oVCEG69x50prcsieZxSuu5c5R3RfgVhRqq0Xz/28FAUIuIl/v0znc5/3/8R+h12LPwdQ40\n1vFNzMCWSXKPo//ze1j+T5/Z8nbWuJuS4ziOc33vuktzcFyj5EYFXyySnEE/Zn4+5sKFHo8+ssJ6\nK6cxVEJtFPzqdovY/3Y7xxpI0yIDntwInPcDhacUvi9ZW+4jAM+XdFoDWq2Y3Gzvukjgv3vQcN8h\ngRQ7d20ERehQo6GQEha6HskrXAwo+VsrB1/NvuiwFAJpss1Kx5edW3RdMOfGcisBtwg9eoDFR09R\nHSnjVSL0IKF16gLJ4irKV5T31qn96IcpHT1A66FHSDsxbGyGSpfWyeZmKR8+SlfH1GnTt3UyI+js\nuZ38r/9my3u5WgGO4zjOSwk8+NG35syuCubWinCdb59WnJuB1ZU+xoAf+lTrIZ6viEoe62sxvW6K\n8hTWQpzkGGPwfUWa5Phh0fnXmUB5ivZ6n+Vlychoibjv0evEyB3aKGNhcV0wNQYnpne+XqmKDQfW\nCHRuybRguSvY07T0E8OTp4tm875DUCtfvx2shpbhsma5t70blb9oYBEEUK4oevHW2J+rQ4Yc50Zw\ng4BbSJZLlv7hyW3HLTD1P7yf8g+9m+5si9JIjf7M2ubjo8d2YdcSBpUxSt1lamnKeng7Ruf0R6YY\n/rF3bTmf55dxHMdxnJdj97Bl93Ax6fSt01CuhpSr2yv6SikplTz6vXQzNCaJc3xPYYzBWEs5CvE8\nRRgq6s2QXjsm7qUk1SJk1Q8Ua0sdGiPb0/ucmQNtLY2KodXb2om/vB8ABFmmsSh6PYMdsXzrOcNX\nn7Z0NkoTfP0EvP1Ow7vvu/5A4K5dMU/PRqwNFCCwttgL0Ltq07GUlnKQM5NuDx0arrn0oc6N5aZ8\nbyHhvcd3PB5NjjP69mOUukuoQXvLAADAClg7tULymf+KCSLGuqcYlUsMB11Ea5l88gAAUnr4Uc3t\nB3Acx3FekfHG9Tu2QgrsRlir0aZI4WkMeW6JSj5RySNLc2p1j3JJkWWaNNX0ujFQhNqkaU6abJ9G\nn1kRfONZ6PQMYmMjsFTgB5KotJECWwAIPE8QJ9DqGr74+JUBAEAvhq8+ZTk1c/3Q2HJgeWD/gLdM\nDTg6ETMaxSSpoZias4S+ZbRhabf1tlSq5dBy30EXeuvcWG4l4BZS/uBPoVtrKJkiGw1skqAvTDP0\n5ruLnMpY/Hh7is/WySVsvszuikcwc5rurjuIpMVLUtLyEMlSj0f6+7ljMue2mrspOY7jOK/MA7dp\nzsxLBunWOUZBkTknSw2eJxESdGrIsqLN8XxJrR4hBOyaDPF9xdLCAGshz3KMiZASsqTYRzDoJfiB\nt1nbRiqx+fcgAaU0pbKH1jAYZGRZsQrheZIwkqQphDLj778jSbIX7SKmSIF64pzlyJ7rf14hYLSq\nGUVzYBj2jxqeuijJjARrqXqGqSnNRA3m1z2SDIaqlvsPGvaNuZUA58Zyg4BbiLCa+vt/CJFftdb4\n9rch4zZkxTH/wD7Ul79B9rm/Q/3h71F98x10HnoMgLlvniMY+wLhL9+N/IeHKY/fjjq6i13Tf89X\nho+z1otQMuHg2PYbouM4juO8lFoJ3nlnzheeDjaPeRsd9MEgK3rNFP8flhRKSbxAUi77KCUJQ4nA\nsrQw4OJ0GyhSYAupiPsp/Y0VgSzV3HvQcGrOI9NiW6FLrS3WQhAopBT0+zlaZzQaPkIopM2Ynrf0\nE4HyJHm2fQLslcTsj9cNP3i3Icvhr78FXz8JcQqlAI7syfnJB8HbOamQ47zmXDjQraS7uHUAACAV\nWVjDbuQqzkWAV68S/MRPEn7yU0z+8k9vPtXzPVaemEV11+j/6V8y0j6JEIJGPMdPhH9Frg0n59y4\n0HEcx3llrIVTCwFhoDb/UUoipcDzFGC50l+XjO+qMDZWplLxiaIiZKc/0FycbqO1Js801XoJow3t\ntaIWzuUsQkrJYlXhJSrdK1WE/2htSVNDr5ezsp6zvlG0S10jWf/EsGBpHf7uEfj01+HLTxShQi/H\n33wHnpkuBgAAgxSeOgd//+jLe73jvBZcj+9Wkvd3Pq48cj/CywasehPFIQnp8G6ysQRZCtn/z99D\ndOwQs3/+MJx8Ft3pE+4eZz6vsCfXNEWbnxh6iL8fvGvn93Acx3Gcl9DuCxZbO88vFhtz2czus5G6\nfxspBTrXqEBRa5SISgHWWurDFUAw6MdYa5lesIzUDDMrO6QM3dgTULyPQClBnlu63Qxj7OZxIQRS\nCfZOVcAaVldT+n3N7hFoVgX/+YvQT66c9/mL8OPvgF1D1/4OBimcndv5sTNzkOXgu96XcxNwP8Nb\nyXXCB3M85r2DzAaHN4/5StOiSe1T/4UR7zxGZ+x92wT4EcpPScb3M/TQJ8AaVL9NdbfPPcmzwG3f\n+8/iOI7jvC69OE/+1a6etY9CQa0qN8KFINeWOLYkCCb3j2x7XRD6pElOqRzR7wyYXzEoaRmuh6y2\nryoeZixJnIOAWi3cOFY8pvWV51lrEcKiVJHdR0iPvXs8KrLP++4x/NlXxZYBAMBKBx5+Gn7qOvNl\n3f61Vwx6cTFIcIMA52bgwoFuJf7OWXtSLflG/n08Ze9jkF0JNqyJFikhuj7MTO0u/HqVxpCiXLaE\nx47S/uJDZF/8W6y1yDzFzxMOpSeu3C0dx3EcZydGE1x6itKzn6d84m8Jz34T0W9RL1vGGzu3IcZa\nPE9ircUYw/paUkxCqaKSb+BLKmVJnu1cwevqYlthudhzMLNUrAbkWU6eabJMk8QZWlu67ZQ0ydH6\nygbky6sRVxPAoF+8pzbQHI5Y7UoW1nf+6DMroK+zda5ZhWbl2o9Vomu/1nFeS24QcCupTmC9rXeP\nzCrOZ1PEslgmjXOJNlBNlznQeYrAtxihSP0yamUWUSoRxm3Kgcb72z8n68ak3Rg8D5UNKJsW8szj\nN+bzOY7jODc/a4nOfINw7hm83jJqsE6wco7S6YeRSYe79mTblgOMseS5xfOLGH4pJWHkcfp0Z0vn\nXilBtbp9mlxrQ5Ze6XlfvaLw3HmNkMXgwhqz5a17vYw41ggBnifxfbUlBMna4lxZZjGm2K/QGly/\nayQ2/7Uz34M79+382N37i3Bdx7kZuJ/irUT5MHQQWxlnRQ9zKR3nycFRZvJdVz1J4MfrHG19jXK6\nRsn0CUoevspRl84iazVEGhO8/8Pw9vchlETVqzAygchikmgIdfKbN+wjOo7jODc31Z7HW5/Zfjzp\nEMw/j68scVLMvue5KWbnU7PZ4YZiL4AfeESRx9ra1tgZX1oEGp0brLVobUgGW1P1XD1w0Nps7C8o\nBheeJ656zBarDIHa3ERcKvnb9iJYC0ZbohA8Ydk3BhPNnT//npGX7si/73545zEYb0IpLM713vvh\nHXdf/3WO81pyUWm3GqmgOs659YjODhUIAcbj80RmQCpLVPJVemqKRrIE43v4/9m78yBNj/rA89/M\n53zvt+7q6vs+dEvoaCQECCOEAYFtbDAz9jjs2ViHY8yGZ8fgWMfaDkf4j1mHY9fY4XBsrD3r8Y7H\nXmAxgwcEBoQsARJIQrfU91HdXff5Xs+VmfvHU0dXV1WrJbWk7lZ+IhR0v8dTWW8X9eQv85e/n5ga\nQScZ4aYNODtvxz/3EtJ1EY5D6gSQzmNa8zinn0NtufEt/uYsy7KsK53TGEesc0hNdubo7jf4riFe\nI6tncfK+OGkXjqTVyjh19ByVesC2HV20OoqZ8SZpZhYO9Upcf+V0JY0z3IXEemMEWpuFHP88EBBC\nLZUIdS6YsTuuICx4dNop8rynggB6alBxFY4D99wA3/wxNM+LUXqrcO8l3BqFgPfeCPfeAJnKy4K+\nShEjy3rL2SDgKlULFY14dRAQ6Bab0+MApG6BQtogcwTFqZO0S104qcHLOhR0A8d3Kf0P/47sO/8A\nx48S3/I+HCU5sfWD7Bo5YoMAy7IsaxUjvfWfc1yqRdjcqzk6uvoepbI8N18ulOWUUhL6mvGxFuNj\nLSbH2hSrBTIt8vQeY9BagcjLXBtjSJOUrv4KhYKg09akiUZlGqUUvp+PLSy4GJ03IVsMDgAQLOwW\n5Kk/vu8iEBQKgk2DEteBGzbldT33b4aBGjx5FDoR1Ctwx558Zf9SdWJDlORnAV6tlKllvdVsEHCV\n2tqV0oglc9HyP6GrY3YlLxIQg1YErUkmi9uJE0EjlQx3HWSf8wyer3AbU8hiQtI1SP2ue4gOvYJP\nSlqugd+LGD30Nn53lmVZ1pUq7duJN3EEJ1lZttoAqp632H3fdRlTDUkzyvcMjGEhNWjxIHA+OQ9C\nwexssnSNudmIKNZ4gYfrOWQL3XyzTGEw+L5HvbcC5JPqjZsKjIzERO2U2ckm/UN57U4hBUHg0mrl\n1/Z8h3rdo1R0aLTyFKFC0cPzHAJPs2e7h+MI+kspheU+Z3RX4f5bX/tnNNfSfO0HihMjhjiBgW64\nfZ/krgN22mVdOexP41XKc+CmoZiR+YzO2WFc1WFzcpS6ngGjIUtxEEybGgXZpt23m24aZEEPMp5A\nYNCdNvNhlb6eAWT/LFJlOEJSV+Nk4TqlDSzLsqx3Ni8g3nwrwfAzyKyDlhKRZWgnRBkJxvDDwx7N\nWILIz9AKkVfmKRTcpTKdnicohvDi8ZVleJTS+AtpPZAHAUIIat3lFa+LIkO56OC5ktSV+L5DuxVR\nKod5/r+E3p6A6emYJFZo5VCrhriuYnpW4Xn5TkW1LBHCUA8Vu3oS3ihjDP/wXcXJ0eWUqZEp+MYT\nmlKouGGHbRlsXRlsEHAVkwI2lmNKzUeR2eqixAJDt5kiDrtxdABjp6CrAFkGSlOKJjnObrSj2dQ1\nh4dGGqh1JmgPbkfGLdzABgOWZVnWSqrcS7RxHzKay2f4nSbO2DDhj79KtOEAp2cfXPUeIQSeJ5DC\n4PsSoVN+/IMxsmx1SdGlRmICWDhQnKUKKcVSx+DFwKJadYlihRf4NOc61BeaiiFAGcHNN5R5/uUW\n8/MpeoMhDCSOVCidBxyvHOowPgIH90u8oTdeL+Xl05pTo6vPTKQZ/OSwtkGAdcWw1YGudtJBFypr\nPpW6IX6tgOdokFA48jTlaAapEzCQJXlDsePRAPPV7YwWd6CQzHTvRVV6GJuJWeN3s2VZlvVOZgxi\n9iRTkcchuY9DYi8z4UbU5t3oco3w3AvsiF9Y863FQPAbH874xK0tnnlyZM0AwHGdPF1IG4xe3DVw\nMBpUZpbOFZSKDlIK4kSB0RiTnws4/5pCCKIUbryujBSglcJxBJ6fnzmIOinGwNQcfPNJzYsn3/hN\nb2zarNvbc659kU5qlvUWs0HA1U4I0oE9GLlyU8cAUX0DWroExEycmIGN2/GSJkIplB9wVm6kQEKc\nuZzztpB6RcbD7Zz29hFpD2MMX3/OdjWxLMuyztOa5LDazmSwBeMXMX6R0WAHh7wb0b1DCGAnx9Z8\naynQuA6AoK/bw3EdXM9FOnn5Ttd3CcL8cK8R4Dj52QEvWD6MrJXB9wWDgyFzczGjZxp0WilRJ8V1\nHLI4BvIKRaiEmZkUITSbN4UEQR5ctOZTGrMxndZyCaM0g2eOvvEgYKBbrNtGoFa0h4OtK4cNAq4B\nWf8uOjvuIi7WSb0CcaHO/MBeGv27cXWKpyNuOvn/UR/qQpe7UGmKOnWK9PQwVTNNlgpwPTyd0nZq\nxNpjTlVpJAFBKDg5bn9MLMuyrNxwu4jwfKRcTtuRErQXcLa0B4BKsFZLXcPOQY3Whv/7aw2m5par\n9kgpcVyHIPTyXQAW6v4vpP50WitTXvt7fZIo5dCL08SdlDRJUZnC9T2kgO6aw/6hJvfvHObs2Qbt\npkIpSFOFlIY4zkiS1WMcmcqDgRWjNoZzU5pTYwqlX30lf/8WydbB1ZN9z4Vb9tj7qXXlsGcCrhFp\n9yZiZ6E6g3AxCALVQWJAZdDdj3Ac0IYsE6QvvUBp8xBpuoUgEJS9CIxG6hQQNLICp2Z8XE/y0pjP\ntv7VZw4sy7Ksd54OBZw1FrSlgJniFrYCXVs3sD/KOD0paceCWtGwc1Bx2w7FD5+LGB5dK0iALM0n\n8ouEFAvnAc5foTecPjHH9NTCfUmAyQzFso/ne3iepKvucuS04URxI0MbfUYnEzqRJpgx7NhZZ+PG\nAkeONFd9/UYH/ubb8Av3QrUIJ0cVDz2hGB43aJNX+bnnBod37V1/+iSE4NP3OUvVgaKF6kB37pf2\nPIB1RbFBwDVCOD5ID6FTXLNyGUPELczemxDGIAA1PgpA4pbxpU8lTNDCIxM+JT0H9BCnLu3Mpys0\nBJ7NYbQsy7JyFy13LyTDOx6gZ8d+3i8zkgw6iaAcmqUuu1Oz66fcGHPh3xebgBmSJMX3PbJUMTe/\nvDDleg6VWpFWI8L3XaQrKZUcZpuS9nTC3r0FTp2Yo6unxPCZBtu3VymVHCpVj8b8yk7E0pGMTsP3\nnoX7bzN86ZGMqbnl58em4es/VHRXBDuG1p/QV0uSf/VBSTta7hOw2BvBsq4Udl/qGiGEQIbV1U9o\njeN7CCnAKIgispPHaQc9jG55N4dmuhkqN2hnDpkWOFoBhpmmS+CB52qq4dorNpZlWdY7jxTrLwy5\nZEz3XocWDi+cgidegXOThvPnv4O960+eL2yopbVBa00QejSmW6hMEbVXlvEMCj4Iges7xFFKoRQy\nPWfItERlhlMn50jilPmZNlKAFIJ2x9DXF573dcFx5VJ34bOT8PhLakUAsKiTwFOHL+3sQDEUdFeF\nDQCsK5LdCbiGyEIdhETHTdApMu0gswhXpQg0ZBnZ0Vdo+T2cPPBzTJs6zXlJlrVwBDTSkIAmUQKt\n1KVaMDhCcePQGr3fLcuyrHekvjBlPPJX7QhoA5vTY8zGJf72u9sYmYbFGp9PHoWP32WoFuG2/QHf\nezLixNmV9xbpCMLSwqFgY1BKk0YpjuegjcBxHbIsAQxSSqQj8AIPx3GAxUpCBiEFrbYmCH2arTZT\nk4p2s4M2ee+BTEEn0oShQ7nikST5hP78ACRKDXON9YOdZsfukFtXPxsEXGNkWF3eEVAZZT3N2ZEG\naQat0Rkm/fcwc+8tBIFk0MCRkzDb9sBxQDpkuo/MCLrKCldkbO1K8exPiWVZlrWgWg5J54aZ8YeW\nc4OMoVePUOuM04q7GZk+P0IQnJ2C7zxr+JmDeVrMgQN1Jpst2q14YaXfp6uvRBh6jJ6dI8syQFIo\n+wgESpmFvgEOpWqIWcgbWpy4K2XIUkVYzHe+00STpBqBIO7EaGUQKqFSr9GJ8wpDZ0/PUCqX0Dpb\namC2qNE2HDonkQ5otXrVv16yK/vW1c9O765ljkurtJ2nTho6iYSagBqgIekYSoGiqw7d5ZRXxitk\nBrqKAb3FjK6Cor9i8OwZJsuyLOsCG5JzDKbDtP06Qgp81caNW3iNSUbjoTXfMzwhiFND4MF022No\nWzdaabQxOAslQjGGsOARdfJmX1oB5OcCVJbvDKhMs1iIX8o8DchxHKQj8sm+EERRRhzlOw1ZmmGU\nJs3ynP84UiSJYmy0zdBmn3LFo9lYDgTycwj5WQbPkyRmuV8BQLUEB697YzfHM+OK8RnDzo2Svr43\ndCnLet1sEHCtMoZs5DBadbin6GIqLrOxz8Nn91AsBziOJEolhVBRdFO0yWsnHz+XcfMuYQMAy7Is\na12qewuFE4/jyUm0H+DEbaRWxG6Zbx7bseZ70iz/L/AgXThqJh258nCiEPkZNlia6BtjUKlamJwL\nVKoRMi8rqrUhiTKCUCwEB4IsM7QaCSrTGG2QSJTOuw0XCy7tdkqWKTzPRWWKWjWk2YhJkgzHWTkt\nEkLgunKpOpHnwifukQz2XPqRSmPgySOC42OCVgSNpmJqOiOONcUQbj8wzwN32IPD1lvPBgHXqOiH\nX6Pz0NeR7QbagNy4merPfZr7tx/m60d2UKoUwHfoCSMCVzNYadFMQ0YnJKzb69CyLMuyQNU2EA3d\ngD95BK/TwABZoYt0ww3URjwm1jhQ21eD0sJZ3N6KodFZ/ZpyqNl3wPCNH2R5zVGTp+MopZHu8sRb\nZRotDW7eeYwsUyRxRrHk0mpE5KcD8gDC8SVID+k4OI5AZYbJsSZpqqhVXYwGP/A5eXiCeneBcr2C\nXqcfQJrB5Cyw9dI/q+88J3nmuIClFmKSUtVBzUa0I8UjT0dIXB64y7vYZSzrsrPVga5B6cs/Jv7K\n/0vJV1QGa1QHqwTz48R/+X8QSsO7+04yNZORKUNVT+FnLYq+puDl7dSLnt0FsCzLsi4u699Fe9/9\ntLe/m/au99LZex+m1s+tOw2eu3ISHbiG23abpSMEt+5QlIKVr5HCcGCT5kMHQ/7XX6twYIsgSzO0\nNnlnYXd53VIIQZZkKJVvKWSpwvVcjDF02nkakOs6aKUpFAuUSgX8wOPM8CxzM23mZ2PSOCONM2Zn\nIowxBKHP7HSHcvmC9dEL6pZOzV/6ZzTXgleGzw8Aco4rKZSWJ/2vnLJV+Ky3nt0JuAZ1vvifKPWW\nlzotCiHwyyHCSUi/+WUKD/wb9iRNzrbqFAoRgWoTa4lwMrYMOgxW7S8jy7Is6xJIB1VfeQbglp1Q\nDA0vnoJmJ2+6deM2w44Ny6/Z1GP46LtSnj3hMNuG0IOKF/HSc7M8/kNFT93l/jsrnBqD1kV6VWql\ncRwnDxQciTGGNM4wWiOlxPM9lFYUiiFaazrtlPHxFhgw2jA83GJoSxdz023kQge0iXNzVLrLRJHK\ne+tccGi4XLz0j+fYqCBK107zcc/b2WhFi/0QbEqQ9daxQcA1yMkiZDFc9bhX8Ilffgn/gZTthTEm\nsiqDpRYOmi45z7H5LrbVOmSpA/7bMHDLsizrmrB3I+zdePHU0sG6YfCWfNX+saca/N1Xp2mdV3rz\nmZfbDA6VaUWrt6YXqwMtHthdrO9vzMIZgsygpQIBjuPgeJK4mSy8B8o1n+ZcQhznO+BzM52la8Vx\nRt2VGJORKb1iI6C7AgcPXHoSRSmAPDFp9eT+/Ov21KQNAKy3nE0HugZd7HCRSRWl00/idOYoZPME\n8Uz+uFYUXSCZ5W8f8fnLb3qMzrxFA7Ysy7LesZQyPPQv8ysCAICpWUXSjrnwnJrWeikNiDXud4v5\n/EobsjRDCIExeTAggKDoEXc0jitxPWfh6gYh8z+F5WBh9V/gOJIgdCiVPTYPCH72XpdS4dKnTrs3\nGvprawdDSZwHQIEHd+y3ObjWW88GAdegLFn7F47RhvnxhM5D36U2eYT7n/tD+P63oTVPe6LBnuo5\nBisRB6/LqFfgiz8MiNM1L2VZlmVZlyRKNVMtxVRL0U700ir+omPDMcOja99sRicStg3kZT5VpsjS\njCzJMCpPn/GDixymNSAWUoQWdwp6Bqt5VaBUUSoHdPWVSWKF60kwAs93kELSbi2OR+C6Dl3dBSr1\nEql5bQkUUsAHbtT0VZd7DQgMQqV4JmHHkOSXP1rh1r02McN669mfumtQu+96/ObLeIWVvxzbEy2i\niSZ01yg5RapkdLSgMHqS67ITRN5BYu1RKsDeLYqZBnzzGZcHb7cdgy3LsqzXbrqtmY+WJ/2N2FD2\nDT2l5fQXzwUpQa/uyYUj85KaazXsko5ECoG+IKjIV/4XmomRlxyVUlAo+fiBS7sV4/oSA/i+S6sZ\nE4QBadKmd6DG3FSTsFrEW+iUuXj9+Y7kB4c9Brtiaq/hXMDGXvjX79e8MmxoxrC1zzDYJTAmRAhB\nX1+BiYnGpV/Qsi4TGwRcg/p+87Mcvf9D9F3XT6G3hFGa+dPzTDw3QXmrz8zDh9l+2xOkUQK1Almp\nC9VuY4DIBACEPmzuN4zPOIANAizLsqyVWhF85XGXqYZAG3AduHVHxt3780lzJ10ZACxqJhB4hkqQ\nBwHbNgbs2ORz9HSy6rXddY+RqTWiA6Do5yk/qxnMQg6+MQYpBUKIpUDCZJru/irN+QilFGHBZWaq\nhco0nVbM/GwbN/SXggDXWU6a6CSCF4Yd7t772gpoOBKu27o6WLGst5MNAq5B0nUpHryFke8+QTKf\ngga34lLeWkBXu4lnTpDMNMnaHeSufZhKnaTYx7yuM6crS9dxXSgGFz/YZVmWZb3zaA1/+z0370a/\nIFPwoyMeUZLygZsM7XVSUwGi1FDJ15wQQvDJB7r4qy9NMTG9vOi0Zcjjur0lxn68OjgAqJUF77vd\n55++n5BkLJ29FTJPAcrSDNdz8TwHrTXzsx2kKylWQwQCKWBseJqN23pJ45R6T5Gx0zM4C6VFjTFo\nrRk/16BWH1z6ukfHPGolyfWbrsx82WMn23zju+OMTSRUKi733tnNXbfV3+5hWVcgGwRco9zP/THO\n/i9T+6e/QWYJxnVJ7vskycGPUTj5q6RZinPbu5FbdkJ7nnZ5E7EooFmusDDfgpu223KhlmVZ1kpP\nHxMrAoDzvTjsct+N6UX7Tl6QwcP+nQX+4N8N8u0fNphraAZ7Xd5/V4WxKc1jzyQka8y3B3oc7r7J\n58vfaZFpges5IMTC2QGFyhRSShxXkiX5n+MopVItkKUaR2iidsr8bAfPd6j3VJg8N0etr0inTKtO\nDAAAIABJREFUmdDTXyJJBI7rMDPVoqunBIDSkueGHQLXsHvwytopf/7lef70/zrF1MzyB/bUc3N8\nZmKIjz8w8DaOzLoS2SDgGtVREnX/p+jc/6kVj0sg/M3/EeeuTciwkC/nRC3E1AnktptxhEEZmGkI\nqqFg34Yr6xecZVmW9fY7ObF+XRGlBaMzUC0LGuvsBgTu6lSYcsnlEz/VteKxzYOSm/b4/PjFlbsB\n5YKgf7DIobOCLDMorZFS4LgSpTQqyxewlMo7CaexyvsIKI3K8nr8szN5A4K4E7FvfxdRJrnxjo0U\nix5Pfv8sWZri+yGlaoGxkVm6eko4Dvi+wCA4NeVecUHAPz40viIAAEgSw0MPT/DAfX0Evq0HYy2z\nQcA1yqxRk3hR+d47kXIajEF0GjhPPkZNO7Q2XU+c+iQpbO0ybNp1ZW51WpZlWW+vSuHiz3/vZY9f\nuCuh6BvaF2TzhC5Uw0vPh//lj1Xorbd5+XhKO9YY6RPWSpyYDjkxbdi8q5ckVnkX4cyQxBlZqmjO\ntZGOzCfuVZ/WfLKQ4qNwXYdKNWBqIqMxF7G9x2Eq7ebo8Zi4FDO0qczkaJNte0pobfBcF98XBL5Y\nyuXvrNME7O2itOHEcHvN50YnEp55YZ47b7VpQdYyGwRcowquIcpW/4Jyspja7CsIRyPGziBffArI\ne4PVRl5ky423A2sfwrIsy7IsgPfsV7w0LFmrCZYjNeWS4OvP+nz0loSGa4hSgyHfAaiF4jUdim1H\nhnp3gTtqBaY7LsPT51e+E/iBh+u5aGXwjcHz8hKfpUpIqeozPxuB0YSFAM8TeL4hDFxEV5H5uRjH\nc3jk8Q4f/0jE+Jjk2LFZbrixl9HRFlrnpUir9ZBqxUVrw2KLgqJ/ZZ2ZkwJ8b+2VfimhXLK9CKyV\nbBBwjeotGTrZhYGAoev0ExR+8pU131O+SLlly7Isy1pUDOG2nRlPHXNZGQgY9myG/m7DS6ccjIFq\nKKmubmJ/SR5/SfPo84ZWnrmDECl+YCiWV7a1X4wphBD4gUuWaYzx8DyPsKCYnmjg+S5+4DIx2mT/\n9VWSJCUoBhhtmJmLKYWa+bbA8xzOjURobRg9M0dQ8BjYkNcElTIvPyox7Oy7snbLhRAc2F1mbGJ6\n1XO7thU5sKf8NozKupLZIOAa5TmwpaaJZcDM2DRuZ5auxglqzZfICgV0p7Pi9abag7P75rdptJZl\nWdbV5t7rDDiGw2cMSQKVIuzYCLWFInNdFcPjhyDNoL8G+zYvT9YvxfiM5uFnDfF56UTGQBxlOK4k\nCJenMPnOwvLKvOtKEiFQShMWPMqVkKidIIC4lTI70yaO8hQijQYER4YljiPo7S+hlEClCsdzSBKF\n4yyvorsO3LwpZlvflVc441c+tZHxyZiXDreWPo2NGwL+zS9ssiVJrVVsEHANcx3om/gJAy8+ijDL\nv6ycoUGSsTFUM88dNH6Iufl94NqtAMuyLOvS1Spw1/XrP/+95wRSSsDw9DH4xLsNpeDSrv3MMVYE\nAOeL2glpklEsB/nq/Br9AoRkRZUgMKhMk6aK2ekOSWIQUqBihV/wmJh1yLIMISRCLlxPCDrNDtXq\nchAQuIYd/VfWgeBF1YrHH35uD4/9aIaTZzp0VV3uf28fQWAPBFur2SDgWqYysuPPrggAAKSUuBu3\nk6UOJizB3tthcOvbNEjLsizratVbUsxEq3PNkxRGpzTbtxU4eaqDEJLhSfjuM4aP3fnq100VtOOL\n9BnoZLSbMVI2qfUUqdRW5htlmcZoQ6YNaZJhBPiBn9f/1wY/9MhUilb5PbG7v8rYZEoWa0pVj+Z8\nvNR1WC80HFvUU1Y4rzKnPjKsOHw6w/cEdx5wqZbfukm4lIJ77+rm3rfsK1pXKxsEXMPk3Bg0ZtZ+\nThrMB34R3JV5lUrDmRkXY2BTd4ZrFw8sy7KsdQxUDPORRrGyadi5SRjsD5FSsGdniZcPN3Fdh+EJ\ngdJm3Ul0ksF3npWcmhC0I4egoImjDKUMznkT8SzLUJnCOJKZiRZSCooLWwy+LxBIzp2axfNcStWQ\nNFXUuko05zoUywGu5wJ5Tn+hFCKEYGayjXQEg5tKeI5hakyitUY6ghefneCm2wbRStNbXGd7AtDa\n8Hf/HPP8UcVCg2K+/3zKh+/yufM6u9tuXVlsEHANM34BHBfU6m1L43hEjz+CGj2LqNYo3PsAp5oV\nXh7xacT5qs5LI4p9gwk7+q7MbU/Lsizr7eU6sHdAM9U0vDzikGTQ6DgIx8NfmLMXQkF33WO+qclU\n3p5mvSDg609Kjo4sP+l5Do4jmZ/tkGQG33dJkozWXAdjyFN9XMncVIuu7gK+LwhDB61ciiWX5nxC\nz0CZYjmf6Lu+pL+7myzTaLW809CcbRO1E7TWTI636O0tUKqXyOKMeleRsTOzNFu9tNuap2KHXYNq\nRVCy6JGfpDxzeOXue7MNDz2ecGC7Q6V4aStrxhhmGxrfE5QKdjXOenPYIOAaZsrdiL6NmNFTq57r\nnBuj9chXl//+2Hc4fte/p9F/09Jjzdjh2TMBtYKmp2zLhlqWZVmrSQHTTYeTEwHnVwryPaiW8sZc\n5bLDfFPTVwdvnZnH6AycHF89sZZSUCh6zE63yZKM1ny0ouOwzjRJnFGrLa+0O66g3l2kOZ8wM9mi\nUAooVQqUqwW0NkSLzQuModOMSKJ04a+GViOlUvHRmWJgsAxCIh1Jq5XfBycbgj/9Yszd10nuvH7l\nbvqRM2sfFm604YkXM37qdn/N58/34xc6fPuHTYZHUzxXsHurz6ceqNHXbads1uVlw8trnHfrB8mq\n/UtVAgyCqKOZ/sGTK184OcLWJ/56VS/3VElOTNktTMuyLGtt7Vjw7LDPhT0DkhQ6cf7nNNUUA8Pt\ne9bP8z87JcjU2hVspJP3JIijZClX/3xaaZRauVil0vzvaZzRaSUImQckSZQSRylgSOJ0KQBgocCQ\nygzDx6eYHZ/l1NFxtDE4riRL811xIQRT8/CVhyOeP7qyTGh2kY3zNHv1vgKvnIj4L1+b5dhwSpJC\nq2N45pWY//OLMyh1ZfUlsK5+Ngi4xslaD53bf5boup8i3nEH7Rs/xPgTL6DT1b+pqhOHqI2/tOrx\ndI2mY5ZlWZYFcHTcJUrXnk4kaR4A1PyYn323YdcGmG9pHn9J88wxTXbexLa/ZpBi7Ynu4oFeL1h/\nUWp8PKLTye9tnVbC2EgDACFFHiQsBAVZpug0OgwMVdmwuY6zcPhNa43jSYzRNGbzxgRRO2FqdJae\n/jIjZ/MzdmmiaDcTohSeeHFlELChd+3PwXPhwPZXX8l/9Mk2zc7qz+DE2ZQfPttZ4x2W9frZvaV3\nAiHJNuwBwKgMs85ShUTjJK1Vj1dCmwpkWZZlrU1d5BZhtGFHd5vrb5IYY/jWk4ZnjhraCzsE33/B\n8MHbBHs2STb3wVC34czUyoUnYwxRJ59sCyEQC7n4xpil1gBh0UdrmJ9P0SrjxJFptDY4jszLgwqQ\njkBliuZMG6Nh5Ow0W7b3M7CpzpkTkxhtCCsF4s7K3YY4VgyUC8xMt5gcmwOcpU3zuebKb/6+2zxO\nnNOcm1z5+M27HbYOvnrH3pnG+h/m2NSV1ZzMuvrZnYB3GOG4uJu3rflcp76JmaGVDcOqoWJ3//qV\nECzLsqx3ts1dGa5cewV/Z3/K9Zvz554+YvjhS8sBAMDELHzjR4Y4zV/zsTs0USdFL0QWaapozkd0\nWinSyVN5HEcu/SelwHEl9d68G26WGUaHZygHKdfvDSmV8rXOIPRQmWZ6bJ5OOwEMrbl8IOVagUIx\nz9VXSUq9u7AwujzY8H0HIyAIQ8bOzZOmy3n/4QX192tlya89GHDvTS67Nkn2b5N84l6Pn//ApTVH\nqF2klGhv3a7bWpfXq/5EdTodfud3foepqSniOOY3fuM3uOeee/id3/kdTp06RalU4gtf+AK1Wu2t\nGK91GRQ++DNk505jZqaWHwxCyvd9iK39MNVUGKC7pLluKOYiu6+WZVmAvVe8k/VWDdv7Uo6MeZx/\nLqC7pLhx8/Ii0qFhc+GxMwBmGvDUIcO7rxeUQrhxa8L3n9cIIFtI4ZFOvgPQaXby3H+TnxPwA4+w\n6ON6y6vs77mjxM6NRQBGxjO+9I0W7WbE3FTzvK8q0NnCtaWgf6jOiVdG6bQSugYqy2cAhCBNNGmc\nNx0TxiDIdxi01mRuie++6PPe/fFSxaNaSfLgvZfYEe0Cd99S5IWjMZ1o5Qe1ZYPL3bcUX9c1Xy9j\nDN94ZJbHn20yN6/oqbvc/a4KHzho/z98rXD+4A/+4A8u9oJ//ud/plAo8Ed/9Efcfffd/PZv/zau\n6xJFEX/+539OkiTMzs6yY8eOi36hdvvqXU0ulYKrdvxrjd3p6cfbewNogyiVcbftpvixX6R0171s\n7FLsHkjZPZCyqSsjeBsXHq61z/1qYcf+9ihdahvVK9TlulfA1Xu/uNp//t7I2DfWFQU/z+kv+Yat\nvSl37ogpnFcM58eHDHOrM04BGOoV7NiQBxB7t7hMzSpGZwXSkTieA8YwMzFPlqqlFCCjDSrLMNpQ\n68l3ArTKuG5rSnGhrGalJNFKcezkedsPAoQjqHYVqHaVAHA9h/mZNirTlKsFjNHEnRQ/8EEIEIIs\nzVCZxgtdiuWA7t4CXb0lZtuSTMOm7teXOnv+Z9/f41IrS6ZnFfMtTeDD/u0Bv/RgjVrlrb0hf/mh\nab700DTTs4p2pJmazXj+UJswkOzeFq4a+9Xmah/75fCqP1E//dM/vfTnkZERBgYGePjhh/nsZz8L\nwKc+9anLMhDrreVu2kb5X/362z0My7KuEfZe8c5jDIw0JPORJNOCwNPctDWhu7jYaRdePiM4N+0g\npaFU0CzN4M8jBWzpX/nYp38q5JNKc+yMplgQ/ON3WkycXaPnjYE0yei0Y4LAY3q8xWNPpHziw8ur\n1QN93lLlHykFSEEap2zctmnpNfk8Pw9CiiWfqXGNXwiQQiIExFFKlmm80KNUKVCrh1QqyxHOuWkH\ndl6enP27bylx8KYiY1MZhUBSr776WYLLLUk0P3i6gb7gnytT8OiP5/nQe2oruihbV6dLDis//elP\nMzo6yl/+5V/yW7/1W/zLv/wLf/zHf0xvby+///u/T71efzPHaVmWZV0F7L3inWN41mG6szxBzRKH\nTiKBjFpo+MbTLifG89KeAFI41Osps7MrJ/O7NsKujasnlK4j2bs1X9F31jlzAGA0TI/PIxB0mjEk\n+SHkxUl9b13gCIORDjrTSAy7b9i49DzkVYAWewfMTreX0pAAhJALKUgGAfiBRxCsnJgn65Q2fb2k\nFGzoe/tycc9NJIxNrV1EZHQyZb6pqFftGYWrnTBrFdxdx8svv8znPvc5kiThs5/9LB/5yEf4i7/4\nCxqNBp///OffzHFalmVZVwl7r7j2tRPNE4dTsjV6Y3WVBVFH8q2nVqfHuA70lVMmZxS+C7s3u3zs\nngKee/FJ9D98fYL/56uTaz4npSRYSI9I2gmVsuQ3f7VnaZK/uS+kvx4wMZ0yPid46OmVaUlpmjFy\naob56fzBvExo/pwjJa6/MNkVgoFNNbQylMsutXph6RrbB+AX3nPt1FqZmUv5t59/mUZr9T9wf4/H\nX/1vBwj8a+f7fad61TDuhRdeoKenhw0bNrB//36UUkgpuf322wG45557+LM/+7NX/UITE403Ptq3\nSV9f5aodvx3728OO/e1xtY/9ana57hVw9d4vrvafv9cy9qmWIFNrr1Q324rjwwpYncaSKdjQLfjk\n3YuTfsXsTHPV6y501w0+f//fBdkaDbekI3EcJ5/0h7BhYDm1p+SDzBKmplIkMFiFB2+D//rdjOmG\nIEsV0xMNola+C2CMIUsVjpuPffF/EQIpoNVISKKMxmy+Q1CtBYSuZmdfzMTE6zsTcKX+3OzfGfKj\n51Yf4jiwK2R+IYq6Usd+Ka72sV8OrxrGPfnkk/z1X/81AJOTk7TbbT7+8Y/z6KOPAvDiiy+yffv2\nyzIYy7Is6+pk7xXvLHnRiLUTCVy53jO519P3thhKbj5QXmrsBXnKTFAMCIrB0qTf9SUfPFikGsBA\nWdBbkivSfgC6K/DT79IMHxvn3MmppQAAwPEcjDZ5nwABSIFcCDCUMiRRniKjNTTn2mztSXnv/pgt\nPddeP51f/fk+bjlQxF+I9cJAcOdNJX75Z/re3oFZl82r7gR8+tOf5nd/93f5zGc+QxRF/N7v/R4H\nDx7k85//PF/60pcoFov8x//4H9+KsVqWZVlXKHuveGcpB4ayb2gmq9N4qqFmQx1OTazeCXClYefA\na58wR4lhuuVS7a6SxinaaIIgQEiBUnqpr0DoS/ZsDimGF08vevGEIiiGZEmG1hqBwPVcpCvzqkNK\nUfALOE7+PRhtlncFFrSaKUePt2jPS2o3C8rFays9plJy+Q//dojjwxEnh2P27AjZNHh1VzGzVnrV\nICAMQ/7kT/5k1eNf+MIX3pQBWZZlWVcfe69459lczxiedRcCAYEjDfVQM1jR9JXg7LRieGp54iww\nHNis2ND92vcCDp3KmG3maT5+6K94TkqBXkhdH+pzKFzCPPXcRJ6uduG1IE8BUrFCK72U1iakWNGL\nACDTguEJGJ7QnJmAX/2wIPCvvYo5OzaH7Ngcvt3DsN4E9mi3ZVmWZVmvWeDCrt6MViyIs3x3YPEM\nrevAx96V8fxpzeiMxHFgW79i1+ByADAypXnpdJ51c9NO6Kmuv5JeKealOtcqZbL4WCGA99zir0r/\nWXPsF5msG2MICy5Ga7Ioo6fHJ1KrIwvHWb7G2Un4/oua+25xSFJIFRSDvPSoZV2pbBBgWZZlWdbr\nVgoMa/Uuchy4ebuG7SvTf4wxfPNJw9NHIV2oQvmjQ3DwgOaGnS5nZj0SJSh6mu29KQXPsH1IsnVQ\ncHJkdRRQKQi2DrocvMFn//ZLK6t5w06Pp19JOb/DMYDWmjRNkY7P3e/byEvPTWKyiB1DIafHzFI1\nJMeVq9KDzkwYvvx9GJ7Iv69KEQqeoRBAXw3u2geFYO2oYGrecHIMBup5B+afHEoIfcGNe3wcW4/f\nepPYIMCyLMuyrLfMS6cMPzq0clU/TuGxF2Ay9giLyyk6402XWzZ1qBXgwfcEfPE7MSNT+RulgF2b\nJP/+l3poNtqvaQy37vP5m681MDiIhUm2VpokThBCYIyh2UzYd30vjz18mk9+UPDgewK+/ZTi8BmD\nlKt3LY6eNSBSlMp7FLQ6Dq4r0drwyjAcOQu/+D5Dpbg8qVfK8J8favPcsfwzEBhUmjI52kJrw1Cf\nw4PvLXLjHpuLb11+NgiwLMuyLOtNFacJaZqiMaSpxHd94nTlRDpTMDal2FpcfqyVOBydDLhtc8SW\nAYf/6VMFnnw5Y66l2dzvsH+bQyF0aL6OSo9JojBG5XUSDWRZhkDgOA5aG2bnMgY3VBjcUMaRgk39\nDh+6UzA8qYiT1dcTQiAdiecJEBC1U4zJAwFjYHQGHn0B7r/N8OyRjCgxTLUcnjm+3JTLIJCeT7Wn\nzOxEg3MTin/4VottG12qpbe+c7B1bbNBgGVZlmVZb5p21CFK4qW/bxmAT7w745+eKNCKVk5s1+pf\nOtfOJ9FCgOsI7rr+4ik/xhhmGuB7UC6sn0ojBGhtYDHFR543FgN9ffnqe1+vx3W7fBodKAaSD9xi\n+JfnNM3O8sulzAMAyK/pBw6Fkk/UTnGc5WDn6DnN84ciRqfyFCnHAS/wKFyQT+WHHq4ryTLNzLzm\n0acjPvKe0kW/b8t6rWwQYFmWZVnWm0IptSIAWNRf19xzfcqhUZ+5ec3MfD75LxfdpQn/kteQEv/M\nUcUPXlCMTIHrwrYBwYfvcuivr07fuW6Hy3NH0rUvJKBeD4mjjN0bDH//iODsZJ7CtKHb4SMH4b/9\nwBAnICSr0oOMNriuREpQmUIrgxe4zM4bZqaXz0goBaqdIh1JEC4HN1IKitUQlRlajQ7PHlV85D2X\n/jlY1qWwQYBlWZZlWZeV0pAo0Nk6k2xgy4DGq/pkyjA1ozh8UtPbpdEXBAFdRXVJVXaOndX8tx8o\nooWYQyVwaNhw+HTELdszPnFfBfe8ij437fV57ki6dtUhA4dfmeH9txd56pWQmeby+4YnYablUClq\nsvVaHgiBWPhPpZo4zlDKYMzab0jjbEUQoDJFay6iq7+CENBMJV99LObj99izAdblc211trAsy7Is\n621jDIzMKmaHh2mePc3ZGYeZuLRmac9FriMY6HW55fp8gutItfRcNczYN7BGAv4anjyklwKAFWMS\nLo88nfGfvjK79NijP2nzxe8qwlJIUAwJigFSnNeNWEjajYSona4IABY1O4JwnUo/QuQr+cYY0jTD\nL7gIAVmaEbXXDorOT4MyxtBpxmSpImonFMsh0nF4+qhcM13Ksl4vuxNgWZZlWdZl0RodZmPjBJ7U\nSJUyFB9j1N/GXHkT9aC14rWRWtmoq+AZZo1L3YuolxwqAWyspRyf8GhEksDT7B7IKPprT4Qb7fUn\nyNKVPHuow+mRBCnhSw+nSEcQBA5xrNAa/KJP0l4OOFLtMDG//vfaVRF0lfLKP3rhSwsBnucghCCJ\nM+JOhuM6BKFL1MkQEtbcDDCQpXmDsqid0JrLDxzoTOP6Dp12TKFe4PvPp9xz4+oGZ2+X6bmM06MZ\nG3odPNeWMr3a2CDAsizLsqw3THcaFNUkcfcgkeODyvCSFkPzR+m4FbTvIYXBGOgon9lk5UFXIfMG\nXL5IKQfQVzY8/EqB2c7ygd1Tkx7v2h4zVFcXfvmF0ptrBwI608QJvHI84eFnFEMbq5RrIb7vkCaK\nxnzEyJl5nCDvFiykoFBwqRXW/36rRfjQbZKXTin+63c0XuDgeQ4YiDoJzbkIyCf33kK34b66w/j0\nyrEXAujECp0ppCPwfAfXk2SpxnElAtDKEEcZT76iuOfGfLfg0Sdb/OTlNp1YM9Tv8aF7qgz0XFqf\nhDdqrqn50ncjjp1t0Imhry54136P+++06UpXExsEWJZlWZb1xjVHyYr15YR+xyUt1ADo6oySOLvw\npGaiJQiclE3FSZSRtLKQubSE0gK04fh4iBGa0VlvRQAA0E4lz5/x2VDrrDon8K59ksNnNJ0LUoLS\nJCNq5w/Wqw613hLdfcsBiOc7dPfmKUsjZ+bRjqarr8rWQcHd1wuOjhimL0gJKhcM79qd//nAVoe0\n06HdBMeRaGMwejkY0UqTCUG9DL/+MwHf+XHK8bOKTBk29Tt0dRd47iRLnY7DIoRFn5nxBpXuIkpp\njMkbmXkLLZn//hsz/PNjjaUdiFeOx7x0NOKzv9THUP+bu1NgjOG/fDPiyPByMDMxa/jmEwmlguDu\nK2inwro4eybAsizLsqw3xBiDkpK1TvCmfglfxFSLIa4jqfkRBVfhOZrQzegOmtT9JkmWp/xMzgoC\nzzDZXHuKMtOWTDRWP7dzSPLgux0qocYYg1aauJMwP5U3EdiyweWmfSGV6tqr1ZVamJf6lIJi6HDw\ngKQYwMfugm0DBs8xuNKwudfw0Tugp5q/TxtDbx7r5BN2vcZuhFZs6IYkMXzyvpDP/VKJ/+VXyvzc\nfQVOToilAGCR57v0DFaRUtJs5DsKvb0BN++STMykPPZUiwu/zOhkxtcfuUj+0mVyZFhx7OzqnRit\n4SeH1j8Ibl157E6AZVmWZVlvkMGIddYVHReCACkMcRqvihOEgKITkWZ1hCOplzO29WjOTK2XYy5W\nTYAX3bTL4YYdgv/8tSbPvtKh2dYIAds3enzmI1XiTOL5azfd8jyJEAaVaYrVkB8dM8RZQrkiOHij\nwACehA0V8FxoRZqvP644MaJpJh6Op9CZXnUIWmcZrU7G07Pw8rGIO28I+Ln7iggheHkY1mt2LKRk\nbrqNzgz1uk+1EnDXgYhvPdak1V67ytCpkUs7RP1GnJvMz1Cs5WLnMqwrjw0CLMuyLMt6gwRIF8zq\nFWKUQoVl3NmT+FoSOyWMXDkRD11F4Gak2mGw26GnnNJVVnRmVwcWtVDRX12vNmdes/9XPl5l+r1F\nnj0c0VV1uHFPvsqfKUPR13TS1YFAEiuSWOG4DjOTDYSo8LUfZHQiQ73m8MF3u3iuYLRpGKoa/u7b\nGcfPLU96HcdBCkmaZktHEwSaTnu5I3AnhkeeitnU73LXDQHhRTJntNIIYejtC9myrcqu/gRHCsJg\n/SQO/zUezu1Eim8/Ok27o7npujL7dr56Q7Jtgw6eA+ka/9T1ik0wuZrYfy3LsizLst4QIQR4hTVL\ngWqRpwmJLKKg25SzmVUlclIlSZXEdwzCyS9y3VBCOVg50/Rdzb4NKfIS5rrddZf331Hm5n0F5MIb\nXAd2DyrSVJEkaqnkpjGG2ZnlJflWIwYEN+4PuG6H4eTJOb74UEwrljRiyStn9YoAYOlzkIJKyWFT\nn2RjL0SdbNVrjIHnj+Yr9vs3w2D32lOxes3nhpv62LajRikw7N2QX+vuW0sM9Ky9hrtvR/jqH8yC\nx5+e43/+wyP8zZdG+eJ/H+cP//cT/OlfnUatt82yYNuQy+4tq4Mo34M79r81B5Oty8MGAZZlWZZl\nvWFuoRvteGjyhXADKCRaekizPBl2TUbWTomy5SlIIwmQUuI7GrnQvKunbHj/3oi9Awkb6yk7+hLe\nu6fD9r7VE+tLdXIMDp/RtNsZnY6i0UhpNhLGRxqMnlnOpx/aWML34PhZuH6Px9YtJaYnmvzjt5rM\ndQTz66TwAAz2OvzWLxbZOrB+pBKn+UTbkfDg3T710vLEWwD1imBog0foGwaqGXfuiKkV8tf4nuTn\nH6jTU1+eiEsJN+8r8Imfql/S59CJFH/75RHGp5Zz+JPU8OiP5vjqQxOv+v5feiDk9v0u3VVJ4MHm\nAckn7g24zQYBVxWbDmRZlmVZ1hsmpcQv95O0Z9FqMTfd4OoUT6/MVa87czzd3MRgOIMWuV9FAAAg\nAElEQVQRLmOdKkU/QwpDwY0QC+cLSqHhlq2XJ8+9HcO3fuIw31menBsDSaaZme4sPSYkbNtRJ4o1\nc/Pw1GHNrQd8Tp9u02om/OTFhH3bXGDtYKQU5tffudnje0/Fa+6ODPUuT7/2b3X5tQ/B00cNUQJD\n3bBnkyHTHbSBYI2Z2ruuL7FvR8j3nmjQjjW7t4bcvK+w6oDxeh7+wQxjk2sf4n32lQY/+9P9F31/\nGEg+86ECtXqZM+fmKRUE8hK/tnXlsEGAZVmWZVmXheN4hOVetErQrSmcpIFco3a/IzQbghlGoy6+\n9pWTVLsibru1RrEcsK06B3Rd9rE9c1ysCACWxywpV0PiToqUgltv788bXxmJrPtMTCh2bEiod5eY\nnmpx+HB+XqCnBlNzK6/lOXDTzjyAuWm3x3U7XV44ujJYGOqTfOCOlRWKAg8O7l99rYspFx0++v5L\nW/m/UDtaI6F/QRxf+uFe3xNUijap5GplgwDLsizLsi4bIQSOG+CUujHJ3Krn8ymmoOjESCH4vXue\nZ24q5m8e3scDH6jS3ffmNJzqXGRDoVjy6NlXZ8vWKo6TBwqOI3AMVKo+rU6KH7ioJCNqZhw/Kbjj\nQJlSqDgzbtAGuitwx36HG3fms3chBL/28Qrf/GGHo6czUmXYPOBy/8GQWvlVZvhvsluvr/KPD00Q\nrTHh37rp0s8VWFc3GwRYlmVZlnX5uSFaBkgds7j+np8VEBghSfFxpeZMz63s9Z/iP5Sf568f282e\nzUNvynC6K+s/19MdMHBBk63F7BbXEcTKQZsEJBhtyGJDOxH8+oMep8Y07Qh2bZIrqvNkytCK4EMH\nC3z0PVdWqsyOLQXe/a463/3+zIrHhwZ8Hvxg79s0KuutZoMAy7Isy7LeFKLUT9Y4h8N51YCEJKJA\nhyKuyJhx+ki9IslAPwfHR1CNEK9y8Zz01+OGrYYXT2tGZ1amr3gu1Ourp0OLufxKGZTwiTsdPM8j\nIUVIQZRKhMhLZp5PG8O3fpTxwgnNXBMqJTiwVfLhu1ycSylr9Bb59X+9kc0bAp55sUknVmwZCvnY\nB3vZOGh3At4pbBBgWZZlWdabQoZlmnE/TjqPT4JGElNgTnaTKUmvGmUmK1FKZhBSsHV7geMvNbmu\nL8J4l3cy6jrw4B2aR1+Cs1MCrWGgbghLHtkFjc6MMSgt0NrgOxqjIUsVnu9RrBYIQp/ZpqbRgkpp\n5Xu/9eOMR55dDnpmGvD9FzTaZDx496tXzzFa5SVUpXvJB31fDykFH/tgHx/7YN+b9jWsK5sNAizL\nsizLetNUqjWmRv9/9u47yu7jOvD8t+oXX36dAxqNRESCQWDOSSSVLVmWzKFlW9JKa61sr9bjMJqR\nZ3zOeNZx7fXujHd0pGN7pdVYtmVLNk1JVCIpUswZRCJy6Ebn8PIvVu0fD0Cj2Q3mBLE+50gk33v9\ne/V+jYNXt+rWvU1m3F4QEqUFKoVyNM6qYCeptRGATDBHMz9MPCIQc8fQvetf0vWjWPPIzpg40bxj\ng00uc+aDqsUsvPfidldfDUgBzTDi2THJRNVCCEEcaxotRaulyGagq2xz9HgAop0i5Pku9fkmGsF3\nHnO54nyHwVKMbbVTgHYeWr6R2a7Dilsv0Xju8hP7iXnFvuOaIBJkbMU5ndP0dHpIv/iS7oNhvFwm\nCDAMwzAM43UjhKDQHGegsZeWVQQ0ubSKpRMiXPrTEQQg0EgpUKvWkOgprLCOdrPtmp1n8ORzMT98\nbIqJ2Xa1mx89HnH1+Q43XbL84eL5eso//bDJ5LxASMFQr8VNlzis6wx49oALQhDHpxr+0gqg2kiZ\nmk7xMx6V2QZCClKlaTVCdh+SFHtLHJx2WNMdUfZi5hvLj7XSgLmapr9raRBweEry6EGfMF2Ylo02\nilwajTA80EB6L97J1zBeLhMEGIZhGIbxurI7B2G6QjGZWfR4XRTorh8CKVEIml4ntvbJTO1FVo+g\n3BxpYYCkc/WSa85WU+64P6R2WuOuagN+8FjMQLdky5rFqTf//MM57rynShS1V+pt12Z0MsfIpMcF\nW/JEydLJeZzA6FiM1oo4StFodApoiIKI6oniR63EYte4j1AWQ0MOk5Mhzebi0qCFbLsJWHucigd2\naqbmoZCrUw0Ewrc4PfsnTB12z/awonPcBAHG68IEAYZhGIZhvK7sfBl7tEXLLSCFJsXCSVt0tQ6e\nqhzU8juoWWXWTt2LwxxKlLGEQM4eQFs2aWlo0TUfejZZFACcFCfw9N50URDwwwcqfPN784tel0QJ\nteka48LCPxzhFs5UmlQQRynNeoglLZI4JYmT9uHgZrTodc3YIZt3WJnxmJhoMDcTnMrr3zQs8V3B\nXE3x9bs1YzMKrTWWpdu7JQXo7c8ueue5IEMrguVOEjRaKfc8FjBfU3QUJNdf4pPLvLmlR42ziwkC\nDMMwDMN4XVnVcey4ST5eOmvXQN3vYaxjC5nKOKoVMdmzhu5oHLwMApCVUeJsF9LJnPq5MDpzU6vg\nec89+FR92depVFGv1olCD/cMJUSDIKI628JxLXr6C8zPNGg1WwgEWi1+n5MBjWUJenqyNGoxrpVy\n7mqL91/VnnL96MmUw6MxadLekRASHKf9nJ8JKJYWDkRLqbGspelQB0civnJHjcnZhfMHj+4I+MQH\ni6wefPHDx4YBYNq8GYZhGIbxulJeHs3yB2JDO89o9ztw7RRR7qTRsZIn3GupOgtdg2USkNQniOsT\naN2e+K7oPfOqd2/H4unNyHhyhldC1AzoLGqy7tIDvWEQMzXWwHEtyl05LLv9Tz/TnmjnC4t7CySn\nNeK1bUG5M0PR13zoWgf7RBOyJ/dEpwIAaBcCisKEKEyYnY3QeiGw6M40yWSXpgLdcW9zUQAAMDmr\nuOOeMxxIMIxlmCDAMAzDMIzXlcp3k+aXb0KVZgt0yVlyIsC3Qxq969l7RLHDvWjh52V7pVzHLZJm\nu8HVxZtt1g4uncb0dQquecfi1fD0zJsG2K7L5Vsk150b019OsYTGsTSWSKnXIjq6s/StKJ2a+Fu2\nRaGcQwAXvKPr1HXiRBM8ryuxZQmm6+0xHptI+fr3WwTB8tWD4jglSRStVjuSKHkB21YGS84DzNdS\nDo3Gy17jwGhMpb789Q3j+Uw6kGEYhmEYr7tg5Tb8o09gNaYRgBIWYbZMs3Mh199Ck7VCtCoSygL3\n1S/k6tzTRF7+1Gt00mq/Vgo++X6fe5+CXQcDlNKsPFHtp/S82v25rMN8FC4Zk+M6CFswMZ1w0zrN\n6p6YegCWhO8+Iak3l+9V4NiCbZf2USxniBNNkkIzWPyaJNEkiQYEf/2vTXYdStEIhBAopUCDPC3V\nR6t2P4LeQkI502TkWJ07x2D9cMBlWz3kiUZjSrX/txydglIvEPEYxmlMEGAYhmEYxutO+wVa669D\n1iaJ5kZRmTzKzSx5XSuAtYMpiRZscI5wf3wZF/jTp12ofaBWCEHGk/zS+wtMTb1wYsOFW3I88qxF\n2ApQiUJIge06ZPIZKtPz3PdEk+svzmJZgsKJIfV3wOHJpdeypebGKwocnfOo1DmVvnN6Y6+TK/pR\nmCJ0cqJ3wMLzUkqUUiilkLI9diEllgWt2Qo/errFybn8w9sjtu+L+NSHClhS0FGUDA/YHBxZmuK0\natCmXDBJHsZLY/6kGIZhGIbxxhACVexD9axZNgDQGg5Pe6zMzbHKHqVXzjAedi6+hOW+7E66m1cJ\nhIBiV4lST5lSd5lcKUfUCoiDkLHplMPHF6fYXLpeMdS9eMldoNm6SlHKgVLtiX6zqWg0FM1mO50n\nTRXVakK9HtNsRIsPCpymHQgsrNrbtqSnBA9vbyEsC8d1cFwHy7F4Zm/EfU8GJ26h4F1XZSnlF9+D\nUr79+PPvTa2Zcsd9Df76X2r8/ffrjE6e+XyE8fZidgIMwzAMw3hD2V6BZquJbS2eZI9WfIa7YtAp\nnWoGKaHLqzNSzTNUrAMS6b38Drqb1mVIGxPUWh6O5wKaqBUSNAIsx8FxBLns4smzY8PPXpHy1AHN\n+Hw7RWhtn2bTkGa+qXl0n0162vxeKQgCTZomzM60cC3Nb3xY8udff4GBaZBSYLk2jmvj0QLLxpIL\na7QW7U7GO/bH3HBxO3A6b73H537B4sdPtJivKcoFyTXv8Nl3XPDlO2OiWNPXKVnXr7jjvgaTMwv3\n+YndIR95Z55Lzj1TSVTj7cIEAYZhGIZhvKGkZXPX9k4Gy00GOiJSJTg65XL/cwWuWFelpfM8WlvD\nxzY10U3NXbv7uf3yaYo5F+lkX/wNnqej5HDx+XnufbhKUG+delwIges5rBty6O9aWlrTseDSDUsT\n8KerkjRt5/s/37o+za/cbOHYAq01mYxFjCCJ04VWxLTTiCxb4uc8hBB0l6BSX0gPWnS/pGSutvix\ngR6b2961UNf0H+6JeXr/wlhHpxVP7gUhchQ7FM1aQJKkNFrwvYeabNvkYlkvb0fF+OliggDDMAzD\nMN5Qx6cVu0dcth9xlzz3zLE80s8RtBKebKxl/2yRJE3YPVHk8g2vfNL6P/18P1IKfvJ4jShSSFvi\neC5r1+T46M1naBJwBrN1wXIBAECYSBxbcHRS84MnIbV9cgVBmiqiICYKErTWpGlKrtBO33EsuHSj\nYPtzElj+1K/rnPmzHxhJeWZf2j4wLNrBzcm0oDRN8X0Xy5bMz9TRSjM2rXh2f8SFG1/f3YD9RwJ+\n8GCNsamYrC+5YFOGW68unjrk/EolqaYZaHIZgfUqr/V2ZoIAwzAMwzDeUJPzEC+fKk+1aeGpmCRO\n2TPVgXQlaSo4VslyiWphv8KmuLYl+PRt/Xz853p56JkWs5WUzrLNlRdkTtXwf6ly3pkr8PiuJk40\ndz4C01U4GSxYlsTPumiVQpIyMODgZSy6yzabhlK2rpHMztvsOhQte93hgeU/+HNHUr7+g4jkRKq/\n1rq9y+BYSCnRCipzDUodOTI5j2atfbbgXx5IOTiZ8L7LrRcMMF6pvYcD/vvXp5mrLvyi9xwKmZpN\n+KUPdr3AT55ZqjT/+pOQXYdSag1NR0Fw4Qabmy99+edEDBMEGIZhGIbxBlvdD77Lkrr6AEorWo0U\ny5ZMtfJsKNZoZLKgFTKsQLb8qt7bsSXXXrS0AdfLsXkoZeeIYra+OHXHlpoNAyn37LDQjk1fnyRJ\nNK1WTLOZIoSgUM5R8OFT71ZkPUlPT56pqXauzzUXujy+K2a2ujjIyPhw0WaP5yZcEgWdmZT+UorS\nmu88FNM67T6e3AWIghgv47YPHwtNtdLAddopT9KSRMrmyb2aZpCyflBxfEpRyMLVF3j43qufUH/v\nJ7VFAcBJD29v8K5ri/R2vvzOxt+6N+ShHQsHmyfmNN9/JAYBt1xqzji8XCYIMAzDMAzjDVXOS7oK\nMaMziyfRWmtUolGpIpN3sW2L0XmfgWLAqq4muUOP0NpyC7wOq77zTcFIxSVMIONoVpZjRqcFO0cs\nqk1BR15z6wUxGa99SPiGcyMe3OswMS9RWlDKKs4dSohSyUjFJZNpj9FxwPMspAyp1xO0hkQ4/NV3\nA379g4vHUMhKPvpOn+88GHJsXKGBgS7JhVt8jjaKBJX2/TqIpnc+wYvrjM8uvyshpSAMIlDt+4kQ\nKFshBPhZ79TK+Z6jiid2hugTlYoefjbmozf7bBh++ZP00x2fXH5Ho9nSPLWrxa1Xv7zrNwPNzkNL\nKxtp4AePBNy4zcZ+pdtEb1MmCDAMwzAM4w13+WbJ39+TIKVsN9DS6lQAICR0drYr4bRii55CwJzq\nwArryNoUqtj7mo5lrGqxe8IjTheCkmNzNscnU8Ko/djYvOav75a8+8KItQOa3pLmZy6OmK4KghgG\nOzVSwB1P+jz/vICUglzOoV5PkFIgpaDRsqk2Unp6Fo9l02qHjatsjoylxAkMD1rcvz9HKz49YBJM\n1hwy+MDy3YNBEIcxWmmk1X7PJFbky7nnTZYFliVJVHvVfrqi+df7Q37jdhv5KoKtjHfmKvTl4suf\nrI/PplQbyz+XKsl/+K8z/MlvvLZ/Ln7amT4BhmEYhmG84c5bK+kva+IwIQpikjBtr1gDhaJ/aqVa\na6i2HLSSkMbIoPqi1w4jzQNPB9z/VEArfOEOulrD4Rl3UQAAgJB0lOxTk3bLkli25K7tCyvYQkBP\nSbOyW2NJaEWC+ebyUyvHsXBdgedZJy4vODK5/CFgIQSrB23WD9uMVVxa8fKTZsdzWFRy6Hkf7OT9\nlJbEsix0mi5ZLdenve6kYxOKfUfPcGjjJTp3/dI+EADDAw6XbH35FZ56ypLM0nPkQPt+BanL/iNL\nu0IbZ2aCAMMwDMMw3nBSCj5wtcNA1+LV5mzeoaOrPYFUSqM1RMrBV/X2hHXfM4j9T4FefgL94DMB\nf/Q3Vf7+By2+8cMWf/g3Fe59IjjjOGqhoBouPx1yHTi9+Ey7qo1k18gZJvq2xrXOFHRo+np9Bgc8\nclmJSjRDPS8+DUuW/5gAKC1OdVBe9LjSpEqdCqTyBR/LFkTh0l2DNFGLmpad1Apf4I1fgg/eVOLy\nC7J4p2X9DPU5fOwDna+oOlAhK8kvH1cAYNmS7z9YfwUjffsy6UCGYRiGYbwpVg9Y/PrPSZ7el7J3\nVBMol0zORoiUnKfIeorD4xJle1zX/BbJfAV59BB696NEj97D5HwnXLUNff55CCE4PpVwx49bNE9b\nEJ6vab59f4uVfRbrhpbmoVuinbxz5qn7YkLAVHX5Up6OBQMdKQcnl07uPVdQzDu0QigUBJW5gO2H\nLc5Z/cI7FYOlhP1TaulOBVDyE1xb0wjS0/oL6IUeBkJTKOdAwtxkleFBh3wRZqrguSC1Yqq6NHe/\nuyzYsubVnQmwLMFnbuvh0EjIrv0BpYLk8gvzL7sS0+muucDim/edeYfi9ahy9NPMBAGGYRiGYbxp\nwkhx9EiF6cmIAI+BNX24noOyNB2liGI2oae2g2phNbMD11DMPErHcz/Ga06gH3iIx/74ixQu38a6\nv/wvPPSstygAOPUeMTy2M1o2CMi6mnImZa61dEoURu10oec7b2jpAdWTNgwkzDZswkQQp5Ak7R2F\nYh5sqx0oxAg6ulyePqzY87cR/Z0ea3oSpuY1x6YFcSLoLikuPkexslsz3BFzcNpFn3bWIO+mbOiP\nKeQs6q2U9HkpPbYj6eguE4UJk8fmUEnKLZcX2bbFZmJOU8zCzLzgq98VzJ1Wjchx4OoL3NdsQr1m\nyGPN0GtTueeKC3z+8d4qUi6kNJ3qhxCnvO/6l9fv4e3OBAGGYRiGYbwpDo8E/LevjDE6sbAandlV\n5YLLV9HZU6AR+JzTH9DZl2HWHkZJh/lN1+JWxsiN76W4qszIPYeo3v8oR77wJwQf/I9nfK8znQ0Q\nAtb3ROwYEzRPy72PIr1ocgzt/Pmcq+gsLv8eO8dc9k+4YAk8C1ytEULjOeJUCozjaBIlcBybIGhh\nWZLJimSi4hIEijhuT+arLYvJecnPXJawZSCi6CuOVyxSJSj4CloN/uGuFtMziiRSiBN5/9A+A1Ao\n+lRm6sydKD/q+xaHjqdcspVTaUjFnORXPpjlvqcipiuKXEZw0SaHrete3S7A60UKwYev9/ine6NT\nnxUgiRO2rtb0d781x/1WZYIAwzAMwzDeFP9w5/SiAACg1QjZ9+wo179rI3EqODrtcc6QQ09ynAln\nGGyXxtBWcuN7ke7CRLD60BMM3tbkTFOb/q4zV6TpyCouX93i6JxDmAgyjkIoxb2zLiePT2qtyXkp\nt1+1fOnL+ZbgwKRLqhdW0Nur1ALfjtFCEqcWllBkPUEQpFiWpJTTaCkIQnAcQXxa2n49EDxxQGKp\nmH2jCa0QekrQkU34yRN1mqcfdUgVTt4mk3XJ5FwsS7YPBNsW0pJoIbnvyQjXafCzN+UX7ku3xUdv\nfoFk+7eYqy/02bzG5kvfrDNX1XiO5t+8J8OWdWfPZ3irMEGAYRiGYRhvuHozZe/h1rLPzU43mJoO\n6ej0iWJopC5dchpfNQisPFGpDw3k169g8ycdnvv/HiWp1Lh4VcSTox5Hxhbnja/olVx/0QunpDgW\nrOuO0VqTJCE6jfk3V1gcnc0TJoI1vSm5F7jEsVmHRC2fQqO1ZqijwXTdoxa0p17lvMXMbEKtpSmd\n2FmQUmDbnOr+C3BwDCanFnYkak0Ai1g7LCoPqiGNEnJ9hXbJ1VQRNGMcd/Hq+PZ9ET9zvcZ6Fbn5\nb7auks2//8SraxpnmCDAMAzDMIw3gVIadYYCNFq1n4/i9gHWJ0c6WDV8HEeHBORpFQYZ3/Quund/\nn/q6DWz81QJHfnCY/Kp+/uc++PYDAYePtxtzrRqwefeVPhn/xSvxKJUSNudR6cJq/4p8Ey9bxrKW\nTpm0hmogidPlzw6c5IiIklND5wVhYtFoaTQC29KkqSRN2gd5tQYpJbatSZL2BVvLFjYSuL5N2AyR\n1sLnisKENFE4jqRWaZEuU1qoWle0Qk0+e/YGAcZrwwQBhmEYhmG84Yp5m7XDPjv3Npc8V+rMki/6\nACglGJnzUMMQiQypglg7zK+5krlv3cO68+bZt/E6evvOQ1gWhRzcdkvuFY0pCmqLAgAArWKiVoVM\nvmvR4/Mtwd5Jj7mWBQg8K8WxNHG6dHLd4QcUZJ3Icsm5DvWmRZxqPFeSKpirxEhp4Zw4jLuwI6AI\nwuWr4Tiug+1ZtGotvKwPGmxb0FMSDPbAQ+PL77J0FC0yvgkADNMnwDAMwzCMN8kHb+6kq2PxeqTr\n2azd1L/QLAywLUlL5KmTJ1IOINGuR7xmM7Wh85k/MELvB659VWPRWpMmyzebUmlEmi6k3qQKdo75\nJyoKtccZphauq7Hk4i2BDr/BmtIsUkBWtohTcG2NJRQD5YhqNaGr0yaKEhxHcvK8q5SCnrIgjs5U\nElPj+R6ZQoYkjnE8m94ej54+j4NTLgNre8gWFnfXEsBFm12sV1Cn/41UbaR860dVvvyP8/zdd6uM\nTp6pK7LxapidAMMwDMMw3hRbN+b4wq8O8f/+S5Xx2RTPdxk+p5ti+bSOshqKecEIq1H69GmLgGIH\n9b2HyHZ1oqT9Klc29Qvm9OgTzcmU1ozNp/TlqvTloRnbTNazpLq9I9BbaCGTEB1HdMoKq0pzpKLE\nyXSf4zM2q3tDomaMbSksyyFNNKWijSXBdSStE+U+g0RiW4IkXVql6GSqj+u5NGst/JxHoWxTKgiO\nHE/BslmztoOxY7MEsSDraS7bZPPuq19+t9430rGJiC//Y4Xx6YXg57EdLW57d5FLtprDv68lEwQY\nhmEYhvGmGej1+Pynevjbh3OkzztYa0lIUs35g02UfN6URWvCH92L97HraMxlkdHyVXteOoGVJNjT\nR0gzBZJSz8Iz0sKyXLTWzNVDLKlPHRLOuQk5J+bgXBmlJQrBls4JOid2kQ0q6FAQZspUejdSaVqs\n6IxxbFjXPcUz0wM4riRKBMW8JAgFJ3t+CQGpkrgZm6S+eCVcKUUSpydeJ7BtSTbnMjkVIhGoNEVI\nQSJsnFyetJUQA0fnBNWmppR76+4E3HlvY1EAAFBrar7zkwYXbfFfUbdhY3kmCDAMwzAM400lBFy5\ntslPDmSRp9KANFprunIRA50hQaII1UJ5nvTgQdz6NPnz16N/eBR3/gjsfZBkZo7qgUmOfGcXsquT\nzvfeRM/PfwDpOiTzVRACu7S4qZSqVRB7H6VwfBeOCkFaxKUequsvRWVL2E4WIQSNMCFKl+4WZN2U\nrmyLqUYOV6YoN8t8z0b85+5G5nL4rXnS6QNsbtZxypfhegIZR4zN2+RyEinFksntyf/WSlMoOEhL\nEsUprUaCYPFrhZBYtkRpQaUl8XybZivF8+xF1z06ofn2Qwm3v3NxmtBbRao0h0aXT/0ZnUjYczhi\ny9rXpvGYYYIAwzAMwzDeAtb0aboK8zxwIEMtcPBsxdbBefJ+O+3F0jHgoeOYdPt29J3fYsV//iwT\nh+a4Nv8M8Wg38eBavI4O+ntz9Fy6mh1/+E9U//5rjP7R/4W2fVQzQLo2+W3nMfibv0I9aDL/6G7k\nmlV4526ldOgwKj9M58gT5FRKcd+jNC/7MI7XPmgcp2coZwRk7AStNUIoGolLxivQKA9RqI1CNo/f\nmkdbNuvrjzPlbObRuTXYjiROBCu6QqbrWSxLo5Smp0tSb0AQpvT0+Agp0bqdBhTkU2amm2Qtl2Y9\nQqWKcncWrcF2LaIYMr5gfi7BtiVBsLi78eFxTZRoXLsdHMxWEn70aIvpuYR8VnLFBRnOWfkmBgkv\nsNBv9gBeWyYIMAzDMAzjLUFKzbbhyrLP+S64c4cJd+wl050l+3ufwDm6j57Dj6NrVayJMcThfcQr\n1jF/4fV0ju9g+Pd/jYn/+6us/sx72f37/0Aw1SSNbSo/eoDqI0+jLQsr46EaLewN64h/99/RNf8s\n0xtvQB99lJycxp2fJEglYn6CfBIQ9W4i9QtLxpcoQRgLZhs+5WxIqn0svw+3No2DAAFxqQfmZ7h7\nZA2eIxCpIutCVy5hfB5sS9DTKbFtST6rqdYBYbXPAKSaMBJkMjbdPVkyGYvJ8QZBK6RvRZm52QDP\ncwFNPts+uxCFMep5Oxdx0u5D4NpwdDzmy/80z+TsQnDzxO6AD99U4Jptb/zZAUsK1q5weLK69ID2\nyj6bjavfmjsYZytTHcgwDMMwjLcE3zlzV1/HtuldtYqhd99E10WXkS2vwDu2D6oVxIkDvTIKcA7t\nJPvco0z1bkV6Hv2/+lEq+ycZ/v1P4F+2GeKEzd/6U2TWoXDrtaz87ldY+a9/Renn3kX9T/+C+fNv\nxQ+mCOeqJP2rqB3YR2N+jj3eeTycv5nqyAyFsR2LxpYqmG54aC1oRjZxPSRMHUYz65lPchztvgRl\nu2DZkM1zbuE478rczzWFZ7h8fYVG2J6O+R5YJ+r+27agkGvfj5N5/+6JObDrWrruYk0AACAASURB\nVEgp6BvIMzjciWVJHMcCAZ4DSoFKNWm8dOeiv1OQOZFR8+37G4sCAGj3JfjBw03i5AUaH7yOPnBD\ngYGexWvUxbzkPdfmlj0PMF9XfPuhhK9+L+Yb9yQ8d+xM1ZSM5zNBgGEYhmEYbwm2ZZFxliYpSCnI\nee3HhZQI24bxw4jJY0teKwB77AjSdlC5AqOFc0lHx+jIQend14KGw3/4Fc696/8hCVNaTpmoeyXe\nB95Lxy+8H/XIIzgqJu4cQNk++8qX0xAlLqr+kF51nMnudzBZdZFRuw5/nAjGqlkqLZ8MDRAS79B2\nXBnh+5KRnouZ3j9DtTDcHp9lsc3aTlHWWe1PolLNyGyWjAeus3iSa9uQzcDJpr8nS3sK0W6m1j5L\nwIk0JFCpotFMmJhOiOMU210cVHkOXHWe1e4orDVHjy+ffz8xk7Jj//LlUl9vgz02v/OJDt5/fY7L\nz/d55+VZfucTnVy0ZWlloIlZxV9/J+GBHYo9RzVP7Vf87Q9T7t+eLHNl4/lMEGAYhmEYxltGIeNS\n8F1cW+JYEt+16ch62NbiCa2oziA4w2p1FCCEZu8xSVOUyA6UseOAjnN6AdDHj6OqdVb/8jVoLBQW\nsXaxrrqatN5EF8o4OQ+KRRK/wBF7PbFwWd3ciZRwpHQJ6uA+js7leHa8g9FKHoAuZuiUM6x0pyFN\nkVox468kuOMugnoEcbRozFLFHJ30yWUlGb993FecFgcI0U6DymehkGv/txDtSqbpiQVvKQRKabRu\nBwHjkwmNRkoap9i2hbQWLljOw7mr21M/AbxQoR3bevMy8HMZi/dfV+CTHyrz0VuL9HYun71+z1OK\n6edlj8UJPLRTEUZvzk7G2cQEAYZhGIZhvGUIIch6Dh25DJ35DKXM0gAAQA2eg3KWrxSjCmWUFqRa\nkLWaWF1diDikEbe7EPdfu5nZr92BM7SC5NChk+9Mavs4l19CqSDxLE2cKdGZi4hwOO6sppjM4KgQ\n15esivdwdf1fuV7fzXqxD4AsTc619jDZfxHZ6nEiZSOFJp2cxKnPYh/ciTytI3FVFaiL4qkGYWKZ\neffJib/rQMZv7wCoExk8Wp/4Gd0OAvIFr33YOEood7YPC2u1MBmersB8feE+rz3DAeChPptz1731\n8+9Hp5c/qD1fh+0Hz3yI22gzQYBhGIZhGGefcjfJirVLHlaOR7z2PILUQRe6yTzzEN65GxHZLEmt\nBq5F8Zx+wkPHkSpm7rO/SfN/fOPET0t0oQxKU4sKNJ0yjqOxZcqE7EMj0bSX4ueGLsIRirJV4QL5\nFFvFdlZ6E5RFlbrXQ4E6Ngk2EVYuT2FyL7I2h1WbA0AjSIqDbFsr2dwfUPDSUz0COPGK57OthR2A\nk4QQKAVSQiZrgRb4GQfbsZASVq/K4fvtC0sBu45Kdo8IUgUfvDHHcP/iVfZyQfL+M+Tfv9XIF5jF\nuqb0zYsyQYBhGIZhGGcdISTx5e8h3HwxabmHNFcg6RsmvPQmosFzONQaQMYN5r7yLQpZhcqV6avv\nZ+V7L6J5fA4rn0VMTaJHjtP48t+QTs+gtcZq1Yn27qLy6E4mJlISJcl7ilDmmN8/QSJc0iimVRpk\ne/ctpArqbgfr2U2hZGPLFCUsFJqBcC+zTZ/oIx9j3/C7EWjSKCb1y0S9m8gODnP+KljXnXDFmibn\ndIeU/ISTAcDzdwaU0sSxao/ztM0RrTWOY5HxJWGzTv1EdZ1SwWJgIMPmzSWyWQtpWzx20OF7Tzl8\n/X6bVuzw2x/v5OduznPNtgzvvirL5z/ZwYWb/Dfot/jqrOpbPlDpKcO5a8wU98WYO2QYhmEYxlnJ\nyXUQbL2a1i230Xrvxwmu+xla/Rs42FqBH9WR/+532PJvP4BIFU7SonV4ioF3nsfoXc/Qdeul7P3b\nR9upNNMzBP98JyCoN1OqA5vouOF86l/7Jo3II1WabH2M/X/+Tbj3+3RmAnjyEXzR4rHiu/DjGmMd\n55G0WoSVFr0TT6KffQpxZA8ZGTE3cC71jmEmOrYQrr2SYPhSkvLKU5/j+HjAnd8fZ9+zo2zubeLa\natnUIKVOHAJG4XkncvsF5PMWA302riu56MISa/pj0iSho9yOFDK+xarhLFs2+NhWilKK6arknh3t\n3YKbL8/xsfcW+eCNBTqKZ88S+i2XWEsCgUIWbr7IelPPNJwtzp7ftGEYhmEYxmmk5TK0dh3P7T5G\nJGxi7TIVlvCjCgOPfZPVf/4JpC0gDknmash8gee+fDe9H7qGsQf30/j6HQsXixPCVDKpB+nL96H8\nhM73rWbnjKCYUZS/8TfMBwL/kXtYc/Mgx6ciCqRkGuMcLG5DpRJ/NiQzNEz8f/53nK4s6Xm3YYuU\nuarNOfIgB9a8hxWHfsze2WHKBYeNfSF/8aX9fPdH4zSa7TyfO743wTtvHaYwONBOPTohTdu7H73d\nDtOzMaWcRmlBnIAlLY6Ph5SKFrFy2LQxz48fi5meTentFliWpKPDpasQs6pf8fReqLdSZmoWf/L1\nmMGOlFsucxnsXnr2Yr6asOtAyIGRiDQV9Hfb3HBpFs998XVkpTSP72iyc3+IlPCOzRnO2+Ajlotw\nXoF8RvKp9wme2JMyPgcZFy7bIinmzBr3S2GCAMMwDMMwzlq2bdPb303QDKhUQzbFz9LX2IXcmgeV\nQKxI/RIjoxGNoy3SBI78139efJFCHnnLzVRDD8uBluhA5z1kPs/UzoQ16yp4nTl6vvxnVD//e2QI\nCC++gb7nHsDJF5ksbiO1XKZ7L2RlvJ/srTeS3v9jUr+MrS1SJcjOHYJSB0c6LmPdX36axm/+Ad9/\nsotv3jmC0guT4vGpiLu+e4TPfKbIWDOPkO0dgDgBEHieIJ+zCEIo5CXFTEwjshFCMD2bUCpaoH3W\nDQQcr8TMWNDb7aK1oNK06S1GDK+QPLk9IlewCGLBM/sSxqZTPnyDx5O7EybnU1xbUKmEHDraPFVp\nRwiBtCTfvr/BxefluP19Pj+6v8LOfQFhrFg54PKea0t0lW2U0nzpH2Z4ZHvr1Ge7//EG11+W42Pv\n73zNfv+WFFy6ZWE6q5TmyT0xU/OKwV7J1jX2axZ0/LQxQYBhGIZhGGc9P+vjZ33QRaL5PFZ9EjTE\nvevQfonezRC/713s/cX/bfEP2jbyZz5EpW8zaIGb1vDSkJrbw1wzS2F+lENzK7js5qtIBjqoXHM9\nOgzI+RH+4e3ITe8gSj1SoXHCmPnSEM01fRSrszSf2U20aQ2em7IncxXbgj2M660UPvMJRv/3P2fL\nf/hf+T+u3oHb6fPv71pLLWyvxE/PxDz86BQDG/N0pJP4qsmkM0Qq2g0DXEfguO2JbSu2KbgBcQxR\npJicSenvtujqcqgph0olpbtTA4IoFkSppKcYU8hbxKkiaLarFU3Oaf76zoBUWySRalcW0hbYLkTt\nMwZaa5RSBIHg4Wda7Dg0Rb0a0qoHAOw9HPHcwZDf+HgvO/cFiwIAaDdVu/fRBu/YlOHc9Uvr/r9a\nE3MpX/9ewJHxdmUgIWDdCotffq9PPmN2B57P3BHDMAzDMH56CEHaMUS0chvR8Da0Xzr1lNPdyYa/\n+0v8X7wdfc0NqFveg/q9PyL5tc8DAq1h3ZFvI3M+ldgl46R0HnqcPQcjqqVVeDLG/eWPcfjBI6wQ\nx4k3XYBVmwEUemyagWP34EZVam4PzQ1XUrfyBAoGijVimUPWKzhxFZEtwH0/5LnqEPX8APrZ3Xz1\nk8f5o9/u4V1Xt8ueds48y4ftf+KS8n6umP0mPxt8lfPDh9ofUYLvLlT8aYQCIWX74HCkiSJNUxXw\nXEkUp6SqfdRY0/4/SyjiRNFsRMSndRXWwqajO0dnX55cyUdIgeu7i1bStdJorUmTlCSFQkcez3dO\nPT8yEfPd+yrsPBAs++tJU3hyd2vZ516tf743PBUAQLuE6v6RlG/d++Y0PnurMzsBhmEYhmG8bTil\nAlv/4HNs310lKA6eelxrTefkdjITe/BLNjOWoNazBmv1mvYLPI9QuuTcBPvydxBHNZr5QfQDT7Gy\n90kOfW8HpaHDNFavIpXD1N0unK19DMt5VLNGS+eY7d3I5t3fIchsBQTNyKJvQ4meXB/7fnSYlR/o\nof/8q/kvlx2m+pO9hM4KOmd2UVl/Ce7hpxjomUPwDM84mzk6qujtlniOIIwkYdBCCoEgbf9TtA/9\nCqDZSsllLRxb4zspQmmmpwJq8y0cb2ECr1JFvRpgWZJM1gGtadZDMsUMcSsmjtodhnOlDK1aiFaa\nJEkpdReYHJk9dZ2jYxHlwsJ1n0+9DiX8p+dTDoymyz53YDQlSjSubdKCTmeCAMMwDMMw3laEFGy5\n94+Z2ngTzfIqhE4pzh+guO8BrMoMTimL3YgIuzYws2Iz59gWOTchET4FOYdtB4j9e0jcPuSxowzW\n97P/q19h+t1rKZ03yVBmJ7HI0DjSonvAwhrZiRgQpIHL1NobSWaOk1k/SF91D+GKPqZya8jIp5jQ\nfazqajJWG+L8m85nzO8m5/TQMX+Q2uYbiXc/Q7HDZWX3RgQWxycSujsklgXzcxHZvItLk8nZPCsH\n26vuSaKoVBIsS9KZTyh4EcdnBLOTVZIowXYXcuaV1sRRSkxKHCV4GQchJQKwXRut2/sJuWK7ERmA\nSjW2v7ixmOdINq7xeGzH0hV/KeCCja99KlAj0CfOTSwVRpo4Nr0Dns/cDsMwDMMw3naE1vQ+9o0T\nLXmB0zrrWq0KXTiM4VIsBJzTWUG26qhCDo0kDGP8VFAa24W7ukw4NUe2O0drLqB7bB/eoUcobNnC\n2B/fQc8vXUMydogVF8QcHnNx3/kuwtIq4l/4X/D+2x8z+vFfZXDmOIUVWfbIPrqtiB31MkOdw7hH\nn6Pa2ctU8RL6amMU84q9mfWEKXSVFMcnYa6Sks1Y2LakXmkxkjr4bsBgv4dOUuJYnUoTmptXdGXg\nqSfniFrtswBRK8LLtlOQVKrQqUZYApDEUYrtWMSBADSu72LZAiklftYjChLQoJLFK/Dnrve57tI8\nO/YFPL1ncVrQFRdmueB16EOwoseit0MyObd0m6G/S5I9O1ofvKFMEGAYhmEYxtuKEBIxuAb93Fw7\ncfy05rzS97EFCKfdiXdNT8SAPU+y5wnSjVfgBzOEs7OIqTEaTz+H7PJp7jqOU84Rph7R+AzVx3cT\n7Zkh3bmX+Se6SY8coyMISZsdJDmfxjtuobr5Rla9d4rkwON412xk/C++ytz5HdQqCteRTAVZhjM+\ntVwvk3OCfXMul2SrjEUdZHwLKRRCauYrMUJCNudQnW+RJprAkzRbMWLfblZMTrBh00b2N4aYrjlU\n6rB9Z/O0u6FP9STQul1dB6XBhjQReL5D1ApBtCf/+VJ7FV+c1q63Vmlfz3Hg0vNy3HJVESkFv/YL\n3fz48Tp7D4UIKTh/vc/lF2Zfl2o9tiW48jyHbz8YLtoRyHhwzYWuqRC0DBMEGIZhGIbxtiOv/QDp\noR0QRQsPWhKvo0DcDFFXXsWANUKfVQdATI+Rad1NdUZT9muo53Ywv7/GxH1TrPuFq6juOkp+RZZ4\nzCWaajL948cBmHt4J/FohczGFdjFDqxV50CS0ohtjvRdxqqLJLNuluCXf50wtmikDsVMhKMj0nIP\nc4HPSNWhFWV4xLmESGeQETQamjBUSClpNFLSVCOEIE01MoW9+xr0DG8k/9RDbFyxjtzIPp5qrCfG\noW+ozNjRORAsOvgrhECh0ArSVCFtgW0L8kWfRj1qB08nU4fS9oq7lPDOSxyUKnLBxgznrFpYcrcs\nwY2XFbjxssIb8Svlum0uhZzgiT0xtYamoyi5bKvNltVnPp/wdvaiQUCr1eLzn/88MzMzhGHIZz/7\nWW644QYA7r//fj71qU/x3HPPve4DNQzDMN66zHeFcbaRPYNw+68jvvVlUCnStnBLBdJEkXauoGJ3\nMFSo4QiFnhyH555FyQKjX3mMSReEbeH1FEnrMcHoDDpOSaOE1tgcjbE6xCkUBIXBMrNHK8SNCJEc\nJ/TzKJUQhD5xdiU9ZU2S2hwrDWNJsC1FKRsxUD9IPbQ5FAwxX0lwPIvZsIALTM4oYiXadfslRGGK\n7YDtSHI5Bz9jESeanh6byQ2X8I9P9vHJtQ+yK1xDlDrkCu30Hy/j4Z6o7KO1Rp0IJDTt3RGtBdJq\nV02ybAt5YvU/TRRx2F5uX79S8qF3Ft+U3+Fytm102LbRTPpfihcNAu655x62bt3Kpz/9aUZHR/nk\nJz/JDTfcQBiGfOlLX6Knp+eNGKdhGIbxFma+K4yzkRzYgP3zv4Le/gBqaoJQ2jjbLoRsmZWZOlpp\n1PHj6Pu/D0pReXIfaT3gZAZ8a7JBfmWZw//yNAA6VUw+PU0w0z4Q233+Orx1g5TjEPmLv8z+uTXI\nVoGu+DjNtJ8kLpJlnLGwAy0sBJo4FWglKR17iqPlG8m5MVMxdHQIWi2FrxSF2jGmvWFsWxBFiihU\ndHRKiiWHckeWoX5NZaxG1o1pDKxDKBvh2GzunmfPbBd+1qN3ZRcgFqXJSKFJ0xTHEYSBwnEltmWR\nKvC9dlWfKIyJTgQAfZ0W777SeyN/ZcZr6EWDgPe85z2n/n1sbIy+vj4AvvjFL3L77bfzp3/6p6/f\n6AzDMIyzgvmuMM5KQpB0nYO4rBPZmIQ0JkESP/0YenwUGnWYmQQgqkdM7ZxecomoFhBX23XoWxMh\nlp+g0/Yhg+zG1WTWFMgNnsdEYQhHFjlaKfP0pEtHZ4rjWkyGHVQaNvl4im6nzoF0JfWWhT+8iqzM\nMKTnGbHKCK0Y6IbCwWeY8AYZUoc54q+h1WqX6azXBX0DBRwbekshxekxeksWz7pZHAmPJ9vwHUlH\nLmXv3oBMzqNVD2nWA7TW2K6N6zkIKejvzzIyUiebc0mihKu22rz/Kp+5Wsr9T8XUGjalguRn39lB\nFLw+Nf+N199LPhNw2223MT4+zhe/+EUOHTrEnj17+NznPmf+YjcMwzBOMd8VxllHCHSuizTXdeoh\nqxKRjhxDTU+2a+VPNZl4YpKkvrQGZTS/uPpNGi5UymkcGsXvXoVYsw5fR2SkZmY2QeHiOBLHFtRD\niRYWxZLNxh3/QveaS9jNZYhykVVOg/rIDKv7i9RCh6yn8MePEmzYSDYXIwJBT7dDqxETRQm2nSXr\npQhhY3d2kcYpji2JI810M0OjBf1dUK+2KHcVsByLNFXEYUzYighdm1wxw+RUwNDKPBsGUi7bLOku\ntTsZdxQsPnCtderzlQo2U8v3BHtdRLHiO/fMsvdQCyFgyzlZbr2uE9syh35fiZccBPzd3/0du3fv\n5rd/+7cZGBjgd3/3d1/WG/X0vDGHQl4vZ/P4zdjfHGbsb46zeew/DV7tdwWc3b9DM/Y3x2s+9p7r\n0Fddw77/+Acc+6tvEMy8jJnuyUpDEqjVqB6YZ3B1ixnLYk51kKYxadI+tOp6cFH5IA/NbGEqLDL/\nxH4KgaD3yvPRQpKrjzPx/cfY8PGNPL7fw1Yh8py1DA1YzCSrSJuKJIFSh0d1roVrCxqBxXQFtqzO\nMTJpIy2BpTTzdc3kVEw5b5Em6kTNf3A8hyRO2o2/ooSgEZIt+FQqIRsuL7D5nBeurflC9z4IFVNz\nKV1li6wvz/i6lyJOFF/447088Wz11GNPPFvn4LGI3/u367Hkyw8EzuY/86+FFw0CduzYQVdXFwMD\nA2zevJlGo8H+/fv5rd/6LQAmJyf52Mc+xte+9rUXvM7UVO21GfGboKencNaO34z9zWHG/uY428d+\nNnutvivg7P2+ONv//JmxL1X6zGeYfGw/wT0PLTwoJdJ3Uc0XDgwGrhggqMPEXY+z+tYN+FEThYXn\nJURRSivS5DKKOJUIAUpZVH/204w7eTqdGXS1gtOcJfKKuEHEqn4FoaC1+lw8mVKPBXEMSaJJEs2a\nQYFlgUxgti6RwkJYDo1GQi5nE4SCaiXg0DGX9ERlnyRu71rYrk0ctLsBp6lCpZpGLeLr329Sqba4\neGN7ujg5p9hzRJHLwoXrLPr7i8vee6U0d/wkYseBhPk6FHOwebXFh67zXvGq/XfvnVkUAJz0wOPz\n3HHXKFdfUnpZ1zvb/8y/Fl40CHj88ccZHR3lC1/4AtPT0yiluPvuu0+dEL/xxhtf0l/qhmEYxk8v\n811h/DSSvseGr/4F09+8i/rjz2BlfLo+8j6yW9ZTufchxr70P6jd98iiPgMAnVs6sTMuSUWho4SZ\nJw7inHMtHU5MX7ek2ZTMzMbkfIeRzBBxpEFC3NFPrZWjKx1H5rOkzXn6btrMwcinrxwyUc9QbUBH\nJj11gDdNIQxTtm6z2DMGqWp39U1SQcaO6ezw6O8WTM1BEivGJ1M83yGJUsJWjJCC1Sscsp5g++4I\nx5FksjbVakKiBN9+MKWQEew4lPLsAUVwoqLq/U+nfOw9Ed35pfftzgcjfvLMQupUtQGP7EyBkI/c\n+Mq6du09dOazBzv3NV52EGC8hCDgtttu4wtf+AK33347QRDwn/7Tfzr1l7phGIZhgPmuMH56Ccui\n5yPvpecj7130ePmGKynfcCXVh59g5HO/jU5S3LxLYbiABqrjMbUdxwE4+q1n2LLtflZdMkTG6eDY\ncQuVgps0UMImSSL6cy0CXAbrT1NWTXZmz2dDr0f2uV2ct0owIc6n4Csm5y2O1SxK+YhsJkOvnKLh\neziORRBqNBrv6D6qa1dRzLa4YGOOINTM1QApEGiU0tQq7Um1EHDxeQ7nDPts3RDz8F1HcLu2EgYJ\nWiuCBP7xxzHVul5USWh8VvO336vz2Q/ai1b3k1Sz8+DiDsIn7T6c0go1Ge/MuwFjMyk/eSZhel6R\n8QTnr7fYtsF5wR0EcybglXnRIMD3ff7sz/7sjM/ffffdr+mADMMwjLOP+a4w3q6Kl1+EGlyDU53A\nyjhUJ1KaY/NEMw0ApG8RVWrtXQRRJchkKeTz2LbEyjiAZkPnLOfIw+wQ5zObHWYOcFpNGn4eZ+UG\nMoRE2sG1U/pKcCS0mKulKKlZn5uia1WRWdWJSjQgyB7fj2cNEqeSJG037dJa43oOpbxNJiuZGm+S\nLzis7Id1K9sB+9phh+FLa/xEaxoFh1ZLo5SiUtfEYYrtWFjWQnB/fCr9/9u78zi7qjLR+7+1pzOf\nU3MlqSSVkHkgJMHIjKIypfHVi4Bc9crVt+37SkOrfdUXh9t6u/3c7n7x029Ptz+ILbytEulGaecJ\nQVAQImEKIQlJyFzzXGc+e++13j9OUkmlqpIUGSrVeb5/wd777POcTW3WevZe61m8tEOxbtmR7mS+\naBjOH/Nq5JDhPPQPa1oa7XH37+sM+dbPSwweNUpn296QvkHD2pUpntk0jD7m1K4Dl6yZ3sMpp4o8\nphFCCCGEOAVOLMbQtk56XzzA4Ja2kQQAQFdCki0paD9AYqidILCYOwPmOG3UJkJqnDz95TiBXV25\nN0zX06NmUJsMKf7maeK5DoJEHQC2ZYh4mqSVJ51QzPXfoKbBA9elEDqEBixbUQotLNumPx9hMKfI\n5qtzAFJxhzmtKVLpGHVNKebNz7BsSXLUE/74gtk0bPoZgYYF81zQYKofJ/DDkQnFh+WPGaWTiClq\nkuM/mc8koD4zcdfz1y/4oxIAgFDDxtd8Llqe5J1X1OAetQ5YxFPc+PY6Vi4eZ0ySOCFJAoQQQggh\nTkFh63FWw9YQrYvxxr/+HqdtFxhNY6JMPtVK0i4QdYoke3ZRdlOUQxtba1AWKuaRa72Q6N7N+G4c\nR1XH6GPg0vZ/p6nG8K6GV0nHQ4phhI4+Dz8AS0Hf8qvJlmz6CjGKZYuDXZpcXhNqTRAYsrkA17Ox\nHAc/HP1UXrkOjckSkajLUNFm1QVl4l5AqVBdTyAM9MixERcWzRnd4XdsxYULxn/Sv/ICh6g38dCd\n9l497vbBHLz6Rsj/+f6ZfOHOVv7gmlpuekcdX/pEKx94T/PE114c10mXCBVCCCGEEGMF/WOr1hyt\nZ1M30RkRcjvbKM2EzqEYZV/T3qO5IL+bFr+LwL2M0qAiEgd0yEA+TmpWA0O/bafyrjSqbChUXMJy\nAdo7qF07CJlaPFVhR0+aviGFparj/XM+tPda7G8vMHNmklBb9PUV8Ms+Pd1FolEb3zeUKyGeM7rj\n7Qz1Erv2GtRLFqVCyNrFedLNF9C2v59XthRQiSiOW+3kr10aoaVxbKf+hss8ADa/ETKYNWQSiuXz\nbW660jvudXLHzx0ASESr37N0YZylC+PHPY84OZIECCGEEEKckhNPTC11ldn/b8+RurIPx0kTlBTx\nTIroz37Ag4k7+PiyASJeIzG7QtSNYnKDkHHpeGoryt2A/8E/IjQWq3Y9wt5l17DM2wfKIbQ9LB0Q\nagdlaUplQ6WsGRoO6eos0dQYw3MVjm0RYOFGXGK2ZmAwxLEVhcCjUKkQ90IilSHUnl1Yq5eSTFiU\n8gHNlTbqi7t5aeG17NxZwA9DmmsdLlzg8P7rU/T15cb8Vksp1l8e4bpLDLmiIRFVuM6Jr9EFLRZd\nA2MnFc9qsFg+f3SGMJzXPLcNhvKGZAzWLVE0HGeokRhLrpYQQgghxCnwZjSe+CAD+T1dNHjDpP12\nHNsiWeqh/PJWwmKOUMVIhQNEjY+vLdqDegbKKXSygQNPbUMXi9hoBrxmktk38FRAxYpSctMQBnie\nQmtFLhtgKShVFH4lpL2zBJbC9SyMMtgOlMsa11U0NTgE2qFzwCPdtZ3Y3q0ULrmWIAxJpl2aTBfZ\njiy77UXUlw6w9uI6IhGbXFHz9jUu1gkW6HJsRU3SOqkEAGD95R6L5lijUqqGjOKmK0Z/14FuzTd+\nbnh6i+HVPfDsVnjg54bt+8cfTiTGJ0mAEEIIIcQpqFt/zUkdV7O8kVi+j/5CnKgdYP+P/87AKx28\nb+hR8l0DNDsDzAj24BAQjzqE2pD6zKcoJBqp3fRT0naWaDhI8L2HyakkI58MdAAAIABJREFUQ9Fm\nir7NwYEoyoRobbAdhRd1GcxqlIJSSWMphW1bGAOeA7GozdyWCI5T7QbmgigFFSe3cC3l0KY+VsKq\nFHhX/8N0N1yISsTJFPYTT0VxXIfBrGbj66e/LGcsYvGx90T50A0eb1/rcNMVLp+6PcbiuaMHrjz5\niqFnIKBcrFAuVKiUKgznNU9tNmMmLouJSRIghBBCCHEKZt/zx9jp45epTC6fQ9M1F2MP95PzGpnR\n+wKVrbtw0i4N5Q4yA7tIOGV8X1EbyzEn2seK/LPUNMdYduNcnLoUdf5e1PKLKO9vY2BHO6GyaRuI\nExqbQtHguTB/drUkaCqh8GIOtm0deopuiEYsZtTCzCaLec0+rn1o6I2yiGa7aTnwGxIqS9TVXJd+\nHtPdTy45k1luH/3DinS+jXgyQiRi89hzecLw9He4LaW4aJHLTVdEePtaj8gxE4lLFcPre32MNli2\nhXIUxkCl5HOgS9PZL0nAyZIkQAghhBDiFFjRCBc++32wx+9WKc9hxVfuILOwmf5YC62fuJbof/so\nQc5n/j3/lfLBDmpy+4lkuzDDgySCQcJf/hitLaywxFP1NxNtqce1DL4dQ7seA0WPVw9m2NaZxlLg\nB4a6Gpv6FHieTSbjYFkW9dEChAHDQ2WWL01QKGtm1ARkYgGzMiVcOyQeDjMz3E+iPEBjf7XSkVcY\nZOPl/zeeFdBc3svG/GLmD7+ArSs4nsNAX4nfvlI+m5cZreHhJw1ezCOejBKJOigMgR+iFPiVACXr\nhp00SQKEEEIIIU6RV5th1if/cMwcYTvmsfwrH8ZNeJhCluCRHxDrqK4kvPDP78BVPm7aJUjVo4OQ\ndPYg5uXnGf7KfRQHyxw0LQSWhR1xsJVF0D9EYe6FPB97B/v7k4BCWQrfN3ieRa7iYNuKmfUWmZjm\nD2c+xlXWb1mzKkUs5jKUVXh2UI3ZMdTFylwQbMOlui1SHKASwGP2DZSSM2iM5tjcVUdWJ1nkb6Up\nlsOyLILQsPNAcDYvMT9/Adr6bWzHxrIUrueQSMXwPBu/EqC1prlWsoCTJdWBhBBCCCFOg9n//Y+I\nzKhj8JHvERQqxFrqmfWfriC9ZBZ6904CL03/k0/RcOMlNN/6NuzCIKVnniBwklDXTClbQed8ig9u\nAMB//Amia6/mkhU2beUZzI4OoIOQzovfB9bhajmGeFRRKiiUMviBTU1Gk45V+Pzyx4gEJZY67bRH\nS3SVkmgU4VEFeBIqz0r/xZF/Nyh2tMfpzXksmlVE93byy/7V2PiUtEvWZAj9EDfinNJT91AbntpU\nZNd+HwMsmO1yzboYtj3+SYsV2NE2drtSikjcI58rgWLUwmfi+CQJEEIIIYQ4TRo/eAuNV67A3b0R\n5ToQBgSvvIDONDK8bSsLbpyN21hD+OwvKA3nyHYME712PWE0Qax9J8W9+9Fv7AcFevfruL37UPHF\n9OVcFlu9hAf3M7TwtpHvi0QU8ZjCaXSIZzsIapoBi0poY8XjmMEcEatCtNSDHyQxBtoHXBbFqk/x\nC4FHaBS2qo6l35mfwSuDKRwrJN/Vw6P9i8Bo/rP6LjvNAorao1jIEom5mFATBOCcZPWfw7Q2fP27\nw7yyozKy7eXtFV7f6/N/3ZbGHqfqUM8Q5Evjf49tWyil0GdgjsJ/ZJIECCGEEEKcTq3L8FsWol5/\nHsoFzLJ3QtMckut66bn3f6Je2IopVygTIX7F28n8HzcQf/Vpcq9vQfUUUJEIJu/T/1ov9ff+FcN3\n/r+kIhXCwMDvnqL2muspRNN4LjiOhSmXSe55jcW9P6N31bvpSSxgsBAll24g7Q4R+IZuXUelolGW\nReHQUH5joHM4wsO5G3hbdBMBNr8YXgdAuQK7Cmlm0ca11hMMqxp+rG+gXPSplH2a6jM89UKOrbsU\nMxssghBqUxZXXuQyo/44q34BG18tjUoADtuyq8KzL5e4cm1szL66JDj4dHbkqJQDLFuRSMdJZeKE\nWmO0wXPlLcBkSBIghBBCCHG6OS5mxeWjNnl1DTT/2Vco79xMkCtQP28ulgXevq2Eb+xi+I02Op7u\nQOeLAPjZCio7wMUHv8vghdcy9KvnKWzdz/w5P2TP1XePnDf63BM0fPsvabyhmWLfcnL1Cykf7KS3\nfhZpdjMYxOnXKQwKpUAbRbGs6M8qDvTa+P4svlVej8ECZaG1IQgAyyUolNlgv5c8CfyyT3aggNaG\nMDTE4i49gz49g+GhCkSarXsDPnBdlIWzJ+5i7tznT7xvvz9uEpDL+7Tv7SObOzIPIT9UpFKqEI1G\nQEFjzfGTDzGaJAFCCCGEEKfKaCgOgQkgkgInOu5hTiyDtWgNhZ98BzvXA3tfJ9/WxdC+Prqf66KS\nL8PhYS0aBnYNUvzmkyT+/FLyfoLU7Bhm6AAArgqo84aYmdpH+8FuCoN1lAoGO9dP4vWXKK9Yhyrl\n2daeplyr8SIOrguua9GZi9E7qNHaoDWAgzEGE2jC0GAMYDvsKs4gN1wCBkf9jsAPsawj9WWMMSil\nGMrBr1/wj5sEHG+RMXuCfvxPnsqSK4Q4roPWGh1WFwYb6stRSQRYlsWy+dKtnQy5WkIIIYQQp6Kc\nhVwnKqiOszG5HohlIDWL8WbPWrEkzrr1vHrThzHFHLocYsIxh4ENyihy29uYXeygp1JAJ9PUpDWX\nNuwkZlfw7BCz/lLKm95B3vMpffMh7BVbwUpjB6uwdEhv1mJ3dw9LV82svnlwFY6tqM9YDAyNrvAT\nhAaOGlo/3kRby1J4UYfhgeJI5/9oB7tD/MBMuFLwRUs8nttcIjxmgV+l4MJF3pjjCyXNlt2aaDyK\nUgpjDDrUlEtljDYoo3nLihjrL4+M+31ifFIiVAghhBDizTIash0jCQCAQkNxAPK9E34s2trChc98\nn/TFa8ZPAABCaFo3h2idS9rxSTQlcW7+EN6KC8l4RbxDi30pyyJ9zTr6563D3rODaPtO1CWXk8ge\npL/o8st9sxjsL4xEF+pq59x1FenkMR31oxIA19YE5bFrAcSSEQJfUykFGF3tkB+dCDj2uLnPiJUL\nPa66OIpz1FN/x4ar1kZZvWRsR/67vyrga2vkO5RS2I6NF60mDO9YF+HD6+MTVhYS45M3AUIIIYQQ\nb1ZxEBWOneSqgHC4m7B3EGfuApQ19rmrm05x+RMP8ern/5r99z4wZn+0MU7dikYGd3XhJzJ4qxsx\nWjPQspJ6XcS2jvTY/XlLeG3WJVzwZy3MbN9I34VrKLb/hO9uXUR/KUYsUT1WKYge9bC92rGu7jP6\nyPkUMH+WxVXLEjy5qUhnrybQCi/i4rgWg335kWN1qKlojRdxAaiUA17dUWL10ui4bxKUUrz/+hRr\nlkZ4ZXsZA1y0JMKSeWPfAlR8w44J5hDYtk1djc36q5Lj7hfHJ0mAEEIIIcSbpSdeMEsN9aAe/wmF\nbAn7XbcRXXfVuMfN+OTHSRa2s/uRV6gMFrE8h/oVzVzwnhV0Prcd5SbY+6+/Y8b6t1DpHebx7HWk\nvDILa/pYWt8HQG9mITUFzYEF13HJ5XG6/QF+0L+O37cPAJDKVCfbxiLgHOr9+YFhKFsdk1MT19Qm\nAnqGbYyyqMtYZGptyrbLf3lPlNxQmb97OI/va4LQYNsWYVD9rFKKwA8ILAsdhnTu6eOrO+GiZSk+\n84fNE9buX9zqsbh1bMf/aBXfUKyMX/pTKcXb1yWIeDKw5c2QJEAIIYQQ4s3ykph8D4pxOqpD/dhB\niXgMgk0/xW9pxZ01d+xxSlG64HIW3xYQb65BORZ+tkjPS7vo29yLu3Qp1sH9BC86RGY3AJCtRNjc\n00zc8Yl7IXuzDWgs6pIFOsImoo7PmtW1qEqezTsNi5bWkopDMl79SmPAVZoVLQGZuOHCVs3OPo90\nzh0VWiW02DvgYuWKROMe1qGa/MYYwlBTLlbfghiqw4L62ntH3ii8tGWYXz0b59rL02/68iZiihn1\nNvs6xo6Zqs9YXH9F6k2f+3wnqZMQQgghxJvlxSE6tpNrcll4/dWRf3fCEv7PN0x4mvrb38/+rbBj\nw0be+N7v2fuTzRx84gDD+wuU93Sw6LpWen6xicritSOfCY3Nq30zeL53PvpQl05ZkFdJSnYCjcVV\nl9Xy7msSYHk4libU4AdQqUDBt5nTbLF2gcaxYbg0frewULF5o8fFduxR4/IdxyYScdFagwYUpOsz\nR10Ew+PPDE3mao6hlOLK1REio3MTHBuuWB2ZcPKxODF5EyCEEEIIcSrSszGWB5Uc9LZjBnth+2YY\nOGpicBDgHWfki1KKhV//G/Z/+n+Q3/QylaEibjLKBe9bztxrlzHUlkVrxbO5VaM+N1R0cANNLKpQ\nSpH0B2iM9WKF0FOeQ0MyYG1DOwdej9HrpKmvHd1p7s7ZLGyqjrk3TNyh7h4cf0iOZVuEYTjyG2zX\nqU4oOHR4pTLRrOeTd9mqKFFP8dyrZfqHNZmExdrlHpevGr8Mqzg5kgQIIYQQQpwKpSDVDDQTPvoA\nVn54/OMixy9hacWizPvf99L3//wvMokCidm1hJWQ7t/vZc+vdtHzma/SlRs9Cda2IZMwtHdXmFUP\nSwovkIm5dLszSUeKNEcH0U6c1X2/5KXozcDoQvyBPvxkH6J2SDkY+zagUAzpG9Bjth/+oEJhMARh\nABpiyQSlXAFjDI5j8Vdf76JSMcye4bL+6hQzGo8/D2A8a5ZGWLNUSoCeTjIcSAghhBDidJnROv72\nRBK17C0ndYq6T99Dt1nAq/+2i1ce3ExnX5rOT/89B5veOuo4YwzGGEolTVO9IlvQ6GgSFYS4nsWM\nxDCupXFMQH1xP66t4Zi5C+nIkc790KBPoTj6yb3vG9q7AuLx8VfxCoNwZA6ACQ1BEFTLd8Yi2I5F\nf97m9T0V9rT5/PaFAn/37T66eydeMVicPfImQAghhBDiNLFu/Aj821ehp7O6hgBALAEXLMNeccVJ\nnUNZFrPu+gjc9ZGRbS0V+O7GCqpYBGXhde4lteslKqsvZahxHpWsplzWbI6t5GJ3B7NoY0A1otBY\nYQXf8mjK+DSlArqyCQDiXsgFjUfKm+YLhi37KjgOWBZEPIUfGIolqEtAPgv+UTmC1ppSoXRkwTBd\nTQQAHNchVZcimogS+AHFXIlyoUxnT8CGnwzyyTsaT/FKi1MlSYAQQgghxGmiHBfe/xnM5ifgwA5w\nXNTydTBnVXXW7ps0lIcL/vZu7Od/h3E97GK1Tr9unY/9Z/8bNWsmvYMW7eUkpdwqrolsJWoXUSaE\njv10N1zE0jklLKUYKESwlCIZCfHD6gD+Yhn291RrHPmHqp6WjyrNuXi2oiVjeOJFH8tS1RV7ixX8\nyqGDTfWtwGG24xBNVMfsO65DIhMn9EMCP+DVnSVe3l5g9dL4m74e4tRJEiCEEEIIcTrZDmrNdbDm\nutN2ylf/9WlqX3qOeR+7jszqC7A8h9zOdvY/9AT+D79F7s7P45crRCIOFe1xMGimRhUpapvh1GJa\n39aE4xgCbQi0RaAtCr5Nb85hxcwy+9oDhgrjTwxOxQyXLIH7v1cgNzh2YTSoDk0adQnc0cOHLMsi\nmoiQGwwIQ8Pjv8tKEjDFJAkQQgghhDjHRbe/xPI//yD1ly0b2ZZcOIv08rm89P89jz/UQdzJkEk6\ngKIrbCQfZumvxHEdmyWmkyIZ/NAi1Ec6+4G2eKPHY3B44io+rU2GqGfo6J54YTStj8wtsOxqh/9Y\njufguA5+pUJbt39kGJGYEpIECCGEEEKc42Ysb6B23dhx9PHWJuZeu4LCrtdoveStBLbBtTWDeZe8\nXUMhcAgKhnWpfko6wVAhNaYUaK5i43gWx04aPiziVjvr0YiC7Nj9SsFFiz36hhXFwMaORsFAxQ/H\nnDIS9wh8n2hESQIwxSQJEEIIIYQ4x82/diWW7h13X2pxC4lwHp6do2RClJtguFLBTdhkIj5d5Tgu\nIZSKHByaMc4ZDHVpC9sKRr0lANDa8NKOkHJJsWSeR0dvcWxsLQ5OMoPxFUdX7rdsi1KxWglIh5rQ\nD7Esi0g8yvIF41cbEmePlAgVQgghhDjHRTOpCfeFpTJNLQ7JJ39AS/tGkk6OefEeXF0gZvlE7CIG\nUGiccXp+jmUILJflCyMkIkce3etQ45dDsnnYuM2QSMdZvcTDPeoRcutMhyULknQOjH2qb9sWCkO5\nUMYv+0dtV9x2Y+2bug7i9JE3AUIIIYQQ57ggPQt7YB8Woxft0qGmXDOD1gNP0F4eoKFuNiYcJJHf\nQVfsStCKhelujAHleUTcECtQVMLqk3jLMtQkQiKuQRub1Us9nnulSKEEgT/6u3YchLtvruFgh8/O\ngxXmzU6yeLbh35+ZYCExqonAsdIJhefKc+ipJv8FhBBCCCHOdY6HCRX45ZFNQVh9CzB34CU8XaKh\nJcJOfw7lBx8g8drTePEEWR2ndfAFdDaLcj1q40UsG+bW5klFfWZkfOIRg21BIqIZKtkUCnpMAgDV\nMqXDecOCuR43XJ7kqotTWJYi6k4ctj6qapAXd9BaU98YZ9MuCzP+FARxlkgSIIQQQggxDVh+Bbvr\nAFZ/F9ZAD17nbmL9Bw/tdIg01aJrm+n97TbUUB9esZ+mRJ6+xALCYjV5MEYBiqgb0piuoBQcLuxj\nW9XyoTXJ8SfsZhLVp/jHWr1w/ERAa025dNQwIGURT0WpWHF+s8Xi2e3SDZ1KcvWFEEIIIaaBIN0I\nBqz8MFZuEEtXy3oawHgRep7fycyuFwn378PP5okP7KIhViBv12HyeQqBxUAhhq00obFwLQ1UFwgz\nBkINqUjI4jnjf//SuYqIeyQJ6Bv0+def9PHjX/UQ0wPE3SMlRMMwpJAro4MjbxQiMZdUKkLnwUEM\nim0H1agViMXZJXMChBBCCCGmgaBpEWH7VuxSDnVoLI0BTDxFWAno39JB7aoSicYEvTSQmjOD9j6D\nbSfI6TjFShTP0TiWRqnD3X8AhTaGQsliXr3P/CUWGM22fYahPKQSsHSO4sZLjjw7fm1ngQce2Udn\n75En/c0NOaKZDBXtUin7o8qDWpYiU5ugVKhweBzQYN6iPxvSXHOmr5wYjyQBQgghhBDTQSROdl83\nyeULsMoFMAYTTWKMZviZpxnc1Yu7q5PYombyd3yRgUqMSuCDl6THbcG2IeH59AzZ1CVCQnOkU+8H\nCpShohTaKG68xOZdFxuyBUjGwXOOvAEwxvDoL/pHJQAAXb0BK+sKdJcToxIApRSNszIA2I41si/i\nGlKxM3e5xPHJcCAhhBBCiGlizw9eI7/xJcKyT6gVYV8PuSd/y55HNqEHsnT+3QasS68gEoHOoTjx\nSJnAh7bkCvzAQinFvg5o63UoB0cG8isFiZhiuOSwb6i63XUUdWk1KgEA6O7z2bWvNG58uw+UWb4o\nSTwVwXZtIlGXRCaG1od6/sqgrOr5WhsM8bELC4uzRN4ECCGEEEJME07LPF78n/9O08UtxOoTVIZK\ndL5wAF3SEPMgCBhcdyORIIoXsWiI+QRbX6ar+a0MFBRDebh2cQev9TfTqAyhqVYZypcViWg1GciW\nqpV7JlrQNwwNeoLKPlob2noDHNfFcY8kGaViQCFXQqFobqmtTkg+A9dHnDx5EyCEEEIIMU1k3nUl\nJjB0bTzI3p++Tvsz+6oJABCvjYKvKadmkivZhIGhYjzqX/0puSL05xwiDng2NKQCCCtoHZIrW2hj\nc3g9L21GjeYZY2aTxwVzo+PuiyUiGMslnnDJ1ERwvWpXUykFykKbENe1sSzY023xL4/BUGFy1yAM\nDbl8eOTtgnhT5E2AEEIIIcQ00f2NhyfcVzIO7qwUab8TP1+mx15JXOXoufy9aBNS8hVGQ1uljkTM\n4DqKWJglcFPkKxG0VoAh5hqsCd4CQLVD/9531vDA93rpHzxSEcj1bFIN9biuTeBrSoUK9Q0xQg39\nfSVsxyY/eKhUqQbHtdjT7vOzTR63X33iDr3Whg0/6GLT5hyD2YCGOpcrLk7z3usaqkmGmBR5EyCE\nEEIIMU3kXtg84T6dD2lc3ESsazuD0dnV8f/FenRtM3FXMzSsCY1NMfQItY1rhbi6xNz0EBHbB1Vd\nK6AhHpAvc9whPxe0xvhfn1nAdVelWbkkQX1zhrmLZ5NIV2f6WraF47m07R8kFndIJl2iUYvQGIwx\nI4uIaW3Y0x7Q1nvi3/7gI5388Ff9tHdXKJYM+9vKfOeHPXzvZz2Tvo5C3gQIIYQQQkwbuhJMvDOf\noxjOxGuaD14UFcKBLptV6V5i0XqiBUOprHAyBh0GJMmiTBHLcWiI56mYOIODmh9tsyhUbDJxw9IW\nzVsW6pH5Ab98JsszL+Xp7g/IpByWzY+w4sJGwr1jn8RblsJ2HHq7cmTq4qSTLrnhMpWKj6NtIp5N\nPltGWTF6hqGl4Tg/rRDy7EvDRBJRbNtBKUUYhvjlCj96fID3XteA48iz7cmQqyWEEEIIMU3YNemJ\n9zXW4C2eC/EEaqCbSqFMabjAQJgiCBUrG3qwbZgRz1JjZ7EISTl5ADLRgO6ekJd3WwwXLYJQ0Ze1\n+N12mxd3V7uLT2zM8cgvhzjQGVCuQHdfwFOb8vz+pf4JY3I9h0o5IJFwSCVdvIiDCUOMMaTTNs0z\nE8RjinlNx//d+9pKVEwE1/OwbAtlKRzXIRKPUgngt5tyk7+Y5zlJAoQQQgghpomZn/lvE+6bcfVS\nYpkoQxWHmleeoC7lM+RH2F+ciQ4BY8jEAtJuntmxXookGIrOBKB/2OKNjrHdQoPi9bZqtaBnXy4Q\njrPCb1d3Cb/ij91BdYKx49gYrQk1OK5NuRwQakO5okkkXFbOs6lJHv939wxqbMces92yLJyIx4Gu\n47whEeOSJEAIIYQQYppoevfVzLt5Lco+qgunoOGt81n47hVU+vLUdmwhHjOU8hVyRYuhvEXPoMWw\nU8+c+DBRJ6BAioqKExiXsg+vHYwSYuE4CuuY3uFwQdE3FNI/NH5HOwwNxfzYdQO01hitydTH6O4q\n09FZJhZTFAsVlFL091eoy8ANbznx7x4Y1hNO/rVsi3hMurSTJXMChBBCCCGmCTsSZf4tb2Xeuy+i\n/anX8bNl6le1kFnYTKgsSjv2olLPk4nm2Z2OUCpqUOD7ASVfMc/bQ0gDvTQBhmIFdhxM0pv1que3\nIRKx8H1DpVItPTqUC/irB4fB9lBWGXPMjGHPhVjMJQzDkY66MQajq8OB8rkQYyCbDcgPFwh8KBV9\nojGP5pTBPon+e1PdxF1Wz7V527oTvEoQY0gSIIQQQggxTahYirKbJGZC5ly7YtS+YuDiugo1sB+V\niTJcADA4KmTV7C4KqoaMW6DH12ijyBVh47YU5qiBIdVFwhSuC2GoCAJNfrhMdT6yTTQeoZgb/dR/\n+YIoixa7/H4b6GNWGFCWwoxsMuSzPpZjUykFRGMeEfvkav1felGcx5/Lsadt7LCjq9fFaayVLu1k\nybsTIYQQQohpJFj+Nsq4o7aVQ4ed//Aj/FKF0ms78KNpCgcOYtmG2pRmUX2ONbUHwXLwQ5tSYLF5\ntz0qAYAjqwQrpbAsw2B/gcG+/Mh+27bJZKpvDZJxi3UrY3z05lpuWGdx02WKuU3VcygLLFthHTW2\nqFwKUbaFZSmwFBHXsGzOyf1my1J87NY6Vi6K4B3q72eSFrfdkOa/vLtukldQgLwJEEIIIYSYXmpn\nMjTjUsKffBs7Gad0sJeBre2EpRJ+YYDaixbxb7EPcNm2h9jceg8aGx+HmK0JQodB6nBsRVOtYm/n\n6FPbR829LeZ9BnrGVt1ZtzLO5RfWsGhBBr9cHNl+8WLFxYthwxOw+5jzGmMol30sy0IpRSRicdF8\nqJu42NEYMxpc/vSORvoGfXIFQ0uzi2PLImFvlrwJEEIIIYSYZmLLlvPLtV/kjZ+/wsFfvUy+rQ3L\n86ldtZAXmq8nVzOX5H+6nUTCo6M3ZPdwI7EwxxC1+CoKQF3KoA4N31EKXJdRT+7zufK4311fazNv\ntkdNevxnye+5DBbO0tWJwcYQ+CGFXBm/XC0tZDuKW672eNeaN/fb62tcWmd5kgCcInkTIIQQQggx\nDc2cFefBdz6AXRzmioFf0B+fxebUFQAsqo1izZ5HrMulUNDsG4hT483Gj9SOfL61IWTFzJDf7XRp\nGxjdJaxP+OwtFMZ8Z1OtxdVroseNKxGD299usa8z4J9/WCJXOJJo1KYVn7sjhqzrNfUkCRBCCCGE\nmIZmNzm0tKRob4MnvVtHtjc1xZg1K4YVrWBZCmXZaOXS4TfREK2W+bQw1MQNCQ+uX1Vha1tIx6CN\nMdCU0aycHbCoPs6vNpbZ3xVgK5jf4nDTVTFikZN7At86w+Ev/kiq9pyrJAkQQgghhJiGWmoDFi2I\nU1cfoaeniNFQVxclU+MR9TQeZZTy0GG1jKZjVYfjuJahIaFJVOf3Ylmwck7IyjmjVwJbucBjxQUu\ng9lqGc90Uh7f/0ciSYAQQgghxDRkKbi4tcRGHSWZzBzaaoi6hrpYiWJJUy4HDPQVWTzPZVlzBWVB\nTdSMWRBsIkopatMy9v4/IkkChBBCCCGmqVk1mnctGebFAy6V0MVzNLMSwxQqFpt7a8hmfRbPc1kz\np0R98uRq8ovzgyQBQgghhBDTWCrucOVCzZb9eYaK8NLBDEM5i862Ia5a5fC2i2yUkgRAjCZJgBBC\nCCHENGfbiovmVxcQK1cqBCEkYpEpjkqcyyQJEEIIIYT4DyTiKaT7L05EpnkLIYQQQghxnpEkQAgh\nhBBCiPOMJAFCCCGEEEKcZyQJEEIIIYQQ4jwjSYAQQgghhBDnGUkChBBCCCGEOM9IEiCEEEIIIcR5\nRpIAIYQQQgghzjOSBAghhBBCCHGekSRACCGEEEKI84wkAUIIIYQQQpxnJAkQQgghhBDiPOOc6IBi\nscg999xDX18f5XKZO++8k6VLl/K5z32OIAhwHId7772XxsbGsxHNN+0mAAAH/UlEQVSvEEKIc5C0\nFUIIMb2cMAn49a9/zcqVK/nYxz5GW1sbH/3oR1m9ejW33XYb69ev56GHHuLBBx/ks5/97NmIVwgh\nxDlI2gohhJheTpgErF+/fuSfOzo6aG5u5ktf+hKRSASA2tpaXnvttTMXoRBCiHOetBVCCDG9nDAJ\nOOz222+ns7OT++67j3g8DkAYhmzYsIE//uM/PmMBCiGEmD6krRBCiOlBGWPMyR68bds2PvvZz/LD\nH/4QrTWf/exnmT9/PnfdddeZjFEIIcQ0Im2FEEKc+05YHWjLli10dHQAsGzZMsIwpL+/n8997nO0\ntrbK/9SFEEJIWyGEENPMCZOATZs28cADDwDQ29tLoVDgmWeewXVd/uRP/uSMByiEEOLcJ22FEEJM\nLyccDlQqlfjCF75AR0cHpVKJu+66i/vvv59yuUwymQRgwYIFfPnLXz4b8QohhDgHSVshhBDTy6Tm\nBAghhBBCCCGmP1kxWAghhBBCiPOMJAFCCCGEEEKcZ85IEvD73/+eyy67jF//+tcj27Zv384HPvAB\nPvShD3HnnXdSLBYBePbZZ3nPe97DzTffzCOPPHImwpmUycQOYIzh9ttv5x/+4R+mItxRJhP7v/zL\nv3DLLbfwvve9j4ceemiqQh4xmdj/+Z//mVtuuYVbb72Vp556aqpCHjFe7FprvvrVr3LppZeObAvD\nkC984Qt88IMf5LbbbuP73//+VIQ7ysnGDtPjXp0odjj379WJYj/X7tXTSdqKqTGd2wqQ9mKqSHsx\nNc5ke3Hak4D9+/fz4IMPsnbt2lHbv/KVr3DPPffw7W9/m9bWVh599FGCIOBLX/oSX/va13jooYd4\n5plnTnc4kzKZ2A975JFH8H3/bIc6xmRiP3DgAI8++igPP/ww3/nOd/jGN75BNpudosgnH/tPf/pT\nNmzYwNe+9jX+8i//kjAMpyjyiWO///77mTlzJkdPufnNb35DsVjkoYce4pvf/CZf/epX0Vqf7ZBH\nTCb26XKvjhf7Yef6vTpe7OfavXo6SVsxNaZzWwHSXkwVaS+mxpluL057EtDY2Mg//uM/kkqlRm2/\n7777WLVqFQB1dXUMDg7y2muv0drayowZM4jFYvzt3/7t6Q5nUiYTO0B/fz8/+tGPuP322896rMea\nTOwtLS1s2LABx3HwPI9oNEoul5uKsIHJxb5x40auuuoqPM+jrq6OlpYWdu3aNRVhAxPH/qEPfYgP\nfvCDo7bV1tYyPDyM1ppCoUAikcCypm5E3mRiny736nixw/S4V8eL/Vy7V08naSumxnRuK0Dai6ki\n7cXUONPtxWn/i4rFYti2PWb74RJxhUKBH/zgB9xwww20tbXhui6f+MQnuP322/nxj398usOZlMnE\nDnDvvffyqU99atzPnG2Tid2yLBKJBABPP/00tbW1zJw586zGe7TJxN7b20tdXd3IMXV1dfT09Jy1\nWI91otiPtnr1ambNmsU73/lOrr/+ej796U+fjRAnNJnYp9u9eqzpdK8e7Vy7V08naSumxnRuK0Da\ni6ki7cXUONPthXMqwT3yyCNjxnrdfffdXHXVVeMeXygU+PjHP85HP/pRFixYwPbt2+no6GDDhg2U\nSiVuvvlmrrjiCmpra08lrLMS+/PPP49t26xdu5a9e/ee8XiPdqqxH/byyy/z13/919x///1nNN6j\nnWrsjz322Kj9Z7PC7WRjP9amTZvo6Ojgscceo6+vjw9/+MO87W1vw/O8MxHuKKcauzFm2tyrx5pO\n9+pEpuJePZ2krZgef3/nUlsB0l5IezF50l5M7n49pSTg1ltv5dZbbz2pY4Mg4M477+Smm27i5ptv\nBqC+vp4LL7yQWCxGLBZj0aJFHDhw4Kz8oZxq7I8//jhbtmzhtttuo7+/n0qlwpw5c3jve997JsMG\nTj12qE6i+uIXv8h99913Vp/snGrsTU1N7NmzZ+SYrq4umpqazkisx5pM7ON58cUXueyyy3Ach+bm\nZmpqaujq6mLOnDmnMcrxnWrs0+VeHc90uVcnMlX36ukkbcW5//d3rrUVIO2FtBeTJ+3F5O7XU0oC\nJuPrX/86b33rW0f9wDVr1vA3f/M3lMtllFLs27eP2bNnn62QTtp4sd9zzz0j//zoo4/S1tZ2Vv5I\nJmu82MMw5POf/zx///d/f05e78PGi/3SSy/lwQcf5O6772ZgYIDu7m4WLlw4hVGevNbWVn72s58B\nkMvl6OrqorGxcYqjOjnT5V4dz3S5V8czXe7V00naiqkxndsKkPbiXDJd7tfxTJf7dTxv5n497SsG\nP/nkk3zjG99g9+7d1NXV0djYyAMPPMCVV17J7NmzcV0XgEsuuYS77rqLxx9/nH/6p39CKcWtt97K\n+9///tMZzhmN/bDDfyh33333VIU+qdhXr17Nn/7pn7JkyZKRz3/mM58ZmVR1Lsd+11138a1vfYsf\n/ehHKKX45Cc/yWWXXTYlcR8v9r/4i79gx44dvPjii6xdu5Z3vOMd3HHHHXz5y19m586daK358Ic/\nzB/8wR9Mi9g/8pGPTIt7daLYDzuX79XxYl+0aNE5da+eTtJWTI3p3FaAtBfTIXZpL6Ym9jfTXpz2\nJEAIIYQQQghxbpMVg4UQQgghhDjPSBIghBBCCCHEeUaSACGEEEIIIc4zkgQIIYQQQghxnpEkQAgh\nhBBCiPOMJAFCCCGEEEKcZyQJEEIIIYQQ4jwjSYAQQgghhBDnmf8fmcOYFvVGzu4AAAAASUVORK5C\nYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "32_DbjnfXJlC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Wait a second...this should have given us a nice map of the state of California, with red showing up in expensive areas like the San Francisco and Los Angeles.\n", + "\n", + "The training set sort of does, compared to a [real map](https://www.google.com/maps/place/California/@37.1870174,-123.7642688,6z/data=!3m1!4b1!4m2!3m1!1s0x808fb9fe5f285e3d:0x8b5109a227086f55), but the validation set clearly doesn't.\n", + "\n", + "**Go back up and look at the data from Task 1 again.**\n", + "\n", + "Do you see any other differences in the distributions of features or targets between the training and validation data?" + ] + }, + { + "metadata": { + "id": "pECTKgw5ZvFK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "49NC4_KIZxk_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Looking at the tables of summary stats above, it's easy to wonder how anyone would do a useful data check. What's the right 75th percentile value for total_rooms per city block?\n", + "\n", + "The key thing to notice is that for any given feature or column, the distribution of values between the train and validation splits should be roughly equal.\n", + "\n", + "The fact that this is not the case is a real worry, and shows that we likely have a fault in the way that our train and validation split was created." + ] + }, + { + "metadata": { + "id": "025Ky0Dq9ig0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Return to the Data Importing and Pre-Processing Code, and See if You Spot Any Bugs\n", + "If you do, go ahead and fix the bug. Don't spend more than a minute or two looking. If you can't find the bug, check the solution." + ] + }, + { + "metadata": { + "id": "JFsd2eWHAMdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "When you've found and fixed the issue, re-run `latitude` / `longitude` plotting cell above and confirm that our sanity checks look better.\n", + "\n", + "By the way, there's an important lesson here.\n", + "\n", + "**Debugging in ML is often *data debugging* rather than code debugging.**\n", + "\n", + "If the data is wrong, even the most advanced ML code can't save things." + ] + }, + { + "metadata": { + "id": "dER2_43pWj1T", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "BnEVbYJvW2wu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code that randomizes the data (`np.random.permutation`) is commented out, so we're not doing any randomization prior to splitting the data.\n", + "\n", + "If we don't randomize the data properly before creating training and validation splits, then we may be in trouble if the data is given to us in some sorted order, which appears to be the case here." + ] + }, + { + "metadata": { + "id": "xCdqLpQyAos2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 4: Train and Evaluate a Model\n", + "\n", + "**Spend 5 minutes or so trying different hyperparameter settings. Try to get the best validation performance you can.**\n", + "\n", + "Next, we'll train a linear regressor using all the features in the data set, and see how well we do.\n", + "\n", + "Let's define the same input function we've used previously for loading the data into a TensorFlow model.\n" + ] + }, + { + "metadata": { + "id": "rzcIPGxxgG0t", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "CvrKoBmNgRCO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Because we're now working with multiple input features, let's modularize our code for configuring feature columns into a separate function. (For now, this code is fairly simple, as all our features are numeric, but we'll build on this code as we use other types of features in future exercises.)" + ] + }, + { + "metadata": { + "id": "wEW5_XYtgZ-H", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "D0o2wnnzf8BD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, go ahead and complete the `train_model()` code below to set up the input functions and calculate predictions.\n", + "\n", + "**NOTE:** It's okay to reference the code from the previous exercises, but make sure to call `predict()` on the appropriate data sets.\n", + "\n", + "Compare the losses on training data and validation data. With a single raw feature, our best root mean squared error (RMSE) was of about 180.\n", + "\n", + "See how much better you can do now that we can use multiple features.\n", + "\n", + "Check the data using some of the methods we've looked at before. These might include:\n", + "\n", + " * Comparing distributions of predictions and actual target values\n", + "\n", + " * Creating a scatter plot of predictions vs. target values\n", + "\n", + " * Creating two scatter plots of validation data using `latitude` and `longitude`:\n", + " * One plot mapping color to actual target `median_house_value`\n", + " * A second plot mapping color to predicted `median_house_value` for side-by-side comparison." + ] + }, + { + "metadata": { + "id": "UXt0_4ZTEf4V", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(\n", + " validation_examples, validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zFFRmvUGh8wd", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 635 + }, + "outputId": "4beb9302-648e-4cf5-a908-071245684798" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_model(\n", + " # TWEAK THESE VALUES TO SEE HOW MUCH YOU CAN IMPROVE THE RMSE\n", + " learning_rate=0.00002,\n", + " steps=1000,\n", + " batch_size=5,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 201.29\n", + " period 01 : 180.20\n", + " period 02 : 169.46\n", + " period 03 : 163.52\n", + " period 04 : 161.19\n", + " period 05 : 160.91\n", + " period 06 : 161.44\n", + " period 07 : 162.41\n", + " period 08 : 162.92\n", + " period 09 : 163.21\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8FHX+x/HX7G56Nr1T0ugYEkro\nLbRQBQxFKYpiOYWzcT8579DTU1E5G0hVxIKnIhEQkA7SpQYCSAuhJBAgCamkkDa/P9A9agiQzewm\nn+fjwePB7k55Tz6BfPKd78woqqqqCCGEEEJYEZ3WAYQQQggh7pY0MEIIIYSwOtLACCGEEMLqSAMj\nhBBCCKsjDYwQQgghrI40MEIIIYSwOgatAwhhyRo2bEjdunXR6/UAlJaWEhkZyaRJk3B0dLzn7f74\n448MGzbspvcXLVrEq6++yuzZs4mKijK9X1hYSPv27enVqxfvvffePe+3opKSkpg8eTKnTp0CwMHB\ngfHjx9OjRw+z7/tuzJw5k6SkpJu+Jjt37mTs2LHUrl37pnVWrVpVVfHuy9mzZ+nevTvBwcEAqKqK\nl5cX//znP2nSpMldbevDDz8kICCARx55pMLr/Pzzz8TGxjJ//vy72pcQVUUaGCHuYP78+fj5+QFQ\nVFTESy+9xJw5c3jppZfuaXtpaWnMnTv3lg0MgL+/P8uXL7+ugfn1119xcXG5p/3di7/97W8MHDiQ\n2bNnAxAfH89jjz3GypUr8ff3r7Ic98Pf399qmpXb0ev11x3DihUrGDduHKtXr8bW1rbC25kwYYI5\n4gmhKTmFJMRdsLW1pVOnThw5cgSAK1eu8PrrrxMdHU2fPn147733KC0tBeDo0aM8/PDD9O7dm4ED\nB7JlyxYAHn74YVJSUujduzdFRUU37aNFixbs3LmTgoIC03srVqygQ4cOptdFRUW8/fbbREdH061b\nN1OjAbBv3z4eeughevfuTd++fdm+fTtw9Tf6jh078s033zBgwAA6derEihUrbnmcx48fJzw83PQ6\nPDyc1atXmxq56dOn06VLFwYNGsRnn31Gt27dAPj73//OzJkzTetd+/pOuSZPnsyoUaMA2Lt3LzEx\nMfTs2ZNhw4aRnJwMXB2JevHFF4mKimLUqFFcuHDhDhW7tUWLFjF+/Hgee+wxpkyZws6dO3n44Yd5\n4YUXTD/sV65cSf/+/enduzePPvooSUlJAHz66adMmjSJIUOG8NVXX1233RdeeIF58+aZXh85coSO\nHTtSVlbGxx9/THR0NNHR0Tz66KNcvHjxrnP37duXwsJCTp48CcCCBQvo3bs33bp14+WXX6awsBC4\n+nV/9913GTBgACtXrryuDrf7viwrK+Pf//43Xbt2ZciQIRw9etS03127djF48GD69u1Lnz59WLly\n5V1nF6LSqUKI22rQoIF6/vx50+usrCx15MiR6syZM1VVVdU5c+aoTz31lFpcXKwWFBSoMTEx6pIl\nS9TS0lK1T58+6rJly1RVVdUDBw6okZGRam5urrpjxw61R48et9zfTz/9pE6cOFH929/+Zlo3NzdX\n7d69u7pw4UJ14sSJqqqq6vTp09XHHntMvXLlipqXl6cOGjRI3bBhg6qqqtq/f391+fLlqqqq6uLF\ni037Sk5OVps0aaLOnz9fVVVVXbFihdqzZ89b5vjrX/+qRkVFqV9//bV64sSJ6z47duyY2qpVKzU1\nNVUtLi5Wn332WTUqKkpVVVWdOHGiOmPGDNOy174uL1fTpk3VRYsWmY43MjJS3bp1q6qqqrps2TJ1\n8ODBqqqq6rfffquOHDlSLS4uVjMyMtSoqCjT1+Ra5X2N//w6R0REqKdOnTItHxYWpm7fvl1VVVU9\nd+6c2rJlS/X06dOqqqrqF198oT722GOqqqrqtGnT1I4dO6qXLl26abu//PKLOnLkSNPrqVOnqm+9\n9ZZ6/PhxtVevXmpRUZGqqqr6zTffqIsXL75tvj+/Lo0bN77p/cjISDUxMVHdvXu32q5dO/XChQuq\nqqrqa6+9pr733nuqql79ug8YMEAtLCw0vZ4xY0a535cbN25Ue/XqpV6+fFktKChQhwwZoo4aNUpV\nVVV96KGH1J07d6qqqqqnTp1SX3755XKzC1EVZARGiDsYPXo0vXv3pnv37nTv3p22bdvy1FNPAbBx\n40aGDRuGwWDA3t6eAQMGsG3bNs6ePUt6ejr9+vUDICwsjICAAA4ePFihffbr14/ly5cDsG7dOqKi\notDp/vfP9ddff2XEiBHY2tri6OjIwIEDWbNmDQBLliyhT58+ALRs2dI0egFQUlLCQw89BEDTpk1J\nSUm55f7/85//MHLkSJYtW0b//v3p1q0b33//PXB1dCQyMhJvb28MBgP9+/ev0DGVl6u4uJiePXua\ntu/r62sacerfvz9JSUmkpKSwZ88eevbsicFgwN3d/brTbDc6f/48vXv3vu7PtXNlgoKCCAoKMr22\nt7enXbt2AGzbto02bdoQGBgIwNChQ9m5cyclJSXA1REpDw+Pm/bZtWtXDh8+TFZWFgBr166ld+/e\nuLi4kJGRwbJly8jOzmb06NEMGjSoQl+3P6mqyoIFC/D19SUoKIgNGzbQt29ffH19AXjkkUdM3wMA\n7dq1w87O7rptlPd9uXv3brp06YKTkxP29vamWgF4enqyZMkSEhMTCQoK4sMPP7yr7EKYg8yBEeIO\n/pwDk5GRYTr9YTBc/aeTkZGBq6uraVlXV1cuXbpERkYGRqMRRVFMn/35Q8zLy+uO++zQoQOTJk0i\nKyuLX375heeee840oRYgNzeXd999l48++gi4ekqpWbNmACxbtoxvvvmGvLw8ysrKUK953JlerzdN\nPtbpdJSVld1y/3Z2dowdO5axY8eSk5PDqlWrmDx5MrVr1yY7O/u6+Tienp53PJ6K5HJ2dgYgJyeH\n5ORkevfubfrc1taWjIwMsrOzMRqNpvddXFzIy8u75f7uNAfm2rrd+DozM/O6YzQajaiqSmZm5i3X\n/ZOjoyPt27dn48aNtGzZkpycHFq2bImiKHz66afMmzePt956i8jISN588807zicqLS01fR1UVaVe\nvXrMnDkTnU5Hbm4ua9euZevWrabPi4uLb3t8QLnfl9nZ2fj4+Fz3/p8mT57MrFmzePzxx7G3t+fl\nl1++rj5CaEEaGCEqyMPDg9GjR/Of//yHWbNmAeDl5WX6bRsgKysLLy8vPD09yc7ORlVV0w+LrKys\nCv+wt7GxISoqiiVLlnDmzBmaN29+XQPj4+PDE088cdMIxMWLF5k0aRILFy6kcePGnD59mujo6Ls6\nzoyMDI4cOWIaAXFxcWHYsGFs2bKF48ePYzQayc3NvW75P93YFGVnZ991Lh8fH0JCQli0aNFNn7m4\nuNx235XJ09OTffv2mV5nZ2ej0+lwd3e/47rR0dGsXbuWzMxMoqOjTfVv27Ytbdu2JT8/n/fff58P\nPvjgjiMZN07ivZaPjw+DBw9m4sSJd3Vct/u+LO9r6+XlxWuvvcZrr73G1q1b+etf/0qnTp1wcnKq\n8L6FqGxyCkmIu/D444+zb98+du3aBVw9ZRAbG0tpaSn5+fn8/PPPdOnShdq1a+Pn52eaJBsXF0d6\nejrNmjXDYDCQn59vOh1xO/369ePzzz+/5aXL3bt3Z+HChZSWlqKqKjNnzmTz5s1kZGTg6OhISEgI\nJSUlLFiwAOC2oxS3UlhYyPPPP2+a3Alw5swZ4uPjadWqFc2bN2fPnj1kZGRQUlLCkiVLTMt5e3ub\nJn8mJycTFxcHcFe5wsPDSUtLIz4+3rSd//u//0NVVSIiItiwYQOlpaVkZGSwefPmCh/X3ejQoQN7\n9uwxneb64Ycf6NChg2nkrTxRUVHs27ePdevWmU7DbN26lTfffJOysjIcHR1p1KjRdaMg96Jbt26s\nWbPG1GisW7eOzz77rNx1yvu+bN68OVu3bqWgoICCggJT41RcXMzo0aNJTU0Frp56NBgM153SFEIL\nMgIjxF1wdnbm6aef5v333yc2NpbRo0eTnJxMv379UBSF3r1706dPHxRF4aOPPuJf//oX06dPx8HB\ngalTp+Lo6EjDhg1xdXWlQ4cOLF68mICAgFvuq3Xr1iiKQt++fW/6bMSIEZw9e5Z+/fqhqioPPPAA\njz32GI6OjnTu3Jno6Gg8PT35+9//TlxcHKNHj2batGkVOsaAgABmzZrFtGnTePvtt1FVFWdnZ159\n9VXTlUnDhw9n8ODBuLu706tXLxISEgAYNmwY48ePp1evXjRp0sQ0ytKoUaMK57K3t2fatGm89dZb\n5OXlYWNjwwsvvICiKAwbNow9e/bQo0cPAgIC6NGjx3WjBtf6cw7MjaZMmXLHr4Gfnx9vv/02zz33\nHMXFxdSuXZu33nqrQl8/Z2dnmjZtyrFjx4iIiAAgMjKSX375hejoaGxtbfHw8GDy5MkAvPLKK6Yr\nie5G06ZN+ctf/sLo0aMpKyvD09OTN998s9x1yvu+jIqKYuPGjfTu3RsvLy+6dOnCnj17sLGxYciQ\nIYwZMwa4Oso2adIkHBwc7iqvEJVNUa89ES2EEHdpz549vPLKK2zYsEHrKEKIGkTGAIUQQghhdaSB\nEUIIIYTVkVNIQgghhLA6MgIjhBBCCKsjDYwQQgghrI5VXkadlnbryyYrg7u7I5mZ+Wbbvrh3UhvL\nJHWxXFIbyyW1qRhvb+NtP5MRmBsYDHqtI4jbkNpYJqmL5ZLaWC6pzf2TBkYIIYQQVkcaGCGEEEJY\nHWlghBBCCGF1pIERQgghhNWRBkYIIYQQVkcaGCGEEEJYHWlghBBCCGF1pIERQgghqpmNG9dXaLmp\nUz8kJeXcbT//+99frqxIlU4aGCGEEKIaOX8+hXXrVldo2RdemEBAQK3bfv7eex9VVqxKZ5WPEhBC\nCCHErX300fscOfI7nTpF0qtXH86fT+GTT2by7rv/Ji0tlYKCAp544mk6dOjE+PFP8/LLr/Drr+vJ\ny7tMUtIZzp07y/PPT6Bduw7069edX35Zz/jxTxMZ2Ya4uD1kZWXx/vsf4+Xlxb///RoXLpwnLKwZ\nGzasY/HiFVV2nNLACCGEEGby44YT7D6aetP7er1Caal6T9uMbOTDsG71bvv5I4+MZtGiHwkODiUp\n6TQzZ84lMzOD1q3b0qdPf86dO8trr/2dDh06XbdeaupFPvhgGjt2bOfnn3+iXbsO133u5OTE1Kmz\nmDXrUzZv3kBAQG2Kiq7w2WdfsW3bFn788ft7Op57JQ3MNS4VZJCWeh5vxV/rKEIIIcR9a9y4KQBG\nowtHjvzO0qWLUBQdOTnZNy3brFkEAD4+Ply+fPmmz8PDm5s+z87O5syZU4SFhQPQrl0H9Pqqfb6T\nNDDXWHF6HTvO7+GVVn8l0KWO1nGEEEJYuWHd6t1ytMTb20haWq7Z929jYwPA2rWryMnJYcaMueTk\n5PDkk6NvWvbaBkRVbx4duvFzVVXR6a6+pygKiqJUdvxyySTea7TxawnATwnLblk8IYQQwtLpdDpK\nS0uvey8rKwt//wB0Oh2bNm2guLj4vvdTq1Ztjh07DMCuXTtu2qe5SQNzjQbuobSqFU5i9mn2px3S\nOo4QQghx1wIDgzl27Ch5ef87DdS1aze2b9/CCy88i4ODAz4+Pnz55ef3tZ/27TuRl5fHs8+OJT5+\nHy4urvcb/a4oqhUONZhz2K3YPp+XV/4bD3t3JrWZgI1OzrJZiqoachV3R+piuaQ2lqs61CYnJ5u4\nuD107dqdtLRUXnjhWb777qdK3Ye3t/G2n8lP5xsEGH3pUqs9v57dyuaz2+let7PWkYQQQgiL4+jo\nxIYN6/juu/moahl//WvV3vROGphb6BPcgx0X9rLy9Hra+LfE2cZJ60hCCCGERTEYDPz73+9qtn+Z\nA3MLTjaO9A3qTkFJAStPrdM6jhBCCCFuIA3MbXSu3R5vB082n/uNi3k334RICCGEENqRBuY2DDoD\ng+r1o0wtY3Fi1d0aWQghhBB3Jg1MOcK9mhLqGszB9MMczzyhdRwhhBBC/EEamHIoikJM/f4A/JSw\nnDK1TONEQgghROUYMmQA+fn5zJ//FYcOHbjus/z8fIYMGVDu+hs3rgdgxYplbNr0q9ly3o40MHcQ\n6FKH1n4tOHs5hZ0X4rSOI4QQQlSq0aPH8MADze5qnfPnU1i3bjUAffsOoEuXKHNEK5dcRl0BD4b0\nZl/qAZYlrqSFTzPs9LZaRxJCCCFu6YknRjJ58of4+flx4cJ5Xn11At7ePhQUFFBYWMhLL/0fTZo8\nYFr+nXfeoGvX7kRENOef/3yFoqIi04MdAdasWUls7AL0eh1BQaFMnPhPPvrofY4c+Z0vv/ycsrIy\n3NzciIkZzsyZUzl4MJ6SklJiYobRu3c/xo9/msjINsTF7SErK4v33/8YPz+/+z5OaWAqwN3eje51\nu7Dq9HrWJW2iX3BPrSMJIYSwAotOLGdf6sGb3tfrFErL7u1G+M19wnioXv/bft65cxTbtm0mJmYY\nW7ZsonPnKEJD69O5c1f27t3Nf//7Ne+885+b1lu9eiUhIaE8//wE1q9fYxphKSgo4MMPP8VoNDJu\n3FMkJp7gkUdGs2jRjzz++FN88cUcAPbvj+PkyURmzZpHQUEBjz32MJ07dwXAycmJqVNnMWvWp2ze\nvIFhw0bc07Ffy6wNzJQpU9i7dy8lJSU888wzeHt7M2XKFAwGA7a2tvznP//Bw8ODpUuX8vXXX6PT\n6Rg2bBhDhw41Z6x70rNuV7an7GLdmY10CGiNm13VPvNBCCGEqIjOnaOYPv0TYmKGsXXrJsaPf4kf\nfpjP99/Pp7i4GHt7+1uud/r0SSIirj7UuHnzlqb3XVxcePXVCQCcOXOK7OysW65/9OhhIiJaAODg\n4EBQUAjJyckAhIc3B8DHx4fs7OxKOU6zNTA7duwgISGBBQsWkJmZyeDBg2nWrBlTpkyhTp06TJ8+\nnR9//JFHH32UGTNmEBsbi42NDUOGDKFnz564ubmZK9o9sTfY0T+kF98d/YlliasZ3WSY1pGEEEJY\nuIfq9b/laIk5n4UUEhLKpUtpXLx4gdzcXLZs2YiXlw+vvfYWR48eZvr0T265nqqCTqcAUPbH6FBx\ncTEffTSFr776Dk9PL1555cXb7ldRFK59umJJSbFpe3q9/pr9VM4jGM02iTcyMpKpU6cCV7u3goIC\nPv74Y+rUqYOqqly8eBE/Pz/i4+MJCwvDaDRib29PixYtiIuzzMmy7fwjCXDyY+eFvSTnntM6jhBC\nCHFL7dp15LPPZtKpUxeys7OoVas2AJs2/UpJSckt16lbN5CjR48AEBe3B4D8/Dz0ej2enl5cvHiB\no0ePUFJSgk6no7S09Lr1GzVqyr59e/9YL59z585Su3Zdcx2i+UZg9Ho9jo6OAMTGxtK5c2f0ej2b\nN2/mnXfeISQkhAcffJBffvkFDw8P03oeHh6kpaWVu213d0cMBn25y9yP8p5++USrYby9aRrLzqzk\n9a4voiiK2XKIm5VXG6EdqYvlktpYLnPWZuDAfjz88MMsXbqU/Px8Jk6cyLZtGxk5ciS//rqWzZvX\noNfr8PJyxt7eBldXB7p1G864ceP429/G07JlS/R6HfXq1aFTp4785S9jaNSoEU8//RQzZ37C/Pnz\neeed43z++dW5Mc7O9vTo0YmDB/fw4ot/oaSkhFde+T/q1vXB1taAu7sT3t5XlysutquUY1fUyhrL\nuY1169YxZ84c5s2bh9F4NbCqqnzwwQcYjUZq1arFwYMH+cc//gHAxx9/TEBAAMOHD7/tNs35CPKK\nDOvNip/HoUtHeSbsMZp5NzVbFnG96vD4+epI6mK5pDaWS2pTMeU1Oma9D8yWLVuYPXs2n3/+OUaj\nkbVr1wJXz5NFR0ezd+9efHx8SE9PN62TmpqKj4+POWPdt8H1+qFTdCxO/IXSstI7ryCEEEKISmW2\nBiY3N5cpU6YwZ84c04TcTz/9lCNHrp5fi4+PJzg4mPDwcA4ePEhOTg55eXnExcXRqlUrc8WqFH5O\nvnQMaENqfjpbzu3QOo4QQghR45htDsyKFSvIzMzkxRf/N2P5tdde480330Sv12Nvb8+UKVOwt7dn\nwoQJjB07FkVRGDdunOlUkyXrG9yTXRf2seLUWlr7NcfRxlHrSEIIIUSNYfY5MOag9RyYP609s5El\niSvoVqcTMfXLf2aEuH9yztgySV0sl9TGckltKkazOTDVXdfaHfC0d2fT2e2k5V/SOo4QQghRY0gD\ncx9s9DYMDO1LqVrKksQVWscRQgghagxpYO5TC59mBLsEsj/tICeyTmkdRwghhKgRpIG5T4qiEFP/\n6m2iFyUsp0wt0ziREEIIUf1JA1MJgl0DaekTzpncZPZc3K91HCGEEKLakwamkgwM7YNBZ2Bp4iqK\nSou1jiOEEEJUa9LAVBJPBw+ianck80oWG5K3aB1HCCGEqNakgalE0UFRONs4sebMBrKvyPX9Qggh\nhLlIA1OJHAwO9A/pxZXSIn45tVrrOEIIIUS1JQ1MJWvv3xo/J1+2p+zm3OXzWscRQgghqiVpYCqZ\nXqfnoXr9UFFZlLAcK3xSgxBCCGHxpIExgyYeDWns0YCjmQkczjimdRwhhBCi2pEGxgwURWFwvX4o\nKCxKWE5pWanWkYQQQohqRRoYM6nl7E/7gEgu5Key/fwureMIIYQQ1Yo0MGbULzgaO70ty0+uoaCk\nQOs4QgghRLUhDYwZudoZ6RXYjcvFeaw+/avWcYQQQohqQxoYM+tWpxPudm78enYrlwoytI4jhBBC\nVAvSwJiZrd6GB0N7U1JWws+JK7WOI4QQQlQL0sBUgVa+EQQa67A3NZ6T2We0jiOEEEJYPWlgqoBO\n0fFQ/f4ALEpYJje3E0IIIe6TNDBVpJ5bMBHeYZzKSSIu9YDWcYQQQgirJg1MFRoU2he9oufnxBUU\nlxZrHUcIIYSwWtLAVCFvR0+61G7PpcJMNp7dpnUcIYQQwmpJA1PF+gR1x8ngyKrTG8gtuqx1HCGE\nEMIqSQNTxRxtHOkb3JPC0kJWnFqrdRwhhBDCKkkDo4FOtdri4+jF1pSdnM+7qHUcIYQQwupIA6MB\nvU7P4NB+lKllLD7xi9ZxhBBCCKsjDYxGwrya0MAtlN8vHeVIxnGt4wghhBBWRRoYjSiKwkP1+6Og\nsChhOWVqmdaRhBBCCKshDYyG6hhr0cavJSl5F/jt/G6t4wghhBBWQxoYjQ0IjcZWZ8Pyk2soLCnU\nOo4QQghhFczawEyZMoXhw4cTExPDmjVrOH/+PGPGjGHUqFGMGTOGtLQ0AJYuXUpMTAxDhw5l4cKF\n5oxkcdzsXOkR2JWcolzWJm3SOo4QQghhFQzm2vCOHTtISEhgwYIFZGZmMnjwYNq0acOwYcPo27cv\n//3vf/nyyy8ZP348M2bMIDY2FhsbG4YMGULPnj1xc3MzVzSL06NuF7ad28n6pE10DGiDu33NOXYh\nhBDiXphtBCYyMpKpU6cC4OLiQkFBAf/617+Ijo4GwN3dnaysLOLj4wkLC8NoNGJvb0+LFi2Ii4sz\nVyyLZKe3ZUBob4rLSlh6cpXWcYQQQgiLZ7YRGL1ej6OjIwCxsbF07tzZ9Lq0tJTvvvuOcePGkZ6e\njoeHh2k9Dw8P06ml23F3d8Rg0JsrOt7eRrNt+3b6e3Vh2/nf2HUhjsFhvQj1CKzyDNZAi9qIO5O6\nWC6pjeWS2twfszUwf1q3bh2xsbHMmzcPuNq8vPLKK7Rt25Z27dqxbNmy65ZXVfWO28zMzDdLVrj6\nDZWWlmu27ZfnweA+TN33GXN3LeClFn9BURRNclgqLWsjbk/qYrmkNpZLalMx5TV5Zp3Eu2XLFmbP\nns3nn3+O0Xg1xKuvvkpgYCDjx48HwMfHh/T0dNM6qamp+Pj4mDOWxWrgXo8wryYkZp8iPu2Q1nGE\nEEIIi2W2BiY3N5cpU6YwZ84c04TcpUuXYmNjw/PPP29aLjw8nIMHD5KTk0NeXh5xcXG0atXKXLEs\n3uDQvugUHYsTV1BSVqJ1HCGEEMIime0U0ooVK8jMzOTFF180vZeSkoKLiwujR48GIDQ0lDfeeIMJ\nEyYwduxYFEVh3LhxptGamsjXyYfOtdqx8ew2Np/dTre6nbWOJIQQQlgcRa3IpBMLY87zhpZwXvJy\ncR5v/DYFgDfavYKzjZOmeSyFJdRG3EzqYrmkNpZLalMxms2BEffG2caJPkHdKSgpYNWp9VrHEUII\nISyONDAWqnPt9ng5eLLp3HYu5pd/WbkQQghR00gDY6FsdAYGhfalTC1jyYkVWscRQgghLIo0MBYs\nwvsBQl2DOJD+O8czE7WOI4QQQlgMaWAsmKIoxNQfAMCihGWUqWUaJxJCCCEsgzQwFi7QpQ6Rvi1I\nvpzCrgs16xlRQgghxO1IA2MFBob2xkZnYGniKq6UFmkdRwghhNCcNDBWwN3eje51OpNdlMP6pE1a\nxxFCCCE0Jw2MlegZ2BWjrTNrz2wk60q21nGEEEIITUkDYyXsDfYMCI6mqKyYZSdXax1HCCGE0JQ0\nMFakXUAkAU5+7Dy/l+TcFK3jCCGEEJqRBsaK6BQdD9Xvj4rKohPLscLHWAkhhBCVQhoYK9PYowFN\nPBtyPPMEhy4d0TqOEEIIoQlpYKzQQ/X6o1N0LD7xC6VlpVrHEUIIIaqcNDBWyN/Jlw4BbbiYn8aW\nlB1axxFCCCGqnDQwVqpfcE/s9fasOLWW/OJ8reMIIYQQVUoaGCtltHUmOiiKvOJ8Vp3eoHUcIYQQ\nokpJA2PFomp3xMPenU1nt5GWf0nrOEIIIUSVkQbGitnobRgU2ocStZSfE1doHUcIIYSoMtLAWLkW\nPuEEu9RlX9pBTmSd0jqOEEIIUSWkgbFyiqLwUP0BACw6sZwytUzjREIIIYT5SQNTDYS4BtLSJ5wz\nOcnsvRivdRwhhBDC7KSBqSYGhvbBoDPwc+JKikqLtY4jhBBCmJU0MNWEp4MHUbU7knkli1+Tt2gd\nRwghhDAraWCqkeigKJxtnFh9ZgM5RblaxxFCCCHMRhqYasTB4EC/4F5cKS1i+ck1WscRQgghzEYa\nmGqmQ0Br/Bx92J6yi5TLF7SxAAx6AAAgAElEQVSOI4QQQpiFNDDVjF6nZ3C9fqioLDqxXOs4Qggh\nhFlIA1MNNfVsRCP3+hzJOM7O83u1jiOEEEJUOmlgqiFFURjaYCAOBge+PbqQ/akHtY4khBBCVCpp\nYKopPycfxoU/gY3OwLzfv+NQ+hGtIwkhhBCVxqwNzJQpUxg+fDgxMTGsWXP1qphvvvmGpk2bkpeX\nZ1pu6dKlxMTEMHToUBYuXGjOSDVKsGsgzzZ7HJ2i4/ND8zmakaB1JCGEEKJSGMy14R07dpCQkMCC\nBQvIzMxk8ODB5Ofnc+nSJXx8fEzL5efnM2PGDGJjY7GxsWHIkCH07NkTNzc3c0WrUeq7h/JM2GPM\nPvAlcw58xfiIpwh1C9I6lhBCCHFfzDYCExkZydSpUwFwcXGhoKCA7t2789JLL6Eoimm5+Ph4wsLC\nMBqN2Nvb06JFC+Li4swVq0Zq7NmAJ8NGU6KWMjP+C87kJGsdSQghhLgvZmtg9Ho9jo6OAMTGxtK5\nc2eMRuNNy6Wnp+Ph4WF67eHhQVpamrli1VhhXk0Y0+QRrpQWMX3/XM5dPq91JCGEEOKeme0U0p/W\nrVtHbGws8+bNq9DyqqrecRl3d0cMBv39Rrstb++bG63qoLd3RxycDMzY9TUz4ufyRreXqeXip3Ws\nu1Jda2PtpC6WS2pjuaQ298esDcyWLVuYPXs2c+fOveXoC4CPjw/p6emm16mpqURERJS73czM/ErN\neS1vbyNpadX3OUJNnJvycMOH+OHYIt5Y/zEvtXgWb0dPrWNVSHWvjbWSulguqY3lktpUTHlNntlO\nIeXm5jJlyhTmzJlT7oTc8PBwDh48SE5ODnl5ecTFxdGqVStzxRJAp1ptianXn+yiHKbt/4zMwiyt\nIwkhhBB3xWwjMCtWrCAzM5MXX3zR9F6bNm3YuXMnaWlpPPXUU0RERPDKK68wYcIExo4di6IojBs3\n7rajNaLydKvbmaKyYpadXM3UfXN4qcWzuNq5aB1LCCGEqBBFrcikEwtjzmG3mjastzRxFavPbMDP\nyZcXmz+D0dZZ60i3VdNqYy2kLpZLamO5pDYVo8kpJGEdBoREE1WnIxfyLjJ9/1zyi803v0gIIYSo\nLNLA1HCKohBTbwAdA9pw9nIKM+LnUVhSqHUsIYQQolzSwAgURWF4w8G09mvB6ZwkZh34kqLSIq1j\nCSGEELclDYwAQKfoGNVoKM19mnEi6xRzDnxNcWmx1rGEEEKIW5IGRpjodXrGNHmYMK/GHM1M4Ivf\nv6W0rFTrWEIIIcRNpIER1zHoDIxtOopG7vU5mH6Erw5/T5lapnUsIYQQ4jrSwIib2OhteKbZY4S6\nBhOXeoBvjyyUJkYIIYRFkQZG3JKt3pZnwx8n0KUOOy/sZcHxJRV6TpUQQghRFaSBEbflYLBnfPhY\najsHsPXcDhadWC5NjBBCCIsgDYwol6ONI+MjnsTP0YcNyVtYfmqN1pGEEEIIaWDEnRltnXm++dN4\nO3iy6vR6Vp3eoHUkIYQQNZw0MKJCXO1ceL7507jbubHs5Co2JG/ROpIQQogaTBoYUWEe9u680PwZ\nXG2N/JSwjC3ndmgdSQghRA0lDYy4K96Onjzf/GmcbZxYcGwxO8/v1TqSEEKIGkgaGHHX/Jx8+WvE\nUzgY7Jl/5EfiUg9oHUkIIUQNIw2MuCe1jQGMj3gSO70tX/7+HQfTD2sdSQghRA0iDYy4Z4EudXg2\n/AkMip65B+dzJOO41pGEEELUENLAiPtSzy2YZ5qNAUVhzoGvScg8qXUkIYQQNYA0MOK+NfKoz1MP\njKZMLWPWgXmcyk7SOpIQQohqThoYUSke8GrM401HUFRazIz4L0jOTdE6khBCiGpMGhhRaZr7hPFo\nk+EUlhQyff/nnM+7qHUkIYQQ1ZQ0MKJStfZrwSMNH+JycR7T9n1Gan6a1pGEEEJUQ9LAiErXoVYb\nhtR/kJyiXKbt+5xLBZlaRxJCCFHNSAMjzCKqTkcGhvYh80oW0/bNIetKttaRhBBCVCPSwAiz6RUY\nRZ+gHqQXZjBt3+fkFl3WOpIQQohqQhoYYVb9gnvSvU5nLuan8un+z8krztc6khBCiGpAGhhhVoqi\nMLhePzrVase5y+eZsf8LCkoKtY4lhBDCykkDI8xOURSGNRhIW79WnMlNZlb8PK6UFmkdSwghhBWT\nBuYalwuKSb6Yq3WMakmn6BjZeAgtfcJJzD7NnANfUVxarHUsIYQQVkoamGvEbjzBXz/4lbNpMtnU\nHHSKjseaPEwzr6YcyzzB3EPzKSkr0TqWEEIIKyQNzDVaNPCmtEzl2zXHUVVV6zjVkl6n54kHRtLY\nowGHLh3ly9+/p7SsVOtYQgghrMw9NzCnT5++4zJTpkxh+PDhxMTEsGbNGs6fP8/o0aMZMWIEL7zw\nAkVFV+dBLF26lJiYGIYOHcrChQvvNdJ9axbqRdsH/DienMVvv1/QLEd1Z6Mz8HTYo9R3C2F/2kHm\nH/mRMrVM61hCCCGsSLkNzOOPP37d65kzZ5r+/vrrr5e74R07dpCQkMCCBQuYO3cukydPZtq0aYwY\nMYLvvvuOwMBAYmNjyc/PZ8aMGXz11VfMnz+fr7/+mqysrPs4pPvz1MAwbA06ftxwgvxCmaNhLrZ6\nW/7SbAzBLoHsvriP748uklEvIYQQFVZuA1NScv38hB07dpj+fqcfNpGRkUydOhUAFxcXCgoK2Llz\nJ927dwcgKiqK3377jfj4eMLCwjAajdjb29OiRQvi4uLu6WAqg4+HI/3bB5GTX8ziLac0y1ET2Bvs\neS78CeoYa7H9/C5iE5ZKEyOEEKJCym1gFEW57vW1P1xu/OxGer0eR0dHAGJjY+ncuTMFBQXY2toC\n4OnpSVpaGunp6Xh4eJjW8/DwIC1N2wcARreui6+HIxviznLmglyVZE6ONg6MD38SfydfNp7dxs+J\nK6WJEUIIcUeGu1n4Tk3Lraxbt47Y2FjmzZtHr169TO/f7odURX54ubs7YjDo7zpLRQX4uzJ+aDiv\nzfmNH349wZTxndDp7v7YRcV4Y+RNj5f414aPWJu0EXcXI0Oa9r31st7GKk4nKkLqYrmkNpZLanN/\nym1gsrOz+e2330yvc3Jy2LFjB6qqkpOTc8eNb9myhdmzZzN37lyMRiOOjo4UFhZib2/PxYsX8fHx\nwcfHh/T0dNM6qampRERElLvdzEzz3Y7e29tIWloutdwdiGzkw+6jqSzZcJxO4QFm26cA0DGu2ZN8\nHDeLHw8to7iwjB51u1y3xJ+1EZZF6mK5pDaWS2pTMeU1eeWeQnJxcWHmzJmmP0ajkRkzZpj+Xp7c\n3FymTJnCnDlzcHNzA6B9+/asXr0agDVr1tCpUyfCw8M5ePAgOTk55OXlERcXR6tWre72GM1ieLd6\n2NnoWbgxkcsFMqHX3Nzt3Xi++dO42bmy+MQvbD67XetIQgghLFS5IzDz58+/5w2vWLGCzMxMXnzx\nRdN77733HpMmTWLBggUEBAQwaNAgbGxsmDBhAmPHjkVRFMaNG3fH5qiqeLjYM7BjMD/+eoJFmxJ5\ntHcjrSNVe14Onjwf8RQfx81mwfEl2OhtaedvGQ2tEEIIy6Go5Uw6uXz5MrGxsYwZMwaAH374ge+/\n/57AwEBef/11vLy8qirndcw57HbjsF5JaRlvfrmblPQ8Jj3WimB/F7PtW/zPucvnmRo3h/ySAsY0\nfYRWvhEy5GqhpC6WS2pjuaQ2FXPPp5Bef/11Ll26BMCpU6f46KOPmDhxIu3bt+edd96p3JQWyqDX\nMapXA1Rg/upjlJXJFTJVoZazP+MjnsROb8fXh38gPu2Q1pGEEEJYkHIbmOTkZCZMmADA6tWr6d27\nN+3bt+fhhx++buJtddewrjttm/py+kIum+JTtI5TY9R1qc24iCcw6AzMO/Rfdp+L1zqSEEIIC1Fu\nA/PnfVwAdu3aRdu2bU2v7+WSams2PKoeDnZ6Fm1KJCe/SOs4NUaIaxDPNhuDoij8Z+tsfkpYRrE8\nAFIIIWq8chuY0tJSLl26RFJSEvv27aNDhw4A5OXlUVBQUCUBLYWrsx2DOoWQV1hC7K+JWsepURq4\n12NCy3H4G33YkLyFD/dM52K+tjc7FEIIoa1yG5innnqKvn37MmDAAJ577jlcXV0pLCxkxIgRDBo0\nqKoyWoxuLWpRx8eZrQfPc+JsttZxapQ6xlq83/NV2vlHknw5hfd2T+W3lN1y114hhKihyr0KCaC4\nuJgrV67g7Oxsem/r1q107NjR7OFupyqvQrrRibPZTP52L3V8nHl9TCv0unt+oLe4S3/WZu/F/Xx3\ndBGFpYW09AnnkUYP4WBw0DpejSVXU1guqY3lktpUTHlXIZV7H5iUlP9NWL32zrshISGkpKQQEFDz\n7k5br7YrHcP82XrwPBviztGzVR2tI9U4LX0jCHSpy1e/f8/e1HhO5yQxpukIQlwDtY4mhBCiipTb\nwHTr1o3g4GC8vb2Bmx/m+M0335g3nYUaEhVK3PE0lmw5SWQjH9yc7bSOVON4OXjwUou/sOL0Olaf\n3sDHcbPoF9yTXoFR6BQZFRNCiOqu3Abm/fff5+effyYvL49+/frRv3//654cXVO5ONoS0yWE+WuO\ns/DXEzw1oKnWkWokvU7PgJBoGrrX4+vDP7Ds5GqOZiQwpukjuNm5ah1PCCGEGZX7q+rAgQOZN28e\nn3zyCZcvX2bkyJE8+eSTLFu2jMLCwqrKaJG6RNQiyM/Ib79f5FhSptZxarQG7qG82vpFmnk1JSHr\nJJN3fsyBtN+1jiWEEMKMKjTW7u/vz3PPPcfKlSuJjo7m7bff1nQSryXQ6RRGRzdEAb5dc5yS0jKt\nI9VozjZOPB32KMMbDOJKWRFzDn7NgmNLKCqVh3AKIUR1VO4ppD/l5OSwdOlSFi1aRGlpKc888wz9\n+/c3dzaLF+zvQpeIADbuT2HdnrP0blNX60g1mqIodK7dnlC3YL78/Ts2n9vOiayTPN50BAHOflrH\nE0IIUYnKvYx669at/PTTTxw6dIhevXoxcOBAGjRoUJX5bknLy6hvdLmgmH98toPikjLeeaoNHi72\nZstW091NbYpKi1l0Yjlbzv2Gjc5ATP0BdAxoW+PuIF0V5HJQyyW1sVxSm4op7zLqchuYRo0aERQU\nRHh4OLpb3O/k3XffrZyEd8mSGhiAzfEpfLXyKJGNfHh20ANmSibupTbxaYf49shC8ksKCPd+gJGN\nhuBk43jnFUWFyX/ElktqY7mkNhVzz/eB+fMy6czMTNzd3a/77OzZs5UQrXro2MyfLQdS2H00lc6n\nM2gaJFdqWYpw7weoa6zNV4e/Jz7tEGdykhnT5BHqu4doHU0IIcR9KHcSr06nY8KECbz22mu8/vrr\n+Pr60rp1a44fP84nn3xSVRktnk5RGNWzIYpydUJvcYlM6LUk7vZuvND8GfoHR5NTlMvUfXNYfnIN\npWWlWkcTQghxj8odgfn444/56quvCA0NZf369bz++uuUlZXh6urKwoULqyqjVQj0M9KteW3Wx51l\nze4k+rUL0jqSuIZO0dEnuDsN3EP58vfvWHl6HccyTzCmySN4OrjfeQNCCCEsyh1HYEJDQwHo3r07\n586d49FHH2X69On4+vpWSUBrMrhzMC5Otizbdpr07Jr1tG5rEeoWxD9av0QLn2aczD7Nu7s/Ji71\ngNaxhBBC3KVyG5gbr9jw9/enZ8+eZg1kzRztbRgWFUpRSRnfr0vQOo64DUcbB55oOpKRjYZSWlbK\nF4e+5b9HYrlSWqR1NCGEEBV0Vw+NkUtQ76xdUz8a1HZlX0I6BxLTtY4jbkNRFNoHRDIx8gVqOwew\n/fwu3t89jbO5KXdeWQghhObKvYw6LCwMT09P0+tLly7h6emJqqooisLGjRurIuNNLO0y6hudTb3M\nG1/uxsvVnreebI2NQV9J6Wo2c112WFxWws+JK/g1eSsGRc+gev3oWruDNOwVJJeDWi6pjeWS2lTM\nPV9GvWrVqkoPUxPU9nGmR6varNmdzIodSQzsGKx1JFEOG52BIfUfpJF7feYf+ZHYhKUczTjOqMbD\nMNo6ax1PCCHELZQ7AmOpLH0EBqDgSgn//HwHlwtKePvJ1vi4y83T7ldV/MaSfSWHbw4v4GhmAq62\nRh5t8jCNPOqbdZ/WTn6TtFxSG8sltamY8kZg7moOjKg4BzsDD3evT0lpGd+tS8AK+8QaydXOhXER\nYxkU2pfc4jym75/LkhMr5J4xQghhYaSBMaPIRj40DnTnQOIl9ifIhF5roVN09Azsyt9ajsPTwYO1\nSRv5MG4mafmXtI4mhBDiD9LAmJGiKIzq1QC9TuG7dQlcKZbf4q1JoEsdXo18gdZ+LTiTk8x7uz9h\n14U4rWMJIYRAGhiz8/d0Irp1XS7lFLJ8+2mt44i7ZG+w57EmD/NYk4dRUfn68A98ffgHCksKtY4m\nhBA1mjQwVWBA+yA8XOxYtTOJCxn5WscR96C1Xwv+HvkigcY67LoQx3u7p3ImJ1nrWEIIUWNJA1MF\n7Gz1PNK9PqVlKv9dc0wm9FopH0cvXm75LD3rdiWt4BIf7J3B2jMbKVPl4Z1CCFHVpIGpIi0aePNA\niAe/n85kz7E0reOIe2TQGRhUry/jI57E2caJJYkrmLH/C7KvyOWQQghRlaSBqSKKojCyZwMMeh0/\nrE+g4EqJ1pHEfWjs0YB/tH6Jpp6NOJqZwORdH3Eo/YjWsYQQosYwawNz/PhxevTowbfffgtAYmIi\nI0eOZNSoUUyaNImSkqs/xJcuXUpMTAxDhw5l4cKF5oykKV93R/q2rUtm7hWWyYReq2e0debZZo8z\npP6DFJYUMuvAl8QmLKW4TJpTIYQwN7M1MPn5+bz11lu0a9fO9N4HH3zA008/zbfffou/vz8rV64k\nPz+fGTNm8NVXXzF//ny+/vprsrKyzBVLc33bBuLlas/a3cmcS7usdRxxnxRFIapOR/7W6q/4Onrz\na/JWPtgznYt5qVpHE0KIas1sDYytrS2ff/45Pj4+pvfOnDlDs2bNAOjUqRPbtm0jPj6esLAwjEYj\n9vb2tGjRgri46nuvDVsbPSN6NqC0TOXbNcdlQm81UccYwMTIF2jvH8nZyym8t3sq21N2S32FEMJM\nzNbAGAwG7O3tr3uvQYMGbNq0CYAtW7aQnp5Oeno6Hh4epmU8PDxIS6vek1wj6nkRUc+LY8lZ7Dh8\nUes4opLY6W0Z2XgoTzQdiV6n579HF/Ll79+RX1ygdTQhhKh2yn0adWWbOHEib7zxBosWLaJ169a3\n/O20Ir+xurs7YjDozRERKP/hUZVl3LAIxk3ZQOzGRLq3CcLJwcbs+6wOqqI296u3d0daBDfm09/m\nsTc1nqTLyTzf7gkaeoVqHc1srKEuNZXUxnJJbe5PlTYw/v7+zJkzB7g6ApOamoqPjw/p6f97TlBq\naioRERHlbicz03w3g6uqJ4TqgX7tAlm85RRzlxxgRI8GZt+ntbOmp7cq2DIu7ClWnl7PqtPr+deG\nj+gX3JNegVHolOp18Z811aWmkdpYLqlNxVjM06inTZvGxo0bAVi0aBHdunUjPDycgwcPkpOTQ15e\nHnFxcbRq1aoqY2mmd5tAfN0dWL/3LEkX5Ru5utHr9PQP6cULzZ/GxdbIspOrmbbvMzILq+8kdSGE\nqCpma2AOHTrE6NGjWbx4Md988w2jR4+mS5cuTJ8+nZiYGHx8fOjatSv29vZMmDCBsWPH8vjjjzNu\n3DiMxpoxrGZj0DGyZwNUFb5dc5wymfBZLdV3D+UfrV8i3PsBErJO8u6uT4hLPSATfIUQ4j4oqhX+\nL2rOYTcthvVmLD7I3mNpPNG3MR2b+Vfpvq2JtQ+5qqrK1pQd/JSwjOKyEvydfOletwuRvhEYdFV6\nNrdSWXtdqjOpjeWS2lSMxZxCErf2SPf62NnoWbjxBHmFxVrHEWaiKAqdarXj75EvEunbgov5aXx7\n5Ede3/4ea89spKBErlYSQoiK0r/xxhtvaB3ibuXnF5lt205Odmbd/q042BnQ6xT2JaRTeKWU8Hpe\nVbp/a6FFbczB2daJCJ8HaOvfEgWFUzln+P3SUTaf/Y28knz8HH1wMNjfeUMWorrUpTqS2lguqU3F\nODnZ3fYzGYGxED0j6+Dv6cjGfec4dT5H6ziiCnjYuxNTfwBvt/8nA0P6YKu3ZX3SZl7/7T2+ObyA\nc5fPax1RCCEsljQwFsKg1zGqV0NU4Ns1x2RCbw3iaONAr6Ao/t3+VUY2GoqPgxc7L+xl8q6PmbH/\nC45lnJAJv0IIcQPrnTlYDTUOdKdNE192Hr7I5vgUukbU0jqSqEI2OgPtAyJp69+S3y8dZV3SJg5n\nHONwxjHqGGvRo24XmnuHodeZ7yaOQghhLaSBsTDDu9Uj/kQ6P21MpGUDb4yOtlpHElVMp+gI82pC\nmFcTTmUnsT5pE/vTDvHl79+x1N6dqDqdaB/QGju9fG8IIWoumcR7A60nVtnbGrAx6NmXkE5+YTER\n9b01y2JptK6NFtztXWnhG06kbwvK1DISs09x6NIRtpz7jSslV/B39sVOf/tJblWhJtbFWkhtLJfU\npmJkEq+V6d6yFrW9ndgcf57Ec9laxxEWwNvRk+ENB/NW+3/QN6gHiqKw6swGXtv+Lt8djeViXqrW\nEYUQokpJA2OB9LqrE3oB5q85RlmZTOAUVxltnekX0ou32/+D4Q0G4WbnyraUXby180PmHPiaxKzT\nWkcUQogqIXNgLFSDOm50eMCPbYcu8Ou+c3RvWVvrSMKC2Opt6Vy7PR1rtWV/2iHWJW3iQPrvHEj/\nnWCXQHoEdqGZV5Nq9+BIIYT4kzQwFmxoVD3iEtJZtPkkrRr54OokkzbF9XSKjhY+zWjuHcaJrFOs\nS9rEoUtH+PzgN/g4etG9Tmfa+LXERm+jdVQhhKhUMon3BpY0scrOVo+9rZ6442nk5hfRokHNntBr\nSbWxNIqi4OngTqRfc1r4NKO4rITErFMcSD/MtpRdFJeVEODsh60ZGhmpi+WS2lguqU3FyCReKxbV\nvBaBvka2H7rA8eQsreMIK+Dv5MuoxkP5d/tX6RUYRYlawvJTq5m07R1+PP4z6QUZWkcUQoj7Jg2M\nhdPpFEZFN0Dh6oTektIyrSMJK+Fq58LA0D683f4fxNTrj5ONE5vObuON395n3qH/kpRzVuuIQghx\nz2QOjBUIDXClU3gAm+NT2LD3LL1a19U6krAi9gZ7utXtTJfaHdibGs+6pE3sTY1nb2o8DdxC6RHY\nhSYeDVEUReuoQghRYdLAWImYLiHsPZbKkq2niGzsi7tR25uXCeuj1+lp7deCSN/mHM1MYN2ZTRzN\nTOB4ViIBTn50r9uZVr4RGHTy34IQwvLJJN4bWOrEKjsbPU72BvYeSyPr8hVaNfLROlKVs9TaWBtF\nUfB28KSNf0uaeTWhsPQKCVkniU87xI7ze1BR8Xfyw6aCjYzUxXJJbSyX1KZiZBJvNdEpPICQABd2\nHUnl8GmZiCnuXx1jLR5vOoI32k4kqk5H8ksKWHziFyZtm8ziE7+QdUXuBC2EsEzSwFgRnaIwuldD\nFOC/a4/LhF5RaTwd3BlS/0Heaf8PHgzpja3ehnVJm3h9+3t8c3gBKZcvaB1RCCGuI6eQbmDpw3pu\nznbk5Bdx8GQGdrZ66td20zpSlbH02lQHNnob6rkF06V2Bzzt3bmQn8axzBNsOfcbp3OScLNzwcPe\n/boJv1IXyyW1sVxSm4op7xSSzNazQg91DmHP0VSWbjtFm8a+eLraax1JVDM2OgPtA1rT1r8Vv186\nytozmzh86RiHLx2jrrEWPep2IcI7DL1Or3VUIUQNJSMwN7CGrtjWoMfF0ZY9R9PIyCmkdWNfrSNV\nCWuoTXWjKAq+jt60C4ikiUdD8ksKOJ6ZyL60g+y6sA8FhVDvOhQVlmodVdyC/JuxXFKbipERmGqo\n/QN+bI5PYe/xNA6evERYiKfWkUQ1F+xal6fCRpOan86G5C3sOL+bhQk/s+L0Guq5hRLiGkioaxB1\njLXkUmwhhNkpqqqqWoe4W2lpuWbbtre30azbr0zJqZd588vdeLnZ89bY1tgYqvdwvjXVpibILbrM\n5rPb2Zm6l0v5mab3bXQGAl3qEOoaTIhrICGugTjaOGqYtOaSfzOWS2pTMd7extt+Jr8mWbE6Ps50\nb1mbtXuSWbkziQc7BGsdSdQgRltn+oX0YkybGI4lJ3Ey6zSJ2X/8yTrNiaxTpmUDnPyujtC4BRPi\nGoTnDROBhRDibkkDY+UGdQpm19GL/PLbGdo19cPbzUHrSKIG8rB3x8PPnVZ+zQEoKCngVHYSJ/9o\nZk7nJJGSd4GtKTsBcLU1EuIWTKhrECGugdR2DpAJwUKIuyINjJVzsDMwvFs9Plt6mO/XJfD8kGZa\nRxICB4MDTTwb0sSzIQClZaWcvZxCYvZp00jNvtQD7Es9AICt3pYgl7qEugYR6hpEkGtdHAxydZ0Q\n4vakgakG2jT2ZfP+FPafSGd/QjoR9b20jiTEdfQ6PYEudQh0qUO3Op1QVZVLhRkk/tHMnMw+zfHM\nExzPPAGAgkItZ39CXIMIdbva1Ljb15x7Hgkh7kwamGpAURRG9mrIG/N28d264zQOcsfORobjheVS\nFAUvB0+8/ngmE0BecT6nss+Y5tCcyU3m7OUUNp/bDoC7nRuhbkFXmxrXIAKc/dApcjNxIWoqaWCq\niVpeTvSKrMPKnUms+O0MgzuHaB1JiLviZOPIA16NecCrMQDFZSUk557j5DWnnfZc3M+ei/sBsNfb\nE+xa9495NFdPO9npbbU8BCFEFZIGphoZ0CGIHYcvsnLnGdo/4Ievh1y6KqyXjc5gugybul1QVZXU\ngnQSs66eckrMPsWRjOMcyTgOgE7RUds54GpD88dpJ1c7F42PQghhLnIfmBtY+7X5e46mMnPJIR4I\n9uClYeHV6lJVa69NdcOTpJUAACAASURBVKVlXXKLLnMy+wyJ2ac4mXWGpNyzlKr/uyuwl70HIdec\ndvJz8qlRp53k34zlktpUjGb3gTl+/DjPPfccY8aMYdSoUezevZuPPvoIg8GAo6MjU6ZMwdXVlblz\n57Jq1SoURWH8+PF06dLFnLGqtZYNvWka7MGhUxnsPZZGq0Y+WkcSwmyMts6Eezcl3LspAEWlxSTl\nnv3jlNMpTmafYdeFOHZdiAPA0eDwx6jO1aYm0KUOtnobLQ9BCHGPzNbA5Ofn89Zbb9GuXTvTe+++\n+y4ffPABISEhzJ49mwULFtCnTx9WrFjBDz/8wOXLlxkxYgQdO3ZEr5dJqPdCURRG9WzAa1/s5Pv1\nCTQN9sDh/9u797Co6n1/4O+1Zq1hBmaAGWBARRDRNFFS0QTTsp1Wund5ygtmYHuffp2zf+7ql497\nt82du/ZjtX906nnapl227vqZ1tGyq+Ulu2ie8oaaAnnXEFBguMmduf7+mGGYAVRShjUD79fz8LBm\nzZrFB78Mvvmu7/e7QnilkPoGtftu2kMikwDcDofTgdKGcvclJ9dYmvzK48ivPA4AUAkqJOgHeC45\nDY4YBL1ap+w3QURd4rf/2dRqNVavXo3Vq1d79hkMBtTU1AAALl26hMGDB2Pfvn2YPHky1Go1jEYj\nBgwYgNOnT2PYsGH+Kq3XizWG4u4Jifj8h5/xX/99GI/PTkWk7vI3xCLqrURBRH9dHPrr4jBpQDoA\n4FJLrWfqtmu2UzHO1Z7H1/gOgGuRvWhtNEyh0YjRRiEmNBoxWte2RuL7iChQ+C3ASJIESfI9/dKl\nS5GVlYXw8HBERERg8eLFWLNmDYxGo+cYo9EIs9l8xQBjMIRC8uN9f650zS1Y/PvMUWiy2vH1gSK8\nsO4gnv73CUiOD/51NHpD2/RGwdQuMdBjSPwAALcAAJptLThd+TOOV5zByYozKKkr8wwSbi9SE45+\nehPidCbE6WLc2zGI08VAIwfmwnvB1DZ9Ddvm+vTotYXly5dj5cqVSEtLQ05ODt57770Ox3RlTHF1\ndaM/ygPQuwZWzf/VEBjD1Ni08wyeXLkb/3FPCsbeEKN0WdesN7VNb9Ib2iVW7I9YU3/cZpoMwDWF\nu7KpCuamCpgbK1DeVAlzYwXMTRU4bj6DY+bTHc4Rrta7empCo2DSRnv13BihUWhV4d7QNr0V26Zr\nAuZmjidOnEBammvRqokTJ2Lz5s1IT0/HuXNtf+mUlZXBZOLA0+4gCAKmpyfCZAjF6s8LsOqjPMye\nkoy7JyT0qtlJRN1NFiXEhZkQF9bxd1H7cGNuqkS5+/Plem5c4abtcpTn8pQ2SrFwQxTsejTAREdH\n4/Tp0xgyZAjy8vKQmJiI9PR0vP3223jsscdQXV2N8vJyDBkypCfL6vXShsUgOiINKz48ig92nsHF\nykYsuHsYJFXfmU5K1F2uFm6qmqpQ3uQKNN4B56x7leH29Gqdq8fG02sT5Qk4DDdEl+e3dWDy8/OR\nk5ODkpISSJKE2NhYLFq0CC+++CJkWUZERAReeOEFhIeHY926ddi8eTMEQcATTzzhM3OpM1wH5tpU\n17VgxYdHUVhahxsGRuIP942EPjR4Vi7tzW0TzNguXWPz9NxUugKOV7ipaq6GEx1/FV9vuGHbBC62\nTddc6RISF7Jrp7f/ULVY7fjX5z8h94QZpkgt/s+cVPSLClO6rC7p7W0TrNgu169juKn0XKKqvEK4\nidFGu8fbRHnG38Rooz138mbbBC62TdcwwPwCfeGHyuF04pPdZ/H5D4XQhkhYeN9IpAwyXv2FCusL\nbROM2C7+ZXPYUNlc3W68zVXCjaxDTGg0+keaoHaEIFytR7haD71aB717WyeHQiVyvS2l8H3TNQww\nv0Bf+qHak1+Kt7ceg8MBPHjnDbh9zAClS7qivtQ2wYTtopz24cbcVOEZUFzVXA2H03HZ1woQECaH\neoJN55/1CFfroJPDGHa6Gd83XRMws5AosGSMjEN0pAYrP8rDuu0ncLGiAZl3DIFK5OBeomAgiRJi\nQ2MQG9pxeQSbwwZJ58DPpaWos9Sj1lKH2pZ61FnrUGupR52lDnWWelS31OBCQ+kVv077sNMacHx7\ndXTunh2GHeoZDDB93ND4SCxbMA7/2HQUXx0sRll1E/7z3hSEavijQRTMJFFCTJgeCL/6QH2r3Yo6\na31b0HGHm9agU+sJO5e6HHbaBxvvy1fh7hCkl3UMO3TN+L8UITpSi6XZaXjj0wLkna3E39cfxOOz\nUxETqVW6NCLqAbJKhlFlgFFjuOqxVofN03vjHXRc222Pa1pqcbGh7Krn08lhPmGn/eUrz2OGHWqH\nAYYAANoQCY/PHoWNX5/GVweLsXxtLh6bNQpDe8HtB4io+8iiBKOm62Gn/jK9Om29PfW41MWwIwoi\nZFGCLMqQROnK2yoZsihBEmX3c1fadr1WVrk/d3KsJKogCry8HkgYYMhDJYqYP+0G9IsKxbs7TuG/\n/vswfjf9RmSMjFO6NCIKQrIowaCJhEFz9T+EvMNOZ5ev6q0NsDqssDpssDpssNmtsNitaLQ2efZ3\nNiOrO0mCyhNsJFHyBB5JlKD2hCev5zsLWCrXdmSdDo31FqgEEaKocn0WRKgEleezSmx97HredYxr\nv+eY1n2CCJWoggChz6y0zgBDHdw+Nh4mQyhe+yQfqz//CRerGvBvkwdD7CNvCiLqeb8k7HTG6XTC\n4XR4hRzXZ1vrtt1r2+G73dk+m921bXMHJt9t1+MmWzPqHPWe1wYKn2DTLux4ApKoaheC3M+JnRzb\n4TVerxNVSI4YhOHGoT3+fTLAUKdSkox4ekEa/vHBUXz+QyFKKxvx8G9GIETmNWgiCjyCILh7LVRQ\n4gYMDqcDdoe9rYfIu7fIYe3QexSqU6OmtgF2pwN2p93zervTAYez9bNrn8N9TPtjXfsv/3rPfqcd\nDofrWKujxed8Dvdrrqf3ql9YLJ6esLgb/zW7hgGGLqtfVBiefmgcVn6Uh9wTZlRcOoTHZqXCoA9R\nujQiooAiCiJElQhZJXfp+EBbB8bRGphaA5DDa7s1EHmFKe9jTZ1M4+8JDDB0RTqtjD/OG413tp3A\n/+RdxHPv5OLxWalIjLv84kJERBRcRPdlpGAKBRxSTVclqUT8bsZwzLk9GTV1Lfj7uwdx6KRZ6bKI\niKgPY4ChLhEEAdMnJOLR+0cBAFZ9lIctewsRhHeiICKiXoABhn6RMTfE4KkH0xCpD8GmnWfw1pZj\nsNkvf78VIiIif2CAoV8sMU6PZQ+NQ1I/Pb7PK8VLG35EXaNF6bKIiKgPYYChaxKpC8GT88di3HAT\nThbV4Ll3cnGhokHpsoiIqI9ggKFrFiKr8PuZKbhn4iCYa5rx/LqDyD9XqXRZRETUBzDA0HURBQH3\n3ToYj9wzAlabHa+8fxTfHCpWuiwiIurlGGCoW2SkxOHJB8YiTCth/Zcn8e6Ok7A7OLiXiIj8gwGG\nus2Q+AgsWzAOA6LD8PXBYvzjg6NobA6c+4MQEVHvwQBD3So6Uoul2WkYNTgK+eeq8ML6gzDXNCld\nFhER9TIMMNTttCESHp89CtPGDcSFigYsX5uLk0U1SpdFRES9CAMM+YVKFPHA1KFYcNcwNDbb8NKG\nw/gh/6LSZRERUS/BAEN+NWXMACzKvAlqSYU1nx/Dh7vOwMHbDxAR0XVigCG/SxlkxF8WpMFk0OKL\nPYV4/ZN8tFjtSpdFRERBjAGGekS/qDA8vWAchg2MxMETZvzfdw+huq5F6bKIiChIMcBQj9FpZSye\nNxqTUvuhsLQOz72Ti8LSOqXLIiKiIMQAQz1KUon43fThmHv7ENTUteDv7x7EwRNmpcsiIqIgwwBD\nPU4QBNw9IQGPzhoFAQJWfZyHLXsL4eTgXiIi6iIGGFLMmKExeCprLAz6EGzaeQZvfXEMVhtvP0BE\nRFfHAEOKSojVY9lD45DUT4/v80vx8obDqGu0KF0WEREFOL8GmJMnT2Lq1KlYv349AODxxx9HdnY2\nsrOzcc8992DZsmUAgDVr1mD27NmYM2cOdu3a5c+SKABF6kLw5/ljMX64CSeLL2H52lyUVDQoXRYR\nEQUwyV8nbmxsxPLly5GRkeHZt2LFCs/2U089hTlz5qCoqAhbtmzBhg0bUF9fj/nz52PSpElQqVT+\nKo0CkFpW4T9npqBfVCg++/5nvLAuF/975kiMHByldGlERBSA/NYDo1arsXr1aphMpg7PnT17FnV1\ndUhNTcW+ffswefJkqNVqGI1GDBgwAKdPn/ZXWRTAREHAv00ejP+4ZwSsNide+eAovj5YrHRZREQU\ngPzWAyNJEiSp89O/8847yMrKAgBUVFTAaDR6njMajTCbzRg2bNhlz20whEKS/NdDExOj99u56eru\nmaLH0EFReP7t/Xh3x0lcarTif80cCYBtE6jYLoGLbRO42DbXx28B5nIsFgsOHjyIZ599ttPnuzKV\ntrq6sZurahMTo4fZzMXVlBYVJmNp9lj8Y9NRfP79Ofx84RL+8nA6muqblS6N2uF7JnCxbQIX26Zr\nrhTyenwW0oEDB5Camup5bDKZUFFR4XlcVlbW6WUn6nuiI7RYmpWG1OQo5J+rwiPP78DH351FLWcp\nERH1eT0eYPLy8jB8+HDP4/T0dOzcuRMWiwVlZWUoLy/HkCFDerosClDaEAmPz0rFrNsGQxAEbP7h\nZzz52g9Y/+UJmGualC6PiIgU4rdLSPn5+cjJyUFJSQkkScL27dvx6quvwmw2IyEhwXNc//79MXfu\nXGRlZUEQBDz77LMQRS5PQ21EUcCvMwZh3l034uNvTmL7/iJ8c6gEOw9fwM03mnD3hAQkxPJaMhFR\nXyI4g3D9dn9eN+R1ycDV2jY2uwMHjpVj675CFJtd68WMHGzEjAmJGJYQCUEQFK60b+F7JnCxbQIX\n26ZrrjQGpscH8RJdL0klImNkHNJTYpF3thJb9p5H/tkq5J+tQlK/cMxIT8SYG6IhMsgQEfVaDDAU\ntARBQGpyNFKTo3Gm5BK27C3E4VMVWPVxHuKMobh7QgIyUuIgS7wkSUTU2zDAUK+QPCACj81KxYWK\nBmzbdx57Ckrx/7Yexye7z2La+IGYMnoAtCH8cSci6i04BqYdXpcMXL+kbapqm7Ejtwg7f7yAFosd\n2hAJt48ZgGnj4hGhC/FzpX0L3zOBi20TuNg2XcMxMNTnGMM1yPzVUPxm4iB8e6gEX+UWYcveQnx5\noAiTRsXhrgkJiDWEKl0mERFdIwYY6tXCNDJ+M3EQ7hw/EN/nXcS2/eex88cL2HXkAtKGmTAjPQGD\n4sKVLpOIiH4hBhjqE9SyCrePjceto/vj4AkztuwtRO7xcuQeL8eNiQbMyEjEiEQDp2ATEQUJBhjq\nU1SiiJtvjMX44Sb89HM1tuwtxLHCahwrrEZirB7T0xMwbpgJosggQ0QUyBhgqE8SBAEpSUakJBlx\n7mIttu4txMETZrzxaQFMkWdx14QETBoVB9mPdz0nIqJrxwBDfV5Sv3AsvG8UyqoasW3/eXyfdxHr\ntp/Ap+4p2LePGYBQjax0mURE5IXTqNvh1LbA1VNtc6m+BTtyi/Ht4WI0tdihUaswZfQATBs/EAY9\np2C3x/dM4GLbBC62TddwGjXRLxChC8HsKcmYkZ6IXT+W4MvcImzbfx47couQMTIO0yckoF9UmNJl\nEhH1aQwwRJcRqpEwPT0RU8cNxJ6CUmzddx7/c/Qivj96EaOHRmNGeiKSB0QoXSYRUZ/EAEN0FbIk\n4tab+mPSqH44fMqMLXvP4/CpChw+VYFhAyMxPT0RowYbOQWbiKgHMcAQdZEoCkgbZsLYG2Jw4nwN\ntuwrRP7ZKpwoqkF8jA7T0xNw840mqETePJKIyN8YYIh+IUEQMDzRgOGJBpwvq8PWfeex/1gZVm/+\nCR/tOou7JyRgUmo/hMicgk1E5C+chdQOR4YHrkBuG3NNE7bvP4/dRy/CanNAp5UxNS0ev0qLh07b\nu6dgB3K79HVsm8DFtumaK81CYoBphz9UgSsY2qa20YKvc4vxzaFiNDTboJZd42fuGp+AqAiN0uX5\nRTC0S1/FtglcbJuu4TRqoh4SHqrGfbcOxvT0BHz34wVsP1CEr3KL8e2hEtx8YyympycgPkandJlE\nREGPAYbIDzRqCXfenIBfpcVj309l2LrvPPYUlGJPQSluSo7C7WPjkdRPD32oWulSiYiCEgMMkR9J\nKhG3jOqHjJFxOHq6Elv2FeLImUocOVMJAIjUqRFv0mGg50OPOKOWM5mIKKA5nU44nE7Y7E7IkghR\ngWUkGGCIeoAoCBg9NBqjh0bjVHENjp6pRFF5PYrK65F/tgr5Z6s8x8qSiP7RYZ5Qk2DSId6kQxjv\nx0TUazmcTtjtTtjsDtgdTtjtDtjsTtgcDp/9Nrv7scP1vN1rf+tjm6PtXG3ncz/2Orfd0f41vvtb\nv5b349Zz2+0OtA6gHZ4QiSfnj+3xfzMGGKIeNjQ+EkPjIz2P65usnjBTVF6HovJ6lJjrUVjqO8Av\nKjwEA016xLtDzUCTDjEGrSJ/+RD1BQ6nExarHRarAxarHS02h/uxHS2t+6x2WGxe2+79FlvbMT7H\nu491ndvhCSB2R2DMp1GJAlQqASpRhKQSIKlEqEQBmhCV67F7v+s4EZJKREqSUZFaGWCIFKbTyrgx\n0YAbEw2efTa7A6VVjV7BxvXx4+kK/Hi6wnOcWhYRH+N9CUqH+BgdtCF8a1Pv5nA6YbU53KHBFRw8\n250Eitagcfl97v02O1osrv1Wm6Pb6hUEIERWQS2roJZE6DQynA54QkL7UCC5Q4Sq9XnRHSbcx0nu\n41zbra9rCxyex17nUHmdwxNE2n2tYPqDiL/liAKQpHIFk/gYHTJS2vZfarCguF1vTWFpHc5eqPV5\nfUykBgNNep9gEx2h4e0OKKDY7A40NNtQ32RFQ5MVdY1WNDRbUddoQUOTa3/rR0Oz1acnw9Kd4QKA\nWq1CiCRCLasQqQuBWhahllyBI0R27fdsSyqoZbEtkMgiQiSV+xwdn1NLrt4L7/cfp1FfPwYYoiAS\nEaZGRJLRp8vWanPgYmVDh96aQyfNOHTS7DlOG6Ly9NbEe/XWcMVg6g5Wmx31raGj0YL6Zq/tJhvq\nmyxtz7u3m1psXTq3IABhGhkhsgr6UBkhssY3OFwmZISoXb0dnmNlVYfwESK7ejIY7oMPAwxRkJMl\nEQmxeiTEti345HQ6UVNv8fTStH6cLrmEU8WXPMcJAEzGUJ+emgSTDgZ9CH+h91FOpxMtVrtP74cr\niLh7QppsqGuyoKHJ6hNMWqz2Lp1fUgkI08owhodAr9UhTCtDr5URppWha/8R6vqsDZGC6tIG9QwG\nGKJeSBAEGPQhMOhDkJoc7dlvsdpRUtGxtyb3eDlyj5d7jgvTSD49NQkmPfpHh0KW2FsTTJxOJxqb\nXcGjzn2ZxhNGmttCie+HDTZ71y7PqGUROq2MWKO2Q/hoDSaeIKJx7dOoVQzH1C0YYIj6ELWsQlK/\ncCT1C/fsczqdqKxt9oSZ1jE2J87X4Pj5Gs9xoiAgLsq3t2agSYfoaK4sfD0cDqdnEGmL12DU9tst\n7WazWDz7HV7bvs83WexwdHF2izZEhTCNjIGmsA69IpfrIVHz8iMpiAGGqI8TBAHREVpER2gxZmiM\nZ3+zxYYSc7veGnM9LlQ0YN9PZZ7jdFoZstQ2k8H3s2uWg6rT2RBesyxE39kVnR3ve1zb+dsfr3LP\n2PB8ba9jruUyROtU2havWS4tVjsslrYpsS0Wrxkt7bYt7cJHS+sUW4vrcVd7O67ajoDPWJBIXQgG\nhqkRIomeSzGX+wjTypBUXDyRggsDDBF1SqOWkDwgAskDIjz7HE4nKmqafEJNRW0zmpptsNmdaLFY\n3YtqtS1+FUhEwR2EfMJTW9BRiSLsDodP2OiuqbStAaN1AGnrTJe22Squ8BEiq7wGmLYFEu9Bp22P\n246XpY4DUTnThXozvwaYkydPYuHChfjtb3+LrKwsWK1WLFmyBIWFhQgLC8OKFSsQERGBzz77DGvX\nroUoipg7dy7mzJnjz7KI6BqJggCTIRQmQyjShpkAXPk/Se/lxu1eq4p6Vg91+K4kavdZedQVgnxe\n5+h8RVK7+/yelUU9n9utbNr69exOn5VHLVa753hJJUAtqRAepvYECnUn4aF9gPAOIO0DSevaHxz7\nQdR9/BZgGhsbsXz5cmRkZHj2vf/++zAYDHj55ZexceNG5ObmIiMjA6tWrcKmTZsgyzJmz56NadOm\nITIy8gpnJ6JgIAgCVIIAlQiAd0Igom7kt4uearUaq1evhslk8uz79ttvce+99wIAMjMzcccdd+DI\nkSMYNWoU9Ho9NBoNxo4di0OHDvmrLCIiIuoF/BZgJEmCRqPx2VdSUoLvvvsO2dnZWLRoEWpqalBR\nUQGjsW1RLqPRCLPZ3P50RERERB49OojX6XQiKSkJjz76KF577TW8+eabGDFiRIdjrsZgCIXkx/Uo\nYmL0Vz+IFMG2CUxsl8DFtglcbJvr06MBJjo6GuPHjwcATJo0Ca+++iqmTJmCioq2m9OVl5dj9OjR\nVzxPdXWj32rkqP3AxbYJTGyXwMW2CVxsm665Usjr0Yn/t956K3bv3g0AKCgoQFJSEm666Sbk5eWh\ntrYWDQ0NOHToEMaNG9eTZREREVGQ8VsPTH5+PnJyclBSUgJJkrB9+3a89NJLeP7557Fp0yaEhoYi\nJycHGo0GixcvxsMPPwxBEPCHP/wBej271YiIiOjyBGdXBp0EGH92u7FbL3CxbQIT2yVwsW0CF9um\nawLmEhIRERFRd2CAISIioqDDAENERERBhwGGiIiIgg4DDBEREQUdBhgiIiIKOkE5jZqIiIj6NvbA\nEBERUdBhgCEiIqKgwwBDREREQYcBhoiIiIIOAwwREREFHQYYIiIiCjoMMF5eeOEFZGZmYt68eTh6\n9KjS5ZCXF198EZmZmZg1axa+/PJLpcshL83NzZg6dSo++ugjpUshL5999hnuvfde3H///di5c6fS\n5RCAhoYGPProo8jOzsa8efOwe/dupUsKapLSBQSK/fv3o7CwEBs3bsSZM2ewdOlSbNy4UemyCMDe\nvXtx6tQpbNy4EdXV1bjvvvtw5513Kl0Wub3++uuIiIhQugzyUl1djVWrVuHDDz9EY2MjXn31VUyZ\nMkXpsvq8jz/+GElJSVi8eDHKysrw0EMPYdu2bUqXFbQYYNz27NmDqVOnAgCSk5Nx6dIl1NfXQ6fT\nKVwZjR8/HqmpqQCA8PBwNDU1wW63Q6VSKVwZnTlzBqdPn+Z/jgFmz549yMjIgE6ng06nw/Lly5Uu\niQAYDAacOHECAFBbWwuDwaBwRcGNl5DcKioqfH6YjEYjzGazghVRK5VKhdDQUADApk2bcOuttzK8\nBIicnBwsWbJE6TKoneLiYjQ3N+P3v/895s+fjz179ihdEgH49a9/jQsXLmDatGnIysrCn//8Z6VL\nCmrsgbkM3mEh8Hz11VfYtGkT3nrrLaVLIQCffPIJRo8ejYEDBypdCnWipqYGK1euxIULF7BgwQJ8\n++23EARB6bL6tE8//RT9+/fHv/71Lxw/fhxLly7l2LHrwADjZjKZUFFR4XlcXl6OmJgYBSsib7t3\n78Ybb7yBNWvWQK/XK10OAdi5cyeKioqwc+dOlJaWQq1WIy4uDhMnTlS6tD4vKioKY8aMgSRJSEhI\nQFhYGKqqqhAVFaV0aX3aoUOHMGnSJADA8OHDUV5ezsvh14GXkNxuueUWbN++HQBQUFAAk8nE8S8B\noq6uDi+++CLefPNNREZGKl0Oub3yyiv48MMP8f7772POnDlYuHAhw0uAmDRpEvbu3QuHw4Hq6mo0\nNjZyvEUASExMxJEjRwAAJSUlCAsLY3i5DuyBcRs7dixSUlIwb948CIKAZ555RumSyG3Lli2orq7G\nE0884dmXk5OD/v37K1gVUeCKjY3FXXfdhblz5wIAnn76aYgi/15VWmZmJpYuXYqsrCzYbDY8++yz\nSpcU1AQnB3sQERFRkGEkJyIioqDDAENERERBhwGGiIiIgg4DDBEREQUdBhgiIiIKOgwwRORXxcXF\nGDlyJLKzsz134V28eDFqa2u7fI7s7GzY7fYuH//AAw9g375911IuEQUJBhgi8juj0Yh169Zh3bp1\n2LBhA0wmE15//fUuv37dunVc8IuIfHAhOyLqcePHj8fGjRtx/Phx5OTkwGazwWq14q9//StGjBiB\n7OxsDB8+HMeOHcPatWsxYsQIFBQUwGKxYNmyZSgtLYXNZsPMmTMxf/58NDU1YdGiRaiurkZiYiJa\nWloAAGVlZfjjH/8IAGhubkZmZiZmz56t5LdORN2EAYaIepTdbseOHTuQlpaGP/3pT1i1ahUSEhI6\n3NwuNDQU69ev93ntunXrEB4ejpdffhnNzc2YMWMGJk+ejB9++AEajQYbN25EeXk57rjjDgDA1q1b\nMXjwYPztb39DS0sLPvjggx7/fonIPxhgiMjvqqqqkJ2dDQBwOBwYN24cZs2ahRUrVuAvf/mL57j6\n+no4HA4Artt7tHfkyBHcf//9AACNRoORI0eioKAAJ0+eRFpaGgDXjVkHDx4MAJg8eTLee+89LFmy\nBLfddhsyMzP9+n0SUc9hgCEiv2sdA+Otrq4Osix32N9KluUO+wRB8HnsdDohCAKcTqfPvX5aQ1By\ncjK++OILHDhwANu2bcPatWuxYcOG6/12iCgAcBAvESlCr9cjPj4eu3btAgCcO3cOK1euvOJrbrrp\nJuzevRsA0NjYiIKCAqSkpCA5ORmHDx8GAFy8eBHnzp0DAGzevBl5eXmYOHEinnnmGVy8eBE2m82P\n3xUR9RT2wBCRYnJycvDcc8/hn//8J2w2G5YsWXLF47Ozs7Fs2TI8+OCDsFgsWLhwIeLj4zFz5kx8\n8803mD9/PuLjEJWLpgAAAGdJREFU4zFq1CgAwJAhQ/DMM89ArVbD6XTikUcegSTx1x5Rb8C7URMR\nEVHQ4SUkIiIiCjoMMERERBR0GGCIiIgo6DDAEBERUdBhgCEiIqKgwwBDREREQYcBhoiIiIIOAwwR\nEREFnf8PC2bXkjWC5mUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "I-La4N9ObC1x", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "Xyz6n1YHbGef", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model of multiple features.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(\n", + " training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(\n", + " validation_examples, validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "i1imhjFzbWwt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_model(\n", + " learning_rate=0.00003,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "65sin-E5NmHN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 5: Evaluate on Test Data\n", + "\n", + "**In the cell below, load in the test data set and evaluate your model on it.**\n", + "\n", + "We've done a lot of iteration on our validation data. Let's make sure we haven't overfit to the pecularities of that particular sample.\n", + "\n", + "Test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv).\n", + "\n", + "How does your test performance compare to the validation performance? What does this say about the generalization performance of your model?" + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "3145f814-bce4-4cdc-c4f9-cc0a48c1a330" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "#\n", + "# YOUR CODE HERE\n", + "#\n", + "test_X = preprocess_features(california_housing_test_data)\n", + "test_Y = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_test_input_fn = lambda: my_input_fn(\n", + " test_X, \n", + " test_Y[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = linear_regressor.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_Y))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 160.92\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "yTghc_5HkJDW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "_xSYTarykO8U", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_test_input_fn = lambda: my_input_fn(\n", + " test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = linear_regressor.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 282d2ae016ac5b07c018a9c4be22ea9bcc9ded7c Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 11:29:15 +0530 Subject: [PATCH 05/11] Created using Colaboratory --- feature_sets.ipynb | 1535 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1535 insertions(+) create mode 100644 feature_sets.ipynb diff --git a/feature_sets.ipynb b/feature_sets.ipynb new file mode 100644 index 0000000..42aa4a6 --- /dev/null +++ b/feature_sets.ipynb @@ -0,0 +1,1535 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_sets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "IGINhMIJ5Wyt", + "pZa8miwu6_tQ" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zbIgBK-oXHO7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Sets" + ] + }, + { + "metadata": { + "id": "bL04rAQwH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Create a minimal set of features that performs just as well as a more complex feature set" + ] + }, + { + "metadata": { + "id": "F8Hci6tAH3pH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "So far, we've thrown all of our features into the model. Models with fewer features use fewer resources and are easier to maintain. Let's see if we can build a model on a minimal set of housing features that will perform equally as well as one that uses all the features in the data set." + ] + }, + { + "metadata": { + "id": "F5ZjVwK_qOyR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "As before, let's load and prepare the California housing data." + ] + }, + { + "metadata": { + "id": "SrOYRILAH3pJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "dGnXo7flH3pM", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jLXC8y4AqsIy", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1209 + }, + "outputId": "159ac19e-1d90-4f35-9fee-e08d71be1262" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.5 2651.0 540.8 \n", + "std 2.1 2.0 12.6 2203.9 425.1 \n", + "min 32.5 -124.3 2.0 2.0 2.0 \n", + "25% 33.9 -121.8 18.0 1460.0 296.0 \n", + "50% 34.2 -118.5 29.0 2125.0 434.0 \n", + "75% 37.7 -118.0 37.0 3160.2 650.0 \n", + "max 42.0 -114.6 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1436.5 503.3 3.9 2.0 \n", + "std 1142.3 390.6 1.9 1.3 \n", + "min 3.0 2.0 0.5 0.0 \n", + "25% 788.0 281.0 2.6 1.5 \n", + "50% 1171.0 408.0 3.5 1.9 \n", + "75% 1729.2 607.0 4.7 2.3 \n", + "max 28566.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.52651.0540.81436.5503.33.92.0
std2.12.012.62203.9425.11142.3390.61.91.3
min32.5-124.32.02.02.03.02.00.50.0
25%33.9-121.818.01460.0296.0788.0281.02.61.5
50%34.2-118.529.02125.0434.01171.0408.03.51.9
75%37.7-118.037.03160.2650.01729.2607.04.72.3
max42.0-114.652.037937.06445.028566.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.8 2626.1 536.0 \n", + "std 2.1 2.0 12.6 2121.5 412.9 \n", + "min 32.5 -124.3 1.0 8.0 1.0 \n", + "25% 33.9 -121.8 18.0 1468.8 299.0 \n", + "50% 34.2 -118.5 29.0 2136.5 433.5 \n", + "75% 37.7 -118.0 37.0 3122.5 644.0 \n", + "max 42.0 -114.3 52.0 32054.0 5290.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1413.0 496.2 3.9 2.0 \n", + "std 1161.0 369.5 1.9 0.9 \n", + "min 11.0 1.0 0.5 0.1 \n", + "25% 796.0 283.0 2.6 1.5 \n", + "50% 1158.0 410.0 3.5 1.9 \n", + "75% 1699.2 601.0 4.8 2.3 \n", + "max 35682.0 5050.0 15.0 27.1 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.82626.1536.01413.0496.23.92.0
std2.12.012.62121.5412.91161.0369.51.90.9
min32.5-124.31.08.01.011.01.00.50.1
25%33.9-121.818.01468.8299.0796.0283.02.61.5
50%34.2-118.529.02136.5433.51158.0410.03.51.9
75%37.7-118.037.03122.5644.01699.2601.04.82.3
max42.0-114.352.032054.05290.035682.05050.015.027.1
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 206.1\n", + "std 115.2\n", + "min 15.0\n", + "25% 119.2\n", + "50% 178.8\n", + "75% 263.0\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean206.1
std115.2
min15.0
25%119.2
50%178.8
75%263.0
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 210.1\n", + "std 117.8\n", + "min 15.0\n", + "25% 120.6\n", + "50% 183.4\n", + "75% 269.4\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean210.1
std117.8
min15.0
25%120.6
50%183.4
75%269.4
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "hLvmkugKLany", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Develop a Good Feature Set\n", + "\n", + "**What's the best performance you can get with just 2 or 3 features?**\n", + "\n", + "A **correlation matrix** shows pairwise correlations, both for each feature compared to the target and for each feature compared to other features.\n", + "\n", + "Here, correlation is defined as the [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient). You don't have to understand the mathematical details for this exercise.\n", + "\n", + "Correlation values have the following meanings:\n", + "\n", + " * `-1.0`: perfect negative correlation\n", + " * `0.0`: no correlation\n", + " * `1.0`: perfect positive correlation" + ] + }, + { + "metadata": { + "id": "UzoZUSdLIolF", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 379 + }, + "outputId": "3d106107-64b0-47e7-ea39-055f861a1f52" + }, + "cell_type": "code", + "source": [ + "correlation_dataframe = training_examples.copy()\n", + "correlation_dataframe[\"target\"] = training_targets[\"median_house_value\"]\n", + "\n", + "correlation_dataframe.corr()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_persontarget
latitude1.0-0.90.0-0.0-0.1-0.1-0.1-0.10.1-0.1
longitude-0.91.0-0.10.00.10.10.0-0.0-0.1-0.0
housing_median_age0.0-0.11.0-0.4-0.3-0.3-0.3-0.1-0.10.1
total_rooms-0.00.0-0.41.00.90.90.90.20.10.1
total_bedrooms-0.10.1-0.30.91.00.91.0-0.00.00.1
population-0.10.1-0.30.90.91.00.90.0-0.1-0.0
households-0.10.0-0.30.91.00.91.00.0-0.00.1
median_income-0.1-0.0-0.10.2-0.00.00.01.00.20.7
rooms_per_person0.1-0.1-0.10.10.0-0.1-0.00.21.00.2
target-0.1-0.00.10.10.1-0.00.10.70.21.0
\n", + "
" + ], + "text/plain": [ + " latitude longitude housing_median_age total_rooms \\\n", + "latitude 1.0 -0.9 0.0 -0.0 \n", + "longitude -0.9 1.0 -0.1 0.0 \n", + "housing_median_age 0.0 -0.1 1.0 -0.4 \n", + "total_rooms -0.0 0.0 -0.4 1.0 \n", + "total_bedrooms -0.1 0.1 -0.3 0.9 \n", + "population -0.1 0.1 -0.3 0.9 \n", + "households -0.1 0.0 -0.3 0.9 \n", + "median_income -0.1 -0.0 -0.1 0.2 \n", + "rooms_per_person 0.1 -0.1 -0.1 0.1 \n", + "target -0.1 -0.0 0.1 0.1 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "latitude -0.1 -0.1 -0.1 -0.1 \n", + "longitude 0.1 0.1 0.0 -0.0 \n", + "housing_median_age -0.3 -0.3 -0.3 -0.1 \n", + "total_rooms 0.9 0.9 0.9 0.2 \n", + "total_bedrooms 1.0 0.9 1.0 -0.0 \n", + "population 0.9 1.0 0.9 0.0 \n", + "households 1.0 0.9 1.0 0.0 \n", + "median_income -0.0 0.0 0.0 1.0 \n", + "rooms_per_person 0.0 -0.1 -0.0 0.2 \n", + "target 0.1 -0.0 0.1 0.7 \n", + "\n", + " rooms_per_person target \n", + "latitude 0.1 -0.1 \n", + "longitude -0.1 -0.0 \n", + "housing_median_age -0.1 0.1 \n", + "total_rooms 0.1 0.1 \n", + "total_bedrooms 0.0 0.1 \n", + "population -0.1 -0.0 \n", + "households -0.0 0.1 \n", + "median_income 0.2 0.7 \n", + "rooms_per_person 1.0 0.2 \n", + "target 0.2 1.0 " + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "metadata": { + "id": "RQpktkNpia2P", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Features that have strong positive or negative correlations with the target will add information to our model. We can use the correlation matrix to find such strongly correlated features.\n", + "\n", + "We'd also like to have features that aren't so strongly correlated with each other, so that they add independent information.\n", + "\n", + "Use this information to try removing features. You can also try developing additional synthetic features, such as ratios of two raw features.\n", + "\n", + "For convenience, we've included the training code from the previous exercise." + ] + }, + { + "metadata": { + "id": "bjR5jWpFr2xs", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "jsvKHzRciH9T", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + "\n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g3kjQV9WH3pb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period,\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "varLu7RNH3pf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Spend 5 minutes searching for a good set of features and training parameters. Then check the solution to see what we chose. Don't forget that different features may require different learning parameters." + ] + }, + { + "metadata": { + "id": "DSgUxRIlH3pg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 653 + }, + "outputId": "18a3cab8-f36a-4969-d085-cedfd711dbe8" + }, + "cell_type": "code", + "source": [ + "#\n", + "# Your code here: add your features of choice as a list of quoted strings.\n", + "#\n", + "minimal_features = [\n", + " \"median_income\",\n", + " \"latitude\",\n", + "]\n", + "\n", + "assert minimal_features, \"You must select at least one feature!\"\n", + "\n", + "minimal_training_examples = training_examples[minimal_features]\n", + "minimal_validation_examples = validation_examples[minimal_features]\n", + "\n", + "#\n", + "# Don't forget to adjust these parameters.\n", + "#\n", + "train_model(\n", + " learning_rate=0.02,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=minimal_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=minimal_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 121.18\n", + " period 01 : 115.70\n", + " period 02 : 115.04\n", + " period 03 : 112.95\n", + " period 04 : 111.62\n", + " period 05 : 110.45\n", + " period 06 : 109.28\n", + " period 07 : 108.79\n", + " period 08 : 107.40\n", + " period 09 : 108.93\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGACAYAAACgBBhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VNX5+PHPTCb7RvaVhBD2sEuA\nhDVhSUAQEZoqEMWq/VVFqNqCfutWsSJ1qaJihboUKC2KiIDIvosEMIBEAxESSMhO9n2Z3N8fgZFI\nEkLIzNyE5/168Xoxd+be88w8d5In55x7rkZRFAUhhBBCiA5Ea+4AhBBCCCHamhQ4QgghhOhwpMAR\nQgghRIcjBY4QQgghOhwpcIQQQgjR4UiBI4QQQogOR2fuAIRoz3r27ElAQAAWFhYA6PV6QkNDee65\n57Czs2v1cT/77DNiYmKu275hwwaeffZZ/vnPfxIREWHYXllZSXh4OBMnTuS1115rdbstlZqayquv\nvkpKSgoAtra2zJs3j/Hjxxu97ZuxfPlyUlNTr/tM4uLieOihh/D3979un23btpkqvFty6dIlxo0b\nR1BQEACKouDu7s5f/vIX+vTpc1PHevPNN/H19eW+++5r8T5fffUV69evZ/Xq1TfVlhCmIgWOELdo\n9erVeHt7A1BdXc2TTz7Jhx9+yJNPPtmq4+Xm5vKvf/2r0QIHwMfHhy1btjQocPbu3YuTk1Or2muN\nP/3pT0ybNo1//vOfAJw6dYoHHniAb775Bh8fH5PFcSt8fHzaTTHTFAsLiwbvYevWrTz++ONs374d\nKyurFh/n6aefNkZ4QpiVDFEJ0YasrKwYNWoUiYmJAFRVVfHCCy8QFRXFpEmTeO2119Dr9QCcOXOG\ne++9l+joaKZNm8bBgwcBuPfee8nIyCA6Oprq6urr2hg8eDBxcXFUVFQYtm3dupURI0YYHldXV/PK\nK68QFRVFZGSkoRABOHHiBPfccw/R0dFMnjyZw4cPA/U9AiNHjmTVqlVMnTqVUaNGsXXr1kbfZ1JS\nEgMGDDA8HjBgANu3bzcUeu+99x5jxozh7rvvZsWKFURGRgLwzDPPsHz5csN+1z6+UVyvvvoqc+bM\nAeD7779nxowZTJgwgZiYGNLS0oD6nqw//vGPREREMGfOHLKysm6QscZt2LCBefPm8cADD/D3v/+d\nuLg47r33XhYsWGAoBr755humTJlCdHQ0999/P6mpqQC8++67PPfcc8ycOZNPP/20wXEXLFjAxx9/\nbHicmJjIyJEjqaur4x//+AdRUVFERUVx//33k52dfdNxT548mcrKSpKTkwFYt24d0dHRREZG8tRT\nT1FZWQnUf+5Llixh6tSpfPPNNw3y0NR5WVdXx8svv8zYsWOZOXMmZ86cMbR79OhRpk+fzuTJk5k0\naRLffPPNTccuRJtThBCt1qNHDyUzM9PwuLCwUJk9e7ayfPlyRVEU5cMPP1QeeeQRpaamRqmoqFBm\nzJihbNy4UdHr9cqkSZOUzZs3K4qiKD/88IMSGhqqlJSUKEeOHFHGjx/faHtffPGFsmjRIuVPf/qT\nYd+SkhJl3Lhxyueff64sWrRIURRFee+995QHHnhAqaqqUsrKypS7775b2bNnj6IoijJlyhRly5Yt\niqIoypdffmloKy0tTenTp4+yevVqRVEUZevWrcqECRMajeOJJ55QIiIilH//+9/KuXPnGjx39uxZ\nZciQIUpOTo5SU1OjPProo0pERISiKIqyaNEi5f333ze89trHzcUVEhKibNiwwfB+Q0NDlUOHDimK\noiibN29Wpk+friiKoqxZs0aZPXu2UlNTo+Tn5ysRERGGz+RazX3GVz/ngQMHKikpKYbX9+vXTzl8\n+LCiKIqSnp6u3HHHHcqFCxcURVGUjz76SHnggQcURVGUZcuWKSNHjlTy8vKuO+7XX3+tzJ492/D4\nnXfeURYvXqwkJSUpEydOVKqrqxVFUZRVq1YpX375ZZPxXf1cevfufd320NBQ5fz588qxY8eUsLAw\nJSsrS1EURXn++eeV1157TVGU+s996tSpSmVlpeHx+++/3+x5uW/fPmXixIlKaWmpUlFRocycOVOZ\nM2eOoiiKcs899yhxcXGKoihKSkqK8tRTTzUbuxCmID04Qtyi2NhYoqOjGTduHOPGjWP48OE88sgj\nAOzbt4+YmBh0Oh02NjZMnTqVb7/9lkuXLnH58mXuvPNOAPr164evry+nT59uUZt33nknW7ZsAWDX\nrl1ERESg1f7ydd67dy+zZs3CysoKOzs7pk2bxo4dOwDYuHEjkyZNAuCOO+4w9H4A1NbWcs899wAQ\nEhJCRkZGo+2//vrrzJ49m82bNzNlyhQiIyP573//C9T3roSGhuLh4YFOp2PKlCktek/NxVVTU8OE\nCRMMx/fy8jL0WE2ZMoXU1FQyMjI4fvw4EyZMQKfT4eLi0mAY79cyMzOJjo5u8O/auTpdunShS5cu\nhsc2NjaEhYUB8O233zJs2DACAwMB+M1vfkNcXBy1tbVAfY+Wq6vrdW2OHTuWn376icLCQgB27txJ\ndHQ0Tk5O5Ofns3nzZoqKioiNjeXuu+9u0ed2laIorFu3Di8vL7p06cKePXuYPHkyXl5eANx3332G\ncwAgLCwMa2vrBsdo7rw8duwYY8aMwd7eHhsbG0OuANzc3Ni4cSPnz5+nS5cuvPnmmzcVuxDGIHNw\nhLhFV+fg5OfnG4ZXdLr6r1Z+fj7Ozs6G1zo7O5OXl0d+fj6Ojo5oNBrDc1d/ybm7u9+wzREjRvDc\nc89RWFjI119/zWOPPWaY8AtQUlLCkiVLeOutt4D6Iav+/fsDsHnzZlatWkVZWRl1dXUo19yOzsLC\nwjA5WqvVUldX12j71tbWPPTQQzz00EMUFxezbds2Xn31Vfz9/SkqKmowH8jNze2G76clcTk4OABQ\nXFxMWloa0dHRhuetrKzIz8+nqKgIR0dHw3YnJyfKysoabe9Gc3CuzduvHxcUFDR4j46OjiiKQkFB\nQaP7XmVnZ0d4eDj79u3jjjvuoLi4mDvuuAONRsO7777Lxx9/zOLFiwkNDeWvf/3rDecz6fV6w+eg\nKArdunVj+fLlaLVaSkpK2LlzJ4cOHTI8X1NT0+T7A5o9L4uKivD09Gyw/apXX32VDz74gAcffBAb\nGxueeuqpBvkRwhykwBGijbi6uhIbG8vrr7/OBx98AIC7u7vhr3WAwsJC3N3dcXNzo6ioCEVRDL9M\nCgsLW1wMWFpaEhERwcaNG7l48SKDBg1qUOB4enryu9/97roejOzsbJ577jk+//xzevfuzYULF4iK\nirqp95mfn09iYqKhB8XJyYmYmBgOHjxIUlISjo6OlJSUNHj9Vb8umoqKim46Lk9PT7p27cqGDRuu\ne87JyanJttuSm5sbJ06cMDwuKipCq9Xi4uJyw32joqLYuXMnBQUFREVFGfI/fPhwhg8fTnl5OUuX\nLuWNN964YU/IrycZX8vT05Pp06ezaNGim3pfTZ2XzX227u7uPP/88zz//PMcOnSIJ554glGjRmFv\nb9/itoVoazJEJUQbevDBBzlx4gRHjx4F6ock1q9fj16vp7y8nK+++ooxY8bg7++Pt7e3YRJvfHw8\nly9fpn///uh0OsrLyw3DHU258847WblyZaOXZo8bN47PP/8cvV6PoigsX76cAwcOkJ+fj52dHV27\ndqW2tpZ169YBNNnL0ZjKykrmz59vmHwKcPHiRU6dOsWQIUMYNGgQx48fJz8/n9raWjZu3Gh4nYeH\nh2FyalpaGvHx8QA3FdeAAQPIzc3l1KlThuP8+c9/RlEUBg4cyJ49e9Dr9eTn53PgwIEWv6+bMWLE\nCI4fP24YRvvf//7HiBEjDD13zYmIiODEiRPs2rXLMMxz6NAh/vrXv1JXV4ednR29evVq0IvSGpGR\nkezYscNQiOzatYsVK1Y0u09z5+WgQYM4dOgQFRUVVFRUGAqrmpoaYmNjycnJAeqHNnU6XYMhUyHM\nQXpwhGhDDg4O/P73v2fp0qWsX7+e2NhY0tLSuPPOO9FoNERHRzNp0iQ0Gg1vvfUWL774Iu+99x62\ntra888472NnZ0bNnT5ydnRkxYgRffvklvr6+jbY1dOhQNBoNkydPvu65WbNmcenSJe68804URaFv\n37488MAD2NnZMXr0aKKionBzc+OZZ54hPj6e2NhYli1b1qL36OvrywcffMCyZct45ZVXUBQFBwcH\nnn32WcOVVb/97W+ZPn06Li4uTJw4kZ9//hmAmJgY5s2bx8SJE+nTp4+hl6ZXr14tjsvGxoZly5ax\nePFiysrKsLS0ZMGCBWg0GmJiYjh+/Djjx4/H19eX8ePHN+h1uNbVOTi/9ve///2Gn4G3tzevvPIK\njz32GDU1Nfj7+7N48eIWfX4ODg6EhIRw9uxZBg4cCEBoaChff/01UVFRWFlZ4erqyquvvgrAwoUL\nDVdC3YyQkBD+8Ic/EBsbS11dHW5ubvz1r39tdp/mzsuIiAj27dtHdHQ07u7ujBkzhuPHj2NpacnM\nmTOZO3cuUN9L99xzz2Fra3tT8QrR1jTKtQPdQgjRxo4fP87ChQvZs2ePuUMRQtxGpA9RCCGEEB2O\nFDhCCCGE6HBkiEoIIYQQHY704AghhBCiw5ECRwghhBAdToe8TDw3t/HLQtuKi4sdBQXlRm1D3DzJ\ni3pJbtRJ8qJekpuW8/BwbHS79OC0gk5nYe4QRCMkL+oluVEnyYt6SW5unRQ4QgghhOhwpMARQggh\nRIcjBY4QQgghOhwpcIQQQgjR4Rj1KqqkpCQee+wx5s6dy5w5c8jMzOTZZ5+ltrYWnU7H66+/joeH\nByEhIQwePNiw36effoqFxS8TrDIzM1m4cCF6vR4PDw9ef/11rKysjBm6EEIIIdoxo/XglJeXs3jx\nYsLCwgzb3n77bWJiYlizZg0TJkzgk08+Aervrrt69WrDv2uLG4Bly5Yxa9Ys1q5dS2BgIOvXrzdW\n2EIIIYToAIxW4FhZWbFy5Uo8PT0N21588UWioqIAcHFxobCwsEXHiouLY9y4cQBERETw3XfftX3A\nQgghhOgwjFbg6HQ6bGxsGmyzs7PDwsICvV7P2rVrmTp1KgDV1dU8/fTT3HvvvYZenWtVVFQYhqTc\n3NzIzc01VthCCCHEbWHfvt0tet0777xJRkZ6k88/88xTbRVSmzL5SsZ6vZ6FCxcyfPhww/DVwoUL\nueuuu9BoNMyZM4chQ4bQr1+/Rvdvyb1BXVzsjL5IUlMrJwrzkryol+RGnSQv6mXM3Fy6dImDB/fw\nm9/cfcPXvvLKS80+/9FHK9skprZm8gLn2WefJTAwkHnz5hm23XfffYb/Dx8+nKSkpAYFjp2dHZWV\nldjY2JCdnd1g2Ksxxl7e2sPD0ei3gxA3T/KiXpIbdZK8qJexc/Pccy+QmPgjvXr1YuLESWRmZvD2\n28tZsuRlcnNzqKio4He/+z0jRoxi3rzf89RTC9m7dzdlZaWkpl4kPf0S8+c/TVjYCO68cxxff72b\nefN+T2joMOLjj1NYWMjSpf/A3d2dl19+nqysTPr168+ePbv48sutbfpemioETVrgbNq0CUtLS+bP\nn2/YlpyczPvvv88bb7yBXq8nPj6e6OjoBvuFh4ezfft2pk2bxo4dOxg1apQpwxZCCCGM4rM95zh2\nJue67RYWGvT6G49YNCa0lycxkd2afc1998WyYcNnBAUFk5p6geXL/0VBQT5Dhw5n0qQppKdf4vnn\nn2HEiIa/b3NysnnjjWUcOXKYr776grCwEQ2et7e35513PuCDD97lwIE9+Pr6U11dxYoVn/Lttwf5\n7LP/tuo9tYbRCpyEhASWLl1Keno6Op2O7du3k5eXh7W1NbGxsQAEBwfz0ksv4e3tzcyZM9FqtURG\nRtK/f38SExPZuXMn8+fP54knnmDRokWsW7cOX19f7r77xl1qxlCn1HEyN4EI16FmaV8IIYRoa717\nhwDg6OhEYuKPbNq0AY1GS3Fx0XWv7d9/IACenp6UlpZe9/yAAYMMzxcVFXHxYgr9+g0AICxsxHVX\nSRuT0Qqcvn37snr16ha99s9//vN123r37k3v3r2B+g+qscnHpna+MIWPEtaQU5NFtN9Ec4cjhBCi\nnYuJ7NZob4sphw8tLS0B2LlzG8XFxbz//r8oLi7m4Ydjr3vttQVKY3Nif/28oihotfXbNBoNGo2m\nrcNvkqxkfBO6OAfSydqZHecOUFJ9feUqhBBCtAdarRa9Xt9gW2FhIT4+vmi1Wvbv30NNTc0tt+Pn\n58/Zsz8BcPTokevaNCYpcG6CpVbHhMCxVOmr2Z16wNzhCCGEEK0SGBjE2bNnKCv75Y/1sWMjOXz4\nIAsWPIqtre2V0ZNbu0IqPHwUZWVlPProQ5w6dQInJ+dbDb3FNEpLrrtuZ4zZrVejr+GvR/9OWXUF\ni8OexcHK3mhtiZsjV4Sol+RGnSQv6tVRclNcXER8/HHGjh1Hbm4OCxY8ytq1X7RpG01dRSU9ODfJ\n0sKSab0mUq2vZnea9OIIIYQQTbGzs2fPnl38/vdz+b//+xNPPGG6RQFNvg5ORzC+60g2/LiN/Ze+\nZXzAGOwt7cwdkhBCCKE6Op2Ol19eYpa2pQenFax0VkwIGEOVvpo9aQfNHY4QQgghfkUKnFYa6Tcc\nR0sH9qV9S3mNcVdOFkIIIcTNkQKnlawsrBgfOIZKfSV70w6ZOxwhhBBCXEMKnFswyi8MB0t79l46\nRHlNhbnDEUIIIcQVUuDcAmsLK8YFjKaitpJ9l6QXRwghRMcxc+ZUysvLWb36UxISfmjwXHl5OTNn\nTm12/337dgOwdetm9u/fa7Q4myIFzi0a7ReOvaUde9IOUVFbae5whBBCiDYVGzuXvn3739Q+mZkZ\n7Nq1HYDJk6cyZkyEMUJrllwmfotsdNaM6zyaTcn1l41Hdxln7pCEEEKIJv3ud7N59dU38fb2Jisr\nk2effRoPD08qKiqorKzkySf/TJ8+fQ2v/9vfXmLs2HEMHDiIv/xlIdXV1YabbgLs2PEN69evw8JC\nS5cuwSxa9BfeemspiYk/8sknK6mrq6NTp07MmPFbli9/h9OnT1Fbq2fGjBiio+9k3rzfExo6jPj4\n4xQWFrJ06T/w9va+5fcpBU4bGO0fzq7U/exJPchY/xHY6GzMHZIQQoh2YMO5LZzIOX3ddgutBn1d\n6240MMizH/d0m9Lk86NHR/DttweYMSOGgwf3M3p0BMHB3Rk9eizff3+M//zn3/ztb69ft9/27d/Q\ntWsw8+c/ze7dOww9NBUVFbz55rs4Ojry+OOPcP78Oe67L5YNGz7jwQcf4aOPPgTg5Ml4kpPP88EH\nH1NRUcEDD9zL6NFjAbC3t+eddz7ggw/e5cCBPcTEzGrVe7+WDFG1AVudDZGdR1NWW86BS9+ZOxwh\nhBCiSfUFTv0abocO7WfkyDHs37+bRx99iA8+eJeioqJG97twIZm+fQcAMGjQHYbtTk5OPPvs08yb\n93suXkyhqKiw0f3PnPmJgQMHA2Bra0uXLl1JS0sDYMCAQQB4enpSWto2N7OWHpw2MrZzOLvTDrAr\nbT+j/cOx0VmbOyQhhBAqd0+3KY32thjzXlRduwaTl5dLdnYWJSUlHDy4D3d3T55/fjFnzvzEe++9\n3eh+igJarQaAuiu9SzU1Nbz11t/59NO1uLm5s3DhH5tsV6PRcO3dL2trawzHs7CwuKadtrlFpvTg\ntBFbnS0RnUdSVlPOwXTpxRFCCKFeYWEjWbFiOaNGjaGoqBA/P38A9u/fS21tbaP7BAQEcuZMIgDx\n8ccBKC8vw8LCAjc3d7KzszhzJpHa2lq0Wi16vb7B/r16hXDixPdX9isnPf0S/v4BxnqLUuC0pQj/\nkdjqbNiVup8qfbW5wxFCCCEaNWZMBLt2bWfs2HFER9/JunX/4cknHyckpC95eXl8/fWm6/aJjr6T\nH388zYIFj5KWdhGNRoOzcydCQ4fx8MP388knK5k1K5Zly94iMDCIs2fPsGzZm4b9BwwYSM+evXj8\n8Ud48snH+cMf5mFra2u096hR2qovSEWMfYv55roOtyTv4JsLu5je7U7GB4wxahyiIWN26YpbI7lR\nJ8mLekluWs7Dw7HR7dKD08YiOo/ExsKaXan7qZZeHCGEEMIspMBpY/aWdoz1H0FJdSmHMuLMHY4Q\nQghxW5ICxwgiAkZhbWHFzov7qNbXmDscIYQQ4rYjBY4ROFjaM8Z/BMXVJRzOOGrucIQQQojbjhQ4\nRjKu82isLKzYcXEvNdKLI4QQQpiUFDhG4mBlz2i/MIqqi/ku85i5wxFCCCFuK1LgGNH4gDFYaS3Z\nfnEvNXWNL5wkhBBCiLYnBY4ROVo5MMovjMKqIo5IL44QQghhMlLgGNm4gDFYanVsv7CXWunFEUII\nIUxCChwjc7Z2ZKTfcAqqConL/N7c4QghhBC3BSlwTGB8wBh0Wh3bL+5BX6e/8Q5CCCGEuCVS4JhA\nJ2tnRvgOI6+ygLiseHOHI4QQQnR4UuCYyMTAseg0Fmy/sFt6cYQQQggjkwLHRDpZOxPuO5TLlfkc\nyz5h7nCEEEKIDk0KHBOaGBiBhcaCbdKLI4QQQhiVFDgm5GLTiTDfUHIr8jiefdLc4QghhBAdllEL\nnKSkJMaPH8+aNWsAyMzMZO7cucyZM4e5c+eSm5sLwNatW5k5cyYxMTH84x//uO44zzzzDFOnTiU2\nNpbY2Fj27dtnzLCNamLAlV6ci7upU+rMHY4QQgjRIRmtwCkvL2fx4sWEhYUZtr399tvExMSwZs0a\nJkyYwCeffEJFRQVvvPEGn376KevWrePw4cOcO3fuuuM99dRTrF69mtWrVzN27FhjhW10brYuDPe5\ng5zyy3yffcrc4QghhBAdktEKHCsrK1auXImnp6dh24svvkhUVBQALi4uFBYWYmtry6ZNm3BwcECj\n0dCpUycKCwuNFZYqRAVGotVo+eaC9OIIIYQQxqAz2oF1OnS6hoe3s7MDQK/Xs3btWh5//HEAHBwc\nADh79izp6ekMGDDguuOtWbOGTz75BDc3N55//nlcXV2bbNvFxQ6dzqKt3kqjPDwcW78vjozJGs7e\nlMOcr/yZ8IAhbRjZ7e1W8iKMS3KjTpIX9ZLc3BqjFThN0ev1LFy4kOHDhzcYvrpw4QJ/+tOfePPN\nN7G0tGywz7Rp0+jUqRO9e/dmxYoVvPfee7zwwgtNtlFQUG60+KH+pMvNLbmlY4zxGsX+C0dY98MW\ngm26o9XIfO9b1RZ5EcYhuVEnyYt6SW5arqlC0OS/VZ999lkCAwOZN2+eYVtWVhaPP/44r732Gr17\n975un7CwMMP2yMhIkpKSTBavsXjYuRHqNYjMsmxO5iaYOxwhhBCiQzFpgbNp0yYsLS2ZP39+g+1/\n+ctfeOmllwgJCWl0vyeeeIK0tDQA4uLi6N69u9FjNYXoLpFo0PBNyi6ZiyOEEEK0IaMNUSUkJLB0\n6VLS09PR6XRs376dvLw8rK2tiY2NBSA4OJgHHniA48ePs2zZMsO+c+fOxdfXl507dzJ//nxmz57N\nH//4R2xtbbGzs2PJkiXGCtukPO08CPUexNGseH7I/ZGBnv3MHZIQQgjRIWgURVHMHURbM/a4ZVuO\njWaX5bA47k18Hbx5NvSPaDSaNjnu7UjGrNVLcqNOkhf1kty0nGrm4IiGvOw9ucNrAOmlmfxw+Sdz\nhyOEEEJ0CFLgqMCkLuOuzMXZSQfsUBNCCCFMTgocFfC292KwZ3/SSjNIyEs0dzhCCCFEuycFjkpE\ndxkHwNaUXdKLI4QQQtwiKXBUwtfBm0Ee/UgtucSPeWfMHY4QQgjRrkmBoyKTgsYD8M2F3dKLI4QQ\nQtwCKXBUxM/Bh4EefblQnEpifvtfrVkIIYQwFylwVCa6S30vjszFEUIIIVpPChyV6ezoS3/3EFKK\nL3K24Jy5wxFCCCHaJSlwVGhS0NUrqmRdHCGEEKI1pMBRoQBHf/q69eZ80QV+Ljxv7nCEEEKIdkcK\nHJWaHPTLXBwhhBBC3BwpcFQq0KkzIW69+LkwmZ8LpBdHCCGEuBlS4KjYpKtXVF3YbeZIhBBCiPZF\nChwVC3IOoLdrD5IKznGuMMXc4QghhBDthhQ4Knd1Ls43MhdHCCGEaDEpcG5CZl4Zf15+mPizOSZr\ns6tzF3q5dOdMwc8kF100WbtCCCFEeyYFzk3QWWgpKKniww0/UKuvM1m7kwxXVO00WZtCCCFEeyYF\nzk3w6GTLmEG+ZFwuY//JDJO1261TED06BZOYn0RKUarJ2hVCCCHaKylwbtK0EUHYWuv46lAK5ZW1\nJmvXMBfngszFEUIIIW5ECpyb5GRvxYzIbpRW1LD1iOnmxHR3CaZ7p678mHeGi8VpJmtXCCGEaI+k\nwGmFaaODcXG0ZufxNPKLK03W7tV1caQXRwghhGieFDitYGOlY/qortTU1rHhQLLJ2u3hEkywcxdO\nX04kteSSydoVQggh2hspcFopvK83/h4OfJeQxcWsEpO0qdFoDFdUbUuR1Y2FEEKIpkiB00parYaY\nyGAU4LO951AUxSTt9nLpTpBTIKcu/8ilEtNdySWEEEK0J1Lg3IK+QW6EBLmSeLGA08n5JmlTo9HI\nFVVCCCHEDUiBc4tiIrqhAT7fd466OtP04vR27UGgU2dO5iaQXpppkjaFEEKI9kQKnFvU2dOBEf18\nSM8t49Bp0xQbGo2GyYYrqmQujhBCCPFrUuC0gemju2Kl0/LlwWSqqvUmaTPErRcBjv6czDlNRmmW\nSdoUQggh2gspcNqAi6M1E4d2pqi0mu1HTXMrhatzcRQUtkkvjhBCCNGAFDhtZNKwQBztLPkmLpWi\n0iqTtNnXrTedHXyJz/mBrLJsk7QphBBCtAdS4LQRW2sd00YGUVWj56tDKSZp8+q6OAqKzMURQggh\nriEFThsaPcAXb1c7DpzKJONymUna7O8egp+DD99nnyK7LMckbQohhBBqZ9QCJykpifHjx7NmzRoA\nMjMzmTt3LnPmzGHu3Lnk5uYCsGnTJmbMmMFvfvMbPv/88+uOk5mZSWxsLLNmzWLBggVUV1cbM+xW\n01lo+c3YYOoUhfX7zpukzasBMhtRAAAgAElEQVRXVCkobLu4xyRtCiGEEGpntAKnvLycxYsXExYW\nZtj29ttvExMTw5o1a5gwYQKffPIJ5eXlvP/++3z66aesXr2af//73xQWFjY41rJly5g1axZr164l\nMDCQ9evXGyvsWzawuzs9/J05ee4yZy4WmKTN/h4h+Np7cyzrBDnll03SphBCCKFmRitwrKysWLly\nJZ6enoZtL774IlFRUQC4uLhQWFjIqVOn6NevH46OjtjY2DB48GDi4+MbHCsuLo5x48YBEBERwXff\nfWessG+ZRqMhJrI7AOv2nqPOBLdw0Gq0hrk42y9IL44QQghhtAJHp9NhY2PTYJudnR0WFhbo9XrW\nrl3L1KlTuXz5Mq6urobXuLq6GoaurqqoqMDKygoANze3655Xm66+Tgzt7cnFrBKO/mSaq5sGevTF\n296Lo9nx5JbnmaRNIYQQQq10pm5Qr9ezcOFChg8fTlhYGJs3b27w/I1uWtmSm1q6uNih01ncUpw3\n4uHh2Ozzj0zvT3zSHjYeSiFqRFesLI0bD8Bv+9/JO999zIHsg/xhaKzR21OjG+VFmI/kRp0kL+ol\nubk1Ji9wnn32WQIDA5k3bx4Anp6eXL78y7yRnJwcBg4c2GAfOzs7KisrsbGxITs7u8GwV2MKCsrb\nPvBreHg4kptb0uxrLIDIwX7sOJbGuu1niB4WYNSYALrZ9MDLzpN9F44w1ns0brauN96pA2lJXoR5\nSG7USfKiXpKblmuqEDTpZeKbNm3C0tKS+fPnG7YNGDCA06dPU1xcTFlZGfHx8QwZMqTBfuHh4Wzf\nvh2AHTt2MGrUKFOG3WpTwrtgZ61jy+ELlFbUGL09rUbLpC7jqFPq2C5XVAkhhLiNaZSWjPm0QkJC\nAkuXLiU9PR2dToeXlxd5eXlYW1vj4OAAQHBwMC+99BLbtm3jo48+QqPRMGfOHO666y4SExPZuXMn\n8+fPJycnh0WLFlFVVYWvry9LlizB0tKyybaNXfXeTGW9LS6Vz/aeY8KQztw3vrtR4wKoU+pYHPcG\neRUFvDh8IW62LkZvUy3kLx71ktyok+RFvSQ3LddUD47RChxzUlOBU1Nbx19WHqGgpIq/PTIMTxc7\no8YGEJf5PasS1zHSbzj39bzH6O2phfxAUC/JjTpJXtRLctNyqhiiuh1Z6rTMGBOMvk7hi/3JJmlz\niNdAPGzd+C7jGAWVhTfeQQghhOhgpMAxgaG9PQnyceTYmRzOZxQZvT0LrQVRXcahV/TsuLjP6O0J\nIYQQaiMFjgloNBpiIroB8Nmecy261P1WDfUahLuNK4cz4iisMn5RJYQQQqiJFDgm0jPAhYHd3Pn5\nUhHxSca/nUJ9L04ktYqendKLI4QQ4jYjBY4J/SYiGK1Gw/p956jV1xm9vWHed+Bm48K3GXEUVRUb\nvT0hhBBCLaTAMSEfN3vGDPQlu6CC/SczjN6ehdaCqMBIaupq2Zm6z+jtCSGEEGohBY6J3TUyCGsr\nCzZ9m0JFVa3R2xvmcwcu1p04lH6Eoiq55FAIIcTtQQocE3O2t2LysABKymvYeuSi0dvTaXVEdYmg\npq6W3an7jd6eEEIIoQZS4JjBxKEBdHKwYsexNPKLK43e3nCfUDpZO3Mg/TtKqkuN3p4QQghhblLg\nmIG1pQXTR3WlpraOLw8Yf/E/S62OiYER1NTVsDv1gNHbE0IIIcxNChwzGdHPB38Pew4nZJGabfy5\nMeE+oThbObE//TCl1WVGb08IIYQwJylwzESrrV/8TwE+33vO6O1ZWlgyIXAs1fpqdqdJL44QQoiO\nTQocM+rb1Y2QLi78eKGAhOQ8o7c3wncYTlaO7L/0LaU10osjhBCi45ICx8x+E9ENDfDZ3nPU1Rn3\nFg5WV3pxqvTV7E09aNS2hBBCCHOSAsfMArwcCe/rzaXcMr49nWn09kb6DsPRyoF9l76lvKbc6O0J\nIYQQ5iAFjgpMH90VS52WLw8mU1WtN2pbVhZWjA8YQ6W+ij1ph4zalhBCCGEuUuCogKuTDRNDO1NY\nWs2OY6lGb2+UXxgOlvbsu3SI8poKo7cnhBBCmJoUOCoxeXggjnaWbI1Lpais2qhtWV/pxamoreTf\nP/2Xg+lHSC66SGWt8RcdFEIIIUxBZ+4ARD1bax13jQjiPzuT2HQohdionkZtb5RfGIczjpKQd4aE\nvDOG7W42Lvg6eONr74Ovgzd+Dj542rpjobUwajxCCCFEW5ICR0XGDPRl1/eX2H8yg/FD/PFxszda\nWzY6a/5v6JNklGWRXppFRlkmGaVZZJRmcfpyIqcvJxpeq9NY4GXvia+9D34O3lcKIG86WTuj0WiM\nFqMQQgjRWlLgqIjOQsvMMcG8/+VpPt97nvkz+xu1PUsLSwKdOhPo1LnB9pLqUtJLM8kozSS9rL7o\nySzLJr00k2PZv7zOTmf7q94eb3zsvbHV2Rg1biGEEOJGpMBRmcE93Onu78zJc5c5m1pAzwAXk8fg\naOVAL9fu9HLtbthWp9RxuSKPjNKsK0VPfY/P+cILnCtMabD/r4e5fO298bLzkGEuIYQQJiMFjspo\nNBpiIrvxt1Xf89nec/zl/iFoVTAMpNVo8bTzwNPOg4H0M2yv1leTWZZdP7xVlnWl50eGuYQQQpiX\nFDgqFOzrTGgvT46dyeFYYg7D+niZO6QmWVlYNT/MdWWIK700U4a5hBBCmIwUOCo1Y2ww8Um5fLH/\nPIN7eGCpa19X9LdsmKt+cnNjw1yuNi71PT0yzCWEEKIVpMBRKc9OtkQO9mfn8TR2f3+J6GEB5g7p\nlrV0mKu+AMpsZpir/vJ1GeYSQgjRFClwVGzqiC58ezqTLYcvMLK/Dw62luYOyShaOsxVfzVX1pVh\nrhOG19nqbPG192agX29GeozAyqJjfk5CCCFaTgocFXOwtWRKeBc+23uOLYcvcO+47jfeqQO5mWGu\n5KILnC9K4ajDSR7uF4u7rZsZIxdCCGFuUuCo3Lg7/Nj9/SX2xF9i3B3+eHSyNXdIZtXUMFdlbRVb\nL21nd/IhXjv2Dvf3/i39PULMGKkQQghzal8zV29DljoLZozpSq1e4Yv9580djmrZ6Kz5f6Gzie0d\nQ21dLR+e/jcbz21FX2fcu7MLIYRQJylw2oGhfbwI9HbkaGIOyRnF5g5H1Yb7DOHPQ57Aw9aNnan7\nePfkSoqqSswdlhBCCBOTAqcd0Go0/DaiGwCf7fkZRVHMHJG6+Tn4sCh0PgM9+vJzYTKvHXubnwuS\nzR2WEEIIE5ICp53oFejCwG7uJF0q4uTPl80djurZ6mx5uG8s93SbQmlNGctOrmDnxX1SHAohxG1C\nCpx2ZObYYLQaDZ/vO0+tvs7c4aieRqNhXMBoFgz6fzha2rPx/FZWnl5FeU2FuUMTQghhZEYtcJKS\nkhg/fjxr1qwxbFu1ahUhISGUlZUBkJCQQGxsrOFfWFgY8fHxDY4TGxvLjBkzDK9JSEgwZtiq5etu\nz+gBPmTll3PwVIa5w2k3unUK4pmhf6RHp2BOXf6RpceXkVYin58QQnRkRrtMvLy8nMWLFxMWFmbY\ntnHjRvLy8vD09DRs69u3L6tXrwaguLiYxx57jIEDB153vCVLltCjRw9jhdtuTBsZxHc/ZrPxUArD\nQ7yxtZYr/VvCycqReQMfZkvKDnZc3Mub379HTI/phPuGmjs0IYQQRmC0HhwrKytWrlzZoJgZP348\nTz75ZJPL6n/00Uc88MADaLUyctYUZwdrJg0PoKS8hm/iLpo7nHbFQmvBtOBJ/KH/XHRaS/5z5nPW\nJH5Otb7G3KEJIYRoY0b781+n06HTNTy8g4NDk6+vrKzk0KFDLFiwoNHnly1bRkFBAcHBwfzf//0f\nNjZN323axcUOnc64N2X08HA06vGbM3tSHw6cymDHsUvMHN8TN+fbe/G/a7UkL5Eew+jbOZg3D6/g\nu8xjZFZk8tSI3+Pt4GGCCG9f5vzOiKZJXtRLcnNrVDO+sWvXLsaOHdto7839999Pz549CQgI4MUX\nX+Q///kPDz30UJPHKigoN2aoeHg4kptr3rVV7hoRxKffnOFfX57md3f2NmssanEzedFgzYL+f+Dz\nnzfxbUYci7a/SmzvGAZ49DVylLcnNXxnxPUkL+oluWm5pgpB1YwF7d27t8F8nWtNmDCBgID6u2lH\nRkaSlJRkytBUaWQ/H/w87Pn2dCZpOaXmDqddsrSwZFavGdzf+7fU1ulZcXoVX577WlY/FkKIDkA1\nBU5CQgK9evW6bruiKMydO5fi4voVfOPi4uje/fa66WRjtFoNvxnbDQX4fO85c4fTrg3zuYM/D5mH\np607u1L3s+zkCoqqZMVoIYRoz4w2RJWQkMDSpUtJT09Hp9Oxfft2wsPDOXz4MLm5uTzyyCMMHDiQ\nhQsXAvVXUF07R+fAgQNcunSJWbNmERMTw9y5c7G1tcXLy4snnnjCWGG3K/26utI70IWElHwSUvLo\nGyR30G4tPwcfFobOZ03iZ5zMTWDJsbd5KGQ23V2CzR2aEEKIVtAoHXBpV2OPW6ppbDQ1u4S/fnIM\nPw8HXnowFK228SvUbgdtkRdFUdiTdpCN57cCcFfXaMYHjGnyyj/RMmr6zohfSF7US3LTcqqfgyNa\nJ8DLkbC+3lzKLeVwQpa5w2n3Gq5+7MDG81tZIasfCyFEuyMFTgdwz+iuWOq0fHkwmaoamSDbFupX\nP15AD5du/CCrHwshRLsjBU4H4Opkw4QhnSkoqWLnsTRzh9NhOFk58sTAh4kKjORyRR5vfP8ehzOO\nmjssIYQQLSAFTgcxeXggDraWbD1ykeKyanOH02FoNVruCo7mD/3nYqm15D9n1rM68TNZ/VgIIVRO\nCpwOws5Gx7SRQVRW6/nq2xRzh9Ph9HPvwzOhC+js6MeRzOO88f175JRfNndYQgghmtDqAufChQtt\nGIZoC2MG+uLlYsv+Exlk5pWZO5wOx93WlacHP8ZI32Gkl2ay9NgyTuXenne2F0IItWu2wHnwwQcb\nPF6+fLnh/y+88IJxIhKtprPQMnNsMHWKwvp9580dTodkaWHJfVdWP9Yr9asfbzi3RVY/FkIIlWm2\nwKmtrW3w+MiRI4b/d8DlczqEwT086ObvzImfL5OUVmjucDqsa1c/3p16gHdOyOrHQgihJs0WOL9e\n3OzaokYWPlMnjUZDTEQ3ANbtOSeFqBFdXf14kEc/zhelsOTY2yQVSM+ZEEKowU3NwZGipn3o5ufM\nkF6epGQWc+xMjrnD6dBsdTY81HcOM7pPpaymnGUnVrDj4l7qlDpzhyaEELe1Zu9FVVRUxHfffWd4\nXFxczJEjR1AUxXDzS6FOM8d05URSLuv3nWdQdw8sdXLBnLFoNBoiO48i0LEzHyWs4avz35BcdJH7\ne8dgZ2ln7vCEEOK21Oy9qGJjY5vdefXq1W0eUFu4ne5F1Zy1u5LYdfwS90Z2Y+LQAHOHY3RqyEtJ\ndSmf/LiWswXncLNx5ZF+sXR29DNrTGqghtyI60le1Ety03JN3YtKbrbZCu3lxCutqGHRP79Dq4HX\n/hCGvY2luUMyKrXkpU6p4+uUnWy7sBudVkdMj2mE+wy9rYd41ZIb0ZDkRb0kNy3XqpttlpaW8umn\nnxoe/+9//2PatGnMnz+fy5dlkTO1c7C1ZEpYIGWVtXx9+KK5w7ltaDVapnaN4tH+D2KltWTtmS9Y\nk/g51XpZYVoIIUyl2QLnhRdeIC8vD4CUlBTeeustFi1aRHh4OH/7299MEqC4NeOH+OPmZM2u79PI\nLZQ7YptSX/fePBO6gABHf45kHeeN798npzzX3GEJIcRtodkCJy0tjaeffhqA7du3Ex0dTXh4OPfe\ne6/04LQTljoL7hkTTK1eYcOBZHOHc9txs3XlqTseY6Tf8CurH7/LyZzT5g5LCCE6vGYLHDu7X64A\nOXr0KMOHDzc8vp3nE7Q3w/p4EejlSNxP2aRkytVvpmap1XFfz3t4oM+91Cl6ViasZsPPsvqxEEIY\nU7MFjl6vJy8vj9TUVE6cOMGIESMAKCsro6JChjvaC61GQ0xk/eJ/n8nif2Yz1Hswfx7yBJ527uxO\nO8A7Jz6ksKrI3GEJIUSH1GyB88gjjzB58mSmTp3KY489hrOzM5WVlcyaNYu7777bVDGKNtA70IX+\nwW6cTSvk1Lk8c4dz2/J18GbhkKurH1/gtaPvkFRwztxhCSFEh3PDy8RramqoqqrCwcHBsO3QoUOM\nHDnS6MG1llwm3rj0y2W88FEc3q52vPzQUCy0HWvxv/aUF0VR2HfpWzac24KiKEztGsWEwLFoNR0r\nJ1e1p9zcTiQv6iW5ablWXSaekZFBbm4uxcXFZGRkGP517dqVjIwMowQqjMfP3Z7RA3zJzCvnwKlM\nc4dzW9NoNER0HsmTg/+As7UTm5K38eEP/6a8ptzcoQkhRIfQ7K0aIiMjCQoKwsPDA7j+ZpurVq0y\nbnSizd09MogjP2bz1cFkhvfxwta62VNAGFlX5y48E7qAT35cS0JeIq8dW8bD/eYQ4Ohv7tCEEKJd\ns3jppZdeaurJzp07k56eTkVFBdHR0SxYsIDZs2dzzz33MH36dBOGeXPKy427oJq9vbXR2zAWGysd\n+jqFH87nYaHV0DvQxdwhtZn2mhdrCytCvQehoHD68k/EZX2Po6U9nR39OszViu01Nx2d5EW9JDct\nZ29v3ej2Zoeopk2bxscff8zbb79NaWkps2fP5uGHH2bz5s1UVlYaJVBhfFFDO+Nsb8X2Y6kUlFSZ\nOxzBL6sfPzbgd1hrrfjv2Q2sOL1KrrISQohWuul7UX3++ee88cYb6PV6jh8/bqy4bolMMr6x/SfT\n+fe2s3i52BIS5EqwnzPBvk54dLJtt70GHSEvAHkVBaxOXMfPhcnYWNhwd7dJjPAd1q4nIHeU3HQ0\nkhf1kty03C3dbLO4uJhNmzaxYcMG9Ho906ZNY8qUKXh6erZ5oG1BCpwb09fVsXLzT8Qn5VKr/+UU\ncLSzJNjXmWA/J7r6OhPk44iNVfuYp9MR8nJVnVLHd5nH+PLc11TUVhLs3IVZvWbiba/O79yNdKTc\ndCSSF/WS3LRcqwqcQ4cO8cUXX5CQkMDEiROZNm0aPXr0MFqQbUUKnJarqa0jNaeE8+nFJGcUcT69\niLziX4atNBrw93Aw9PAE+znj5aLOXp6OlJeriqqK+SzpK07mnkansSC6yzgmBI5Fp20fRedVHTE3\nHYHkRb0kNy3XqgKnV69edOnShQEDBqBtZM2UJUuWtF2EbUgKnFtTUFJVX+xkFHM+vYgLWSXU1NYZ\nnre30RkKnq5+znT1cVLF1VgdOS8ncxP47OyXFFWX4GPvxexeMwlyDjR3WC3WkXPTnkle1Ety03Kt\nKnCOHj0KQEFBAS4uDa+2uXTpEvfcc08bhth2pMBpW7X6OtJySkm+UvCczygit/CXSeYawNfDvn5o\n60ovj7ebHVoT9/J09LyU11Tw1fmtHMqIQ4OGMf7hTO0ajY2u8SsI1KSj56a9kryol+Sm5VpV4Bw/\nfpwnn3ySqqoqXF1d+fDDDwkMDGTNmjWsWLGCAwcOGC3gWyEFjvEVlVVfGdKqH9pKziymuuaXXh47\nax1dfZ3o6utENz9ngnydsLexNGpMt0tefi5IZu3Z9eSUX8bFuhP39bqHELde5g6rWbdLbtobyYt6\nSW5arlUFzuzZs3n55ZcJDg5m9+7drFq1irq6OpydnXn++efx8vIyWsC3Qgoc09PX1XEpp4zkjCLO\nXSl6sgsa3pDVx83OMIE52NcZX3d7tNq26+W5nfJSo69h28U97Li4lzqljiFeA5nZ/S4crRxuvLMZ\n3E65aU8kL+oluWm5VhU4sbGxrF692vB4/PjxLFq0iAkTJrR9hG1IChx1KCmvrh/WutrTk1lMVbXe\n8LyNlQVBPk4NJjA72La+l+d2zEt6aSb/ObOei8Vp2FvaMaPbVIZ6D1bdJPDbMTftgeRFvSQ3LddU\ngdPszNBf/5D08fFRfXEj1MPRzooB3dwZ0M0dgLo6hYzLZZzLKCI5vb7wSbxYQOLFAsM+Xq52hmIn\n2NcJPw/7DndT0Lbk5+DDn+54nP2XDrPp/DesSlzH0ax47us1A3dbV3OHJ4QQZnNTl77c7F+FSUlJ\nPPbYY8ydO5c5c+YAsGrVKpYuXcrRo0ext7cHICQkhMGDBxv2+/TTT7GwsDA8zszMZOHChej1ejw8\nPHj99dexsrK6qViE+Wm1Gvw9HfD3dGDsQD8Ayiprrpm8XExyRjGHE7I4nJAFgLWlBUE+jgT7OdPV\nt35oy8lecn8trUZLROeR9Hfvw3/PbiAxP4m/xb3JlK5RRHQe2a4XCBRCiNZqtsA5ceIEY8eONTzO\ny8tj7NixKIqCRqNh3759Te5bXl7O4sWLCQsLM2zbuHEjeXl51y0Q6ODg0GAo7NeWLVvGrFmzmDRp\nEm+99Rbr169n1qxZN3hroj2wt7GkX1c3+nV1A6BOUcjMK+d8epFhEvPZ1ELOpBYa9vHoZHOlh6d+\nPo+/hwM6C/kl7mbryuMDHuJY9gnW/7yJDee28H32KWb1moG/o6+5wxNCCJNqdg5Oenp6szv7+fk1\n+VxtbS21tbWsXLkSFxcX5syZQ2lpKQ4ODkRGRrJ582ZDD86wYcOIi4tr8liRkZFs27YNKysrTpw4\nwccff8y7777b5OtlDk7HUl5ZS0rmNXN5Moooq6w1PG+l09LF25Gh/XwYFeKFpc6imaPdHkqqS/ni\n5y0cy45Hq9EyPmAMk7qMx8rCuFeyNUW+M+okeVEvyU3LtWoOTnMFzI3odDp0uoaHd3Bo/AqP6upq\nnn76adLT04mKiuLBBx9s8HxFRYVhSMrNzY3c3NxWxyXaHzsbHSFBroQE1c8pqVMUsvPLDcXOufRi\nfk4vIulSEXuOpfHIlD4Eejd+wt8uHK0cmBtyL0O9B/HfsxvYcXEvJ3NOM6vXDLq7BJs7PCGEMDrz\nLz8LLFy4kLvuuguNRsOcOXMYMmQI/fr1a/S1Lbk3qIuLHToj/xXfVMUoTMPL04n+vbwNj8sqaliz\nLZEth1J4ZdVx7pvYk5mR3bG4zYeuxngMYVhwX9YlbGHrz3t4+8SHjOs6kjkDpmNvZWfSWOQ7o06S\nF/WS3NwaVRQ49913n+H/w4cPJykpqUGBY2dnR2VlJTY2NmRnZ9/wJp8FBeVGixWk61Ct/t/0/vT0\nc+bjrYms2XaGwz9k8PCUPni7mvYXuRpN9o+ij1Nv/pO4nt3Jhzh26RS/7XE3Az0b/0Oircl3Rp0k\nL+oluWm5pgpBs/95m5yczNNPP42iKNTW1hIfH0/37t0bvCY8PJzt27cDsGPHDkaNGmWOUEU7EBLk\nyssPDWV4iBfJGcW89PFR9sRfalHPX0fXxSmAZ0IXMLVrNOW1FaxMWM2K06sorCoyd2hCCNHmmp1k\nfCsSEhJYunQp6enp6HQ6vLy8CA8P5/Dhw5w8eZJ+/foxcOBAFi5cyOuvv86RI0fQarVERkby6KOP\nkpiYyM6dO5k/fz45OTksWrSIqqoqfH19WbJkCZaWTU+WlEnGt6df5+XYmRxWbTtDWWUtIUGu/G5y\nb1wc1X/fJlPILsth7dkvOFeYgo2FDdO7TSbcd6jRLimX74w6SV7US3LTcq1aybi9kgLn9tRYXgpL\nq/hk6xlOJ+dhb6NjzsSeDOujzluMmFqdUsfhjKN8eW4rlfpKunUKYlbPGXjZNz8E3BrynVEnyYt6\nSW5arqkCx+Kll156ybShGF95ebVRj29vb230NsTNaywvNlY6hvfxopODNT8k53E0MYfMvDJ6Bbpg\nZXl7X06u0WgIcPJnmM9g8ioLSMxP4tvMo2ioH85qy94c+c6ok+RFvSQ3LWdv33jPvBQ4rSAnnjo1\nlReNRkMXHydCe3tyMauE08n5HP4xCz93e7xcZAKyjc6GO7wG4GfvTVLBeU5f/okfcn8kwMmPTtbO\nbdKGfGfUSfKiXpKblpMCpw3JiadON8qLg60lI/r5YKnT8sP5PA4nZFFcVk2vABdZCRnwtvci3Gco\n5bXl/JR/lu8yjlFeW0FX5y7otLd2waV8Z9RJ8qJekpuWa6rAkTk4rSBjo+p0M3lJzS5h5ZafSM8t\nw9PFlkem9CHYr216KzqCpILz/PfMF+RUXMbVxoV7e95DiFvPVh9PvjPqJHlRL8lNy8kcnDYklbU6\n3UxenB2sGdXfh9pahR/O53HwdCb6ujq6+3dCq725m8p2RG62roT7DgXgp/yzHM2KJ7c8j26dgrCy\nuPmbncp3Rp0kL+oluWk5GaJqQ3LiqdPN5sVCqyUkyJVeAZ04k1rIyXN5nDp/me7+csdyAAutBT1d\nu9HfvQ+pJZdIzD/LkczjOFs74WvvjUbT8kJQvjPqJHlRL8lNy0mB04bkxFOn1ubF3dmWkf19KCmv\n5nRyPgd/yMTKUktXX6eb+iXeUTlZOxLuG4qdzobE/CTic34gpTiVYOcu2FnatugY8p1RJ8mLeklu\nWk4KnDYkJ5463UpeLHVaBnX3IMDLgZ9S8olPuszZ1EJ6BXbCzsY8d+BWE41GQ5BzIEO8BpFdnlN/\nSXlGHFYWVgQ6db5hISjfGXWSvKiX5KblpMBpQ3LiqVNb5MXHzZ7wfj5k55eTkFLfm+Nsb01nTwfp\nzQHsLG0J9RqEu60bZwvOceryj/yUf5YuTgE4WTV9Y0D5zqiT5EW9JDctJwVOG5ITT53aKi/WlhYM\n7e2JRydbTifncexMDmk5pfQOdMHa6vZeHBDqe3P8HX0Z7jOEwqqiK705R9HX1dLVORAL7fWfkXxn\n1Enyol6Sm5aTAqcNyYmnTm2ZF41GQ4CXI8P6eJGWU0pCSj6HEzLxcrXDx82+Tdpo76wtrBjk2Y8u\nTp35uSCZhLxE4nN/wM/eBzdblwavle+MOkle1Ety03JS4LQhOfHUyRh5sbOxJKyvN3bWOk6dz+fI\nj9nkFVfSK8AFS50sDqZ/ZoEAACAASURBVAjgaedOuO9QavQ1/JR3liNZxymuKqZbpyAstfXzl+Q7\no06SF/WS3LScFDhtSE48dTJWXjQaDcF+zgzu4c75jCJOJ+dzNDGbAC8H3J1bdhVRR6fT6ujj1pPe\nrj25UJzKj/lnicv8HjdbN7ztPeU7o1KSF/WS3LScFDhtSE48dTJ2XpzsrRjZ3wcFOHX+Mt+ezqKy\nupaenTthoZXeHAAXG2fCfUPRaXQk5p/lePZJMkozCXDxxUJvJRO1VUZ+lqmX5Kbl5FYNbUiW0FYn\nU+blfHoR/9ryE9kFFfh52PPIlD4EeDV9FdHtKKssh7Vn1nO+6AIANhY2dHHqTJBzAF2cAghyDsTe\nUm52ak7ys0y9JDct19StGqTAaQU58dTJ1Hmpqtbz2b5z7I1Px0KrYdrIICYND5DenGvUKXXEZ58i\npfwCiTnnyC7PbfC8p507QU6BBDkHEuQUgK+DN1qNfH6mIj/L1Ety03JS4LQhOfHUyVx5SUjO4+Ot\niRSWVhPs58TDU/rg5SI9E9e6mpuymnIuFKeSUnSRlKJULhSnUamvNLzO2sKKQMfO9QXPlZ4eRysH\nM0bescnPMvWS3LScFDhtSE48dTJnXkoraliz4yxHE3OwstTy28jujB3oK3NOrmgqN3VKHVllOaQU\n1xc8KcWpZJVlN9zX1o0uToF0da4f1vK19250rR1x8+RnmXpJblpOCpw2JCeeOqkhL3E/ZbNmx1nK\nKmvp19WNByf3opND4xPgbic3k5vymor6Xp4rPT0XitOoqK0wPG+ltSTQqbNhHk+Qc/OrKIumqeE7\nIxonuWk5KXDakJx46qSWvBSUVPHJ1kQSUvKxt9ERG9WTob29zB2WWd1KbuqUOnLKc0kuSuXClZ6e\nzLJsFH750eVm40qQc8CV+TwB+Dv4Si9PC6jlOyOuJ7lpOSlw2pCceOqkprwoisK+E+ms23uO6po6\nhvfxYvbEHtjfpjfubOvcVNRWcrE47cqw1kUuFKVSVltueN5SqyPA0f9KD0/9BGZna6c2a7+jUNN3\nRjQkuWm5pgocnYnjEOK2oNFoiBjsT58urqzc8hNHfsrmbFohv5vcm5AgV3OH1+7Z6mzo5dqdXq7d\ngfqCMqficv3k5StDW8lFFw2XqAO42vz/9u48OqrzTvP4t0qlrSShpbSW9gUQICQ2ARIIs2PiBccL\n2AQSZtKZ6SZxOu6kbYbEcXKc047sdKaPE3c6oe0ZhyRj0jhmiW32TWJfJRAgsWhXaUX7rqo7f0gU\nyIAjRJXqVun3Occn5lap9MrPLfHkvu+tN5D4gWmtuDExRPsZ0WnlV6AQrkqu4AyDNGt1UmsuZouF\nz06UsSO3GLNFYdG0KJ5fkIin++iZQnFENl193ZS1lg+a2mrrbbc+rtPqiPGLvLOWZ0wMgV4BIzpG\nR1Pre0ZINg9DpqhsSE48dVJ7LqXVrWz662Wq6tsJC9LzrScnkmAcHdMmashGURTqO28N3LHVf6Wn\nss2ERbFYnxPg6W8tO/H+sUT7GnF3c91pRTXkIu5Pshk6KTg2JCeeOjlDLr19Zj4+fJO9p8vRaDQ8\nkRHLU3Pi0Lm59ofbqTWbbnMPZS0Vd25Tby6ltbfN+rhO40aUX+TAAub+0hPoGeAyt/+rNRch2TwM\nKTg2JCeeOjlTLldLG3n/08s0tHQTG+bH3z01kchgH0cPy26cJRtFUWjoaqSkuZSbA2t5KtqqBl3l\nCfUOZknsAmaFT3P6O7WcJZfRSLIZOik4NiQnnjo5Wy4dXX38v/1FHL1Yjc5Ny/PzE1k8Iwqti1wd\nuJuzZXO3HnMvZa0VlLSUcbO5lIL6K/QpZgxeQTwet5BZ4dOdtug4cy6uTrIZOik4NiQnnjo5ay5n\nC+v4cNdV2jp7SY4J4JtPTMTg7+XoYdmUs2ZzP41dTewtO8TRqlP0WfoweAWyLG4hs8NnOF3RcaVc\nXI1kM3RScGxITjx1cuZcmtt7+PDzq1y4Xo+3pxurF48jMyVc1nqoWFN3M3tKD3G06uSdohO7kFkR\n053m9nNXzMVVSDZDJwXHhuTEUydnz0VRFHLzTfxp/zW6e8xEhfiyND2aWRPDcNc59yJkZ8/myzR1\nN7O39BC5A0UnyCuQZbELmB0xQ/VFx5VzcXaSzdBJwbEhOfHUyVVyqWvqZOuhG5wtrMOiKIzx8WDh\n1EjmT41kjI+Ho4c3LK6SzZdp6m5mX+lhcqtO0GvpI9AzgGVxC8lQcdEZDbk4K8lm6KTg2JCceOrk\nark0NHex/2wFh/Oq6OzuQ+emJWNSGEvSo4kK8XX08B6Kq2XzZZq7W9hbdojcyruLzgJmR6TjrrKi\nM5pycTaSzdBJwbEhOfHUyVVz6erpIzffxL4zFdQ29e+qPTEukKXp0aQkGJziritXzebLNHe3sK/s\nMDmVx61FZ2nsAjKM6ik6ozEXZyHZDJ0UHBuSE0+dXD0Xi0Uh73o9e06XU1jeBECEQc/iGdFkpoSr\neusHV8/myzR3t7Kv7BA5lSfotfQS4OnPstgFZBhnOrzojOZc1E6yGTqHFJyioiLWr1/PunXrWLNm\nDQC///3vyc7O5tSpU/j49H+w2WeffcYHH3yAVqslIyODV155ZdDrbNiwgYKCAgIC+veJ+eY3v8n8\n+fMf+H2l4IxOoymX0upW9p4p5+TlGswWBR8vHfOnRrJwWhSBfp6OHt49RlM2D9LS08q+0sMcqTyu\nmqIjuaiXZDN0I76beEdHB2+++SYZGRnWY9u2baOhoYHQ0FDrsc7OTn7xi1+wY8cOfHx8WLlyJU89\n9RRJSUmDXu+f/umfWLBggb2GK4RTiQ334++enMjz8xM5cK6SQ+cr+fR4KbtOlpE+IZSl6dHEhY+O\nfa6cxRgPP54d+ySLYx9jX9lhjlQcZ0vRNnaXHmRp7AIyI9Jdet8rIUaa3QqOh4cHmzZtYtOmTdZj\nixcvxtfXl507d1qPeXt7s2PHDnx9+xdNBgQE0NTUZK9hCeFSAnw9eXZeAk9mxHK8oJq9Zyo4UVDD\niYIaxkX5syQ9hqljg9Fq1b9OZ7QY4+HHs0lPsiRm/kDROcafi7axu+QAS+MWMCdiphQdIWzA7mtw\nfvWrXxEYGGidogJYuHAhO3futE5R3VZYWMgrr7zC9u3bcXe/8wbfsGEDdXV19Pb2YjAYeP311wkK\nCnrg9+zrM6PTqXc9ghD2oigK5wvr2H7kBucKawEIN+h5am4Ci2fGoPeSvzjVprmrhZ2F+9l97RDd\n5h4Cvf15JnkZixLn4iFFR4hhU03BKSkp4eWXX+btt99mwoQJg17j+PHjBAQEMGHCBH73u99RXV3N\nj3/84wd+T1mDMzpJLoNV1rez93Q5xwuq6e2z4O3pRlaqkcXTowgO8B7RsUg2f1trTxv7y45wuPIY\nPeYe/D38WBK7gDnGWXYrOpKLekk2Q/egNTiq+HjU6upqvv3tb/Pzn//8nnIDkJGRYT2+cOFCioqK\nRnqIQjidyGAf1i1P5hfrM/nqvAQ83N3Yc7qc1357nPc+uci1iiZc8CZKp+Xn4cszSV/hzYz/xdLY\nBXSau9l6bQdvHP85B8tz6TH3OnqIQjgVVRScH/7wh/zkJz9h0qRJ93385Zdfpry8HICTJ08yduzY\nkRyeEE7NT+/BU5lxvPMPmfzdkxOIDvXlbGEdb/3hHD/7/RlOXK6mz2xx9DDFAF8PH1YkLrcWne67\nis6B8hwpOkIMkd2mqC5dukR2djaVlZXodDrCwsLIzMzk2LFjXLhwgcmTJzNlyhReeOEFnnnmGVJT\nU61fu27dOoxGI3v37uW73/0uJ06c4J133sHb2xu9Xs9bb72FwWB44PeWKarRSXIZGkVRKCpvYs/p\nci5cq0cBAv08WTQ9isemGPGxwzodyWb42nra2V9+hMMVR+k29+Dn4cvSmPnMjZyNh9ujbd0huaiX\nZDN08kF/NiQnnjpJLg+vprGDfWcqyM030d1rxsNdy5zJESyZEU14kN5m30eyeXRtve0cKMvhUEWu\ntegsiZlP1iMUHclFvSSboZOCY0Ny4qmT5DJ8HV29HMkzsf9sOQ0t3QCkJRpYkh7NhNhANI+4HYRk\nYzttve0cLMvhUMVRuszd+Ln7sjj2MbIiM/B8yKIjuaiXZDN0UnBsSE48dZJcHp3ZYuFcUT17Tpdx\no7IFgKgQX5akRzF7YjjuuuEt25NsbK+9t4MD5TkcKs+ly9yNr7sPS2LnP1TRkVzUS7IZOik4NiQn\nnjpJLrZ1o6qZvafLOXO1DouiMEbvzoJpUSyYGskYH7lSoBbtvR0cLM/hYPlRusxd+Lr7sDjmMeZF\nZf7NoiO5qJdkM3RScGxITjx1klzso6G5i/3nKjh8oYrO7j50blpmTwpj6YxookJ9h/Qako39dfR2\ncKA8l4PluYOKTlZkBl66++9PJrmol2QzdFJwbEhOPHWSXOyrq6ePoxer2XumnNrGTgAmxgWyND2a\nlAQD2i9ZpyPZjJyO3g4OludysCKXzr7+orMoZh7zIjPvKTqSi3pJNkMnBceG5MRTJ8llZFgUhbzr\n9ew9Xc7Vsv5948KD9CxJjyYzJRxP93u3SZFsRl5HbycHK3I5WJ5DZ18XPu56Fkc/xryoDLx0XoDk\nomaSzdBJwbEhOfHUSXIZeWU1rew9Xc6JyzWYLQo+XjrmT41k4bQoAv3uXC2QbByno7eTQxW5HCjP\npbOvEx93PYui5/FYVCbRESGSi0rJe2bopODYkJx46iS5OE5zWzcHzlVy8HwlbZ29uGk1pCeHsiQ9\nmviIMZKNCnT2dXKo/Cj7y3P6i45Oz/LxC/Cy+KBFg1ajRavRoNFo+/994Jhm4LiWgeO3/6zRohl0\nfOBrufP47X/uPO+u1+TOa4h7yXtm6KTg2JCceOokuTheT6+ZE5dr2Hu6nMr6dgDGRvnz1QVjSQzz\nHfZt5sJ2+ovOMQ6UH6Gjr9PRw0HzxXLFlxcoty8UpDvH3ZhkGM+i6Hm4u8Au7PL7bOik4NiQnHjq\nJLmoh6IoFJTcYs/pci7dvAWAr7c7GZPCyUqLICpkaHdfCfvp7OuivLeEhsZWLFiwKAqKYsGsWFAU\nCxYULMqd45a7jinK7ccs1q+13P46RRk4dtfzULAo5ruepwz62i9+3YO/793Pu/Oa1nGjEOxtYOW4\nFUwyJDv6P/Ejkd9nQycFx4bkxFMnyUWdTA3tnLnWwL5TpbR29G8UmWAcQ1ZqBDMnhOHtqXPwCEcv\nV3rPdPZ18VnxXg5VHMWiWEgNnsTzY5/C4B3k6KENiytlY29ScGxITjx1klzUKyTED1N1M3nX68nJ\nN3HxZgOKAp7ubqQnhzIvzUhi5BhZjzHCXPE9U9lmYkvhNm40F+Ou1bEsdhGLY5xv2soVs7EXKTg2\nJCeeOkku6vXFbG61dHH0oomcfBP1zV0ARBj0ZKUayUwJf+hPShbD46rvGUVROF1znk+uf0pLT6tT\nTlu5ajb2IAXHhuTEUyfJRb0elI1FUbha2khOvomzhbX0mRXctBqmjA0mK9VISnwQWq1c1bEXV3/P\nOPO0latnY0tScGxITjx1klzUayjZtHX2cqKgmiN5Jirq2gAI9PNk7uQI5qZGEBLgPRJDHVVGy3vG\nGaetRks2tiAFx4bkxFMnyUW9HiYbRVEoqW4lJ6+Kk1dq6Ow2A/3bQmSlGpk2Lhh33b2fliwe3mh6\nzzjbtNVoyuZRScGxITnx1ElyUa/hZtPdY+ZMYS05eVUUVTQD4OOlI2NSOPPSjEPe7FPc32h8z3T2\ndfJp8V4OVxzDolhIC57EcyqcthqN2QyXFBwbkhNPnSQX9bJFNqaGdnLzTRy9VE1Lew8A8RF+ZKUZ\nmSW3mw/LaH7PqH3aajRn87Ck4NiQnHjqJLmoly2z6TNbyL/RQE5eFfkDt5t7uGtJTw4lK9XI2Ch/\nud18iEb7e+b2tNVfrv+V1p42VU1bjfZsHoYUHBuSE0+dJBf1slc2ja3dA7ebV1HX1H+7eXiQnqy0\nCDJTIvCX282/lLxn+qlx2kqyGTopODYkJ546SS7qZe9sLIpCYVkTOflVnLlaR5/ZgptWQ1pSMFmp\nEaQkBOGmlX2wvkjeM4OpadpKshk6KTg2JCeeOkku6jWS2bR39XKioIacvCrKau/cbj5ncjhzU42E\nyu3mVvKeudcXp61CvA284IBpK8lm6KTg2JCceOokuaiXo7IprW7lSF4VJy7X0NndB8CE2ECy0iKY\nPi5k1N9uLu+ZB3P0tJVkM3RScGxITjx1klzUy9HZdPeaOVtYS06eicLyJqD/dvPZk8LJSo0gJuz+\nvyBdnaNzcQaOmraSbIZOCo4NyYmnTpKLeqkpm5pbHeTkmzh60UTzwO3mceF3bjfXe42e283VlIua\nOWLaSrIZOik4NiQnnjpJLuqlxmz6zBYu3mwgJ89E/o0GLIqCh07LjIHdzUfD7eZqzEXNRnLaSrIZ\nOik4NiQnnjpJLuql9mwaW7s5dslETp6J2qZOAMKC9MxLjSAzJRx/X08Hj9A+1J6LWg2etnJnWexC\nm09buUo23eYeWge2xrAXKTg25ConnquRXNTLWbJRFIWi8iaO5FVxprCO3j4LWo2GtCQDWWlGJrvY\n7ebOkosa3X/a6hkmGcbb5PWdNZv23g5uNBVzvbmYG00llLVWYFEsbEj/HtF+Rrt8Tyk4NuSsJ56r\nk1zUyxmz6ejq5cTlGnLyTJTW9I89wNeDOQO7m4cF6h08wkfnjLmojb2mrZwlm8auJq5bC00xpvYa\n62NajZYYvyiSg8ayLHYhHnZamC0Fx4ac5cQbbSQX9XL2bEqrW8nJr+J4wZ3bzcdHB/Tfbj4+FE93\n57zd3NlzUZP+aatPuNFcgrvWncfjFrIo5jHctcNbtK7GbBRFoaaj7q4rNMU0dDVaH/fQuhPnH0uS\nfxyJAfHE+8fi6Wb/TxOXgmNDajzxhOSiZq6STU+vmbNFdeTkVXG1rP92c29PN2ZN7L/dPC7cz6kW\nJrtKLmphy2krNWRjtpipaKsaKDQl3Ggqpq233fq4j05PQkAcSQHxJPrHE+MXiZt25Mu+FBwbUsOJ\nJ+4luaiXK2ZT29TZv7v5RRONrd0ARIX4kpUaQUZKOL7e6tiV+su4Yi5qYItpK0dk02PupbSljOtN\nJdxoLuZmcwnd5h7r4wGe/iQFxFsLTbhPKFqN49ekScGxIfmloE6Si3q5cjYWi8Kl4lvk5Fdx4Vo9\nZouCzk3D1LEhZKVFMDEuCK1Kr+q4ci5q8CjTViORTUdvJzebS7jeVMyN5mJKWyowK2br42H6UJIC\n4kj07y81QV6BqrxC6ZCCU1RUxPr161m3bh1r1qwB4Pe//z3Z2dmcOnUKHx8fAHbs2MGHH36IVqtl\n5cqVvPDCC4Nex2Qy8eqrr2I2mwkJCeGdd97Bw+PB83pScEYnyUW9Rks2LR09HL9UTU6+iar6/kv5\nhjGe1oXJwf7q2gdrtOTiSMOdtrJHNs3dLdYyc72pmKq2ahT6K4AGDdF+kf1XZwLiSfSPw8/D16bf\n314eVHDs9pGdHR0dvPnmm2RkZFiPbdu2jYaGBkJDQwc977333mPr1q24u7vz/PPPs2TJEgICAqzP\neffdd1m9ejXLly/nl7/8JVu3bmX16tX2GroQQgzLGL0Hy2bGsDQ9mptVLeTkmzh5pYYdR0vYebSE\nCXGBZKUamTYueNTvgzVaaDQaZoZPY3LwBD69uZfDlcf497z3SQtJ4bmkpzB4B9rl+yqKQl1nff90\n08Ci4PrOBuvj7lqdtcwk+ccT7x+Dl87LLmNxFLsVHA8PDzZt2sSmTZusxxYvXoyvry87d+60HsvL\ny2Py5Mn4+fU3sGnTpnHu3DkWLlxofc7Jkyf56U9/CsCCBQv44IMPpOAIIVRLo9GQGOlPYqQ/Ly0a\ny+mrteTkV3G5pJHLJY2yD9Yo5K3z5vlxT5NhTGdL4Sfk1V3ickPhI99tdZtFsVDZVj3oDqeWnjtX\ngLx1XqQYkvsLTUA80X5Rj/w91c5uP51Op0OnG/zyvr73Xu6qr68nKOjOwqugoCDq6uoGPaezs9M6\nJWUwGO55XAgh1MrTw425qf1TVKaG9v6FyZeq2X+2gv1nK4gN92NeagSzJoah91L/wmTxaCJ9I3hl\n2j9Yp6123tzNCdOZh77bqtfSR2lLubXQ3GwqpcvcZX3c38OPaaGp1is0Rt9wVSwIHkmqq29/a0nQ\nUJYMBQbq0dn58u+D5vyEY0ku6iXZ9P83SE0O5388Z+HslRr2nirj9JUaNu8pYsuB62SmGVkyM4aU\nhGC02pFZzCm5OMYToY+xYPxM/nxpJ7uuH+bf895nZuQUvjH1eUJ8+rc1uDubjt5OiuqLuVJ3jav1\n17neUEKvpc/6eIRvKMkh05gQkkRySBJhPsGqXBA8khxecEJDQ6mvr7f+uba2lilTpgx6jl6vp6ur\nCy8vL2pqagat4bmfxsYOu4z1NlmYp06Si3pJNvdKCPPlfz41kVULEjl2qZqcvCoOna3g0NkKQgK8\nmJtqZO7kCAL97LcPluTieE9EL2dK4BS2FH7CqcoLnDcV8HjcQpZPmse54qvWKzQVrVWDFgRH+kZY\np5sS/ePx97yrqHZCfWebg36ikTfii4yHKi0tjR/96Ee0tLTg5ubGuXPn2Lhx46DnZGZmsnv3blas\nWMGePXvIyspy0GiFEMK2Anw9+crsWJbPiuFaRTM5eVWcLqzlkyM32ZZzk8kJBrJSI0hLCkbnNrqm\nGEaL29NWp6rP8cmNT9l5czc7b+62Pq7TuJHgH2stNAn+sXjr1HVHnhrZ7TbxS5cukZ2dTWVlJTqd\njrCwMDIzMzl27BgXLlxg8uTJTJkyhVdffZVdu3bx/vvvo9FoWLNmDU8//TRXrlxh7969fPe736W2\ntpbXXnuN7u5ujEYjb731Fu7uD56rltvERyfJRb0km4fT2d3HqSs15OSbuFnVAoCf3p2MSeFkpRmJ\nDPaxyfeRXNSns6+TXSUHuNV3i0gvI0kBCcT6Rdl0p3JXIx/0Z0PyS0GdJBf1kmyGr6Kujdx8E8cu\nVdPW2QtAonEMWWlG0pND8fYc/oV4yUW9JJuhk4JjQ3LiqZPkol6SzaPrM1u4cK2eI/lVFNy8hQJ4\nuruRnhzK3NQIxkb5P/SiUslFvSSboVPtGhwhhBB/m85Ny4zkUGYkh3KrpYujF03k5JvIvdj/T3iQ\nnqzUCDJTwvH3td/CZCGchVzBGQZp1uokuaiXZGMfFkWhsLSRnHwTZwrr6DNb0Go0pCUZyEo1Mjkx\nCDftgxcmSy7qJdkMnVzBEUIIF6PVaJgQF8SEuCC+1tXLiYIacvKrOH+tnvPX6vH38SBzcjhZqUbC\ng/SOHq4QI0oKjhBCuAAfL3cWTY9i0fQoSqtbyc03cbygms9PlPH5iTLGRfmTlWZkxvhQPD1kHyzh\n+qTgCCGEi4kN9yM23I+VCxM5W1RHTp6JK6WNFFU088e9RcyaGNa/u3mwc+wWLcRwSMERQggX5a5z\nY/bEcGZPDKeuqZPcgUXJhy9UcfhCFdFhhcSG+mEM9sEYrMdo8CHI3wvtKP+If+EapOAIIcQoEBLg\nzVfnJbBibjyXS25xJN9E3vV6ymsGf6S/h7uWCIMPRoO+v/gYfDAG+xAS4D1i+2MJYQtScIQQYhTR\najWkJBhISTAQGOTD5Wu1VNW3U1Xfjqmhw/rvpdWD7+DRuWkJD9L3X+m5q/iEBnrLFhJClaTgCCHE\nKKVz679aE2HwYfr4O8ctFoX65k6q6juoamgfVIAq6gZf8XHTaggL0luv+EQMFJ/wIG/cdbKYWTiO\nFBwhhBCDaLUaQgP1hAbqmTI22HrcoijcaunqLz717VQ1tGMa+N+q+nYorLM+V6OB0ADvgfU9d674\nhBv0eLpL8RH2JwVHCCHEkGg1GoL9vQn29yY10WA9rigKTW091qJjGrjiU1nfbv1Mnts0gMHf657i\nE2HQP9K+WkJ8kZxNQgghHolGoyHQz5NAP08mxQVZjyuKQmtHr/Vqz+2prqqGDvJvNJB/o2HQ6wT6\ned5VevTWEuTjJTtpOyOLReHU1RoulzSyckESvt4jm6MUHCGEEHah0WgY4+PBGB8PkmMDBz3W1tmL\nyVp67qz1KSi+RUHxrUHP9ffxuKf4RAT7MEbvMZI/jhgii6Jw5mot23OLMTV0oHPTsHxWjBQcIYQQ\nrs/X252xUQGMjQoYdLyjqw/TrdtTXXeKz5XSRq6UNt7zGtbFzcE+pCYaCAuULSkcxaIonCusY/vR\nYirr2tFqNMxNjeDJzDhCA7xHfDxScIQQQqiG3ktHotGfRKP/oOPdPeY7xeeu29mvVTZTVNEMwEf7\nrjFtXAiPz4655+uF/VgUhfNFdWzPLaGirg2NBuakhPPknDiHFk4pOEIIIVTP08ONuPAxxIWPGXS8\nt89M9a1OSqpbOHCukrNFdZwtqmNcdACPz4ohNdEgn8xsJ4qicOFaPdtziymr7S82GZPCeXpOHGEq\n2NxVCo4QQgin5a5zIzrUl+hQX+ZOjuBqWRO7TpZx8WYDReVNRBj0PD4rhtkTw3HXyQcS2oKiKORd\nb2B7bjGlNa1ogNmTwngqM44Ig4+jh2clBUcIIYRL0Gg0TIgNZEJsIBW1bew6VcbJyzX8n8+u8pcj\nN1k6I5rHpkSi95K/+oZDURTyb/QXm5Lq/mIzc0IoT8+JxxisnmJzm0ZRFMXRg7C1urrWv/2kRxAS\n4mf37yEenuSiXpKNOo2GXG61dLHndDmH86ro7jHj5eHG/CmRLJ4RRdAYL0cP74HUlI2iKFwqvsW2\nnGKKTS0AzEgOZcWcOCJDHL8jfUiI332PS40VQgjhsoLGePHiorE8PSeOg+cr2Xemgl2nyth7ppzZ\nE8NYNiuGKBX8Ja1GiqJQUHKL7TnF3KjqLzbTx4ewYk48UaHq/28mBUcIIYTL03u580RGHEvTYzhR\nUM2uU2UcvVTNBwqfqwAADgtJREFU0UvVpCYaWD4rhnHRAWhkQTKKonCltJFtucVcH7hDberYYFbM\njScm7P5XS9RICo4QQohRw12nJSvNyJzUCPKu17PrZJn1U5XjI/xYPiuWaeNC0GpHZ9G5WtrItpyb\n1lvvpyT1F5vYcOcpNrdJwRFCCDHqaDUapo4NYerYEK5XNrPrZBnni+r4922XCA3wZtnMaOZMjsBj\nlGwMWljWyPbcYq6WNQGQlmhgRVb8PbflOxMpOEIIIUa1pEh/vvPsZKpvdbD7VBlHL1azeU8R23KL\nWTQtioXTo0Z8m4GRUlTexPbcYuunRE9OMLBibjwJRuctNrfJXVTDoKbV7eIOyUW9JBt1klzur7m9\nh/1nyzlwtpKO7j48dFqyUo0snRlNyAhtOWDvbK5XNLMt9yaXS/qLTUp8ECvmxpMY6XyfAC13UQkh\nhBBD4O/jwbPzEvnK7Fhy8kzsOV3G/nMVHDhfQXpyKI/PinHaqZsbVc1szynm0sCGphPjAnlmbgJJ\nUc5XbP4WKThCCCHEfXh56FiSHs2CaZGcvlrLrpNlnLpSy6krtUyIDWT5rBgmxQc5xZ1XxaYWtuUU\nc/FmAwATYgNZMTeecdEBf+MrnZcUHCGEEOJL6Ny0ZEwKZ/bEMApKbrHrZBmXS/p3N48K8WX5rBjS\nJ4Sic1PfVhAl1S1szykm70Z/sRkfHcAzWfGMjwl08MjsTwqOEEIIMQQajYaUeAMp8QZKq1vZdaqM\n01dq2fTXy3x85AZLZ0STlWbE29Pxf7WWVreyPbeYC9frARgX5c+KrAQmxLp+sblNFhkPgyzMUyfJ\nRb0kG3WSXB5dfVMne06XcyS/ip5eC3pPHQumRbJ4ehT+vp7Dft3hZlNW019szl/rLzZJkf6syIpn\nYmygU0ylDceDFhlLwRkG+aWgTpKLekk26iS52E5bZy8Hz1Ww72wFrR296Nw0ZKaEs2xmzLB22H7Y\nbCpq29h+tJizhXUAJBrHsCIrnklxzrFG6FHIXVRCCCGEnfh6u/PUnHiWzYzh2KX+rSCO5JnIyTMx\nZWwwj8+KYWyU7Rf0Vta1sf1oCWeu1gIQHzGGZ7LiSXGSxc/2JAVHCCGEsBEPdzfmT41kXpqR89fq\n+PxkGeev1XP+Wj1Jkf48PiuGKWOD0T5i+aiqb2fH0WJOX6lFAWLD/XhmbjypiYZRX2xus2vBKSoq\nYv369axbt441a9ZgMpl49dVXMZvNhISE8M4771BUVER2drb1a65fv857773HtGnTrMfWrl1LR0cH\ner0egNdee42UlBR7Dl0IIYQYNq1Ww/TxoUwbF8K1imY+P1FK3o0Gfv2Xi4QH6Xl8VgwZk8Jw1z3c\nVhDVtzrYcbSYkwU1KEBMmC/PzE0gLUmKzRfZreB0dHTw5ptvkpGRYT327rvvsnr1apYvX84vf/lL\ntm7dyurVq9m8eTMALS0trF+/nilTptzzem+99Rbjxo2z13CFEEIIm9NoNIyLDmBcdACV9e3sPlnG\n8YJq/u/nV/nLkZssmRHF/KmR+Hh9+VYQNbc62HG0hBOXq1EUiA71ZcXceKaODZZi8wB2u2nfw8OD\nTZs2ERoaaj128uRJFi1aBMCCBQs4fvz4oK95//33+cY3voFWq77PEhBCCCEeRWSwD//9iQm8/Q+Z\nLJ8VQ2+fmY8P3+QH7x3jo/3XaGjuuudrahs7eP+vl/nhppMcL6gmMtiHb381hTf+WzrTxoVIufkS\ndruCo9Pp0OkGv3xnZyceHh4AGAwG6urqrI91dXWRm5vLP/7jP9739d59910aGxtJTExk48aNeHl5\nPfB7Bwbq0T3kZb+H9aBV28KxJBf1kmzUSXIZeSEhfoxLCGbd0ynsOl7K9iM32HO6nP1nK8iaGsmz\n85MwN7Tz5wPX2X+mHItFISbcj5eWjidzshGtVkrNUDhskfEX707ft28f8+fPv+/Vm69//euMHz+e\nmJgY3njjDf74xz/yzW9+84Gv3djYYfPx3k1urVQnyUW9JBt1klwcLysljIwJIZy8XMOuk2UcOlvB\nobMVaLUaLBaFCIOeFXPjmZEcilajoaGhzdFDVh1V3Cau1+vp6urCy8uLmpqaQdNXBw8e5KWXXrrv\n1y1ZssT67wsXLuSzzz6z+1iFEEKIkaBz0zJncgSZKeFcvNnA7lPl9FoUFk41MjM5TK7YDNOILnbJ\nzMxk9+7dAOzZs4esrCzrY5cuXSI5Ofmer1EUhXXr1tHS0gL0r+MZO3bsyAxYCCGEGCEajYbUxGD+\n+aWp/O/vPcbsieFSbh6B3a7gXLp0iezsbCorK9HpdOzevZtf/OIXbNiwgS1btmA0GnnmmWesz29p\nacHX19f65yNHjlBRUcHq1atZuXIl69atw9vbm7CwMF5++WV7DVsIIYQQLkC2ahgGmbdWJ8lFvSQb\ndZJc1EuyGboHrcGR+7GFEEII4XKk4AghhBDC5UjBEUIIIYTLkYIjhBBCCJcjBUcIIYQQLkcKjhBC\nCCFcjhQcIYQQQrgcKThCCCGEcDlScIQQQgjhcqTgCCGEEMLlSMERQgghhMtxyb2ohBBCCDG6yRUc\nIYQQQrgcKThCCCGEcDlScIQQQgjhcqTgCCGEEMLlSMERQgghhMuRgiOEEEIIlyMF5yH8y7/8C6tW\nreLFF18kPz/f0cMRd3n77bdZtWoVzz33HHv27HH0cMRdurq6WLx4MX/5y18cPRRxlx07dvD000/z\n7LPPcujQIUcPRwxob2/nO9/5DmvXruXFF18kJyfH0UNyWjpHD8BZnDp1itLSUrZs2cKNGzfYuHEj\nW7ZscfSwBHDixAmuXbvGli1baGxs5Ktf/SpLly519LDEgN/85jf4+/s7ehjiLo2Njbz33nt8/PHH\ndHR08Ktf/Yr58+c7elgC+OSTT4iPj+f73/8+NTU1fOMb32DXrl2OHpZTkoIzRMePH2fx4sUAJCYm\n0tzcTFtbG76+vg4emUhPTyc1NRWAMWPG0NnZidlsxs3NzcEjEzdu3OD69evyl6fKHD9+nIyMDHx9\nffH19eXNN9909JDEgMDAQAoLCwFoaWkhMDDQwSNyXjJFNUT19fWDTrSgoCDq6uocOCJxm5ubG3q9\nHoCtW7cyb948KTcqkZ2dzYYNGxw9DPEFFRUVdHV18fd///esXr2a48ePO3pIYsATTzxBVVUVS5Ys\nYc2aNbz22muOHpLTkis4wyQ7XKjPvn372Lp1Kx988IGjhyKAbdu2MWXKFKKjox09FHEfTU1N/PrX\nv6aqqoqvf/3rHDx4EI1G4+hhjXrbt2/HaDTy/vvvc/XqVTZu3Cjr14ZJCs4QhYaGUl9fb/1zbW0t\nISEhDhyRuFtOTg7/8R//wX/+53/i5+fn6OEI4NChQ5SXl3Po0CGqq6vx8PAgPDyczMxMRw9t1DMY\nDEydOhWdTkdMTAw+Pj7cunULg8Hg6KGNeufOnWPu3LkAJCcnU1tbK1PuwyRTVEM0Z84cdu/eDUBB\nQQGhoaGy/kYlWltbefvtt/ntb39LQECAo4cjBvzbv/0bH3/8MX/+85954YUXWL9+vZQblZg7dy4n\nTpzAYrHQ2NhIR0eHrPVQidjYWPLy8gCorKzEx8dHys0wyRWcIZo2bRqTJk3ixRdfRKPR8MYbbzh6\nSGLAZ599RmNjI9/73vesx7KzszEajQ4clRDqFRYWxrJly1i5ciUAP/rRj9Bq5f/vqsGqVavYuHEj\na9asoa+vj5/85CeOHpLT0iiymEQIIYQQLkYquxBCCCFcjhQcIYQQQrgcKThCCCGEcDlScIQQQgjh\ncqTgCCGEEMLlSMERQjhcRUUFKSkprF271rqL8ve//31aWlqG/Bpr167FbDYP+fkvvfQSJ0+eHM5w\nhRBOQAqOEEIVgoKC2Lx5M5s3b+ajjz4iNDSU3/zmN0P++s2bN8sHogkhrOSD/oQQqpSens6WLVu4\nevUq2dnZ9PX10dvby49//GMmTpzI2rVrSU5O5sqVK3z44YdMnDiRgoICenp6eP3116murqavr48V\nK1awevVqOjs7eeWVV2hsbCQ2Npbu7m4Aampq+MEPfgBAV1cXq1at4vnnn3fkjy6EsAEpOEII1TGb\nzezdu5fp06fzz//8z7z33nvExMTcs/mgXq/nD3/4w6Cv3bx5M2PGjOFf//Vf6erq4itf+QpZWVkc\nO3YMLy8vtmzZQm1tLYsWLQLg888/JyEhgZ/+9Kd0d3fzX//1XyP+8wohbE8KjhBCFW7dusXatWsB\nsFgszJgxg+eee453332XH/7wh9bntbW1YbFYgP4tVL4oLy+PZ599FgAvLy9SUlIoKCigqKiI6dOn\nA/2b5yYkJACQlZXFn/70JzZs2MBjjz3GqlWr7PpzCiFGhhQcIYQq3F6Dc7fW1lbc3d3vOX6bu7v7\nPcc0Gs2gPyuKgkajQVGUQfst3S5JiYmJfPrpp5w+fZpdu3bx4Ycf8tFHHz3qjyOEcDBZZCyEUC0/\nPz+ioqI4fPgwAMXFxfz617/+0q9JS0sjJycHgI6ODgoKCpg0aRKJiYmcP38eAJPJRHFxMQA7d+7k\n4sWLZGZm8sYbb2Aymejr67PjTyWEGAlyBUcIoWrZ2dn87Gc/43e/+x19fX1s2LDhS5+/du1aXn/9\ndb72ta/R09PD+vXriYqKYsWKFRw4cIDVq1cTFRXF5MmTAUhKSuKNN97Aw8MDRVH41re+hU4nvxqF\ncHaym7gQQgghXI5MUQkhhBDC5UjBEUIIIYTLkYIjhBBCCJcjBUcIIYQQLkcKjhBCCCFcjhQcIYQQ\nQrgcKThCCCGEcDlScIQQQgjhcv4/l+Ai5dU+ZDcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "IGINhMIJ5Wyt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "BAGoXFPZ5ZE3", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "minimal_features = [\n", + " \"median_income\",\n", + " \"latitude\",\n", + "]\n", + "\n", + "minimal_training_examples = training_examples[minimal_features]\n", + "minimal_validation_examples = validation_examples[minimal_features]\n", + "\n", + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=minimal_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=minimal_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RidI9YhKOiY2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Make Better Use of Latitude\n", + "\n", + "Plotting `latitude` vs. `median_house_value` shows that there really isn't a linear relationship there.\n", + "\n", + "Instead, there are a couple of peaks, which roughly correspond to Los Angeles and San Francisco." + ] + }, + { + "metadata": { + "id": "hfGUKj2IR_F1", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 365 + }, + "outputId": "7edf8427-9b75-4ef4-de2e-536437002d75" + }, + "cell_type": "code", + "source": [ + "plt.scatter(training_examples[\"latitude\"], training_targets[\"median_house_value\"])" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFKCAYAAADMuCxnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt4G/WZ9/2dGWlGliXbkmzn5EBI\nbCdADnZiToEQEpwGuqVvWgKhWWBZWtrdlj6779UubRdKabeHZ5d3u316PX27Xba0LN2U9IFdNu21\nbwM5EAIhCYntOIHEhwRycOxYtuWDLGkkjfT+oYwsyzOjGWkkjca/zx9tsE6j0W/m/t2n703F4/E4\nCAQCgUAgFBW62AdAIBAIBAKBGGQCgUAgEAwBMcgEAoFAIBgAYpAJBAKBQDAAxCATCAQCgWAAiEEm\nEAgEAsEAWIr54V7vRDE/3nS4XHb4fIFiH4bpIOc1P5Dzmh/Iec0Pep3Xmhqn7GPEQzYRFgtT7EMw\nJeS85gdyXvMDOa/5oRDnlRhkAoFAIBAMADHIBAKBQCAYAGKQCQQCgUAwAMQgEwgEAoFgAIhBJhAI\nBALBABCDTCAQCASCASAGmUAgEAgEA1BUYZBCwUcEeH0BgKJQWc5ibDKMcCSK/qEAjpy5Aoai8Ce3\nXYuFcyrwcf84zg+Mw85Z4XJyEOJxXDevAqyVwZifR6WDA2dlwEeEaf8t97ljfh6CEMNH/ROoddnQ\nfXEUI+M87DYL3E4booKA9m4vPuofh6eqDFvuWAyrlUHPxRG809kPPiLAQgMWhkFdjQPzq+14/8wA\nonEGn7njOsxx2/HHIxcQCkdxvm8CYZlzUFkGLJxTiRgoNNdXg7Uy8AcicDk5NCysQpCPYtQfxrm+\nUQyNhRCJxbC0rgprls2B087O+E6p31vNuSBMkXq+AMA7GgTicdS47Hk/f/1Dfvzh0Dl8NDCBco4F\nQ1O4fpEL/cOTOHZmCBQAzgJE44AgAO4KBtcvqsGKxR6898EA+of8YK0MPnPnEqysr5n2nU70eHHo\nZD9Of+RD5OrfNzTNRV1tBYZGAxgPROCp4BCOxjHfY8fGW6/L63fNFrKeCcWCisfjcaUnHDlyBH/1\nV3+FhoYGAEBjYyO+8IUv4KmnnoIgCKipqcHzzz8PlmWxa9cuvPTSS6BpGg8++CAeeOABxQ/Pt1KX\nEIvht3t7cOhkP0LhWE7vxdBALAa4KzjYbVZMBsPwTYThruDQ3FiDbRvrwdB08nN37uvF8TNX4PNH\nMryz8ZlfbcfTj67Bf779Edq7vRgZ5+Gu4NDUUI04gBM9Q8m/pZ8LM1BT49RlrYrrQjyHHEsjEo1B\nuLo0bSyNtSvm4XN3N+h+/vyhMP76J+8gt6tgJn/3xVvwxuHzONg5kNXr51WX4TuP3QTWUnzfIP33\nKdX1rNd6JUxHr/OqpNSlyiD/+7//O376058m//atb30Ld955J+699178+Mc/xty5c7FlyxZ85jOf\nwauvvgqr1YqtW7fiN7/5DaqqqmTfO9+LZseebuw5dimvnyHS2lKH7a2NBf/cQuEos8AfjKp6buq5\nMAN6XYhq10U+zt8Xn9+PqKB4qReNhbUOfPfxm4t9GLK/T6mtZ2KQ80MhDHJW274jR47g7rvvBgBs\n2LAB7733Hk6cOIEVK1bA6XTCZrNh9erVaGtry+6IdYCPCGjrGizY57V3D4GPCOAjiRC02VBrjIGp\nc0GYQsu6aOvy6nr++of8hjXGAHBx0I+JgFyypTAo/T5kPRMKhao4UW9vL/7iL/4CY2NjePLJJxEM\nBsGyibyix+OB1+vF0NAQ3G538jVutxter/INyOWy500ftH9oEiMThbvIfRMhMKwVADAywRfsc42I\neC5qqsuLfSi6obSrVUNiPapbF74JXtfzd/DUFV3eJ59MhGNYfG1u5zgXlH6fUlzPua5XgjT5Pq8Z\nDfKiRYvw5JNP4t5778XFixfx6KOPQhCmdotyEe8MkXAAyOtEEiEiwO1kC2aUXU4bhHAiX+x2chge\nn71GWTwXZgmb6RGqSqxHdevC5eR0PX/1c41vSJwsXdT1ovT7lNp6JiHr/GCIkPWcOXPwyU9+EhRF\n4ZprrkF1dTXGxsYQCoUAAFeuXEFtbS1qa2sxNDSUfN3g4CBqa2tzPvhs4awMVi8t3Oc3N1aDszLg\nrAyaG2syv6DEcJSpL7oRzwVhCi3rYvXSGl3P37xqByw0pdv76c3CWse0Sv5ioPT7kPVMKBQZDfKu\nXbvwy1/+EgDg9XoxPDyMz372s9i9ezcA4I033sC6deuwatUqnDx5EuPj45icnERbWxtaWlrye/QZ\n2LaxHhvXLICN1e9i8lRwWFjrgNvJgaYAT4UNrS112LaxftrntrbUweWw6va5xWR+tR1//5e3obWl\nDp4KW/J7371mATauWTDtb+nngjCFuC7E82VjaTApV6CNZbBxzYK8nL8f/eVa3d8TSFRZr12e/cZ3\nXnUZnn50tY5HlD3pvw9Zz4RCk7HK2u/34+tf/zrGx8cRiUTw5JNP4vrrr8c3vvEN8DyP+fPn40c/\n+hGsViv++Mc/4pe//CUoisLDDz+MT3/604ofXqiwilQfcoiPYNfBj3D6wiiEOFBht2DN0lqsWuLB\nv/z+QwT4mUUcLgeH5x6/CU47m3Uf8ocfj+DyUAAdPV6EM9SJlHMUJnl9i3GsFuCB9UvAsRbSh6wS\nvUOAxepDlqsiZmgKQkz9OltYY8f966f6kAd9AXzzF4c1H091lQ1N9dWGaysq9fVMQtb5wRBtT/mk\nmItG7ua0dvlcvHdqAFInhaaAH37xVtS67Jo/b2YPKoOQgkW2sQxisRjCUf1+nrqacjzzZ2sM0fNZ\nSpjlBje1BofgmwjB5bRhZb0Hd66aB4amUVNVhtcOnFVszZK6BviIgL/+6UHwkey6nEutrcjomGW9\nGo1CGORZcWdO3/EqtTicOe+Dq4LDiGRxB5f0arSyc1/vtBudkjFW83g2XPJO4jdvdONTty0q2d0/\nIXsYmsb21kbcv34JRsZD2HPsIjp7h/BWW19SBGPrXYshxOI40N4HKafZ5bRNuwaEWAy/29+btTEG\nEm1F969fQtYjYdZjaoMsp7yzoXmBpMEFgFE/jzkyHrDdZs3qpmGk3uR3OgfwTucAXA4r1iybY7hw\nISH/cFYG+9v7sL/9cvJvw+N8csP4yCeWAvH4tMdF0gucdu7rxf62vpyOxzcRwpifzyryRCCYCVMb\n5HSvVLzpCLE43BXSLQ5VDg58RFoEYzIYAR8RNBvlMT8vuwHIBTEfng0+fyR5bki4cHaRSQTj/vVL\nsH1TIxiGnhbebm6snlbgpNdGM93rJhBmK6Y1yEo3i87eYaxc4pH0ABbNdaK9Z0jiVQnvOZudfKWD\nk90A5EKZjQFgxdhk9nrZJFw4+1DaIKZ6q2J4W67ASa+NJmkrIhASmDZWmemm09qyMK0FhYGNpdHW\nMwRKpmUz2518vnqTB4aDmAypl7SUQrwBE2YP4gZRiioHh8lgBJcGJ5LRoFqJ6m8+IiAcjcHl1NY/\nnLjOGNAUUOsqI21FBEIKpvWQlbxSl9MGd4Ut6QG8vLsLh05NTauR6wDJZScv3nTau4cwMh4CRcl/\njhZy1SiucmRfqEYoHdILG5sbaySrqUf9PP7u344DkJ4+JdUtoAbWQuGpP12NBdUOAIkN85JFHkyM\nBXX6hgRC6WNag6x000k3rF0XfJLvQVNAHIBbIn+mldQK1zE/j93vX8y5GEYPJkMRvHbgLCnuMily\nhY1b71qMWDyOQycHplX0p24SQ+EY9h3vA01RyToDrd0CIuFoHD//z1PJcYa1LjtsrAWkOYdAmMK0\nBhmY7pXKFaYohbbjceDrDzVh8YJK3XJcYghwe2sDxiZ4tMnkqwsFH4mR4i4DkC8xCrnCRgCgKUqV\nQT1+ZhD3r18CADkVcaV+NllrBMJMTG2Q071SqZudUmjbXWHT1RinH9vDm5fKGmQKwB2r5uL90968\n9CSnQ4q7ioOcB6tHxEKpsLGtyytbK5GOzx/GyHgIDE3pUsR1/IwX961dBPMpvhMIuTErYpSclUGl\ng8OYn58x17SYovL/ffi87GN1tQ78+b034J++ege+/eiavB2DCCnuKg6iBzs8ziOOKS9y577enN9b\nubBRW4X07qPnFYvBtODz8/jOi0fxwusnIcSyFxQhEMyGqT1kQJ0Hoia0rTdK3gtNAY/duzRZ5RqX\nFPLUF9ILWngmAmEcOzMo+ZgeEQvlwkYOFAXVrXidZ0fwuVbI1mXU1Zbj0uCk6mMb9Yex6+A5BIJh\nEr4mEK5ieoOslEMTbwRqQtt6o+S9xOLA9186ntw83HCtK6/HAkyPBpS6uL7RETeJx894MeqXFnbR\nQ71KqbBx9dJEVEhJtzqVUX8YY35edvO69a7F+LuXjqHPq23GOUmVEAhTmNogq1EkSr0RiAVXhSCT\nWEhq+DLE59ZrrISnYioakM98JmGK9E2iFHpFLNREfw6euJxRi9rGJtI+cptXPiIgJDEhLRNENpNA\nmMLUBlnJCx0p8o1AyXtJ59CpAZSxNIJhffJtVeUsmpfWoHVNHdwVtuSmJH0CFqmK1R+1cpN61S9k\niv7cv34J2ru94CPqQtep0RPx2hFiMby8uysrJTqSKiEQpjC1QVbyQikAu49eSGj2Fsn7SxcLkcsU\nx+LQzRgDwFfvX4Hr5ldO+5vWaAIhOzLJTVY5WLQsq9W9fkEu+qNW/jIUFvDy7i50XfDNiJ7s3Nc7\nTVhHC0Q2k0CYwtQGWckLjcWB/e2XwTB00by/VO+lzzuBH77cpot6lxI0BczxlM/4+8h4SNbDIWFF\n/VAstHJweO7xm+C0a5OjzPV45MaNppNqdFMHtXT2au+ldzk4rGtegPtuu0bzawkEs2L6xOC2jfXY\nsHoBaJmey/buoRmtUIWAjwgY9AWSldSs1aLZGKvtI00lFgdeP3huxt/3HLso+xoSVtQPpTa7Nctq\nCmqMxePhLNl7qB3dQ5pD1VUOFs89fhOe2LKC1CYQCCmY2kMGEl7ohuYFsjKVhfb+0gunXBUcym1W\n+APa82/xLL3pti7vtBA0HxHQeXZY9vkr6z0krKgjU6kKL0YmeLidU+HfQsNHBITC2U8LG53kwVpo\nhKPqUyoty2oLvvEgEEoBUxtk0fi1dUn3egLKwxWybf/hIwK8o0EgHkdN2qScV/b2YO/xqc3ByHh+\nZiUr4Zvg4R0NgrXQScEUpWNoXVNXwKMrDfRoDYvH44jHE/9fDIRYDL/Z3QWfP3uD7HJwmAypfz1D\nU/j07ddm/XkEgpkxtUFW014S4KMzhitk2/4jxGJ4ZW8P3k0R7E+dmBMV4nj3ZHbFL3rCWin85Hcd\n8E2E4a7gsHKJBy4ni5GJmT2xnJUm4eoU9GgNS1+XIxPholSzv7K3B+9mWYwlwlppjEyo946FWByv\n7D2LL3zqhpw+Vw2kn55QapjWIKttLwmFhRk3QzViIlLs3Nc7zftNvP/UxJw7V80viC51JvhIHHwk\nYXyHx3nsb78MR5n0UuAjMbx+8Bxpe7pKtmtDxCjV7HxE0GVzODCifXzimfO+vNZtpG6ahsd5VDlY\nNDdUF7WjgkBQg2lXp9p2DhGxuCvTDVPuRpJpA9DW5c0pV5dvAiF58ZG2Lm9RCt+MRrZrIxVlfenC\n6InzEQFdF3xF2xyO+vm8fs9UffDE54Wxv/0yvvfrY0Q7m2BoTGuQtQrhizfDTGIi3lFpjyDTBsA3\nwWPv8cuqj6fQKFV4+ybyewMtFfQwpkrrMt/V7EIshh17uvHMC4fxk//TmbfPyUQ+v6fSpunioB87\n9vTk5XMJBD0wrUFWai+RQrxJKN0w43HgJ7/rwI493TN22pk2AC4ni56LPtXHU2jk2sKAxLGTPLI+\nxrSY08XSPcdikc/vOebnFb9fR5HaHAkENZjWIAOJ9pLWljp4KmygqYRu88Jah+RzxZtEJkMuFuCk\nj8fL9Lrrr3XDJ1E0lS23L58LzqLfz2fn5MsJysvYaS1SYv/0bEMvYyq1Lltb6nJue1L6bdTWVOQb\nzkphy7rFeXv/SgeHKod8S9XoJIn2EIyLaYu6AGkdXwtDXS34kBbbF2IxxONx2FhGMccmVYCzbWM9\n4vF4WpU1g7Ur5uKzdy7BmQs+XbwTt5PD5luuweabF+LZF9/P+f0AgGbkXWR/IIwAH8XrB8/N+sET\neozq1Hu6mJrKb601FZmwsTRuWz4XFEVdPRdqtbDj8AfCihvAXOCsDJobqrG/XTo95M4iXE6qtQmF\nwtQGWSRdx1fpZihVKS2FlKAIQ9P4001LsfWuesk+ZLXDJDIR4KP4zi+PokqnMHKVg8WYzBhAIFEU\n89s3u6e1yMzWwRN6GlO9poupqfzONF0sEyxDISzEUWG34PpFHjyyuRF2zgohFsOQL6TaIAOJmoRU\no6i3wdu+qRG9feO4OOif8ZiWSAaZfkYoNMxzzz33XLE+PBDQL4SrFQtDo7zMCgszdWHxEQE73uxG\nUMUYOXeFDZ+87dppr09974pyFhXl3LTHb1jkgj8QxqifBx8WUOVgs6p0jQqJCiy9qmRvu3EOxgNh\n2e/tcrAYHg9JPj7mD2N903zJ82AWysu5GWtVav0UA6U1m/rbWBgaQ2MhnLs8ntXnXF1y4CMx9Hkn\nEeSjWFVfjVf29uC9D65oeq93Tw7g8AcDuOIL4HjXIH77Zjf+cOg83vtgAENjIdywyAU6G13YqyRa\nDOfBH4xgbCIMPiLAU2HD7SvmYtvGetXv/creHuw5dil5boO8gHOXxxHko1ix2JP18eUbqfVKyB29\nzmt5ubwjNSs8ZLVoCetpLUwRd9udZ4cx5g+jspxF48IqdPQMIpy/cceK2FgGd6ycl9jxM/IiKksX\nuXDklPRNlwyeKC5qKr/F3yY93M5aldMyShzouIxYHDh5VvtgCSDhxf/hnY9m/E2vqAtD03jkE0vx\n4Ib6rNX2jNAvTphdEIOcglJYj6YSVdbuCu05Q2BmWHF0Moyjp+UlPfOJ1QKsbqzFPbdci7luOxia\nxraN9ThzwYdLg5Mznm+z0vITisjgiaKiOD0q7bdJDbd7R4P4p53tWRvkWDxhlPOBngYv27SAlo0O\ngaAXxCCnoDSucX3zAmy+aWFWeS6jVLgCiTnQaxpr0XNpDN/78P1kXmzLusUIyoiDnDzrw8r6askB\nHWSebXFRWrNyvw1nZcBa6Jw0rPOJEQyelo0OgaAXxCCnIV0pTYOiAE+lLatiDr0rXHOBZWkc/nDK\nMxfDhIFQVNEjaF1TB4amcqouJuSHbCq/y/JU5awHRjB42Wx0CIRcMe5VWSSiQhwhXpgWykvVo84m\nt5Vrhaue8GFp6cDjXYOyAyZcThvcFTZdW3VmO3pWFmut/E4odhlXscooBk+PFjcCQQvEIF8ldVSj\nlFECss9tKe22jQIfiaG50YXDEhWzqTdIvVp1Ziv5bKVR+9vs3NeLIx9qq4zOJ7nWZ+QLvfvFCYRM\nzAqDLOWNpP9NzajGXHJb2zbW44NzI+gfCWT1HQrB5psXwlFmJR5BHsl1WpQUWrxtI9UziORSn1EI\nyCaUUChMbZClvJGmhmrEAZzoGUr+bWV9NU70ZL5J5ZLbigpx8JEi9TepwMYymOsuJx5BHtG7lSYb\nbzuT1nMhoK7+T01VGVYu8RChDQLhKqY2yFLeSLoK1/A4L1k9LEWm3JaSpzLm52VD4UZg7Yq54KwM\nkQnMI3q30mTjbZdxFtCU8nSvfBO/+j/xeBEPgkAwIKY1yFpDc0o3KU+K5yGFGk+l0sHBxtIISRRV\nMTRwx8p56Owdhk9BwjIfVJVb0XL9HGy9azF27OkmMoF5RM9Wmmy97SAfLaoxTsU7GpqV8qsEghym\nvdNqbTWSu0mtXT4X33/iVmxvbZQ1TKlj7eKY8lR2vNmd9kxpyT6rhcFDdzfiyc+uUH28etG8tBbb\nWxvx6lvnJL9D+lQrQvboOXox29nMlQ4Obqf8NKRi0E5GIhIIAExskDPNJ5bDxjLTRuL9+SeXZQxT\ny3kqBzou4+U3uiDEYhi7ql8t+R5hAb/Z3YWf/edJzcebK529w5gIhBW9LXKz1A+9Ri8qre+qq3O9\npbAwFMrLjGWQlTYQBMJswrQh62xbjcptFvztw6unTWkC5PPDSp5KLA7sb+sDQ1O4f/0S2XAlxzLT\nJikVEt9ECJcG/UQmsEDo1UqjtL4DfBSvHTgrmW7Yua9XcgpSMTGCEAiBYARMa5CBhDcixOI40N6n\nOm/mm+DBWpnkTTJTfliN6IeY0zNiL3JlOYdaVxmRCSwwerTSiF71O539aUI2gmRu1ogtT4BxhEAI\nhGJj2pA1IHojDZhfXa76NekGSC4/LOZWlfKCIqKXKRWuvO3GObqNUcwGn5/H//z3NthtVsnHyc3S\nuDA0jfvXL0G5TXpfnZ5uyIeEK53FlESaSlRT1LrKsgrXEwhmxdQeMpAwqJe8MycYydHcWA0AGPQF\nUMZZVFWybttYD0GIJUfSpSMaealw5Sv7ii9hODye6E1dWOtAIBQloiA6ku82Mi2tVPmQcM2mYjsO\n4OsPNeHmVQswMRbU7VhESOseoVQxtUFWG6KjKMDttGFVgwfxeBzPvHAYI+M8qhwcfDLFJqk3O4am\n8cjmZQBFqZqIJIYr+YiAIx8UJ3csRSAUxbOPtSDIR8nNLEfyKZGZipZWKgtDwW6zGkIY5FjXIG5f\nvVDX9y3UOScQ8oWpDbKaEB1NAX/76BosqHbgtQNnp+V45YwxIJ1b3d7aoDgRKX3n7vUFJPuSi4Vv\nIpQ0xsTDyI18SGRKoVTctbLeM+13fGVvj+4FXayFRjiqbQ3H4sD+9stwOmzYcvsi3Y6lUOecQMgX\npjbIakJ0sTjguJo/1VLwIpVblaugTUzXmSm6cfP1tdl9sTxR5eCw+/2L6Owd0uxhkDDhFHpLZGb6\nrA3NCyDE4glhmYkQXE4OdpsVJ3q8eKutD1UODivq3XkZKHHLDTU42Jnd+x4+1Y97b16oy7ko5Dkn\nEPKFKoMcCoXwqU99Cl/+8pdx22234amnnoIgCKipqcHzzz8PlmWxa9cuvPTSS6BpGg8++CAeeOCB\nfB97RtS0PnkquKRHqLbgxcYy2LJuseLnplbQyu3cJwLGGhBfXmadFnJX42GQMOFM1OZ1c9nESJ33\nlUs8aG1ZiD3HLmJ/++Wpz/TzeLujP6fvJAVnpcFHso/wDI0Gs2qpkzpvesuSEgjFQJVB/vnPf47K\nykoAwE9/+lNs374d9957L3784x/j1VdfxZYtW/Czn/0Mr776KqxWK7Zu3YpNmzahqqoqrwevhm0b\n69F1YVQ2VNfcWAPOymgqeAlHBPgDYdhVDHlX2rn3XBzN+aamB1UOFs0N1eg8Oyz5uJKHQcKEM8mU\n13XYrTnLlEqd9/3tlwGKkv0d9YaPxHD0dPZtVJ5KbS11Sps/PWVJCYRikfHqP3v2LHp7e3HXXXcB\nAI4cOYK7774bALBhwwa89957OHHiBFasWAGn0wmbzYbVq1ejra0trweuFj4iwDsqXcmZ6umqaV8S\n0XKBK+3cRyZ4rFb5mfmCohK5xtaWhaqlGPmIgEFfgCh8yZBJIvP1gx/lJFOqtMnr6B4qWNFWNi1P\nqaysr9EUGVBqQdRTlpRAKBYZXby///u/x7e//W28/vrrAIBgMAiWTUjveTweeL1eDA0Nwe12J1/j\ndrvh9aoYZ+iyw2LJ74Xyk9+2yfb58mEBcYZBTY0TAPDkg82wl7F47+RleEdDsu95+6r5qJuvzvt3\nVpahxlWGQZ/0pqCywobF8ytw7vK4qvfTm3gceLujHw47J3uc1VVlWLLIAytD48Xff4DDp/rhHQ3C\n5eQUjTjDWlGjoQfcyIhrRC3iWjp8qh9Do0FUV5Xh1uXzsH3zUvyPf3xL8jWdZ4fxpfvLYGOVL8v+\noUmMTEif97FJPqtCq2zIZUiFjWXwxS3LYVcp4znm59HePST5mHje5M754/fdCIaZ6XuEwlH4xnm4\nKriM57zU0LpeCerI93lVXIWvv/46mpqasHChdHuC3Pg0tWPVfL6AqudlCx8R0N4lX3ASB/Dcvxya\nFi7ccvsijE4E4ZXIubEWCnc2LcB9t10Dr3dC9XHceJ0bgz7pEY9HTw2AytHT0IPDJ/tRJiMwwVkZ\nTIwFsWNP97QwqVLO3eW0QQhHNJ0no1JT48zqe2y5fRHuvXnhtHznxxd98MpszoZGgzj78XDGXKcQ\nEeB2SodnqxwsRifzPzGMoSnYORoTweyiILctnwt7GZvxvIph6mNnBjEqMwkt9bxJnfORkUnJ9zRr\n3UO265WgjF7nVcmoKxrkt956CxcvXsRbb72FgYEBsCwLu92OUCgEm82GK1euoLa2FrW1tRgamtq9\nDg4OoqmpKecDz5UxPw9fhhnE6TlPPiLg3U7pAphoLI771y/RfNG2rqmTnbk8MsHLzIAqLCMTPCpj\n0l7VZDCiGJ6WgoQJE6QX+OmR61QqVuSsFsRi+TfIQiwOexmLiaB2YY9ymwXbWxtUPTc9Vy5F+nlT\nkiXlI4lBLqna8aTugWAUFC3LT37yE7z22mv43e9+hwceeABf/vKXsXbtWuzevRsA8MYbb2DdunVY\ntWoVTp48ifHxcUxOTqKtrQ0tLS0F+QJKaJn4JOY8+4b8EGSifbEY0DekvY/TXWGDR+E4WGvxd+UU\ngLFJ6arvUT+vOIACAFwOLqfpRbMFUZxDCi2bGCkZ1vXN8zE8rr/ylRzhcDSrzWQoLKiqL1Ar7KPm\nvImth0//y3uyg1xmc90DwRhoTpx89atfxTe+8Q3s3LkT8+fPx5YtW2C1WvG1r30Nn//850FRFL7y\nla/A6Sx+DkPLxKeR8UThkj9DuC/T43LHceNid15aT/QiDoC1UghHZqYbXE4b6modsp6dp8JGFL5U\nIjdtyVFmwda75Fvp0pHqef/N7i6Eo/LpIprKLe+bzqg/gmzeTojF8Zs3uvH047cqPi9TK6LLwWHN\nshpVmz81njZpjyIUG9UG+atf/Wry37/61a9mPH7PPffgnnvu0eeodES8WJVyUABQ6WBR6eBQlqGV\n6br5lZo+X8xXdfbKt6IUu+2YCPJ6AAAgAElEQVQJAGwsLasa1txYDaedld3ciI877caas2s0lDw+\nfzCKnfvO4pFPLNX0nmJ4NsBHcKxrUPG5ehpjAHA5OYSjAvzBqObXnv5oBKGw8uuUwvtVDhbPPX6T\nqjWn1tMm7VGEYlP8WGmeET2J7z5+M6rK5S/e5oZE2MtpZ1FXK10ZXFdbrtnoiDtzpc1AthTCEaUA\n/Mlt1wCQDpOS8LR6xvy8YktSRw4h0x1v9hR8Y7eq3oNVDdVZvXYsEIEvQ3uWUitTy7Ja1deiWtEf\nUvdAKDbmqvVXwGln4SyXrkB1lFmwfVOimEOIxdBQV4n+oclpueS62nI88+gaTZ+Z7/mzeqa75Lzj\nOIB/+PcO/OCLt8pKgxLUUengElXQMpuz0Uk+a+Wq0x8XRgwkldaWRPfFu53ZDUh5bV83tq5frFgk\nKW725PTh1eCws+AUIkCelCprAqGYzBqDzEcEBELSRUuclUFUiIOhEx7t/rbLM56z7BoXWIu205WP\n+bP5ggJk84EDIwkRENEjUapi1QOz6mJzVgbNDdXTZC1TcWcZMh3z8/D5CyvD6nJwcFfYAADuCvl+\ndCV2H7kAQYgpVjbrsQl8/eA5WWO8dvlcPLJ5qanWGaF0MX3IWkRZ6zbhmWQSqNcaTtRS5V1slNKL\ncQCXdJ4SJIVYCfvMC4fxrV8cxjMvHMaOPd0QZNqxSpHtmxpRVyOdEsk2ZFrp4OB2FjZ/f8MiFzgr\nA87KoFymalwNaq8rcROo9fwoXdM2lsH2TQ3EGBMMw6wxyJUODhwrfeGxV7Ws1QjUa4GzMlhZn12O\nrdAota/QFFBX60j+tyidqXeLiJI0ohkQC/zESI0oCOOp4HLKxXNWBquXFnZy2NHTA9ixpxsBPoLJ\nYPb1EdlcV1pQuqYTmvTGGvBCmN3MmpB1AuUy03wI1CuJghgJpTOzoMYBp53Nq8LRbBifl956Iwra\nrVzi0SxIkR7W37axHrF4HIdODiSlYlkrheqqMoRCUYxMhJNtT5V2K8psVgyMZK+UFxGAPccuIXD1\nvbMl35XNZOgEoZSYNQZ5zM/L5pH4sJAsplFq7cnGIIiiIHLVtTSdEBwxKo4yC55+dDWA/E52Mvv4\nPKUNR+fZEfARQdX6UtoUPXBXPdatmIf/78gFdF8cxZg/DJ4XsKqhBq1r6uAosyLIR/HfR87r1hN/\n+uORnLSz813ZrKRFQKqqCUZj1hjkSgcnaxjdFVM75S3rFiMYiuLMBR98E3xWVZ2pKN0QNjTPB8PQ\nqoRLigVntSAep/LuwZrdk9FrwyG3Keq6MIpAKDLj/A2P89jf1geGprBtYz1ef+cjvHNCP4Eanz+c\n9dSnMs6CeDwOIRbLq4a0HpXaBEIhmDUGOdNO2cJQ02bUupwsbr1xLrZvaoCds4KPCBgeC2RV5Sle\n+G1d3qtGnsPqpVNtFqfODWNgpHCSh1pIzfHl04M1uyejtOGoKGczCtIAyl623LxvkfbuIQhCTLbC\nOxeyFRwJ8lHsPd4HiqLy2kpH2vUIpcKsMcgAsGXddQiEojhz3odR/3TvN93zGJkI49CpAZRxDCiK\n0iVvKhbxpE53igpx2XYsI5DqnebbgzWzJ6O04Rj1h/G9X7+fcV3l0kY3MhFCe4/0+MJi805nf0Em\nL+W7XY9AyJVZYZCl8m633TgXn9vUCDtnUfQ83k0pkgGyy5vKhRnj8ThCvIDxgHbpwUIheqdCLAa7\nzSppkPXyYM3uyaRuOIbHp8/bVrOulLzsTFSVc/DlsZo5F0JhIXmNZToPZu1RJxCAWdL2JNVO8+6p\nAfzr7z/A8FgQ5/rGZD2PVGOcitr+yUzGXm7yTLFxO6e34sgNRVhY69Ddg82259ToiBuOZx9rgUsm\noqC0rpSkJDOxst6Tda63GKSfh9nQo04gmN5DVjKIHb3D6Oh9D0Ci1zauIRemNm+qFGaUM/aF4M5V\nc9F5dkRWxnFVQ3XSQ1E6h4FQNKlyRlBHkI9iVMZbzbSu1A5LERFlITc0L8CBDv3zx/ki/Tzks8Kf\nQDAKpr+NZhL0F9FamCKVN5USzDCqWteHH/vwN59rkvXUOnuHMREIY9AXgHc0qKtgymxHaU1kysen\nDktxlmVWyBJ7nCsdHFiLsVzk6koONhmxntTzoLeCnt7kSyiHMPswvYdc6eAURwumQ1MJkQzOyih6\nsKl5U6XeUKViHi3HpTdDYzye+dejslGB4fEQvvPiUYz5w3A5WXCs9PkwQ0tSodGjotxpZ1HpYDER\nVC4IFHucXz94TnFWcqGhAHznidvwX29JzylOPQ9G7VHPp1AOYXZieoOcQL1nEIsDf711Bf5td5ek\nAaIpYH3T/Gl500zhNLnq4UAwgkMfXMn2S+VMphC9GBJVUmIyQ0tSMci1opyPCAjymYsBR8ZD6PNO\n4HhXfqaOzXWXZdWy57RbMddTruo8GLVHnYTRCXpjeoM85ufBa8jV0hTgKGfhkzFCcQCbb74muQNW\nK5ghVT0c4KNo6/EWzUvWio1lUG6z6CKYMtvJtaJcbQtUHMD//o9TeZnHDQATWWpBO+xW2FiLqvNg\nxB712SD1Sig8pjfIWltFYnGAtTCyr0kfkaclnJbeB2nnLLhj5XxDKHWJvdFK7THhiIC/fXh1chgH\nueHkTra9sVrWdb6MMQBMhrJr2ZsM8AiFp16b6TwYrUfdqGF0Qmlj+kSH1lYRTwWHmqoy2dek78hz\nKdABEjeaW24o7KQeKeJx4MtbloO1yi8Jl9OGGpe9KC1JpHBmOrm0QBmBsYCAn7/WqbptSfSkv//E\nLfjhF2/F95+4BdtbG8HQdMa1kY+1k+t1TyBIYXoPGUjdXXsxPM4np95I0dxYk5yek3iN8o48l3Ca\nEIvht3t7cPTDwSy/mX7YWBo//69TioMuihEeJIUz8ohr8Z3O/qK20GXLvmMXQSOuKd+a6kmnro3h\ncR5VDhbNDdXYvilhqPO5dowYRieUPsxzzz33XLE+PBDIXygtFZqisGKxB1dGAvh4YEJy1KCnwobb\nV8zFto31oCkq+Zr1TfNxx4p5aG2pwzW1DrBWBpa0ptsbFrkQ5KOJ6TrhKNxp78VHBIyMh2Cx0LAw\ndPK/Xz94DvvbjNEbGhXiikVe61bNxZ9uagRNFbZ15pW9Pdhz7BKCfMLgBHkB5y6PI8hHsWKxpyDH\nUF7O5XWtpq8PtdAUhcaFVXin83Ly/ChhYxlEBeNUWgPAmD+M9U3zNX1vkfS1EQoL+HhgAh09Q7hz\n1bxk0VW+1k6m675Y5Hu9zlb0Oq/l5fLRk1nhIQPARCAsq+XrcnB49rEWOO3sjMcsDIU9xy8p7rLl\nClNEdSHxtVVOFjarBaFwBD6/cfWrpZgIRArukZq9cCYbDy5dOjIXfWsj4JsIwTsaBGuhNdUlZBq0\n8fIbXfjg3Ijk43qtHbNLvRIKj+kNshgWfqfzMsIRae9gbJJHkI9KGmQtrQ3phSmv7O3B3uN9yf9O\nVG6X5s71o75x1TN79cLshTNa1pac8d6y7rqMxV0UgJbra3HsdPFTI+lQFIV/2tmOUX9EU0jZOxpU\n/M4d3QlhGyn0XjtkaAVBL0yfhNu5rxf7jvfJGmNAvghjIhDGsTPSN7H2bq9ikQgfEfDuSWPqVKej\nJlo4HowUXJHLzIUzWtWnpPTY9xy7hNcPfpSxuCsO4FzfmGLBXrEQYnH4/JFp32nnvl6F5yeiTj/5\nXYfi+44HwqiSWR+lvnYI5sV4V6iO8BEBbV2ZvYL0Igzxov/Oi0dlW0aGx3lFA+UdDZZEoY3DZoGF\nyZzvSm/3KgRKlcSlXjijxvsXyWS8t6xbjNaWOridid9H6tccHufBR0qj311JDlPcmCiJ1QCJbomm\nxmrJx0p97RDMi6kN8pifz3jhznPbsfWuxdP+Jl70mfo3FYfKa5lUUUQm+Sh4heiBSLFuYts21qO1\npQ6eChtoKlF8lzqFqlTR4v1nMt7+QBjbWxvxncdvxjx36YdO5fTRlTYm6VgtDFrX1GHD6gWmWzsE\n82LqHHKlg4PbySoa5f6RAF5965yqyUbpjPl5ybwzANS47EXVqlZLpn0Da6FwZ9OCgt7E0guXtrc2\n4r61i3Bp0I+6WofsOS8lOCuDpobqaTUGIk0NnuTmh48ICEdjcMms41Tj/f/8th39I4H8HngBkAsp\naylgGxgJ4JkXjsBdwWHlEg9aWxbCXWEjnjHB0JjaIHNWBquX1mZUwkqtuhwZD6lW9YpE5Y0tZ2Ww\ndsU87JO44ZYSZZwV969fUpAKa6nCpVUN1aAAdPQMma4PWW4vFMfMc8HJTEUSIxcTgTD6vDPnVZci\nctEYrap7Yl56f/tlMAw9bdNNqqIJRsTUBhlIhDyjsRjebr8sKwaSWnW557h6GUurRdkgfO7uBtAU\nhbc7+gw1aUcLY5Nh9F4cRf3CqrzfvKSqjtM3NGYR8OcjAk7ItOGd6BlGPA7sb5v67mI9go1lEI4I\nM4RqLg36NY8QNRqelM2WFJyVwcolHuxv1967n8i1X4fXD35ERGYIhsX0BpmhaVhoWvFmxVoZOOxW\n8BEBnb3SN8mZ75sIS2f67PvXL0Fb12DGXLaR+cffnZh2s8zHzUtLqgAo/T5kpfDryHgIHd3S67Dc\nZsHfPrwaNWnypXW1DkUFOqNzyw1z8Ni9y2R/TzFi0Hl2GACS35W1UKo2uyMTIex4sweHTk11Pphl\nc0cwD6bfFqq50YfCAv7j7XMY8/Oqw2FqlYXG/Lzs5KhSQk1LSi5oFbiQK/wpFZSKuiodLEZlvptv\nggdrZWYYLqedxfzqct2Ps1B8+vZFipurHXt6km1fwNTGIxyNw8bSyLRHrCxncea8vFAI0UgnGAHT\nG2S1N/p3O/vxh0MfQ63iXTgSU2UQlG68pUi+bl5az5MY1ShVlFq6ysusWfVff/HTN+p2fIXEU2GD\nu8Im+ZgQi+Hl3WdwoF2+FiMUjilqsAPAsmuqZDfGpb65I5gH0xtktTd6PhLDOycHVHcruZyc7I0x\ndbpMqU/lSSdfNy+t5ykUFvD6wY90P45Csm1jPRbWOmb8vc87CbtNerMhVfAkrrfKchYuR+ltUpRa\n6nbu68V+hfoPNSysdeDhzctMKzJDMA+mzyErTWXJhWXXumbcROTkDcU+Z3EqTSmTz5uXWMxz/IxX\ndiZzKqWeR44KcQRC0prmk8EINqxegM7eYdlpY1LrzcZaAZSOTjrH0tiybrHkY1rrCqSY6yrD04+u\nBmuxkOlMBMNjeoMMJG704aiAtzv6dXk/zkpj+6aGGX/PpE0sCLGsKkSNRD5vXqJY/31rF+Hb/3oU\n4xkmq5S6nrVSOmXUz2PzTQvx4IZ62RYdqfUGADSNjCFco8CHE6kfu4TIjh6DMwZ8waTOgNqRqgRC\nsZgVBhkAWAuj241qzdJa2LnpocFM8ob3rV2EEyoruI0GBcBdUbibl9POYs2ymmltP1Ioeeul0Guq\n1Fcrfje5wQVK601ujS+oKUefdzKnY84He45fwiOfWDrj71r7juVo6/ImIylkOhPByMwKg5zuSeTK\n1ruWzPhbJnnDS4P+kmx9ogB8/aEmLF5QWdCb1/bWBvReGsPFQXmxCylvPZ9D6fUmlyH3WjoCRK6p\ndaBxYRXauwYxOmmcsPaJHi8e3FA/4/vqlW4ameDxm91deOyTy8DQNJnORDAsxrpD5QE98lDphCWq\njDNpE9e6ykAXb2Z51lA0cO08Z8E9CYam8exjLdjQPB+V5QmpTPH8eSo4WU1iualI+WrXypVstboT\n3p22y/e9D67gRI8XDoNJj45MhGULBbdtrMedTfNy/ox3Tw0Ydg0QCCKm95CzyUNVOVgEQmGEozMf\nc8tUV2fydoRYvCRFG2Ix4LUD5yRDivmGoWk8snkZHtyYCD+XcRYE+ahsqDFT2sCIBWA5DbnPYj2N\nTIQNGalhZHarDE3jsXuux7m+cVzKEG63sYzihDWjrgECQcT0HrLW/ta1N87Bj750G+5sqpN8fPXS\nGtkLeutdi7HwqmISkPDoFtY6sPWuxclBF6VIe5fy7Od8I4YYnXYWtWkKValoGWloNDgrg0oHhzE/\nr+pcj/l5hBW01EuNQV9Q8fFn/mwN6mqVhU9uXzEXt95QK/u4ljWQ2rqY+m8CIZ+Y3kPWmofqujgG\nAFlVZL761rlpOc9YHLg46E9WeTZe48LhD67k8G2Kw+hkuCSqmdUUSRmRbPLeehU8GYUjpwfQeE2V\n7PdlLRYsu8aFS4MzvWQby+D2FXMRB9B9cVT2M9SsAemhHnGEwrG8y8cSCKY3yEDCuAZC0Wk6tnKM\nTITgHQ2irsahKZSoFC49dmYQY/4wui/6sv4OxUQuTG80cimSKiaZ2uWkyFd/fbF4+8QAGJrG5puv\nmXatidXyZZxF9vqycxbE0oZxSKFmDaT/FqkhcKJ9Tcg3s8IgJ3KRS9F1wZfRo4jHgX/a2Y41y+Zg\n28Z61RWZyj2lYbx/ZjCrYzcCcmF6I7YWlVqvaS55720b6+EPRkoy6iLFgY7LeKv9MtwVHJoaqhEH\ncKJnCMPjPCrsrGxfum+Clx3GAWSeIiWitgCU5KIJ+WJWGGRA2+g2nz+CPccuIRaP4+FN6oqZzBZC\nFFnfPG/GjczIrUU5FUkVATV5b6kNoRCL4bd7e1QZEBtLw85Z4ZvgAQqq5WELjVj0ODzOY2/a2E0l\nkRilYRwUgL/auhJ1tc6Mn6+2ALTUBWkIxmVWJULWN8/X9PxDJwdUF3KYTbMaACgKuPfma2cY2VJo\nLRIjG0Y2xkDmdjm5VMHOfb3Yd7wPfCRzYVdNlR0/+OKt+PpDTVlVZhudlUvcqJI5T+4KW8YxqSJq\nC0CNXI9AKG1mlUH+l10fanp+KCzA6wuofr7YU1rlKK1qapdM9bdb4saTKcRKKlG1obSRk8t58hEB\nbV3qUyCTwYQIyOIFlaaaPAYk5pIfOT0oq32upXZA7abayPUIhNJm1hjkUX8Il4fUG9ckaucxYipc\n+vQja1BRQqMB+bC0lyV14ynl1iKjsmXdYty+fC48FVxGcRA+IuBc35imXuJRP48xPw/OymDZNS49\nD73oCDHp9atWYCWddKEWG8vAxjKgcnhPAkEtGXPIwWAQ3/zmNzE8PAye5/HlL38Zy5Ytw1NPPQVB\nEFBTU4Pnn38eLMti165deOmll0DTNB588EE88MADhfgOGRFiMfzo5TbNr7OxDGqqygCoK2BKza2O\nB4wjTZiJAB+Fw2ZBNBZPVpXaWBqxeBxCLDYtZF2qrUVGJD0X73KyuPXGudi+qWGGVnrqc7XWKaT+\nLvfftQSHPlA/ZrQUqXKwePaxFjizUCSTqkEAUBL1CITSJ6NB3r9/P5YvX44nnngCfX19ePzxx7F6\n9Wps374d9957L3784x/j1VdfxZYtW/Czn/0Mr776KqxWK7Zu3YpNmzahqqqqEN9DkR1vdsM7FtL8\nuttXzIWFobBjT7dsAVOqoX7twNmSbUPxh6bLkoXCMew73geaoqa1eJRqa5ERSW+xGZkI49CpAdht\nlhltNbnosTc3VifXcVvXYMkYYzvHIMBrT4GMX+2bV1J1y0R6dwUp4CIUgowG+ZOf/GTy3/39/Zgz\nZw6OHDmC7373uwCADRs24MUXX8R1112HFStWwOlMVDOuXr0abW1t2LhxY54OXR18REB7j7YpS6lt\nEjve7J5WmS0WMMXjcVAUNc27yebmYXSkWjzy0VpkxBaqfKKl3SkXPfaFtQ5s21iv+4AVvaip4uAd\nlfb4bawFN10/B529wxid5OF2cpgMRRCSSbGIsFYG/+vVzowb6Nmwzgilheq2p4ceeggDAwP453/+\nZ/z5n/85WDYRDvJ4PPB6vRgaGoLb7U4+3+12w+tVvom4XHZYLPm9KD7uH8eoX12+raaqDN/8s5vA\nWmnUVJXhxV0fyLZJHTp1BUF+yqvMVh/4m4+sxt+/3GbY4tfh8RAEmkJNzfS2kb/63BqEwlH4xnm4\nKjjY2Ow66AQhhhd//wEOn+qHdzSImqoy3Lp8Hh6/70YwzFSoXI/PyoX0758r/UOTGJmQz8UzrBU1\n1eUZn5sJPiKgrNyGzrPDml5HAbj7poU4dnpQtqVID+SMMZDIff/pvTfgyQou+dv/6vcf4L8Pfaz4\nnqGwkEy9iBtom80KmqLw3snL8I6GUFNlw20r5s9YZ2ZB7/VKSJDv86r6zvbKK6/g9OnT+Ju/+RvE\nU2JecZn4l9zfU/FpqGDWSmrOTS02lsEPf3UEw+M8GDpRMCJHqjHOhf+1s92wxljkBy8ewQ+euA3A\nTE/WAmBiLIiJLN97x57uaZ7boC+IXQfPIRAMY3troyF6nmtqnPB6s/2G0ggRAW6nfC5eCEeSn6n0\n3EwMjQZx4vQAvBm0otOJAxgZDRakSI+CdDdWlYPDwOA4hHAZOCuDoSE/li2sxH8rvJfczPM9R89P\n86y9oyHsOngO/gCvWmugVMjHeiXod16VjHpGg3zq1Cl4PB7MmzcP119/PQRBQHl5OUKhEGw2G65c\nuYLa2lrU1tZiaGgqNDw4OIimpqacDz5btIboaBrTdKiVjLGeBMNGN8dA/3AQo34evz/0MTq6hzDq\nTxjGlfXVaF1TB3eFLavwn5qwbXpe3izyhVpy8bnIZLqcNtTVOrISrWnTmOrJFrkrIMBH8Z1fHoXL\nyaK8jEUgFMn4HaSMMQDZMPehkwN44K6Zs5gJhGKQ0cU4duwYXnzxRQDA0NAQAoEA1q5di927dwMA\n3njjDaxbtw6rVq3CyZMnMT4+jsnJSbS1taGlpSW/Ry9DgI/gnc5+Ta+Ru5C1wllpzXNqi42a4/3B\nS+9jf1sffP4pMZD9bX14+oUjeOaFw9ixpxuCxpOYqYXKOxo0Xc9z6uSgbRvrsXHNAtjYKWNgYxnE\nr1a3iwixGKJCdt+1ubEarJXBUoO3OzlslhnzwkNhIeGpT4RxcdCfFxU8rVoDBEI+yeghP/TQQ3j6\n6aexfft2hEIhPPvss1i+fDm+8Y1vYOfOnZg/fz62bNkCq9WKr33ta/j85z8PiqLwla98JVngVWh2\nvNmjOBc1nzQ31qD7gg98xHgzZ+W48To32hS0gAFgWCFHnq3XmqmFCvF4VrKSRkQu9E5h+gCDUFjA\n3uN9oFKq23fu68Vb7do2mJyVxh0r5yEWj+OZFw5rngleaNKr/AuKBq0BAiGfZDTINpsN//iP/zjj\n77/61a9m/O2ee+7BPffco8+RZQkfEXDm/Ijm18nlsaSQG4RuYxlsvnkhjpSY2P+WO67DqXNDCOd4\nT9Qqup8pbFvjspum51luolOqd5yKeC4T/9ZeYV1us6qagGRGbCyDcpsFvgkeLqcNK+s9OHSyX1Jm\nNFVrgEAoNqYbLjHm5+HLouJZrTHmrDQ8lRz6vDPDXHesnIe57vKSGzLxg387DrezDAMaC3/SycZr\nVWqhYmjaFD3PSrlyuUhOqupZNmsp0wQkM3PHynkzhovQFGYMrAASWgOlso4I5sd0BjnfU5f4SCxp\njKmrk3NcDg5NKoyIUeGjsZyNMZCd15ppOlOpjVOUQu0UoVRcV2dQhyMCaGpqElI6nIUGH53p+SlN\nQDIrVQ4WLctqk9dh6sbwobsbpnQDJhI9zWpGMhIIhcR0BpmzMljVUI19ErthvRE7u3x+Hid6vGBo\nCts21mPbxnoIQkzVqMdSYGGtY1oFuhzZeK2pbVRSnrWcweYjAobHAiUh8KC0SZRrr7PbrOCsDMb8\nvKwxBoA1y2px6NTAjL83N1Sj8+xwSUVqcoVSiHOV2lhOwuzEdAYZSOSDC83IRHhaYdMjm5fh9PlR\nDIyUfgXn/9i6EruPXkB79xBGxkOodLAoL7MiGIpi1M9n5bUG+Ah2vNmDM+dH4JsIZ+wvFqUMhVhM\nUcrUiHBWBk0N1ZIhU4amIEhY3EFfAIGr0o9uJyspPON2cnjo7iW4cGUCl7yT096TolCwjWk+qKmy\nwTuqTe5WnGMOyBcXpkti5hOiCkbQiukMMh8R0FGg/kkpUotxwtHSa8uR4sKVCVkvVemGI/W4WG38\nTmf/tPyp2kptueKoTK8rNnK+Wzgq/QgfieG3b3bj85+6AauX1kqmQFbVe7Dr3fPTjDEACLE49rVd\nxt1rFqC1pS65kTJ+x/sU3tEQbCydUSZTCrniwkIZSCOI2RBKE9MZ5GzydXqSWozjM0m48NDJfjQ3\n1MzwLuS8DaUbUibBlmNnBnHf2kVgr4ZrU2+eWvSfjQQfEXBCZpOoVN1/5oIv2a8MAG1difynmFM+\ncXYYk0H5AsaOniF8/4lbcd/aRWjv9uLXf+zK8ZsUlmw3EOnFhYU2kKW6aSQUH9MZZKV8ndvJwmpl\ncGVEvoCJs9Kwcwx8/uzGJ6YWNpVatbUcvX1j4COCKq8YkL8hCUIso6byqD+Mp/7fQ6DohLpS6qAP\nNbOYjdiXrHTcSkbHN8Env1NCRjSO/W19yZxypo3nyDiPl3d3oeuCryTXodyc7kykFxe+srdnWrog\ndUDMn+osm1mqm0aCMTCdQVbqbS0vYzMWJ0WiMVy3yA1flmHvVQ2e5AW37BoX3pUouCk1xiYjGBkP\nYX97X0YvQ/GG1DOEMRWDPlKrhlO9i/vXL8nYl2zEvF2myn85/eVUw8JHBHT2aluTrIWWLPgyO6nF\nhXxEwLsnpc/BuycHsFVn2cxS3TQSjIEpExrbNtajtaUOngobaArwVNiwvmk++ryZK4VdThse3rxU\nVrAhE6kFZffftSSr9zAiu4+ex55jlzA8PiWduefYJezc1zvteUo3pDF/GFVZinm0X+2pbW6skXy8\nqcGD1w6cxTMvHMa3fnE4aznPfMBZGaysr5Z9nJWZeJZqWLJJxUi1Q5kRp90KConrvLWlblpx4cBI\nQLbXOxQW4B3Nvd0vFXHzJUWpidkQCo8pDbLY4vD9J27Bc4/fjL/ccgM++HhEsX1EpLmxGlUODrcu\nn6P4PLnUU1vXECYCCZdG3GkAACAASURBVC8wXIJay3J0npVWP0vXlFa6IbkrEqpJ2SB6F1KbrdaW\nOsQBVRuGYtG6pk72sVBYAGuZWlA2lsHdaxZMMyxK53W24w9EUOlg0VBXiS3rFicjNnxEwH8dPKf8\nYhVT6bQgRuikKCUxG0JxMF3IWkSIxfB/3urFoZP9qis1HWUWfObO6wAAvZfGFJ8r53j5/Dy+8+JR\ntCyrxZZ1i+ExSR5ZbqZ0ehgukxzmhuYFONChvT9b9C6k+kkB4JkXDku+zih5O3eFTXEthFO82VBY\nAEVR01IBuUx8MjtxJNbn4Q+voK3bi1turEU0Gk+01GWoBdnfcRnbWxt0Le4yg5gNoTiY1iDv3Ner\nuQfTH4zihy+34ZFNjegbnMz8AhlG/VM9yaVyE3U5LPD55cWsKx2sZP5XVJRKRemGFBXiWW1SpEYS\nipuAQV/A8Hk7rQZVaiORXm1NmEk4GsPBE+rz5vvb+sDQlK7Vz0SEhJAtpjTIfETA8TPZDXjo807i\nf+5o1+U42ruH8N3P3wQAM/pujYaSMWYtFBxlVkmDLCpKpaJ0Q2JobZsUT0Vm7yLT1Cij5O3SNyqV\n5Rx8MvKWUhsJ8byK1dZmRUkqNB/kK4pSSBESgjkwpUEe8/NZty3pychECP5ABNtbG7Fl3XXY8WYP\nTn88Ap+KSmMjsWJJNc71jUo+5g+Eky1R6cjdkERp0QMdlxVvvH/zUBMWL6jMeKPMFCY3ineSvlEp\n4yz43q/f17SRyKbaGgDWLK3G8a7SGDZRSGMMGCeKQiCYrqiLjwiYDBbfGANAZTmbvKnaOSu+8Kkb\n0CRT8GFkIlFBdoPj84eTQihqYWgaj2xehnWr5ss+x1Nhw+IFlQASIWk+Q4GcXLGXEfN24kbFaWex\nqkG6+jq1fS6VbIVv+rzZp2DyjaPMkvzNNjTPh6fAxWsuZ2KIR6Y1RiDkG9N4yOlqPEYgFI7itQNn\nk7262Xo3xebDj+TnS9MUUMZlt4we/kQjzl0el+wNX3W1jUmtulKp5u3kdNfl/l7GWa5OctIWZRlQ\nEMMpNl/5zAqU2ywARaGmqgwMQ+el7kKu33syFMF3XnyfSFwSio5pDHImScZ8wVlpycHnQEJpKlUy\nr9iyntmi1M4aiwNBPgqnndX8vgxN49nHWrDjze6kaIj7as44Ho9nJT9YSnk7Jd31jp5hbL1rKhWQ\nuuHUaoyNzrun+nH6Y19y49XUUI2NaxbgRM8wfBMh3ULYojG2sQzCEQGslUEoLCS7MIjEJaHYmGIb\nqKQOlW/WLK1Fa0sd3E75MJvYq2vGXlKXY2aVtRbE8PWPvnQbfvSlW/H9J27B/euXyBqqdzr7EeDl\nC9BKCaUN2sh4aJpohbjhNEMLXTrvdA5M6x/fe7wPNEXh+0/cgv/7gVW6f165zYK/fXQN7Jx0BCW9\nt55AKBSmMMjF8jxtLIPtmxqxvbURf/3gKtkwo1g0oiQaYGQYhVXSpFPRlOjZijOA5X7PUFjAb9/s\nlnyMjwiq8s1GodLBgZNRhIsD+MnvOrBjTzcCfKRoG85i0d7txe/29eCfd32g+3v7JnjwvACfxEjL\nxOMhzXURBIIemCJkrdT2wlnovEkI3rFyHuxX86c1VWWyx1Dl4BCOxhDgIwhForAyFCJC6QzDE2RO\n38JaB+5fvwSDvoCuOdtKBweXzAxgYGoKklQ4Vy7fbESN6wTy60CcsR0IRXXZcMrlUI3I8DiP/e3a\nBWTU4HLaUFfrKIlWOcLswhQGWantpamxGh09XvARfQ2gjWUQj8chxGJgaFrxGCZDETz7y6O6fn4x\nqXKwWNXggYWm8Z1fHtF9pB1nZbDsWrfsYITUKUiA8rg7ceSjEWfTjvl5VSpyZ877spocVmG3YCIQ\nTebl27qvYGTcGB0ImchnL/KqBg9YK4Ol17gk15iRWuUIswtTGGRguujCyHgoGQo8+uHgVZ1gfa/u\nUFjA3uN9oKgplZ904QerJVHwJVf0VYq4HByee/wm/P7Qx3md+bp9UwOOdw1KnruqlLx1pnF3ghCb\n5mkZqXCn0sHBxjIZBWNG/Txuvn4Ohj/UJnbz9YeawVqZ5Lk60G58xTiRfPYid18cxTMvHMbIOJ8c\nIsOHheTGxYitcoTZgSlyyMD0gRJrl8+9Wj0pII78Tr1JLQBJPYZvP9aCiFyst4QZ9fPwjgYUjaAe\nOVw7Z5Wtli4vm1IHUyyMmgihXaY4zDiFO5ktD2tlcOa88hzpdCrtDGpc9mRe3usLwBBfNwM2lsH6\npvlwlOXPV7g0OJksIhPvE2uXz8X3n7gF21sbix45IcxeTLnyzlzwFeyzhsdDGBkPTfsbZ2XwxyMX\nSyZfp4U4gP/9H6dkw6d6FcTwEQGBkHR4NRCKJI2pUuV6VTmXcShGMVEbsg6FBYxOaqssr3CUTQ+7\nUnIlh8YiHo/j5Nkh+IOFraQ/c0FaiY5AKCSmM8jFqLje/f6FadW9fETAmfPyYhqljlIfrF4FMcqD\n3vmkMVWqXG9qrJZVfTJC4U4iZJ2fSzAQimAiEE6uy7Is53sXGj4Sky3myyfiBq3UKvUJ5sI0OWSR\nSgeHKoe8aH8+eOdEP97u6IfnasHQhuYFGJssjeIZvdGrIEbLwAil6VIMTRVF41ptVXckmp9k6fA4\nj+defB+j/kQh28JaZ14+xyy4nBx2H72AzrPDhiv+I8weTGeQOSuDpsbqgk7DEQtQxIIhIZbdiMFS\npMrBYnwyrPvMVzUDI1KNnpxsZqFn06ppwRLxjgYh5LF6SdyUDo/zs2It5kIoHDVs8R9h9mA6gwwA\n21sb0HtpTFIjuRB09g7jxutceFvDXNZSxFNhw7OPtSDIR/PS3ytnTLfetRg79nRLGr30QrBCa1wr\ntWDNuLHHlY1xqfWrlzKTIekQdb5GMxIIUpjSIDM0jacfXY3v/voY+ocCBf9830QILcvmmN4gNzdW\nw2lns9KxVoNoTO9buwiXBv2oq3XAaWexY0+35parQmhcZ2rBSr+x17jssmIdNECMsQEgoxkJhcSU\nBlmIxfCDf2srijEGEjnOa+c4ZcPWrIWCzUphPFiaZdiV5VbcdP2cpAebLxUsqfDvyiUedJ6VbgEq\ntjeTqQXrXN/YjPnOsrXPNAV3ubUoBU6EKYxQ/EeYPZjSIO/Y05PXcPWC6nJMhiKy1cYr6z3JWbf7\njkvksuMoWWMMAF/duhKL51VCiMVkQ8d6FMJIhX+V5BSL7c0oFaJRAJ5/pSNZ+LdtY/3VHLL0e8Vi\ncTQurMLhDwfze9AERYhqF6GQmK58kI8I6OjO38zhBTXl+NL/dSPGFFp/WtfUAZD3fsIlHIrkrDRq\nKssw6Atgx5vdyQlE4qSePccuYee+3pw/Ryn8K3dei+3NKLVgpRf+7dzXmzGHvPmWa9DaUpe31iij\nYjNAixYFYEPzfKLaRSgoprvSx/w8RvPY8jQ8FsT+tktwyfS3eipscFfYEOAjePek+XLINa4yfO/X\n7+NbvziMAx3S3mq6ClY2vZ1K4V85M2YEb2bbxnq0ttTBU2EDRSU0maVo7x5S7EO2sQxqqsoAJLxl\nM0MhoVviqbChtaUOf/eFW4quY3LLjXPwyOZlpOWJUFBMF7IWR9pl0gfOllA4oY0sd6MVjcK//qEr\nb8dQDCodLCrs7LRUgJyDJ4aOPZW2rAc7KIV/02FoYMPqurx5M6FwVPVEq9Sq7nN9Y3j+lQ7J542M\nhxDko7ht+Vzsb5u5sblt+Ry8duBcQdv3isVcTxme/OxKuCts4KwM/uX3H2QKHszA7eRw4+IqHDyh\nTe9bChvL4OFPKLc6SdVNpP4NgEGnixGMjOkMcoL8exTpTouNZXDHynnYtrEefETA6Y+1aQ8bnace\nasKPf3dC1XPF0LGmFqA0lPqQ04nHgfvWLtLdmxGLyjrPDsPrC2raUHBWBosXVMoW9lEUsPv9i4jL\nWJ4Pzo1gaCwk+Vi2GHX8Yv9wEPvb+7C9tTGhcvexNulbCsC3Hl6NPx69oMvxJMaqWiUfkyo0XNVQ\nDQpAR88QRsb5q4Nt4giFY9NqBoi3TciE6VaIWn1gvYnH49iybjEA4De7u+Dzm0upa9QfVi1JuqrB\nAwA5D6BIDf8qEYsDl/JQxCduKAZ9waxy5Jlyyvvb+nBQpjVucDSk+8SjO1bM0/cNdaSty5v0MMcm\ntVWWxwF83D+Bd07053QMngoOrS0zIy2pKRdxTaTWTew73oe9x/vSBlYk7kF61lUQzI/pPGS1I+2k\nsHMMAnx2YWY+EsNv3+xGmc2Cd2Xm+JYqleVW1NU6VKcCYrFYBi1qddXQqX3Ip8/78M//9YHk82gK\nqKt1ZP4iGtDaUyzHto31EIQYDnRcljSw+VTqSoc3cApF1CfXkqpI5eU3unOa6rZ2+Vw8snnptN9U\nyhuelBl4kolit+QRSgPTecgJsrvJlXG57U9Onx+RvYmLJGYzlxb2MitYayIMp4aOnmGUcRbZKUxS\n1dBShV9iW9X3fv2+rDEGgPnV5QjyUV0HAqjZUKiBoWlsvvkazTnRfFDIKWhacTm5ZL51ZX215teP\nB7Lv16ZpQBBiMzZHUt5wttE3I0wXIxgf03nIuYSsc9X7HZkIyws9AFjdUI02mfm8RmYyEIF3NKj6\nvI75wwjy0Yxa1ICy9nN6Dlr2+EIRfOsXh3Xtg9Yy3CKX9yokRh54snppDYRYDP/6h65k/QVNJUL7\nFPJbFRKLAUdOD+JY1yDWNy/A5+5uQFSIZ9xca6HYLXmE0sB0BrnSwRVtsAMFwFXBSXpWngoOjnJr\n8iZTSowHIhBiMXBWGnwks1F2VyRuPmoGO8gVfglCTFaRKx3fVTUrPQcCqBluocd7FRKXw2rI2gYa\nQFSI4es/OzQtJVLo60SIAfuO94GmKLSuqdN1jKsRWvIIxsd0BpmzMvIKWXkmDqCMk77o7DYr3u7I\nreikWFSWs3j7RL8qYwxMv/koDXZQzNP2DCmKryihV75O3Dh0nh3G0Ggwp0lRMzcniXykmqiDXh7i\ndfMq4TNghCYG4C0FBbZC71+PnxnEzdfXwmqhEJYYj2ljGdg5C0YmpA02Qyd+MVGFzcYyiMfjEGIx\nUmlNUMR0BhlQ0AcuAFdGAtiwegE6e4eTXuHKeg9O9OgX/io0q+rd6OzNfCNPbfFIRW6wg1Kedswf\nRqWDlZUnVUIvCU2xqOxL95fh7MfDOfWUpvYne30BgKKwv+2SohQoANg5C772UBP+7qVjWX2uyMJa\nBx7evLQkUyaFxucP44cvt8k+fsfKebhv7SI89+L7knPXLQwFPjJlyENhAXuP94GiKDLKkaCI6Qwy\nHxHQUcSbTlQANjTNx4MbElrFYjXPWyUq8MDQFDasrpNtzxG59cY5+LN7lmkyWEq5VXeFDfV1FTii\noOXMWWjJylq983U21qKLPrYQi+G1A2en5csX1jrgD4Thk9l42FgGFfbcUx2BUBQMTZVkysRoRIQY\n/MGIrCKgXCSJVFoTMmE6g6zkdRUKIY4ZN15WZf7VaMTjcTA0nbEoqfuCD68dOKupoCpTnjYSla+a\n9lRwWFlfLalk1dyYqNJVq65VKKTy5cPjPG69YQ6OfHhFMjQ76ucxMBzI2YiOjIdwadBPjLEOHGi/\nDBrQXKhX7OEnBONjuoSG6HUVCxvL4O0Tl2e0S5SiMQYAq4VOVi8rMTIRzkoAYdvGemxono8qBwsK\nU3rGW9Zdh5MKRV0r66uxvbUhKRxCX9VCvnvNAsTicTzzwmF86xeH8cwLh7FjTzeEIktUKeXLey6N\nwuWUnintctpwTIdqX4oCjp4ZhFvmc+SocuRn1rURYC0UuCzbEN/74ApWLPFIPiY3HINUWhMyYTqD\nLBZ1FYubrq9RlW8tFfhIDP/x9jnE43FVU3jUqnAB06Upx/xhVDk4rKz3YNvGevgDEcVZwK1r6pJ5\n2e8/cQt++MVb8f0nbgFFUdiXoppkFKUk5b5mHsuudUs+tnKJG6fO5S7DGosDBzouo7xMm4G1FrFv\nfo5LWaEtVyhQuGX5HHz1/hX4xvYmeDRs5ENhAXxYmLEhbG2pw+0r5kq+hlRaEzJhupA1UNyirhsX\nefBOhnxrqXHo5IBq5bPUsJyUAH8q6SFcn5/H/rY+MDSF+9Yuks130hTgKJvSGhaLxvRS18oHmfqa\nt29qgN1mmVaFvewaF+5YOT9j4ZcWAqEI1q2am7EmQMQ7GoKFoRAt8MhQG8vgik9fLe90+GgMb3f0\n4+2OfngqONhtVk0h6K4Lo/jBF2+d0UUgxGKgKEqx3Y9AkEKVQf6Hf/gHHD9+HNFoFF/60pewYsUK\nPPXUUxAEATU1NXj++efBsix27dqFl156CTRN48EHH8QDDzyQ7+OfQa5FXQuqE/mdvqFAVq+nafnc\nkqeCw8olHnSeHUnedFkLg/6R7D6rUGiRIXU5bXDYWezY06045SmT8bxz5TzZfKeoXV1X60CQjyZv\nhHrIdeaLTPlyO2fF9tZGbFl3HXa82YMz50dw6NQAjnXlPr0oFd8Ejz+5dREAqDbKhTbGABDWUXVN\nDWI+f2GtA5PBiGxLUyojEzwGhidx7dyKaevq/2/vzQPbKO/8//fMSDOyDh+y5cRHEpLYcQKxE9sJ\n5ITEcYCyPdJCMbhcC0v3t0CP3XYLhWwDFGiB/lq2x5aWllKgLmHD95tf229/GwgJEHInduIkkNhO\nyOU4sXxbljWSRvr+IY8iyTOjGWl0Zl5/tMSWNY9G8zyf5/kc709YRv1EYqetwJh1JU/RNtwayolq\nkPfs2YPOzk5s3LgRg4OD+PKXv4ylS5eiubkZn/vc5/DTn/4UmzZtwrp16/CrX/0KmzZtgl6vx223\n3Ya1a9ciPz8/GZ8jSLxJXQ99uRqFeQx++McD6LZfNpRys1MryvIlFl5bsKPNsINFDqPD06/tj3ms\n6UjtnCL8749O4v2QOnDebez3+/G1tVUAoktTgiBEBV5IAnjxrUPB74Qvt1q3cpZq6lqJQI5QyuYd\nn2FXiBZ6aPmMGvD34eZrZ8g2yKkgVclnTpcH82YWYPeRi7LG8HxLK5ZeMxWNi6YF20cCwhn12dL1\nSUpdL9M/W6qJapAXL16MmpoaAEBubi7Gx8exd+9ePPXUUwCA1atX49VXX8XMmTNRXV0Ni8UCAKir\nq0NraysaGhoSOPzJ5DA65JsZwfpAOZy3O7Bl/9kwYwzIXyD+z+7TuGNNJQDxhZd3sXb3jaZcTlEO\nFImgyEEovEDCkIMNfsZ1K2fiu7/aJfg+O49cxG2rKsDoqSguXAa2/BzRjQ3/XfD/H6rQJfY3NbOt\nKd/Fh56chHrp2ofG0XpCvMxLDfg4pjXXIPq9Xsn0j7DY2S5/o8L3R9/ediGsDj+e1qPpTjZ/tlQT\n1SBTFAWjMeCO2bRpE66//np8/PHHoOlAckhhYSHsdjv6+vpgtV5OTLFarbDbkyeGEbpri9UYA8Cv\nN4s3MZDDx+09uG1VhaRClVrXShZie5EVNSWTPuN5u0PUxe1yB4xOuc0MRk+JxuyMBj0YPRV2ohwY\ndYGA9MaoraMPTz2wGECgnd/AKBs8Rbef7EfL1o602MWHCqVEnjbkHgxzjTqMjntlN62gSAKrakuD\n99Tt4TRjLEA8ddpB2VefXzSxM9W5DPGSznka2YDspK6tW7di06ZNePXVV3HjjTcGfy7WYF3s56EU\nFBih06nz5b2y+UjKtYKBQFaylyBQbgt4CspFXjc8UV+aCfh8wKq6Mnzy2QD6hsZRlJ+DJfNLcP8X\nrgFFkWGfcUxAajCUggITbDYLXG4vXG6v4Gtcbi8seTkw0Dp86856uNxenDgziPUvC5+8eQZHXaAN\nDL51Zz1+/c5h/H3X6UmnaGMOjQfXVSv5+AAA28T3qTaxPrcjTuF7Jwbn88NkZDB1Sh4A4EIGK8cl\nEjVc5Ye7+iTDMRSth63IFP+FJEjU89rTNyYaX0/WZ0slibqvPLIM8o4dO/Dyyy/jd7/7HSwWC4xG\nI1wuFwwGAy5duoTi4mIUFxejr+/yrrC3txcLFy6UfN/BQXUMEuvhsPOwsBJWojvFCHGpdwQmkXIR\nPn58cSB+sYdk0rCwFE2rK8JOwwMDY5Ne53NLNy+41DsMnT/QL7lvSDiLtn/YhZOn+8MSZQpN+qh9\nrgssBnBuD85fGMLeo8K64TsPX8Dnrp2maBdvs1lgt4/Kfr1cpJ7bSEgysDGKh52HL2BNbSkc4x78\nbffp+N5MQ5SBERa0noRbQHuAf0YT8TzxJOp5BQDOw8FqEc/TSPRnSyVq3Vcpox7VII+OjuKFF17A\na6+9FkzQWrZsGbZs2YIvfelLePfdd7Fy5UosWLAA69evx8jICCiKQmtrKx5//PG4By8HqQShVNg8\nWj/5tka6JvNMmVNxxuhJ2AqMoprUofQNjUv+/pnXW4PZ5mIxZFpPwWwUqpeV/jb5+GjvoDNts61D\nGXawsnII1DDGANA/4hLVX04njDQBpzuDdqsCCBljIPNrkdXsgqYxmahW4e9//zsGBwfx7W9/O/iz\nH//4x1i/fj02btyI0tJSrFu3Dnq9Ht/5znfwwAMPgCAIPPzww8EEr0Qjp9+sniLgiaN8o7IsD53d\nw1FfR5KALT8n7Gesh8MbW06EZc8OjSlzOaaS2iobGD0lq8xh1Bm9vV//CIvtbRcwrdgs+J253Bw2\n7zgVliASrc/18vlTg/FRNXsZJ5IcRicrZqmmyFi6G2NaR+KONXPw6v9/PNVDiRsDTcFk0GFwlM2q\nWmQ51QIasRHVIDc1NaGpqWnSz//whz9M+tnNN9+Mm2++WZ2RKUBOv9l4jDEAnLk4Iut1upCEodBT\ncSZkUwvB6Ek0r6kQrCu+ZckM9PSNobzYDMvEiXZmaa7s93Y43aI9liMTRPLMDAw0KWiUaR2Bm66b\nDi/nB0Vmzi7eMe7JqLBFMnB7ffjvDzpTPQxZlFiNmDHVjD0iDVBcbg6PNtcih9FlVa2uVLWARnxk\njt80Ck0NFRh3ebHzaGJqK90yDbrb6wu6RCPLAzIRq8WA/+/j04J1xfxnIwmgzGbGE/fUwWKkUW4z\n4bx9cnw5EqnWipGuZYfTDU6gsxMAuL1+bPj9vrB6yEzYxW89mNnPRqIYHU+uKEgslNtMWH9vPfx+\nAh3nhkRlXj9q78HdN1YleXTJQU4IS0MZWWOQKZLEXTdV4ZPT/Rh0RHebJorC3IBLdNTpxoHjia0p\nTQY9A86obk6fHzjX68Czr7fiqfuvxfp76/Hs66041+uQ/Lt8Mw2SJCRdy26vF8++3orzdodkiU+o\nbjXn8+PuG6vSehfPerikaZ5bcxnA75fUBteQT0mREU8/cB2AgBfMaNCL3tv2rj6cX1gazMHQ0JAi\nawwyENixzbuqMCxWm2zmz7binQ9P4uBxu+QJMJOQK53ZbXdg1OmGxUjjqfuvxWcXhvHD1w+Kvn7e\nVVYYDTpJ1/KGV/dFNeyRfNjWDfj9aF47J2138XITutSgbqJTV6Z7a9IFt5vDqNONcdaLLfvPSXqD\n+kdY/ODV/WGiIXLr4DVpyiuPrDLIANC8thJ7P7kELkXBOY/Hhw9VbAaQSfAa0/OuCgjElNrMoqVK\nFEmgeW0ldBSB42cG0d03Br//svv7tlWzMOp0o9uuzBjz49jedgEURaatclCemUG+mZbctFFEoLe2\nUvhSPwJAqc2E21bNgpcDPjp0AW4Rt7+GfPpHWPz7r3fCrUDWVImalSZNeeWSdd8uRZLQ61LT78mS\nQ+HE2cGUXDuRyGm7CASMaXmxOeKnwotWoK0fMeGOHgu6o3n396YPTuF8ryOupCclrSCTDaOnUCvR\nJpScMMZkDI+yP+T/u+1jePb1Vgw7WHg0Y6waSoxxKHKeST73JN1aiGoknqwzyPahccnymEQyqzQv\nY7OppVhWPRVLri6O+roy2+Vsa0C6VIl1c3hzy3FRd3RbRx+KC3LiaqXJJ4alK81r58CcI+ykitTr\njodzvQ68u/9cIJacYRjo5CxRsWx8YiHaMxlNmjJdN5ga6pA1Bpnz+dCytQMvvX0oZWPIMzFJW0CS\ngYGm0LioHHeuqcQtS6+SfO1Uaw6euKcu7Gd5Zka06XuBhcHxs0Oi79c/4sLmHZ+BjLJSmgziUZd0\nqjkWwsv5QYsouqlNe1c/amYXJuVaapKszTW/8WH0ge+Df+z0Kn8/0Z5JOS1ENbKXrLEevJsnlZmk\nez65KEvDO1MwGXS49YbZoEgStvyc4GIViV4HbPjHa0Hrwo0jXw8sxNwZBRiWiJ/SOhI7j16Mmgsg\n9XujQQcdlZrwhRyGHSwGk/S8Do2xaFw0DdddPSUp18t0+MdKbTd/tDp4XtRGiFRuMFkPh95Bp3ZC\nTzBZkdQl5eZJJu4ojRUyjcFRNlgLzOgp2ApycL53ckbpFKtJcJFhPRxW15aB43xoPzkQVg+8buVM\nnDg7KOriJ2TaUakM8HO9Dmzc1pXWiV3RFObUwmoxwJprwD8snYG9n1xK+PUyFSGRGjUozJVXB59u\nojZagllyyQqDLOXm0YgdWk+BntCGpkhCVBZz3OUF6+HCmrNHTuKaiiI01peHNXEXW3hKrEZcHFCn\n8Ug6t4Rj9BQWVBZh20F5DSbigV/Mbfk5UZt0aAgjpioXjTyTHj+4b1FYfoUU6SRqo/U+Ti5ZYZCT\nedK4knC5OXz/t7vBRonj9Y+wGBhxoaQw0HZNaBJvb+0OlDqFTOLQhad/xIVcI42Fcwpx++oKbPj9\nPlnfp5icJk+qmknIrSFV26EeWvLkB8LqX4HAJmB59dQw5TWN6OSb9BhzxSY4NDLmwTjrlW2Q00Wa\nMhG9j7XaammywiDL0bLWiI1oxphny/6zuOW6GchhdBKT2I7ra0qCqkUUSaKpoQKcz49DHX0YcrA4\ndmoAm3WfiZ4cKRLw+xE8Nfj8fskTZmTcLdELghIXH+vhcKhTXbWu0JKnfDONmtmFk6791dWz8cnp\nQfRkSD/uZEIQ/r8uegAAIABJREFUEFSEY90cYg2fFliYmGK/qRa1kZNgJnd8mutbHllhkIHLp63W\nE3bRBtrpgFh3H0ZPgI2xtjEd+OhQDz461CMpdiGkWrRxWxe2t07WyV5TX4ZpxeZJZVGcD1g2fyru\nvqkKjJ6C2+tF57lh0fIp3lWbrAVBrouP9XA41T2c0FDLkMMtKJCy6YNTmjEWQSwnczyO2PKCisKM\nPA2q2TVNc33LI2u2JrybZ8M/LkZdZfqVdzA0iQ3/uAg31JYJ/j6TjXEocuRC+cnY8l6H6Gn6UGcf\nxsaF3+tESLnUpg9OCRpjvmSL36glQ2xBTg0pX563/pU9ePGtQ7KT1+IhtH41XRIgryTaT/ajZWsH\nOBX6aCYz21mqSkJJgplWWy2frDkhR56A0o2VNaWYMSUXzY1mUCSR0S0Z1aK1ow8jY8JGd2CUFT2t\nDIy4cKp7GOXFZtGJHlqyNep04+BxdWNhQshx8W09eD7spJAMhddQ96KWAJl8lJ4GhcIqqXL5qpFg\npqbrO9vJGoOcTq0OaR0RLIEy0IEkGv4B5k/yHOfD9itU85pneMwNRkeCFaj1tFoY+EU6FBEE8JO3\nDiFPwj0+OBpINNve1o0Dx3slXqfeghDNxScVX08koe5FLQEydUTb/EkZ3VS5fNVIMFPT9Z3tZIXL\nOt3ccKH1yC43B4IgwnaxrIdD+8n+VAwt7RAyxkCgJKquSliu0+cPJC1JuccLLAZsPXAOWw+cl3wd\nradgNuoVjVmMaC6+cdabktNpqHtRaowaiSWa0pZYWEUqtJMsly+fYBaLJ0kt1/eVQFYY5GS2souF\nj9t74GS9wX9rbsPorFs5C00NFWhcVI7CXAMIKNMbrqkolLXpcbk5bN7xWewDjaCpoQJr6svCGnIY\naBI+vx9mI51wPenl1VNQmGsASQTEKELj6KFjXDZ/akLHoTEZWk+JngalDhWtHX0ZLafJCwStri2N\n+mwmYyzprDiWFS7rHEYnmr2cDrjcHP78Xgce+PzVADS3oRwu9jswqzQ/6C471T2Mn7wlrlNeYGYw\nPMYGY1yra8vwQau8Wls148gUSYIgiDDhDZfbh20Hu0ESRELL88w5OjzwD9dELe2iSBLNa+fgwKeX\n4I6lv2OWQ5KAzxeQbyUI9dS73F5uIrFr8ncitUkfFsmzANLb5StXIChVY0nHsqv0GUkcjLPetDXG\nPMfPDgZ3ZdnsNlRrjjnGL3sUGD2FWWV5oqfLwlwDnrx/MZ77+hI88+B1aG6cA2uuQfZpVM1ThpP1\n4OP2HsHftXX0Yd3KmWGnfjXxcD44WU9Y/arYaWDzjlOaMRbB5wMYHQmP1weTQYel86egpDBHlfd9\n9o8HBbOtpTSspUi2y1fJCVPIBb+9tRvb27qT7qbOlJaWWWGQc5jEH/SNTHwPEK8LzbNu5UxMscY/\nydMNilJnopUVmcL+LbWJMRp0MBp0YTEuJZueWE8ZQotTy3udorKUg6MuOJweNDfOwTMPXoen7l8s\n2g0rFli3Dy3vdYaVVn3/N3uw/pU9YWU36ZZzkY6wXh/8AAZG3dh99BJ6+sdVed+eASdatnZO+jmj\npxR14yrMZZLq8o32TEUiXepkT6rLOJPKrrLCZT0eEp9NFE42vi+NV+sJdZ1ko8va7eGw5Opi7Pu0\nNy6vhVAXp6aGCpw4OzSp7lisiUSoWMzgKAtaRItY6SlDzP31heUzcfBEr+jf0XoS5gn5REZPobzY\noroL+/iZQbS81xGWwR+ZkavlMKSWQx19uH11xaRnrnHRNNmVF9+6rQblxZa4xqFEtS7aMxWJVF5P\n/wib1FKnTCq7yooTcp6ZSYrAQjwYDXoweirMdZKNFFgMuPdz8/Czb6xAXozZywVmWvDEynp8sA8J\nK0xJ7XT5Z8OUo8e0YjOsFiauxBIx99eP3zgoGW90uX343x+dDPtZWOKaCs/woINFq1hy0InAySRW\n96iGOgyNsYIhEmuuQZbHxEBTsMVhQDifD2+8ewKP/yb6aZd/7YeHhDcKYvOOz+sRgiQmezUTmWyV\nri0thciKE7Lbw4mKSKQLY+MejDrdWe8q5E+bww4WwyLdoaK+R5VNcMf+5pbjoo0kBkZcwd2+fWgc\n8Pux/dCFMFnOgZHATnl1XRluWjwtpppKKffXpcHocpQ7j1zEbasun474Os8vLLsKn10Yxn9tPgJ3\nHA6ffBODQZF4+EBIO82aiqKwe6ORPKwiRkCuJr/f74c7pLuaEjifD0+/diDMyyR12o2Uto2EF+mZ\nVZYXNh7HuEfUQ+bzI9hsIxnJVunW0lKKrDDIn/WMpHoIURlysDjf60hrVyHfIShWSqzGiWYRPmzZ\nfy7294vYXXE+H1re68C+T6XcwQT+Z98Z7DnWG7W1YHtXv6DLUA5S7i85LnqXm4N9aBzlNjOAy+7v\n1hO9giIoSqmpKBQ9zYSeTBrryzWDnCKkjADvrZESs2E9Pmx4dR8WzS1WbLha3usQ1X2PrDaQk2vA\ni/REGtKtB8U3FdaQZhvJEjxJp5aWUmSFQTbnqPsx8oz6mE93YhRYDCgvNqd1udO8qwrwyenBmP9+\nYNQF1uPD5h2n4lrsdx29hK+urgwuDBu3dUWNrXm8fnzQJpzdHEk8cSOpkjW5G5BQ1+Cf3+9UpR9y\nrkmPuiobTpweEn1N6MnEmmvQ+iInCWLif6wyjECox2TDq/tEjfKQw63YcLEeDm0S3cUGIuaFnFwD\nfhMaakhvvWE22rvEr5Nj0EFHEQlp7yhGurS0jEZ2xJBN6sUAaB2BurnCClHxUDunCBYjndblTkSc\nbn/W48MbW07E7ZZ3uTmc7hlB76BTtptfSQJZPHEjqextuUP46HBg48B6OOw6Im8TEY3/uGcRTp4f\nQc+AuNu8MDe8DaDfr059rYY0fgCWHB1qZltlnWg5nw9/3XUaLhmxCyVZwsMOVlK1Lt8U/nzEkmvQ\n1tEH+6BT0pB328ewcVuXrGQrtYlHcSwZZIVB7jwnfipQCkmSuPWG2ZhWbI75PXQUwOgv31oDTcHv\n94Pz+dDUUBHXeyeSc33CriwltJ64pIpb/oWWNjz2mz3Y8Oo+1T0K8caN+ESsUDUuJbR39YP1cLAP\nOkVj4kooLTKC1lPotkt/f7VzbMFWlG9uOZE1HcYygRGnF9vbLsiqe+XduHKeDSWGK8/MSCaNLYyY\nF7HoJQyOugCCiGrI2zr6kMPoMibZKllkhUFWs/+xy83h4sAYnK7YXdZFeTlh2bYuN4f3D3Zj47Yu\neDl/XO+dSEbG4h+XhwPyzHTc78ObCjntHIHwDZAUy+dPjTtuRE1s2nJo8WtaJDLMg4uoSqUB/8+X\n5uN8r0PSS1BXWRTWinLn0YuqXFtDGdFOtEprxJUYLikDO63YjObGykk/D60C4CsTVteVwWoRnuMF\nFgNs+TmoqSiSHMvgqAvjrFfTuI4gK2LIRoO6X9wvNrVjOA7jNCiyQWjr6MP1NSVpndilBrNLc3Gw\nQzyGlAjq5tiw+9glyddYLQzuuqlKlezNYQeLQYf4M+JwemAx6jEqkIsQuojGG8fNM+lhy89BnokW\nlY8lCeDez82Fl/Ojp9+BVolaaY3EEi1/Qakuv1LDFZrcNDDiQp6ZRm1lEZrXzhGcF2KxV4okBLOW\nF1YW4p0PT+Jwp/Smgp8DmZJslSyywiDrVVKH4onHGAPi2reh7px0TexSg2XVJSjINeDgcbtoCY6a\nkATA0BRW15Vi99FLogauTqScSgrWw6GnbwxcRJlJnpmB1UKLZkYTBASNMRC+iC6bPwXbWmNvw1k3\n4YZm9BTKbGbBDNrSIhP+uut0sLREc1Snjmgn2jwzg3yJtqJAIEnMmhub4Yo1uYmZaIwx7GBhNtLw\n+f0w0GTQrc63mfUDeF+G0E3oHMiEZKtkkRUG2Z/uRcgT8O6cRDYYSAcqyvJQW2nDTYun4d9/vTvh\n1/P5gQ/aLqBxUTl+9o0VuDjgxJa9Z9B5fhiDo2xMu+6w+shRFlZLeFkHo6dQV1Us+j2KnVTLbGbc\ntmrW5dcp/rSXmVZsRvPayxm2T9xTh2dfb0W3PeC+5q9XWZ6b1c9bJhHtRMvoKdRWFolWFVAkgfX3\n1mOq1RSX4QrVO49GZK0wE2KIeVxuDj4/RLOrSSJQzSi2kVAynmwmKwyyV0RPVQ1yTXpVYqtAYDIC\nwOraMnCcD+0nB9A/4lLlvdMFk0EHy4Q8pJD8ZSLhSyVmTLHg61+cr0gaMBI59ZFNDRXw+f3YdeSi\nLLezzx+Q+dz0wSk0N84B6+GwJ4ZYrp4isKy6BHfdGO5mpHU6PHX/tRh1unG+14HyYjNoPYX1r+xR\nfA0NdYhmiIS4ddVsfHT4AjiBZY3z+bFl71nc+7l5CRitMJFzQSzZ7FBHn6hHzA/gu3csnCQgohFO\nVhjkRNnjwlwDHvtaLZ743R64FWak0joSFqM+eEJbWFkIn9+P9a/sCWtFtrx6Kl5saVOtxVuq8Xh9\nON87CluBEXlmBjk0iXGJbFETQ2HczaHAwsBo0MPhdGPQ4Q7GQwtzGdA6SrKch2dw1AX7oDPYdzbW\nXbfc+kiKJHHX2ip8dVUF7INO9A278PN3jkR9f/49Ys2y9nB+7Dl2ETqKwB1rKifF/ixGGvOusgIA\nztvTW4wm27mhtgyrF5YCBAFbfo6s/AWH0yNojHn2fNKLjnNDqKtSLgyiFCVJZkNjrKi73WoxaMZY\nBllhkOfNKEjI+9bOKYLZSIPwK9ecWl49Fbc3VAZPaO98eDIstsK3ImPdHJZVl2SNapLb68MPXt2P\nwgnlnpklefjkjLjYSNOaCsyZVhA0oPypNofRYZz1TjTk8OO7v/o4qvGi9RT+c1N73BJ8SsXo+UYR\n20UUsiLpH3FhYMQVV5Y16/Hh/YPd8AO4a23VpN/zbsaDxy9pMeMUUJjLYEFlEQhA8TMpJ448MKpc\nGEQuoZ4lJY1IrBYGNbMLBd3tV2rWtFKywiBTlLo7RKuFQV2VDV9cPgOv/OUYWK+yU8xUqzGYtVhc\nYJTcZe46ehF5ptiaMCQTsQxeMXgX77LqKZKvW1BhC7q4gfBYUujPbflGUck/HpebC7qO45Hgk1Lj\nEkvKYT2cpDpRJFsPnMPtDZVhiTGxsOtID766arIMaKSbUSO5PPKVauw8ejEmWUhGT6GmohAfHYou\nGqOmopWQrnTN7ELZSahzpxcE1j2K1LKmYyQr6pClOosopbaiEOvvXQQA+N6v96BVQmpOjH/+4tVh\nO+Bou8x4s7qTgc8PmA3K92+7j4iXIpUU5YQZXTFYD4ex8dh0nmPpdypVrym20x8YcSnKnD/U2Q+3\nh0NRfnw9sV1uH+wRTS20fsep592D5+LqwXvT4umyrsM3VVGjW5JQF7PtbRdgNEQ/MBhoCndOHEL4\nft/PfX0JnnnwOjQ3CpdUiZHIzk/pTlackMdZb1y9d3kYHYlDXf349Le74zq1WHMNYf+WOnFlEg6X\n8jZEUl/LvOnyQg0DI66YGy/EqluttD5y64FzysblYLHh1X2qiMQMjLKwhcgBav2OU4/URnRg1BXW\nYEQIc45etjb6L//XEYyz3uCpdvmCMnxh6XTFRlBsA9E76ARJSufqrKgpgTGkpWIs+RvJ6Pwkh3iS\nQeMlKwwyLwkXr8HjXdPxyhnyAv48ctuqXWkc7urHV1dHbyMn1TkmGvlmBm6vD6yCdnX8hLz1htm4\n9YbZoGg9OLdH9O9ZD4f2k/2KxyZXhSwaL/13ezBm39RQkTUbwGzF7wdeevuQaFIW5/Phz9s6ZRlj\nP4Dz9rHgv/tHWPxlxyk4x92KQjVSm7hoCaflNlNwo5royoZEkg4bgqwwyIyewsLKIryvQteceCEI\nCMYY+Qd23yeXMKJyJ6lMJbQ/rxhKY7ORjLk82PD7fbIml9iEfOT2WgwMXF6UQhcdADjVPZzyE2nk\n4qVtANMbqaSsjdu6sOeotOpcNJTEllkPB7fXhwIJoRspxsa9YD0cNu+I3Zgls/OTGKneEABZYpCB\n+Pr4qonfD8nm4TpKpWB3FhDaF1WMeN2v/O5ezuQSm5A0rcOSecXgfD5sb+tGe1c/hhzuieYSfrjc\nvkDCdBo8hAeO92LJ1cVYt3ImOM6H1g57RuQoXKkI9SBWQ9pUTqiG7zPe1tkX8jwrZ2iMRct7ndgV\nUlMvZ77JzeaOp12qXORsCJJBVhhk1sPhcAzJV4nifK8jWAfKk85Zr0ozqNUih9FF3fWq7X4V221L\nTci/7zqNv+86PennoWIg6SIWN+Rw45nXW0GRgE5Hwu32gdGRiisFNJJDpLGJJ18ilGgSnZzPh6df\nOxBWucA/zwaagtsT0AYYc3mihvAIAvj0tHDIRmi+CWZzVxSJntClKhvUivXK2RCUx3UFeWSFQU5k\nEkssB5/yiPaK6Z71mgpjDAQEEKLFdtWOv/NZqZG77WxLhOJ8ADexkGrGOH2JNDbx5EuEEq3ut2Vr\np2gZocmgw+N31cFWYMQ7H56MOvd8Pog2WhE63Qp5ora3dmNasVnQIEd+lkTEemMpdUwEWVH2lGdm\nUCDSDiwerBYa6++pB63AzUyRAYGKULJtsVeLoTG3rF6uTQ0VKLWp465iaEpwcsXSjF1DI15CjU0s\n+RJWC41pxWYU5jLB9ohfXDlLsu6X9XA4JNGNrX+EBT3RsORy+8XY5gZvzPhSpv7hcRw8Lnw4cbo8\nWF1bGtbqsXFR+aTPIlSetfXAeVm9piPhxwUgLVpBZsUJmdFTMOXElpAgRe0cG2aW5mFZTQk+EBF7\nj4TzYdKO8ErKeq2eVYAjp8SVuUIhiYDbGhB3P3E+H1q2duJiX3TpTEZPgiCImNoZapnwGomGJAG/\nL+BxI4lAF67QRiNKN+7WXBrPPrg0TOEuz8ygvDQfdvuo6N8NO1gMSWyECQBb9p9Dc2NAlrWpoQIO\npwf9nyhPNFsw0Y6xrcOO/hFW0uM4OMripmunhykcKgktKUn+EjplL6wsQkN9GQ539qdM1CQrDDLr\n4eAYVz9xhX9wvrZ2Dk52j0RVigLCjQwPo6dgNOivCINsHw50RhoQ6Qkdis8POMY9Ya0BI91PG7d1\nyZYVNRn0WFBZJPl698TCJZQgEtYrdtQFAqlz52tkH6F1vD5/oFzp2ddb8YP7FoEiScUbd3dIOZKS\nul+zUQ9Gog+3H8D21m5QJIHmxjmBrG+FxjjPpEfdHBsIIGyTKzWd+NO01GdRK/lLyG3+/sFurK4r\nwzMPXpeyOuSscFkPO1gMyjAASjnc2Q/Ww4EiSfzgvkVYXVsKWid9y3gjE0o8SlOZxsV+J3JkKnpZ\nLQy2Hjgn6n5SGnsfcrBorC/H6royUeW2PBMzacPEE6oy9KOvL8ENC0tlXztTIBBwBRblGaK+ViPx\nnOt1oOW9DgDSCnFCOMa9oiEfKbWrzTs+k+VFauvow6jTHVPW9/CYB4e7+rDziPxuZnJcw1KhJbmx\nXql15cO2bry9rROFeYaUaG9TTz755JPRXtTR0YGmpiaQJImamhr09PTgoYcewqZNm/DRRx9hzZo1\noCgKf/nLX/D4449j06ZNIAgC11xzjeT7Op3qGCmdjsSuo/Ja4CmBdXuxoroEphw9SILAgooirKgp\nwaUBJy4OjIv+nZfjsLDy8sQaGHHhr7vOqDo2tSCJBFTr+P0oLsiBY9wj+d5L5k9F+8l+jLOTv7dh\nhxvVswvx9z1nZV+2wMLg88uuQt0cG4bGXDh9cbJHw+XmsP/TS+gbduHqqwpACjR40FEkTDl6zJ9l\nhdPlwcUBJ7xc5h+VCSLQAm/d9TNxumcEF/qjhwE0Es+Qg8Wq2jLoKBJXX1UQ6Hg2ykaVjtRTBL58\n/WzoQrT8OZ8Pf97aiT/+/VP8bdcZ7D52MexZZz0cWt7rEJxzkYyzXlzsH8NnAvNIDuNuTta8KTAz\nWFFTgqaGCsH5GIqOItE37MKpCyOTfre8eipqK6NvaAZGXPibyHrsB3D64ijGWS+qZxWG/c5kYlSx\nWSaT+KYh6gnZ6XTihz/8IZYuXRr82c9//nM0NzejpaUFM2bMwKZNm+B0OvGrX/0Kr732Gt544w38\n8Y9/xNDQUNyDlwOjp1BfJX9nKZfQHVcgltmBZ18/gENd/ZBK5vu4/SLeePcEuAkflZpa22pgtTBY\nXVeG79y+ICEu2dFxL87bxya9N6MnQUxcv3FRORrryyXdT/D7YaDlO3HmTnT96h10SpYhKUkCIQgC\nppz0b/4hB74F3jsfnsKBE+lTJnilM+wIJDfycc32k/0YGXNDF2XR8Ic85PyJuGVrJ/6y45RowpPS\nOPWhLuUKdErIM+nx+N11aKwvl2W8WQ+H1bVlspK/RK8pI4EzFg18NYjqW6RpGq+88gpeeeWV4M/2\n7t2Lp556CgCwevVqvPrqq5g5cyaqq6thsVgAAHV1dWhtbUVDQ0OChh5OU0MFPF4fPpTZAk8Oc6fn\nB/87MuYgpevq84fHYNTS2lYDAsA9N1ehanoB3B4uqTXInonyG34TLF1qwGDrwXOKZEwpCsF+03I6\nG7Z12CWTQJJZO04SQL6FwdAoC78/MRojs8sseOWvR9HakdhFVkMZ1lwDchgdXvv7cewMEdfwRpmY\nXh9gHxrHR4cvBJOmxGw4n/CUbgmmnM+PH/+pNWr5kljtcmN9Oay5ytzLchI4kyFGIkRUg6zT6aDT\nhb9sfHwcNB0oMyosLITdbkdfXx+s1stiGFarFXZ7cmtvDxyPX+GGh9ET2Hn0Io6fHUTN7MKYtIrD\nJkGMsnRq48dl7eO50wuSulHgrxWq4iMmeZpj0OGjw/LjTwCwI+T1coQ6+kdYvLHlBP7xlrmTFoBk\n1477/ADn9aF+rg0HPk3Mdfcl6H01pLFaGBhzdOjpGwMnsL+kaRI/+P3emBTVXvhTa1jTF7H5HGpg\n0qmawDHuhWM8MH4pdS+x2mX+0KOUpoYKcD4/PmzrFrxnyaw9DiXuLGu/yMon9vNQCgqM0OlU6OPJ\n+fCN/3c7xmLoRiQG6wmMn29BFguDoy5QtB4lRSYsrJqCbQo7AiWS/hEWO49ehEEi2zIWGJpErpGG\nfcgV9bXtJ/tRP7dY8Hd9Q+IxejXZdfQiigqMeHBdddjPe/rGZGWKq8mw04P9mtHMKv71zjqcODMg\nqPTG0yOjpE8MuR3YivJzMPuqQhhoHR65vRbGHBq7j1yAfcgVtZNTsmk/2Y9/vjUHBjpgnlxur+iB\nKPK1cuE4HywmBrReuB/58gWlKC/Nn/Rzm82i6DpKickgG41GuFwuGAwGXLp0CcXFxSguLkZf3+W4\nVG9vLxYuXCj5PoOD6iSVvLHlOM5dii3xQC6xuHYLLAZwbg/s9lF8ZeVM7GrvjruTVLpTYGYwf1ah\nrB24fWgcu48IN2FP5n3aefgCPnfttPD6Zw8HqyV9XHsamQdJAKX5DP74N/XCaLFSM7sQo8Pj4KuT\n1y2/CqNjgVNmOhljALAPjmPf4W7MKssDo6fQO+iEfVB4g943NI6Tp/sVu5ZbtnYIrlEGmsKKmhJ8\nYen0SbXcNptFsr5bLlJGPaayp2XLlmHLli0AgHfffRcrV67EggULcOTIEYyMjGBsbAytra1YtGhR\nbCNWAOvh0JYEHetYXLuhafxGRocVNelXRsO6OSybPxW0Tp2sM6fLg3UrZ6JxUTkYvfTjlW9iVGtB\nGA+8Oy8UpSUo2UKUr0xDAWU2MzifPyWhKpII5GoU5hqwuq4Mq2vLMOp0B0uhnKwHu48qCwklC4IA\nfvLWIax/ZQ9atnbAbNTHXeoUilQ4ysjoAi1Xk9h/OZSoJ+SjR4/i+eefR3d3N3Q6HbZs2YKf/OQn\neOyxx7Bx40aUlpZi3bp10Ov1+M53voMHHngABEHg4YcfDiZ4JZKA6kziH3irhcGCyiK0d/VFPTWF\n9qYNhf936wl70t2hYjA0hbtvqsJtq2bh3365K+73G3V6Mexwg/P5g0lcYlTPsqL9VH/KjXK+mZZs\nmdl+sh+9Ijv0bKGyLBfd/WNwupKfWZqNkCTw3Ttr4RhLzTy/YWEprl9Yhi17z+JwVx+2t3YHvXxW\nCw1Gr1O9TFQthHJNxOLeschaSmWaDzmit4RNJIRfTrA3Qahx/Gc9HNa/sifhrsXGReVobpyDN7Yc\njxpTfrR5IaqmW0V/z3o4vLnlRFhGZaow0BR+9o0VYPQUXt/yKT5oE3Yhy6Uw14Dq2VZZUqN6CohW\nWcB3nqHI6K9dPK8Y+z9Vnti3sMKKb94mHl6x5OXgpT8dTIvvSyNzuO7qKWg9fgmeJLuELSYa9VVF\n2HP0oiqhHz1FwJPAOnwDLRzH5SnMNeCpB67F5h2n0NbRN0nWUulpVspmFOYa8MyD1wka+bR1WacT\njJ5CTUVRwt7fQFNYU1+GpoaKgPi7jGxrNsoMZPQU7rtlLhoXlSMFYjBh8Bq4APC1tVWYFtGpSik1\ns63Yc0yezJ6cMj+TQYcn7q6HXsaNunnxtJhE8G9ZelXU1xw/K0+fW0MDCDSZ2ftJ8o0xAIyOufFB\n6wXV8jASaYwB4BtfqYbFKF7rPzDqgsPpDqroPff1JXjmwevQ3DgnJteyVDjKaNCltGd9xhtkAGis\nT1ynSpebA0EQoEhSdlH9zJLcqK/hZRqXXlOixjBjhtaRQXctLxG6smZqTO9VbjPh+oWlqrrCBkdZ\nvPK3T2W5Uv9n/zlUzy6M+rpIth08Dycrnq06OMKq6oFJUXhKkciKRnwIlTdpCOPh/Bh1ipd85ZuY\n4BrF6APd2oYd0kpmUtKhQCAcJXT4ONfriKlrlFpkRXMJa64B+WY6YbHIj9t7sG7lLFlF9aRA+0Uh\nOJ8PLe914GORLONkERmwoEgS/3jL1dBRpOJyL8e4B5zKK5HZQOHigLxs/P2f9uK6ecoTsfZ80otD\nXX1YUVMq6AIzGnTINdIYUUE2b/299fjVO+2i/WMTiS/d0mmzFFpHwq31oJYFRRKYPsWCQol1deFE\nnFisD/L9CHgMAAAgAElEQVS6lTPhcHqQZ2bA+fz483sdOH52UFJsxMv54XQJz0ElXaPUJisMMqOn\nUFtZFHO9cDRcbg4t756AMUePMZEvkccn0H5RiI3buhI2XiW4vb7geENbuDWtqUBX9wi67Q7ZGebD\nDjdovS5qTEgJI+PKTtvHzw3HdB2X2zdJlCBMylAl3XWW5VJijAHArV6ZvoYEmWKMS4uMuBBHDbQa\ncD4//rrrNKqmF2CXQI7GtGIzmhsrAQiLg2w9cB4ft/eAdXNgaAoeLxfmnRATG7EPjavSNUptssIg\nA0Dz2jnoktkiUQypWuPWTrssI1OYGz0NP9kqUFIU5hpgNtJo2doRtvM0GvSK76U1l4EtPwfLqkuw\nTUB9KxkMx+klCd0dqy2dmWfSg6HJhCfJaKQWqZ6/6cStN8zCL945muphBNWyDHTgROpyc8g306it\nLELz2kCcWGrN5ENkUqEyfl7rKAIbt3Wh9USv6HeUKpUuIIsMMh//bNnaibYTdgyNKV+YpU6Cck98\nctLwhx3qxiTjoWa2FZt3nJq084xlfLVzbGD0FO5cUwmSIHDweC8GBQwkrSNQbDVixOHGiETsKFbi\n0efmd8d5Zkb1TdM468Uzr7eq+p7ZDq0j4PZmgnm7TDqMdsn8Keg8OyQ6j/NMNHYeUdbjOFHwc5U3\nqMvnT8VdN1WFraNKm2JEws/rrQfPR91kx1JKpRZZY5CBgFG++8Yq3L66Ak//YT96ZMYeeQpzGTjG\nPVGzpIX/9nIafjTyzExCY95yIIhA/PjwyX7RWIpcKBJYVVsW/OwUSaKpoQKfnhkUNMjLqktwz01z\ncapnGM/88WBc1xZCTA5PDvzuON4FQIhMMyypprzYhCfuXgT70Djg9yPHoMejL+9KO2WpRGDLM8A+\nHF1+Vojighzc2VCJ4TE3/s/uM9j7yWTDOzzmRmuaeOkiOX52cpfAeJtiFFgCDTykNtli+hHJJGvT\nLt1e5Zm+tXNsWLlAWE2Ld6cIkW+mUVNRKLsmjo95pxI+mWtghI3ZeDE6EkuunoL//Nb1+NraqrDP\n/uZ7J9BtHxP8uz3HLoH1cCgrMick89fl9kGqcGFasVn0++R3x3JatGkklsrygHRiuc2MkiITNn90\n6oowxqtqS/CdO6Rlh6Wg9RSefm0/Nvx+H7rOD8Gck1nnrkQo59XOKcI465XcZD9ya3XMpVRqkZUG\nOZbTDUkAtyydAV9ED15GT2JNfRmWV4uXAg053Nje2i0rXZ5Px//C8qsUjS8dMeXoce/n5sLIhE94\n1sNhV7t49rjLzQVOPQAWJkieUugsaqApNC4qxw/uW4SfPLwMy+ZPhdXCCPZUzVbpzEwqfTrc2R8s\nW9m4rSvrhVkIAlhTX4avra0CrackN5ViUCRwvtcR1g+Z76aUKYjFcJsaKtC4qByFuQZZ7VWBy3O+\nqaECZiMNRuL5/0jF1r2xkllbpyjwWcIUSYDWkWAVZDv6/MCLf2qb5OZmPT50nBvGE/fUgSAISdnL\n0ISg0Izl0JT91hO9GBh1I0+iED5TEJOZ67aPRhX9+PvuM+g8P4SBERYGmoLf748pVKAEn8+HW5ZM\nB0WSoEg/vrj8KjQ1VGCc9Qa/p1D4Fm3bW1OToKYmvDuO9XjD2lSmMwOjbMLi+ekI77XauK0LOw5f\niCkWnQ31z2IxXF674dYbZsM+NI6fbWwTrVgoMNOYd5UVzWsrYWQCa+3mHV2S3sDdxy7h1lUVkw4Y\nySQrDHJofVr/CBtzluMlke5TgWLxk7j7xipcv6AUG36/T/D9B0ddGBhxYXtb96RaOa/Phw9aL+/A\nhhOQzBQPBpqCkdFhyMGiwCIvlh65k+W/h/1R+lKTBLAnJK7FJ3PEk4wlB7fXj++/vAfFViPGxt0Y\nHHWH1SnyhG6mblo8LWMNsoGmsOSaYqxdND3YxP3oZ/0ZY5BJAshhdAmJ56crH7f3JHxjmq7wmdXR\nYrh8GKN+7hTBBK3IpDDWw8E+6Iy6qXO5Oby55XhQc0KrQ46RyPKUWNd0KWNwqKMPt6+ugC0/RzS5\noMBiwNaD58MWcL4OjkpzT+GKmhLcesNsDIy4sPXAOeyWIX85f7Y17KGVWyZEiOyYEmmMeVivL6yc\nK7ROsamhYpLwQE1Fkap11cnE5eagoyiUFJqCP5sxxRLzxocigGRWa/n8CHovxOacXgd4MssjK8mV\naIwZHTmx8XKj/WQ/KKpLNB+H9QTCXW6PF8urp4LjfGg/OSCobx15UJPDvk97seeT3rAEr2TGlDPe\nICerpndo7LJ7VqzzSPXsAtGWZunqSop88La3dcsWLPGELB5Kvod0vBdtHX2T3NP9I2zGno55IlWH\nLEYaxQVG2epnoSS7dLowlwmeVMTmHEmQANR5oNSuH9YUu+TBen1gvYFqDDEhD87nw1vvd+LjIz1g\nQzbHjJ7E0vlTsXbRNJhz9BhnvfByflCk/ANCKEKdpkLHkWgy3iAny53Faz6zHg6ra8vA+fxo7+oP\n25k5XJ60bWkmxrduq0F5caD7iNLNzYmzg2A9HBg9lfFuxf4Rl2QimhqkQjBCSHVoVqk5JoOslAKT\nDsNOb8yeD76uHbjcCjO020/V9HxVe/qq9d1YLTTcXh/GMiyZKp2I3Ehu3NaF9wXEhliPDx+0XcDJ\n7hE4XZ4wz9bhzvgPasmW0cx4gxxvfZpcPF4f3t7ehfauvstf+uxCNC6aBmuuAQDwxG93J3QMapNn\n0sMWslArNaqDo5e9BoHaagaDjsw1ykqSAGMhFVXI+WYGbq8PrIeDjiLQsrUTu44qb1GpFEZP4q6b\n5+EX7xxR/LdWC4O6qvC4fmhCDx/fBwKbQrXmvtXCYMwVmw4Bj44iwTA6DIwmdsNTnM9gxOkNHgAY\nHQmdjsSYKzs2AaEbSTkHhcgwlFqerWTLaGa8QZZyZ6mJz4/J7sy2C6CowELRO+jE4GjqhD5ioS7k\nBAIo39zkmejgYs/oKSycU5TxLt5sY8zlwYbf74tZDjVWPF4f8kx6xV4BIZWmUBg9FbY4qjn3F1QW\nYWecXhIv58PFJOhD24fZsMYwAbdv5rnHxfIZQhNGY/W+qZEkWmBhkiqjmeapRvK4XJ+WfCGHto4+\nsB5u4oSYOaVM5TYTmteGx0aU1t4OO93Y8Pt9WP/KHrRs7UBTw+y4+ylfHguJfFPm3M90hfX4gvWo\nyTLGQCBWbc3NgYGR5+rj68Dvu2WuIvcgP/etFmVzv3qWFYW5hrAa9Mb68rhjvuYcXVI8IZFd2mKF\nTF3rXwBAmU14vQgtfYpVpEeNJFGjQZ/UbGvqySeffDJpV4vAqVIHHZIgUD2rEDcsLENdZRF2HE5e\nS0PW7cW186bgpf8+jN5B+VJ3tI4El4y04giMDIml1VPxzdtqBLMHr76qAOOsF8MON8YlegQDlxeF\ncZbDqQsjGGe9ePgr1dhzrEdW/2IpinIZOFzelNyjK52ifAYGvQ7jceRDsB4OWw+cl2Xgco0kfvTP\ny1BbaQMpV/FhAn7uL50/Ff+z96zsv/v6F6/GupWzsKK6BLcsnYHaShs4nx9b9p1TdP1IFlXZ0N03\nlhZ61nJYVVeGBz9/NfwAhkbZpOXAkETg2v+y7hq43ByGHW6wbi+suQYsr56KpoaK4LOgo0j0Dbtw\n6sKIomsU5jJYPNeGc72OmL8PigCumWkFQ1PItRhUsVkmk/jmIuNd1qEwegqmHH1SJ0O+mcFv/3IM\n50VkIoUw0BR8KTI0TtaHY6cGsHGbcGkBRZK49YbZWHLNFPxiUzuGx+TXS+88chFfXD4TnArpuJeG\nYtPx1YifviEW04rNogI4cpG7mRpx+uCeCHvEStf5yfrHUtjycia5v9/54GTM1+f5h2VX4fSl0ZS3\nNZRDidWI5sbKYA+AdStm4ge/36tozseK3w/ctHgaaJ1uUm6A0HPQ1FABv9+PnUd6wkoQSTKQLClU\nuVE7xxaQwqSomENpgw53MOSzfEEZvrB0ekLLoLLCZR1KnpmJyXVdYGawuq4MtF54hy62b2cYChf6\n5BtjIFAfqtQ1RhLADbWlWFVbIupmymEolBTmRH0vPqU/UuqT8/nQsrUD61/Zg2f/eFDxxHS5OXzW\nM5JxsXSNyYyNe7C6rizo1rVa6IRe77MLsfWx5jlxTplBjvT+sB4On5wZjGsMAGDO0eP21bE3JzAx\nJK5fWBL3OOTgcgdKhHgsRhqL501R9B6xSrFaI9rU8psjsU0ZRZL42toq/OwbK/H0A9di/T11WHL1\nFPh8k41xqFwmADQ3VsYU1uDhQz5/2XFKljxyPGSdQY5Vg/jhW+fj7hursLJGuLmEmAaqw+lJiqBF\naZEJd62dg5uvnSEaP2LdHB768nzY8gyy3pOPf/PwdXu8Dm4s7GjvyRh33ZWI3JjhkIPFTYun4ZkH\nr8NzX1+Cb98ee7MDOZhN8Rn8RVXy5zxFAuYI6dphB4uhOD0CQMDQzyzJjTk2Wz+3GLdcNyMmHWul\nDDrcONU9HLYGNDVUYE19mWQznVCWVZegcVG5YsMca4tDXqWrzGZBp4hXxGTQ4dYbZgdPsnyG/rNf\nX4IlVyvbcEQSuWaqTdYZZED4oaJ10h+VnpDSumNNZTBBjCACcYjl86eKKjWNqiiByU9ioTDaefsY\n/vx+p2SCQ1F+DoryjFh/7yJZC0JoVxU1BFYoEjh4Ivs1hzOZlQtKUG4zRX0dn+XKn1xs+TminidG\nT6IgzoTGsqL4kgFzJeJykXC+ye5pNbp7WScyci1GWjRZKRo3XTsj7rEo2Qy8+NahYFIm5/OBIknc\nsaYSS6+ZgrwoSZXTis24c00lmhvn4CcPr8Dy+VOjjrswlwk7vcaKVOY1X44ZCaOn8MDn58WVeCrU\niUpNstIgUyQJgiDCEhSkXMQGmgrW4/K7qWceXIIffX0JnnlwCe66qUp0x0gp3ApL7ST5k7bYCXjX\nkYAIgpgHYMn8EjB6SvaCQE+0GQSUlRaIbWzlyIPKMQYaiePGxdOx/t56TCs2Sy7ckScYKc/TygWl\nqJ8b+8ljamFO3JmseWYGuTnyl7O2zvCTDqOnUFMRX0vUuqrLZYRP3FOH8uLwZz1avlq+mQ5qjovd\n6xsWluLpB64VDSEU5jJYe90MReOODGFt3NaF7W0XooasnK7LLm8jo8MDn78a376tRvT1BAJCRGq0\nOJTatEiVKlEkiR/ctwira0tB68S/EEYvPD6xTlRqkZUGWelpb1n11EkLwuSYhrCVlEpcKS0yojCX\nb+/HoMRqhD+OegWXOyCSHtqGLLRs4/4vXBN87RP31EVddENRsiv3coF6UauFAYHAyWD5/KlwR9Ek\nWDZ/KtbfWx8xdgbTis2iE0BDPQpzDbDmGkDrdHjq/mvxs2+swL81LcD1C6ZOepaETjBiz11TQwWa\nGirQEOGVMtAUVi4Qb1vKw7K+uN2AjJ7CtdcIh5uEGHa4J510GuvLY77+svlTw+4ZrdPh6fuvw39+\ncwW+fVs11t9bj5e+sUJyQx6pTCZ0r++6cQ7KbWbUVRWLvse/fKXmcptCyD8xt3X0YdTplr12Cp0W\nbQVGUU+KNdcQJkQUD4yegtEgfIKPVqpEkSTuvmkunv+XpTCKlOWJbZ5idbXLJauyrHmUnPYMNIWv\nXD876vspbS5AAPjmrTUwG/Voea8TB09cAuuZbIxpPQm3EmUgghBULWL0FKiQIypFkqiano+RMVZ0\npxsoN2CDGw+5IgvWXAPuuqkKAMJUkz49M4ABkYSuPDONpoYK0axKJ+vFM388EJekI0kEElOGx8ST\nyhbNLcbBE72q1XFmEpGLicVIY/7MQsyfWTipXagQYs8dz11rq/DVVRWwDzoBgoAtPwf2QWfU7lKh\nOvHxECmvqaMIuL3CX3RkUhH/s8IYVP8IAqJNCCxGGjUVl0+7y6pLsE1AArK82ITmxsrgv6PdayEp\n0WBjBSr8b7fsPycry3hw1IXzvQ7Za6fQaVFqHQl9/uQ8b1KwHg5j48LzfGzcExQrkuKnG9vhZIU3\ngvx6b6ApuD0cCiwGLF9Qii8sna54rErISoOsRHHK5ebgcLole2DymdtKJio/4d/58CR2Sejtmhgd\nLDmErPc20BRs+ZezqEPLNlgPh56+MXATD6IcYXUDTYVNqMhJTuspwbrE0IkVuojWVRWLXnPY4cbT\nr+0PNrKILDkxMjr88J+uxe/+9in2fhK901Qk/9ZUg73HevHpmQHJ11mMeqyqLct4RTFrLiO6cBIA\nVi4swbFTg5MWazEivw8ppF7L6KmgNnpgMNGPZ1aV3ICRRsxspPH8n1oFBVGETjpSxkSqUYR/oiuV\nxRg9Me3ONZUgQ/qq55lo1M0pQvNaYTeu2L2OZrBD/zZQ2kSgraMPA6MuEBBXxyovNsteO8VOi1Kb\nhdAOTKHtaZV2VRp2sKLVHGJ92kMZdbrRbY8ulGNkdHj87nrY8nNQXpoPu31U9hhjISsNspLTXq6R\njroYxCLPWTsnEI+K5v4ZHnNj6TVTsVOGSP5yAdd62AM+ysJqCWhst5/slz1WnskLmh6bd3wmOLGE\naGqogM/vx64jFwUNebQOKoHrV+LE2UEMOZSVTrWfHJB1D9u7+vHUA9cGF6j+kcTXOxMEoCMJeCTq\ns625DD537TT8aWv0sopv31aNqhlWPPfGQUFjU15sxn03z4v7FKIGtvwc0DrxkyoAXDOrQNXxhRqx\nH9y3CC3vdaCtsw/DDjesudGfYWCyMfF4OXx4SFhwiO9KJQc5hlQJcjZSkdfcsu+sYEe32jlFsBhp\n0bUu9LQodQ+lPmPL1o6w946lqxLrCZSNFlhoQY+cnDjv+V6HrOqYIQcLWkdqzSXihX9YWk/0irpR\nAWDhnEJZN/vy+9klBRNChfH7h11R3T8FFgPuXDsHOQZdcBHINzMw5egD3UsmjCy/i4wk8iTMa2zL\ngV+wIyd06CQPnVg5jC6svVkkFEkG3Zbd9lH88n8dFTSsQh1UQjcWSo3xfTdV4a+7T8t67eCoCw6n\nO/i5Lg448eM3DwiGE9Riqox2h0OjLKpmWMHoiahjmVmaB0ZP4Yl76vDs663otgcWF5IISBE+cU8d\nAGWn3kTB6CnkmRjYh8U3PotE4qFqwMcLb2+QtzkRMyacz4dTF0ZFTts2xQt2Kr6b4Il57RxQFCm6\n0RbblKxbOQsOp1v2JiLyM0rl9sjpqhR5umZEEm2rpudHHVv5RH5NNKOc6CSuSLLWIIdOrKf/sB89\nAguiOUeHu2+sCv5b6kTBv9/1C0qx4ff7BFO8CAL49u0LUD6R4SzHdV47pwhGRjiuGu2EI/WAy3nY\n8k3ydvY6isDWg+dlu5kYPQVzDo1hEcMq1EEllt6lPOVTTDHFvRg9hRlTLFi5oCwhzUl4A/ndOxfi\n6T/sl3wOCiwG2PJzsLymVDDGGArvHuWTs0adbpzvdaC82CzLbZpMWA8HLyeesEUSwIwpFtHfx3vt\n0PmjxABGvp7Pzm3Z2olDHX0YGmNhlREKSEeindKlfi8V2ouGdKlS9K5KkWsE74Uz0BRYNxc00LuP\nXsSJs4OSaxRfiRJN3z3RSVyRZK1B5mH0FDbcvyjsJEEQQFmRCevvrQdFkoriGrb8HFEja51YVEOv\nLeX+WVFTEjaZIxeBaIuI1AMuxx2zUObDJnQKj+ZmktqMRO46pTYW0boFTbXmoMxmiSvuJXQiqK6w\nouv8MC7Yx0TvZXmxCXOm5eNwZ3hf7FuWTEdPnzPMQEYLefDjunNNJU6cGUS3iPSiVaCkw2KkMe8q\na9TPngqGHSyGHOLlM1MKjKpvItSKU0bCS0zevroi5aEANYi2vqh9ileyJkQitUaYDDosrCjEnk8u\ntxWVs0ZFepiAQOkm5wtktadis5X1BhlA1JOEEoMjN4uQJ3KxzzczmDujAM1rK2Fk4hNTkHrArRYG\nCyqLsPuocDx3WrE5LKtTjFjdTEqyLU91D4saUyljTBLA43fXRd34RIt7CZ0I3vnwJM73Ckui5ptp\n1FZeTsT56qrJnox8c7haWmTIg/dgFOaGhyO8nF9S4H9BhbwQS7og9YxSJIHH7q5T/ZqxbCCVkA6h\ngExE6doZitThY2CExYmzwtKrUmuUkF2g9VRKN1tXhEHmETpJxGJwpLIII1E7iSMUqQe8rsoWvO6f\n3+vA8bODGBhhkRdhTKIRzc1kHxoHrSMFP5eSbEsxF7uU6/2GhaUw5zCS11q3ciYcTo+s+84vtFLP\nRIGZwZP3Lw7b0MWSWMPH4yPHFa1kr3HRNMnrpBtSz+g/LJ8JS466p+N445QaiUXJ2hmK1MYuz0xj\nSEQ9S44rPNIupHKzdUUZZCFiiWvEYmQTtauO9oDzCjqxZtxKTQRaT+Gltw9hcNQt6BZUkm0pVhcs\nFueZVmwO6+csHfdS5omQeiaGx1jZJS5ChD4HQu8hdb95YY9MQ+wZvf8L12BgQFljlmjEG6fUSCyx\nHlAkT9eVRWg/2R+TKzzduCINcqhxiieukQ6uq9AHnKL14NweURdyLGOVmgguNxd0r0Zz88vNtuQp\nMNOon1uM21bNwqYPTgVrKPNNDBbOKQq2jVPrc4YSzzMRL/G49dIVOUI2apHK705DPrHMU2kxFOGk\n0EybM1eUQRZL9lhYWYT3BTJbM+nLZPQUbEWmhBSuT54IDMZcHkH1MjluQTlKaqYcfdCwJ8rlL0aq\njWKsbr1MwO31wT7oVE1CMZJUf3caiUPqdJ0tc4bwxyOuHCeJVj2JJNJNytNQXwaSIIR3XglsRq02\nNpslofeU9yy4PRw2vLpfMOGKJIDnvr5EcvfLejisf2WPZFY0SQA/+8aKlJXxXN68pe6ZSAdhDzXg\nfD689X4ndoYIxhhoEo3XzsCXls1Q/X6mw3eXShK9DqQziZwzat1Xm028zO+KOSFLuUkPd/bjmQev\nS+opLBMJTXqKxy0oR/nM5w+o6aSqnEduKCCRpENIRA02buua5IFyuX3428efweXyqJL5HEoiEyk1\n0ptMnzPZv12cQE6yB/9lZtPkZT0cegedqjbV5g2qEHLdgk0NFbh+YYno70kioKaTahg9hZIiU1Y9\nE8kkWr5A6wl7whq+Z+N81shurpgT8pWW7CEWL1cqfydGvDEbiiRx383zcKp7BOftkzNty2zppzql\noZxo+QJ8M/lMPtUkimSFLLIlNJINXDEG+UpL9hATR/i4/QJYty9u9SK13ILr762X1GPWyGyiycdK\nNZO/UkmU0liqrqMhnyvGIAPZk4kXDSk3IZ8ZrZZ6Ubwxm0zQY9aInWj5AnVVyhszZDuJVhpL9nU0\n5HNFGeQrJdlDTlkRT7qoF6WzHrNGfDQ1VMDv90dkWVNovHY6vrRsRopHl14kS2lMUzRLT64og8yT\n6Zl40ZDTZYpHUy/SSDQUSeJra6tw26oK2IfGAb8ftgJjUhq+ZxrJUhrTFM3SEy1QkIVIZUFHko0J\nbRrpCaOnUG4zo7zYop2+ROA300KoOVeTdR0NZWgGOUtpaqhA46JyFOYaQBIBF6EQ2ZjQpqGRqahR\nUphO19FQxhXpsr4SiIyXm416bN7xWdYntGloZDrJSj69UpJcM4krSjoz25Ej7abVHCrnSpYiTCTa\nfZUm1rmq9L5qa4I8MlI687nnnsPhw4dBEAQef/xx1NTUqH0JjTjI9oQ2DY1sIVlzVVsT0gdVDfK+\nfftw5swZbNy4ESdPnsTjjz+OjRs3qnkJDQ0NDQ2NrETVpK7du3ejsbERADB79mwMDw/D4ZjcXF5D\nQ0NDQ0MjHFUNcl9fHwoKCoL/tlqtsNulG9FraGhoaGhoJDjLOlq+WEGBETqdlkSgJlIJAxqxo93X\nxKDd18Sg3dfEkOj7qqpBLi4uRl9fX/Dfvb29sNnEBSoGB51qXv6KR8taTQzafU0M2n1NDNp9TQzJ\nyLJW1WW9fPlybNmyBQBw7NgxFBcXw2xOfU9bDQ0NDQ2NdEfVE3JdXR2uueYa3HHHHSAIAhs2bFDz\n7TU0NDQ0NLIW1WPI3/3ud9V+Sw0NDQ0NjawnpUpdGhoaGhoaGgG05hIaGhoaGhppgGaQNTQ0NDQ0\n0gDNIGtoaGhoaKQBmkHW0NDQ0NBIAzSDrKGhoaGhkQZoBllDQ0NDQyMNSKiWtUZiGB8fx2OPPYb+\n/n6wLIuHHnoIq1evBgDs2LED//RP/4QTJ06keJSZh9B9XbFiBR577DGcOXMGJpMJP//5z5GXl5fq\noWYcQvfWbDbjpz/9KXQ6HYxGI1544QXt3saIy+XC5z//eTz00ENYunQpvve974HjONhsNrz44oug\naTrVQ8xIIu/r97//fXi9Xuh0Orz44ouS0tCxoJ2QM5Dt27dj/vz5ePPNN/HSSy/hxz/+MQCAZVn8\n9re/Vf0huVIQuq9vv/02CgoKsGnTJtxyyy04cOBAqoeZkQjd2x/96Ed49tln8cYbb6C2tlbrnR4H\nv/71r4ObmZ///Odobm5GS0sLZsyYgU2bNqV4dJlL6H196aWXcPvtt+PNN9/E2rVr8Yc//EH162kn\n5AzklltuCf53T08PpkyZAgB4+eWX0dzcjBdffDFVQ8tohO7r9u3b8c1vfhMA0NTUlKqhZTxC91av\n12NoaAgAMDw8jFmzZqVqeBnNyZMn0dXVhVWrVgEA9u7di6eeegoAsHr1arz66qtobm5O4Qgzk8j7\numHDBjAMAwAoKCjAsWPHVL+mZpAzmDvuuAMXL17Eyy+/jM8++wzHjx/Ht771Lc0gx0noff3Xf/1X\nfPTRR3jxxRdRVFSEDRs2ID8/P9VDzFhC761er8ddd92F3Nxc5OXl4Tvf+U6qh5eRPP/88/iP//gP\nbN68GUAgPMC7qAsLC7We9DESeV+NRiMAgOM4tLS04OGHH1b9mppBzmDeeustfPrpp/j3f/93lJSU\nYP369akeUlYQel99Ph9mzpyJRx55BP/1X/+F3/zmN3j00UdTPcSMJfTeWq1W/PKXv0R9fT2ef/55\ntJZ+P2UAAAJJSURBVLS04J577kn1EDOKzZs3Y+HChZg2bZrg7zVl5NgQu68cx+F73/selixZgqVL\nl6p+Xc0gZyBHjx5FYWEhSkpKMG/ePIyNjaGrqyvY2KO3txd33XUX3nzzzRSPNLOIvK8cx4EkSSxe\nvBgAsGLFCvziF79I8SgzE6F7u3fvXtTX1wMAli1bhr/+9a8pHmXm8cEHH+DcuXP44IMPcPHiRdA0\nDaPRCJfLBYPBgEuXLqG4uDjVw8w4hO7r1KlTsXnzZsyYMQOPPPJIQq6rGeQM5MCBA+ju7sYTTzyB\nvr4++Hw+bNu2DSQZyNFraGjQjHEMRN5Xp9OJO+64Azt27MCtt96KY8eOYebMmakeZkYidG8rKyvR\n1dWFiooKHDlyBDNmzEj1MDOOl156Kfjfv/jFL1BWVoa2tjZs2bIFX/rSl/Duu+9i5cqVKRxhZiJ0\nX/v6+qDX64M5JYlA6/aUgbhcLjzxxBPo6emBy+XCI488goaGhuDvGxoasG3bthSOMDMRuq9Lly7F\no48+CrvdDqPRiOeffx5FRUWpHmrGIXRv8/Pz8cILL0Cv1yMvLw/PPfcccnNzUz3UjIU3HCtWrMCj\njz4KlmVRWlqKH/3oR9Dr9akeXsbC39e3334bLMvCbDYDAGbPno0nn3xS1WtpBllDQ0NDQyMN0OqQ\nNTQ0NDQ00gDNIGtoaGhoaKQBmkHW0NDQ0NBIAzSDrKGhoaGhkQZoBllDQ0NDQyMN0AyyhoaGhoZG\nGqAZZA0NDQ0NjTRAM8gaGhoaGhppwP8FauMzd2x0g14AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "6N0p91k2iFCP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Try creating some synthetic features that do a better job with latitude.**\n", + "\n", + "For example, you could have a feature that maps `latitude` to a value of `|latitude - 38|`, and call this `distance_from_san_francisco`.\n", + "\n", + "Or you could break the space into 10 different buckets. `latitude_32_to_33`, `latitude_33_to_34`, etc., each showing a value of `1.0` if `latitude` is within that bucket range and a value of `0.0` otherwise.\n", + "\n", + "Use the correlation matrix to help guide development, and then add them to your model if you find something that looks good.\n", + "\n", + "What's the best validation performance you can get?" + ] + }, + { + "metadata": { + "id": "wduJ2B28yMFl", + "colab_type": "code", + "cellView": "form", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Train on a new data set that includes synthetic features based on latitude.\n", + "#\n", + "def select_and_transform_features(source_df):\n", + " LATITUDE_RANGES = zip(range(32, 44), range(33, 45))\n", + " selected_examples = pd.DataFrame()\n", + " selected_examples[\"median_income\"] = source_df[\"median_income\"]\n", + " for r in LATITUDE_RANGES:\n", + " selected_examples[\"latitude_%d_to_%d\" % r] = source_df[\"latitude\"].apply(\n", + " lambda l: 1.0 if l >= r[0] and l < r[1] else 0.0)\n", + " return selected_examples\n", + "\n", + "selected_training_examples = select_and_transform_features(training_examples)\n", + "selected_validation_examples = select_and_transform_features(validation_examples)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "icHKXm3CBiNw", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 635 + }, + "outputId": "2c0c8791-66eb-4d6e-fbb5-261f0515528f" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=selected_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=selected_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 225.92\n", + " period 01 : 215.75\n", + " period 02 : 205.68\n", + " period 03 : 195.68\n", + " period 04 : 185.82\n", + " period 05 : 176.10\n", + " period 06 : 166.52\n", + " period 07 : 157.10\n", + " period 08 : 147.94\n", + " period 09 : 139.03\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGX+///nmZlMkkky6WWSQBIS\nSKihhRZ6DW2RIgqK6Ppxd11dXXXX8lt1d9W1ru7Xsii2VWB1UUSKBRCRptKLAVIoAUJ6Mum9nN8f\nSKSGmUwCJ8n7cV1el5PJ3HNPXueQd+5z3+dWVFVVEUIIIYRoQ3TXuwNCCCGEEPaSAkYIIYQQbY4U\nMEIIIYRoc6SAEUIIIUSbIwWMEEIIIdocKWCEEEII0eYYrncHhNCy6OhoOnfujF6vB6C+vp64uDge\nf/xxTCZTs9v95JNPmDt37iVfX7lyJY899hhvvfUWY8aMafx6VVUVw4YNY+LEiTz//PPNfl9bnT59\nmmeffZa0tDQAXF1duffeexk/fnyrv7c9Fi1axOnTpy/5mezcuZM777yT0NDQS16zbt26a9U9h5w5\nc4Zx48YREREBgKqq+Pn58Ze//IUePXrY1dbLL79McHAw8+bNs/k1q1evZsWKFSxdutSu9xLiWpEC\nRoirWLp0KUFBQQDU1NTwwAMPsHjxYh544IFmtZeXl8e777572QIGwGKx8MUXX1xQwHz33XeYzeZm\nvV9z/OlPf2LGjBm89dZbABw8eJCFCxfy9ddfY7FYrlk/HGGxWNpMsXIler3+gs/w1Vdfcc8997B+\n/XqMRqPN7Tz00EOt0T0hriu5hCSEHYxGIyNGjCApKQmA6upqnnzySSZNmsTkyZN5/vnnqa+vByA5\nOZmbb76ZhIQEZsyYwbZt2wC4+eabyczMJCEhgZqamkveo3///uzcuZPKysrGr3311VfEx8c3Pq6p\nqeGZZ55h0qRJjB07trHQANi/fz+zZs0iISGBKVOm8MMPPwBn/6IfPnw4S5YsYfr06YwYMYKvvvrq\nsp8zNTWV2NjYxsexsbGsX7++sZB74403GDVqFDfccANvv/02Y8eOBeDRRx9l0aJFja87//HV+vXs\ns89y6623ArB3715mz57NhAkTmDt3Lunp6cDZkag//vGPjBkzhltvvZXs7OyrJHZ5K1eu5N5772Xh\nwoW8+OKL7Ny5k5tvvpn777+/8Zf9119/zbRp00hISOC2227j9OnTALz++us8/vjjzJkzhw8++OCC\ndu+//37ef//9xsdJSUkMHz6choYG/vWvfzFp0iQmTZrEbbfdRk5Ojt39njJlClVVVZw4cQKA5cuX\nk5CQwNixY3nwwQepqqoCzv7cn3vuOaZPn87XX399QQ5XOi4bGhp46qmnGD16NHPmzCE5ObnxfXft\n2sXMmTOZMmUKkydP5uuvv7a770K0OFUIcUXdunVTs7KyGh8XFRWpt9xyi7po0SJVVVV18eLF6l13\n3aXW1taqlZWV6uzZs9VVq1ap9fX16uTJk9W1a9eqqqqqP/30kxoXF6eWlpaqO3bsUMePH3/Z9/vs\ns8/URx55RP3Tn/7U+NrS0lJ13Lhx6qeffqo+8sgjqqqq6htvvKEuXLhQra6uVsvLy9UbbrhB3bRp\nk6qqqjpt2jT1iy++UFVVVT///PPG90pPT1d79OihLl26VFVVVf3qq6/UCRMmXLYff/jDH9QxY8ao\nH374oXrs2LELnktJSVEHDhyo5ubmqrW1terdd9+tjhkzRlVVVX3kkUfUf//7343fe/7jpvrVs2dP\ndeXKlY2fNy4uTt2+fbuqqqq6du1adebMmaqqquqyZcvUW265Ra2trVWtVqs6ZsyYxp/J+Zr6GZ/7\nOfft21dNS0tr/P7evXurP/zwg6qqqpqRkaEOGDBAPXnypKqqqvree++pCxcuVFVVVV977TV1+PDh\nakFBwSXtfvnll+ott9zS+PjVV19Vn376aTU1NVWdOHGiWlNTo6qqqi5ZskT9/PPPr9i/cz+X7t27\nX/L1uLg49fjx4+ru3bvVoUOHqtnZ2aqqquoTTzyhPv/886qqnv25T58+Xa2qqmp8/O9//7vJ43Lz\n5s3qxIkT1bKyMrWyslKdM2eOeuutt6qqqqqzZs1Sd+7cqaqqqqalpakPPvhgk30X4lqQERghrmLB\nggUkJCQwbtw4xo0bx5AhQ7jrrrsA2Lx5M3PnzsVgMODi4sL06dP5/vvvOXPmDPn5+UydOhWA3r17\nExwcTGJiok3vOXXqVL744gsANm7cyJgxY9Dpfjldv/vuO+bPn4/RaMRkMjFjxgw2bNgAwKpVq5g8\neTIAAwYMaBy9AKirq2PWrFkA9OzZk8zMzMu+/0svvcQtt9zC2rVrmTZtGmPHjuXjjz8Gzo6OxMXF\n4e/vj8FgYNq0aTZ9pqb6VVtby4QJExrbDwwMbBxxmjZtGqdPnyYzM5M9e/YwYcIEDAYD3t7eF1xm\nu1hWVhYJCQkX/Hf+XJnw8HDCw8MbH7u4uDB06FAAvv/+ewYPHkxYWBgAN954Izt37qSurg44OyLl\n4+NzyXuOHj2aI0eOUFRUBMA333xDQkICZrMZq9XK2rVrKS4uZsGCBdxwww02/dzOUVWV5cuXExgY\nSHh4OJs2bWLKlCkEBgYCMG/evMZjAGDo0KE4Oztf0EZTx+Xu3bsZNWoUbm5uuLi4NGYF4Ovry6pV\nqzh+/Djh4eG8/PLLdvVdiNYgc2CEuIpzc2CsVmvj5Q+D4eypY7Va8fT0bPxeT09PCgoKsFqteHh4\noChK43Pnfon5+fld9T3j4+N5/PHHKSoq4ssvv+T3v/9944RagNLSUp577jleeeUV4OwlpT59+gCw\ndu1alixZQnl5OQ0NDajnbXem1+sbJx/rdDoaGhou+/7Ozs7ceeed3HnnnZSUlLBu3TqeffZZQkND\nKS4uvmA+jq+v71U/jy39cnd3B6CkpIT09HQSEhIanzcajVitVoqLi/Hw8Gj8utlspry8/LLvd7U5\nMOfndvHjwsLCCz6jh4cHqqpSWFh42deeYzKZGDZsGJs3b2bAgAGUlJQwYMAAFEXh9ddf5/333+fp\np58mLi6Ov//971edT1RfX9/4c1BVlaioKBYtWoROp6O0tJRvvvmG7du3Nz5fW1t7xc8HNHlcFhcX\nExAQcMHXz3n22Wd58803ueOOO3BxceHBBx+8IB8hrgcpYISwkY+PDwsWLOCll17izTffBMDPz6/x\nr22AoqIi/Pz88PX1pbi4GFVVG39ZFBUV2fzL3snJiTFjxrBq1SpOnTpFv379LihgAgIC+PWvf33J\nCEROTg6PP/44n376Kd27d+fkyZNMmjTJrs9ptVpJSkpqHAExm83MnTuXbdu2kZqaioeHB6WlpRd8\n/zkXF0XFxcV29ysgIIAuXbqwcuXKS54zm81XfO+W5Ovry/79+xsfFxcXo9Pp8Pb2vuprJ02axDff\nfENhYSGTJk1qzH/IkCEMGTKEiooKXnjhBf75z39edSTj4km85wsICGDmzJk88sgjdn2uKx2XTf1s\n/fz8eOKJJ3jiiSfYvn07f/jDHxgxYgRubm42v7cQLU0uIQlhhzvuuIP9+/eza9cu4OwlgxUrVlBf\nX09FRQWrV69m1KhRhIaGEhQU1DhJdt++feTn59OnTx8MBgMVFRWNlyOuZOrUqbzzzjuXXbo8btw4\nPv30U+rr61FVlUWLFrF161asVismk4kuXbpQV1fH8uXLAa44SnE5VVVV3HfffY2TOwFOnTrFwYMH\nGThwIP369WPPnj1YrVbq6upYtWpV4/f5+/s3Tv5MT09n3759AHb1KzY2lry8PA4ePNjYzp///GdU\nVaVv375s2rSJ+vp6rFYrW7dutflz2SM+Pp49e/Y0Xub63//+R3x8fOPIW1PGjBnD/v372bhxY+Nl\nmO3bt/P3v/+dhoYGTCYTMTExF4yCNMfYsWPZsGFDY6GxceNG3n777SZf09Rx2a9fP7Zv305lZSWV\nlZWNhVNtbS0LFiwgNzcXOHvp0WAwXHBJU4jrQUZghLCDu7s7v/nNb3jhhRdYsWIFCxYsID09nalT\np6IoCgkJCUyePBlFUXjllVf461//yhtvvIGrqyuvvvoqJpOJ6OhoPD09iY+P5/PPPyc4OPiy7zVo\n0CAURWHKlCmXPDd//nzOnDnD1KlTUVWVXr16sXDhQkwmEyNHjmTSpEn4+vry6KOPsm/fPhYsWMBr\nr71m02cMDg7mzTff5LXXXuOZZ55BVVXc3d157LHHGlcm3XTTTcycORNvb28mTpzI0aNHAZg7dy73\n3nsvEydOpEePHo2jLDExMTb3y8XFhddee42nn36a8vJynJycuP/++1EUhblz57Jnzx7Gjx9PcHAw\n48ePv2DU4Hzn5sBc7MUXX7zqzyAoKIhnnnmG3//+99TW1hIaGsrTTz9t08/P3d2dnj17kpKSQt++\nfQGIi4vjyy+/ZNKkSRiNRnx8fHj22WcBePjhhxtXEtmjZ8+e/O53v2PBggU0NDTg6+vL3//+9yZf\n09RxOWbMGDZv3kxCQgJ+fn6MGjWKPXv24OTkxJw5c7j99tuBs6Nsjz/+OK6urnb1V4iWpqjnX4gW\nQgg77dmzh4cffphNmzZd764IIToQGQMUQgghRJsjBYwQQggh2hy5hCSEEEKINkdGYIQQQgjR5kgB\nI4QQQog2p00uo87Lu/yyyZbg7W2isLCi1doXzSfZaJPkol2SjXZJNrbx9/e44nMyAnMRg0F/vbsg\nrkCy0SbJRbskG+2SbBwnBYwQQggh2hwpYIQQQgjR5kgBI4QQQog2RwoYIYQQQrQ5UsAIIYQQos2R\nAkYIIYQQbY4UMEIIIYRoc6SAEUIIIdqZzZu/ten7Xn31ZTIzM674/KOPPthSXWpxUsAIIYQQ7UhW\nViYbN6636Xvvv/8hgoNDrvj888+/0lLdanFtcisBIYQQQlzeK6+8QFLSYUaMiGPixMlkZWXy//7f\nIp577iny8nKprKzk17/+DfHxI7j33t/w4IMP891331JeXsbp06fIyDjDffc9xNCh8UydOo4vv/yW\ne+/9DXFxg9m3bw9FRUW88MK/8PPz46mnniA7O4vevfuwadNGPv/8q2v2OaWAEUIIIVrJJ5uOsTs5\n95Kv6/UK9fVqs9qMiwlg7tioKz4/b94CVq78hIiISE6fPsmiRe9SWGhl0KAhTJ48jYyMMzzxxKPE\nx4+44HW5uTn885+vsWPHD6xe/RlDh8Zf8Lybmxuvvvomb775Olu3biI4OJSammrefvsDvv9+G598\n8nGzPk9zSQFznoJKK2eyThGi74yiKNe7O0IIIYRDunfvCYCHh5mkpMOsWbMSRdFRUlJ8yff26dMX\ngICAAMrKyi55Pja2X+PzxcXFnDqVRu/esQAMHRqPXn9t93eSAuY8605u4oesXUR7RzE/ZjZ+rr7X\nu0tCCCHasLljoy47WuLv70FeXmmrv7+TkxMA33yzjpKSEv7973cpKSnh//5vwSXfe34BoqqXjg5d\n/Lyqquh0Z7+mKMo1/8NfJvGeZ2qXCfSz9CKl8BjP7HyFjae3UN9Qf727JYQQQthMp9NRX3/h766i\noiIslmB0Oh1btmyitrbW4fcJCQklJeUIALt27bjkPVubFDDn8XL25NERv+eOHvNw1hv5/NiX/HPv\nG6SXZl7vrgkhhBA2CQuLICUlmfLyXy4DjR49lh9+2Mb999+Nq6srAQEB/Oc/7zj0PsOGjaC8vJy7\n776Tgwf3YzZ7Otp1uyjq5caJNK41h93ODeuV1ZSz8tgX7Mzei07RMb7zKCaHj8eod2q19xZNu1ZD\nrsI+kot2STba1R6yKSkpZt++PYwePY68vFzuv/9uPvrosxZ9D39/jys+J3NgrsDd6MZtPW5iYGBf\nPk5ZyYZT33EgN5H5MbPp6h15vbsnhBBCXFcmkxubNm3ko4+WoqoN/OEP1/amdzICc5HLVcVVddV8\nmbaB79K3o6ISHzyYGyKnYHJybbV+iEu1h79Y2iPJRbskG+2SbGzT1AiMzIGxgYvBmdldp/OngfcQ\n7BbE95k7eWbnPzmQd+h6d00IIYTokKSAsUO4uTOPxN3H9C6TKK+t4J3EJbyTuITi6pLr3TUhhBCi\nQ5E5MHYy6AwkhI+jr39vPkpewYG8Q6QUHmdW1FSGWuLkBnhCCCHENSAjMM0U5BbAH/v/jpujZ6Kq\nDfw3eQWv7X+b3Ir86901IYQQot2TAsYBOkXHiJChPD74IXr7dSe16DjP7nqFDae+kxvgCSGE0LQ5\nc6ZTUVHB0qUfcOjQTxc8V1FRwZw505t8/ebN3wLw1Vdr2bLlu1br55XIJaQW4O3ixW97386+3J/4\nNHU1q49/zb6cg8zvPofOHqHXu3tCCCHEFS1YcLvdr8nKymTjxvWMHj2OKVOaLnRaixQwLURRFAYE\nxhLj05WVx75gR9YeXtrzBmM7jWBqxASMeuP17qIQQogO4Ne/voVnn32ZoKAgsrOzeOyxh/D3D6Cy\nspKqqioeeODP9OjRq/H7//GPvzF69Dj69u3HX/7yMDU1NY0bOwJs2PA1K1YsR6/XER4eySOP/IVX\nXnmBpKTD/Oc/79DQ0ICXlxezZ9/EokWvkph4kLq6embPnktCwlTuvfc3xMUNZt++PRQVFfHCC/8i\nKCjI4c8pBUwLc3MysaD7XOIC+/Fx8mdsPL2FA3mHmB89m2ifK29/LoQQov1ZeewL9ucmXvJ1vU6h\nvqF5t2HrF9CbWVHTrvj8yJFj+P77rcyePZdt27YwcuQYIiO7MnLkaPbu3c1///sh//jHS5e8bv36\nr+nSJZL77nuIb7/dwMaN6wGorKzk5Zdfx8PDg3vuuYvjx48xb94CVq78hDvuuIv33lsMwIED+zhx\n4jhvvvk+lZWVLFx4MyNHjgbAzc2NV199kzfffJ2tWzcxd+78Zn3288kcmPNk5JXx3d506hsaHG4r\nxqcrfxn8IOM6j6Sg0sprB95mWdKnVNRWtEBPhRBCiMs7W8BsA2D79i0MHz6KLVu+5e677+TNN1+n\nuLj4sq87efIEvXrFAtCv34DGr5vNZh577CHuvfc3nDqVRnFx0WVfn5x8hL59+wPg6upKeHgX0tPT\nAYiN7QdAQEAAZWVll329vWQE5jzf7j3D5gOZhAV6cPvkGMKCrnwHQFsY9UZmRU1jQEAs/01ewY9Z\nuzlUkMTcbjfQz7+3LLkWQoh2blbUtMuOlrTmnXi7dImkoCCPnJxsSktL2bZtM35+ATzxxNMkJx/h\njTf+32Vfp6qg0539vdTw8+hQbW0tr7zyIh988BG+vn48/PAfr/i+iqJw/r396+pqG9vT6/XnvU/L\nbAAgIzDnmTUqkrEDO3Eqp5SnP9zDJ98do7rW8dVEYeZOPDLwPmZ0mUxlXRXvHVrG24lLKKq+fBUs\nhBBCOGLo0OG8/fYiRowYRXFxESEhZxeUbNnyHXV1dZd9TefOYSQnJwGwb98eACoqytHr9fj6+pGT\nk01ychJ1dXXodDrq6y/8/RgT05P9+/f+/LoKMjLOEBraubU+ohQw53N3deKBef156Oa++Ho6s27n\naZ58byeHT1odbluv0zMxfAz/36AH6OrVhZ/yD/P0jpfZlrGDBtXxS1ZCCCHEOaNGjWlcJZSQMJXl\ny//LAw/cQ8+evSgoKODLL9dc8pqEhKkcPpzI/fffTXr6KRRFwdPTi7i4wfzf/93Gf/7zDvPnL+C1\n114hLCyClJRkXnvt5cbXx8b2JTo6hnvuuYsHHriH3/3uXlxdW2/PQNnM8SLnhvWqa+tZvT2NDbvS\naVBV4nsFcdO4rri7Ojn8Hg1qAz9m7ubz419SWVdFlFcE86NnE+gW0AKfoP2Szc+0SXLRLslGuyQb\n2zS1maP+b3/729+uXVdaRkVFTau17ebmTEVFDQa9jp4RPsRG+XEyq5TENCvbE7PwdncmxN/Nofkr\niqLQ2RzKoKD+FFQVkmRN5fusXSgoRJg7o1NkYOxyzmUjtEVy0S7JRrskG9u4uTlf8TkpYC5y8UHl\n5e7MiFgLrkYDh9Os7ErO5URWCV1DPTG5ODYa42JwYUBgLCFuQaQWHicx/wg/5R+hs0coXs6ejn6U\ndkdOeG2SXLRLstEuycY2UsDY4XIHlU5RiAr1ZFCPQLLyyzmcVsjWg1kYnfREWMwOryYKcgtkmCWO\n8toKjlhT+CFzN5V1VUR6RWDQ6a/eQAchJ7w2SS7aJdlol2Rjm6YKGJkDc5GrXZdUVZUfD2fzv2+P\nUVZZS4TFg4UJMXQOdGzJ9Tmphcf4KPkz8ioL8HXxYV7MLLr7dGuRtts6uWasTZKLdkk22iXZ2Ebm\nwNjhalWxoih0CvAgvo+F4rJqEk9Y2Xowi5q6BqJCPNHrHZu/4uvqw7DgwTSoDRyxprAzey8FlVYi\nvSI6/HYE8heLNkku2iXZaJdkYxsZgbGDvVXxoRMFLFmfQn5xFQHeriycFE33cJ8W6cvp0jN8lLSC\n9LJMPJzcubHbr+gfENthb4Anf7Fok+SiXZKNdkk2tpERGDvYWxUHeJsYGRtMbV0DiScK+P5QNgUl\nVXQN9cLo5Nj8FU9nM0MtcTjrnUmyprA39yCnSzOI8orA1eDiUNttkfzFok2Si3ZJNtol2dhGJvHa\noTkHlUGvo1cXX/pE+nIyq4TEE1a+T8zCx+xCsJ9jS651io5Ir3D6B8SSVZ5DkjWVHzJ34WpwoZNH\nSIcajZETXpskF+2SbLRLsrGNFDB2cOSg8vZwZngfCy5GPYfSrOxKyuVkdildQ70wuTi27ZSbk4nB\nQf3xdvEmufAoB/IOkVJ4jC6enXE3ujvUdlshJ7w2SS7aJdlol2RjGylg7ODoQaXTKXQN9WJQ9wAy\n88s5nGZl60+ZuDjpCQ9ybMm1oih08ghhcNAArD/fAO+HzF0ARHi2/xvgyQmvTZKLdkk22iXZ2EYK\nGDu01EHl7urEsF5B+Hm6knTSyr7UfA6lWeliMWN2c2w1kYvBmf6BsYS6W0gtPEFiwREO5h2ik0cI\n3i5eDvddq+SE1ybJRbskG+2SbGwjBYwdWvKgUhSFzoEeDO9tobCsmkMnrGw9mEld/c9LrnWOjZgE\nuQUwLDiOitpKjlhT+DFrDxW1lXTxDMegc+ySlRbJCa9Nkot2STbaJdnY5roto37xxRfZu3cvdXV1\n/Pa3v6V379489thj1NXVYTAYeOmll/D392fNmjV8+OGH6HQ65s6dy4033thku1paRm2Pn47ns3R9\nCgUl1QT6mLg9IZrozt4t0vbRwhN8lLKC3Ip8fFy8uTl6Fj19o1ukba2QZYfaJLlol2SjXZKNbZpa\nRt1qBcyOHTt47733eOeddygsLGTmzJkMHjyYUaNGMWXKFP773/+SkZHBvffey8yZM1mxYgVOTk7M\nmTOHZcuW4eV15UshbbWAAaiqqWPl1hN8u+cMKjAyNpi5YyId3lcJoLa+lq9Pfss3pzfToDYQF9if\nOV2n4250c7zjGiAnvDZJLtol2WiXZGOb63IfGIvFwoQJE3BycsJoNLJ48WL+85//EB0djU6n48yZ\nM6SmpuLp6UlBQQHTp0/HYDCQnJyMs7MzERERV2y7rVxCuhyDXkfvLr707uLLiczin5dcZ+Pn6YLF\n1+TQJF+9Tk+0TxR9/HpwuvQMSdYUfszajdnoQYi7pc0vuZYhV22SXLRLstEuycY2TV1CarWJEnq9\nHpPJBMCKFSsYOXJk4+P6+no++ugj7rnnHvLz8/Hx+eXOtT4+PuTl5TXZtre3CYOh9TY5bKria8n3\nGNDLwsrvjvG/b1JYtOoQg3sG8btZffDzcnWw7Wj6hD/K10c3szxxDUuSlnOw8Cf+b8A8At39W+gT\nXB/XIhthP8lFuyQb7ZJsHNPqMz03btzIihUreP/994GzxcvDDz/MkCFDGDp0KGvXrr3g+225olVY\nWNEqfYVrP6w3JtZC906eLFmXzM7D2Rw8msec0ZGM7heCzsERk8E+g4gaFMX/Uj7nYHYSD379NNO6\nTGRM6HD0bXCXaxly1SbJRbskG+2SbGzTVJHXqjcO2bZtG2+99RbvvPMOHh5nO/HYY48RFhbGvffe\nC0BAQAD5+fmNr8nNzSUgIKA1u6U5QT4m/jyvH7dPjkGnKCzbkMrzy/aRkV/ucNu+rj78PvbX3N5j\nHs56I58f+5KX9r7B6dIzLdBzIYQQ4vpotQKmtLSUF198kcWLFzdOyF2zZg1OTk7cd999jd8XGxtL\nYmIiJSUllJeXs2/fPgYOHNha3dIsRVEYGRvMP+4aTFxMAMcyivnb+7tYte0EtXUNDrcdF9SPJ4b8\nicFBA0gvzeClPW+w8tgXVNfLNVghhBBtT6utQlq+fDmvv/76BZNxMzMzMZvNuLufvfV9ZGQkf/vb\n31i3bh3vvfceiqJw66238qtf/arJttvyKiRbHTiaz9INKRSWVmPxNbEwIYZunVrmJnXJ1qN8nPwZ\n+VVWfF18mBc9i+6+3Vqk7daklWzEhSQX7ZJstEuysc11WUbdmjpCAQNQWV3Hyi0n2LTv7JLr0f1C\nmDMq0uF9lQBq6mv4Km0j36ZvbTNLrrWUjfiF5KJdko12STa2kQLGDlo8qI5lFPPh18lk5Jfj5W7k\nlgnRDIhumdVE6aUZfJS8gtOlGbg5mZgdNZ1BQf01ueRai9kIyUXLJBvtkmxsc13uA9Oa2vJ9YJrD\nx+zCyNhg9HqFQ2lWdh7JIT23jK6hXrg6OzYa4+lsZqglDpPBlSRrKvvyfiKt5DRdPMMwOZla6BO0\nDC1mIyQXLZNstEuysY3shWQHrR5UOp1CdGdvBsYEcCa3jENpVrb9lImbixOdgzwcGjHRKToiPMOI\nC+xHTkUeSdZUvs/chUFnIMyjk2Z2udZqNh2d5KJdko12STa2kQLGDlo/qDxMRob1tuDl4cyRk4Xs\nTckj+VQhkSGeeJgc2+Xa5ORKXGA/Akz+pBYe46f8wxwqSKazORRPZ3MLfYLm03o2HZXkol2SjXZJ\nNraRAsYObeGgUhSF8CAzw3oFUVBcxaG0s7tcqypEhnii0zV/NEZRFELcLQwNjqO0puznXa53U1Vf\nRaRn+HW9AV5byKYjkly0S7IsR6xmAAAgAElEQVTRLsnGNtdtN+rW0tEm8V7NvtQ8lm1IoaishhA/\nNxZOjiEqxLNF2tbSkuu2mE1HILlol2SjXZKNbWQSrx3aYlVs8XVjRJ9gKqvr+OlEAdt/yqK0ooau\noV44GRybv+Ln6kt88CAa1AaOWFPYmb2XvIoCorwiMOodu2Rlr7aYTUcguWiXZKNdko1t5BKSHdrq\nQeVk0BEb5Uf3MG+O/7zL9Y+HswnwdsXi69i9XfQ6PTE+Xent1/3nXa5Tr8su1201m/ZOctEuyUa7\nJBvbSAFjh7Z+UPl6nl1yrVPg0AkrO47kcKbVl1yHY3JybAdtW7T1bNoryUW7JBvtkmxsIwWMHdrD\nQaXXKcSEeTMwOoD085Zcm5wNhLXKkuud12TJdXvIpj2SXLRLstEuycY2UsDYoT0dVB4mI/G9LXh7\nOHP4ZCF7U/M4crKQLsFmzG5tb8l1e8qmPZFctEuy0S7JxjZSwNihvR1U55Zcx/cOwlpS3bjkuq5e\nJSrEjF7X/BGTa73kur1l015ILtol2WiXZGMbWUZth/a+tO3AsXyWbUjBWlJNoLcrtyXE0D3Mu0Xa\nvmTJdcwsuvu03JLr9p5NWyW5aJdko12SjW1kGbUd2ntVHORjYmRsMLV1DSSeKOD7xGwKiqvo2skL\no5NjIyaXW3KdX1lAlGfLLLlu79m0VZKLdkk22iXZ2EYuIdmhIxxUBr2OXl186RPpy8msEhLTrGxP\nzMLb3ZkQfzeHJvlevOT6SAsuue4I2bRFkot2STbaJdnYRgoYO3Skg8rbw5kRsRZcjQYOp1nZlZzL\n8cwSokI9cXNxcqjt1lhy3ZGyaUskF+2SbLRLsrGNFDB26GgHlU5RiAr1ZHCPQLILKjicZmXrgUz0\neoUuwWZ0Glpy3dGyaSskF+2SbLRLsrGNTOK1Q0eeWKWqKjuTcvh441FKK2rpHODOwskxRFgcXxat\nqip7cg6w4ugaymrL6eQRwvyY2XT2CLW5jY6cjZZJLtol2WiXZGMbmcRrh45cFSuKQqi/OyP6BFNa\nWUviibM3wKuoqqNrqCcG/fVdct2Rs9EyyUW7JBvtkmxsIyMwdpCq+BdJpwpZsi6ZnMJKfMzO3Dox\nmr5Rfi3SdnOWXEs22iS5aJdko12SjW1kBMYOUhX/wt/LlVF9g1FQzu6rdDiHjPxyuoZ64mJ0bF+l\n5iy5lmy0SXLRLslGuyQb28gkXjvIQXUhvU5H9zBvBnTzb9xXaevBLNxcDXQOdGxfJXuXXEs22iS5\naJdko12SjW2kgLGDHFSXZ3YzEt/Hgqe7M0dOWtmbkseRU4V0CfbEbHLsJnW2LrmWbLRJctEuyUa7\nJBvbSAFjBzmorkxRFCIsZob1slBQUtW45LqhQSXSwX2VbFlyLdlok+SiXZKNdkk2tpFJvHaQiVW2\n2380j2UbUiksrSbIx8TChGiiOzu+r9KVllwP6NJdstEgOWe0S7LRLsnGNjKJ1w5SFdvO4uvGyNhg\namrrSTxRwPbEbApLf95XydD8fZWutOS6sraKTm6dMLTwLtfCMXLOaJdko12SjW1kBMYOUhU3z4nM\nEj5cl0x6bhlmkxPzxndjUPcAhyb5nnPhkmtvboqeRU/f6BbotWgJcs5ol2SjXZKNbZoagZEC5iJy\nUDVfXX0D3+xOZ/X2NGrqGujdxZcFE7vh59W8vY/OV1Nfw5bcbaxJ/oYGtYGBgX2Z3XU6ZuOVD25x\nbcg5o12SjXZJNraRS0h2kGG95tPpFLqGejGoRyBZ+eUcSrOy5WAmTgYdERYPh/ZV0uv0DOkSS5Sp\nK+mlmWcvK2Xuxt3JjVD34BYZ6RHNI+eMdkk22iXZ2EZWIdlBDirHubk4MbRnEIE+JpJOFrL/aD4/\nHSsg3OKBl/uVD8artuvmjL7OyFDLQNyNbqRYj7I/L5GjRSeIMHfG3ejWgp9C2ErOGe2SbLRLsrGN\nFDB2kIOqZSiKQqcAd0bEBlNSUUPiCStbD2ZSWV1HVDP3VTqXjaIohJs7MyioPwWVVo78vORaRSXc\nMwy9nbtcC8fIOaNdko12STa2kUm8dpDrkq0j6aSVD9enkFtYia/ZmQWToukTad++SlfK5kDeIT5J\nWUVxTQmBpgDmx8wmyiuipbourkLOGe2SbLRLsrGNzIGxg1TFrcPfy5WRscGgwKETVn48nENWgX37\nKl0pmyC3AIYFx1FVV0PSz0uui6tLiPQMx0nv1NIfRVxEzhntkmy0S7KxjYzA2EGq4tZ3Jq+MD79O\n5nhmCSZnA3PHRjG8j+Wqk3xtySat+BQfJX9GZnk2HkZ3buw6g/4BfWSSbyuSc0a7JBvtkmxsIyMw\ndpCquPWZ3YwM72PB7Gbk8Ekre1LySD5VSGSIJx5N7KtkSzbeLl7EBw/CSedEsjWVvbkHOV165pJ9\nlUTLkXNGuyQb7ZJsbCOTeO0gB9W1ccG+SsVVP+9ynUmDCpHBnuh1l46Y2JqNTtER5RVB/4BYsstz\nGvdVMuqc6OwRik4m+bYoOWe0S7LRLsnGNnIJyQ4yrHd97EvN47/fnN1XyeJrYmFCDN06eV3wPc3J\nRlVVdmXv47NjaymvrWjcV6mzR2hLdr9Dk3NGuyQb7ZJsbCOXkOwgVfH1cW5fpeqac/sqZVFYWk3X\nTp6N+yo1JxtFUQj1CGao5Zd9lX7I3EVlXRVdPMMx6GybQCyuTM4Z7ZJstEuysY2MwNhBquLr73hG\nMR+sSyYjrxyzm5H547sSFxNAQIDZ4WySrUf5OGUl+ZUF+Lh4c1O3G+jl172Fet4xyTmjXZKNdkk2\ntpERGDtIVXz9+ZhdGBkbjNFJx+E0K7uScjmZXUrvSD8UB+ttP1df4oMHo6JyxJrC7pz95JTn0sUz\nAhdD8+8S3JHJOaNdko12STa2kREYO0hVrC05hRUsWZdC0qlCnI16bhgewfiBoeh1jk/EzSjL4uPk\nz0grOY2rwZWZUVMYaomTSb52knNGuyQb7ZJsbCO7UdtBDirtUVWVHw5l8+nm45SU19A50J2FCTFE\nWMwOt92gNrA9Ywerj39NVX01kZ4RzI+ZRZBbYAv0vGOQc0a7JBvtkmxsIwWMHeSg0i6jq5E3Vxzg\n+8RsFAXG9Q9l5sguuDo7PhG3qLqYT1JXczDvEAZFz8SwMUwMH4uTTPK9KjlntEuy0S7JxjYyB8YO\ncl1Su3y8TUSHeBLdyYtjGSUknijgx8PZ+Hu5YvF1bCdqF4MLAwJjCXW3cLQojcSCJPbnJhLsFoSv\nq3cLfYL2Sc4Z7ZJstEuysY3cyM4OclBp17ls/LxcGRV7duuBw2lWdhzJ4XROKV1DPR0ejTm7r9Ig\nquurOVKQwo7sPRRVFRPlJfsqXYmcM9ol2WiXZGMbKWDsIAeVdp2fjV6nIybMm4ExAWTklXMozcqW\ng5k4O+mJCDI7tPeRk85AT98YuvtEc7LkNEesZwsZL2dPLG6Bsq/SReSc0S7JRrskG9tIAWMHOai0\n63LZeJiMxPcOwtfThaSThexLzeen4wWEB5nxcndsWbS3iyfxwYMw6owk/byv0snSdCJlX6ULyDmj\nXZKNdkk2tpECxg5yUGnXlbJRFIWwQA+G97FQXFbTuK9SZXUdUaGeGPTNXxatU3REekUwIKAv2eW5\njfsqGXQGwjw6yZJr5JzRMslGuyQb28h9YOwgM8O1y9ZsDp+0snRdCrlFlfianbllYjR9o/wcfn9V\nVdmds5/Pjq6lrLacTu7BzI+ZQ2dzx95XSc4Z7ZJstEuysY2sQrKDVMXaZWs2AV6ujIwNBgUOnbCy\n43AOGXllRIV6OTTJV1EUQtwt5+2rlCr7KiHnjJZJNtol2dhGLiHZQQ4q7bInG71eR/cwHwZ08yc9\nr4xDaVa2/ZSJq7OBsEAPhybiGvVGYv17EekZzonikxwuSGZ39n4CTH4EmPyb3W5bJeeMdkk22iXZ\n2EYKGDvIQaVdzcnG7GYkvrcFbw9njpwsZG9qHofSrERYzHi6GR3qj5+rL8OCB6NA475K2eU5RHaw\nfZXknNEuyUa7JBvbSAFjBzmotKu52SiKQniQmfjeQRSV1XDohJWtBzKprq13eJKvXqcn2ieKvv69\nOFOaSZI1lR+ydmEyuBLqEdwhllzLOaNdko12STa2kQLGDnJQaZej2bgYDQyMDqBLsJmjZ4r46XgB\nO4/kEORrItDb5FDfPIzuDLEMxGz0INl6jAN5iaQWHiPCszPuRneH2tY6OWe0S7LRLsnGNlLA2EEO\nKu1qqWwCvU2M7BtMg6py6ISVHw9nk1VQTtdQT1yMjk3yDTN3YrClP9aqwp+XXO+iXm0gwtwZvU7v\ncN+1SM4Z7ZJstEuysc11W0b94osvsnfvXurq6vjtb39L7969efjhh6mvr8ff35+XXnoJo9HImjVr\n+PDDD9HpdMydO5cbb7yxyXZlGXXH1BrZpOeWsWRdMsczS3B1NnDj6EhG9g1G1wKXfg7mHeaT1FUU\nVRcTYPJjfvRsunpHtkCvtUXOGe2SbLRLsrHNddmNeseOHbz33nu88847FBYWMnPmTIYOHcrIkSOZ\nPHkyr7zyCkFBQdxwww3MnDmTFStW4OTkxJw5c1i2bBleXl5XbFsKmI6ptbJpUFW27M9gxZbjVFbX\nExXiyW0J0YT6O37pp6quirUn1rPlzA+oqAy1xDEzaipuTo5dstISOWe0S7LRLsnGNtflPjAWi4UJ\nEybg5OSE0Whk8eLF5Obm8uSTT6LX63FxcWHt2rUEBARQUFDA9OnTMRgMJCcn4+zsTERExBXblktI\nHVNrZaMoChEWM8N6WbCWVjfeybe2roGoEE/0DkzyNfy8r1IP32hOlaSf3Vcpaw+ezmaC3YLaxSRf\nOWe0S7LRLsnGNk1dQmq1+6Dr9XpMprN/Za5YsYKRI0dSWVmJ0Xh26aqvry95eXnk5+fj4+PT+Dof\nHx/y8vJaq1tCXJG3hzO/v6EX983pg5e7kS9/PMWT7+3icJrV4bbDzZ15ZOB93BA5har6aj448jFv\nHHiXvIqCFui5EEJ0PK1+69CNGzeyYsUK3n//fSZOnNj49StdubLlipa3twmDofUmRDY1ZCWur2uR\nzQR/D0b078R/1yezZtsJXl5+gNH9Q7nzV73w8nDs/i7zA6czLmYI7+79Hwezj/CP3a8wu8dkfhU9\nAYO+7d7JV84Z7ZJstEuycUyr/ou5bds23nrrLd599108PDwwmUxUVVXh4uJCTk4OAQEBBAQEkJ+f\n3/ia3Nxc+vbt22S7hYUVrdZnuS6pXdc6m18NDSM2wocP1yWzed8Zdh/J5sYxUYzoY3Ho0o8OF+7q\nvpB9vgdZcXQt/0tcw+bjO5gXM5sorytfOtUqOWe0S7LRLsnGNk0Vea12Cam0tJQXX3yRxYsXN07I\nHTZsGOvXrwdgw4YNjBgxgtjYWBITEykpKaG8vJx9+/YxcODA1uqWEHYJC/Lg8dsGMn98V+oaVD74\nOpkXPtpPZn65Q+0qisKAwL48MfhPjAgZSk5FHv/a9yb/TfqUslrH2hZCiI6g1VYhLV++nNdff/2C\nybjPP/88jz/+ONXV1QQHB/Pcc8/h5OTEunXreO+991AUhVtvvZVf/epXTbYtq5A6puudjbWkio82\nHmVfah56ncLUoWFMHRqGUwtczkwrPsXHKSvJKMvC3cmNWVHTGBTUv01M8r3euYgrk2y0S7KxzXVZ\nRt2apIDpmLSSzf7UPJZ9k0phaTWBPiZumxRN9zBvh9utb6jnuzPb+fLEBmoaaunmHcXN0TMJ1PgG\nkVrJRVxKstEuycY212UZdWuSZdQdk1aysfi6MTI2mJq6eg6dKOD7xGzyiyrpGuqJs1PzR2N0io4u\nnuHEBfYnrzL/7J18M3bSgEqEZxh6pdWu+DpEK7mIS0k22iXZ2Oa63Ym3tcgITMekxWzSskr4cF0y\np3PKcHd14qaxUQzr5fj9XVRV5UDeIT5NXU1xTQkBJj/mRc+im3dUC/W85WgxF3GWZKNdko1tZATG\nDlIVa5cWs/H2cGZErAU3ZwOHTxayOzmX1PQiIkM8cXd1ana7iqJgcQtkWPAgqutrSCpIZUf2Xgoq\nrXTxDMdZb2zBT+EYLeYizpJstEuysY1s5mgHOai0S6vZ6BSFyBBPhvYMIq+okkNpVrYcyEBVoUuw\nJ3pd80djnH6+k29P3xhOl2ZwxJrCj5m7cXNyI9Q9WBOTfLWai5BstEyysY0UMHaQg0q7tJ6NycXA\noO4BhPq7k5xexMFjBexNyaVTgDu+ni4Ote3l7MlQSxwmJxPJhUfZn5dIatFxIsydcTc6vmeTI7Se\nS0cm2WiXZGMbKWDsIAeVdrWFbBRFIdjPjZF9gqmuqSfxRAHbE7OwllTRNdQLo4OTfCM8wxgU1J+C\nSuvZSb6Zu6hrqDs7yVfXenenbkpbyKWjkmy0S7KxjUzitYNMrNKutpjN8cxiPvw6hTN5ZXiYnLh5\nXFeG9AhskUs/P+Ud5pPU1RRWF+Hn6svN0TPp7tOtBXptn7aYS0ch2WiXZGMbmcRrB6mKtastZuPj\n4cKIWAsuznoOp1nZnZzL8YxiokI8cXNgki9AoFsAw4IHUddQR5I1lZ3Ze8mtyCPSKxxnvWN7Ntmj\nLebSUUg22iXZ2EYuIdlBDirtaqvZ6HQKXUO9GNwjkGxrBYfTCtlyMBNU1eFJvgadgR6+0fT260F6\nWQZJ1lR+yNyNyeBKqMe1meTbVnPpCCQb7ZJsbCMFjB3koNKutp6Nm4sTQ3oEEuznRsrpIg78PMk3\nxM8NPy9Xh9r2dPZgqCUOD6M7KdZjHMhLJKXwKGHmTpiNrbvjbVvPpT2TbLRLsrGNFDB2kINKu9pD\nNoqiEOLvzsjYXyb5fn8om7yiSqIcvJOvoiiEmzsx2NKfwurixkm+NfU1dGnFSb7tIZf2SrLRLsnG\nNjKJ1w4ysUq72mM259/J183FwI1johjex4KuBS79HMpP4pPUVRRUFeLr4s1N0TPp6RvTAr2+UHvM\npb2QbLRLsrGNTOK1g1TF2tUeszl3J193VyeOnCxkT0oeR04VEmExY3Zz7G67ASZ/4oMH06A2cMSa\nyq7sfWSV59DFMwwXg2P3pTlfe8ylvZBstEuysY1cQrKDHFTa1V6z0SkKkcGeDOtlwVpSxaE0K1sP\nZlJdU09UiCcGffM3cdTr9MT4dCXWvydnSrMaJ/m6GJzp7BHSIpN822su7YFko12SjW3kEpIdZFhP\nuzpKNj8dz2fZhlTyi6vwNbtwy8Ru9I3yc7jdBrWB7zN3sfr411TWVRJm7sS86Nl08gh2qN2Okktb\nJNlol2RjG7mEZAepirWro2QT6GNiZN+zRcWhNCs7DueQnltGVIgnrs6GZrerKAph5lCGWAZSXF1y\ndjQmaxdVdVVEeIZh0DWv7Y6SS1sk2WiXZGMbuYRkBzmotKsjZWPQ6+gR7sOAbv6cySvjcJqVLQcz\nMep1hFs8HJrk66x3pl9Ab7qYwzhefJLDBcnszt6Pv8mXQJO/3e11pFzaGslGuyQb20gBYwc5qLSr\nI2ZjdjMS39uCr6cLyaeK2Hc0nwNH8+kc6I6Ph2MTcf1NvsQHD0YBkqyp7M7ZT0ZZFl08w3C1Y5Jv\nR8ylrZBstEuysY0UMHaQg0q7Omo2iqIQFujB8D4WyipqOZRmZfvBLErKa+ga6omTofn3d9Hr9ET7\nRNE3oDcZZdk/3ztmJ056Jzp7hKJTrj6BuKPm0hZINtol2dhGJvHaQSZWaZdkc1bK6UKWrE8hq6AC\ns5uRm8dGMbgFNohsUBvYkbWXVce+pLyugk4eIcyLnkWYuVOTr5NctEuy0S7JxjYyidcOUhVrl2Rz\nlp+nK6P6BmN00jVuEHkso5jIYE/cHdggUlEUOnmEMMQykNKaMo5YU/ghczfltRV08QzH6QqTfCUX\n7ZJstEuysY1cQrKDHFTaJdn8QqdT6Nbp7AaROdbKs5N8D2TSoKpEOrhBpLPeSKx/L7p6RXCi5BSH\nC1LYmbUXXxdvAk0Bl4z0SC7aJdlol2RjGylg7CAHlXZJNpc6t0FkqL87KemFHDxWwO7kXEJ8Tfg7\nuEGkr6sP8cGD0Sk6kq2p7Mk9wOnSDLp4hmNy+qVtyUW7JBvtkmxsIwWMHeSg0i7J5vIURSHYz42R\nscHU1NZzKO3sBpG5hRVEhXrhYnRgkq+io5t3JP0D+pBVnkNS4dlJvgadgTCPTugUneSiYZKNdkk2\ntpFJvHaQiVXaJdnY5mR2CUvWpXAyuxSTs4E5oyMZ2TfY4Q0iVVVlV/Y+Vh77grLackLcLcyLnsWg\nqF6Si0bJOaNdko1tmprEKwXMReSg0i7JxnYNDSrf7c/gsy3HqaqpJzLYzIJJ0XQOvPI/BrYqqy1n\n9bGv+CFrNwoKEyJHMCF43AWXlYQ2yDmjXZKNbaSAsYMcVNol2divsLSa5ZuOsispF52iMCEulBnD\nI3AxNn9LgnOOFaXxcfJnZFfk4mF0Z1bUNOIC+7XIBpGiZcg5o12SjW2kgLGDHFTaJdk0X+KJApZt\nSCGvqAofszO3jO9Gv272bxtwsbqGOnYU7GTF4S+pbaijm3cUN3e7gUC3gBbotXCUnDPaJdnYRu4D\nYweZWKVdkk3zBXqbGBUbDIrCoRNWdhzJ4VR2KZEhZkwuzb93jE7RMSC8Jz08epJfmd94J996tZ5w\ncxh6XfMnEAvHyTmjXZKNbWQVkh3koNIuycYxer2O7mHeDIwOICOvnMMnz24QaTi3QWQz7x3j5uYM\nNXoGBvYlxCOYY0VpHCpIYm/OAQJM/gSY/Fr4kwhbyTmjXZKNbVqlgDl58iReXl7N7ZNDpIDpmCSb\nluFhMhLfOwh/L1eSTxWx/2g++4/m0SnAAx+z/RtEnstFURSC3AKIDx5MvVpPkjWVXdn7yCrLpotX\nOC52bBApWoacM9ol2dimqQKmyZ3a7rjjjgseL1q0qPH/n3zySQe7JYS4XhRFIb63hWd/M4SRsRbO\n5JXz7LK9fLgumbLKWofadjE4MytqGo/G3U8XzzD25yXy1I6X2HR6K/UN9S30CYQQHV2TBUxdXd0F\nj3fs2NH4/21w7q8Q4iLurk7cPrk7j97SnxA/N7YcyOQv7+zgh0NZDp/jIe4WHuh/N7fEzMGgGPjs\n2Be8sOc10opPtVDvhRAdWZMFzMXLIc//B02WSgrRfnTr5MVf74jjxtGRVNfU8+4XSbz08X6yCsod\nalen6BgWPIgnh/yZIZaBZJRl8fLeRXyU/BnltRUt1HshREfUZAFzMSlahGi/DHodk4eE8cz/DaZP\npC/Jp4v46/u7WLXtBLV1jl36cTe6saD7XB7ofzdBbgF8n7mTp3a8xI6sPTKaK4RolibvZlVcXMyP\nP/7Y+LikpIQdO3agqiolJSWt3jkhxLXn5+XK/XP6sC81n482prLm+5PsOJLDgonR9IzwcajtKK8I\nHov7I5vSt/FV2jcsTfqEH7N2c3P0LCxugS30CYQQHUGTN7JbsGBBky9eunRpi3fIFnIju45Jsrn2\nKqvrWL09jW/2pKOqMLhHIDePjcLT/ZeVAc3NxVpVyIrUNRzMP4xO0TG+8ygmh4/DqDe25Efo0OSc\n0S7JxjZyJ147yEGlXZLN9XMqu5Ql61NIyyrB1dnA7FFdGN03BJ1OcTiXxPwjfJK6GmtVIT4u3szt\nNoPefj1asPcdl5wz2iXZ2KapAqbJOTBlZWV88MEHjY//97//MWPGDO677z7y8/NbrINCCG0LC/Lg\nLwsGsGBiNwCWbUjlH0v3cirb8X+Ae/v14PHBDzGh82iKqot566cPePunD7FWFTrcthCi/WryRnaP\nPvooBoOBYcOGkZaWxkMPPcQzzzyD2Wzm448/JiEh4Rp29RdyI7uOSbK5vhRFIcJiZnjvIIrKajiU\nZmXrwUzKKmsJC3DHyWDXmoALGHR6Yny60te/F1nl2We3JMjYiV7RE27uhE5pftsdmZwz2iXZ2KbZ\nN7JLT0/noYceAmD9+vUkJCQwbNgwbr75ZhmBEaKD8nR35re/6slDN/XF38uVNVtP8Jd3drArKcfh\nFUXB7kH8sd/vWNB9Lka9kVXHv+L53a9yrCithXovhGgvmixgTCZT4//v2rWLIUOGND6WJdVCdGw9\nI3x4+s5BzJ8YTVllHW+tPswrnxwkx+rY/V0URWGIZSBPDvkz8cGDySzP5l/73mRZ0qeU1Th2Xxoh\nRPvRZAFTX19PQUEBp0+fZv/+/cTHxwNQXl5OZWXlNemgEEK7nAx65k2K4ek7B9ErwofDaVaeeG8n\nq7adoKbWsXvHuDmZmB8zm4cG3EOIu4Ufs3bz1I6X+CFzFw1qQwt9AiFEW9XkHBhfX19uv/12li5d\nyj333MOwYcOoqqpi3rx5zJ49mz59+lzDrv5C5sB0TJKNNrm5OaOoKkN6BhLq707qmWIOHitgZ1IO\ngd4mAn1MV2+kCd4uXgyzDMJkcCW58Cj78xJJKTxKmLkTZuOVVygIOWe0TLKxTVNzYK66jLq2tpbq\n6mrc3d0bv7Z9+3aGDx/ecj20kyyj7pgkG226OJfK6jrWfJ/GN7vP0KCqDOjmz7zxXZu10/XFCquK\n+OzoWvbnJaJTdIwJHc6UiAm4GK78j1xHJueMdkk2tmn2fWAyMzObbDg4OLj5vXKAFDAdk2SjTVfK\n5UxuGUs2pHDsTDHOTnp+NTycCQM7YdA7vqLocEEyy1NWUVBlxcvZkxu7zSDWr6fMzbuInDPaJdnY\nptkFTExMDBEREfj7+wOXbua4ZMmSFuym7aSA6ZgkG21qKpcGVeWHxGw++e4YZZW1hPi5sWBSNN06\neTn8vjX1taw/tYlvTm2mXq2nl28MN3a7AT9Xx7Y7aE/knNEuycY2zS5gVq9ezerVqykvL2fq1KlM\nmzYNH5/r/4+DFDAdk2SjTbbkUlZZy2dbjrP1QCYqEN8riBvHRGF2c3zbgOzyXJanfE5q0XGcdE5M\nDh/HuM4jMeia3OqtQ9TvD9wAACAASURBVJBzRrskG9s4vJVAVlYWn3/+OWvXriUkJIQZM2YwYcIE\nXFwcv6bdHFLAdEySjTbZk8vxjGKWbkjhdE4ZJmcDs0dHMio2GJ3OsUs/qqqyO2c/K49+QWltGUGm\nAG6Knkk370iH2m3r5JzRLsnGNi26F9Knn37KP//5T+rr69mzZ4/DnWsOKWA6JslGm+zNpb6hge/2\nZfD5thNUVtcTYfFgwaRowoPMDveloraStSfWsS1jByoqg4L6MytqGh5G96u/uB2Sc0a7JBvbOFzA\nlJSUsGbNGlauXEl9fT0zZsxg2rRpBAQEtGhHbSUFTMck2WhTc3MpKqvmk03H2HEkB0WBsf1CmTky\nApOLk8N9OlWSzscpK0kvzcDV4MqMyMnEBw/qcFsSyDmjXZKNbZpdwGzfvp3PPvuMQ4cOMXHiRGbM\nmEG3bt1apZP2kAKmY5JstMnRXJJOWlm6IZVsawVmNyM3jY1iSI9Ah1cUNagNbD3zI2tPrKOqvppw\nc2dujp5JJ48Qh9ptS+Sc0S7JxjYOrUIKDw8nNjYWne7Sv1yee+65lumhnaSA6ZgkG21qiVxq6xrY\nsPs0a78/SU1dAzGdvbh1YjTBfm4O96+oupiVR79gb+5BFBRGh8YztctEXA3XZw7ftSTnjHZJNrZp\ndgGza9cuAAoLC/H29r7guTNnzjBr1qwW6qJ9pIDpmCQbbWrJXPKLKvlo41EOHMtHr1OYNKgz04eF\n42zUO9x2kjWV5Smfk1dZgKfRzOyu0+kf0Kdd3ztGzhntkmxs0+wCZs+ePTzwwANUV1fj4+PD4sWL\nCQsLY9myZbz99tts3bq1VTp8NVLAdEySjTa1Ri77j+bx0TepFJRU42t2Zv74bvTr5u9wu7X1tWw4\nvZkNp76jrqGO7j7dmNvtBgJMfi3Qa+2Rc0a7JBvbNLuAueWWW3jqqaeIjIzk22+/ZcmSJTQ0NODp\n6ckTTzxBYGBgq3T4aqSA6ZgkG21qrVyqa+r54seTrNt5mvoGlb5Rfswb3xV/L1eH286tyOOT1NUk\nWVMx6AxMChvDhLAxOLWze8fIOaNdko1tmipgmpySr9PpiIw8ex+FcePGkZGRwW233cYbb7xhU/GS\nmprK+PHjWbZsGQC7d+9m3rx5LFiwgN/+9rcUFxcD8O677zJnzhxuvPFGtmzZYvMHE0K0X85GPbNH\nRfL3Xw8iprMXB47l88S7O/nih5PU1jm2G3WAyZ97Yu/k1z1vwc3gypdp3/DsrldIth5tod4LIVpb\nkwXMxdeGLRYLEyZMsKnhiooKnn76aYYOHdr4teeee45//OMfLF26lH79+rF8+XLS09P56quv+Oij\nj1i8eDHPPfcc9fX1zfgoQoj2KNjPjT/P68dvpvfAxdnAyq0n+Ov7uzhy0upQu4qiMCAwlieG/JnR\nofHkVRTw+oF3eP/QfymqLm6h3gshWotdN0WwZ7Kb0WjknXfeueBeMd7e3hQVFQFQXFyMt7c3O3fu\nZMSIERiNRnx8fAgJCeHYsWP2dEsI0c4pisKQnkE8e9dgxg0IJaewgn/+7wCL1xymqKzaobZdDS7c\n2G0GD8f9gTBzJ/bmHuTpHf9k0+n/v737jI76SvM8/q1SSSqlUk4lIaFEMCCyySCTbIPJYDmA+8z2\nzpw5PT279nF7xuvuHnvGM90H7/TunLY9Hdw9O32gbROMiSaDQGCySJJBGYFyzqFUYV+AGWMbqFKV\nVLek5/MOuXS5dX73dj/87/3fexKLVf4xJYSqHrkHZty4cYSHh9//c0NDA+Hh4dhsNjQaDVlZWY/9\nC95//31CQ0NZv349xcXFrF+/HoPBQHBwMB9//DF/+MMf8PPz4wc/+AEAb7zxBitWrGD27NkPbdNs\ntqDTOf9WghDCMxXdaebfP7tK4Z1m/PU6Xn5mFEtnJuHl5E3XVpuVYyWn+fO1nXSYOkkIjuO/T36B\nUZGpLuq5EMJVHrlj7cCBAy79y959910++OADJk+ezMaNG/n444+/8xl7bjZoaup0ab++STZWqUuy\nUZM7cgnWe/H3L07k5NVKtmcV89HOXA5+eYsNT48kJS7YqbbHGyaQ8mQau4q/4MuqC/zDsV8xLWYy\nq1KXetyVBDJn1CXZ2OdRm3gfWcDExbn2xMr8/HwmT54MwMyZM9mzZw/Tp0+ntLT0/mdqamrcdkWB\nEMJzaLUaMibGMWlEJNuyijh9vZpfbLrE3AlG1sxLIdCv71cSBPoE8PLodcwwPsmW/M85V32Ja/Vf\nsTz5aWbHTR9yVxIIoaIBnYURERH397dcv36dxMREpk+fTlZWFiaTiZqaGmpra0lNlce1Qgj7GAJ8\n+OHSJ3jz5UkYIwM4caWSt35/luxrlVgdu6v2O5KDE/m7KX/LurQV2Gw2thTs5H9ffJ9brbdd1Hsh\nRF85fBu1vXJzc9m4cSMVFRXodDqio6N57bXXeO+99/D29iY4OJhf/OIXGAwGNm3axJ49e9BoNLz6\n6qsPvLn0feQcmKFJslGTSrmYLVaOXCxn16lSenotpMYHs2HxSIZFOb/009LTxudF+7hQk4MGDTON\nT7I85RkCvZ2/7qC/qJSNeJBkYx+nb6NWjRQwQ5NkoyYVc2ls7eaTo4Vcyq9Dq9GwcEo8K2Yn4efr\n/EF1hU3FbCnYSVVHDQHe/qxMWcL02ClKLiupmI24S7KxjxQwDpBBpS7JRk0q53KtuIE/H86nrrmb\n0CBfXlyQxuSRkU7ff2SxWjhefop9pYcxWUwkGRLJHLmKYUFGF/XcNVTOZqiTbOzzqALG65133nln\n4LriGp2dpn5rOyDAt1/bF30n2ahJ5Vyiw/yZN96IVqshr7SRczdqKalsJTnO4NQmX61GS3LwcKbF\nTKK5p4UbjQWcrjxHe28nycGJeGv73rYrqZzNUCfZ2CcgwPeh/00KmG+RQaUuyUZNqufi5aVlVGIo\nT46Oprqxk7zSRk5cqcRitZISZ8BL2/elHz+dnklR6SQHJ3Kr9TZfNeRzpuoiBp8gjAExbr/pWvVs\nhjLJxj6PKmBkCelb5LGeuiQbNXlSLjabjYv5dXxypIDmdhNRIX68vHgE45LDH//Lj9FrNXP09kkO\n3DpKr7WXtJBknh+xEmNgjAt63jeelM1QI9nYR5aQHCBVsbokGzV5Ui4ajYa4iADmjjditljJLW3k\nTF415XXtpMYFO7XJ10ujJTUkianRE6nvbry/rNRt7iYpOAGdG2669qRshhrJxj7yBMYBUhWrS7JR\nkyfncqe2nU0H8ymqaMHX24sVs5NYOCUenZNXEgBcr/+KbQW7aehuJMQ3mDVpy5gYOW5Al5U8OZvB\nTrKxjzyBcYBUxeqSbNTkybkEB/gwKz2W8GA9N283c7mwnpyCOuIiAogI9nOq7Wj/SGYZp6HVaLnZ\nWMCl2quUtJQxPDhhwM6O8eRsBjvJxj6yidcBMqjUJdmoydNz0Wg0JEYHMWe8kc4eM7kljZy6Xk1N\nUycpccHofZxYVtJ6MSI0hcnRE6jrrOdGUwGnK85htppJCk7AS9u/l9J6ejaDmWRjH1lCcoA81lOX\nZKOmwZZLSWUrmw/lc6u6Db2PFyvnJLNgcpxTbyvB3Q3EV+ty2V64h6aeZsL0oaxLW0565BgX9fy7\nBls2g4lkYx9ZQnKAVMXqkmzUNNhyCQ3yZU66kZBAX27ebuJyYT2XC+qIiwwkPFjf53Y1Gg0xAdHM\nipuG1WblRmMBF2uucLu1nKTgBPy9/V34Le4abNkMJpKNfWQJyQEyqNQl2ahpMOai0WgYHmtgTnos\nnd29XC9p5NT1KmqbukiNMzi1rKTTejEqLI1JUeOo7qi9u6xUeQ6rzcpwg2uXlQZjNoOFZGMfWUJy\ngDzWU5dko6ahkEtxZQubDxVQVt2Gn68XK2cnM99Fy0qXaq6wo2gvLaY2Iv3CWTdiJWPCR7qk30Mh\nG08l2dhHlpAcIFWxuiQbNQ2FXMKC9MxNNxIc6MvNsiZyCuu5XFBPXGSA08tKxsBYZhqn0Wvt5UZj\nIeerc6hsryI5OBE/Xd/bhqGRjaeSbOwjS0gOkEGlLslGTUMlF41GQ1KsgdnpsXR09ZJbendZqa65\n697bSn1f+vHW6ngifCTjI8dQ0V7NjcYCTlWew0ujJdEQ3+ebrodKNp5IsrGPLCE5QB7rqUuyUdNQ\nzaWoooXNh/K5XdOOn6+OVXOSeGqS88tKVpuVc9U57CzaR3tvBzH+UWSOXMmI0FSH2xqq2XgCycY+\nsoTkAKmK1SXZqGmo5hJm0DN3vBFDgM/9ZaUrhfXERwYQbnBuWWlYkJFZxifptvRwo7GAs9WXqO2s\nIzk4Eb3u4f8i/bahmo0nkGzsI0tIDpBBpS7JRk1DOZdvLiu1f72sdK2K+pYuUuOC8XVmWcnLm7ER\noxkTPorytqr7dyt5e3mTEGTfstJQzkZ1ko19ZAnJAfJYT12SjZokl/9SVH5vWan27rLS6rnJZEw0\numRZ6XTleXYX76fT3EVcYCyZI1aREjL8kb8n2ahLsrHPo5aQpID5FhlU6pJs1CS5PMhitZJ1uZId\nJ0vo6jGTEBXI+qdHkhoX7HTbbaZ2dhXv50zVBQCmx0xhZeoSgnwCv/fzko26JBv7SAHjABlU6pJs\n1CS5fL+WDhPbs4o4fb0agNnpsazNSMHg7+N02yUtt/g0/3Mq2qvw0/mxPPkZZsdN+86ykmSjLsnG\nPlLAOEAGlbokGzVJLo9WWN7M5kMF3Kltx99Xx+p5yWRMiEOr1TjVrsVq4WTFGfaWHKLb0k1CUDwv\njFxFomHY/c9INuqSbOwjBYwDZFCpS7JRk+TyeBarleM5FXyeXUJXj4XE6CDWLx5BiguWlVp62vi8\naB8XanLQoGGW8UmWpzxLgLe/ZKMwycY+UsA4QAaVuiQbNUku9mtp72FbVjFf5t5dVpqTHssaFy0r\nFTYV82nBTqo7agj0DmBFyhKWpWfQUN/hdNvC9WTe2EcKGAfIoFKXZKMmycVxBXea2Xwon/K6DgL0\nOlbPS2HeeKNLlpWOl59iX+lhTBYTI8KTWZ28jGFBcS7quXAVmTf2kQLGATKo1CXZqEly6RuL1cqx\nSxXsPHVvWSkmiA2LR5JsNDjddlN3M58V7eVy7TU0aJgdN51lyU8T4O3vgp4LV5B5Yx8pYBwgg0pd\nko2aJBfntLT3sPV4MWfyqtEAc8YbWTMvmSAXLCtVWcr56MKn1HTWEuDtz/LkZ5hpfLLPdysJ15F5\nYx+5SsABcjqiuiQbNUkuztH76Jg8MpJRCSGUVreRW9JI9tVK/H11JEQHodH0fVkpOTqOiSET8NPp\nyW8q4kpdLnkNN4kLjCVU7/wGYtF3Mm/sIyfxOkCqYnVJNmqSXFzHbLFy7FI5O0+V0m2yMDwmiA1P\njyQptm/LSt/MpqWnlc+LvuBCTQ4AM2KnsiLl2Ycegif6l8wb+8gSkgNkUKlLslGT5OJ6ze09bD1e\nxNm8GjTA3AlG1sxLIdDP26F2vi+bouZSthbsvHcInp7nkp5mTtx0vLR9v7dJOE7mjX2kgHGADCp1\nSTZqklz6T/7tJjYfKqCi/u7bSmszUpgz3ojWzmWlh2VjsVrIrjzL3pKDdJm7MQbE8PyIlaSFJrv6\nK4iHkHljHylgHCCDSl2SjZokl/5ltlg5em9ZqcdkISnWwPrFI+xaVnpcNm2mdnYX7+fLe3crTY2e\nyMrUJYT4yv6Y/ibzxj6yidcBsrFKXZKNmiSX/qXVakiNC2bW2FhaOkzklt7d5NvSYSIlLhgf74cv\n/TwuG18vH9Ijx/BE2EjK2yu50VjA6cpzeGm9SAiKl7eV+pHMG/vIJl4HSFWsLslGTZLLwLpR1sTm\nQ/lUNXQS6OfN2owUZqfHfu+ykiPZWG1WzlReYFfJfjp6O4n2j+L5ESsYFZbm6q8gkHljL1lCcoAM\nKnVJNmqSXAae2WLlyMVydp2+u6yUbDSwYfFIEmMe/B/7vmTT0dvJ3pKDZFecxYaNiZHjWJ32HGH6\nUFd+hSFP5o19ZAnJAfJYT12SjZokl4Gn1WpIjb+7rNTc3kNuaSMnr1TS+q1lpb5k4+PlzdiI0YyL\neIKK9mpuNBVwquIcAIlBw+RtJReReWMfWUJygFTF6pJs1CS5uN+NW41sPlxwf1lpXUYKs9JjiY4y\nOJWN1WblQvVlPi/eR5upnQi/cNalLWdsxGgX9n5oknljH1lCcoAMKnVJNmqSXNRgtlg5fPEOu0/d\noqfXQorRwI8zJxLs6/wTky5zF1+UHiGr/DRWm5VxEaNZk7qcSP9wF/R8aJJ5Yx8pYBwgg0pdko2a\nJBe1NLZ2s+VYERdu1qLRwLwJcayem+zwIXjfp7K9mq0FOylsLkGn1bEoYR6LE5/Cx8v5e5uGGpk3\n9pECxgEyqNQl2ahJclFT3q1Gth4v4k5NOwF6HavnJjNvQhxabd/vVgKw2Wzk1F5lR9E+mntaCPUN\nYW3aMsZHjnXq3qahRuaNfWQTrwNkY5W6JBs1SS5qigrxY/WCEWCxcqOsiZyCeq4U1mOMCCA8WN/n\ndjUaDcbAGGYZpwFws7GQi7VXKG29TWJQPIE+Aa76CoOazBv7PGoTrxQw3yKDSl2SjZokF3UFBeqJ\nDfVj9rhY2jt7yS1t5NT1KmqbOkmJC0bvo+tz2zqtjlFhaUyKSqe2q54bjQWcqjxHj8XEcMMwdNq+\ntz0UyLyxj7yF5AB5rKcuyUZNkou6vp1NUUULfz5cQFl1G74+XiyfNZxFU4ah83LuxF2bzca1+jy2\nF+6hsbuJYB8Dq1OXMjl6giwrPYTMG/vIHhgHyKBSl2SjJslFXd+XjdVqI/taJZ+dKKG9q5eYMH9e\nWpjG2GTn3ygyWXo5XHacQ7ezMFvNpIUks27ECuICY51ue7CReWMfKWAcIINKXZKNmiQXdT0qm/au\nXnZml3D8cgU2G0xMiyBzQRpRIX5O/731XQ1sL9zD9fqv0Gq0zIubyZKkRfh7O9/2YCHzxj5SwDhA\nBpW6JBs1SS7qsieb2zVtfHy4gILyFnReWp6dlsCSGYn4PuKSSHvl1t9ge+Fu6roaCPIOZEXqEqbF\nTJJLIpF5Yy8pYBwgg0pdko2aJBd12ZuNzWbj3I0ath4rorndRLjBl8z5aUweGen0HpZeq5ljt09y\n4NZRTNZekgyJPD9yBQlB8U616+lk3thHChgHyKBSl2SjJslFXY5m020ys/fLMg6ev43FamN0Yigv\nLRpBXITzr0Y3dTezo2gvObXX0KBhVtw0liU/TaD30HztWuaNfaSAcYAMKnVJNmqSXNTV12yqGzv5\n5Egh10sa0Go0LJgcz4rZSfjrnX81+mZjIdsKdlHdWUuAzp9lKc8wy/jkkFtWknljHylgHCCDSl2S\njZokF3U5k43NZuNqUQOfHC2grrkbg783azNSmTkuBq2Ty0oWq4Ws8tN8UXqYbksPw4LieH7ESpKD\nE51q15PIvLGPFDAOkEGlLslGTZKLulyRTa/ZwoHzd9h35hamXispRgMvLRpBUqzB6f619LTyedEX\nXKjJAWB67BRWpiwhyCfQ6bZVJ/PGPlLAOEAGlbokGzVJLupyZTYPXBIJzBkfy+p5KRj8nb/Isai5\nlK0FO6lor8JPp2dp0mLmxs3AS+v8m1CqknljHylgHCCDSl2SjZokF3X1RzY3ypr4+EgBFXUd+Pvq\nWDU3mYyJRry0zu1hsVgtnKo8x56Sg3SZuzAGxPD8iBWkhaa4qOdqkXljHylgHCCDSl2SjZokF3X1\nVzYWq5VjORXszC6lq8dMfGQALy8awciEUKfbbjO1s7t4P19WXQBgSvQEVqUuJcQ32Om2VSLzxj5S\nwDhABpW6JBs1SS7q6u9sWjtMfHaimOxrVQA8OTqK559KJczQ99uuv3ar9TZb8ndyu60cXy8fnh2+\nkKeGzR40l0TKvLGPFDAOkEGlLslGTZKLugYqm5LKVv58OJ/SqjZ8vLUsmzmcxVMT8NY5t6xktVk5\nU3WBXcX76ejtJMovgjVpyxgbMdpFPXcfmTf2eVQB4/XOO++8019/cUFBAZmZmWi1WtLT0+nt7eXv\n/u7v+Oijj9i3bx/z589Hr9eze/du3nrrLbZv345Go2HMmDGPbLc/ryCXK87VJdmoSXJR10BlExrk\ny5zxRsINegruNHOlqIHzN2qIDPEjJsy/z+1qNBoSguKZaXwSk9XEzaZCLtRc5lbrbRKC4gn08dxD\n8GTe2CcgwPeh/63fCpjOzk7eeOMNxo0bR0REBOnp6Xz66ad0d3fzwQcfYDKZaG5uJiYmhtdff52P\nP/6YtWvX8tOf/pQlS5ag1z/8EaQUMEOTZKMmyUVdA5mNRqMhMSaIeeONmMxW8kqbOPtVDaVVrSQZ\nDQT6efe5bR8vb8aEj2JC5FhqO+u42VjIqcqzdJm7GG5IwNur7227i8wb+7ilgNFoNDz33HPk5+fj\n5+dHeno6v/71r3nllVeIjo5m7NixJCcnc/HiRRoaGli2bBk6nY6bN2/i6+tLUlLSQ9uWAmZokmzU\nJLmoyx3ZeOu8GJcczqSRkVQ1dJB3q4kTVyowma2kGIPRefV9WSnIJ5AnYyYRH2TkVstt8hrzOVN1\nAX+dH/FBRqfvbRpIMm/s86gCpt/ObtbpdN95ilJRUcHJkyfZsGEDr732Gs3NzdTX1xMWFnb/M2Fh\nYdTV1fVXt4QQQgyA+MhA3nhxIn+9YgxB/j7sO1PGWx+d5fyNGpzZeqnRaBgfOZafTXudFcnPYrL2\n8nH+Z2y88GsKm0pc+A2E6gZ0O7fNZiMpKYkf//jH/Pu//zu/+93veOKJJ77zmccJDfVHp+u/A44e\ntWlIuJdkoybJRV3uzmZplIEF04az7VghO44X8dtdeZzOreGvVo1juJOn+b4cs5xnx87l42s7OXnr\nHP92+bfMGDaZDeNXExEQ9vgG3Mzd2Xi6AS1gIiIimDp1KgCzZ8/m/fffJyMjg/r6+vufqa2tZcKE\nCY9sp6mps9/6KDvD1SXZqElyUZdK2TwzJZ5JKWF8erSIK0X1/M9fZfHUpDhWzkkiQO/MHhYvMpPX\n8GT4VLYV7uLMnUtcrLjKooQMFiVm4OPl/EnB/UGlbFT2qCJvQK//nDt3LtnZ2QDk5eWRlJTE+PHj\nuX79Oq2trXR0dJCTk8OUKVMGsltCCCEGQFSoP/9jbTqvrhtPZIieo5fK+V+/O8vJq5VYnTzRIyk4\ngZ9M/hteGZ2Jv86PL24d4Z/O/isXa644tWQl1NVv58Dk5uayceNGKioq0Ol0REdH86//+q/8y7/8\nC3V1dfj7+7Nx40YiIiI4cOAAf/zjH9FoNKxfv57ly5c/sm05B2ZokmzUJLmoS+Vses1WDl+8w57T\nt+jptTA8JoiXF48gxej8ibvd5m4Olh3n2O2TmG0WUoKHs3bEchKC4l3Qc9dQORuVyEF2DpBBpS7J\nRk2Si7o8IZumth62HS/i7Fc1AMweF8uajBSCA5xf+qnvamBH4V6u1uehQcOM2KksT3lGiduuPSEb\nFUgB4wAZVOqSbNQkuajLk7LJv93Enw8XUl7Xjp+vFytmJzN/UpxTr11/7WZjIdsLd1PVUYPeS8+S\npIXMi5/p1msJPCkbd5ICxgEyqNQl2ahJclGXp2VjsVrJulzJzuwSOrrNGCMCeHlhGqOHO/9G0de3\nXe8tOUinuYso/wjWpLrvWgJPy8ZdpIBxgAwqdUk2apJc1OWp2bR1mthxsoSTVyqxAVNGRpI5P43w\nYOcviWzv7WBfyWGyK85gw8aY8FGsSX2O6IAo5zvuAE/NZqBJAeMAGVTqkmzUJLmoy9OzuVXdyp8P\nF1Bc0YqPTsuz0xN5ZloCvt7OnwNW0V7F9sI9FDQVodVoyYifxZKkhfjp/FzQ88fz9GwGihQwDpBB\npS7JRk2Si7oGQzZWm40zudVszyqmpcNEmMGXtRkpTBsd7fTVATabjav1eewo3EtDdyOB3gEsT3mG\nGbFT0Wr695SRwZDNQJACxgEyqNQl2ahJclHXYMqmq8fMF2fLOHj+NmaLjdS4YF5cmEaSk6f5AvRa\nejl2J5sDZccwWUwMCzSydsQKUkMefiefswZTNv1JChgHyKBSl2SjJslFXYMxm9rmLrYdK+JSwd07\n82aNi2HNvBRCAh9+6Z+9mnta2FW8n/PVOQBMjhrPytQlhOlDnW772wZjNv1BChgHyKBSl2SjJslF\nXYM5mxtlTXxy5O5r174+Xjw3I5HFU4fh7YJ78kpbythWuJuy1jt4a71ZlJjBooR5Lr2WYDBn40pS\nwDhABpW6JBs1SS7qGuzZWK02Tl6tZMfJEtq7eokI1pM5P5VJIyKd3h9jtVk5X53DruL9tJraCPUN\nYVXqUiZFpTvdNgz+bFxFChgHyKBSl2SjJslFXUMlm87uXnafvsXRS+VYrDZGJYTwwoI0EqKdv+35\nu9cSJLFuxHKGBcU51e5QycZZUsA4QAaVuiQbNUku6hpq2VQ3drLlaCFXixvQaGDueCOr5iZj8Hd+\n6aeus4EdRXu5du9agpnGqSxL7vu1BEMtm76SAsYBMqjUJdmoSXJR11DNJrekgU+OFlLV0Imfr47l\ns4azYHK8S64luNFYwPbCPVR31OCn07Nk+ELmxc/CS+vY3puhmo2jpIBxgAwqdUk2apJc1DWUszFb\nrGRdrmDXqVI6us1Eh/mTOT+V8SnhTu9hsVgtZFecZW/pIbrMXUT7R7EmbRljwkfa3cZQzsYRUsA4\nQAaVuiQbNUku6pJsoL2rl53ZJWRdrsRqszEmKYwXFqQRFxHgfNumDvaVHiK74iw2bIwNH8XqtGVE\n+0c+9nclG/tIAeMAGVTqkmzUJLmoS7L5LxV17Xx6tJC8W01oNRqemhTHitlJBPp5O992exXbC3ZT\n0FyMl8aLjGGzeHb4gkdeSyDZ2EcKGAfIoFKXZKMmyUVdks2DbDYbV4sa+PRYIbVNXQTodayck0zG\nRCNeWuf2x9hsHzbuKwAAFEFJREFUNq7W5bKjaC8N3U0EeQeyPOUZpsdO+d5rCSQb+0gB4wAZVOqS\nbNQkuahLsvl+ZouVIxfL2fNlKV09FowRAby4II0xSWFOt91r6eXonWwO3jqKydpLQlAca9NWkBIy\n/IHPSTb2kQLGATKo1CXZqElyUZdk82itHSZ2nCwh+2olNmBCagSZ81OJDvN3uu3mnhZ2Fu3nQs3d\nawmmRE9gZcoSQvUhgGRjLylgHCCDSl2SjZokF3VJNvYpq27jk6OFFNxpxkurYeGUeJbNTMJfr3O6\n7ZKWMrYX7Kas7Q4+Wm8WJz7FgoR5xMWESTZ2kALGATLh1SXZqElyUZdkYz+bzcal/Dq2Hi+ivqWb\nIH9vVs9NZk66Ea3W+WsJzlXnsKv4C9pM7YTpQ3ll4hpS9WkuuZZgMJMCxgEy4dUl2ahJclGXZOO4\nXrOFg+fvsO9MGT29FoZFBfLSwjRGJjh/I3WXuZuDt45x/E42ZpuFJEMia9KWkRSc4IKeD05SwDhA\nJry6JBs1SS7qkmz6rqmthx0nijmdWw3A5JGRPP9UKpEhD3812l51nQ3sLz/EufLLwN39McuTnyXc\nz/kiabB5VAHj9c4777wzcF1xjc5OU7+1HRDg26/ti76TbNQkuahLsuk7P18dk0ZEMi45nIr6dvJK\nm8i6XInJbCHZaHDqWoIAb38WjppJvG8Cle3V3Ggs4FTlWUyWXhIN8ei0zu+9GSwCAnwf+t+kgPkW\nmfDqkmzUJLmoS7JxXmiQL3PSY4kJ86eoooVrxQ2cul5FkJ838VGBfd7DEhDgi97qz0zjVKL8Iyhp\nKSOv4SZnKi/gp9MTH2SU/TE8uoCRJaRvkUeu6pJs1CS5qEuyca0ek4X958rYf+42vWYrSbFBvLhw\nBKlxwQ639e1sTBYTR29nc+j2cUwWE8aAGFanPcfosBGu/AoeR/bAOEAmvLokGzVJLuqSbPpHQ0s3\n27KKOH+jFoDpT0SzNiOFMIPe7jYelk1LTyt7Sw5ypuoiNmyMCR/FqtSlxAZEu6z/nkQKGAfIhFeX\nZKMmyUVdkk3/KrjTzCdHCymrbsNHp+XZ6Yk8My0BX2+vx/7u47K501bJjqK9FDQVodVomW2cxpKk\nRQT5BLryKyhPChgHyIRXl2SjJslFXZJN/7PabJy+XsWOEyW0dJgIM/iyLiOVJ0dHPXIPiz3Z2Gw2\nchtusKNoL7Wd9ei99DwzfD4Zw2bjPUQ2+koB4wCZ8OqSbNQkuahLshk4XT1m9p0p49CF25gtNlLj\ng3lxQRpJsYbv/bwj2VisFrIrzvJF6WE6zJ2E68NYmbqEiZHjBv1GXylgHCATXl2SjZokF3VJNgOv\ntrmLrceKyCmoQwPMGhfLmnnJBAc++DZNX7Lp7O1k/62jnCj/EovNQnLwcNakPcdww+A9CE8KGAfI\nhFeXZKMmyUVdko373Chr4pMjhZTXtePr48VzMxJZPHUY3rq7+2Ocyaa2s55dxV9wpS4XgKnRE1me\n8gxh+sF3EJ4UMA6QCa8uyUZNkou6JBv3slptnLxayY6TJbR39RIRrCdzfiqTRkQSFWVwOpvCphJ2\nFO3hdlsF3lodC4bNZVFiBnqd/W9DqU4KGAfIhFeXZKMmyUVdko0aOrt72X36FkcvlWOx2hiVEMKP\n1k0g0Lvvp/l+zWqzcqH6MrtLDtDc00KQTyDLkp9mRuxUtBrn23c3KWAcIBNeXZKNmiQXdUk2aqlq\n6GDLsSKuFTeg0cCssbGsmptMaNDDT5u1V4/FxNHbJzhcloXJ2osxIIY1acsYFZbmgp67jxQwDpAJ\nry7JRk2Si7okGzXlljbw2YmSu+fHeGt55skEnp2WiK/P48+PeZzmnhb2lBzkXNUlbNgYe+8gvBgP\nPQhPChgHyIRXl2SjJslFXZKNusLCA/n8aD6fZ5fS2mEiONCH1XOSmTUuFq3W+Vej77RVsKNwLwXN\nxWg1WubETWfJ8EUE+gS4oPcDR26jdoBcfqYuyUZNkou6JBt1BQb6EmnwZd4EI15aDTfLmrhUUEdO\nQT1RYX5Ehfg51X6wr4FpMZMZFhTH7dZyvmrM53TlObQaLcOC4vHykP0xcpmjA+RfLOqSbNQkuahL\nslHXt7NpbO3m85MlfJlbjQ1ITwln3VOpxEU4/8TEbDXfPwiv09xFhD6MlalLmRA5VvmD8GQJyQEy\n4dUl2ahJclGXZKOuh2VTVt3GlmOF3LzdjFajYe4EIytnJ2EI8HH67+zo7eTAraNklZ/GarOSEjyc\nNWnLSDQMc7rt/iIFjANkwqtLslGT5KIuyUZdj8rGZrNxtaiBrceLqG7sRO/jxdIZiSyaMgwfOy6K\nfJzazjp2Fu/n6v2D8CaxIuUZQvUhTrftalLAOEAmvLokGzVJLuqSbNRlTzZmi5UTVyrZdaqU9q5e\nwg2+rJ6XwrQnotG6YOmnoKmYHYV7uNNeefcgvIR5LErIQK9z/rVuV5ECxgEy4dUl2ahJclGXZKMu\nR7Lp7Daz78wtDl+8g9liIyk2iMz5aYwY5vwTE6vNyvnqHHYXH6DF1IrBJ4hlyc8wPXayEgfhSQHj\nAJnw6pJs1CS5qEuyUVdfsqlv7mL7iWLO36gFYNKISNZlpBAd5u90f3osJo7cPsGRewfhxQXGsjr1\nObcfhCcFjANkwqtLslGT5KIuyUZdzmRTXNnClqNFFFW04KXV8NSkOJbPSiLQz9vpfjX3tLCn+CDn\nqu8ehDcuYjSrUpYSHRDldNt9IQWMA2TCq0uyUZPkoi7JRl3OZmOz2biUX8e2rCLqmrvx99WxbNZw\n5k+Kx1vn/NLP7bZydhTupbC55N5BeDNYkrSQQO+BPQhPChgHyIRXl2SjJslFXZKNulyVTa/ZyrGc\ncvacvkVnj5nIED3rMlKZPDLS6TNebDYb1+q/YmfRPmq76vHT+fHs8AXMjZ+Jt1bndN/tIQWMA2TC\nq0uyUZPkoi7JRl2uzqa9q5fdp0s5nlOBxWojNT6YzPmppBiDnW77Owfh+YWzKmUJ4wfgIDwpYBwg\nE15dko2aJBd1STbq6q9saho72ZZVTE5BHQBPjo5i7bwUIpy8mgDuHoS3v/QIJyq+xGqzkhqSxJrU\nZSQY4p1u+2GkgHGATHh1STZqklzUJdmoq7+zyb/dxJZjRdyqbkPnpWXRlHiWzhiOv975pZ+azjp2\nFn3Btfo8ABYlZLAydYnT7X4fuczRAXL5mbokGzVJLuqSbNTV39lEBPsxZ7yR6DB/SipbuF7SyMmr\nlfh4e5EQHejUjdeB3gFMiZ5AWkgyNZ11mCw9TI2Z6MLe/xe5zNEB8i8WdUk2apJc1CXZqGsgszH1\nWjh88Q77zpTRbbIQE+bPuqdSmJAa4dGXOQ7MNmIhhBBCuIWPtxdLZwxnTrqRnadKOXGlgvc/u86o\nhBAy56eRGPPwIkFl7j8nWAghhBD9zhDgwytPj+SffjiN9JRwbt5u5p/+8wJ/3PsVja3d7u6ew+QJ\njBBCCDGExEUE8Oq68eTdamTL0SJO51Zz4WYti59MYMn0BPQ+nlEayBMYIYQQYggaMzyMd/5iKn/x\n7Cj89Dr2fnmLN393lhNXKrBa1d8e268FTEFBAQsXLmTz5s0P/Dw7O5uRI0fe//Pu3btZs2YN69at\nY9u2bf3ZJSGEEELco9VqmDPeyC//ajrLZw2n22TmTwfyefv/nSe3pMHd3XukfntO1NnZybvvvsuM\nGTMe+HlPTw+///3viYyMvP+5Dz/8kO3bt+Pt7c3atWtZtGgRISHOXxMuhBBCiMfT++hYOSeZeRPi\n+PxkCaevV/F/tl5lbFIYz89PJT4y0N1d/I5+ewLj4+PDRx99RFTUgzdY/va3v+Wll17Cx8cHgKtX\nrzJu3DiCgoLQ6/VMmjSJnJyc/uqWEEIIIR4iNMiX/7Z0NG//xVRGJ4aSW9rI2/9xnv/cf5OW9h53\nd+8B/VbA6HQ69Hr9Az8rLS3l5s2bPPvss/d/Vl9fT1hY2P0/h4WFUVdX11/dEkIIIcRjJEQH8ZMX\nJvDqunRiwvw5ebWSN39/lj2nS+nptbi7e8AAv4X0y1/+kp/97GeP/Iw95+qFhvqj03m5qlvf8aiD\nc4R7STZqklzUJdmoyxOyWRBlIGNqIofOlfHngzf5PLuU7GtVbFgymoxJw5w60ddZA1bA1NTUUFJS\nwk9+8hMAamtrWb9+PX/7t39LfX39/c/V1tYyYcKER7bV1NTZb/2UkyvVJdmoSXJRl2SjLk/LZkpa\nBGMSpvPF2TIOnr/D//3kMjuOFZE5P5VRiaH99vc+qsgbsNeoo6OjOXLkCFu3bmXr1q1ERUWxefNm\nxo8fz/Xr12ltbaWjo4OcnBymTJkyUN0SQgghhB38fHWsmZfCL/9qOtPHRFNW08Z7n1xm08F8t/Sn\n357A5ObmsnHjRioqKtDpdBw8eJD333//O28X6fV6Xn/9dX74wx+i0Wj4m7/5G4KC1H+sJoQQQgxF\n4cF6/mrZGBZNGcZnJ4rp6O51Sz/kMsdv8bTHekOJZKMmyUVdko26JBv7KLGEJIQQQgjhKlLACCGE\nEMLjSAEjhBBCCI8jBYwQQgghPI4UMEIIIYTwOFLACCGEEMLjSAEjhBBCCI8jBYwQQgghPI4UMEII\nIYTwOFLACCGEEMLjSAEjhBBCCI8jBYwQQgghPI4UMEIIIYTwOB55G7UQQgghhjZ5AiOEEEIIjyMF\njBBCCCE8jhQwQgghhPA4UsAIIYQQwuNIASOEEEIIjyMFjBBCCCE8jhQw3/CLX/yCzMxMXnjhBa5d\nu+bu7ohveO+998jMzGTNmjUcOnTI3d0R39Dd3c3ChQvZsWOHu7sivmH37t0sX76c1atXk5WV5e7u\nCKCjo4Mf//jHbNiwgRdeeIHs7Gx3d8mj6dzdAVWcP3+esrIytmzZQnFxMW+99RZbtmxxd7cEcPbs\nWQoLC9myZQtNTU2sWrWKxYsXu7tb4p7f/OY3BAcHu7sb4huampr48MMP+eyzz+js7OT9998nIyPD\n3d0a8j7//HOSkpJ4/fXXqamp4Qc/+AEHDhxwd7c8lhQw95w5c4aFCxcCkJKSQktLC+3t7QQGBrq5\nZ2Lq1Kmkp6cDYDAY6OrqwmKx4OXl5eaeieLiYoqKiuT/HBVz5swZZsyYQWBgIIGBgbz77rvu7pIA\nQkNDyc/PB6C1tZXQ0FA398izyRLSPfX19Q8MprCwMOrq6tzYI/E1Ly8v/P39Adi+fTtz586V4kUR\nGzdu5M0333R3N8S3lJeX093dzV//9V/z0ksvcebMGXd3SQBLly6lsrKSRYsWsX79ev7+7//e3V3y\naPIE5iHkhgX1HDlyhO3bt/Mf//Ef7u6KAHbu3MmECRMYNmyYu7sivkdzczMffPABlZWVvPLKKxw/\nfhyNRuPubg1pu3btwmg08sc//pGbN2/y1ltvyd4xJ0gBc09UVBT19fX3/1xbW0tkZKQbeyS+KTs7\nm9/+9rf84Q9/ICgoyN3dEUBWVhZ37twhKyuL6upqfHx8iImJYebMme7u2pAXHh7OxIkT0el0JCQk\nEBAQQGNjI+Hh4e7u2pCWk5PD7NmzARg1ahS1tbWyHO4EWUK6Z9asWRw8eBCAvLw8oqKiZP+LItra\n2njvvff43e9+R0hIiLu7I+75t3/7Nz777DO2bt3KunXr+NGPfiTFiyJmz57N2bNnsVqtNDU10dnZ\nKfstFJCYmMjVq1cBqKioICAgQIoXJ8gTmHsmTZrEmDFjeOGFF9BoNLz99tvu7pK454svvqCpqYlX\nX331/s82btyI0Wh0Y6+EUFd0dDRPP/00zz//PAA/+9nP0Grl36vulpmZyVtvvcX69esxm8288847\n7u6SR9PYZLOHEEIIITyMlORCCCGE8DhSwAghhBDC40gBI4QQQgiPIwWMEEIIITyOFDBCCCGE8DhS\nwAgh+lV5eTljx45lw4YN92/hff3112ltbbW7jQ0bNmCxWOz+/Isvvsi5c+f60l0hhIeQAkYI0e/C\nwsLYtGkTmzZt4tNPPyUqKorf/OY3dv/+pk2b5MAvIcQD5CA7IcSAmzp1Klu2bOHmzZts3LgRs9lM\nb28v//AP/8ATTzzBhg0bGDVqFDdu3OBPf/oTTzzxBHl5eZhMJn7+859TXV2N2WxmxYoVvPTSS3R1\ndfHaa6/R1NREYmIiPT09ANTU1PCTn/wEgO7ubjIzM1m7dq07v7oQwkWkgBFCDCiLxcLhw4eZPHky\nb7zxBh9++CEJCQnfudzO39+fzZs3P/C7mzZtwmAw8Ktf/Yru7m6WLFnCnDlz+PLLL9Hr9WzZsoXa\n2loWLFgAwP79+0lOTuYf//Ef6enpYdu2bQP+fYUQ/UMKGCFEv2tsbGTDhg0AWK1WpkyZwpo1a/j1\nr3/NT3/60/ufa29vx2q1Anev9/i2q1evsnr1agD0ej1jx44lLy+PgoICJk+eDNy9mDU5ORmAOXPm\n8PHHH/Pmm28yb948MjMz+/V7CiEGjhQwQoh+9/UemG9qa2vD29v7Oz//mre393d+ptFoHvizzWZD\no9Fgs9keuOvn6yIoJSWFffv2ceHCBQ4cOMCf/vQnPv30U2e/jhBCAbKJVwjhFkFBQcTHx3PixAkA\nSktL+eCDDx75O+PHjyc7OxuAzs5O8vLyGDNmDCkpKVy+fBmAqqoqSktLAdizZw/Xr19n5syZvP32\n21RVVWE2m/vxWwkhBoo8gRFCuM3GjRv553/+Z37/+99jNpt58803H/n5DRs28POf/5yXX34Zk8nE\nj370I+Lj41mxYgXHjh3jpZdeIj4+nnHjxgGQmprK22+/jY+PDzabjb/8y79Ep5P/2RNiMJDbqIUQ\nQgjhcWQJSQghhBAeRwoYIYQQQngcKWCEEEII4XGkgBFCCCGEx5ECRgghhBAeRwoYIYQQQngcKWCE\nEEII4XGkgBFCCCGEx/n/hC3macwlVZEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "pZa8miwu6_tQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "PzABdyjq7IZU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Aside from `latitude`, we'll also keep `median_income`, to compare with the previous results.\n", + "\n", + "We decided to bucketize the latitude. This is fairly straightforward in Pandas using `Series.apply`." + ] + }, + { + "metadata": { + "id": "xdVF8siZ7Lup", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def select_and_transform_features(source_df):\n", + " LATITUDE_RANGES = zip(range(32, 44), range(33, 45))\n", + " selected_examples = pd.DataFrame()\n", + " selected_examples[\"median_income\"] = source_df[\"median_income\"]\n", + " for r in LATITUDE_RANGES:\n", + " selected_examples[\"latitude_%d_to_%d\" % r] = source_df[\"latitude\"].apply(\n", + " lambda l: 1.0 if l >= r[0] and l < r[1] else 0.0)\n", + " return selected_examples\n", + "\n", + "selected_training_examples = select_and_transform_features(training_examples)\n", + "selected_validation_examples = select_and_transform_features(validation_examples)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U4iAdY6t7Pkh", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=0.01,\n", + " steps=500,\n", + " batch_size=5,\n", + " training_examples=selected_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=selected_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 5dbd84f854e7782899f91bfb08d46631589252a0 Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 11:47:00 +0530 Subject: [PATCH 06/11] Created using Colaboratory --- feature_crosses.ipynb | 1578 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1578 insertions(+) create mode 100644 feature_crosses.ipynb diff --git a/feature_crosses.ipynb b/feature_crosses.ipynb new file mode 100644 index 0000000..8b04a83 --- /dev/null +++ b/feature_crosses.ipynb @@ -0,0 +1,1578 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "feature_crosses.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "ZTDHHM61NPTw", + "0i7vGo9PTaZl" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Feature Crosses" + ] + }, + { + "metadata": { + "id": "F7dke6skIK-k", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Improve a linear regression model with the addition of additional synthetic features (this is a continuation of the previous exercise)\n", + " * Use an input function to convert pandas `DataFrame` objects to `Tensors` and invoke the input function in `fit()` and `predict()` operations\n", + " * Use the FTRL optimization algorithm for model training\n", + " * Create new synthetic features through one-hot encoding, binning, and feature crosses" + ] + }, + { + "metadata": { + "id": "NS_fcQRd8B97", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup" + ] + }, + { + "metadata": { + "id": "4IdzD8IdIK-l", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "First, as we've done in previous exercises, let's define the input and create the data-loading code." + ] + }, + { + "metadata": { + "id": "CsfdiLiDIK-n", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "10rhoflKIK-s", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ufplEkjN8KUp", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1209 + }, + "outputId": "e368c122-0059-400e-8fe5-5b3c581b3999" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.7 2639.7 539.8 \n", + "std 2.1 2.0 12.6 2210.4 425.8 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1458.0 297.0 \n", + "50% 34.3 -118.5 29.0 2118.5 432.0 \n", + "75% 37.7 -118.0 37.0 3143.0 648.2 \n", + "max 42.0 -114.3 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1427.4 501.3 3.9 2.0 \n", + "std 1173.3 388.1 1.9 1.3 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 791.0 282.0 2.6 1.5 \n", + "50% 1161.5 407.0 3.5 1.9 \n", + "75% 1719.2 606.0 4.7 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.72639.7539.81427.4501.33.92.0
std2.12.012.62210.4425.81173.3388.11.91.3
min32.5-124.31.02.01.03.01.00.50.0
25%33.9-121.818.01458.0297.0791.0282.02.61.5
50%34.3-118.529.02118.5432.01161.5407.03.51.9
75%37.7-118.037.03143.0648.21719.2606.04.72.3
max42.0-114.352.037937.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.4 2653.2 538.4 \n", + "std 2.1 2.0 12.6 2105.1 411.0 \n", + "min 32.5 -124.3 1.0 11.0 4.0 \n", + "25% 33.9 -121.8 18.0 1468.0 295.0 \n", + "50% 34.2 -118.5 29.0 2154.0 439.0 \n", + "75% 37.7 -118.0 37.0 3170.2 648.2 \n", + "max 41.8 -114.5 52.0 25187.0 4952.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1434.8 501.1 3.9 2.0 \n", + "std 1084.5 375.8 1.9 0.9 \n", + "min 8.0 2.0 0.5 0.1 \n", + "25% 788.0 281.0 2.6 1.5 \n", + "50% 1179.0 414.5 3.6 1.9 \n", + "75% 1727.0 603.0 4.8 2.3 \n", + "max 11956.0 4616.0 15.0 27.1 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.42653.2538.41434.8501.13.92.0
std2.12.012.62105.1411.01084.5375.81.90.9
min32.5-124.31.011.04.08.02.00.50.1
25%33.9-121.818.01468.0295.0788.0281.02.61.5
50%34.2-118.529.02154.0439.01179.0414.53.61.9
75%37.7-118.037.03170.2648.21727.0603.04.82.3
max41.8-114.552.025187.04952.011956.04616.015.027.1
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.4\n", + "std 116.3\n", + "min 15.0\n", + "25% 118.9\n", + "50% 180.6\n", + "75% 265.2\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.4
std116.3
min15.0
25%118.9
50%180.6
75%265.2
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 207.1\n", + "std 115.2\n", + "min 25.0\n", + "25% 120.9\n", + "50% 179.4\n", + "75% 264.5\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean207.1
std115.2
min25.0
25%120.9
50%179.4
75%264.5
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "oJlrB4rJ_2Ma", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "NBxoAfp2AcB6", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hweDyy31LBsV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## FTRL Optimization Algorithm\n", + "\n", + "High dimensional linear models benefit from using a variant of gradient-based optimization called FTRL. This algorithm has the benefit of scaling the learning rate differently for different coefficients, which can be useful if some features rarely take non-zero values (it also is well suited to support L1 regularization). We can apply FTRL using the [FtrlOptimizer](https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimizer)." + ] + }, + { + "metadata": { + "id": "S0SBf1X1IK_O", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "1Cdr02tLIK_Q", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 761 + }, + "outputId": "24fdbd0b-f120-46ab-8cf6-9a1f80764aef" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 253.10\n", + " period 01 : 188.05\n", + " period 02 : 127.32\n", + " period 03 : 127.42\n", + " period 04 : 125.70\n", + " period 05 : 117.47\n", + " period 06 : 141.92\n", + " period 07 : 132.13\n", + " period 08 : 130.97\n", + " period 09 : 203.60\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8lfXd//HXOTkJ2TsnAwTCXiGM\nBEgCCKISRW8HCC5qWzruFusordZf1Q4VhVZbByjq7Sje3kVSq1KxKlUEDCMhEMIIe2bvPU+u3x8h\nR2aYJ+ckvJ+Ph48HZ1znep9844MP1+d7fb8mwzAMRERERDoRs7MDiIiIiFwoFTAiIiLS6aiAERER\nkU5HBYyIiIh0OipgREREpNNRASMiIiKdjsXZAURc2cCBA+nZsydubm4A2Gw24uPjefzxx/H29r7o\nz/3ggw+YOXPmac9/+OGHPPbYY7z22mtMnjzZ/nx9fT2JiYlcf/31PPfccxd93vN15MgR5s+fz8GD\nBwHw8vLi/vvv59prr3X4uS/E4sWLOXLkyGk/k40bNzJnzhx69Ohx2jH//ve/OyreJTl27BhTpkwh\nOjoaAMMwCA0N5be//S1Dhgy5oM96/vnniYqK4q677jrvYz7++GNSUlJYunTpBZ1LpKOogBE5h6VL\nlxIREQFAY2MjDz/8MEuWLOHhhx++qM8rKirizTffPGMBAxAZGcm//vWvkwqYr7/+Gn9//4s638X4\n1a9+xS233MJrr70GQGZmJvfddx+fffYZkZGRHZbjUkRGRnaaYuVs3NzcTvoOK1euZO7cuXz++ed4\neHic9+fMmzfPEfFEnEotJJEL4OHhwYQJE9i1axcADQ0NPPnkk0ydOpUbbriB5557DpvNBkB2djZ3\n3nknycnJ3HLLLaxduxaAO++8k9zcXJKTk2lsbDztHKNGjWLjxo3U1dXZn1u5ciVJSUn2x42NjTz9\n9NNMnTqVa665xl5oAGzZsoXbb7+d5ORkbrzxRlJTU4HWf9GPHz+ev/3tb9x8881MmDCBlStXnvF7\n7tmzh9jYWPvj2NhYPv/8c3sh98orr3D11Vdz66238vrrr3PNNdcA8Jvf/IbFixfbjzvx8blyzZ8/\nn3vvvReAzZs3M336dK677jpmzpzJ0aNHgdYrUQ899BCTJ0/m3nvvJT8//xwjdmYffvgh999/P/fd\ndx8LFy5k48aN3HnnnTz44IP2v+w/++wzbrrpJpKTk/ne977HkSNHAHj55Zd5/PHHmTFjBu+8885J\nn/vggw/y1ltv2R/v2rWL8ePH09LSwl/+8hemTp3K1KlT+d73vkdBQcEF577xxhupr6/nwIEDACxb\ntozk5GSuueYafvnLX1JfXw+0/tyfffZZbr75Zj777LOTxuFsv5ctLS388Y9/ZNKkScyYMYPs7Gz7\neTdt2sRtt93GjTfeyA033MBnn312wdlFLjtDRM5qwIABRl5env1xeXm5cc899xiLFy82DMMwlixZ\nYvz4xz82mpqajLq6OmP69OnGRx99ZNhsNuOGG24wVqxYYRiGYWzbts2Ij483qqqqjA0bNhjXXnvt\nGc/3j3/8w3j00UeNX/3qV/Zjq6qqjClTphjLly83Hn30UcMwDOOVV14x7rvvPqOhocGoqakxbr31\nVuOrr74yDMMwbrrpJuNf//qXYRiG8c9//tN+rqNHjxpDhgwxli5dahiGYaxcudK47rrrzpjjF7/4\nhTF58mTj3XffNfbt23fSa7t37zbi4uKMwsJCo6mpyfjZz35mTJ482TAMw3j00UeNRYsW2d974uP2\ncg0dOtT48MMP7d83Pj7eWLdunWEYhrFixQrjtttuMwzDMN577z3jnnvuMZqamozS0lJj8uTJ9p/J\nidr7Gbf9nEeMGGEcPHjQ/v6YmBgjNTXVMAzDyMnJMUaPHm0cOnTIMAzD+J//+R/jvvvuMwzDMF56\n6SVj/PjxRklJyWmf++mnnxr33HOP/fGLL75oPPXUU8aePXuM66+/3mhsbDQMwzD+9re/Gf/85z/P\nmq/t5zJ48ODTno+Pjzf2799vpKWlGQkJCUZ+fr5hGIbxxBNPGM8995xhGK0/95tvvtmor6+3P160\naFG7v5erV682rr/+eqO6utqoq6szZsyYYdx7772GYRjG7bffbmzcuNEwDMM4ePCg8ctf/rLd7CId\nQVdgRM5h9uzZJCcnM2XKFKZMmcK4ceP48Y9/DMDq1auZOXMmFosFT09Pbr75Zr799luOHTtGcXEx\n06ZNAyAmJoaoqCiysrLO65zTpk3jX//6FwCrVq1i8uTJmM3f/e/69ddfc/fdd+Ph4YG3tze33HIL\nX3zxBQAfffQRN9xwAwCjR4+2X70AaG5u5vbbbwdg6NCh5ObmnvH8f/rTn7jnnntYsWIFN910E9dc\ncw3/93//B7ReHYmPjycsLAyLxcJNN910Xt+pvVxNTU1cd9119s8PDw+3X3G66aabOHLkCLm5uaSn\np3PddddhsVgICgo6qc12qry8PJKTk0/678S5Mr1796Z37972x56eniQkJADw7bffMnbsWHr16gXA\nHXfcwcaNG2lubgZar0gFBwefds5Jkyaxc+dOysvLAfjyyy9JTk7G39+f0tJSVqxYQUVFBbNnz+bW\nW289r59bG8MwWLZsGeHh4fTu3ZuvvvqKG2+8kfDwcADuuusu++8AQEJCAt26dTvpM9r7vUxLS+Pq\nq6/Gx8cHT09P+1gBhISE8NFHH7F//3569+7N888/f0HZRRxBc2BEzqFtDkxpaam9/WGxtP6vU1pa\nSkBAgP29AQEBlJSUUFpaip+fHyaTyf5a219ioaGh5zxnUlISjz/+OOXl5Xz66af8/Oc/t0+oBaiq\nquLZZ5/lhRdeAFpbSsOHDwdgxYoV/O1vf6OmpoaWlhaME7Y7c3Nzs08+NpvNtLS0nPH83bp1Y86c\nOcyZM4fKykr+/e9/M3/+fHr06EFFRcVJ83FCQkLO+X3OJ5evry8AlZWVHD16lOTkZPvrHh4elJaW\nUlFRgZ+fn/15f39/ampqzni+c82BOXHcTn1cVlZ20nf08/PDMAzKysrOeGwbb29vEhMTWb16NaNH\nj6ayspLRo0djMpl4+eWXeeutt3jqqaeIj4/nD3/4wznnE9lsNvvPwTAM+vXrx+LFizGbzVRVVfHl\nl1+ybt06++tNTU1n/X5Au7+XFRUVWK3Wk55vM3/+fF599VV+8IMf4OnpyS9/+cuTxkfEGVTAiJyn\n4OBgZs+ezZ/+9CdeffVVAEJDQ+3/2gYoLy8nNDSUkJAQKioqMAzD/pdFeXn5ef9l7+7uzuTJk/no\no484fPgwI0eOPKmAsVqt/PCHPzztCkRBQQGPP/44y5cvZ/DgwRw6dIipU6de0PcsLS1l165d9isg\n/v7+zJw5k7Vr17Jnzx78/Pyoqqo66f1tTi2KKioqLjiX1WqlT58+fPjhh6e95u/vf9ZzX04hISFs\n2bLF/riiogKz2UxQUNA5j506dSpffvklZWVlTJ061T7+48aNY9y4cdTW1rJgwQL+/Oc/n/NKxqmT\neE9ktVq57bbbePTRRy/oe53t97K9n21oaChPPPEETzzxBOvWreMXv/gFEyZMwMfH57zPLXK5qYUk\ncgF+8IMfsGXLFjZt2gS0tgxSUlKw2WzU1tby8ccfc/XVV9OjRw8iIiLsk2QzMjIoLi5m+PDhWCwW\namtr7e2Is5k2bRpvvPHGGW9dnjJlCsuXL8dms2EYBosXL2bNmjWUlpbi7e1Nnz59aG5uZtmyZQBn\nvUpxJvX19TzwwAP2yZ0Ahw8fJjMzk7i4OEaOHEl6ejqlpaU0Nzfz0Ucf2d8XFhZmn/x59OhRMjIy\nAC4oV2xsLEVFRWRmZto/59e//jWGYTBixAi++uorbDYbpaWlrFmz5ry/14VISkoiPT3d3ub6+9//\nTlJSkv3KW3smT57Mli1bWLVqlb0Ns27dOv7whz/Q0tKCt7c3gwYNOukqyMW45ppr+OKLL+yFxqpV\nq3j99dfbPaa938uRI0eybt066urqqKursxdOTU1NzJ49m8LCQqC19WixWE5qaYo4g67AiFwAX19f\nfvKTn7BgwQJSUlKYPXs2R48eZdq0aZhMJpKTk7nhhhswmUy88MIL/O53v+OVV17By8uLF198EW9v\nbwYOHEhAQABJSUn885//JCoq6oznGjNmDCaTiRtvvPG01+6++26OHTvGtGnTMAyDYcOGcd999+Ht\n7c3EiROZOnUqISEh/OY3vyEjI4PZs2fz0ksvndd3jIqK4tVXX+Wll17i6aefxjAMfH19eeyxx+x3\nJs2aNYvbbruNoKAgrr/+evbu3QvAzJkzuf/++7n++usZMmSI/SrLoEGDzjuXp6cnL730Ek899RQ1\nNTW4u7vz4IMPYjKZmDlzJunp6Vx77bVERUVx7bXXnnTV4ERtc2BOtXDhwnP+DCIiInj66af5+c9/\nTlNTEz169OCpp546r5+fr68vQ4cOZffu3YwYMQKA+Ph4Pv30U6ZOnYqHhwfBwcHMnz8fgEceecR+\nJ9GFGDp0KP/93//N7NmzaWlpISQkhD/84Q/tHtPe7+XkyZNZvXo1ycnJhIaGcvXVV5Oeno67uzsz\nZszg+9//PtB6le3xxx/Hy8vrgvKKXG4m48RGtIjIBUpPT+eRRx7hq6++cnYUEbmC6BqgiIiIdDoO\nbSEtXLiQzZs309zczE9/+lMmT57Mb37zGw4fPoyPjw8vvfQSAQEBfPLJJ7z77ruYzWZmzpzJHXfc\n4chYIiIi0sk5rIDZsGEDe/fuZdmyZZSVlXHbbbdRVFREUFAQzz//PMuWLSM9PZ2EhAQWLVpESkqK\nvdd63XXXERgY6KhoInIZxcXFqX0kIh3OYQVMfHy8fV0Kf39/6urq+Prrr3nggQeA1kmAAOvXrycm\nJsa+tsOoUaPIyMi44AltIiIicuVw2ByYExfMSklJYeLEieTk5LBmzRpmz57Nww8/THl5OcXFxSet\naBkcHExRUZGjYomIiEgX4PBJvKtWrSIlJYUnn3wSwzCIjo5m6dKl9O/fnyVLlpz2/vO5Kaq52eaI\nqCIiItJJOHQS79q1a3nttdd488038fPzIzQ0lPj4eADGjx/Pyy+/zKRJkyguLrYfU1hYaF874WzK\nymodljkszI+iojOvKyHOpbFxTRoX16WxcV0am/MTFuZ31tccdgWmqqqKhQsXsmTJEvuE3IkTJ9pX\n99yxYwfR0dHExsaSlZVFZWUlNTU1ZGRkEBcX56hYIiIi0gU47ArMypUrKSsr46GHHrI/t2DBAp57\n7jlSUlLw9vZmwYIFeHp6Mm/ePObMmYPJZGLu3LknbdYmIiIicqpOuRKvIy+76bKe69LYuCaNi+vS\n2Lgujc35cUoLSURERMRRVMCIiIhIp6MCRkRERDodFTAiIiLS6aiAERER6WJWr/7Peb3vxRefJzc3\n56yv/+Y3v7xckS47FTAiIiJdSF5eLqtWfX5e733wwXlERXU/6+vPPffC5Yp12Tl0JV4RERHpWC+8\nsIBdu3YwYUI8119/A3l5ufz1r4t59tk/UlRUSF1dHT/84U9ISprA/ff/hF/+8hG+/vo/1NRUc+TI\nYXJyjvHAA/NISEhi2rQpfPrpf7j//p8QHz+WjIx0ysvLWbDgL4SGhvLHPz5Bfn4eMTHD+eqrVfzz\nnys77HuqgBEREXGQD77aR1p24WnPu7mZsNkubhm2+EFWZl7T76yv33XXbD788AOio/ty5MghFi9+\nk7KyUsaMGccNN9xETs4xnnjiNyQlTTjpuMLCAv7855fYsCGVjz/+BwkJSSe97uPjw4svvsqrr77M\nmjVfERXVg8bGBl5//R2+/XYtH3zwfxf1fS6WCpgTFJfXkV/ZQIR/N2dHERERuWSDBw8FwM/Pn127\ndvDJJx9iMpmprKw47b3Dh7fuQ2i1Wqmurj7t9djYkfbXKyoqOHz4IDExsQAkJCTh5ubmqK9xRipg\nTvDRuoOs35HPcz9NICzQy9lxRESkk5t5Tb8zXi3pqJV43d3dAfjyy39TWVnJokVvUllZyY9+NPu0\n955YgJxpkf5TXzcMA7O59TmTyYTJZLrc8dulSbwnGNgzEMOA9TvynR1FRETkopjNZmw220nPlZeX\nExkZhdls5ptvvqKpqemSz9O9ew92794JwKZNG047p6OpgDlB3EArHu5upG7PP2P1KSIi4up69Ypm\n9+5samq+awNNmnQNqalrefDBn+Hl5YXVauXtt9+4pPMkJk6gpqaGn/1sDpmZW/D3D7jU6BdEmzme\n4m9f7GF1xjH+372j6dejYwdD2qfNz1yTxsV1aWxcV1cYm8rKCjIy0pk0aQpFRYU8+ODPeP/9f1zW\nc7S3maPmwJxictxVrM44xrfb81TAiIiInIW3tw9ffbWK999fimG08ItfdOyidypgThHbP4xAXw82\n7Srk7mv7427p2FnVIiIinYHFYuGPf3zWaefXHJhTuJlNJAyNoK6hmS17i50dR0RERM5ABcwZJA6L\nACB1u+5GEhERcUUqYM6ge5gvvSL82H6glIqaRmfHERERkVOogDmLxGERtBgGG7UmjIiIiMtRAXMW\nY4eE42Y28a3aSCIi0gXNmHEztbW1LF36Dtu3bzvptdraWmbMuLnd41ev/g8AK1eu4JtvvnZYzrPR\nXUhn4e/tQUyfELbuK+ZIQRU9w89+L7qIiEhnNXv29y/4mLy8XFat+pxJk6Zw443tFzqOogLmBLtL\n97G+pJhxwWMxmUwkxUSwdV8x63fkq4AREZFO4Yc/vIf5858nIiKC/Pw8HntsHmFhVurq6qivr+fh\nh3/NkCHD7O9/5pnfM2nSFEaMGMlvf/sIjY2N9o0dAb744jNSUpbh5mamd+++PProb3nhhQXs2rWD\nt99+g5aWFgIDA5k+fRaLF79IVlYmzc02pk+fSXLyNO6//yfEx48lIyOd8vJyFiz4CxEREZf8PVXA\nnCC9YCupeZuIiutOL/+rGN43FB9PC+t3FDBjUl/czOq4iYjI+ftw37/YUph12vNuZhO2lotbCH+k\nNYbb+9101tcnTpzMt9+uYfr0maxd+w0TJ06mb9/+TJw4ic2b0/jf/32XZ57502nHff75Z/Tp05cH\nHpjHf/7zBatWfQ5AXV0dzz//Mn5+fsyd+2P279/HXXfN5sMPP+AHP/gx//M/SwDYujWDAwf28+qr\nb1FXV8d9993JxImTAPDx8eHFF1/l1VdfZs2ar5g58+6L+u4n0t/IJxhhba1IU3M3AeBuMTNmSDiV\nNY3sOFjmzGgiIiLnpbWAWQvAunXfMH781XzzzX/42c/m8OqrL1NRUXHG4w4dOsCwYbEAjBw52v68\nv78/jz02j/vv/wmHDx+koqL8jMdnZ+9kxIhRAHh5edG7dx+OHj0KQGzsSACsVivV1dVnPP5C6QrM\nCQYHDyDEK4j0gkym978ZDzcPEodF8HVGDqnb8xjeN8TZEUVEpBO5vd9NZ7xa4si9kPr06UtJSREF\nBflUVVWxdu1qQkOtPPHEU2Rn7+SVV/56xuMMA8xmEwAtx68ONTU18cILC3nnnfcJCQnlkUceOut5\nTSYTJ+6u2NzcZP88N7fvVrW/XFsw6grMCcwmM1dHj6PeVm+/5Ncn0p+IYG8y9hRTW3/p24+LiIg4\nWkLCeF5/fTETJlxNRUU53bv3AOCbb76mubn5jMf07NmL7OxdAGRkpANQW1uDm5sbISGhFBTkk529\ni+bmZsxmMzab7aTjBw0aypYtm48fV0tOzjF69OjpqK+oAuZUk6MTAEjNa20jmUwmEodF0GxrIS27\n0JnRREREzsvVV0+23yWUnDyNZcv+l4cfnsvQocMoKSnh008/Oe2Y5ORp7NiRxYMP/oyjRw9jMpkI\nCAgkPn4sP/rR93j77Te4++7ZvPTSC/TqFc3u3dm89NLz9uNjY0cwcOAg5s79MQ8/PJf//u/78fLy\ncth3NBmX61pOB3LkFuRhYX48/vmf2VO+n9+N+zVW7zBKKup55NVU+vUI4LF7R5/7Q8QhusL2812R\nxsV1aWxcl8bm/ISFnf0OYF2BOYOEqHgA1ue1XkILCfBkUK8g9h6roLCs1pnRREREBBUwZzQiLAYv\niycb89KxtbT2+LTBo4iIiOtQAXMGHm7uxIePpKKxip2luwEYPTAMD3czqdvzael8XTcREZEuRQXM\nWdjbSLlpAHh6WBg9wEpxRT37jp35HnoRERHpGCpgzqKnXw96+EaRVbKLysbWiVZJMa1tpG+z8pwZ\nTURE5IqnAqYdCZHxtBgtbMrPAGBQzyCC/LqRll1IY5PtHEeLiIiIozi0gFm4cCGzZs1i+vTpfPHF\nF/bn165dy8CBA+2PP/nkE6ZPn84dd9zB8uXLHRnpgsRHjMRitpCam4ZhGJjNrWvC1Dfa2LK32Nnx\nRERErlgOK2A2bNjA3r17WbZsGW+++Sbz588HoKGhgddff52wsDCgdbW+RYsW8c4777B06VLeffdd\nysvPvM9CR/Nx9yY2dCgFtYUcrDwMfHc30rfb1UYSERFxFocVMPHx8bz44otA60ZQdXV12Gw2Xnvt\nNe6++248PDwAyMzMJCYmBj8/Pzw9PRk1ahQZGRmOinXBEqPGAJB6fDJvZIgP0ZH+7DhYSnl1gzOj\niYiIXLEctpmjm5sb3t7eAKSkpDBx4kSOHDlCdnY2Dz74IH/6U+tW3sXFxQQHB9uPCw4OpqioqN3P\nDgryxmJxa/c9l+LElf9CQkfw9z3BZBRt42cJd+Pp7snUcb147Z9ZZB0q5/bJ/RyWQ07X3qqM4jwa\nF9elsXFdGptL4/DdqFetWkVKSgpvvfUW8+bN4/HHH2/3/eezs0GZA1fDPdPyzvHho1l58Es+35lK\nYlQ8Q3oG4mY28cXGQ4wfasVkMjksj3xHS2+7Jo2L69LYuC6Nzflx2lYCa9eu5bXXXuONN96gtraW\nAwcO8Ktf/YqZM2dSWFjIvffei9Vqpbj4uwmxhYWFWK1WR8a6YAmRcZgwsf74Bo++Xu7E9gslp6iG\nIwXVTk4nIiJy5XFYAVNVVcXChQtZsmQJgYGBhIeHs2rVKj744AM++OADrFYr7733HrGxsWRlZVFZ\nWUlNTQ0ZGRnExcU5KtZFCfYMYlBwfw5UHCa/pgCAJG0tICIi4jQOayGtXLmSsrIyHnroIftzCxYs\nICoq6qT3eXp6Mm/ePObMmYPJZGLu3Ln4+bleXzAhMp5dpXtIzUvj9n43EdM3BF8vdzbszOeOyX2x\nuGlJHRERkY5iMs5n0omLcWTf8Gx9yaaWZn677mnMJjPPJP0WN7Mb//vlHv6z+RgPzBjOiH6hDssk\nrdQzdk0aF9elsXFdGpvz47Q5MF2Ju9lCfMRIqpqq2V6yCzhhh2ptLSAiItKhVMBcgFPXhOkd4Udk\niDdb9xVTU9/kzGgiIiJXFBUwF6C7byQ9/XqwoySb8oYKTCYTSTGRNNsMNu0qdHY8ERGRK4YKmAuU\nGBWPgcHGvM0AjBsSjglI1dYCIiIiHUYFzAWKCx+Bu9nC+rzWDR6D/T0Z0juI/TmVFJQ6boE9ERER\n+Y4KmAvkZfFiRNhwiupK2Fd+EIDEYZEAfKs1YURERDqECpiLkBgVD8D6vNbJvKMGhNHNw4312/Np\n6Xx3pYuIiHQ6KmAuQv/APoR6hZBRuI265jq6ebgRNzCMksp69hwpd3Y8ERGRLk8FzEUwmUwkRMbT\n1NJEekEmAEnH20jaWkBERMTxVMBcpHGRo1s3eDy+JsyAnoGE+HuStruQhkabk9OJiIh0bSpgLlJg\ntwCGhAzkcNVRcqrzMJtMJAyLoKHRRsbeImfHExER6dJUwFyCxMiTJ/NqawEREZGOoQLmEgwLHYyv\nuw+b8jNoamkmItibvt392XmojLKqBmfHExER6bJUwFwCi9nC2IjR1DTVklW8E2hdE8YA1u/QZF4R\nERFHUQFzidrWhEnN3QRA/CArFjcTqdvzMbQmjIiIiEOogLlEET7hRPv3Irt0L2X15fh6uTOiXyi5\nxTUcLqhydjwREZEuSQXMZZAQFYeBwYa8dOCErQWy1EYSERFxBBUwl8Foaywebh6sz0ujxWhhWJ9g\n/Lzd2bizgGZbi7PjiYiIdDkqYC4DT4sno6zDKakvY0/ZfixuZsYOCae6roms/SXOjiciItLlqIC5\nTBIjxwDfrQmjrQVEREQcRwXMZdInoBfh3mFsLdpObVMtPcN96R7mw9Z9xVTXNTk7noiISJeiAuYy\nadvgsbmlmbSCrZhMJpKGRWJrMdi0q8DZ8URERLoUFTCX0ZiI0ZhNZtYfXxNm3NBwTCbdjSQiInK5\nqYC5jAK6+TEsZDBHq3M5WpVDoG83hkYHczCvkrySGmfHExER6TJUwFxm363Me8oGj5rMKyIictmo\ngLnMhgQPxN/Dj7SCLTTZmhjVPwyvbm6kbs+nRVsLiIiIXBYqYC4zN7MbYyNGU9dcR2bRdjzc3Ygb\naKWsqoHsw2XOjiciItIlqIBxgIS2NlKe2kgiIiKOoALGAcK9w+gbEM3usn0U15XS/6pAQgM82by7\niPrGZmfHExER6fRUwDhI22TeDXlpmE0mEodF0NBkY/PuIicnExER6fxUwDjISOtwPN26sSFvMy1G\ni9pIIiIil5EKGAfp5ubB6PBYyhrKyS7dizXIm349Asg+XEZpZb2z44mIiHRqKmAcKOH4Bo+p9g0e\nIzCA9Tt0FUZERORSqIBxoN7+VxHpE862oh1UN9YQP8iKxc3Mt1n5GFoTRkRE5KI5tIBZuHAhs2bN\nYvr06XzxxRfk5eXx/e9/n3vvvZfvf//7FBW1Tmj95JNPmD59OnfccQfLly93ZKQOZTKZSIyMx2bY\n2FSQgbenO6MGhJJfWsvBvCpnxxMREem0HFbAbNiwgb1797Js2TLefPNN5s+fz1//+ldmzpzJe++9\nx3XXXcfbb79NbW0tixYt4p133mHp0qW8++67lJeXOypWh4uPGIWbyY31uWkYhmGfzPvt9jwnJxMR\nEem8HFbAxMfH8+KLLwLg7+9PXV0dv/vd75g6dSoAQUFBlJeXk5mZSUxMDH5+fnh6ejJq1CgyMjIc\nFavD+Xn4EhM6hNyafI5UHWO9kjRSAAAgAElEQVRodDD+Ph5s2llAU3OLs+OJiIh0ShZHfbCbmxve\n3t4ApKSkMHHiRPtjm83G+++/z9y5cykuLiY4ONh+XHBwsL21dDZBQd5YLG6Oik5YmN9l/bwbBk9k\na1EWGWVbies7hGviruKjb/ZzqKiGxOFRl/VcXd3lHhu5PDQurktj47o0NpfGYQVMm1WrVpGSksJb\nb70FtBYvjzzyCOPGjSMhIYEVK1ac9P7zmdxaVlbrkKzQ+gtVVHR556dEuV1FYLcA1h1KY1qPqYzs\nG8JH3+zn36kH6R+pX+Dz5YixkUuncXFdGhvXpbE5P+0VeQ6dxLt27Vpee+013njjDfz8WkM89thj\n9OrVi/vvvx8Aq9VKcXGx/ZjCwkKsVqsjY3U4s8nMuMg46m31bCnM4iqrL1dZfdm2v4TK2kZnxxMR\nEel0HFbAVFVVsXDhQpYsWUJgYCDQereRu7s7DzzwgP19sbGxZGVlUVlZSU1NDRkZGcTFxTkqltMk\nRLZ+p9S8TUDrBo+2FoNNOwucGUtERKRTclgLaeXKlZSVlfHQQw/Zn8vNzcXf35/Zs2cD0LdvX37/\n+98zb9485syZg8lkYu7cufarNV1JqFcIAwL7sqd8P4W1RYwbEs7yr/eTuj2fa+OucnY8ERGRTsVh\nBcysWbOYNWvWeb03OTmZ5ORkR0VxGQlR8ewp38/6vHRu6XsDw/oEs21/CTnFNXQP9XF2PBERkU5D\nK/F2oBFhMXhZPNmYl46txXbCBo9aE0ZERORCqIDpQB5u7sSHj6SisYqdpbsZ2T8Ur24W1m/Pp6VF\nWwuIiIicLxUwHSwhKh6A9blpuFvcGDPYSnl1I7sOlzk5mYiISOehAqaD9fTrQQ/fKLJKdlHZWKWt\nBURERC6CChgnSIiMp8VoYVN+Bv26B2AN9CJjdxF1Dc3OjiYiItIpqIBxgviIkVjMFlJz04DWNWEa\nm1tI313o5GQiIiKdgwoYJ/Bx9yY2dCgFtYUcrDxMwvE20vrt+U5OJiIi0jmogHGSxKgxAKTmphEW\n6MWAqwLJPlJOcXmdk5OJiIi4PhUwTjIgqC/BnkFsLsykvrmBpLarMDt0FUZERORcVMA4SdsGj422\nRjIKtxE3yIq7xUzq9vzz2pFbRETkSqYCxokSIuMwYWJ93ia8ulkYNSCMgrI69udWOjuaiIiIS1MB\n40TBnkEMCu7PgYrD5NcU2NtIqZrMKyIi0i4VME6WENm6Mm9qXhpDegcT4OvBpp0FNDXbnJxMRETE\ndamAcbLhYUPxsXizKS8DgxYShkZQ29BM5r4SZ0cTERFxWSpgnMzdbCE+YiRVTdVsL9n13dYCWdpa\nQERE5GxUwLiAE9eE6RHmS69wP7IOlFJZ0+jkZCIiIq5JBYwL6O4bSU+/Huwoyaa8oYLEYRG0GAYb\ndhY4O5qIiIhLUgHjIhKj4jEw2Ji3mbFDwnEzm0jVDtUiIiJnpALGRcSFj8DdbGF9Xhp+3u7E9Anh\nSEE1xwqrnR1NRETE5aiAcRFeFi9GhA2nqK6EfeUH7ZN5tSaMiIjI6VTAuJDEqNY1YdbnpRHbLxQf\nTwvrd+Rja2lxcjIRERHXogLGhfQP7EOoVwgZhdtopoExg8OpqGlk56EyZ0cTERFxKSpgXIjJZCIh\nMp6mlibSCzK1JoyIiMhZqIBxMeMiRx/f4DGNPlH+hAd5sWVvMbX1zc6OJiIi4jJUwLiYwG4BDAkZ\nyOHKo+TVFJAYE0lTcwvpuwudHU1ERMRlqIBxQYn2DR43kTA0vPXPaiOJiIjYqYBxQcNCB+Pr7sOm\n/AwC/NwZ1DOQPccqKCyvc3Y0ERERl6ACxgVZzBbGRoympqmWrOKdJA6LBGC91oQREREBVMC4LPua\nMLlpjB4Yhoe7mdTteRiG4eRkIiIirbIOlLBhh3P+ca0CxkVF+IQT7d+LXaV7qDeqGT0gjKLyevYe\nq3B2NBEREWwtLbyxYicff3vIKedXAePCEqLiMDDYkJdOYkxrG0lbC4iIiCvIPlJOdV0TQ3sHOeX8\nKmBc2GhrLB5uHqzPS2PgVQEE+XUjLbuAxiabs6OJiMgVLj27dXmP+EFWp5xfBYwL87R4Mso6nJL6\nMvZVHCBhaAR1DTa27it2djQREbmC2VpayNhThL+PB/17BDolg0MLmIULFzJr1iymT5/OF198QV5e\nHrNnz+buu+/mwQcfpLGxEYBPPvmE6dOnc8cdd7B8+XJHRup0EiPHAK0bPH63tYDaSCIi4jx7jpRT\nVdvE6AFhmM0mp2SwOOqDN2zYwN69e1m2bBllZWXcdtttJCQkcPfdd3PDDTfwwgsvkJKSwq233sqi\nRYtISUnB3d2dGTNmcN111xEY6JyKztX0CehFuHcYW4u2M2vArURH+rH9YAkV1Q0E+HZzdjwREbkC\npe8uAiDOSe0jcOAVmPj4eF588UUA/P39qaurY+PGjUyZMgWAyZMns379ejIzM4mJicHPzw9PT09G\njRpFRkaGo2J1Om0bPDa3NJNWsJXEYZEYBmzYWeDsaCIicgVqaTHYvKcIP293DN8iMgq3OSWHwwoY\nNzc3vL29AUhJSWHixInU1dXh4eEBQEhICEVFRRQXFxMcHGw/Ljg4mKKiIkfF6pTGRIzGbDKzPncT\nYwZbcTOb1EYSERGn2HO0nMqaRkYNCOHdnf/Hiv3/dkoOh7WQ2qxatYqUlBTeeustrr/+evvzZ1uQ\n7XwWagsK8sZicbtsGU8VFubnsM++GGH4MSoqhvScTEz+tcQPCWfD9nyqm1qIjgpwdrwO5WpjI600\nLq5LY+O6OuvY/GPtQQD6Dm5h0/4aEnuNdsp3cWgBs3btWl577TXefPNN/Pz88Pb2pr6+Hk9PTwoK\nCrBarVitVoqLv7urprCwkBEjRrT7uWVltQ7LHBbmR1FRlcM+/2LFhYwkPSeTT3esZnT/JDZsz+df\na/Zz55T+zo7WYVx1bK50GhfXpbFxXZ11bFpaDNZtzcHXy53DtdkADPEb7LDv0l5h5LAWUlVVFQsX\nLmTJkiX2CbmJiYl8/vnnAHzxxRdMmDCB2NhYsrKyqKyspKamhoyMDOLi4hwVq9MaEjwQfw8/0gq2\nMKSPPz6eFjbsyMfW0uLsaCIicoXYl1NBRU0jIwcEk1m8HX8PP/oGRjsli8OuwKxcuZKysjIeeugh\n+3PPPfccjz/+OMuWLSMqKopbb70Vd3d35s2bx5w5czCZTMydOxc/v855Wc2R3MxujI0YzZdHVrOj\nZCdjh4TzVUYO2w+UEtsv1NnxRETkCpB2fPG6iF51pOfXMrF7ImaTc5aUc1gBM2vWLGbNmnXa82+/\n/fZpzyUnJ5OcnOyoKF1GQlQ8Xx5ZTWpeGjfH3MlXGTmkbs9XASMiIg7XYhhs3l2Ij6eFElrnwYyy\nDndaHq3E24mEe4fRNyCa3WX78A1oIjLEmy17i6mpb3J2NBER6eL251RQXt3IiAEhbCveQYCHH30D\nezstjwqYTiYxKh6AjfnpJA6LoNnWYr+kJyIi4ihtf9dE9qqlprmWEdbhTmsfgQqYTmekdTiebt3Y\nkLeZsUOsmIBUrQkjIiIO1No+KsK7m4Vik/PbR6ACptPp5ubB6PBYyhrKKWw+yuDeQezLqaDAgbeW\ni4jIle1AbiVlVQ2MGBBMVvEOAjz86RPQy6mZVMB0QgnHN3hMPWGDR12FERERR0m3331US21zHaOc\n3D4CFTCdUm//q4j0CWdb0Q4GRvvQzd2N9TvyaTmPVYxFREQuhGEYpO8uxKubhVJza/topJPbR6AC\nplMymUwkRsZjM2xklmYSNzCM4op69h4td3Y0ERHpYg7kVVJa2UBs/yC2Fe8ksFsA0QE9nR1LBUxn\nFR8xCjeTG+tz00gYGg7At9vVRhIRkctrc3brBssRPWupa65jpDXG6e0jUAHTafl5+BITOoTcmny8\ngmsI9u9GenYhDU02Z0cTEZEuwjAM0rIL8ermRqlb291HsU5O1UoFTCfWtibMhrw0EoZGUN9oY8ue\nIienEhGRruJQfhUllfUM7xfE9pKdBHULpLf/Vc6OBaiA6dQGBw8gsFsA6QWZxA8JASBVbSQREblM\n7Hcf9aylrrneZdpHoAKmUzObzIyLjKPeVk9e8376RPmz41ApZVUNzo4mIiKdXFv7qJuHG2Uu1j4C\nFTCdXkJkHADr89JIGhaBYcCGnboKIyIil+ZIQTXFFa3to6ySXS7VPgIVMJ1eqFcIAwL7srf8ANG9\nLVjcTKRm5WNoTRgREbkEafb2UQ31tnpGWYdjMpmcnOo7KmC6gITjk3kzy7YQ2y+UnOIajhRUOzmV\niIh0Vm2L13Vzd6PMcrx9FO78xetOdNEFzKFDhy5jDLkUI8Ji8LJ4sjEvnXFDrQB8m5Xn5FQiItJZ\nHS2sprCsjph+gewo2UWwZxC9/FynfQTnKGB+8IMfnPR48eLF9j8/+eSTjkkkF8zDzZ348JFUNFbh\nFliMr5c7G3YW0GxrcXY0ERHphNraR+E9a6i3Nbhc+wjOUcA0Nzef9HjDhg32P2uOhWtpayNtKtjM\nuCHhVNc1kXWgxMmpRESkszEMg/TsQjzczZS3tY9cYO+jU7VbwJxabZ1YtLhaJXal6+nXgx6+UWQV\n72TEYD9Aa8KIiMiFO1ZUQ0FZHcP6BrKjdBchnsH09Ovh7FinuaA5MCpaXFtCZDwtRgs5tt10D/Uh\nc18x1XVNzo4lIiKdiH3xul7VNNgaXbJ9BOcoYCoqKli/fr39v8rKSjZs2GD/s7iW+IiRWMwW1uel\nkzA0nGabwcadBc6OJSIinUTb3UceFjPllsOAa7aPACztvejv73/SxF0/Pz8WLVpk/7O4Fh93b2JD\nh7K5MJMeg5twW2tiTWYu14zq7pLVs4iIuJac4hrySmoZOTCIHaWrCPUM5iq/7s6OdUbtFjBLly7t\nqBxymSRGjWFzYSZZ5VuJ7TeIjD1FHMqvIjrS39nRRETExbW1j8J71ZBd3sioHrEu+w/gdltI1dXV\nvPPOO/bHf//737nlllt44IEHKC4udnQ2uQgDgvoS7BnE5sJMEmJCAfhma46TU4mISGeQvrsId4uZ\nChe++6hNuwXMk08+SUlJ6624Bw8e5IUXXuDRRx8lMTGRZ555pkMCyoVp2+CxwdZIvfdRQvy7sXFn\nIXUNzec+WERErlg5xTXkFtcwJNqfnaXZhHmF0MM3ytmxzqrdAubo0aPMmzcPgM8//5zk5GQSExO5\n8847dQXGhSVExmHCxIb8NCYMj6KhycamXZrMKyIiZ7e57e6j3tU0tjQxyuq67SM4RwHj7e1t//Om\nTZsYN26c/bErf6krXbBnEIOC+3Og4jAD+lswmWBNZq6zY4mIiAtL212Ixc1MxfG7j0a6cPsIzlHA\n2Gw2SkpKOHLkCFu2bCEpKQmAmpoa6urqOiSgXJyEyNaVeXdWZhLTJ4SDeVUcKahycioREXFFeSU1\n5BS1to92lWVj9Qqlh2+ks2O1q90C5sc//jE33ngjN998Mz//+c8JCAigvr6eu+++m1tvvbWjMspF\nGB42FF93Hzbmb2b88NYNHnUVRkREziT9tPaRay5ed6J2b6O++uqrWbduHQ0NDfj6+gLg6enJr3/9\na8aPH98hAeXiuJstjI0czX+OrMEIyCfA14P1Owq4Y3I/urm7OTueiIi4kPTdRVjcTFS4HwJgVHis\ncwOdh3avwOTm5lJUVERlZSW5ubn2//r06UNurv417+qSIscAsD4vjQnDI6lraLZX2SIiIgAFpbUc\nLaxmcG8/dpXtJtw7jCifCGfHOqd2r8Bcc801REdHExYWBpy+mePf/vY3x6aTSxLuY6V/YB92l+1j\n6tBp/CsVvsnMJSnGtfuaIiLScdLaFq/rXc2+qs7RPoJzFDALFizg448/pqamhmnTpnHTTTcRHBzc\nUdnkMkiMGsPe8gNkV29jaO8IdhwqI6e4hu6hPs6OJiIiLiB9dyFuZhOV7p3j7qM27baQbrnlFt56\n6y3++te/Ul1dzT333MOPfvQjVqxYQX19fUdllEswMiwGb4sX6/PSGB/beklwrSbziogIUFhWy5GC\nagZH+5Fdvptwb2unaB/BOQqYNpGRkfz85z/ns88+Y+rUqTz99NPnNYl3z549XHvttbz33nsApKWl\ncddddzF79mx++tOfUlFRAcCbb77JjBkzuOOOO/jmm28u4evIqdzd3BkbMZqqxmosQUX4ebvzbVYe\nTc02Z0cTEREnS99dBIC1dxVNLc2dpn0E51nAVFZW8t5773H77bfz3nvv8dOf/pSVK1e2e0xtbS1P\nPfUUCQkJ9ueeffZZnnnmGZYuXcrIkSNZtmwZR48eZeXKlbz//vssWbKEZ599FptNf7leTolRxyfz\n5m8iKSaSmvpmNu8pcnIqERFxtrTsk9tHrrz30anaLWDWrVvHww8/zPTp08nLy+O5557j448/5oc/\n/CFWq7XdD/bw8OCNN9446X1BQUGUl5cDUFFRQVBQEBs3bmTChAl4eHgQHBxM9+7d2bdv32X4atIm\nyjeCPgG9yC7dy/BBXgCs2ao2kojIlaywvI7D+VUMjPZld/keInzCifLtHO0jOMck3h/96Ef07t2b\nUaNGUVpayttvv33S688+++zZP9hiwWI5+eP/3//7f9x77734+/sTEBDAvHnzePPNN0+aGBwcHExR\nUREDBw68mO8jZ5EUNZYDFYfZW7edgVeFkX2knIKyWsKDvM99sIiIdDmbdx+/+6hXFQermzvV1Rc4\nRwHTdpt0WVkZQUFBJ7127NixCz7ZU089xSuvvMLo0aNZsGAB77///mnvOfFW7bMJCvLGYnHcYmxh\nYX4O+2xnuT4oiX/sW8HGgnRmjf8Zu/9vK+l7ivn+TUOdHe2CdMWx6Qo0Lq5LY+O6nD02W/eVYDab\nqPc5BtVw7cAEwgI6z+9LuwWM2Wzm4YcfpqGhgeDgYJYsWUKvXr147733eP3117n99tsv6GS7d+9m\n9OjRACQmJrJixQrGjRvHwYMH7e8pKCg4Z3uqrKz2gs57IcLC/Cgq6pp7BsVZR7ImJ5Vmzxx8PC18\nufEwU+N6YHE7r6lQTteVx6Yz07i4Lo2N63L22BRX1LH3aDmDo33ZXrSLSJ9wujX6utzvS3tFXrt/\nc/3lL3/hnXfeYdOmTfz617/mySefZPbs2WzYsIHly5dfcJDQ0FD7/JasrCx69erFuHHjWL16NY2N\njRQUFFBYWEi/fv0u+LPl3JKOT+bdkJ9OwrAIKmub2Lq32MmpRESko6Vnt97IEd67iuaWztc+gvO4\nAtO3b18ApkyZwrPPPsujjz7Kddddd84P3r59OwsWLCAnJweLxcLnn3/OH/7wBx5//HHc3d0JCAhg\n/vz5+Pv7M3PmTO69915MJhO///3vMZs7xxWBzqaHXxS9/K9iR0k2c4dMZVV66waPcYPav+IlIiJd\nS/ruQswmE5Ueh6Cmc9191KbdAubUe8EjIyPPq3gBGDZsGEuXLj3t+b///e+nPTd79mxmz559Xp8r\nlyYpagyHK49ysGEHfbsHseNgKcXldYQGejk7moiIdICSinoO5FYysLcPe8v3EuUTQYRPuLNjXbAL\nutTRWRa3kbMbbR1BNzcPUnPTGD88AgNYuy3P2bFERKSDtN19FNG7imbDxiir6+88fSbtXoHZsmUL\nkyZNsj8uKSlh0qRJGIaByWRi9erVDo4nl5unpRtx4SP5NncjAX0r8ermxrqsPP5rfG/c1LoTEeny\n0ncXYTJBpcdhqIVR1hhnR7oo7RYw//73vzsqh3Sg8VFj+TZ3I5sK0xg3ZBxfb8kha38pI/qHOjua\niIg4UGllPftyKhjQy5u9Ffvo7htJuE/nnAfZbgHTvXv3jsohHainfw+u8o0iq2QX/z3kOr7e0jqZ\nVwWMiEjX1raNTHh0FUdrbZ1y8m4b9QyuUEndx9JitHDUlk2vCD8y9xdTVtXg7FgiIuJA6dmFmICq\n43sfjVQBI51NXPhIPMzupOZuYuLwSAwD1m3T/kgiIl1VWVUD+45V0K+nN/sq99PDN4pw7zBnx7po\nKmCuUF4WT0aHj6CkvpTg7lV4uJtZuy2PlvPYykFERDqfjD1FGEB4dCU2o3O3j0AFzBWtbWXetKLN\njB0cTnFFPTsPlTo5lYiIOEJaW/vIo/O3j0AFzBWtt39Ponwi2Fa0g7hhAQB8s1VtJBGRrqaiuoG9\nR8vpc5Un+yr3c5Vfd6zenfvGDRUwVzCTyURS1Fhsho18Yw89wnzYureYippGZ0cTEZHLaLO9fVRF\ni9HS6dtHoALmijcmYiTuZgupuZuYMDwSW4tBapZW5hUR6UrSs1tX363udgTonHsfnUoFzBXO292b\nkdbhFNYVE96zDneLmTWZuRiazCsi0iVU1DSy+2g50Vd5sr9yPz39uhPqFeLsWJdMBYyQFDUWgM3F\nm4kbaKWgrI7dR8qdnEpERC6HjD1FGAZE9K483j7qnHsfnUoFjNA3oDcR3la2FmYxJiYQgG8yNZlX\nRKQr+K591DXuPmqjAkaOT+YdQ7Nho9i8j8gQbzbvLqS6rsnZ0URE5BJU1jaSfaSM3j26caDqIL38\nriLUK9jZsS4LFTACwJiI0VhMbqTmbmJ8TCTNNoPU7fnOjiUiIpfA3j6KPt4+Cu8aV19ABYwc5+vh\nwwhrDPm1hXTv3YCb2aTJvCIindzm4+0j++J1YSpgpAtqW5l3a+kWRg0II7e4hv05lU5OJSIiF6Oq\ntpFdh8vp1d2DQ9WH6OV/FSFeQc6OddmogBG7/oF9CfMKIaMwk7ExrT3SbzJznJxKREQuxpa9xbQY\nBuFt7aMuMnm3jQoYsWtbmbeppZkKj4OEBXqStquQ2npN5hUR6WxOXbyuK7WPQAWMnGJcZBxuJjdS\nczcyYXgkjc0tbNhZ4OxYIiJyAarrmth1uIyrotw5VHWQaP+eXap9BCpg5BR+Hr4MDx1Cbk0+vfrY\nMJtMrNmqybwiIp3Jlr1F2FoMIqIrMTC6XPsIVMDIGSR1b12ZN7NsC7H9QjhSWM2h/ConpxIRkfOV\nnl0EdL3F606kAkZOMzCoHyGewWwu2ErC8Nbt1tdoZV4RkU6hpr6JnYdK6RFp4XD1YfoE9CLIM9DZ\nsS47FTByGrPJTGLUGBpbmqj1PEyIfzc27CygvrHZ2dFEROQctu4tbm0f9WltH3XFqy+gAkbOIiEy\nDrPJTGr+JsYPj6Kh0camXYXOjiUiIueQdtrdRzHOjOMwKmDkjAK6+RMTMpijVTn06WtgMsE3W9VG\nEhFxZbX1zew4WEr3SAtHqg/TJ6B3l2wfgQoYaUfi8ZV5t1dsIaZPCAfzKjlaWO3kVCIicjZb97Xe\nfRQeXdFl7z5qowJGzmpIyECCugWSVrCFxJjjk3l1FUZExGW13X1U0+0IJkyMtHbN9hGogJF2mE1m\nEqLiabA10uh3jABfD9bvyKehyebsaCIicoq6hma2HywlKsLM0Zoj9AnoTWC3AGfHchgVMNKuxMh4\nTJhIzdvE+JhIahua7ctTi4iI69i6r5hmWwvhbYvXhXfd9hGogJFzCPIMZGjIQA5XHqV//9ZfF60J\nIyLietr+cVnjebx91EXvPmqjAkbOKSmqdWXeXVWZDOkdxN5jFeQW1zg5lYiItKlraCbrQCmR4WaO\n1Rylb2BvArr5OzuWQ6mAkXMaGjKIAA9/0goySBpuBXQVRkTElWzbX3K8fdR291GssyM5nEMLmD17\n9nDttdfy3nvvAdDU1MS8efOYMWMG9913HxUVFQB88sknTJ8+nTvuuIPly5c7MpJcBDezGwlR8dQ1\n12ME5OLn7U7q9nyamlucHU1ERDi9fTSii7ePwIEFTG1tLU899RQJCQn25z744AOCgoJISUnhxhtv\nJD09ndraWhYtWsQ777zD0qVLeffddykvL3dULLlIbZN51+enkTQskuq6JjL2FDk7lojIFa++sZlt\nB0oIt8Kx2qP0C4wmoJufs2M5nMMKGA8PD9544w2sVqv9ua+//pr/+q//AmDWrFlMmTKFzMxMYmJi\n8PPzw9PTk1GjRpGRkeGoWHKRQryCGRTcnwMVhxg00A1QG0lExBVs219CU3MLEX0qAa6I9hE4sICx\nWCx4enqe9FxOTg5r1qxh9uzZPPzww5SXl1NcXExwcLD9PcHBwRQV6V/2rqhtMu+e2iwGXBXIrsNl\nFJbVOjmViMiVzd4+Or543QjrMCcn6hiWjjyZYRhER0dz//33s3jxYpYsWcKQIUNOe8+5BAV5Y7G4\nOSomYWFd/9LbxbgmeAzL935EWsEW7kpKZM/fy0nfW8J908I7LIPGxjVpXFyXxsZ1XY6xqW9oJutg\nKRERJnLqjjHUOoC+3aMuQzrX16EFTGhoKPHx8QCMHz+el19+mUmTJlFcXGx/T2FhISNGjGj3c8oc\n+K/+sDA/ioqqHPb5nd2Y8NF8eWQ1de6H8fG08MXGw1w/ujsWN8ff0KaxcU0aF9elsXFdl2ts0rML\naWi0Ye1dQUULxAQN7VJj3l6R16G3UU+cOJG1a9cCsGPHDqKjo4mNjSUrK4vKykpqamrIyMggLi6u\nI2PJBWjb4HFjQRoJQyOorGkkc1+Jk1OJiFyZ0nef0j66Au4+auOwKzDbt29nwYIF5OTkYLFY+Pzz\nz/nzn//MM888Q0pKCt7e3ixYsABPT0/mzZvHnDlzMJlMzJ07Fz8/XfJ0VVbvUAYE9WNP2T4mD76B\nVZvhm8wcRg8Mc3Y0EZErSmOTjcx9JYSGGeTW5TAwqB9+Hr7OjtVhHFbADBs2jKVLl572/EsvvXTa\nc8nJySQnJzsqilxmSVFj2FO2jwP12+kbFc6OA6UUV9QRGuDl7GgiIleMrAMlNDTZ6N+ngv0GjLJ2\n7b2PTqWVeOWCxYYNw8fdmw156SQND8cA1m3Lc3YsEZErSvru1jt2a7sdwWwyExt2Zdx91EYFjFww\nd7OFsRGjqW6qwctagjFcw5EAACAASURBVKeHG2u35dHScu47yERE5NI1NtnYuq+YkFAbefW5DAjs\ne0W1j0AFjFyktjVhNhWkMW5oBGVVDWQd0GReEZGOsONgKQ2NthMWr7uy2kegAkYuUoSPlb4B0WSX\n7SV2cOvcl2+2amVeEZGOkHb87qNaz6NXZPsIVMDIJRjfvfUqzKGmHfQK92Pb/2/vvuPjqu98/7+m\nqneNRs2SZdlW77bcsTE2HRxjwMbYhPxyc5MQNuXCJoQlC/vIPnavIblLDSWQLAsBTEkxgdCxMcZd\nvctyU53RSKM6kqb+/hhJyBXZljQj6/N8wEMzZ84cfcbfmfHb3+/3nG9DB+beIQ9XJYQQlzeb3UFJ\nvYnwSAdtgy2khM0lUBvg6bKmnAQYcdFydVn4qf3Y13qI5Tl6nC4XX5bLZF4hhJhMlcfMDFodRM/p\nBmbm8BFIgBGXQKvSsCg6nx5rL0HRZrQaJbtLW3COYzkIIYQQF+dgzanDR9m6DA9X5BkSYMQlGZnM\ne7D9EIVpekzdg1QfN3u4KiGEuDzZ7E5KjpgIi7BjGGwlNWwegZqZN3wEEmDEJYoNjCYpOJHqjjry\n0t0fol2lMplXCCEmQ9XxTgaG7KPDR3kzdPgIJMCICbAsthAXLpqd1cTpAiiua6en3+rpsoQQ4rJz\naHT4aOTidTNz+AgkwIgJkK/PwVfly97WQyzPjsbhdLGnQibzCiHERLI7nBTXmwgJt2EcMpAaPo8A\njb+ny/IYCTDikvmotCyMzqNrqJvwuB40aiVflLbiksm8QggxYaqOm7EM2YkZvXhdjocr8iwJMGJC\njEzmPWw6xIIUHYZOC3WNXR6uSgghLh+HRi5e53cSlUJFTmS6hyvyLAkwYkLMCoolISieClMN+RlB\ngEzmFUKIiWJ3OCmuayc43Er7kIG08Hn4z+DhI5AAIybQ8thFuHBhUNQSHe7PoZp2+gZsni5LCCGm\nvZoTZvoH7cSMXrxuZg8fgQQYMYEK9DloVVr2th5iRXY0doeTvRVtni5LCCGmvUNj1j5SKVRkzfDh\nI5AAIyaQr9qXhfpcOgfNRCb0oVIq+KK0RSbzCiHEJbA7nBTVmQgOt2KyGkkLn4+/xs/TZXmcBBgx\noUYm85Z0FJE/X0ezqZ+Glh4PVyWEENNXbWMXfQM2opPcJ0bM1LWPTicBRkyohKB44gNjKTNVsSAz\nGIAvSmQyrxBCXKzRi9f5NaJWqMjWyfARSIARE0yhULAsthCny0mH+giRIb4cqDFgGbR7ujQhhJh2\nHE4nh2vbCQobosPaTlpECn5qGT4CCTBiEiyMzkOj1LC35QArsmOw2pzsr5LJvEIIcaHqTg4PH42e\nfSTDRyMkwIgJ56f2oyAqB9NgJ7GzB1AqFHJNGCGEuAgHa9sB99pHaqVazj4aQwKMmBTL4oYn85qL\nyJkbwUlDH8fbZDKvEEKMl9PpoqjWSGDYIJ02E+nhKfipfT1dlteQACMmRVJwAjEBekrbKynMCgVk\nMq8QQlyIusYueiw2oufI2UdnIwFGTAr3ZN5FOFwOerRHCQ/2YV+VgUGrTOYVQojxODh68bqm4eGj\nNA9X5F0kwIhJUxidj1qp5qu2AyzLjGbQ6uBAtdHTZQkhhNdzDx+1ExA6iNlmIiMiFV8ZPjqFBBgx\naQI0/uTpsjFaTMyaY0UBfCGTeYUQ4hvVN3XR3W+V4aPzkAAjJtWy2EIAKrpLyEqO4GhLD03GPg9X\nJYQQ3u1QbTvgwuJ3Eo1STWaEDB+dTgKMmFRzQ5PQ++sobi9nUVYYgJxSLYQQ5+F0uThca8Q/dIAu\nWycZEWn4qn08XZbXkQAjJpVCoWBpbCF2p51+v+OEBGjZW9GG1ebwdGlCCOGVGpq76eqzoh+9eF2W\nhyvyThJgxKRbHL0AtULF3raDLMuKxjJk5/DwxZmEEEKc6mCNEXAx4NuIRqkhQ4aPzkoCjJh0gdoA\ncnSZtPUbSEp2n0a9q6TZw1UJIYT3cQ8fteMXMkC3vZPMiFQZPjoHCTBiSiyLdV+Zt7K3lLTEMOqa\numnt6PdwVUJcvnaWNPPcn8vkCtjTzNGWHsy9Q1+ffaTP8XBF3kvt6QLEzDAvbA6RfhEUGcu4NXsx\n1SfMfFHawsbV8zxdmhCXnQ/2n+TNz48A8N6eYyTFBLEqN47CdD0+GpWHqxPnc2hk+MivEa1TQ0ZE\nqqdL8lqT2gNTV1fHmjVrePXVV0/Zvnv3blJSUkbv79ixgw0bNnDbbbfx1ltvTWZJwkOUCiXLYgux\nOW1Yg5oI9NOwp7wNm93p6dKEuKx8dLCRNz8/QliQD/dtzid3biTH23r54z9q+D9P7+G1j+toMUnv\npzdyuVwcqjXiF2Kh224mMzINH5XW02V5rUnrgbFYLPz6179myZIlp2wfGhrihRdeQKfTje73zDPP\n8Pbbb6PRaLj11ltZu3YtoaGhk1Wa8JDFMQt49+iH7Gs7wNKsG/joQBPF9e0Upuk9XZoQl4VPDzfx\nxqf1hARq+fkdeWSm6MlICKWje5AvSlv4oqyFTw438cnhJlJmhXJlfhz583WoVTKbwBscbe2hs2eI\n2XldGIA8uXjdeU3au1ar1fL73/+eqKioU7Y/99xzbN68Ga3WnSpLS0vJysoiKCgIX19f8vPzKSoq\nmqyyhAcFa4PIjsygua+VucMjR7tkgUchJsTO4mb+9HEdwQHu8KIP9x99LCLEl/VXzOGxHy7lnm9l\nkpYYRm1jF8/9rZL7n9nDO7saaO8a8GD1Ak4bPlJqyJTho/OatB4YtVqNWn3q4Y8dO0ZNTQ0/+clP\neOyxxwAwmUyEh4eP7hMeHk57+/lPsQ0L80etnrxxXJ0uaNKOPdNdn7aKkvZyTjiqyZgzm8qjHdgV\nSmIiA8b1fGkb7yTt4lkf7T/B/3xYS0iglv/44TISooOpMtZR2lDC0lkL8Nf6je4bEx3CdSuSaW7v\n44O9x/n04Ene23uC9/edID8liuuXJlGQpkelVHjuBc0QYz83LpeL4noTfmEWeuxdLJ1VQFx0hAer\n835TOon3P//zP3nooYfOu4/L5frG45jNlokq6Qw6XRDt7b2TdvyZLkYVR7hvGF+eOMj61Dwqj3bw\nt531bFiZ/I3PlbbxTtIunrWnvJU/vFdNoJ+G+zbm4qdS8EnVPl6seAWny8l/F73FAn0uy+MWkxg8\na/R5WuDmJYlcuyCeQ7VGPi9u5nCNkcM1RsKDfViZE8uKnFhCA+UU3slw+ufmWGsPRvMAiblmjEBG\nSLp8rjj/P46mLMAYDAaOHj3K/fffD4DRaGTLli380z/9EyaTaXQ/o9FIbm7uVJUlpphSoWRpTCF/\nP/YhztBm/H3UfFnWyrrlSTIOL8QF2lvZxh/eq8bfV839m3KJ1wVSbqripYpXUStUXJuyhj3HD/FV\n60G+aj1IQlAcK+KWUKDPHZ0cqtWoWJoZw9LMGE4aetlZ0sLeyjb+svsYO/YcJ29eJKvy4khNDEOp\nkF6ZyXLK8BFa0mX46BtNWYDR6/V88skno/dXr17Nq6++yuDgIA899BA9PT2oVCqKiop48MEHp6os\n4QFLYhfw/vGP2W84wJLM6/j0cBNlDR3kz9d5ujQhpo0D1QZe/HsVfj5q7t+UR4I+iHJTFb8vfwWV\nQsk9Of8fS+fnsjZmNTWd9exu3ke5qYo/1bzNO/V/Z1FMPstjFxMbGD16zAR9EHddk8Jtq5LZX2Xg\n8+JmDtW2c6i2HX2YH6vy4liWFUOgn8aDr/zy43K5OFhjxCekn15HNwv0uWhV8mf8TSYtwFRUVLBt\n2zaam5tRq9V8+OGHPPXUU2ecXeTr68t9993Hd7/7XRQKBT/60Y8ICpLx9MtZqE8IGRGplJuquGq+\ngk8PwxelLRJghBinQzVGXthRha9WxX2bckmMDqLCVM2L5a+gVCj5Yc53mBfmHpZVKpSkR6SQHpGC\nebCLr1oOsKflALuavmJX01ckhySxIm4xuVFZaJTuvxL8fNSsyotjZW4sR1t6+Ly4mQPVRrZ/doR3\ndh2lMC2KVXlxJMcGo5BemUt2wtCLqXuQhNwu2oF8OftoXBSu8Uw68TKTOS4o4/lTo8JUzbNlf2R5\n3GIa9idwrKWHR3+4lIgQ33M+R9rGO0m7TK3iunZ+99cK1Gol923MZW5cCJUdtbxQ9t8oFEp+mP0d\nUsLnAuduG4fTQXlHNV8276O6sw6AQE0AS2IWsix2ETr/MyeP9g3Y2FPeys7iZgxm9xlLs6ICWZUX\nx+J0PX4+cl3UCzG2bd7e2cD7+46jW7IPGwP83+UPSw/MsPPNgVE98sgjj0xdKRPDYrFO2rEDAnwm\n9fjCLdIvgr2tBznZ08SaxBWUHjHj56MiNTHsnM+RtvFO0i5Tp+SIid/9pQK1SsnPbs9hXnwoVR21\nvFD+MgqFgh9kf4fU8K+vbn2utlEqlEQHRFEYnU+hPh+NUkNTXws15np2Nu3hWPcJtCotOr8IlAr3\n3DStRsXcuBCuKohn/qxQrDYH9U3dlBwx8WlRE509Q4QF+RAik37HZaRtXC4Xr3xYi93HjC28nryo\nLBboZR7oiICAc7+fJDILj3BP5l3I+8c/QRXehq9WxZflrdy8LAmlnL4pxBnKj3bwu7+Uo1Iq+Olt\n2cyfFUp1Rx3Pl7+MAs4IL+Ol84/gW3Ov54Y5V1NiLGf3cK9MdWcdIdpglsUWsjS2kDBf9/C/QqEg\nfXY46bPD6eobYndpC7tKW9hZ3MzO4maS44JZlRvHwtQotLJswTdqNPZh7BpgVq4ZE5AfJWsfjZf0\nwJxG/jU5dSL9wtnZuId+ex8pAdlUn+hiTmzwKRfgGkvaxjtJu0y+yuOdPPl2OQqFgp/emk1qYjg1\nnfU8X/7fAPwg627SIuaf8bwLaRuVQklcYAxLYheSp8tCqVBwoqeJanMdnzd+SWNvC/5qPyL8wkfn\nvfhq1aQkhLGmYBazo4MZsNqpPdFFUb2Jz4ub6em3EhnqJ5N+z2KkbT453ER9Uxc+SVUolXBHyi2o\nlBL8RkgPjPBK4b5hpEekUNlRw8pUNTtL3FfmzU6O9HRpQniN6hNmnny7DIB/2pBF2mx3eHmu7I+4\ngO9nffus4eVSxAZGc/v8b7Eu+XoOG0rY3byXMlMlZaZKIn3DWR63mMUxCwjSBgKgVCrInRdJ7rxI\n2rsG+KK0hd2lLXx0sJGPDjaSlhjGlXlx5M6LlMsljOFyuThUY0Qb0kufo4eF+nw0Mvdl3CTACI9a\nFltIZUcNx6yVJOhjKD3SQVffkFw8Swig9qSZJ94uxeVyce8t2WQmRVDbeYTnyv4bl8vF/87+NukR\nKd98oIvko9KydHgI6URPI1827+OgoYS/NrzP349+SG5UFstjFzM3NGm0V0YX6seGlcmsW55EUV07\nO4ubqT5hpvqEmZAALStyYlmZE3veCfszRVN7PwbzAPE5XXQABXo5++hCyBDSaaQ7fGrp/CL4quUA\nJ3ubWZ2wgrKGTgJ8NcyfdeZintI23knaZXLUN3XxX2+W4XC4+NH6LHLmRlJnbuDZsj/icjn5XtZd\nZEamnfcYE9k2oT4hZOsyuCJuKaE+IZgGO6kzN7Cv7RBF7eW4XC6i/HWjPQhKpYI4XSDLsmJYmBqF\nUqngeFsvVcc7+eRwIyfaevHzUaEL9ZuRp2IHBPiwY/dR6hrNaJMqUSmVbEq9BZVCeqjGOt8QkgSY\n08iX8dRSKpT02waoMdeTN2s2lTV22jotXLUg/owvNWkb7yTtMvEamrv5f2+WYnc4+cG6TPLn66g3\nN/Bs6R9wupx8L2srWZHp33icyWgbjUrD7JAErohbQkr4POxOOw1dx6noqGZX0x46BjoJ8Qkm1Cdk\n9DlB/lqy5kSwZkE8UWF+dPVZqTlpZl+Vga8q2rDaHejD/fHVzpy5H/7+Wp7/SzlWTQf2iAby9dly\n/ZezkABzAeTLeOpF+IWzs+lLBhwDJPtmUnOyi3mzQokK9TtlP2kb7yTtMrGOtfbw2+0lWG1OfrAu\ngwWpUdSbj/K70j/guIDwApPbNgqFgnDfMPKislget5hATQAGSzu1XQ3saTlAhakKhUKB3j8K9fCk\nVLVKSaI+iJW5seTMjcDlctHQ0kPF0U4+OdRIi6mfIH8NEcG+l32vjKlniDc/rSc61cCA2sRNc65B\n7y8X8zydBJgLIF/GU89f48fRruPUdzWwdt4iDld2Y7c7WZgadcp+0jbeSdpl4pxo6+U3b5QwaHXw\nv2/KoDBNz5GuY/yu7A/YXQ7+V+ZWsnUZ4z7eVLWNj0pLcuhsVsYvZU5IIlaHlfquo5SbqtjV9BXd\n1m7CfEJHJ/0ChAb6kDtPx+r8eMKCfDB1D1Jzsos95W0crDHidLqIifBHo748e2U+L26h4qgJbZL7\nuj6bUmT46GwkwFwA+TL2DI1KQ7GxjIggfyztYdQ3dbMqLw6fMdeRkLbxTtIuE+OkoZffvFHMwJCd\n/3VjOoszomnoOs7vSl/C7rTz3cwt5OoyL+iYU902CoUCnX8kBfpclsQsxFftS2u/gVrzEXY376W2\nsx61Uk2Uv270L2uNWsmc2GCuzIsjfXY4doeTI83dlDV08MmhJozmAUKDfAgN1F5WvTL/82EtA+p2\nHBFHKYjKkeGjc5DTqIXXy45MJ1ATwP62w6zOvps3PzvKV+VtXLsowdOlCTHpmtr7+M0bJVgG7Xzn\n+jSWZEZztPs4z5S+iM1p57sZd15wePG0MN9Qbkhay7WJq6noqB69QF5D93EC63ewOGYBy2IXEeXv\nvmyCQqFg/qxQ5s8KZZNl3uiyBV+Wt/JleStxkQGEBfvgq1Xjq1Hho1XhO/q/Gh/N1/d9tCr3fR/3\nvr5aFRq10msCULOpn0ZDL7HZZszI2kcXSwKM8ApqpZolMQv5+OROAmd3oFYp+aK0hWsKZ3nNl44Q\nk6HF1M9vXi+mb8DG3delsjw7hmPdJ3im5CVsTjvfydhMblSWp8u8aCqlihxdJjm6TNotHexp2c/e\n1oN8cnIXn5zcRVr4fJbHLSYrIm30Am7B/lquW5TINYUJVB3v5POiZsoaOmg29V90HQoFp4QdH60K\nvzFB5/QA5A4+6tGgdLZtF3tNm8M1RsDFkH8Tfkq/i7qCspAAI7zI0lh3gDncfogFqcvZV2mgrrGL\nlIRzr48kxHTW2tHPY68X02OxsfWaFK7IieVY90meLnkJq9PGdzI2X1b/Oh+7bEGpsZwvvmHZAqVC\nQWZSBJlJ7gm/VruTIauDQZuDwSE7QzYHg1aHe5vVwaD1621fb7e79x++P2R1YBm00dk7iNXmvKTX\no1YphoOP+uuQMxKKtKeGna97jdTsqzKgCenG4uxjsX4BaqX8VXwx5E9NeI0ofx3zQ5Op62rgrrQ1\n7KuEL0pbJMCIy5LBbOGx14vp7rdy59r5XJkXx/Gekzxd8iJWp5W70zddVuFlLI1SzYLoPBZE59HS\n18aXLfvZ33qY949/wj+Of0pWZDrL4xaTFj5vdDFJhcIdFnw0KoInqA6n0zUm8LjDz5DVwcCY8DMa\nmMYGIqvjtPBkp6tviCGbA7vDNa7fHZ/XTQcyfHQpJMAIr7IstpC6rgZaqEEfHsHBmnbuWGOTtVTE\nZcXYNcCjrxXT1Wdl0+q5XFUQz4meRp4ueZEhxxB3Z9xBwQxZkdi9bME61iVfN7xswb7RZQsifMNZ\nHreIJTELTzmDaaIolQr8fNT4+aiBibn6t93h/DoQnRZ+hsYEpV22r/B3+pESNndCfu9MJAFGeJUc\nXSYBGn/2tx5mRfYW3tl5nL2VbaxdMMvTpQkxIUzdAzz2WhHm3iFuuzKZqwsTONnTxFMlLzJoH+Lb\n6ZtYMEPCy1hnLluwn0OGYv7W8A/+fvQjMiPTCPUJQavUoFVp0Kq0aJXaMbfdP31UWjRn3NaM9uRM\nNrVKSaCf8rz/6DrSdYx3i3pYErNQho8ugfzJCa+iUWlYFF3AZ427CU3sQqVU8EVpC2sK4j1dmhCX\nrLNnkEdfK6ajZ4hbrpjDdYsSOdnbxFMlv2fQPshd6RtZGJ3n6TI9LjF4FonBs1g/9wYOGIrY3byP\n0vaKSzqmRqlGq9SiUWnwGQ48muGQ4749sv18+3x9+/QQpVFqxn3CQZHRvTinDB9dGgkwwussiy3k\ns8bdFHcWkTd/MYdqjBxt6SEqaqJGvoWYeubeIR59rRhT9yDrlidx49LZNPY281Tx7xmwD7I17XYK\no/M9XaZX8df4sSp+GSvjltIxaGbIMcSQw4rVYcXmtA3ftmF1urd9fdvmvu8c/nnKbRsW2wBdzm6s\nDhsuxjdnZTxGeoG05wg5I9uL28sJ1AbI8NElkgAjvE50gJ7kkNlUd9axJX01h2pgV2kLi3OlF0ZM\nT119Qzz6ejHGrgFuXDqbm5fNpqm3ZTS8bEm7jUUxBZ4u02spFAoi/cIn/Lgulwu7036WoDMSgM4f\nhoYcNmzD+ww5rKfc7rP1MzToDlpnc83claOnjYuLIwFGeKVlsYto6D5Ou6qOyJBgDlQbsAye/YtA\nCG/W3W/lsdeLMXRauG5xAutXJNHS38aTJS9gsQ9wZ9ptLI5Z4OkyZySFQoFG5R4+CtD4T8rvcLqc\n2J320d4im9OKzekgOzEZc+fApPzOmUICjPBKeVHZvFW/g32tB1mWfSd/232cZ94qJTRAg8vFcKev\nC9dw7697m/sBl/shXON5fPS2eyfX8L4jxx6778h+o4+Pea7L9XU3tOu0452+j8vlvn5EgJ+GAF8N\nAX5qAn01w/fVBPhpCBx+TKOWtVGmsx6Lld+8Xkxrh4WrF87i1pXJ7vBS/AL9Ngt3pt7GEgkvlzWl\nQjk6rDSWWiV//V4q+RMUXkmr0lAYnc+upj3o5va4r8xb0uzpsqacVqMkwHck0JwabgL81Gc8NnJf\ngo/n9Q3Y+M3rJTSb+llTEM/G1XNp7TfwZPEL9Nn62Zy6gaWxCz1dphDTlgQY4bWWxRayq2kPJeYi\nfv3dTThVSrq7BhiZ6D8y41+hAAUKhv8b/qkYs9/w48O3R5779b7uBxTjeHx401l+x9haxuw/fP/0\nx20OF5ZBG/0DdvoGbPQP2ugfsNE3aKd/7P0BO/2DNkzdAzQaHeP+sxsJPu5Ac2q4GQk+Zz6mvmxX\n/p1q/YM2fvNGMU3tfVyZH8cda+bR2m/gieLn6bP1c0fKLSyLXeTpMoWY1iTACK8VFxhDUnACVR21\nbEoZImVWAu3tvZ4ua8KEBGi/eacx7A4nlkH7cLix0zcccs4afIbvd/QM0NR+6cHn1GGuUx8LDZuc\nuQPTlWXQxm/fKOGkoY8rcmK5c+182izG0Z6XTSm3sDxusafLFGLakwAjvNrS2EUc6znJ3paDpMya\n2StTq1VKggO0BF9M8BkaDjhnCz5nCUIXEnyUSgVpCaEUpunJT9ER4Dtzr5o8MGTn/71ZyvG2XpZn\nxXDXtSkYLUaeKH6eXlsfG+evZ4WEFyEmhAQY4dUK9Dm8U7+Dr1oPcpdz/ZT+bvfZAw7sTjt2l939\n02k/Y5tt5P7I/64x+4xuO/W+QqHAX+2Pv9oPf40f/poxt9X+BGj88FH5TMjVQ9UqJcH+WoL9Jyf4\ndPYOUXncTOVxM//zYS1ZcyIoTIsid14kvtqZ8xUzMGTnv94s5WhLD0syorn7ulSMlnYeL36eXmsf\nt8//FlfEL/F0mUJcNmbOt4uYlnxUWhZE5/Fl8z4+OLKTQFfIqSHiHIHBNo4QYXc6Tgsm7m224W1O\n16WtVHupFChOCTXun+6wE6D2w29M2BnZPvJTewFXBT2X8QYfnS6IynojB6sN7K8yUnLERMkRE1q1\nkuzkCArT9GQnR6DVXL7za4asDp54q5Qjzd0sStfz3RvSaB9od/e8WPu4bd46VsYv9XSZQlxWFK6x\n539OE5M5D0KnC7qs5llcDk72NrHt4JMTfly1Uo1aoUatVLlvD/+vUZx6X61UDe93vm3u52hGjznm\neCPHV3y9r9PlwmIfwGKzDP8cwGK3DP903+4fuT28j91pH/9rU6jOHXDG3A7QnBqM/NV+F7w2y+mf\nmRZTPweqDeyvNmLotADgo1WRPy+SwjQ9GUnhqFWXz1lSQzZ3eKk52cWC1Ci+f3M6psEOnih6jm5r\nL7fOu5krZy33SG3yfea9pG3GR6cLOudjEmBOI28q7/RVy0EGlL1YB5zfGCLGbtOMDSdjwopKobrk\nHoqpZnXYRkNO/0jwOUcI6rdbGBgNQwMX1JukVWpODTjDvT0B6jPDToDGn8RoPa7+M3t8XC4XjcY+\n9lcbOFBlpKNnEIAAXzX583UUputJTQhFpZy+YcZqc/DkO2VUHTdTMF/H99dl0DnUweNFz9Nt7WHD\nvJtYPWuFx+qT7zPvJW0zPhJgLoC8qbyXtM3FcblcDDqGzuzlGQ4+5wtDA/bBcf2OaP8o8qOyKdDn\nEB2gP2sNR1t7OFBl5ECNge4+KwDB/hoWpEZRmKZnbnwIymkUKm12B0/9uZyKo53kzo3knvWZdA51\n8kTx83QNdbNh7o2sTrjCozXKZ8Z7SduMjwSYCyBvKu8lbTP1nC7naKAZGBt2xoShbmc3pa2V2IaH\nuGIDosmPyiFfn43eX3fmMZ0u6pu62F9t5FCNkb4B9xIRYUE+LEyNYlG6ntnRQV7dQ2Z3OHn6z+WU\nNXSQnRzBj9Zn0WU183jxc3QNdbN+7g2sSVjp6TLlM+PFpG3GRwLMBZA3lfeStvFOOl0Qja3tlJuq\nKTKWUdVRg93lPgU7PjCW/Khs8qNy0PlHnPFch9NJ9QkzB6qMHK5rZ2DIHYJ0ob4UpukpTNMTrwvw\nqjBjdzh59q8VFNebyEgK58cbsui2dfF40fOYh7r4VvL1rE1c5ekyAfnMeDNpm/GRAHMB5E3lvaRt\nvNPp7TJgH6CsvYoiYxnVnXU4hsNMQlCcu2cmKpuIs6wsbLM7qTjWwYFqIyX1JoZs7ufFRPizKE3P\nwrQoYiICpuZFk7WhsQAADv5JREFUnYPd4eT5HZUcrm0nLTGMn9yaTa+9m/8qeg7zUBfrkq/j6sQr\nPVrjWPKZ8V7SNuMjAeYCyJvKe0nbeKfztYvFZqHUVEWRoZQac/3oZOLE4FkUDIeZMN/QM543ZHNQ\n1tDBgSoDpQ0d2B3u5yXoA909M6lRRIb6Td6LOguH08nv363iQLWR1IRQfnJbDn32Hh4vfo7OQTM3\nz7mWa2avntKavol8ZryXtM34eCzA1NXVcc8993D33XezZcsWWltb+eUvf4ndbketVvPYY4+h0+nY\nsWMHL7/8Mkqlkttvv53bbrvtvMeVADMzSdt4p/G2S5+tn9L2CooMZdR1NYyGmTkhieRH5ZAXlUWo\nT8gZzxsYslNc386BaiOVxzpxON1fWcmxwRSm6VmQGkVYkM/EvqjTOJ0uXnyvin2VBubFh/Cz23Ow\nOHt5vOg5OgbN3DTnGq6dfdWk1nAx5DPjvaRtxscjAcZisfD973+f2bNnk5KSwpYtW/jFL37BypUr\nuf766/nTn/5Ec3Mz9957L+vXr+ftt99Go9Fw66238uqrrxIaeua/ykZIgJmZpG2808W0S6+1j5L2\nCooMpdR3HcWFCwUK5oTMpkCfQ64uixCfM7+4+gZsFNW1s7/KQM1JMy6Xe3HM+bNCKUzXU5Ciu+Ar\nDn8Tp8vFH9+rZk9FG8lxwfyf23MZdPXxX0XP0THYyY1JV3Nd0poJ/Z0TRT4z3kvaZnzOF2BUjzzy\nyCOT8UsVCgU33ngjtbW1+Pn5kZ2dzbJly0hJSUGpVNLU1ERdXR0hISF0dHRw0003oVarqampwcfH\nh6SkpHMe22KxTkbJAAQE+Ezq8cXFk7bxThfTLj4qLYnB8SyOWcCy2MVE+oUz6BjiaPdxKjtq+Kxx\nN3XmBmxOG+G+Yfio3KFEq1GRGB3EsqwYVuXFERniy4DVTl1TN2UNHXx0oJEjzd04nC4iQ3wveXVt\np8vFy/+o4cvyNpJi3OFliL7hnpdOrk9ay/VJay/pd0wm+cx4L2mb8QkIOHfv6qQtJaBWq1GrTz28\nv7971VqHw8Frr73Gj370I0wmE+HhX0/oCw8Pp729/bzHDgvzR32JX0znc77EJzxL2sY7XUq76Ahi\nbnwsG7iGzoEu9jUWsbexiFpTA/VdR9le91cyo1JYMquARfG5BPkEDv9OmDs7gk3XptFuHuDL0ma+\nKGmm4lgnFcc6+Z8PlRSkRrEiN47CjGj8fC7s687lcvG7d8rYXdbK3PgQfv2DZVhd/fzm899jGuzk\n1ozruT3zpot+3VNFPjPeS9rm0kz5WkgOh4Of//znLF68mCVLlvDuu++e8vh4RrTMZstklSfdel5M\n2sY7TWy7qFgYtpCFYQsxD3ZRbCzjsLGMckMN5YYaXjz8OilhcymIyiFHl4G/xn/0mcsz9CzP0GM0\nWzhQbXQvZ1DZxv7KNrRqJTlzI4fXZQr/xp4Zl8vFnz6u47OiZhKiAvnxhmxaOww8UfQ8xgET186+\nilVRK73+/SifGe8lbTM+5wt5Ux5gfvnLX5KYmMi9994LQFRUFCaTafRxo9FIbm7uVJclhPAyYb6h\nrE64gtUJV9Ax0EmRsWz01Ozqzjper/0zaeHzyI/KIVuXjp/afVZSVJg/Ny6dzY1LZ9Pc3jcaZg7W\nGDlYY8RXqyJvno5F6VGkzz5zXSaXy8Ubnx7hs6Jm4nUB3LcpF7vSwhPF7vByTeJqbky62quuTSPE\nTDSlAWbHjh1oNBp+/OMfj27LycnhoYceoqenB5VKRVFREQ8++OBUliWE8HIRfuGsTVzF2sRVtFs6\nhntmSqnoqKGiowZ1jYq0iBTyo7LJjkzHV+0LQJwukPW6QL61IomThj4OVBs4UG1gb2UbeyvbCPBV\nU5ASxaK0KFISwlAo4K3PG/j4UCOxkQHcvykPp2qQJ4tfwGgxcXXildw05xoJL0J4gUk7C6miooJt\n27bR3NyMWq1Gr9fT0dGBj48PgYHuMezk5GQeeeQRPvjgA1566SUUCgVbtmzh5ptvPu+x5SykmUna\nxjt5sl0MlnaKDGUUGUtp6W8D3KuMZ0SkUhCVTWZk+ugE4BEul4uGlp7RXpnRdZkCtCREBVJxrJPo\ncH9+sTkPNFaeKH4eg8XI2oRVrEu+blqFF/nMeC9pm/GRC9ldAHlTeS9pG+/kLe3S1m/gsLGMIkMp\nbRYjABqlhszINAqicsiISEF7WphxOl3UNXZxoNrAodp2+gZs6MP8+PnmfFQ+Vp4oep42i5GrEq5g\nffIN0yq8gPe0jTiTtM34SIC5APKm8l7SNt7J29rF5XLR2m+gyFjKYWMpRot7jp1WpSUrIo0CfQ7p\n4SloVJpTnmd3OGlo7iZOF4hTNcgTxS/Q1m/gqllXsH7u9Asv4H1tI74mbTM+XjWJVwghJpNCoSA2\nMJrYwGhuSLqa5r5WDhtLKTK4A81hYym+Kh+yIjMo0GeTGj4fjVKNWqUkJSGMXmsfTw6Hl9WzVkzb\n8CLE5U4CjBDisqVQKIgPiiU+KJab51xLY2/z8NlMpRw0FHHQUISf2pfsyAwK9DnEBcbwTMlLtPYb\nuDJ+ObfMvVHCixBeSgKMEGJGUCgUJATHkxAcz7rk6zjR28hhQylFxjL2tx1mf9thFChw4WJl/DI2\nzLtJwosQXkwCjBBixlEoFMwOTmB2cALr597A8Z5GigyllJuqyNFlyrCRENOABBghxIymVCiZE5LI\nnJBEbp1//ks4CCG8h/KbdxFCCCGE8C4SYIQQQggx7UiAEUIIIcS0IwFGCCGEENOOBBghhBBCTDsS\nYIQQQggx7UiAEUIIIcS0IwFGCCGEENOOBBghhBBCTDsSYIQQQggx7UiAEUIIIcS0IwFGCCGEENOO\nBBghhBBCTDsKl8vl8nQRQgghhBAXQnpghBBCCDHtSIARQgghxLQjAUYIIYQQ044EGCGEEEJMOxJg\nhBBCCDHtSIARQgghxLQjAWaM//iP/2Djxo1s2rSJsrIyT5cjxnj00UfZuHEjGzZs4KOPPvJ0OWKM\nwcFB1qxZw5///GdPlyLG2LFjBzfffDO33HILO3fu9HQ5Aujv7+fee+9l69atbNq0id27d3u6pGlN\n7ekCvMWBAwc4ceIE27dvp6GhgQcffJDt27d7uiwB7Nu3j/r6erZv347ZbGb9+vVcffXVni5LDHv2\n2WcJCQnxdBliDLPZzDPPPMM777yDxWLhqaeeYtWqVZ4ua8b7y1/+QlJSEvfddx8Gg4Fvf/vbfPDB\nB54ua9qSADNs7969rFmzBoDk5GS6u7vp6+sjMDDQw5WJhQsXkp2dDUBwcDADAwM4HA5UKpWHKxMN\nDQ0cOXJE/nL0Mnv37mXJkiUEBgYSGBjIr3/9a0+XJICwsDBqa2sB6OnpISwszMMVTW8yhDTMZDKd\n8mYKDw+nvb3dgxWJESqVCn9/fwDefvttrrjiCgkvXmLbtm088MADni5DnKapqYnBwUF+8IMfsHnz\nZvbu3evpkgRwww030NLSwtq1a9myZQu/+MUvPF3StCY9MOcgKyx4n08++YS3336bP/zhD54uRQB/\n/etfyc3NZdasWZ4uRZxFV1cXTz/9NC0tLdx11118/vnnKBQKT5c1o/3tb38jNjaWl156iZqaGh58\n8EGZO3YJJMAMi4qKwmQyjd43Go3odDoPViTG2r17N8899xwvvvgiQUFBni5HADt37qSxsZGdO3fS\n1taGVqslOjqapUuXerq0GS8iIoK8vDzUajUJCQkEBATQ2dlJRESEp0ub0YqKili+fDkAqampGI1G\nGQ6/BDKENGzZsmV8+OGHAFRWVhIVFSXzX7xEb28vjz76KM8//zyhoaGeLkcMe/zxx3nnnXd48803\nue2227jnnnskvHiJ5cuXs2/fPpxOJ2azGYvFIvMtvEBiYiKlpaUANDc3ExAQIOHlEkgPzLD8/Hwy\nMjLYtGkTCoWChx9+2NMliWHvv/8+ZrOZn/70p6Pbtm3bRmxsrAerEsJ76fV6rrnmGm6//XYAHnro\nIZRK+feqp23cuJEHH3yQLVu2YLfbeeSRRzxd0rSmcMlkDyGEEEJMMxLJhRBCCDHtSIARQgghxLQj\nAUYIIYQQ044EGCGEEEJMOxJghBBCCDHtSIARQkyqpqYmMjMz2bp16+gqvPfddx89PT3jPsbWrVtx\nOBzj3v+OO+5g//79F1OuEGKakAAjhJh04eHhvPLKK7zyyiu88cYbREVF8eyzz477+a+88opc8EsI\ncQq5kJ0QYsotXLiQ7du3U1NTw7Zt27Db7dhsNv71X/+V9PR0tm7dSmpqKtXV1bz88sukp6dTWVmJ\n1WrlV7/6FW1tbdjtdtatW8fmzZsZGBjgZz/7GWazmcTERIaGhgAwGAzcf//9AAwODrJx40ZuvfVW\nT750IcQEkQAjhJhSDoeDjz/+mIKCAv75n/+ZZ555hoSEhDMWt/P39+fVV1895bmvvPIKwcHB/Pa3\nv2VwcJDrr7+eFStW8NVXX+Hr68v27dsxGo1cddVVAPzjH/9gzpw5/Nu//RtDQ0O89dZbU/56hRCT\nQwKMEGLSdXZ2snXrVgCcTicLFixgw4YNPPnkk/zLv/zL6H59fX04nU7AvbzH6UpLS7nlllsA8PX1\nJTMzk8rKSurq6igoKADcC7POmTMHgBUrVvDaa6/xwAMPsHLlSjZu3Dipr1MIMXUkwAghJt3IHJix\nent70Wg0Z2wfodFoztimUChOue9yuVAoFLhcrlPW+hkJQcnJybz33nscPHiQDz74gJdffpk33njj\nUl+OEMILyCReIYRHBAUFER8fz65duwA4duwYTz/99Hmfk5OTw+7duwGwWCxUVlaSkZFBcnIyxcXF\nALS2tnLs2DEA3n33XcrLy1m6dCkPP/wwra2t2O32SXxVQoipIj0wQgiP2bZtG//+7//OCy+8gN1u\n54EHHjjv/lu3buVXv/oVd955J1arlXvuuYf4+HjWrVvHZ599xubNm4mPjycrKwuAuXPn8vDDD6PV\nanG5XHzve99DrZavPSEuB7IatRBCCCGmHRlCEkIIIcS0IwFGCCGEENOOBBghhBBCTDsSYIQQQggx\n7UiAEUIIIcS0IwFGCCGEENOOBBghhBBCTDsSYIQQQggx7fz/ljo/a2ybmAUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i4lGvqajDWlw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## One-Hot Encoding for Discrete Features\n", + "\n", + "Discrete (i.e. strings, enumerations, integers) features are usually converted into families of binary features before training a logistic regression model.\n", + "\n", + "For example, suppose we created a synthetic feature that can take any of the values `0`, `1` or `2`, and that we have a few training points:\n", + "\n", + "| # | feature_value |\n", + "|---|---------------|\n", + "| 0 | 2 |\n", + "| 1 | 0 |\n", + "| 2 | 1 |\n", + "\n", + "For each possible categorical value, we make a new **binary** feature of **real values** that can take one of just two possible values: 1.0 if the example has that value, and 0.0 if not. In the example above, the categorical feature would be converted into three features, and the training points now look like:\n", + "\n", + "| # | feature_value_0 | feature_value_1 | feature_value_2 |\n", + "|---|-----------------|-----------------|-----------------|\n", + "| 0 | 0.0 | 0.0 | 1.0 |\n", + "| 1 | 1.0 | 0.0 | 0.0 |\n", + "| 2 | 0.0 | 1.0 | 0.0 |" + ] + }, + { + "metadata": { + "id": "KnssXowblKm7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Bucketized (Binned) Features\n", + "\n", + "Bucketization is also known as binning.\n", + "\n", + "We can bucketize `population` into the following 3 buckets (for instance):\n", + "- `bucket_0` (`< 5000`): corresponding to less populated blocks\n", + "- `bucket_1` (`5000 - 25000`): corresponding to mid populated blocks\n", + "- `bucket_2` (`> 25000`): corresponding to highly populated blocks\n", + "\n", + "Given the preceding bucket definitions, the following `population` vector:\n", + "\n", + " [[10001], [42004], [2500], [18000]]\n", + "\n", + "becomes the following bucketized feature vector:\n", + "\n", + " [[1], [2], [0], [1]]\n", + "\n", + "The feature values are now the bucket indices. Note that these indices are considered to be discrete features. Typically, these will be further converted in one-hot representations as above, but this is done transparently.\n", + "\n", + "To define feature columns for bucketized features, instead of using `numeric_column`, we can use [`bucketized_column`](https://www.tensorflow.org/api_docs/python/tf/feature_column/bucketized_column), which takes a numeric column as input and transforms it to a bucketized feature using the bucket boundaries specified in the `boundaries` argument. The following code defines bucketized feature columns for `households` and `longitude`; the `get_quantile_based_boundaries` function calculates boundaries based on quantiles, so that each bucket contains an equal number of elements." + ] + }, + { + "metadata": { + "id": "cc9qZrtRy-ED", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_boundaries(feature_values, num_buckets):\n", + " boundaries = np.arange(1.0, num_buckets) / num_buckets\n", + " quantiles = feature_values.quantile(boundaries)\n", + " return [quantiles[q] for q in quantiles.keys()]\n", + "\n", + "# Divide households into 7 buckets.\n", + "households = tf.feature_column.numeric_column(\"households\")\n", + "bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"households\"], 7))\n", + "\n", + "# Divide longitude into 10 buckets.\n", + "longitude = tf.feature_column.numeric_column(\"longitude\")\n", + "bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " california_housing_dataframe[\"longitude\"], 10))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U-pQDAa0MeN3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train the Model on Bucketized Feature Columns\n", + "**Bucketize all the real valued features in our example, train the model and see if the results improve.**\n", + "\n", + "In the preceding code block, two real valued columns (namely `households` and `longitude`) have been transformed into bucketized feature columns. Your task is to bucketize the rest of the columns, then run the code to train the model. There are various heuristics to find the range of the buckets. This exercise uses a quantile-based technique, which chooses the bucket boundaries in such a way that each bucket has the same number of examples." + ] + }, + { + "metadata": { + "id": "YFXV9lyMLedy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0FfUytOTNJhL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 635 + }, + "outputId": "9876c71a-a1ae-4532-e6f0-8994ec1165d7" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 169.91\n", + " period 01 : 143.64\n", + " period 02 : 127.19\n", + " period 03 : 116.04\n", + " period 04 : 108.17\n", + " period 05 : 102.32\n", + " period 06 : 97.82\n", + " period 07 : 94.26\n", + " period 08 : 91.33\n", + " period 09 : 88.94\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VAX69vHvTCaVFNIh1BA6hNAi\nvbfQBKRYABFdXQvqKvuzvKuuZS3srq4NbLuKgq4CgoCACNIRkRgICb0EEhIgvffJef9gNysCIQGS\nmST357q4Lqad80yeM+TmlHlMhmEYiIiIiNQiZlsXICIiIlJVCjAiIiJS6yjAiIiISK2jACMiIiK1\njgKMiIiI1DoKMCIiIlLrWGxdgIg9a9euHc2bN8fBwQEAq9VKeHg4zzzzDG5ubte83CVLljBt2rRL\n7l++fDlPP/0077//PkOGDCm/v7CwkL59+zJy5Ehee+21a15vZcXHx/PKK68QFxcHgKurK3PmzGH4\n8OHVvu6qWLBgAfHx8Zf8THbv3s0999xD06ZNL3nNd999V1PlXZczZ84wbNgwgoODATAMAz8/P/70\npz/RsWPHKi3r9ddfJygoiNtvv73Sr1m5ciXLli1j0aJFVVqXSE1RgBG5ikWLFtGoUSMAiouLeeyx\nx/jggw947LHHrml5KSkp/POf/7xsgAFo3Lgx33777UUBZvPmzXh6el7T+q7FH//4RyZMmMD7778P\nQHR0NLNmzWLdunU0bty4xuq4Ho0bN641YeVKHBwcLnoPa9eu5aGHHmL9+vU4OTlVejlz586tjvJE\nbEqHkESqwMnJiQEDBnDo0CEAioqKeO655xg1ahSjR4/mtddew2q1AnD48GFuu+02IiIimDBhAtu3\nbwfgtttuIykpiYiICIqLiy9ZR/fu3dm9ezcFBQXl961du5Z+/fqV3y4uLuYvf/kLo0aNYujQoeVB\nA2Dv3r3ccsstREREMGbMGH788Ufgwv/o+/fvz2effcb48eMZMGAAa9euvez7PHr0KGFhYeW3w8LC\nWL9+fXmQe/fddxk0aBATJ07kww8/ZOjQoQA89dRTLFiwoPx1v759tbpeeeUVZsyYAcAvv/zC5MmT\nGTFiBNOmTSMhIQG4sCfqD3/4A0OGDGHGjBmcO3fuKh27vOXLlzNnzhxmzZrFX//6V3bv3s1tt93G\no48+Wv7Lft26dYwbN46IiAjuvPNO4uPjAXjnnXd45plnmDJlCgsXLrxouY8++igff/xx+e1Dhw7R\nv39/ysrK+Mc//sGoUaMYNWoUd955J+fPn69y3WPGjKGwsJCTJ08C8NVXXxEREcHQoUN5/PHHKSws\nBC783F999VXGjx/PunXrLurDlbbLsrIyXnzxRQYPHsyUKVM4fPhw+Xp//vlnJk2axJgxYxg9ejTr\n1q2rcu0iN5whIlfUtm1b4+zZs+W3MzMzjenTpxsLFiwwDMMwPvjgA+Pee+81SkpKjIKCAmPy5MnG\nN998Y1itVmP06NHG6tWrDcMwjP379xvh4eFGTk6O8dNPPxnDhw+/7Pq+/vpr48knnzT++Mc/lr82\nJyfHGDZsmLF06VLjySefNAzDMN59911j1qxZRlFRkZGXl2dMnDjR2LRpk2EYhjFu3Djj22+/NQzD\nMFasWFG+roSEBKNjx47GokWLDMMwjLVr1xojRoy4bB0PP/ywMWTIEOPTTz81jh8/ftFjR44cMXr2\n7GkkJycbJSUlxgMPPGAMGTLEMAzDePLJJ4358+eXP/fXtyuqq1OnTsby5cvL3294eLixY8cOwzAM\nY/Xq1cakSZMMwzCMxYsXG9OnTzdKSkqM9PR0Y8iQIeU/k1+r6Gf8359z165djbi4uPLnh4aGGj/+\n+KNhGIaRmJho9OjRwzh16pRhGIbxr3/9y5g1a5ZhGIbx9ttvG/379zfS0tIuWe6aNWuM6dOnl99+\n6623jJdeesk4evSoMXLkSKO4uNgwDMP47LPPjBUrVlyxvv/+XDp06HDJ/eHh4caJEyeMPXv2GH36\n9DHOnTtnGIZhPPvss8Zrr71mGMaFn/v48eONwsLC8tvz58+vcLvcsmWLMXLkSCM3N9coKCgwpkyZ\nYsyYMcMwDMO45ZZbjN27dxuGYRhxcXHG448/XmHtIjVBe2BErmLmzJlEREQwbNgwhg0bRu/evbn3\n3nsB2LJlC9OmTcNiseDi4sL48ePZuXMnZ86cITU1lbFjxwIQGhpKUFAQMTExlVrn2LFj+fbbbwHY\nuHEjQ4YMwWz+38d18+bN3HHHHTg5OeHm5saECRP4/vvvAfjmm28YPXo0AD169CjfewFQWlrKLbfc\nAkCnTp1ISkq67Pr/9re/MX36dFavXs24ceMYOnQo//73v4ELe0fCw8Px9/fHYrEwbty4Sr2niuoq\nKSlhxIgR5csPDAws3+M0btw44uPjSUpKIjIykhEjRmCxWPD29r7oMNtvnT17loiIiIv+/PpcmZYt\nW9KyZcvy2y4uLvTp0weAnTt30qtXL1q0aAHA1KlT2b17N6WlpcCFPVI+Pj6XrHPw4MEcPHiQzMxM\nADZs2EBERASenp6kp6ezevVqsrKymDlzJhMnTqzUz+2/DMPgq6++IjAwkJYtW7Jp0ybGjBlDYGAg\nALfffnv5NgDQp08fnJ2dL1pGRdvlnj17GDRoEA0aNMDFxaW8VwC+vr588803nDhxgpYtW/L6669X\nqXaR6qBzYESu4r/nwKSnp5cf/rBYLnx00tPT8fLyKn+ul5cXaWlppKen4+HhgclkKn/sv7/E/Pz8\nrrrOfv368cwzz5CZmcmaNWt48MEHy0+oBcjJyeHVV1/ljTfeAC4cUurSpQsAq1ev5rPPPiMvL4+y\nsjKMX407c3BwKD/52Gw2U1ZWdtn1Ozs7c88993DPPfeQnZ3Nd999xyuvvELTpk3Jysq66HwcX1/f\nq76fytTl7u4OQHZ2NgkJCURERJQ/7uTkRHp6OllZWXh4eJTf7+npSV5e3mXXd7VzYH7dt9/ezsjI\nuOg9enh4YBgGGRkZl33tf7m5udG3b1+2bNlCjx49yM7OpkePHphMJt555x0+/vhjXnrpJcLDw3nh\nhReuej6R1Wot/zkYhkHr1q1ZsGABZrOZnJwcNmzYwI4dO8ofLykpueL7AyrcLrOysggICLjo/v96\n5ZVXeO+995g9ezYuLi48/vjjF/VHxBYUYEQqycfHh5kzZ/K3v/2N9957DwA/P7/y/20DZGZm4ufn\nh6+vL1lZWRiGUf7LIjMzs9K/7B0dHRkyZAjffPMNp0+fplu3bhcFmICAAO6+++5L9kCcP3+eZ555\nhqVLl9KhQwdOnTrFqFGjqvQ+09PTOXToUPkeEE9PT6ZNm8b27ds5evQoHh4e5OTkXPT8//ptKMrK\nyqpyXQEBAbRq1Yrly5df8pinp+cV130j+fr6snfv3vLbWVlZmM1mvL29r/raUaNGsWHDBjIyMhg1\nalR5/3v37k3v3r3Jz89n3rx5/P3vf7/qnozfnsT7awEBAUyaNIknn3yySu/rSttlRT9bPz8/nn32\nWZ599ll27NjBww8/zIABA2jQoEGl1y1yo+kQkkgVzJ49m7179/Lzzz8DFw4ZLFu2DKvVSn5+PitX\nrmTQoEE0bdqURo0alZ8kGxUVRWpqKl26dMFisZCfn19+OOJKxo4dy0cffXTZS5eHDRvG0qVLsVqt\nGIbBggUL2LZtG+np6bi5udGqVStKS0v56quvAK64l+JyCgsLeeSRR8pP7gQ4ffo00dHR9OzZk27d\nuhEZGUl6ejqlpaV888035c/z9/cvP/kzISGBqKgogCrVFRYWRkpKCtHR0eXL+b//+z8Mw6Br165s\n2rQJq9VKeno627Ztq/T7qop+/foRGRlZfpjryy+/pF+/fuV73ioyZMgQ9u7dy8aNG8sPw+zYsYMX\nXniBsrIy3NzcaN++/UV7Qa7F0KFD+f7778uDxsaNG/nwww8rfE1F22W3bt3YsWMHBQUFFBQUlAen\nkpISZs6cSXJyMnDh0KPFYrnokKaILWgPjEgVuLu7c9999zFv3jyWLVvGzJkzSUhIYOzYsZhMJiIi\nIhg9ejQmk4k33niDP//5z7z77ru4urry1ltv4ebmRrt27fDy8qJfv36sWLGCoKCgy67rpptuwmQy\nMWbMmEseu+OOOzhz5gxjx47FMAw6d+7MrFmzcHNzY+DAgYwaNQpfX1+eeuopoqKimDlzJm+//Xal\n3mNQUBDvvfceb7/9Nn/5y18wDAN3d3eefvrp8iuTbr31ViZNmoS3tzcjR47k2LFjAEybNo05c+Yw\ncuRIOnbsWL6XpX379pWuy8XFhbfffpuXXnqJvLw8HB0defTRRzGZTEybNo3IyEiGDx9OUFAQw4cP\nv2ivwa/99xyY3/rrX/961Z9Bo0aN+Mtf/sKDDz5ISUkJTZs25aWXXqrUz8/d3Z1OnTpx5MgRunbt\nCkB4eDhr1qxh1KhRODk54ePjwyuvvALAE088UX4lUVV06tSJ+++/n5kzZ1JWVoavry8vvPBCha+p\naLscMmQIW7ZsISIiAj8/PwYNGkRkZCSOjo5MmTKFu+66C7iwl+2ZZ57B1dW1SvWK3Ggm49cHokVE\nqigyMpInnniCTZs22boUEalHtA9QREREah0FGBEREal1dAhJREREah3tgREREZFaRwFGREREap1a\neRl1SsrlL5u8Eby93cjIyK+25cu1U2/sk/piv9Qb+6XeVI6/v8cVH9MemN+wWBxsXYJcgXpjn9QX\n+6Xe2C/15vopwIiIiEitowAjIiIitY4CjIiIiNQ6CjAiIiJS6yjAiIiISK2jACMiIiK1jgKMiIiI\n1DoKMCIiInXMli0/VOp5b731OklJiVd8/KmnHr9RJd1wCjAiIiJ1yNmzSWzcuL5Sz3300bkEBTW5\n4uOvvfbGjSrrhquVowRERETk8t54Yx6HDh1gwIBwRo4czdmzSbz55gJeffVFUlKSKSgo4O6776Nf\nvwHMmXMfjz/+BJs3/0BeXi7x8adJTDzDI4/MpU+ffowdO4w1a35gzpz7CA/vRVRUJJmZmcyb9w/8\n/Px48cVnOXfuLKGhXdi0aSMrVqytsfepACMiIlJNlmw6zp7DyZfc7+Bgwmo1rmmZ4e0DmDa09RUf\nv/32mSxfvoTg4BDi40+xYME/ychI56abejN69DgSE8/w7LNP0a/fgItel5x8nr///W1++ulHVq78\nmj59+l30eIMGDXjrrfd477132LZtE0FBTSkuLuLDDxeyc+d2liz59zW9n2ulAPMrqZkFnMsuopGn\ns61LERERuW4dOnQCwMPDk0OHDrBq1XJMJjPZ2VmXPLdLl64ABAQEkJube8njYWHdyh/Pysri9Ok4\nQkPDAOjTpx8ODjU730kB5ldW7TzFjpizPHdXT1o28rR1OSIiUstNG9r6sntL/P09SEnJqfb1Ozo6\nArBhw3dkZ2czf/4/yc7O5ne/m3nJc38dQAzj0r1Dv33cMAzM5gv3mUwmTCbTjS6/QjqJ91f6dAoE\nYOnmE5dtnoiIiL0zm81YrdaL7svMzKRx4yDMZjNbt26ipKTkutfTpElTjhw5CMDPP/90yTqrmwLM\nr3Ro6UP39gEcOp1BbFy6rcsRERGpshYtgjly5DB5ef87DDR48FB+/HE7jz76AK6urgQEBPDJJx9d\n13r69h1AXl4eDzxwD9HRe/H09Lre0qvEZNTCXQ3Vtdtt65kfiU45RPT3zWni58Xzs8Mxm2t2l5hc\nWU3tcpWqUV/sl3pjv+pCb7Kzs4iKimTw4GGkpCTz6KMP8MUXX9/Qdfj7e1zxMZ0D8yvZRdkcyThC\nSJgnx/c5sOvAOfqFNrZ1WSIiInbHza0BmzZt5IsvFmEYZTz8cM1+6Z0CzK8MaT6AbUm7SHeIxeLU\nnxXbTxLePgAnx5o9s1pERMTeWSwWXnzxVZutX+fA/Iq7YwMmdhhFgbWAVl2TSc8u4odfzti6LBER\nEfkNBZjfGNNmCA2dvThrPoCbRwlrdp0mt+D6z9YWERGRG0cB5jecLE6MCx5JaVkpzUKTyC8qZc2u\nU7YuS0RERH5FAeYyejXuQeMGgSSUHsbbr5gffjlDamaBrcsSERGR/1CAuQyzycyEkNEYGPi2P0Wp\n1WDF9pO2LktEROSGmTJlPPn5+SxatJDY2P0XPZafn8+UKeMrfP2WLT8AsHbtarZu3VxtdV6JAswV\ndPbtQOuGwSQWn6RRswJ2HTjP6XO1+5p9ERGR35o58y46d+5SpdecPZvExo3rARgzZjyDBg2pjtIq\npMuor8BkMjExZCx//+VdXFoeg4RQlm05ztzbutm6NBERkSu6++7pvPLK6zRq1Ihz587y9NNz8fcP\noKCggMLCQh577P/o2LFz+fNffvl5Bg8eRteu3fjTn56guLi4fLAjwPffr2PZsq9wcDDTsmUITz75\nJ954Yx6HDh3gk08+oqysjIYNGzJ58q0sWPAWMTHRlJZamTx5GhERY5kz5z7Cw3sRFRVJZmYm8+b9\ng0aNGl33+1SAqUCwV3O6+YeyNyWGFu1aceCIidi4NDoH+9q6NBERqQWWH/+Wvckxl9zvYDZhLbu2\nL8LvFhDKLa3HXfHxgQOHsHPnNiZPnsb27VsZOHAIISFtGDhwML/8sofPP/+Ul1/+2yWvW79+Ha1a\nhfDII3P54Yfvy/ewFBQU8Prr7+Dh4cFDD93LiRPHuf32mSxfvoTZs+/lX//6AIB9+6I4efIE7733\nMQUFBcyadRsDBw4GoEGDBrz11nu89947bNu2iWnT7rim9/5rOoR0FTeHRGA2mSnxP4jJVMayzSco\nq33TF0REpJ64EGC2A7Bjx1b69x/E1q0/8MAD9/Dee++QlZV12dedOnWSzp3DAOjWrUf5/Z6enjz9\n9FzmzLmP06fjyMrKvOzrDx8+SNeu3QFwdXWlZctWJCQkABAWduHoRUBAALm5uZd9fVVpD8xVBLj5\n0y+oF9sTd9G6SxbHos3sPnCePp2vf/eXiIjUbbe0HnfZvSXVOQupVasQ0tJSOH/+HDk5OWzfvgU/\nvwCeffYlDh8+yLvvvnnZ1xkG5fP/yv6zd6ikpIQ33vgrCxd+ga+vH0888YcrrtdkMvHr/9+XlpaU\nL8/B4X/faH+jRjBqD0wljAkejpODE5kNDmBxtLJ82wlKSmt2bLiIiEhl9enTnw8/XMCAAYPIysqk\nSZOmAGzdupnS0tLLvqZ58xYcPnwIgKioSADy8/NwcHDA19eP8+fPcfjwIUpLSzGbzVitF/8ebN++\nE3v3/vKf1+WTmHiGpk2bV9dbVICpDE8nD4Y3G0huaS6tu6WRll3ED78k2rosERGRyxo0aAgbN65n\n8OBhRESM5auvPuexxx6iU6fOpKWlsWbNqkteExExlgMHYnj00QdISDiNyWTCy6sh4eG9+N3v7uST\nTz7ijjtm8vbbb9CiRTBHjhzm7bdfL399WFhX2rVrz0MP3ctjjz3E/ffPwdXVtdreo8m4UftyalB1\njiC/0m69wtJCnt/1V4qsxRTHDMJsdea1+/vQwMWx2mqRi9WF8fN1kfpiv9Qb+6XeVI6/v8cVH9Me\nmEpysbgwJng4xWXFtAg7S15hKWt2nbZ1WSIiIvWSAkwV9Avqhb+rLwnWgzT0LWFj5BnSsgptXZaI\niEi9owBTBQ5mB24OGU2ZUUZgx3hKrWUaMSAiImIDCjBV1M0/lBaezYgvOkZgk2J2xZ4j/ryOY4qI\niNQkBZgqMplMTAoZA4B7q2MYGCzbesLGVYmIiNQvCjDXoI13CJ1925NUlECLNgXEnkzn4Kl0W5cl\nIiJSbyjAXKMJIWMwYaKs0SHAYKlGDIiIiNQYBZhrFOTeiF6Ne5BalELbLrmcPp/DzwfP27osERGR\nekEB5jqMCx6Jo9lClkcMFksZy7edpKS0zNZliYiI1HkKMNfB26Uhg5v2J7skmzbdMknNKmTzXo0Y\nEBERqW4KMNdpZIvBuFlcOW/Zj6tbGat3xpFfWGLrskREROo0BZjr5OboxqiWQymwFhLc9Tx5haWs\n/Sne1mWJiIjUaQowN8CgJn3xdm5IvDWWht5WNkQmkJ6tEQMiIiLVpVoDzNGjRxk+fDiLFy8GoKSk\nhLlz5zJlyhRmzZpFVlYWAKtWrWLy5MlMnTqVpUuXVmdJ1cLRwZHxrUZhNaw07nyGktIyvtkeZ+uy\nRERE6qxqCzD5+fm89NJL9OnTp/y+JUuW4O3tzbJlyxgzZgyRkZHk5+czf/58Fi5cyKJFi/j000/J\nzMysrrKqTXijbjRxb8zposMENilhZ+xZziTn2rosERGROqnaAoyTkxMfffQRAQEB5fdt3ryZm2++\nGYBbb72VYcOGER0dTWhoKB4eHri4uNC9e3eioqKqq6xqYzaZmRAyBgMDr5CTGAYaMSAiIlJNqi3A\nWCwWXFxcLrovMTGRbdu2MXPmTB577DEyMzNJTU3Fx8en/Dk+Pj6kpKRUV1nVqqNPW9p6tyahMI4W\nrYvYfyKNQ6czbF2WiIhInWOpyZUZhkFwcDBz5sxhwYIFfPDBB3Ts2PGS51yNt7cbFotDdZWJv7/H\nNb/27p5TeGrDa1iaHYXjnVmxI47+3ZthNptuYIX11/X0RqqP+mK/1Bv7pd5cnxoNMH5+foSHhwPQ\nv39/3nnnHQYPHkxqamr5c5KTk+natWuFy8nIyK+2Gv39PUhJybnm13vgQ4+AMH5JjqZtaCuOxphY\nt+MEN3UIvIFV1k/X2xupHuqL/VJv7Jd6UzkVhbwavYx64MCBbN++HYADBw4QHBxMWFgYMTExZGdn\nk5eXR1RUFD179qzJsm64m0MicDA5kOsVi4ODwddbT1Bq1YgBERGRG6Xa9sDExsYyb948EhMTsVgs\nrF+/nr///e+8/PLLLFu2DDc3N+bNm4eLiwtz587lnnvuwWQy8dBDD+HhUbt3q/m5+tK/SW+2ntlJ\nu27ZHIw0sXlvIiN6NrN1aSIiInWCyajMSSd2pjp3u92o3Xo5xbk8v2seDiYH8vb2xwFnXvt9H9xc\navSoXZ2iXa72SX2xX+qN/VJvKsduDiHVJx5O7gxvPpi80nxCuqaRW1DCut2nbV2WiIhInaAAU42G\nNh+Al5MHCcZ+vBqWsWFPAhk5RbYuS0REpNZTgKlGzg5OjAkeQXFZCc1Cz1JcWsbKHSdtXZaIiEit\npwBTzfo0DifQzZ+4ogMENi5j+/6zJKbm2bosERGRWk0Bppo5mB24OWQ0ZZTh0zYOw4Cvt2jEgIiI\nyPVQgKkBYX6daOXVglMFx2jRqpR9x1M5Eq8RAyIiItdKAaYGmEwmJoaMBcDS7DBgsHTLiUqNTRAR\nEZFLKcDUkJCGLeni14mkgjO07VzEyaRsfjlSO4dWioiI2JoCTA2aEBKBCRMFPrE4mA2WacSAiIjI\nNVGAqUGNGgTSNyic1MJUOnTLIzmjgK37kmxdloiISK2jAFPDxgSPwNHsSIpLNM7OsGpnHAVFpbYu\nS0REpFZRgKlhDZ29GNpsANklObTrnk5Ofgnf7Y63dVkiIiK1igKMDYxoMYgGjm4kEI2np8H6PfFk\n5mrEgIiISGUpwNiAq8WV0S2HU2gtomXYeYpLyli5I87WZYmIiNQaCjA20r9Jb3xdfDhZHENAoMH2\n6LMkacSAiIhIpSjA2Iij2cLNrUZhNawEtI+nzDD4eqtGDIiIiFSGAowNdQ8Mo5lHE04UHKJ5sJW9\nx1I5dibT1mWJiIjYPQUYGzKbzEwMGQOAa4vjACzZfFwjBkRERK5CAcbG2vu0oYNPW+Lz42jXsYQT\nidlEHdWIARERkYoowNiBCSFjMGGiyP8AZhMs23pSIwZEREQqoABjB5p5BNEzsBvnC87RqVsB59Pz\n2R6tEQMiIiJXogBjJ8a3GonF5EBag2icnWDlzlMUFmvEgIiIyOUowNgJX1cfBjbtS0ZRJh16ZJOd\nV8z6nxNsXZaIiIhdUoCxI6NaDsXV4kKCaS8eHia+2x1PlkYMiIiIXEIBxo64OzZgZPMh5JcWENIt\nhaISK6t2nrJ1WSIiInZHAcbODG7Wn4bOXpws3oe/P2zdl8TZNI0YEBER+TUFGDvj5ODI2OCRlJSV\nEtQpkTLDYPnWk7YuS0RExK4owNih3o170LhBIMfyY2newuCXoykcT8yydVkiIiJ2QwHGDplNZiaE\njMbAwKPVhb0vGjEgIiLyPwowdqqzbwdCvII5mXeMdh3KOH4mi33HUm1dloiIiF1QgLFTJpOJSa0v\nDHq0Bh78z4iBE1jLNGJAREREAcaOBXu1oKt/KIn5Z+jUtZizafls33/W1mWJiIjYnAKMnbs5JAKz\nyUymRzROjrByexxFxVZblyUiImJTCjB2LtDNn35BvUgtTKNTjzyy8opZvyfe1mWJiIjYlAJMLTC6\n5XCcHJxIdNiLu7uJdbvjyc4rtnVZIiIiNqMAUwt4OXswrNlAckpyadstnaJiK6t2xtm6LBEREZtR\ngKklhjcfiIejOydL9+LnZ2brviTOp+fbuiwRERGbUICpJVwsLowOHk6RtZjmoWexlhl8vU0jBkRE\npH5SgKlF+gf1wt/VlyP50TRvZiLycDInkjRiQERE6h8FmFrEwezAzSGjKTPKaNjmFABLN5/QiAER\nEal3FGBqmW7+obTwbMax3EO0awdHEzKJPp5m67JERERqlAJMLWMymZgYcmHEAEGHMZkMjRgQEZF6\nRwGmFmrrHUIn3/bE550itKuVpNQ8dsacs3VZIiIiNUYBppaaEDIaEyayPWNwspj4ZvtJiko0YkBE\nROoHBZhaqol7Y3o16sH5gvOE9iwgM7eYDXsSbF2WiIhIjVCAqcXGtRqJo9lCkmUvDdzMrP3pNNn5\nGjEgIiJ1nwJMLebt0pDBTfuTWZxFhx5ZFBZb+XbnKVuXJSIiUu0UYGq5kS0G42Zx5aT1F/x8zGze\nm0hyhkYMiIhI3aYAU8u5OboxquVQCkoLaRmWjLXMYLlGDIiISB2nAFMHDGrSF2/nhhwp2Efzpg78\nfCiZuLPZti5LRESk2ijA1AGODo6MbzWK0rJSfNvFA7B083GNGBARkTpLAaaOCG/UjSbujTmSE0u7\ntmYOx2cSc1IjBkREpG5SgKnWfpezAAAgAElEQVQjzCYzE0LGYGBgaXoUkwmWbjlBWZn2woiISN2j\nAFOHdPRpS9uGIZzMPU6XLpCYkseaXadsXZaIiMgNpwBTh5hMJia2vjDoMc8nBh9PJ1Zsj+OnA5qT\nJCIidYsCTB3TwrMZPQLCSMxLZNQIR1ydLXy89hBH4jNsXZqIiMgNowBTB41vFYGDyYEdqVt4YGIH\nDAPeXR7D2bQ8W5cmIiJyQyjA1EH+br70b9Kb1II0jpT+xF2j25NXWMo/lkSTladZSSIiUvspwNRR\n44JHEugWwKaE7Vi945jQP5jUrELeXhZNUbHV1uWJiIhcFwWYOsrN0ZUHw2bj7tiAJUdX0qpdAf1C\nGxF3NocPVx/Q5dUiIlKrKcDUYX6uvtzfZTYWswMfH/yCYf086NDCm73HUvnyh2O2Lk9EROSaKcDU\nccFezbmr4+2UWEv4MHYh08c0o4lfAzb+cobv9yTYujwREZFrogBTD3QNCGVS67FkFefwyeHPuP+W\ndni5O/HVD8f45UiKrcsTERGpsmoNMEePHmX48OEsXrz4ovu3b99Ou3btym+vWrWKyZMnM3XqVJYu\nXVqdJdVbQ5sNYGCTviTlnWNF/DIentwZJ0cHPlx9gBNJWbYuT0REpEqqLcDk5+fz0ksv0adPn4vu\nLyoq4sMPP8Tf37/8efPnz2fhwoUsWrSITz/9lMzMzOoqq94ymUxMaTOezr7tOZR+lF2ZG7l/Qkes\nVoO3l+0nOSPf1iWKiIhUWrUFGCcnJz766CMCAgIuuv/999/njjvuwMnJCYDo6GhCQ0Px8PDAxcWF\n7t27ExUVVV1l1WsOZgdmd5pOM/cgfjz7M+ctscwY2Zac/BL+sXQ/uQUlti5RRESkUqotwFgsFlxc\nXC66Ly4ujsOHDzN69Ojy+1JTU/Hx8Sm/7ePjQ0qKzsuoLi4WZ+4Pm423c0NWnlyHe1AKo3s153x6\nPu98vZ+SUn1HjIiI2D9LTa7s1Vdf5ZlnnqnwOYZx9e8n8fZ2w2JxuFFlXcLf36Palm0P/PHgT+5z\nePaHv7P40BL+NPgRcouasH1fIp9vPM7c6T0wm022LvOy6npvaiv1xX6pN/ZLvbk+NRZgzp8/z8mT\nJ/njH/8IQHJyMjNmzODhhx8mNTW1/HnJycl07dq1wmVlVOP5Gv7+HqSk5FTb8u2FK57c03kGC6I/\n5m/b3+cP/R7gbGou2/Yl4u5iYcrgEFuXeIn60pvaRn2xX+qN/VJvKqeikFdjl1EHBgayceNGlixZ\nwpIlSwgICGDx4sWEhYURExNDdnY2eXl5REVF0bNnz5oqq17r4NOW29vdQl5pPh/GLuSem0MI9HZl\n7U+n2bIv0dbliYiIXFG17YGJjY1l3rx5JCYmYrFYWL9+Pe+88w4NGza86HkuLi7MnTuXe+65B5PJ\nxEMPPYSHh3ar1ZS+QTeRWpDO+tObWHzscx6eMoPXFu9n8fqj+Hi40CXE19YlioiIXMJkVOakEztT\nnbvd6uNuvTKjjE8Pfknk+X10D+jCoIbj+NuX+zCbTTw9vTvNA+0jUNbH3tQG6ov9Um/sl3pTOXZx\nCEnsl9lkZkaHaYR4tSQqeT8HinZx77iOFBdbeXNpNOnZhbYuUURE5CIKMAKAo9nCfV1mEeDqx/en\nN1PkEce0oa3JzC3mH0ujyS8stXWJIiIi5RRgpJy7YwMeCLsbd8cGfHl0BU1b5TOse1MSU/J475sY\nSq1lti5RREQEUICR3whw8+P3XWZhNpn5+MDnDOjdgK6t/ThwKoPPvjtSqe/pERERqW4KMHKJVl4t\nmdXxNgqtRXwQs5BbRzWlZSMPdsScZfWPp2xdnoiIiAKMXF73gC5MDBlDZlEWHx/6jPsntcPX04Vv\ntsexK/acrcsTEZF6TgFGrmh480H0D+rFmdwklp5ayqNTQ3FztvDx2kMcOp1h6/JERKQeU4CRKzKZ\nTExrO5GOPu04mHaE7ekbeGhSZwDeXR5DYmqejSsUEZH6SgFGKuRgduCeztNp4t6YHYk/kWiO4e4x\nHSgoKuXNJdFk5RbZukQREamHFGDkqlwsLjzQZTYNnb1YcXwNzgHJTBoQTFp2IW8u209RsdXWJYqI\nSD2jACOV4u3SkAe6zMbZwYnPDn5Jx04mBnRpzOlzOXyw6gBlZbq8WkREao4CjFRaU48g7uk8A6tR\nxocxnzJ6oB+dWnqz73gqX2w8qu+IERGRGqMAI1XSybc9t7adSG5JHh/EfsJd40Jo6t+ATVGJfL8n\nwdbliYhIPaEAI1XWv0lvRjQfTHJ+Kp8e+Zw5kzvR0N2JJZuOE3k42dbliYhIPaAAI9fk5pAIugV0\n4URWHGsSV/HolC44OTnw0bcHOZ6YZevyRESkjlOAkWtiNpm5s8OtBHu2IPL8Pvbn7+LBiZ2xWg3e\nXraf8xn5ti5RRETqMAUYuWZODo78vsss/Fx9+e7UD+S4nGTmqLbkFpTwjyXR5OQX27pEERGpoxRg\n5Lp4OLnzYNjdNLC48e8jXxPYPJ+xfVqQnFHAO8tjKCnVd8SIiMiNpwAj1y3QzZ/7uszCjImPYhbR\nq7sbvToGcvxMFh99e4gyXV4tIiI3mAKM3BCtGwYzs8M0Cq2FvL//EyYPa0Lbpl5EHk5m2ZYTti5P\nRETqGAUYuWF6NurG+FYRZBRl8s+Dn3LvxHY08nHju93xbI46Y+vyRESkDrnmAHPq1KkbWIbUFaNa\nDKFv43ASchJZenIpj0wNxcPNkcUbjhJ9PNXW5YmISB1RYYCZPXv2RbcXLFhQ/vfnnnuueiqSWs1k\nMnFbu1to792GmNRDbEvZwMOTQ3F0MPP+ygOcOpdt6xJFRKQOqDDAlJaWXnT7p59+Kv+75t7IlTiY\nHfhd6AyCGjRi65kfiS+L4b6bO1FcYuWtpftJzSqwdYkiIlLLVRhgTCbTRbd/HVp++5jIr7laXHkg\nbDZeTh4sP/YtDt7nuW1YG7Lyinlr6X7yC0tsXaKIiNRiVToHRqFFqsLHxZv7w2bj6ODIJwf+TZt2\nBsN7NiUxNY/5K2IptZbZukQREamlKgwwWVlZ7Nq1q/xPdnY2P/30U/nfRa6muUdT7u50B6Vlpbwf\nvZDhfXzp1saPQ6czWLjusA5FiojINbFU9KCnp+dFJ+56eHgwf/788r+LVEaoX0emtZ3AV0e/4YOY\nT5gz+n4yc4v5MfYc/g1dmdA/2NYliohILVNhgFm0aFFN1SF13MCmfUkpSGNTwnY+O/w5D90yk9cW\n72Pljjj8vFzoF9rY1iWKiEgtUuEhpNzcXBYuXFh++8svv2TChAk88sgjpKbqOz2kaia1HktX/84c\nzTzBtwmr+cPULjRwsbBw3WEOnkq3dXkiIlKLVBhgnnvuOdLS0gCIi4vjjTfe4Mknn6Rv3768/PLL\nNVKg1B1mk5lZHW+jhWczdp/7hb05u5hzSygmE8xfEcOZlFxblygiIrVEhQEmISGBuXPnArB+/Xoi\nIiLo27cvt912m/bAyDVxcnDi/i534eviw9q4DWQ6nuTusR0oKLLy5tJoMnKKbF2iiIjUAhUGGDc3\nt/K///zzz/Tu3bv8ti6plmvl6eTBg2F342px5fPDy/BpnMvkQa1Izy7i7WX7KSwuvfpCRESkXqsw\nwFitVtLS0oiPj2fv3r3069cPgLy8PAoK9G2qcu0aNQjg96F3AvBhzGd0D3VhYFhjTp/P4f2VB7CW\n6TtiRETkyioMMPfeey9jxoxh/PjxPPjgg3h5eVFYWMgdd9zBxIkTa6pGqaPaeIcwo8NUCkoLeW//\nJ9w8OIjOwT7sP5HG5xuO6TtiRETkikzGVX5LlJSUUFRUhLu7e/l9O3bsoH///tVe3JWkpORU27L9\n/T2qdflyqXVxG/k27ntaeDTj953u4Y0vY0lIzmXqkBBG92pR/jz1xj6pL/ZLvbFf6k3l+Ptf+Tvn\nKtwDk5SUREpKCtnZ2SQlJZX/adWqFUlJSTe8UKmfIloOo3ejnpzOSeCrE8t4ZEoo3h7OLN18gp8P\nnbd1eSIiYocq/CK7oUOHEhwcjL+/P3DpMMfPPvusequTesFkMnF7+1tIL8okOiUWXxdv/jB1CK8u\n/oV/fnsIbw9n2jRtaOsyRUTEjlR4CGnlypWsXLmSvLw8xo4dy7hx4/Dx8anJ+i5Lh5DqpvySAl6P\nWsC5vPNMbTsBv5L2vLlkP67ODjxzZ086twtUb+yQPjP2S72xX+pN5VzzIaQJEybw8ccf8+abb5Kb\nm8v06dP53e9+x+rVqyksLLzhhUr95uboyoNdZuPh5M6yo6swPM5zZ0Q78gpL+ceSaLJy9R0xIiJy\nQYUB5r8aN27Mgw8+yLp16xg1ahR/+ctfbHoSr9Rdvq4+PNBlNo5mCx/Hfk7L4DLG9W1BcmYBT83f\nQVJqnq1LFBERO1CpAJOdnc3ixYu55ZZbWLx4Mb///e9Zu3Ztddcm9VQLz2bc1ekOSspKeW//JwwK\n92bUTc04k5zLS59FEnk42dYlioiIjVV4DsyOHTv4+uuviY2NZeTIkUyYMIG2bdvWZH2XpXNg6ofN\nCTtYdmwVjRsEMrfHg5w+V8JbX+2lqMTKqJuaMWVwCA7mSmVwqUb6zNgv9cZ+qTeVU9E5MBUGmPbt\n29OyZUvCwsIwX+YXxauvvnpjKqwiBZj6Y+nRlWw5s5P23m14bvijxB5JYf7yGM6l59O2WUMemNAJ\nL3dnW5dZr+kzY7/UG/ul3lRORQGmwsuo/3uZdEZGBt7e3hc9dubMmRtQmkjFJrcZT1phBjGpB3nz\nx39ya8gtPDurJx+vOcQvR1N4fuEeHpzYWZdZi4jUMxXufzebzcydO5dnn32W5557jsDAQG666SaO\nHj3Km2++WVM1Sj1mNpmZ3ekO2jRsxc+J+/hb5Ltklabz4KTOTBvSmuy8Yv76xV42RCZo9ICISD1S\n4SGk6dOn8+KLLxISEsIPP/zAZ599RllZGV5eXjz77LMEBgbWZK3ldAip/rGWWVmftJE1R3/A2cGJ\nmR1upVtAKIdPZ/D+yliy80vo1TGQWRHtcHGqcMei3GD6zNgv9cZ+qTeVc83fA2M2mwkJCQFg2LBh\nJCYmcuedd/Luu+/aLLxI/eRgdmBWtync3ekODOCfsYtYcXwNbZp58ufZNxHSxJPdB8/z8me/cC49\n39bliohINaswwJhMpotuN27cmBEjRlRrQSIV6RHYlf/rMYcANz82xm/lnX0f4eBczJN3dGdYj6Yk\npubx4sI9/HIkxdaliohINarSNai/DTQithDk3ognej5CmH9njmWeZN6et4nPTWD6iLbcO74jZYbB\n/BUxLN1yHGtZma3LFRGRalDhOTChoaH4+vqW305LS8PX1xfDMDCZTGzZsqUmaryEzoGpn37bG8Mw\n2Bi/lZUn1mE2mZnSZjwDmvQhMSWPd1fEkJxRQPvmDbl/Qmc8GzjZsPK6TZ8Z+6Xe2C/1pnKu+Xtg\nEhMTK1xwkyZNrr2q66AAUz9dqTdH0o/z8YHPyS3J46ZG3bm93S2Ulpj515qD7D2WireHMw9O7ExI\nEy8bVF336TNjv9Qb+6XeVM41Bxh7pQBTP1XUm4zCTP4Zu5hT2fE0cW/MvZ3vxNfVh3U/nWb5tpOY\nTSZuG9aGod2b6FDoDabPjP1Sb+yXelM513wVkkht4e3SkD90v//CIaTcs8yLfIsDaYcY26clc2/t\niquzhc83HOWf3x6kqMRq63JFROQ6KcBIneFotnBbu0nM7DCN0rJS3t+/kNUn19O+RUOenx1OcGNP\ndh24cKn1+Qxdai0iUpspwEid07txT+b2mIOviw/fnfqBBdEf4+Rq5anp3RnSrQlnUnJ5cWEke4/p\nUmsRkdpKAUbqpGYeQTwV/gidfdtzKP0o8/a8zdn8JGaOasc9YztQai3jna9jWL7tBGVlte40MBGR\nek8BRuosN0c3ft/lLsYGjyCjMJPXoxbwY9LP9AttzJ9m9sC/oQvf/niafyzZR05+sa3LFRGRKlCA\nkTrNbDIzJngED4TNxsnsyOeHl/H5oWU09nPhubvCCQvx5cCpDF5YuIeTSdm2LldERCpJAUbqhU6+\n7Xky/FGauQfx49mfeSNqAYVGLg9P6cKkAcFkZBfx2ue/sGVvoqZai4jUAgowUm/4ufrweI+H6N24\nJ/E5iczb8xaH048yvl8wj00Lw9nRgc/WH+HjtYco1qXWIiJ2TQFG6hUnB0dmtJ/KHe0mU2QtYkH0\nx6yL+4GOwd78+a5wWjTyYGfMOV5Z9AvJmQW2LldERK5AAUbqHZPJRL8mvXi8x4M0dPbi27j1fBjz\nKW4N4P/N6M7AsCDik3N58ZM97D+RautyRUTkMqo1wBw9epThw4ezePFiAM6ePctdd93FjBkzuOuu\nu0hJufA9HKtWrWLy5MlMnTqVpUuXVmdJIuVaeDbjqfBHae/dhpjUQ8yLfJvkwmTuGt2e2aPbU1xa\nxptL9/PN9pO61FpExM5UW4DJz8/npZdeok+fPuX3vfnmm0ybNo3FixczYsQIPvnkE/Lz85k/fz4L\nFy5k0aJFfPrpp2RmZlZXWSIXcXdqwENd72FUi6GkFqTxt8h3+flcFAPCgvjTzB74ebmwaucp3lwW\nTW5Bia3LFRGR/6i2AOPk5MRHH31EQEBA+X1//vOfGTVqFADe3t5kZmYSHR1NaGgoHh4euLi40L17\nd6KioqqrLJFLmE1mbg6J4L7QWTiYHPj04Jd8deQbmgS48txd4XRu5UPsyXRe+GQPp87pUmsREXtg\nqbYFWyxYLBcv3s3NDQCr1coXX3zBQw89RGpqKj4+PuXP8fHxKT+0dCXe3m5YLA43vuj/qGj6pdhW\ndfZmuH9vOjVrxd93fsC2xB85W3iWuX3v4+UH+vPlhiN8ueEIry6O4v5bujCyV4tqq6M20mfGfqk3\n9ku9uT7VFmCuxGq18sQTT9C7d2/69OnD6tWrL3q8Mt/BkVGNg/g04tx+1URvLLjyWNcH+eLwMiLP\n7+P/vnuZuztPZ0T3EAK9nPlw1UHeWbKP6CPnmT6iLY7VGKRrC31m7Jd6Y7/Um8qpKOTV+FVITz/9\nNC1atGDOnDkABAQEkJr6vys9kpOTLzrsJFLTnB2cuKvj7UxtM4G80nze2fcRG+O3EtrKl+dmh9M8\nwJ1t0Wd5ZXEUqbrUWkTEJmo0wKxatQpHR0ceeeSR8vvCwsKIiYkhOzubvLw8oqKi6NmzZ02WJXIJ\nk8nE4Gb9+EO3+/FwbMCK42v4Z+xiPN1N/L+ZPegX2ojT53J4YeEeYk+m2bpcEZF6x2RU0/emx8bG\nMm/ePBITE7FYLAQGBpKWloazszPu7u4AhISE8Pzzz/Pdd9/xr3/9C5PJxIwZM7j55psrXHZ17nbT\nbj37ZaveZBXl8PGBxRzPjCPQLYD7QmcS6BbA1ugkvthwFKvVYMKAYMb1bYnZZKrx+mxNnxn7pd7Y\nL/Wmcio6hFRtAaY6KcDUT7bsjbXMyjcn1rIpYTtODk7M7DCN7gFdiDubzfwVMaRnF9ElxJd7x3ek\ngYujTWq0FX1m7Jd6Y7/Um8qxq3NgRGojB7MDk9uM5+5O0wH4V+xilh/7luaBDfjzXeF0aunN/hNp\nvLhwD/Hn9Y+SiEh1U4ARqYIegWE80fNhAt38+SFhG+/s+4gyhyIem9aVcX1bkJJZyMuLfmFnzFlb\nlyoiUqcpwIhUUeMGgfxfz4fp6t+ZY5knmbfnTeKyT3PLwBAemdwFi4OZf605xGfrj1BSWmbrckVE\n6iQFGJFr4Gpx4XedZzIxZAzZxbm8ufd9tiTsJKy1L8/d1ZOm/u5s2ZvIa59HkZZVaOtyRUTqHAUY\nkWtkMpkY0WIwj3S7FzeLK0uPrWThwX/T0NPCn+7sQZ9OgcSdzeaFhXs4cCrd1uWKiNQpCjAi16mt\nd2ueCn+Ulp7NiTy/j79HvktWSTq/G9eRGSPbUlBUyhtf7ePbH09RVvsu+hMRsUsKMCI3gLdLQ/7Q\n/X4GNulDUt455u15h/2pBxnavSlPTe9OQ3dnlm87ybtfx5BfqKnWIiLXSwFG5AZxNFu4td0k7uxw\nK1bDyocxn7LqxHcEB3nw57vCad+8IfuOp/Lip5EkJOfaulwRkVpNAUbkBuvVuAd/7PEQfi4+rD+9\nifn7/oXZsYS5t3VldO/mJGcU8OLCPXyx8Si5BdobIyJyLRRgRKpBU48gngx/hM6+7TmccYzX9rzF\nmdxEpg5uzSOTu+Dt4czGyDM8+f4u1v10mpJSq61LFhGpVRyef/75521dRFXl5xdX27IbNHCu1uXL\ntattvXF0cKRHYBgOJgdiUg+y+2wknk4ehLdow5BuTXF3sXDsTCb7jqexK/Yc7q6ONPF3x1TL5inV\ntr7UJ+qN/VJvKqdBA+crPqYA8xvaqOxXbeyNyWSijXcrWno2Jzb1EFEp+8koyqKTXzvaNvNhUNcg\nDAMOnc4k8kgK+46nEuDtin9DV1uXXmm1sS/1hXpjv9SbylGAqQJtVParNvfG382P7gFdOJ4Vx4G0\nw8SkHiTAzY8gD386BfvQp3MgOQUlHIjL4MfYc5xMyqZZgDueDZxsXfpV1ea+1HXqjf1SbyqnogCj\nadS/oQmh9qsu9KbEWsLSY6vYmbQbgI6+7ZgUMpYg90YAnDqXzZJNxzkcn4nJBP1CGzNpQCu8Pa78\nIba1utCXukq9sV/qTeVUNI1aAeY3tFHZr7rUm/jsM6w4voajmScwYaJP456MbTWShs5eGIZBzMk0\nlm4+QWJqHk4WMyNvasboXi1wdbbYuvRL1KW+1DXqjf1SbypHAaYKtFHZr7rWG8MwOJB2mBUn1nIu\n7zxOZkeGNR/I8OaDcLG4YC0rY2fMOVZsP0lWbjEebo5M6B/MwLAgLA72cwFhXetLXaLe2C/1pnIU\nYKpAG5X9qqu9sZZZ+elcJGtOfk9WcQ4eju6MCR5Bv6CbcDA7UFRsZf2eeNbtjqeo2EqgjxtTB4fQ\nrY2fXVyxVFf7UheoN/ZLvakcBZgq0EZlv+p6b4qsxfwQv5UN8VspthYT6ObPhJAxdPHriMlkIiuv\nmFU74ti6L4kyw6BNUy+mDWlNSBMvm9Zd1/tSm6k39ku9qRwFmCrQRmW/6ktvsopyWBv3PT+e3UOZ\nUUaIVzCTWo8l2Ks5AGfT8li25QR7j6UC0LOdP5MHhxDo7WaTeutLX2oj9cZ+qTeVowBTBdqo7Fd9\n6825vPN8c2IdMakHAege0IUJIaPxc/UF4GhCJl9tOk7c2WwczCaGdGvC+H4t8XCr2Uuv61tfahP1\nxn6pN5WjAFMF2qjsV33tzbGME6w4vpbTOQk4mBwY2LQPES2H4e7YAMMw2HM4ma+3niAlsxBXZwfG\n9mnJ8B5NcXJ0qJH66mtfagP1xn6pN5WjAFMF2qjsV33uTZlRRlTyflad+I60wnRcLS6MajGUwU37\n4ejgSElpGVv2JrJqZxx5haX4eDozaUAr+nRuhLmaT/Stz32xd+qN/VJvKkcBpgq0Udkv9QZKykrZ\nfuZH1p36gfzSArydG3JzSAQ9A7tiNpnJLyxhza7TbIg8Q6m1jGYB7kwb0ppOwT7VVpP6Yr/UG/ul\n3lSOAkwVaKOyX+rN/+SX5PPd6U1sTdhJqWGlmUcTJoWMpZ1PawDSsgpZvu0kuw6cA6BzsA9Th7Sm\nWYD7Da9FfbFf6o39Um8qRwGmCrRR2S/15lJpBemsOvkdkef3AZeOJjh9Loclm49z6HQGJi6MJpg4\nIBgfT5cbVoP6Yr/UG/ul3lSOAkwVaKOyX+rNlV1tNEFsXDpLNh8nMeXCaIIR4c0Y0/vGjCZQX+yX\nemO/1JvKUYCpAm1U9ku9qdjVRhOUlRnsjDnLiu0nyfzPaIKb+wUzqOv1jSZQX+yXemO/1JvKUYCp\nAm1U9ku9qRxrmZWfzkbybdz3ZF9hNMH3kQms/en0hdEE3q5MGRxC97b+1zSaQH2xX+qN/VJvKkcB\npgq0Udkv9aZqCkuL2JSw7YqjCbLzilm5M46tey+MJmjd5MJogtZNqzaaQH2xX+qN/VJvKkcBpgq0\nUdkv9ebaVGY0wddbTxJ1NAWAHu38mTIohECfyo0mUF/sl3pjv9SbylGAqQJtVPZLvbk+lRlNsHTz\ncU4kXRhNMPg/owk8rzKaQH2xX+qN/VJvKkcBpgq0Udkv9ebGuNpogl+OpLBsywmSMwtwdXZgTO8W\njOjZ7IqjCdQX+6Xe2C/1pnIUYKpAG5X9Um9unKuNJii1lrF5byKrd54it6AEb48Lown6dm6E2Xzx\nib7qi/1Sb+yXelM5CjBVoI3Kfqk3N97VRxOUsvan02yITKCk9MJogqlDQugc7Fu+DPXFfqk39ku9\nqRwFmCrQRmW/1JvqU5nRBCu2n2RX7DkMoFOwD1MHh9A80EN9sWPqjf1SbypHAaYKtFHZL/Wm+l1t\nNEH8+RyWbj7OgVMXRhP07dyIeyZ2gdJSG1YtV6LPjP1SbypHAaYKtFHZL/Wm5lQ0mgAg9mQaSzYf\n50xKHo4WMzd1CGBIt6YEN/a4pi/Dk+qhz4z9Um8qRwGmCrRR2S/1pmZVZjTBj7HnWLv7NOfS8gFo\nEejBkO5N6NUhEGeny1+1JDVHnxn7pd5UjgJMFWijsl/qjW1cbTSBr687W/ecZvPeRPYdT8UwwNXZ\ngb6dGjO4WxBN/N1t/RbqLX1m7Jd6UzkKMFWgjcp+qTe2daXRBMM69CI1NReA9OxCtkUnsTU6iazc\nYgDaNmvI4G5B9GgbgKPl2odGStXpM2O/1JvKUYCpAm1U9ku9sQ+/HU3Qwb81Axv1o7NfB8ymCwGl\n1FpG9PFUNu9N5OCpDAA83BwZ0CWIQV2D8G/oasu3UG/oM2O/1JvKUYCpAm1U9ku9sS+/HU3g7dyQ\nfkG96Bt0E17O//tH51x6Plv2JrIz5ix5haWYgM6tfBnSrQldQnwv+WI8uXH0mbFf6k3lKMBUgTYq\n+6Xe2Kc8SxarYjfy85A4GqkAAB5iSURBVPm9FFuLMZvMhPl3ZmCT3rRpGFJ+VVJxiZU9h5PZsjeR\nE0nZAPh4OjMoLIiBYUF4uTvb8m3USfrM2C/1pnIUYKpAG5X9Um/s03/7UlBayJ5zUWxP/ImkvHMA\nBLoFMKBJb3o16oGb4/8OG8Wfz2HL3kR2HThPUYkVB7OJbm39GdKtCe2bN9Sl2DeIPjP2S72pHAWY\nKtBGZb/UG/v0274YhsH/b+9Og9uqDjYAv1osy1psyba8SV7iNcRJnBgCScCBAm2nZT4oayhN2v7p\ntMP0Rzt0SVMoZdppJ3SZTgtDWwozfGE6pIUudFqW8pUwBuKwJDiJs3hfJMu2FGuzZVnr9+PKshU7\nqURi68h+n5lMinytuep7rv3m3HPv7fcMod12BMcnTiAciyBHnoNrSregzbwd1fmViW1nZsM40jWG\nN4/bYHNMAwDKCjW4aasZ128qg1ads+KfZzXhMSMuZpMaFpg0cFCJi9mI6VK5+IJT6LB/gHZbB84H\nJgEAVXoz2sw7cE3pFqgUKgBS6em1efDmcRs+ODuBcCQGlVKOa68qxU1bzbxB3sfEY0ZczCY1LDBp\n4KASF7MRUyq5RGNRnJnsQbvtCE45zyCGGPKUalxXdjXazNtRpi1NbOv1B/HOSTsOH7fB4Q4A4A3y\nPi4eM+JiNqlhgUkDB5W4mI2Y0s1lMuDCO6Pv4d3R9+ANSt/XYKhFm3kHWkzNUMqVAIBoLIbTA5O8\nQd5l4DEjLmaTGhaYNHBQiYvZiOnj5hKJRtDp7EK79Qi63X0AAL1Kh+vLr8XOiutQlGdMbMsb5H08\nPGbExWxSwwKTBg4qcTEbMV2JXMamJ/D2aAc67B9iJjwDGWRoLlqPNvN2bChq4g3yPiYeM+JiNqlh\ngUkDB5W4mI2YrmQuwUgQH453ot3WgSHfCACgSG3EDRXbsaNiG/Sq+dNGvEHef8djRlzMJjUsMGng\noBIXsxHTcuUy7LWi3XYE749/hFA0BIVMga0lm9Bm3oG6gppL3iCvKD8Xu7aYsWtz+Zq+QR6PGXEx\nm9SwwKSBg0pczEZMy52LPzSDo2Mf4m1bB8b8EwCAcm0p2sw7cG1ZK/KU6sS2vEFeMh4z4mI2qWGB\nSQMHlbiYjZhWKpdYLIZedz/abR34yHEKkVgEKoUK20q3os28A5X6isS2vEGehMeMuJhNalhg0sBB\nJS5mI6ZM5OIN+vDu6Pt429YB16wbAFCTX4U283a0lrRApZAKylq/QR6PGXExm9SwwKSBg0pczEZM\nmcwlGoui6/xZtNs6cPr8OcQQg1apwXXl0g3ySjSmxLZefxDvnLDj8Edr5wZ5PGbExWxSwwKTBg4q\ncTEbMYmSi3NmEu+MHsW7o+9hKiSdNlpvbECbeTs2FW+AQi4VlKVvkKfEzo1luGmrGeZibSY/xhUl\nSja0GLNJDQtMGjioxMVsxCRaLqFoGJ2OU2i3HUGvewAAUKDKx/UV1+J683Uw5BYktl3qBnnVZXq0\nNprQ2mhCRZEmq08xiZYNzWM2qWGBSQMHlbiYjZhEzmV0agxvj3bgqP0YApEA5DI5NhVdhTbLDjQZ\n65NukPdRjxNvdY7i7JALkaj0Y7HUmIfWRhO2NppQW5EPeZaVGZGzWeuYTWpYYNLAQSUuZiOmbMgl\nEJ7Fh+Mfod12BCNTowAAU14RbjBvx/bya6DLmT9tNB0I4UTveRzrceBk/3kEQ1EAQIFWha0NxWht\nNGF9tRFKhfiPL8iGbNYqZpMaFpg0cFCJi9mIKZtyicViGPSOoN12BMcmOhGKhqGUK9Fashlt5h1Y\nl1+VdMooGIrg9KALx7od+KjXiamZEADpoZKb64qxtaEYm2qLkJerzNRHuqRsymatYTapYYFJAweV\nuJiNmLI1l+mQHx32D/C2rQMTM04AgFlXjuvKrkaLqRnFeUVJ20eiUfRaPTjW7cSxbgfOe6UrmZQK\nGTbUFKK10YSW+mIUaFUr/lkuJluzWQuYTWpYYNLAQSUuZiOmbM8lGoui29WHdlsHTji7EI1Jp4zM\nunJsLm5Gi6kZFl1F0sxMLBbD8PgUjvc4cKzbAWv8ZnkyAPWWAmxtMKG1yYSSDD9cMtuzWc2YTWoy\nVmC6u7vx4IMP4stf/jL27NkDu92O73znO4hEIjCZTPjZz34GlUqFl19+Gc899xzkcjnuu+8+3Hvv\nvZd8XxaYtYnZiGk15eIN+nDSeRonHF04O9mDcCwCADDmGtBikspMXcG6xCXZcyZcfhzrduJ4jwO9\nVg/mfqhaTFppEXCDCVWluhW/omk1ZbPaMJvUZKTA+P1+fPWrX0VNTQ2ampqwZ88efO9738OuXbvw\nmc98Br/85S9RVlaGz33uc7jzzjvx4osvIicnB/fccw+ef/55GAyGi743C8zaxGzEtFpzCYQDOD3Z\njROOLpw6fwYzYemUkUaZh03FG7DZ1IyrChuRq0g+ZeSZDqKzVzrNdHpwEuGI9CO2KF+NrY3FuLrR\nhHpLARTy5V8EvFqzWQ2YTWouVWCWbeWZSqXC008/jaeffjrx2tGjR/HYY48BAD7xiU/g2Wefxbp1\n67Bp0ybo9dJOtra24tixY7j55puXa9eIiP4rtVKN1pLNaC3ZjEg0gh53PzodXTjh7MLRsQ9xdOxD\n5MiVWF/YiJbiZmwsvgp6lQ4FWhV2tVRgV0sFZmbDONl/Hsd7nDjR58QbH1jxxgdW6PJysKVeuqJp\nQ40RqpzVdxdgouW2bAVGqVRCqUx++5mZGahU0r9WioqK4HA44HQ6UVhYmNimsLAQDofjku9tNGqg\nVC7fAX+pxkeZxWzEtBZyKSttRVtTK2KxGPpdw3jf9hHet3bipPM0TjpPQyaTYX1xPbaZN2ObuQWl\nOukxBlUWI27bVY9QOIqTvU4cOWXH0VN2vH1S+qNWKdC6vgTbN5Zj21Wl0Gmu7CLgtZBNtmI2lydj\n1/5d7MxVKme0XC7/ld6dBE7riYvZiGkt5pKPQtxSdjNuKbsZE34HTjhPo9PRhbOOXpxx9OB/P3oJ\nFdoytJiasdnUjEqdGTKZDJVFeai8sRb37FqH/lEvjndLi4DfPWHHuyfsUMhlaKoyJNbNGPW5l7Wf\nazGbbMFsUpORU0hL0Wg0CAQCUKvVGB8fR0lJCUpKSuB0OhPbTExMYMuWLSu5W0REH1uJxoRbq27E\nrVU3Ji8CdvXilcH/wyuD/wdjrgGbTc1oKW5GvUFaBFxvLkC9uQD33FSH0fN+HOt24Hi3A6cHXTg9\n6MLzr3djXXk+WhulU03lRavnGU1EV8KKFpidO3fitddewx133IHXX38dbW1taGlpwcMPPwyv1wuF\nQoFjx45h//79K7lbRERXRL5Kj+srrsP1FdctWgT8lvUdvGV9BxplHjYWX4WW4mZcVdSEXIUK5mIt\nzMVa/M/OGkx6AzjeIy0CPjfsxoDdi5fe6kdZoSb+WINirCvPvscaEF1py3YV0qlTp3DgwAHYbDYo\nlUqUlpbi5z//Ofbt24fZ2VlUVFTgpz/9KXJycvDqq6/imWeegUwmw549e3D77bdf8r15FdLaxGzE\nxFz+uwsXAbtnPQAQXwTcgM3FG7Epvgh4oamZEDp7nTje48Sp/vMIhqV71Bh0KuleM40mNFUZLvpY\nA2YjLmaTGt7ILg0cVOJiNmJiLumJxWIY9llxwtGFTmcX7NPjAAAZZKgtqEncb+bCOwHPhiI4PTCZ\neKzBdCAMAMjLVaKlvgitDSZsrC2EWjU/sc5sxMVsUsMCkwYOKnExGzExl8sz4XfihLMLJxxd6PcM\nIRa/Dd5Si4DnRKJRdI94pEXAPQ5MemcBAEqFHM01RumxBg3FqKsuYjaC4nGTGhaYNHBQiYvZiIm5\nXDneoA+nnGekK5pcPQhHpVmWpRYBz5l7rMGH3Q4c73HANvdYAxmwvroQdRV6NFUaUW8uQK6K95sR\nBY+b1LDApIGDSlzMRkzMZXkEwrM4M9mNzsSdgGcAYMlFwAuNT/oTi4D7Rz2Ixn/CK+Qy1JTrsb7K\niKYqA+rNBUmnm2hl8bhJDQtMGjioxMVsxMRclt/cIuATzi50OlJfBKzRqdHRacXZYTfODbsxNOZD\nNP4jXyGXoaZMj8YqA9ZXSTM0ebksNCuFx01qWGDSwEElLmYjJuaysmKxGEZ8NnTG182MTo8BWHoR\n8IXZzMyG0Wvz4OywC+eG3Ri0zxcauUyG6jI9mqoMWF9lQIPFwEKzjHjcpIYFJg0cVOJiNmJiLpl1\nqUXA11a1wJJbidqCmkWnmgCp0PTZPDg34sbZYRcG7T5E4uecZDKgulQ65dRYZUCjxQCNmoXmSuFx\nkxoWmDRwUImL2YiJuYjDF5zCybnHGixYBCyXyVGtr0SDsRYNhlrUFtRArVz8mILZYGR+hmbEjYFR\nb1KhqSqZm6ExorGyABp1zop+vtWEx01qWGDSwEElLmYjJuYipkB4FucxjvcHT6HX3Y8hnxXRmHQj\nPLlMjiq9BQ2GWjQYpUKTp1Qveo/ZUAR9Ng/ODrvRPexC38JCA6CyVIemSqN0yqnSAF0eC02qeNyk\nhgUmDRxU4mI2YmIu4lqYTSA8iwHPELrdfeh192PQO5IoNDLIUKW3oN64Do2GOtQZapCnzFv0frOh\nCPoTp5zc6B/1IByZLzSWEh2aqgxoqpSudGKhuTgeN6lhgUkDB5W4mI2YmIu4LpXNbCSIAc8Qelx9\n6IkXmkgsAkAqNJX6CtQbatForENdwTpochYXmmAogv5RL86NuHFu2IVemxfhSDTxdYtJi6YqaYam\nsdIAvWbxOpy1isdNalhg0sBBJS5mIybmIq50sglGghjwDKPHHS80nmGEFxQai64c9fE1NPWGWmhz\nNIveIxSOF5phN86NuNFr8yAUni80ZpMWTZVza2gMyNeu3ULD4yY1LDBp4KASF7MRE3MR1+VkE4yE\nMOgdTszQDHiHE4uCZZChQlcmraGJFxqdSrvoPULhKAbsXpyLLwrutXoSD6QEgIpibfyUkwFNVUYU\nrKFCw+MmNSwwaeCgEhezERNzEdeVzCY0V2jc/ehx9WPAO4RQvNAA0mXbDUapzDQYahfdVA8AwpG5\nQiOdcuqxeRAMzRea8iINmqqM8UJjgEG3+Eqp1YLHTWpYYNLAQSUuZiMm5iKu5cwmFA1jyDuCHlc/\netx96PcMIRQNJb5epi1FY3x2psFYi3zV4l9E4UgUg2M+aYZm2I0eqwezoUji66WFGqyvMiQWBhv1\nq6fQ8LhJDQtMGjioxMVsxMRcxLWS2YSjYQx5rfEZmj70ewYRXFBoSjUlifvQNBhqUZCbv/g9IlEM\njfviMzRudFvdmA3OFxqjPhc1ZXrUlOdjXbkeNWX5WXulE4+b1LDApIGDSlzMRkzMRVyZzCYSjWDI\nZ0Wvqx/dbqnQzEaCia+XaIrRYKhL3IvGkFuwxHtEMTw+hbPDLvSMeDAw5oVnKpi0jcmgRk1ZPtaV\n56OmTI/qMn1WPAKBx01qWGDSwEElLmYjJuYiLpGyiUQjGPbZ0OuOFxr3IAKR2cTXTXlFUqGJz9IY\n1YYl38flm8Wg3YuBMS8G7T4M2L2YDsyvxZEBKCvSxEuNNFtTVaKDKkex3B8xLSJlIzIWmDRwUImL\n2YiJuYhL5Gwi0QisU6OJU0697kEEIoHE14vVhWgwzs/QFKqNS75PLBaD0xPAgN2LwTEfBuN/Bxac\nepLLZDCbtInTTuvK82E2aaFUyJf9c16MyNmIhAUmDRxU4mI2YmIu4sqmbKKxKKy+eKFxS4VmJjyT\n+HqR2ojq/EpU6S2ozregUm9Z8vEH0nvFMD7pT8zQDI75MDzuS7qEW6mQo7JEh5pyPdbFZ2vKi7SQ\ny2XL/lmB7Momk1hg0sBBJS5mIybmIq5sziYai8I2ZU9ctt3nGcB0yJ+0TanGhCq9BVX5FlTpLajU\nm5d86jYgraexOaYTszQDYz5YJ6YSz3YCgNwcBapLdagpz08UmxJjHmSyK19qsjmblcQCkwYOKnEx\nGzExF3GtpmxisRgmAy4M+awY9loTfy887SSDDOXa0kSpqc63wKwtR45i6SuVQuEIrI5paZbG7sPA\nmBejzmks/K2oyVWiukyPdQuufCrMz73sUrOasllOLDBp4KASF7MRE3MR12rPJhqLwjlzPlFohrxW\njEzZEFxwtZNcJodZW5aYpanOr0SFtgwK+dKLemeDEQyN++ZnauxejLtmkrbJ1+RIszSJS7rz076L\n8GrP5kphgUkDB5W4mI2YmIu41mI20VgU435HvNSMYNhrhXVqNOmuwUq5EmZdOar1FlTlV6Jab0Gp\nxnTRUuMPhKRCM+ZLzNac9waStjHqc5NmaWrK9dCqL36PmrWYzcfBApMGDipxMRsxMRdxMRtJJBqB\nfXo8UWiGfVbYpsYST98GAJU8Bxa9OV5qLKjWW2DSFEMuW/pKJe90MOmqpwG7F57p5HvUlBjyUJO4\n8kmPqtL5e9Qwm9SwwKSBg0pczEZMzEVczObiQtEwRqfsGIoXmmGfFfbpcURj81cqqRW5qNSb44Wm\nEtX5FhSpC5dc/xKLxeCeCsavevJiwC6VmwvvUVNerEVNmR5X1RahQK1ERbEWRv3lr6lZrVhg0sAD\nXlzMRkzMRVzMJj3BSBDWKTuGvCNSqfFaMe53IIb5X5MaZd6CRcLS6SdDbsFFS43DE5BmaeYu6R73\nJT0eAQDychWoKNKiolj6Y47/zWLDApMWHvDiYjZiYi7iYjaXLxAOYMQ3mnT6yTFzPmkbfY5uwSJh\nC6r0lSjIXfoX79w9anyzUZzpd8LmnMaocxrjk/6kS7qB5GJjLtaiwqRFRdHaKjaXKjDiPzCCiIgo\nQ9RKtfR4A2Nt4jV/yI9hn23+cm6fFV3nz6Lr/NnENobcggWFRvqjU2khl8lQXqTFZpMejRXzv5zD\nkSjGXTMYdU7D5pjC6Hk/Rp3SfWv6Rr1J+5SXq0RFsUYqNUVSsTEX62DQqdZMsQE4A7MI/8UiLmYj\nJuYiLmazcnzBqcRpp7l71HiCycWjSG1MXMq9wVwLTTj/oqef5oQjUYxP+jF63i8VG+c0bM5pTLhm\nlpixWVBsinXx/53dxYankNLAA15czEZMzEVczCaz3LOexGmnuVIzFZpO2katyEWZthTlF/xJtdjM\nnYKaPxU1g2hscbGRSo0GFcW6xBqbbCg2PIVERES0wgy5BTCYCrDZ1AxAWtTrmnVLszNwoXdiGPbp\ncQz7rBj0Did9r1qhRrm2ZEGpKUO5rhQFqnzIZDIoFXKYTTqYTbqk7wtHohiblE4/LSw2/aNe9No8\nSdtqcpWLFg5nS7EBWGCIiIhWhEwmQ6HaiEK1UZodK5FmxyLRCCZmnLBPj8M+NSb97Z/AkM+KgQuK\nTZ5SjXJtKco0pSjXzc/YLCw2FpMOlguKTSgcxbjLH19jI5Wa0fOXKDbxBcNzi4fNxVoUaMUqNiww\nREREGaSQKxJFBCWbE6+Ho2FM+OPFJv5nbHocg94R9HuGkt4jT5kXf48SabYm/n75Kj1kMhlylAuK\nzVXz3xcKJ5+Kmpu16bd50WtNLjZatRLlF8zWZLLYsMAQEREJSClXokJXhgpdWdLr88VmLKncDHqH\n0e8ZTNpWEy82yetsypCv0s0XmxIdLCVLzNjEi83CcrNUsdlcV4Rv3NuyLP8fXAoLDBERURa5WLEJ\nRcOY8DuSSo19egz9niH0XVBstEqNVGp0pSjXxIuNrhT6nP9ebMYm/bA5pzDqlE5JVV2wzUphgSEi\nIloFcuIPqTTrypNeTxSbqeQZm37PIPo8A0nbanM084uGF5yS0qukkpKjlKOyRIfKDJWWhVhgiIiI\nVrGLFptICONLzNj0uQfR604uNrocbdJl3nOnpOaKTSawwBAREa1BOYocWPQVsOgrkl4PRkIY909c\nUGzG0eseQI+7P2lbXY4W28uvwZ31t63krgNggSEiIqIFVIocVOrNqNSbk14PRoIY809gbHoiMVtj\nnxqHK+DOyH6ywBAREdF/pVKoEs91EoE80ztARERElC4WGCIiIso6LDBERESUdVhgiIiIKOuwwBAR\nEVHWYYEhIiKirMMCQ0RERFmHBYaIiIiyDgsMERERZR0WGCIiIso6LDBERESUdVhgiIiIKOuwwBAR\nEVHWkcVisVimd4KIiIgoHZyBISIioqzDAkNERERZhwWGiIiIsg4LDBEREWUdFhgiIiLKOiwwRERE\nlHVYYBb4yU9+gt27d+P+++/HiRMnMr07tMDjjz+O3bt34+6778brr7+e6d2hBQKBAG699Vb85S9/\nyfSu0AIvv/wybr/9dtx11104fPhwpneHAExPT+PrX/869u7di/vvvx/t7e2Z3qWspsz0Dojivffe\nw9DQEA4dOoS+vj7s378fhw4dyvRuEYCOjg709PTg0KFDcLlcuPPOO/GpT30q07tFcU899RQKCgoy\nvRu0gMvlwpNPPomXXnoJfr8fv/nNb3DTTTdlerfWvL/+9a9Yt24dHnroIYyPj+NLX/oSXn311Uzv\nVtZigYk7cuQIbr31VgBAXV0dPB4PpqamoNPpMrxntG3bNmzevBkAkJ+fj5mZGUQiESgUigzvGfX1\n9aG3t5e/HAVz5MgR7NixAzqdDjqdDj/60Y8yvUsEwGg04ty5cwAAr9cLo9GY4T3KbjyFFOd0OpMG\nU2FhIRwORwb3iOYoFApoNBoAwIsvvohdu3axvAjiwIED2LdvX6Z3gy5gtVoRCATwta99DQ888ACO\nHDmS6V0iALfddhtGR0fxyU9+Env27MF3v/vdTO9SVuMMzEXwCQvieeONN/Diiy/i2WefzfSuEIC/\n/e1v2LJlCyorKzO9K7QEt9uNJ554AqOjo/jiF7+IN998EzKZLNO7tab9/e9/R0VFBZ555hmcPXsW\n+/fv59qxy8ACE1dSUgKn05n474mJCZhMpgzuES3U3t6O3/72t/jDH/4AvV6f6d0hAIcPH8bIyAgO\nHz6MsbExqFQqlJWVYefOnZnetTWvqKgIW7duhVKpRFVVFbRaLSYnJ1FUVJTpXVvTjh07hhtuuAEA\nsH79ekxMTPB0+GXgKaS466+/Hq+99hoAoKurCyUlJVz/Igifz4fHH38cv/vd72AwGDK9OxT3q1/9\nCi+99BL+9Kc/4d5778WDDz7I8iKIG264AR0dHYhGo3C5XPD7/VxvIYDq6mp0dnYCAGw2G7RaLcvL\nZeAMTFxrayuam5tx//33QyaT4dFHH830LlHcv/71L7hcLnzjG99IvHbgwAFUVFRkcK+IxFVaWopP\nf/rTuO+++wAADz/8MORy/ns103bv3o39+/djz549CIfD+OEPf5jpXcpqshgXexAREVGWYSUnIiKi\nrMMCQ0RERFmHBYaIiIiyDgsMERERZR0WGCIiIso6LDBEtKysVis2btyIvXv3Jp7C+9BDD8Hr9ab8\nHnv37kUkEkl5+89//vM4evTox9ldIsoSLDBEtOwKCwtx8OBBHDx4EC+88AJKSkrw1FNPpfz9Bw8e\n5A2/iCgJb2RHRCtu27ZtOHToEM6ePYsDBw4gHA4jFArhBz/4ATZs2IC9e/di/fr1OHPmDJ577jls\n2LABXV1dCAaDeOSRRzA2NoZwOIw77rgDDzzwAGZmZvDNb34TLpcL1dXVmJ2dBQCMj4/jW9/6FgAg\nEAhg9+7duOeeezL50YnoCmGBIaIVFYlE8O9//xtXX301vv3tb+PJJ59EVVXVoofbaTQaPP/880nf\ne/DgQeTn5+MXv/gFAoEAPvvZz6KtrQ3vvvsu1Go1Dh06hImJCdxyyy0AgFdeeQW1tbV47LHHMDs7\niz//+c8r/nmJaHmwwBDRspucnMTevXsBANFoFNdccw3uvvtu/PrXv8b3v//9xHZTU1OIRqMApMd7\nXKizsxN33XUXAECtVmPjxo3o6upCd3c3rr76agDSg1lra2sBAG1tbfjjH/+Iffv24cYbb8Tu3buX\n9XMS0cphgSGiZTe3BmYhn8+HnJycRa/PycnJWfSaTCZL+u9YLAaZTIZYLJb0rJ+5ElRXV4d//vOf\neP/99/Hqq6/iueeewwsvvHC5H4eIBMBFvESUEXq9HhaLBW+99RYAYGBgAE888cQlv6elpQXt7e0A\nAL/fj66uLjQ3N6Ourg7Hjx8HANjtdgwMDAAA/vGPf+DkyZPYuXMnHn30UdjtdoTD4WX8VES0UjgD\nQ0QZc+DAAfz4xz/G73//e4TDYezbt++S2+/duxePPPIIvvCFLyAYDOLBBx+ExWLBHXfcgf/85z94\n4IEHYLFYsGnTJgBAfX09Hn30UahUKsRiMXzlK1+BUskfe0SrAZ9GTURERFmHp5CIiIgo67DAEBER\nUdZhgSEiIqKswwJDREREWYcFhoiIiLIOCwwRERFlHRYYIiIiyjosMERERJR1/h+jqONGXZ8e0QAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ZTDHHM61NPTw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a solution." + ] + }, + { + "metadata": { + "id": "JQHnUhL_NRwA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You may be wondering how to determine how many buckets to use. That is of course data-dependent. Here, we just selected arbitrary values so as to obtain a not-too-large model." + ] + }, + { + "metadata": { + "id": "Ro5civQ3Ngh_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "RNgfYk6OO8Sy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "AFJ1qoZPlQcs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Feature Crosses\n", + "\n", + "Crossing two (or more) features is a clever way to learn non-linear relations using a linear model. In our problem, if we just use the feature `latitude` for learning, the model might learn that city blocks at a particular latitude (or within a particular range of latitudes since we have bucketized it) are more likely to be expensive than others. Similarly for the feature `longitude`. However, if we cross `longitude` by `latitude`, the crossed feature represents a well defined city block. If the model learns that certain city blocks (within range of latitudes and longitudes) are more likely to be more expensive than others, it is a stronger signal than two features considered individually.\n", + "\n", + "Currently, the feature columns API only supports discrete features for crosses. To cross two continuous values, like `latitude` or `longitude`, we can bucketize them.\n", + "\n", + "If we cross the `latitude` and `longitude` features (supposing, for example, that `longitude` was bucketized into `2` buckets, while `latitude` has `3` buckets), we actually get six crossed binary features. Each of these features will get its own separate weight when we train the model." + ] + }, + { + "metadata": { + "id": "-Rk0c1oTYaVH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train the Model Using Feature Crosses\n", + "\n", + "**Add a feature cross of `longitude` and `latitude` to your model, train it, and determine whether the results improve.**\n", + "\n", + "Refer to the TensorFlow API docs for [`crossed_column()`](https://www.tensorflow.org/api_docs/python/tf/feature_column/crossed_column) to build the feature column for your cross. Use a `hash_bucket_size` of `1000`." + ] + }, + { + "metadata": { + "id": "-eYiVEGeYhUi", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " # YOUR CODE HERE: Make a feature column for the long_x_lat feature cross\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) \n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person,\n", + " long_x_lat])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xZuZMp3EShkM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 635 + }, + "outputId": "b100befd-2729-4e4e-8b4f-1134e83844a2" + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 163.95\n", + " period 01 : 135.81\n", + " period 02 : 118.86\n", + " period 03 : 107.56\n", + " period 04 : 99.68\n", + " period 05 : 93.92\n", + " period 06 : 89.40\n", + " period 07 : 85.89\n", + " period 08 : 83.12\n", + " period 09 : 80.86\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd0VHX+//HnTCa9kZ5AIAWkhx6l\n9xKagCA2EF07Iq7lZ9m166qsqysq2FZFYN0VEAREQRCQphSDSAs1gRAC6b3P3N8frPmKQEiQMJPk\n9TiHc5i5M/e+77xvTl753Pu5YzIMw0BERESkDjHbuwARERGRmlKAERERkTpHAUZERETqHAUYERER\nqXMUYERERKTOUYARERGROsdi7wJEHFmrVq1o1qwZTk5OAFitVmJjY3nqqafw8PC45PUuWLCAiRMn\nnvP84sWLefLJJ3nvvfcYMGBA5fMlJSX07NmToUOH8uqrr17ydqvr+PHjvPzyyyQmJgLg7u7OtGnT\nGDx4cK1vuyZmz57N8ePHz/lMtm7dyh133EF4ePg571m5cuWVKu8POXHiBIMGDSIqKgoAwzAIDAzk\nr3/9K23btq3Rul5//XUaN27MTTfdVO33LF26lEWLFjFv3rwabUvkSlGAEbmIefPmERoaCkBZWRkP\nPfQQ77//Pg899NAlrS89PZ1//etf5w0wAGFhYXz11VdnBZh169bh4+NzSdu7FI8++ihjxozhvffe\nA2DXrl1MmTKFb775hrCwsCtWxx8RFhZWZ8LKhTg5OZ21D19//TX3338/q1atwsXFpdrreeSRR2qj\nPBG70ikkkRpwcXGhT58+7N+/H4DS0lKeeeYZhg0bxvDhw3n11VexWq0AJCQkcOONNxIXF8eYMWPY\nuHEjADfeeCMnT54kLi6OsrKyc7bRpUsXtm7dSnFxceVzX3/9Nb169ap8XFZWxksvvcSwYcMYOHBg\nZdAA2LlzJ9dddx1xcXGMGDGCLVu2AGf+ou/duzdz585l9OjR9OnTh6+//vq8+3nw4EE6duxY+bhj\nx46sWrWqMsi988479OvXj7Fjx/LBBx8wcOBAAJ544glmz55d+b7fPr5YXS+//DKTJk0C4KeffmL8\n+PEMGTKEiRMnkpycDJwZifrzn//MgAEDmDRpEqdOnbpIx85v8eLFTJs2jSlTpvD3v/+drVu3cuON\nN/Lggw9W/rL/5ptvGDVqFHFxcdx6660cP34cgLfffpunnnqKCRMmMGfOnLPW++CDD/Lxxx9XPt6/\nfz+9e/fGZrPxz3/+k2HDhjFs2DBuvfVWTp8+XeO6R4wYQUlJCUePHgXg888/Jy4ujoEDB/Lwww9T\nUlICnPncX3nlFUaPHs0333xzVh8udFzabDZeeOEF+vfvz4QJE0hISKjc7rZt2xg3bhwjRoxg+PDh\nfPPNNzWuXeSyM0Tkglq2bGmkpqZWPs7JyTFuueUWY/bs2YZhGMb7779v3HXXXUZ5eblRXFxsjB8/\n3vjyyy8Nq9VqDB8+3Fi+fLlhGIbxyy+/GLGxsUZ+fr7x448/GoMHDz7v9r744gvj8ccfNx599NHK\n9+bn5xuDBg0yFi5caDz++OOGYRjGO++8Y0yZMsUoLS01CgsLjbFjxxpr1641DMMwRo0aZXz11VeG\nYRjGkiVLKreVnJxstG3b1pg3b55hGIbx9ddfG0OGDDlvHQ888IAxYMAA49NPPzUOHz581rIDBw4Y\n3bp1M9LS0ozy8nLjvvvuMwYMGGAYhmE8/vjjxqxZsypf+9vHVdXVrl07Y/HixZX7Gxsba2zatMkw\nDMNYvny5MW7cOMMwDGP+/PnGLbfcYpSXlxtZWVnGgAEDKj+T36rqM/71c+7UqZORmJhY+fqYmBhj\ny5YthmEYRkpKitG1a1cjKSnJMAzD+Oijj4wpU6YYhmEYb731ltG7d28jMzPznPWuWLHCuOWWWyof\nz5w503jxxReNgwcPGkOHDjXKysoMwzCMuXPnGkuWLLlgfb9+Lm3atDnn+djYWOPIkSPG9u3bjR49\nehinTp0yDMMwnn76aePVV181DOPM5z569GijpKSk8vGsWbOqPC7Xr19vDB061CgoKDCKi4uNCRMm\nGJMmTTIMwzCuu+46Y+vWrYZhGEZiYqLx8MMPV1m7yJWgERiRi5g8eTJxcXEMGjSIQYMG0b17d+66\n6y4A1q9fz8SJE7FYLLi5uTF69Gg2b97MiRMnyMjIYOTIkQDExMTQuHFjdu/eXa1tjhw5kq+++gqA\nNWvWMGDAAMzm//txXbduHTfffDMuLi54eHgwZswYvv32WwC+/PJLhg8fDkDXrl0rRy8AKioquO66\n6wBo164dJ0+ePO/2X3vtNW655RaWL1/OqFGjGDhwIP/5z3+AM6MjsbGxBAUFYbFYGDVqVLX2qaq6\nysvLGTJkSOX6Q0JCKkecRo0axfHjxzl58iQ7duxgyJAhWCwW/Pz8zjrN9nupqanExcWd9e+318pE\nRkYSGRlZ+djNzY0ePXoAsHnzZq655hoiIiIAuP7669m6dSsVFRXAmREpf3//c7bZv39/9u3bR05O\nDgCrV68mLi4OHx8fsrKyWL58Obm5uUyePJmxY8dW63P7lWEYfP7554SEhBAZGcnatWsZMWIEISEh\nANx0002VxwBAjx49cHV1PWsdVR2X27dvp1+/fnh6euLm5lbZK4CAgAC+/PJLjhw5QmRkJK+//nqN\nahepDboGRuQifr0GJisrq/L0h8Vy5kcnKysLX1/fytf6+vqSmZlJVlYW3t7emEymymW//hILDAy8\n6DZ79erFU089RU5ODitWrGDq1KmVF9QC5Ofn88orr/DGG28AZ04pdejQAYDly5czd+5cCgsLsdls\nGL/5ujMnJ6fKi4/NZjM2m+2823d1deWOO+7gjjvuIC8vj5UrV/Lyyy8THh5Obm7uWdfjBAQEXHR/\nqlOXl5cXAHl5eSQnJxMXF1e53MXFhaysLHJzc/H29q583sfHh8LCwvNu72LXwPy2b79/nJ2dfdY+\nent7YxgG2dnZ533vrzw8POjZsyfr16+na9eu5OXl0bVrV0wmE2+//TYff/wxL774IrGxsTz//PMX\nvZ7IarVWfg6GYdCiRQtmz56N2WwmPz+f1atXs2nTpsrl5eXlF9w/oMrjMjc3l+Dg4LOe/9XLL7/M\nu+++y+23346bmxsPP/zwWf0RsQcFGJFq8vf3Z/Lkybz22mu8++67AAQGBlb+tQ2Qk5NDYGAgAQEB\n5ObmYhhG5S+LnJycav+yd3Z2ZsCAAXz55ZccO3aMzp07nxVggoOD+dOf/nTOCMTp06d56qmnWLhw\nIW3atCEpKYlhw4bVaD+zsrLYv39/5QiIj48PEydOZOPGjRw8eBBvb2/y8/PPev2vfh+KcnNza1xX\ncHAw0dHRLF68+JxlPj4+F9z25RQQEMDOnTsrH+fm5mI2m/Hz87voe4cNG8bq1avJzs5m2LBhlf3v\n3r073bt3p6ioiBkzZvCPf/zjoiMZv7+I97eCg4MZN24cjz/+eI3260LHZVWfbWBgIE8//TRPP/00\nmzZt4oEHHqBPnz54enpWe9sil5tOIYnUwO23387OnTvZtm0bcOaUwaJFi7BarRQVFbF06VL69etH\neHg4oaGhlRfJxsfHk5GRQYcOHbBYLBQVFVWejriQkSNH8uGHH5536vKgQYNYuHAhVqsVwzCYPXs2\nGzZsICsrCw8PD6Kjo6moqODzzz8HuOAoxfmUlJQwffr0yos7AY4dO8auXbvo1q0bnTt3ZseOHWRl\nZVFRUcGXX35Z+bqgoKDKiz+Tk5OJj48HqFFdHTt2JD09nV27dlWu5//9v/+HYRh06tSJtWvXYrVa\nycrKYsOGDdXer5ro1asXO3bsqDzN9d///pdevXpVjrxVZcCAAezcuZM1a9ZUnobZtGkTzz//PDab\nDQ8PD1q3bn3WKMilGDhwIN9++21l0FizZg0ffPBBle+p6rjs3LkzmzZtori4mOLi4srgVF5ezuTJ\nk0lLSwPOnHq0WCxnndIUsQeNwIjUgJeXF3fffTczZsxg0aJFTJ48meTkZEaOHInJZCIuLo7hw4dj\nMpl44403ePbZZ3nnnXdwd3dn5syZeHh40KpVK3x9fenVqxdLliyhcePG593W1VdfjclkYsSIEecs\nu/nmmzlx4gQjR47EMAzat2/PlClT8PDwoG/fvgwbNoyAgACeeOIJ4uPjmTx5Mm+99Va19rFx48a8\n++67vPXWW7z00ksYhoGXlxdPPvlk5cykG264gXHjxuHn58fQoUM5dOgQABMnTmTatGkMHTqUtm3b\nVo6ytG7dutp1ubm58dZbb/Hiiy9SWFiIs7MzDz74ICaTiYkTJ7Jjxw4GDx5M48aNGTx48FmjBr/1\n6zUwv/f3v//9op9BaGgoL730ElOnTqW8vJzw8HBefPHFan1+Xl5etGvXjgMHDtCpUycAYmNjWbFi\nBcOGDcPFxQV/f39efvllAB577LHKmUQ10a5dO+69914mT56MzWYjICCA559/vsr3VHVcDhgwgPXr\n1xMXF0dgYCD9+vVjx44dODs7M2HCBG677TbgzCjbU089hbu7e43qFbncTMZvT0SLiNTQjh07eOyx\nx1i7dq29SxGRBkRjgCIiIlLnKMCIiIhInaNTSCIiIlLnaARGRERE6hwFGBEREalz6uQ06vT080+b\nvBz8/DzIzi6qtfXLpVNvHJP64rjUG8el3lRPUJD3BZdpBOZ3LBYne5cgF6DeOCb1xXGpN45Lvfnj\nFGBERESkzlGAERERkTpHAUZERETqHAUYERERqXMUYERERKTOUYARERGROkcBRkREROocBRgREZF6\nZv3676r1upkzX+fkyZQLLn/iiYcvV0mXnQKMiIhIPZKaepI1a1ZV67UPPvgIjRs3ueDyV19943KV\nddnVya8SEBERkfN7440Z7N+/lz59Yhk6dDipqSd5883ZvPLKC6Snp1FcXMyf/nQ3vXr1Ydq0u3n4\n4cdYt+47CgsLOH78GCkpJ5g+/RF69OjFyJGDWLHiO6ZNu5vY2GuIj99BTk4OM2b8k8DAQF544WlO\nnUolJqYDa9euYcmSr6/YfirAiIiI1JIFaw+zPSHtnOednExYrcYlrTO2dTATB7a44PKbbprM4sUL\niIpqzvHjScye/S+ys7O4+uruDB8+ipSUEzz99BP06tXnrPelpZ3mH/94ix9/3MLSpV/Qo0evs5Z7\nenoyc+a7vPvu22zYsJbGjcMpKyvlgw/msHnzRhYs+M8l7c+lUoD5jYycYk7llRLq42rvUkRERP6w\nNm3aAeDt7cP+/XtZtmwxJpOZvLzcc17boUMnAIKDgykoKDhneceOnSuX5+bmcuxYIjExHQHo0aMX\nTk5X9vudFGB+Y9nmJDbtTuXZ22KJCL3wN2CKiIhUx8SBLc47WhIU5E16en6tb9/Z2RmA1atXkpeX\nx6xZ/yIvL48775x8zmt/G0AM49zRod8vNwwDs/nMcyaTCZPJdLnLr5Iu4v2Nq9sGA7Bk41E7VyIi\nInJpzGYzVqv1rOdycnIIC2uM2Wzm++/XUl5e/oe306RJOAcO7ANg27Yfz9lmbVOA+Y12kf60iw7g\nlyOZHE45d3hNRETE0UVERHHgQAKFhf93Gqh//4Fs2bKRBx+8D3d3d4KDg/nkkw//0HZ69uxDYWEh\n9913B7t27cTHx/ePll4jJuN840QOrraG3dYe38BPp/eyf20LWjcN4LGbu9TKduTSXKkhV6kZ9cVx\nqTeOqz70Ji8vl/j4HfTvP4j09DQefPA+Pvvsi8u6jaCgC1/OoWtgfqOoooSk/ESatvEjYZ8T+5Ky\naBvpb++yREREHI6Hhydr167hs8/mYRg2Hnjgyt70TgHmNwY07c36lE0U+SaA2Z8vvj9Kmwi/K35h\nkoiIiKOzWCy88MIrdtu+roH5DU9nD0a3GkyRtYiI9hkkpubx8+EMe5clIiIiv6MA8zsjWg7E09mD\nXI/9mCzlLNlwFFvdu0xIRESkXlOA+R0PZ3eGRgyg1FZKREw6J9IL2bb/tL3LEhERkd9QgDmPvk16\n4OviTZZrAk4uZSzdmIjVZrN3WSIiIvI/CjDn4eLkwrDIQZTbymgWc5rT2cVs3n3K3mWJiIhcNhMm\njKaoqIh58+awZ88vZy0rKipiwoTRVb5//frvAPj66+V8//26WqvzQmo1wBw8eJDBgwczf/58AMrL\ny3nkkUeYMGECU6ZMITf3zM3ili1bxvjx47n++utZuHBhbZZUbb0aX42/mx8ZlgM4u5eybHMi5RUa\nhRERkfpl8uTbaN++Q43ek5p6kjVrVgEwYsRo+vUbUBulVanWplEXFRXx4osv0qNHj8rnFixYgJ+f\nH6+//jqff/45O3bsoEePHsyaNYtFixbh7OzMhAkTGDJkCI0aNaqt0qrFYrYwInIw8xMW0jQmlaPb\nXFn/cwpDujW1a10iIiJV+dOfbuHll18nNDSUU6dSefLJRwgKCqa4uJiSkhIeeuj/0bZt+8rX/+1v\nz9G//yA6derMX//6GGVlZZVf7Ajw7bffsGjR5zg5mYmMbM7jj/+VN96Ywf79e/nkkw+x2Ww0atSI\n8eNvYPbsmezevYuKCivjx08kLm4k06bdTWzsNcTH7yAnJ4cZM/5JaGjoH97PWgswLi4ufPjhh3z4\n4f/dqnjdunVMnz4dgBtuuAGAH374gZiYGLy9z9xtr0uXLsTHxzNw4MDaKq3arg7twurj6zldfBBX\nrzBWbEmib4fGuLpc2W/cFBGRumnx4a/Ymbb7nOedzCastkub4do5OIbrWoy64PK+fQewefMGxo+f\nyMaN39O37wCaN7+Kvn3789NP2/n3vz/lb3977Zz3rVr1DdHRzZk+/RG+++7byhGW4uJiXn/9bby9\nvbn//rs4cuQwN900mcWLF3D77Xfx0UfvA/Dzz/EcPXqEd9/9mOLiYqZMuZG+ffsD4OnpycyZ7/Lu\nu2+zYcNaJk68+ZL2/bdqLcBYLBYslrNXn5KSwoYNG3jttdcIDAzk2WefJSMjA3///7vbrb+/P+np\n6VWu28/PA4ul9kLEb29dfFPHa3nzh49o1jGVQ5sj+SEhjesHtay1bUvVqrqttNiP+uK41Bv78khx\nwcl8/puhXuj5i67T3aXKvo4dO4pXX32Ve++9g61bN/Hkk0/y0UcfsWjRZ5SVleHh4UFQkDdOTmYC\nA71wc3PG19edX345Qc+e1xAU5M3gwf344INZBAV5Ex4ewjPPPAbA8eNJmExlNGrkgaurM0FB3nh6\nuuLl5caJE0fp1avH/2rzplWrlhQUZOLiYqF//94EBXkTHd2MnJycy3JcXtE78RqGQVRUFNOmTWP2\n7Nm8//77tG3b9pzXXEx2dlFtlXjO91M0d7uKJl5hpBQcwMM3hEXfHeLqloF4uDnXWg1yfvXhu0Pq\nI/XFcak39hfXZChxTYae8/wf7U1V723UKJTU1FPs2XOIrKwcli5dgbe3H2+99QwJCft45503SU/P\nx2q1kZFRQElJObm5xRQVlVFQUEp6ej4ZGWeWnzyZxXPPPc+cOZ8REBDIY4/9mZycM7+DS0vLSU/P\np7CwFGfnEioqKigrK6+srbCwmNzcYsrKKsjLKyE9PZ+CghIKCkqqve9VBZ0rOgspMDCQ2NhYAHr3\n7s3hw4cJDg4mI+P/7nablpZGcHDwlSyrSmaTmdHRwzAwCGl7gqLSClZuS7Z3WSIiIhfUo0dvPvhg\nNn369CM3N4cmTcIB+P77dVRUVJz3Pc2aRZCQsB+A+PgdABQVFeLk5ERAQCCnT58iIWE/FRUVmM1m\nrFbrWe9v3bodO3f+9L/3FZGScoLw8Ga1tYtXNsD07duXjRs3ArB3716ioqLo2LEju3fvJi8vj8LC\nQuLj4+nWrduVLOui2ge0IcKnKaesR/AOKGb1jmTyisrsXZaIiMh59es3gDVrVtG//yDi4kby+ef/\n5qGH7qddu/ZkZmayYsWyc94TFzeSvXt38+CD95GcfAyTyYSvbyNiY6/hzjtv5ZNPPuTmmyfz1ltv\nEBERxYEDCbz11uuV7+/YsROtWrXm/vvv4qGH7ufee6fh7u5ea/toMqpzzuYS7NmzhxkzZpCSkoLF\nYiEkJIR//OMf/O1vfyM9PR0PDw9mzJhBYGAgK1eu5KOPPsJkMjFp0iSuvfbaKtddm0OiFxrWS8g6\nxNs/f0iIJZKkLa0ZGtuUGwddVWt1yLk0HO6Y1BfHpd44LvWmeqo6hVRrAaY22SPAGIbBzJ3vcyjn\nKK7H+lCQ4c2r93TH38et1mqRs+kH3jGpL45LvXFc6k31OMw1MHWZyWTi2uZxAPi2SKTCauWrLUn2\nLUpERKSBUoCpgWjfSNoFtCat/ASBTQrZ+EsqabU4I0pERETOTwGmhkZHDwPAPfIwVpuNpZsS7VyR\niIhIw6MAU0NNvZvQOSiGjPJTBEfk8+Pe06SkF9i7LBERkQZFAeYSjIweigkTzuGHMDD4cqNGYURE\nRK4kBZhLEOYZQmxoZ7LK02ncPJefDqaTmJpn77JEREQaDAWYSzQyaghmkxkj9CBgY8mGo/YuSURE\npMFQgLlEge4B9AyLJac8i/BWuexJzOJgco69yxIREWkQFGD+gLjIQVjMFsoDEsBk44vvj1TryyhF\nRETkj1GA+QP83BrRt0kP8ipyiWibzaETZ0ZiREREpHYpwPxBQyMG4OLkQqHvfjBbWbzhqEZhRERE\napkCzB/k7eLFgPDeFFYUENU+i2On8ok/mG7vskREROo1BZjLYHCzvrhb3Mj13IfZqYLFG45is2kU\nRkREpLYowFwGHs4eDG7Wj2JrMZEdMknNLOLHfafsXZaIiEi9pQBzmfQP742XsydZrvuwuJSzdFMi\nFVabvcsSERGplxRgLhM3iyvDIgZQaislskM66TklbPol1d5liYiI1EsKMJdRnyY9aOTqS5plPy5u\n5SzbnEhZudXeZYmIiNQ7CjCXkbOTM3GRAym3lRPR4TQ5BWWs25li77JERETqHQWYy6xHWCwBbv6k\nmvbj7lXGih+OUVxaYe+yRERE6hUFmMvMYrYwMmoIVsNKk/apFBSXs3pHsr3LEhERqVcUYGpBbGhn\nQj2CSbUdwNO3lFXbjlNQXG7vskREROoNBZhaYDaZGRk9FBs2wtqlUFxqZeXW4/YuS0REpN5QgKkl\nnYLa09SrMScrDuETUMKan5LJLSi1d1kiIiL1ggJMLTGbzIyKHoaBQVDrZMrKbXz1wzF7lyUiIlIv\nKMDUonYBrYnyieBk+RH8Q4r5/ucUMnNL7F2WiIhInacAU4tMJhPXNh8GQKOrkqiwGizbnGjnqkRE\nROo+BZha1tKvBa38WpBadoyg8GI27z7Fqawie5clIiJSpynAXAGjo+MA8Iw8gs2w8eXGo3auSERE\npG5TgLkConybERPYhtNlJwiNLGLb/jSS0wrsXZaIiEidpQBzhYyKOnMtjEv4IcBgyQaNwoiIiFwq\nBZgrJNy7MV2DO5JedorwFgX8fDiDIym59i5LRESkTlKAuYJGRA3BhAlCDwAGizUKIyIickkUYK6g\nUM9grgntSmZZBhGt89l/LJv9SVn2LktERKTOUYC5wkZEDcbJ5ERZwH4w2Vi84SiGYdi7LBERkTpF\nAeYKC3D3p1fjq8kpzyaqXR5HTuax60imvcsSERGpUxRg7GBY5ECczRaKfPdhMtlYsuEoNo3CiIiI\nVJsCjB00cvWlb3hP8srzaN4hh+S0AnYkpNm7LBERkTpDAcZOhjYbgKuTCzmee3GyWFmyMRGrzWbv\nskREROoEBRg78XLxZGDTPhRWFNK8Qzans4rYsueUvcsSERGpExRg7GhQs754WNzJcN2LxdnKsk1J\nlFdoFEZERORiFGDsyN3izpBm/Sm2FtO8UyaZeSVs2HXS3mWJiIg4PAUYO+vXtBfeLl6cctqDq7uV\nr7YkUVputXdZIiIiDk0Bxs5cnVwYFjGQMlsZkR3SyC0sY+1PJ+xdloiIiENTgHEAvZt0x8+1ESdN\ne3H3rODrH49RVFJh77JEREQclgKMA3A2WxgeNYgKWwXNOpyisKSCb7cft3dZIiIiDksBxkF0D+1G\noHsAKbb9ePuWs2p7MvlFZfYuS0RExCEpwDgIJ7MTI6OGYDWsNG5/ktIyK9/8qFEYERGR81GAcSDd\nQjoR5hlCcnkCjQLL+C7+BNn5pfYuS0RExOEowDgQs8nMqOhhGBgEtz5BeYWNr7Yk2bssERERh6MA\n42A6BrajmXc4yWUHCQwpY8Ouk6TlFNu7LBEREYeiAONgTCYTo6OHAeDXMgmrzWDZpkQ7VyUiIuJY\nFGAcUBv/ljT3jeJE6VFCwkv4Ye8pTmYU2rssERERh6EA44B+OwrjFZWIYcCXG4/auSoRERHHoQDj\noK7yi6aNf0tOlh6jcWQJOw6kc+xUvr3LEhERcQgKMA7s11EY16aHAIPFGzQKIyIiAgowDi3Cpykd\nA9txqjSFiBbF7D6ayaETOfYuS0RExO4UYBzcqOhhmDBB2AHA4Ivvj2IYhr3LEhERsSsFGAfX2CuU\nriEdSSs9TVSbIg4m57A3KcveZYmIiNiVAkwdMDJqCGaTmfLA/YDBYo3CiIhIA6cAUwcEewTRPbQr\nmaUZtIgpIOlUPjsPZdi7LBEREbtRgKkjhkcNxmJyotB3HyazjSUbj2KzaRRGREQaploNMAcPHmTw\n4MHMnz//rOc3btxIq1atKh8vW7aM8ePHc/3117Nw4cLaLKnO8nfzo1eT7uSUZXNVh3xS0gvZuv+0\nvcsSERGxi1oLMEVFRbz44ov06NHjrOdLS0v54IMPCAoKqnzdrFmzmDNnDvPmzePTTz8lJ0dThc9n\nWMRAnM3O5HruxcnJxtKNiVRYbfYuS0RE5IqrtQDj4uLChx9+SHBw8FnPv/fee9x88824uLgAsGvX\nLmJiYvD29sbNzY0uXboQHx9fW2XVab6u3vQP70VeeR5XdcolLaeYzbtT7V2WiIjIFWeptRVbLFgs\nZ68+MTGRhIQEHnzwQV577TUAMjIy8Pf3r3yNv78/6enpVa7bz88Di8Xp8hf9P0FB3rW27j/qJp9R\nbEr9kSyXvbi49mLFD8e4tv/RSSrbAAAgAElEQVRVuDjX3ufhSBy5Nw2Z+uK41BvHpd78MbUWYM7n\nlVde4amnnqryNdWZHpydXXS5SjpHUJA36emO/Z1DA8L78HXiapp3zGT/tkAWrj7A0Nim9i6r1tWF\n3jRE6ovjUm8cl3pTPVWFvCs2C+n06dMcPXqURx99lIkTJ5KWlsakSZMIDg4mI+P/pgSnpaWdc9pJ\nzjawaR88nT045bQHN3cbK35IoqSswt5liYiIXDFXLMCEhISwZs0aFixYwIIFCwgODmb+/Pl07NiR\n3bt3k5eXR2FhIfHx8XTr1u1KlVUnuVvcGNKsPyXWEqI7ZpBfVM7qHSfsXZaIiMgVU2unkPbs2cOM\nGTNISUnBYrGwatUq3n77bRo1anTW69zc3HjkkUe44447MJlM3H///Xh767zgxfQL78na5I2kVOzB\n06s/K7ceZ2CXJni6Odu7NBERkVpnMurgPelr87xhXTov+f2JLSw4+CXRlo7s3RLGyB4RjO/X3N5l\n1Zq61JuGRH1xXOqN41JvqschroGRy69X46vxd/PjuHUvPo2srNlxgtzCMnuXJSIiUusUYOowi9nC\niMjBVBgVhLdPpbTcyoofkuxdloiISK1TgKnjrg7tQrBHIMfK9+EfaGX9zhSy8krsXZaIiEitUoCp\n45zMToyMGorNsBHa5gQVVoNlm5PsXZaIiEitUoCpB7oEd6CJVxhJpQkEh1aw6ZdUTmfV3s3+RERE\n7E0Bph4wm8yMihqKgYF/y+PYDIOlmxLtXZaIiEitUYCpJ2IC2xLh05RjJQcJCy9n677TnEgvsHdZ\nIiIitUIBpp4wmUxcGx0HgE/zRAxgyYaj9i1KRESklijA1COt/FpwVaNojhcfpWlUOTsPZZBwLNve\nZYmIiFx2CjD1iMlkYvT/RmHcmh3GbILZX+7hdC1+e7eIiIg9KMDUM80bRdI2oBUnio8xbJAHBcXl\n/HPBLvKLdIdeERGpPxRg6qHR0cMASGIHI7o3Iy27mLcX76a8wmrnykRERC4PBZh6qJl3OJ2CYkjK\nO07jlllc3SaYwydy+WjFfmx177s7RUREzqEAU0+NaT4cd4s7/z2whH69XGkR7su2/WmamSQiIvWC\nAkw9FewRyN0xkzEw+HjffG4cHkqwnzsrfjjGhl0n7V2eiIjIH6IAU4+19GvBLa0nUFRRzKcH5nH3\nuBZ4uTszd+UB9iRm2rs8ERGRS6YAU891D+vG8MhBZJRksfj459w3rjVms4nZS/ZwIk136hURkbpJ\nAaYBGBk1lNiQziTmHWdz3iruGNmakjIrby7aRXZ+qb3LExERqTEFmAbAZDJxS5vradEoip1pv5Dq\nEs/4ftFk5ZUyc9EuSsoq7F2iiIhIjSjANBDOZgt3x0wh2COQ1cfX49vsFH07hnH8dAHvL92Lzabp\n1SIiUncowDQgns4eTO1wB17Onnx+8Eu6djPRLsqfXUcy+WzNQQzdI0ZEROoIBZgGJsgjgHs6TMFs\nMjNn378ZOySA8CBP1sansHp7sr3LExERqRYFmAYo2jeSW9vcQIm1lI/3z+VPY6Lw9XLh87WH+elA\nur3LExERuSgFmAaqa0hHxkQPJ6c0l/8e/Yyp17XBxdmJD5fv5ejJPHuXJyIiUiUFmAZsSER/eoZd\nTXLBSb7LWMbd17ah3GrjrUW7SM8ptnd5IiIiF6QA04CZTCZubDWO1n5XsTtjP4eMH7hlSEvyisp5\nc+EuCkvK7V2iiIjIeSnANHBOZifujJlEY89Qvj+xGVNQEkNjm5KaWcSsxbupsNrsXaKIiMg5FGAE\nd4s793W8HR8Xb744tJzWMaV0aRlEwvEc5nyToOnVIiLicBRgBAB/Nz/u63A7zmYLn+77D3H9fYgK\n82HLnlMs25xk7/JERETOogAjlZr5hHN7u5spt1Xwr32fMnl0UwJ93Vi6KZHNu1PtXZ6IiEglBRg5\nS4egdoy/ajT5ZQXMPzSfe69rhYerhTnfJJBwLNve5YmIiAAKMHIeA5r2pn94L1ILT7Pi5GLuHdcW\ngHcW7+ZkRqGdqxMREVGAkQsYf9VoYgLbkJB9iF3F65gS14qi0greXLiL3MIye5cnIiINnAKMnJfZ\nZOa2tjfT1LsJW1K3U+iTwJjeUWTklvDWol8oLbfau0QREWnAFGDkgtwsrtzX4Xb8XBux7OhKGrfI\noWf7UBJT8/hw+T5sNk2vFhER+1CAkSr5uvpwX8fbcXNyZX7CQvr2dKN1s0bEH0xnwbrD9i5PREQa\nKAUYuagmXmHc2X4yNsPGv/bO5YbhjQkL8ODb7cmsjT9h7/JERKQBUoCRamkT0JIbW46jsLyIOQlz\nuXvcVfh4OPPv1QfZdTjD3uWJiEgDowAj1daryTUMadaftOIMvji2gKnXtcPZycx7S/dy7FS+vcsT\nEZEGRAFGauTa5nF0Ce7AkdxENueu5M5RbSkrt/Lmol1k5ZXYuzwREWkgFGCkRswmM5Pb3ECUTwQ7\nTv9MqstOJg5sQW5BGW8u3EVxaYW9SxQRkQZAAUZqzMXJmXs6TCHQzZ+VSd/hHX6KgV2acCK9kNlf\n7qHCarN3iSIiUs8pwMgl8XbxYmrHP+Fhcec/BxbTtauJDs0D2JuYxfxvD2AYukeMiIjUHgUYuWQh\nnsHcHXMrJkx8tHc+Y4cE0izEiw27Uvn6x2P2Lk9EROqxSw4wSUlJl7EMqauu8mvOpDbXU1xRwsf7\n5nLHmOb4ebvyxfdH2bb/tL3LExGReqrKAHP77bef9Xj27NmV/3/mmWdqpyKpc64O7cLIqCFklmTz\nnyOfMW18W9xcnPjXV/s5dCLH3uWJiEg9VGWAqag4e0bJjz/+WPl/XeMgvzU8cjDXhHblWH4yq9OX\nc+/YtthsBm9/sZvT2UX2Lk9EROqZKgOMyWQ66/FvQ8vvl0nDZjKZuLn1eFo2as6u9D0csv7IrXGt\nKCgu558LdpFfVGbvEkVEpB6p0TUwCi1SFYvZwl0xkwnxCGZt8kYISGJE9wjSsot5e/Fuyius9i5R\nRETqiSoDTG5uLj/88EPlv7y8PH788cfK/4v8noezB1M73o6XsycLDi6lVfsyrm4TzOETuXy0Yj82\nnXoUEZHLwFLVQh8fn7Mu3PX29mbWrFmV/xc5n0D3AO7tcDszd77HJ3v/zQP97iErv5Rt+9MIauTO\n+H7N7V2iiIjUcVUGmHnz5l2pOqSeifJtxpS2N/HRnvl8uOdTpo68h3cWHGbFD8cIauRO346N7V2i\niIjUYVWeQiooKGDOnDmVj//73/8yZswYpk+fTkZGRm3XJnVc5+AYxrYYQW5ZHnMPzWfqda3xcndm\n7soD7EnMtHd5IiJSh1UZYJ555hkyM8/8oklMTOSNN97g8ccfp2fPnvztb3+7IgVK3TaoaV96N+lO\nSkEqy1MWM3VcO8xmmL1kDyfSCuxdnoiI1FFVBpjk5GQeeeQRAFatWkVcXBw9e/bkxhtv1AiMVIvJ\nZGLiVWNo69+KfVkH2Fm8nj+NaENJmZU3F+0iO7/U3iWKiEgdVGWA8fDwqPz/tm3b6N69e+VjTamW\n6nIyO/Gn9rfQxCuMTSk/UuB9gPH9osnKK2Xmol2UlFVcfCUiIiK/UWWAsVqtZGZmcvz4cXbu3Emv\nXr0AKCwspLi4+IoUKPWDu8WN+zrcjq+LD18e/pqw6Dz6dgzj+OkC3l+6F5tN06tFRKT6qgwwd911\nFyNGjGD06NFMnToVX19fSkpKuPnmmxk7duyVqlHqCT+3RtzX8XacnZyZu/+/9O7uTrsof3YdyeSz\nNQf19RQiIlJtJuMivzXKy8spLS3Fy8ur8rlNmzbRu3fvWi/uQtLT82tt3UFB3rW6foE9Gft575c5\neDp78EDMfbz/RSIp6YXcOLAFQ69udsH3qTeOSX1xXOqN41Jvqico6ML3nKtyBObkyZOkp6eTl5fH\nyZMnK/9FR0dz8uTJy16oNAztA9swseUYCsoL+ThhLveMbYmvlwufrz3MTwfS7V2eiIjUAVXeyG7g\nwIFERUURFBQEnPtljnPnzq3d6qTe6hvek/TiTNYmb+SLYwt4YPwNvPbZLj5cvhc/7y5EN/axd4ki\nIuLAqhyBmTFjBmFhYZSWljJ48GBmzpzJvHnzmDdvXrXCy8GDBxk8eDDz588HIDU1ldtuu41JkyZx\n2223kZ5+5q/tZcuWMX78eK6//noWLlx4GXZL6oJxLUbSMag9B3OOsCl7FXdf25Zyq423Fu0iPUcX\niYuIyIVVGWDGjBnDxx9/zJtvvklBQQG33HILd955J8uXL6ekpKTKFRcVFfHiiy/So0ePyufefPNN\nJk6cyPz58xkyZAiffPIJRUVFzJo1izlz5jBv3jw+/fRTcnJyLs/eiUMzm8zc1vZGIrybsvXUT5yy\n7OLmwS3JKyrnzYW7KCwpt3eJIiLioKoMML8KCwtj6tSpfPPNNwwbNoyXXnrpohfxuri48OGHHxIc\nHFz53LPPPsuwYcMA8PPzIycnh127dhETE4O3tzdubm506dKF+Pj4P7BLUpe4OLlwb8fb8Hfz46vE\nb/FuksbQ2KakZhYxa/FuKqw2e5coIiIOqMprYH6Vl5fHsmXLWLx4MVarlXvuuYdRo0ZVvWKLBYvl\n7NX/emM8q9XKZ599xv33309GRgb+/v6Vr/H39688tXQhfn4eWCxO1Sn9klR11bNcfkF485TXAzz1\n3Wv8O2ERfxnwAPklYfywO5X/rjvCn2/sXHnjRPXGMakvjku9cVzqzR9TZYDZtGkTX3zxBXv27GHo\n0KG8+uqrtGzZ8g9t0Gq18thjj9G9e3d69OjB8uXLz1penXuBZGcX/aEaqqKpbfbhihd3tJvErF0f\n8Y9N7zG9932cyihk7Y5kvN0sjOkdpd44KPXFcak3jku9qZ6qQl6VAebOO+8kMjKSLl26kJWVxSef\nfHLW8ldeeaXGxTz55JNEREQwbdo0AIKDg8/6XqW0tDQ6depU4/VK3dfa/ypubjWe+QkL+dfeOdw9\n5h5m/mc/SzclEujrxtiB+mtFRETOqDLA/DrTKDs7Gz8/v7OWnThxosYbW7ZsGc7OzkyfPr3yuY4d\nO/LUU0+Rl5eHk5MT8fHx/OUvf6nxuqV+6NE4loziTFYeW8t/j3zGtPGT+Pu/dzHnmwQimjQi3N/d\n3iWKiIgDqPJOvDt27OChhx6itLQUf39/3n//fSIiIpg/fz4ffPABGzZsuOCK9+zZw4wZM0hJScFi\nsRASEkJmZiaurq6Vd/Vt3rw5zz33HCtXruSjjz7CZDIxadIkrr322iqL1p146zfDMJiz7z/sOP0z\nXYI70MNrBP9csAsDuL5/c4bGNtWXiToQ/cw4LvXGcak31VPVKaQqA8wtt9zCCy+8QPPmzfnuu++Y\nO3cuNpsNX19fnn76aUJCQmql4ItRgKn/ym0VvL3zA47kJjE0YgCtnbvz/vJ95OSX0rVVEH8a0QZ3\n12pdgy61TD8zjku9cVzqTfVc8lcJmM1mmjdvDsCgQYNISUnh1ltv5Z133rFbeJGGwdls4e4OUwh2\nD+TbY+vIcDrIzIf70zLcl58OpPPCnO2cSC+wd5kiImInVQaY3w/Th4WFMWTIkFotSORXXs6e3Nfx\ndjydPfjvwSUkFRzi0Zs6E3d1M05nF/PS3B38sOeUvcsUERE7qNaN7H6l6w7kSgv2COLumCmYTWZm\nbHqXNcnrmTAgmvvHxeBkNvHhV/uYt+oA5RW64Z2ISENS5TUwMTExBAQEVD7OzMwkICAAwzAwmUys\nX7/+StR4Dl0D0/Ak5h7jk32fkVmcTfuANkxpewP5+TBryW5OpBcSFebNfWPbE+irWUpXmn5mHJd6\n47jUm+q55It4U1JSqlxxkyZNLr2qP0ABpmFy9YZ/bPiQhOxDBLj5cWf7yYS4hzFv1QG27DmFp5uF\nu69tR0x0wMVXJpeNfmYcl3rjuNSb6rnkAOOoFGAapqAgb06n5fJ14mq+SfoOi9nCxKvG0CMslg2/\npPLZ6oNYrQaje0Vyba8ozGad8rwS9DPjuNQbx6XeVM8lz0IScTRmk5lR0cOY2vFPuJpd+OzAF8xP\nWEjPmCD+MrkrAb5uLNucxD8X7iK/qMze5YqISC1RgJE6qV1Aax6PnU4z73C2nvqJf/w0Cw+fUp65\nLZYOzQPYm5jF83O2c+Rkrr1LFRGRWqAAI3VWgLs/D3edSu8m3UkpSGXG9rc5XHCA6RM6MK5vNNl5\npbw6P57vfjpRrS8JFRGRukMBRuo0Z7OFm1pdx5S2N2I1rHy4ey5fHlnBiO5NefjGTri7Wvj36oN8\nsHwfJWUV9i5XREQuEwUYqReuDu3CY90eINgjkO+Ob2Dmzg8ID7Pw3O2xNG/iw9Z9p3lp7k+kZhba\nu1QREbkMFGCk3mjsFcpj3abTOSiGI7mJvLL9TTKtKTx+cxcGdw3nZEYhL3y6g237T9u7VBER+YMU\nYKRecbe4cUf7SYy/ajSF5UW89fOHrDuxgZsGX8W9Y9qBAe8t3ctnaw5SYdXde0VE6ioFGKl3TCYT\nA5v24c+d78Xb2Ysvj3zNB7vn0r6FD09P6UZYgAdrdpxgxmfxZOWV2LtcERG5BAowUm81bxTJE1c/\nSMtGzfklYy8zdryF1TWXp6d045q2IRxJyeP5OdvZl5Rl71JFRKSGFGCkXvNx8WZapzsZGjGAjOJM\nXv/pHXZm7OTu0W25ZUhLikoqeP3zn1m+JQmbplqLiNQZCjBS7zmZnRjTfDj3drgNi9mZ+QkL+Sxh\nEX06hfDELV1o5OXKkg1HeWvRLxSWlNu7XBERqQYFGGkwYgLb8kTsdJp6NWZL6nZe/2kWvv4VPHt7\nLO0i/fjlSCbPf7KdpFN59i5VREQuQgFGGpRA9wAe6Xo/vRpfzYmCk7y6fSZJhYd4aGInru0VSUZu\nCS/Pi+f7n1N0914REQemACMNjrOTMze3nsCkNhOpsFXw/u5PWZ64ktG9Ivjz9R1xdTbz6coDfLxi\nP6XlVnuXKyIi56EAIw1Wj7BuPNp1GoHuAXx7bB3v/PwvIpu68OxtsUSGerN5zyn+NvcnTmcX2btU\nERH5HQUYadDCvRvzROx0Oga242DOEV7d9iY5nOLJSV3p37kJJ9ILeGHOduIPptu7VBER+Q0FGGnw\n3C3u3BVzK+NajCS/vJCZO99nw8lNTB7akjtHtcFqNXhn8W4WrDuM1aa794qIOAIFGBHO3L13cLN+\nTO90N17Oniw+/BX/2jOfzq39eOrWboT4ubNy63Fe+8/P5BSU2rtcEZEGTwFG5Deu8ovmidgHadEo\nip/Td/P37W9h8sjnmdti6doyiIPJOTz/yXYOHM+2d6kiIg2aAozI7/i6+jC9090MadaftOIMXtvx\nDr9k7WLquPbcMLAF+UXlvPafn1m59bimWouI2IkCjMh5OJmdGNtiBHfH3IqTyYm5+z/nvwcWM7Br\nGI/d3BlvT2cWrDvMrCV7KCqpsHe5IiINjgKMSBU6BrXn8djpNPEKY9PJrbwRP5uAQBvP3RZL62aN\niD+Yzgufbic5rcDepYqINCgKMCIXEewRyKNdp9E9rBvH81N4dftMkkuO8siNnRjevRlp2cX8be4O\nNu9OtXepIiINhgKMSDW4ODkzuc1Ebmk9gTJbOe/+8glfJ61mfL9oHhgfg5OTmY9W7OfTlQmUV+ju\nvSIitU0BRqQGeja+mke6TiXAzZ+VSd8x6+ePaBHhzrO3daNpsBff/3ySl+fFk55TbO9SRUTqNQUY\nkRpq5h3OE7HTiQlsQ0L2IV7dPpMCczp/ndyV3h3COHY6nxfmbGfX4Qx7lyoiUm8pwIhcAg9nD+6O\nmcKY6OHklubxz/h32XzqB24f3prbhremtNzGzEW/sHjDUWw2TbUWEbncFGBELpHZZGZo5ACmd74L\nT4sHiw4t4+O9/+bqdv78dXJXghq58dWWJN5Y8DN5RWX2LldEpF5RgBH5g1r6teCJqx8k2jeS+LRf\n+PuOt3H2KuSZ22Lp1CKQfUnZPP/Jdg6n5Nq7VBGRekMBRuQyaOTqy58738PApn04XZTOazveZl/O\nHqaNj2F8v2hyCkqZ8e94Vu9I1t17RUQuAwUYkcvEyezE+KtGc0f7SZhNZubs+w8LDy5l6DXhPHpj\nZzzdLPxnzSHeX7aXkjLdvVdE5I9QgBG5zLoEd+Cx2Ok09gxlQ8oW/hn/LiEh8OztV9Mi3Jdt+9N4\n7uPt7EhI02iMiMglUoARqQUhHkE82m0aV4d24VheMq9un0lqWRKP3dSZuGuakZFbwuwv9/C3eT/p\nm61FRC6B03PPPfecvYuoqaJanNHh6elaq+uXS1fXemMxO9ExsB0+rj7sTt/LtlPxmMwmxnTqyjVt\nQ8ktLGNvYhabd58iMTWPJkFe+Hq62LvsGqtrfWlI1BvHpd5Uj6en6wWXWa5gHSINjslkok+T7jTz\nbsK/9szn68TVJOYe47a2NzF1bHuOnsxj0frD/HIkk91HMuneLpRxfaIIbORu79JFRByaRmB+R6nY\ncdXl3jRy9eWa0K6kFKayP+sg20/F4+rkSvuwSHrHNKZ5E19OpBeyNymLdTtTKCypICLUG1dnJ3uX\nflF1uS/1nXrjuNSb6qlqBEYB5nd0UDmuut4bFydnuoV0wsXszL6sg+zK2MtPabvwdfWlQ5MI+nVu\nQoi/B0mp+ew+msX3P6dgGBAR4o3FyXEvV6vrfanP1BvHpd5UT1UBxmTUwWkQ6en5tbbuoCDvWl2/\nXLr61Juc0ly+SVzDltTt2AwbET5NGdt8OC39WlBeYWP9zhSWb0mioLgcX08XxvSOoneHMIcMMvWp\nL/WNeuO41JvqCQryvuAyBZjf0UHluOpjb04XpbP86Cp2pv0CQBv/loxpPpym3k0oLq1g5dbjrNp+\nnLJyGyH+HozvG03XVkGYTCY7V/5/6mNf6gv1xnGpN9WjAFMDOqgcV33uzbG8ZJYe+YYD2YcB6BbS\niVFRwwjyCCCnoJTlm5P4/ueT2AyDqDAfru/fnNYRfnau+oz63Je6Tr1xXOpN9SjA1IAOKsfVEHqz\nP+sgS498Q3J+CmaTmd6NuzM8ahA+Lt6cyipi8Yaj7EhIAyAmOoDx/aJpFnLhH/AroSH0pa5SbxyX\nelM9CjA1oIPKcTWU3tgMGzvTfmHZ0VVkFGfi4uTCoKZ9GdSsL+4WNxJT81i47jAJx3MwAd3bhTCu\nT7Tdpl43lL7UReqN41JvqkcBpgZ0UDmuhtYbq83K5pPb+DppNfllBXg5exIXOYjeTbpjMTmxNzGL\nheuPkJxWgMXJxIDO4YzqGYG3x5W9GV5D60tdot44LvWmehRgakAHleNqqL0pqShlXfIm1hxfT4m1\nlAA3P0ZGDSU2tDNgYuu+0yzZcJSM3BLcXZ2IuyaCod2a4upyZe4h01D7UheoN45LvakeBZga0EHl\nuBp6bwrKCll1bC0bTmyhwrDSxCuMa6PjaBfQmgqrwfqfU1i++cpPvW7ofXFk6o3jUm+qRwGmBnRQ\nOS715ozM4mxWJH7LtlPxGBi0aBTF2OYjiPKNOHfqtZ874/s1r9Wp1+qL41JvHJd6Uz0KMDWgg8px\nqTdnSylIZdmRlezJ3A9Ax8B2XNs8jlDPEHILSlm2OYkNu05itZ2Zej2hf3Pa1MLUa/XFcak3jku9\nqR4FmBrQQeW41JvzO5yTyNIjX3M09xgmTHQP68bIqCH4uTXi9P+mXm//39Tr9tH+TOjX/LJOvVZf\nHJd647jUm+pRgKkBHVSOS725MMMw2J2xj6VHV3Kq8DQWs4V+4T0ZFjEQT2ePWp16rb44LvXGcak3\n1aMAUwM6qByXenNxNsPG1lPxrDj6LdmlObhb3BjabAD9m/bC2ezM3sQsFq0/wvHLOPVafXFc6o3j\nUm+qRwGmBnRQOS71pvrKreV8n7KFb5PWUVhRhK+LDyOiBtMjLBaTycy2fadZ/L+p124uTgy/phlD\nY5td0tRr9cVxqTeOS72pHgWYGtBB5bjUm5orrihm9bHvWZu8kXJbOcEegYyOjqNzUMx5p15f2zuK\nPjWceq2+OC71xnGpN9WjAFMDOqgcl3pz6XJL8/g6aQ1bTm7DZtiI8G7KmObDaeXfguLSClZtO86q\nbcmUllsJ8XPnun7N6VbNqdfqi+NSbxyXelM9CjA1oIPKcak3f1xaUTrLj64iPu0XANr4t2RM8+E0\n9W5yZur1liQ2/Pzr1GtvJvRvcdGp1+qL41JvHJd6Uz0KMDWgg8pxqTeXz7G8ZJYdWUlC9iEAuoV0\nYlTUMII8As6deh3lz4T+F556rb44LvXGcak31VNVgHF67rnnnqutDR88eJAbbrgBs9lMhw4dSE1N\nZerUqSxatIgNGzYwaNAgnJycWLZsGX/5y19YtGgRJpOJdu3aVbneoqKy2ioZT0/XWl2/XDr15vJp\n5OrLNWFdifaNILXwNAlZh9iQ8gP5ZQW0CYmkd7umdGgeQHpOMfuSsln/80lOZxfRLMQbTzfns9al\nvjgu9cZxqTfV4+npesFltTYCU1RUxD333ENkZCStWrVi0qRJPPnkk/Tt25fhw4fzxhtvEBoaytix\nYxk3bhyLFi3C2dmZCRMmMH/+fBo1anTBdWsEpmFSb2qHzbCxM+0Xlh1dRUZxJi5OLgxq2odBzfrh\n5uTK3qQsFq07M/XayWxiQJcmjOoZic//pl6rL45LvXFc6k312GUExmQyMWrUKA4cOIC7uzsdOnTg\n5Zdf5plnnsHJyQk3NzeWL19OcHAwmZmZjB49GovFQkJCAq6urkRFRV1w3RqBaZjUm9phMplo7BVK\n3yY98HHxITHvGHszD7Dl5DaczE50adqCAZ3DCfX3IOlUPnsSs1i/MwWbzSAy1AcfHzf1xUHpZ8Zx\nqTfVU9UIjKW2NmqxWLBYzl59cXExLi5n/moLCAggPT2djIyM/9/enQe3ddb/Hn9r86LF8qLFVuw4\njp09sZOmSambpDC0cIR7GQgAACAASURBVC+dH/3RAikloX8xw7TcGbiFoROWluXChIEZlnYKDOVO\nb5lOA7SlMEBamNI2kLRJSWKnzmLHcRzbsmXJiyxZtmVJ5/4hRbaaEqQ2th4539dMxoksKUf9PMf5\n9JznnIfKysr0cyorK/H7/Vd974oKM0Zj7veryNbVGp/IL8lmYd3t/hB3bNzFnzpf5g9n/8qzXX/k\ntYF/8smN/8Udu7bzP3Y0cvDIRZ756zmeP9TD3096uef2Ndy2fTnFpoXbJ8W7J/uMuiSb92bBCsx/\n8u/OXGVzRmtsLHKtNydNDuupS7JZPLtcO7mh/AZe7H2Z1/oP89jRJ3m+40XubPyf3LRmLS0NFelL\nr3/2XDtP/uk0N29ws6vFc03XWRLvjewz6pJssnO1kreoBcZsNjM9PU1JSQk+nw+Xy4XL5SIQCKSf\nMzw8zObNmxdzs4QQ78BaZOHuVf/F+2t38Keelzg6dJzH2/8vjfYG/rvpI/z3zpV84IZaDp/28dIb\nvbx8fICXjw+wotrGrs0eblrnprQ4b/+PJIRY4rK/3eY10NrayosvvgjASy+9xM6dO2lpaeHUqVNM\nTEwwOTnJ8ePHufHGGxdzs4QQV1FVWsFn1u9m3/Yvssmxju5gDz/812P8vP1JIozxmY+s5wf3t/K/\n7t5ES2MVvb4Q/+/gOf73o//kV38+w/mBYFZHVoUQIhcLdhXSW2+9xf79+xkYGMBoNOJ2u/nBD37A\nQw89xMzMDB6Ph+9973uYTCYOHjzIE088gU6nY8+ePXz0ox+96nvLVUjXJ8lGDefHe3ih+89cCPai\nQ8etDe+j1fk+lllrABgLzfCPdi+H2gcJBKcBWOawsKvFw80bq7GWmq729uIakn1GXZJNduRGdjmQ\nQaUuyUYdmqZxKnCaP1w4yOCkD4D6sjpuqdnOVncLJcYSEprGmYtjvNrm5USnn3hCw2jQsXWNi13N\nNaypr0CfxVIF4t2TfUZdkk12pMDkQAaVuiQb9SS0BL3RHg6efZWOkXNoaBQZitjqaqHVs42Gsnp0\nOh0TkSiHTw3xWpuXodHkJHxXeSk7W2q4ZVMN5dZ/f6mkePdkn1GXZJMdKTA5kEGlLslGTZdzGZse\n5/XBf3Fk8Cgj02MAVFvc3FKzje3VW7EWWdA0ja7+IK+1eXnz7DDRWAK9TkdLUxW7WjxsWlmFXi9H\nZa4V2WfUJdlkRwpMDmRQqUuyUdPbc0loCTrHujnsPUqb/y1iWhyDzkCLcwOtnu2sqWhCr9MTmZ7l\n9dM+Xjvp5dJwGIAKWzE7NtWws6UGh700Xx9pyZB9Rl2STXakwORABpW6JBs1XS2XcHSSo77jHPYe\nTc+VqSypoLVmG++ruZGKknI0TaPXF+K1k15eP+1jOhpHB2xoqGRXi4fNqxwYDYt6weSSIfuMuiSb\n7EiByYEMKnVJNmrKJhdN07g4cYnD3qO8OdxGNB5Fh471VWto9WxnU9U6DHoDM9E4R8/6eK3NS/fA\nBAA2s4lbNiaPytRUWRbjIy0Zss+oS7LJjhSYHMigUpdko6Zcc5mOTfOv4TYOe49xceISADaTlZtq\nttJasw23xQXAgD/Ma22DHH5rkMnpGACra+3s2uzhxjUuimTpgv9I9hl1STbZkQKTAxlU6pJs1PRe\nchkID3LEe4yjQ8eZjCWvTmq0N3CLZztbXJsoMhQxG0twvNPPa21ezvQmJweXFhtl6YIsyD6jLskm\nO1JgciCDSl2SjZquRS6z8VnaAh0c9h7l3Nh5AEqNJWxzb6HVs5062zIAhsciHGof5B/tgwQnkyv5\nytIF/57sM+qSbLIjBSYHMqjUJdmo6VrnEpga4Yj3GEcG3yQYTc6DqbMto7VmGze6t2A2lRJPJGg/\nP8KrbV5OXRhB06DYZGDbOhe3tnhY6SlDJzfJk31GYZJNdqTA5EAGlbokGzUtVC7xRJzTo+c47D3G\nWyNnSGgJTHojW1zN3OK5iUb7CnQ6HaMT0/zj1CCH2gYZmUgtXeC0sKtZli6QfUZdkk12pMDkQAaV\nuiQbNS1GLsGZCd4Y/Bf/HDxKYGoEAJfZQWvNdm6q2UpZkY2EpnH64iivnfRyoiuQWrpAz9Y1Tna1\neFizvPy6W7pA9hl1STbZkQKTAxlU6pJs1LSYuWiaRtf4BQ57j3HS385sIoZep6fZsZ6ba7axvmoN\nep2eickoh9+SpQtkn1GXZJMdKTA5kEGlLslGTfnKJTIb4ZjvJP/0vsFAeBCA8mI7N9fcyM0126gq\nrUwvXfDqSS9vnhtm9jpbukD2GXVJNtmRApMDGVTqkmzUlO9cNE2jLzTAPweP8ubQCabjM+jQsaai\niVbPdpqdGzDpjUSmZznSkbxJXt+8pQt2Ntewo3lpLl2Q72zEvyfZZEcKTA5kUKlLslGTSrnMxKOc\nGG7nsPco3cGLAFhMZm6q3kqrZzs1FnfyrsBDIQ61vfPSBS1NDkzGpbF0gUrZiEySTXakwORABpW6\nJBs1qZrL0OQwhweP8sbgvwjPTgLQUFafukleMyXGYqajMY6dGea19rmlC0qKDGxcWcWWVQ6aG6uw\nlBTuVUyqZiMkm2xJgcmBDCp1STZqUj2XWCLGqcAZDnuPcma0Ew2NEkMxW90ttHq2U2+rQ6fT0e8P\n84/2QY53+gkEk5djG/Q6VteVs3mVgy2rHAV3mkn1bK5nkk12pMDkQAaVuiQbNRVSLqPTYxwZfJMj\n3mOMzYwD4LFU0+rZzvbqG7CYzGiaxoB/khNdfk50Bbg4NPfZ6lxWtqxysGWVk+Vuq/I3yyukbK43\nkk12pMDkQAaVuiQbNRViLgktwdnRLg57j9IeOE1ci2PUG9ns3Mg29xZWVzRRZEieOhqdmKbtfIAT\nXQHO9I4RTyR/ZFaVFbO5ycnmVQ7WLC/HaFBv3kwhZnO9kGyyIwUmBzKo1CXZqKnQcwlFw7wx9C8O\ne4/hiwwDUKQ3sa5qDc2O9WysWoe1yALA1EyMUxdGONkVoK17hKmZ5CrZpcVGmhuT82Y2raxSZk2m\nQs9mKZNssiMFJgcyqNQl2ahpqeSiaRo9E5do93fQHujAF/EDoEPHSvsKmp3raXZswGV2ABCLJ+js\nG+dEV4CTXX5GJmaA5LyZtfUVbFnlYHOTg8qykrx9pqWSzVIk2WRHCkwOZFCpS7JR01LNxTc5THvg\nNO2B0/QEe9FI/qisNrtodm6g2bGe+rI69Dp98l40w2FOdAU40eXnki+cfp/6alt63kyt07Ko82aW\najZLgWSTHSkwOZBBpS7JRk3XQy6haJhTgTOcCpzmzGgns4lZAGxFVjZVrafZuZ41FavS82ZGgtOc\nPJ8sM+cujafnzTjsJakrmpysrrNj0C/svJnrIZtCJdlkRwpMDmRQqUuyUdP1lks0HuXsaBenAqc5\nFThDaDZ5tKVIb2Jd5Wo2Odaz0bEOW5EVgMj0LO2peTPt3SNMR+MAWEouz5txsqGhckHmzVxv2RQS\nySY7UmByIINKXZKNmq7nXBJagosTl2j3J081XZ4EnJw3U88mx3qanRtwm51Act7M2UtjqXkzAcZC\nyXkzRoOOdfWVbFnloKXJQYXt2iw2eT1nozrJJjtSYHIgg0pdko2aJJc5voifU4HTtPs7uDBv3ozb\n7KLZkTzVtKJseXreTK8vxInO5CXa/f65eTMNNWWpeTMOPI53P29GslGXZJMdKTA5kEGlLslGTZLL\nOwtFw7w1cpZT/g7OjHYSvTxvxmRlo2MdzY71rK1cRZGhCAD/+BQnU5OAO/uCJFI/ml3lpek7ATfV\n5jZvRrJRl2STHSkwOZBBpS7JRk2Sy38Wjc9ybqyLdv9pTo2cJhRNHm0x6U2srVxFs2MDm+bNmwlP\nzXKqe4QTXX5O9Ywyk5o3Yy010dJYxeZVTjY2VFJcZLjq3yvZqEuyyY4UmBzIoFKXZKMmySU3CS1B\n70Rf8hJtfwdD8+bNNNiX0+xIXqLttrgAmI3FOdM7zskuPyfOBwiGowCYjHrW11ewZbWTliYHdkvR\nFX+XZKMuySY7UmByIINKXZKNmiSX92Y44k+VmdNcCF5Mz5txmR2pMrOBBnty3kxC07g4GOJEl5+T\nXQEGAslVtnXAymVlbFnlZMsqBzVVyTsHSzbqkmyyIwUmBzKo1CXZqElyuXbC0UneGjlDe+A0Z0bO\npefNWE2W1LyZDaybN29meCySunlegK7+cS7/NHdXmtmyysGurXVUmY2YjFc/1SQWn+w32ZECkwMZ\nVOqSbNQkuSyM2fgs58bO0x7o4FTgDBPR5H9jk96Ynjez0bGOsqLkD/hQJEp79wgnugK81TNCdDYB\nJC/RXlFTxuraclbXldO0zI65RI21mq5nst9kRwpMDmRQqUuyUZPksvCS82b6aQ900B44zdCkD0jO\nm1lRtjy9TpPb7ESn0xGdjXO6d4yLvjBtnX4uDYfSR2d0OqhzWllVlyw0q2vt2K3X5r4zInuy32RH\nCkwOZFCpS7JRk+Sy+IYjgeT9ZgIddI/PmzdT6mBTqsystNfjdtnx+0NMzcToHghyrm+crr5xLgyG\niMUT6fdzV5QmC01tOauXl+O0lyzqmk3XI9lvsiMFJgcyqNQl2ahJcsmv8OwkHYGztAc6OD3aSTSe\nvErJarKwxbOBupI6Gssb0kdnIHllU89giK7+cc71jdM9EGRqJp5+z3JrEavrylmVOu20zGlBL4Xm\nmpL9JjtSYHIgg0pdko2aJBd1zM2bOc1bgdMEo3O5WE0WGssbaLKvoLG8gVqrB4M+Obk3kUiupt3Z\nnzxC09k3zkRkNv1aS4mRpmX2ZKmpK2dFtQ2jYWEXolzqZL/JjhSYHMigUpdkoybJRU0JLUG0eJJj\nPW9xfryH7vGLjM2Mp79fbCiioayepvIGmsobqC9bnl5NW9M0fGNTdKZOOXX2j+Mfn06/tsioZ6Wn\nLF1omjz2/3hTPZFJ9pvsSIHJgQwqdUk2apJc1PX2bEamxugO9qQKTU/6JnoABp2B+rJaGu3JQrPS\nvgKzqTT9/bHQDJ2pMtPVN06/f3LutXody902VtfZWV2bLDXWUtPifMgCJftNdqTA5EAGlbokGzVJ\nLur6T9mEomG6gxfpHk+Wmv6wl4SWnNyrQ4fHWp0qNMnTTuXF9vRrw1OznO8PpgvNxaEQ8cTcPyfL\nHJbUxODkqafKspKF+6AFSPab7EiByYEMKnVJNmqSXNSVazbTsRl6JnrThebixCVmE7H09x0llcl5\nNKlfzlJHemLwTDTOBW+Qzv4gnX3jdHuD6XvRADjsJalJwclCU11pvq6vdJL9JjtSYHIgg0pdko2a\nJBd1vddsYokYl0ID6ULTHbzIVGwq/X1bkZUme0O61Cyz1qDXJSf3xuIJLvnCydNOfeN09Y8zOT1X\nhmxmU/p00+o6O3Uua04rbRc62W+yIwUmBzKo1CXZqElyUde1ziahJRic9KXn0Jwf7yEYnUh/v8RQ\nwkp7fbrQ1NtqMaUmBic0jcHAZPoITWffOGOhmbnXFhloWmZPn3Za6Slb0ksgyH6THSkwOZBBpS7J\nRk2Si7oWOhtN0xiZHp0rNMEehiOB9PeNeiP1tjqaypNHaVba6yk1lsy9NjhNZ/84nX3JUjM0Gpl7\n7RJfAkH2m+xIgcmBDCp1STZqklzUlY9sJqIhuscvcn78At3jPfSHB9N3Ctaho9ZaQ2P53Gmny2s5\nAUxMRumaV2gylkAAXBWl1Llt1Lut1LlsLHdbKS/QZRBkv8mOFJgcyKBSl2SjJslFXSpkMxWb5kJw\nbmJwb6iP2LyJwa5Sx1yhsTfgKK1MT+69vARCZ/845/uD9A2HM+bRAJRZiljuslLntlLvtlHnsuKu\nNCt/52AVsikEUmByIINKXZKNmiQXdamYzWx8lt5Qf/qU04XxXqbjczfJsxeVpU85NZU3UGNxpycG\na5rG6MQMl3whLg2Hk199YUYmpjP+jmKTgVqXheWpozTL3TaWOSwUmdSZU6NiNiqSApMDGVTqkmzU\nJLmoqxCySWgJBsJD6VNO54M9hKLh9PdLjaU02utptDdQV7aMWqsHW5E14z0mp2e55AvT5wvR6wvT\nNxzCG4iQmPfPm16no6bKTJ3bmlFs8nXDvULIRgVSYHIgg0pdko2aJBd1FWI2mqbhnwpwfvxiutAE\npkYynlNebKfW6qHW5qEu9bWqpDLjvjKzsTgDgclUsQnTOxyibzjMTDSe8V6VZcXpQnN5Xo1jEVbj\nLsRs8kEKTA5kUKlLslGT5KKupZLN+EyQnuAl+sNe+kMD9IcHGZ8JZjynxFBCra2GOusylqWKTY3F\nnV6wEpKXcvvHpjJOP10aDhEMRzPeq7TYeMW8Go/Dck0XsFwq2Sw0KTA5kEGlLslGTZKLupZyNqFo\nmP6Ql/6wl75UqRmO+NNXPAEYdQZqLG5qbcvSR2yWWWvSl3JfFpyM0ve2eTW+0Qjz/3E0GnR4HJnz\naupcVkqL392l3Us5m2vpagVm6VxUL4QQ4rphK7Kyrmo166pWpx+biUfxhgfpSxWb/pAX7+QgfWFv\nxmudpVXpUlNn81Br9bBxZRUbV1alnzMdjdHvn8yYV9PvT56S4tTce7nKS5Pzatw2lruSX8utRdf1\nMgmLRY7AvI20YnVJNmqSXNQl2UA8EccX8acLTV/qNFRk3pIIkCxEyUKzjFprDbW2ZThLq9JXQCXf\nK8HQSCTzFJQvdMWl3TazKXUKKnW0xmWjutKMXj9XaiSb7MgppBzIoFKXZKMmyUVdks070zSNsZnx\ndKEZSH0dnR7LeF6RoShZZqzL0vNraizu9PII6fcKzaTLzOVyEwhmXtpdZNRT67Kmj9Ksb3JSYgBb\nqUmO1lyFFJgcyA6vLslGTZKLuiSb3ERmI287UuNlKDJMQptbVVuv01NtdmVcAVVr9WA2mTPfa3qW\nvuFw8vRTqth4A5PEE5n/5FpKjFRXmamptKS+mqmuMuMsL72mk4YLlRSYHMgOry7JRk2Si7okm/du\nNj6Ld3IoXWz6w176w4NE45lXLlWWVGQUmjrbMsqL7W+7tDuBNzCZvPIpEuNC/ziDoxH8Y1MZ96wB\nMOh1OMtLqa40U1NlTn1Nlpx83bsmH2QSrxBCCPEumAwm6svqqC+rSz+W0BL4p0bSl3T3hQboD3lp\nC3TQFuhIP89iMievfppXbGpdTuqrbRnlMhZP4B+fYnAkwtBohMGRSYZGIwyl/nzyfOY2WUtNmaUm\nVXIc5SUY9NfPURspMEIIIUQO9Do9brMTt9nJVvfm9OPBmYn0Jd3JcuPl3Nh5zo3NNRCT3ojHWkND\nZS12Qzluswu32YmrooqaKkvG36NpGqHIbEapuVxyzg8E6erPvBeOQa/DVVGaUWqqU6ekLCVL76iN\nFBghhBDiGrAXl2EvLmOjY136sanYNAPhwbnTT6mjNb0TfRmv1ev0OEor04Um+Sv5+9V15ayuK894\n/mwswfD4FEMjk/OO3Mx9fbsys4nqKsu8IzfJrw57acbVUYVECowQQgixQEqNJTSlFqa8LJ6Ikyid\n5kz/RXwRf+rXML5JP6cip+ffZgZInoqaX2gu/6qurGKZ48qjNhOT0SsKzeDIJF1943T2jWc832jQ\n464opXpesbl8BOfd3qRvsai9dUIIIcQSY9AbqC6rxuS0XPG9cHRyrtDM+3pxoo8Lwd6M5+p1epyl\nVZnFxpIsOmuWV7BmeUXG82djcXyjU1eckhocjTAQmLxiW+zWotRVUXOnpGoqzVTaS9ArcOm3FBgh\nhBBCEdYiC9YiC43lKzIejyViBKZG54rNpD+j4FzxPibLvFIzV3BqHJXUujJX89Y0jfFwlKG3zbMZ\nHIlw9tI4Zy9lHrUxGfW4K8zpy75bmhys9JRd8/8W/8miFpjJyUm+8pWvEAwGmZ2d5YEHHsDpdPLI\nI48AsGbNGr75zW8u5iYJIYQQyjPqjVRbXFRbXBmPa5pGeHYy4zTU5d9fCPbSHbyY8XyDzpA6apMs\nNi6zk+pUuVm3opJ1Kyoznj8zG8c3GklfFTWY/jpJvz8MwJvnhvk/n33fgn7+d7KoBeb555+noaGB\nBx98EJ/Px3333YfT6WTfvn00Nzfz4IMP8uqrr3Lrrbcu5mYJIYQQBUmn02ErsmIrsmbMswGYTcQI\nTI2kjtgMZ8y3GYoMw7xLvgFsJiuujFNRydNRy5wVLHdn3o/l8h2IB0cjVNqKF/xzvpNFLTAVFRWc\nO3cOgImJCcrLyxkYGKC5uRmAD3zgAxw5ckQKjBBCCPEemfRGaixuaixucM49rmkaodlw6mjN/GLj\n50LwIt3Bnoz3MegMOM2OjAnEl+fdbHjbEZvFtKgF5o477uC5557j9ttvZ2Jigscff5xvfetb6e9X\nVVXh9195Lu/tKirMGI2GBdvOq935T+SXZKMmyUVdko268pmNizIa8Vzx+Gx8lqGwn4GJIbwhH94J\nH96Qj4HQEEOTviueby8p49YVN7Gn5a7F2OwMi1pgXnjhBTweD0888QRnz57lgQcewGabCzDbVQ3G\nxq68xv1akVtvq0uyUZPkoi7JRl0qZ1OCjcYSG40lq9JHbjRNYyIavuLqKN+kn4HR4QX7LMosJXD8\n+HF27NgBwNq1a5mZmSEWm1uG3Ofz4XK5/t3LhRBCCJEHOp0Oe7ENe7GN1RWN+d4cABZ10YT6+nra\n2toAGBgYwGKx0NjYyJtvvgnASy+9xM6dOxdzk4QQQghRgBb1CMzu3bvZt28fe/bsIRaL8cgjj+B0\nOvnGN75BIpGgpaWF1tbWxdwkIYQQQhSgRS0wFouFH//4x1c8/vTTTy/mZgghhBCiwF0/624LIYQQ\nYsmQAiOEEEKIgiMFRgghhBAFRwqMEEIIIQqOFBghhBBCFBwpMEIIIYQoOFJghBBCCFFwpMAIIYQQ\nouBIgRFCCCFEwZECI4QQQoiCo9M0Tcv3RgghhBBC5EKOwAghhBCi4EiBEUIIIUTBkQIjhBBCiIIj\nBUYIIYQQBUcKjBBCCCEKjhQYIYQQQhQcKTDzfPe732X37t3cc889tLe353tzxDzf//732b17N3ff\nfTcvvfRSvjdHzDM9Pc1tt93Gc889l+9NEfP84Q9/4KMf/Sh33XUXr7zySr43RwCTk5N8/vOfZ+/e\nvdxzzz0cOnQo35tU0Iz53gBVHD16lN7eXg4cOEB3dzf79u3jwIED+d4sAbz++ut0dXVx4MABxsbG\n+NjHPsaHPvShfG+WSHn88cex2+353gwxz9jYGI899hjPPvsskUiEn/70p7z//e/P92Zd955//nka\nGhp48MEH8fl83HfffRw8eDDfm1WwpMCkHDlyhNtuuw2AxsZGgsEg4XAYq9Wa5y0T27Zto7m5GYCy\nsjKmpqaIx+MYDIY8b5no7u7m/Pnz8o+jYo4cOcLNN9+M1WrFarXy7W9/O9+bJICKigrOnTsHwMTE\nBBUVFXneosImp5BSAoFAxmCqrKzE7/fncYvEZQaDAbPZDMDvfvc7du3aJeVFEfv37+ehhx7K92aI\nt+nv72d6eprPfe5z3HvvvRw5ciTfmySAO+64A6/Xy+23386ePXv4yle+ku9NKmhyBObfkBUW1PO3\nv/2N3/3ud/zqV7/K96YI4Pe//z2bN2+mrq4u35si3sH4+DiPPvooXq+Xz3zmM/z9739Hp9Ple7Ou\nay+88AIej4cnnniCs2fPsm/fPpk79h5IgUlxuVwEAoH0n4eHh3E6nXncIjHfoUOH+NnPfsYvf/lL\nbDZbvjdHAK+88gp9fX288sorDA0NUVRURHV1Na2trfnetOteVVUVW7ZswWg0snz5ciwWC6Ojo1RV\nVeV7065rx48fZ8eOHQCsXbuW4eFhOR3+HsgppJRbbrmFF198EYCOjg5cLpfMf1FEKBTi+9//Pj//\n+c8pLy/P9+aIlB/96Ec8++yz/OY3v+ETn/gE999/v5QXRezYsYPXX3+dRCLB2NgYkUhE5lsooL6+\nnra2NgAGBgawWCxSXt4DOQKTcsMNN7BhwwbuuecedDodDz/8cL43SaT8+c9/ZmxsjC984Qvpx/bv\n34/H48njVgmhLrfbzYc//GE++clPAvC1r30NvV7+fzXfdu/ezb59+9izZw+xWIxHHnkk35tU0HSa\nTPYQQgghRIGRSi6EEEKIgiMFRgghhBAFRwqMEEIIIQqOFBghhBBCFBwpMEIIIYQoOFJghBALqr+/\nn40bN7J37970KrwPPvggExMTWb/H3r17icfjWT//U5/6FG+88ca72VwhRIGQAiOEWHCVlZU89dRT\nPPXUUzzzzDO4XC4ef/zxrF//1FNPyQ2/hBAZ5EZ2QohFt23bNg4cOMDZs2fZv38/sViM2dlZvvGN\nb7B+/Xr27t3L2rVrOXPmDE8++STr16+no6ODaDTK17/+dYaGhojFYtx5553ce++9TE1N8cUvfpGx\nsTHq6+uZmZkBwOfz8aUvfQmA6elpdu/ezcc//vF8fnQhxDUiBUYIsaji8Th//etf2bp1K1/+8pd5\n7LHHWL58+RWL25nNZn79619nvPapp56irKyMH/7wh0xPT/ORj3yEnTt3cvjwYUpKSjhw4ADDw8N8\n8IMfBOAvf/kLK1eu5Jvf/CYzMzP89re/XfTPK4RYGFJghBALbnR0lL179wKQSCS48cYbufvuu/nJ\nT37CV7/61fTzwuEwiUQCSC7v8XZtbW3cddddAJSUlLBx40Y6Ojro7Oxk69atQHJh1pUrVwKwc+dO\nnn76aR566CFuvfVWdu/evaCfUwixeKTACCEW3OU5MPOFQiFMJtMVj19mMpmueEyn02X8WdM0dDod\nmqZlrPVzuQQ1Njbypz/9iWPHjnHw4EGefPJJnnnmmff6cYQQCpBJvEKIvLDZbNTW1vLqq68C0NPT\nw6OPPnrV17S0tHDo0CEAIpEIHR0dbNiwgcbGRk6cOAHA4OAgPT09APzxj3/k1KlTtLa28vDDDzM4\nOEgsFlvATyWEc25zgAAAALFJREFUWCxyBEYIkTf79+/nO9/5Dr/4xS+IxWI89NBDV33+3r17+frX\nv86nP/1potEo999/P7W1tdx55528/PLL3HvvvdTW1rJp0yYAmpqaePjhhykqKkLTND772c9iNMqP\nPSGWAlmNWgghhBAFR04hCSGEEKLgSIERQgghRMGRAiOEEEKIgiMFRgghhBAFRwqMEEIIIQqOFBgh\nhBBCFBwpMEIIIYQoOFJghBBCCFFw/j+GGGS6f9DNWgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "0i7vGo9PTaZl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution." + ] + }, + { + "metadata": { + "id": "3tAWu8qSTe2v", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " households = tf.feature_column.numeric_column(\"households\")\n", + " longitude = tf.feature_column.numeric_column(\"longitude\")\n", + " latitude = tf.feature_column.numeric_column(\"latitude\")\n", + " housing_median_age = tf.feature_column.numeric_column(\"housing_median_age\")\n", + " median_income = tf.feature_column.numeric_column(\"median_income\")\n", + " rooms_per_person = tf.feature_column.numeric_column(\"rooms_per_person\")\n", + " \n", + " # Divide households into 7 buckets.\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " households, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"households\"], 7))\n", + "\n", + " # Divide longitude into 10 buckets.\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " longitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"longitude\"], 10))\n", + " \n", + " # Divide latitude into 10 buckets.\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " latitude, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"latitude\"], 10))\n", + "\n", + " # Divide housing_median_age into 7 buckets.\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " housing_median_age, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"housing_median_age\"], 7))\n", + " \n", + " # Divide median_income into 7 buckets.\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " median_income, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"median_income\"], 7))\n", + " \n", + " # Divide rooms_per_person into 7 buckets.\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " rooms_per_person, boundaries=get_quantile_based_boundaries(\n", + " training_examples[\"rooms_per_person\"], 7))\n", + " \n", + " # YOUR CODE HERE: Make a feature column for the long_x_lat feature cross\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000) \n", + " \n", + " feature_columns = set([\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person,\n", + " long_x_lat])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "-_vvNYIyTtPC", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_model(\n", + " learning_rate=1.0,\n", + " steps=500,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ymlHJ-vrhLZw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Optional Challenge: Try Out More Synthetic Features\n", + "\n", + "So far, we've tried simple bucketized columns and feature crosses, but there are many more combinations that could potentially improve the results. For example, you could cross multiple columns. What happens if you vary the number of buckets? What other synthetic features can you think of? Do they improve the model?" + ] + } + ] +} \ No newline at end of file From 4dfb508e71751ca7e3d7d0330c1b1a40bd9d3706 Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 12:14:21 +0530 Subject: [PATCH 07/11] Created using Colaboratory --- logistic_regression.ipynb | 1621 +++++++++++++++++++++++++++++++++++++ 1 file changed, 1621 insertions(+) create mode 100644 logistic_regression.ipynb diff --git a/logistic_regression.ipynb b/logistic_regression.ipynb new file mode 100644 index 0000000..acb282a --- /dev/null +++ b/logistic_regression.ipynb @@ -0,0 +1,1621 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "logistic_regression.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "dPpJUV862FYI", + "i2e3TlyL57Qs", + "wCugvl0JdWYL" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Logistic Regression" + ] + }, + { + "metadata": { + "id": "LEAHZv4rIYHX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Reframe the median house value predictor (from the preceding exercises) as a binary classification model\n", + " * Compare the effectiveness of logisitic regression vs linear regression for a binary classification problem" + ] + }, + { + "metadata": { + "id": "CnkCZqdIIYHY", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "As in the prior exercises, we're working with the [California housing data set](https://developers.google.com/machine-learning/crash-course/california-housing-data-description), but this time we will turn it into a binary classification problem by predicting whether a city block is a high-cost city block. We'll also revert to the default features, for now." + ] + }, + { + "metadata": { + "id": "9pltCyy2K3dd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Frame the Problem as Binary Classification\n", + "\n", + "The target of our dataset is `median_house_value` which is a numeric (continuous-valued) feature. We can create a boolean label by applying a threshold to this continuous value.\n", + "\n", + "Given features describing a city block, we wish to predict if it is a high-cost city block. To prepare the targets for train and eval data, we define a classification threshold of the 75%-ile for median house value (a value of approximately 265000). All house values above the threshold are labeled `1`, and all others are labeled `0`." + ] + }, + { + "metadata": { + "id": "67IJwZX1Vvjt", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and prepare the input features and targets." + ] + }, + { + "metadata": { + "id": "fOlbcJ4EIYHd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "lTB73MNeIYHf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Note how the code below is slightly different from the previous exercises. Instead of using `median_house_value` as target, we create a new binary target, `median_house_value_is_high`." + ] + }, + { + "metadata": { + "id": "kPSqspaqIYHg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FwOYWmXqWA6D", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1209 + }, + "outputId": "7f5b5b45-d677-43bc-fc94-c87cf8846541" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.5 2649.7 539.2 \n", + "std 2.1 2.0 12.7 2189.2 423.1 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1461.0 296.0 \n", + "50% 34.2 -118.5 29.0 2141.0 434.0 \n", + "75% 37.7 -118.0 37.0 3160.0 646.0 \n", + "max 42.0 -114.3 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1429.0 500.8 3.9 2.0 \n", + "std 1172.9 386.7 1.9 1.3 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 791.0 281.0 2.6 1.5 \n", + "50% 1166.0 408.0 3.5 1.9 \n", + "75% 1710.0 603.0 4.8 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.52649.7539.21429.0500.83.92.0
std2.12.012.72189.2423.11172.9386.71.91.3
min32.5-124.31.02.01.03.01.00.50.0
25%33.9-121.818.01461.0296.0791.0281.02.61.5
50%34.2-118.529.02141.0434.01166.0408.03.51.9
75%37.7-118.037.03160.0646.01710.0603.04.82.3
max42.0-114.352.037937.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.8 2629.3 539.9 \n", + "std 2.1 2.0 12.4 2157.7 417.7 \n", + "min 32.5 -124.3 1.0 12.0 3.0 \n", + "25% 33.9 -121.8 19.0 1463.0 297.0 \n", + "50% 34.2 -118.5 29.0 2104.0 434.0 \n", + "75% 37.7 -118.0 37.0 3121.2 654.0 \n", + "max 41.9 -114.5 52.0 32054.0 5290.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1430.9 502.3 3.9 2.0 \n", + "std 1085.5 379.2 1.9 0.9 \n", + "min 8.0 4.0 0.5 0.1 \n", + "25% 786.0 282.0 2.6 1.5 \n", + "50% 1171.5 410.0 3.5 1.9 \n", + "75% 1751.2 608.0 4.7 2.3 \n", + "max 15507.0 5050.0 15.0 34.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.82629.3539.91430.9502.33.92.0
std2.12.012.42157.7417.71085.5379.21.90.9
min32.5-124.31.012.03.08.04.00.50.1
25%33.9-121.819.01463.0297.0786.0282.02.61.5
50%34.2-118.529.02104.0434.01171.5410.03.51.9
75%37.7-118.037.03121.2654.01751.2608.04.72.3
max41.9-114.552.032054.05290.015507.05050.015.034.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.3\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 1.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.3
std0.4
min0.0
25%0.0
50%0.0
75%1.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "uon1LB3A31VN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## How Would Linear Regression Fare?\n", + "To see why logistic regression is effective, let us first train a naive model that uses linear regression. This model will use labels with values in the set `{0, 1}` and will try to predict a continuous value that is as close as possible to `0` or `1`. Furthermore, we wish to interpret the output as a probability, so it would be ideal if the output will be within the range `(0, 1)`. We would then apply a threshold of `0.5` to determine the label.\n", + "\n", + "Run the cells below to train the linear regression model using [LinearRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor)." + ] + }, + { + "metadata": { + "id": "smmUYRDtWOV_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "B5OwSrr1yIKD", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "SE2-hq8PIYHz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_regressor_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear regressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_regressor = tf.estimator.LinearRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute predictions.\n", + " training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "TDBD8xeeIYH2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 761 + }, + "outputId": "70a7dbeb-f358-44b4-a465-233ca0c32d61" + }, + "cell_type": "code", + "source": [ + "linear_regressor = train_linear_regressor_model(\n", + " learning_rate=0.000001,\n", + " steps=200,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 0.45\n", + " period 01 : 0.45\n", + " period 02 : 0.45\n", + " period 03 : 0.44\n", + " period 04 : 0.44\n", + " period 05 : 0.44\n", + " period 06 : 0.44\n", + " period 07 : 0.44\n", + " period 08 : 0.44\n", + " period 09 : 0.44\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGACAYAAACtGmg0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VFX6wPHvTHrvhSSkEEILCR2B\n0EINTUCKCAZWUX8qEURcFVZWd3URdxdWEcHVVRRsKAYEAekgvZcQagKkEEjPpLfJ/f0RGIlACJDJ\nTJL38zw+ODP3nvveOTPJm/ece49KURQFIYQQQohGQG3oAIQQQggh6ookPkIIIYRoNCTxEUIIIUSj\nIYmPEEIIIRoNSXyEEEII0WhI4iOEEEKIRsPU0AEI0RC1bNkSX19fTExMANBqtXTp0oU333wTa2vr\nB273hx9+YPz48bc9Hx0dzezZs/nkk08IDw/XPV9cXEyPHj0YNGgQ8+fPf+Dj1lRiYiLz5s3j8uXL\nAFhZWREVFcWAAQP0fuz7sWTJEhITE297Tw4ePMjUqVPx8fG5bZ9ff/21rsJ7KMnJyfTv35+AgAAA\nFEXB1dWVv/zlL7Rp0+a+2lqwYAFeXl488cQTNd7n559/ZtWqVaxYseK+jiVEXZHERwg9WbFiBZ6e\nngCUlpYyc+ZM/vvf/zJz5swHai89PZ3//e9/d0x8AJo0acIvv/xSJfHZsWMH9vb2D3S8B/Hqq68y\ncuRIPvnkEwBOnjzJlClT2LhxI02aNKmzOB5GkyZN6k2SczcmJiZVzmHDhg1MmzaNTZs2YW5uXuN2\nZs2apY/whDAoGeoSog6Ym5vTq1cvzp49C0BJSQl//etfGTx4MEOGDGH+/PlotVoAzp07x4QJE4iI\niGDkyJHs3r0bgAkTJpCSkkJERASlpaW3HaNjx44cPHiQoqIi3XMbNmwgLCxM97i0tJR3332XwYMH\n069fP12CAnD8+HEee+wxIiIiGDp0KPv27QMqKwg9e/Zk+fLljBgxgl69erFhw4Y7nueFCxdo166d\n7nG7du3YtGmTLgFcvHgxffr0YdSoUXz66af069cPgDfeeIMlS5bo9rv18b3imjdvHk8++SQAR48e\nZcyYMQwcOJDx48eTlJQEVFa+Xn75ZcLDw3nyySe5fv36PXrszqKjo4mKimLKlCn885//5ODBg0yY\nMIEZM2bokoSNGzcyfPhwIiIimDx5MomJiQB89NFHvPnmm4wdO5Yvv/yySrszZszgiy++0D0+e/Ys\nPXv2pKKigv/85z8MHjyYwYMHM3nyZFJTU+877qFDh1JcXMylS5cAWLlyJREREfTr149XXnmF4uJi\noPJ9f++99xgxYgQbN26s0g93+1xWVFTw97//nb59+zJ27FjOnTunO+6hQ4cYPXo0Q4cOZciQIWzc\nuPG+Yxei1ilCiFrXokUL5dq1a7rHOTk5yqRJk5QlS5YoiqIo//3vf5Vnn31WKSsrU4qKipQxY8Yo\na9asUbRarTJkyBBl3bp1iqIoyqlTp5QuXbooeXl5yoEDB5QBAwbc8Xg//fST8vrrryuvvvqqbt+8\nvDylf//+yo8//qi8/vrriqIoyuLFi5UpU6YoJSUlSkFBgTJq1Chl+/btiqIoyvDhw5VffvlFURRF\nWb16te5YSUlJSps2bZQVK1YoiqIoGzZsUAYOHHjHOF566SUlPDxc+eqrr5S4uLgqr50/f17p3Lmz\nkpaWppSVlSkvvPCCEh4eriiKorz++uvKxx9/rNv21sfVxRUcHKxER0frzrdLly7Knj17FEVRlHXr\n1imjR49WFEVRvv76a2XSpElKWVmZkpWVpYSHh+vek1tV9x7ffJ/bt2+vXL58Wbd9SEiIsm/fPkVR\nFOXq1atKp06dlCtXriiKoiiff/65MmXKFEVRFGXRokVKz549lczMzNvaXb9+vTJp0iTd4w8//FB5\n5513lAsXLiiDBg1SSktLFUVRlOXLlyurV6++a3w335fWrVvf9nyXLl2U+Ph45fDhw0r37t2V69ev\nK4qiKHPnzlXmz5+vKErl+z5ixAiluLhY9/jjjz+u9nO5c+dOZdCgQUp+fr5SVFSkjB07VnnyyScV\nRVGUxx57TDl48KCiKIpy+fJl5ZVXXqk2diHqglR8hNCTyMhIIiIi6N+/P/3796dbt248++yzAOzc\nuZPx48djamqKpaUlI0aMYO/evSQnJ5ORkcGwYcMACAkJwcvLi5iYmBodc9iwYfzyyy8AbN26lfDw\ncNTq37/mO3bsYOLEiZibm2Ntbc3IkSPZvHkzAGvWrGHIkCEAdOrUSVctASgvL+exxx4DIDg4mJSU\nlDse/1//+heTJk1i3bp1DB8+nH79+vHdd98BldWYLl264ObmhqmpKcOHD6/ROVUXV1lZGQMHDtS1\n7+HhoatwDR8+nMTERFJSUjhy5AgDBw7E1NQUJyenKsOBf3Tt2jUiIiKq/HfrXCB/f3/8/f11jy0t\nLenevTsAe/fu5ZFHHsHPzw+AcePGcfDgQcrLy4HKCpizs/Ntx+zbty9nzpwhJycHgC1bthAREYG9\nvT1ZWVmsW7cOjUZDZGQko0aNqtH7dpOiKKxcuRIPDw/8/f3Zvn07Q4cOxcPDA4AnnnhC9xkA6N69\nOxYWFlXaqO5zefjwYfr06YONjQ2Wlpa6vgJwcXFhzZo1xMfH4+/vz4IFC+4rdiH0Qeb4CKEnN+f4\nZGVl6YZpTE0rv3JZWVk4ODjotnVwcCAzM5OsrCzs7OxQqVS6127+8nN1db3nMcPCwnjzzTfJyclh\n/fr1vPjii7qJxgB5eXm89957LFy4EKgc+goNDQVg3bp1LF++nIKCAioqKlBuWcbPxMRENylbrVZT\nUVFxx+NbWFgwdepUpk6dSm5uLr/++ivz5s3Dx8cHjUZTZb6Ri4vLPc+nJnHZ2toCkJubS1JSEhER\nEbrXzc3NycrKQqPRYGdnp3ve3t6egoKCOx7vXnN8bu23Pz7Ozs6uco52dnYoikJ2dvYd973J2tqa\nHj16sHPnTjp16kRubi6dOnVCpVLx0Ucf8cUXX/DOO+/QpUsX/va3v91zvpRWq9W9D4qi0Lx5c5Ys\nWYJarSYvL48tW7awZ88e3etlZWV3PT+g2s+lRqPB3d29yvM3zZs3j6VLl/LUU09haWnJK6+8UqV/\nhDAESXyE0DNnZ2ciIyP517/+xdKlSwFwdXXV/XUPkJOTg6urKy4uLmg0GhRF0f2SycnJqXGSYGZm\nRnh4OGvWrCEhIYEOHTpUSXzc3d15+umnb6t4pKam8uabb/Ljjz/SunVrrly5wuDBg+/rPLOysjh7\n9qyu4mJvb8/48ePZvXs3Fy5cwM7Ojry8vCrb3/THZEqj0dx3XO7u7jRr1ozo6OjbXrO3t7/rsWuT\ni4sLx48f1z3WaDSo1WqcnJzuue/gwYPZsmUL2dnZDB48WNf/3bp1o1u3bhQWFvL+++/z73//+56V\nkz9Obr6Vu7s7o0eP5vXXX7+v87rb57K699bV1ZW5c+cyd+5c9uzZw0svvUSvXr2wsbGp8bGFqG0y\n1CVEHXjqqac4fvw4hw4dAiqHNlatWoVWq6WwsJCff/6ZPn364OPjg6enp27y8LFjx8jIyCA0NBRT\nU1MKCwt1wyZ3M2zYMD777LM7XkLev39/fvzxR7RaLYqisGTJEn777TeysrKwtramWbNmlJeXs3Ll\nSoC7VkXupLi4mOnTp+smvQIkJCRw8uRJOnfuTIcOHThy5AhZWVmUl5ezZs0a3XZubm66SbFJSUkc\nO3YM4L7iateuHenp6Zw8eVLXzp///GcURaF9+/Zs374drVZLVlYWv/32W43P636EhYVx5MgR3XDc\n999/T1hYmK7SV53w8HCOHz/O1q1bdcNFe/bs4W9/+xsVFRVYW1vTqlWrKlWXB9GvXz82b96sS1C2\nbt3Kp59+Wu0+1X0uO3TowJ49eygqKqKoqEiXcJWVlREZGUlaWhpQOURqampaZehVCEOQio8QdcDW\n1pbnnnuO999/n1WrVhEZGUlSUhLDhg1DpVIRERHBkCFDUKlULFy4kLfeeovFixdjZWXFhx9+iLW1\nNS1btsTBwYGwsDBWr16Nl5fXHY/VtWtXVCoVQ4cOve21iRMnkpyczLBhw1AUhbZt2zJlyhSsra3p\n3bs3gwcPxsXFhTfeeINjx44RGRnJokWLanSOXl5eLF26lEWLFvHuu++iKAq2trbMnj1bd6XX448/\nzujRo3FycmLQoEFcvHgRgPHjxxMVFcWgQYNo06aNrqrTqlWrGsdlaWnJokWLeOeddygoKMDMzIwZ\nM2agUqkYP348R44cYcCAAXh5eTFgwIAqVYpb3Zzj80f//Oc/7/keeHp68u677/Liiy9SVlaGj48P\n77zzTo3eP1tbW4KDgzl//jzt27cHoEuXLqxfv57Bgwdjbm6Os7Mz8+bNA+C1117TXZl1P4KDg3n+\n+eeJjIykoqICFxcX/va3v1W7T3Wfy/DwcHbu3ElERASurq706dOHI0eOYGZmxtixY/nTn/4EVFb1\n3nzzTaysrO4rXiFqm0q5dcBcCCHqyJEjR3jttdfYvn27oUMRQjQiUnMUQgghRKMhiY8QQgghGg0Z\n6hJCCCFEoyEVHyGEEEI0GpL4CCGEEKLRaFSXs6en3/ny1drg5GRNdnah3toXD076xjhJvxgv6Rvj\nJX1TM25udnd9Ta+Jz7x58zh58iQqlYo5c+bobo1/qwULFnDixAlWrFjBwYMHmTFjBkFBQQC0aNGC\nuXPn8sYbbxAbG4ujoyMAU6dOpW/fvqxdu5avvvoKtVrN+PHjGTdunD5Pp1qmpiYGO7aonvSNcZJ+\nMV7SN8ZL+ubh6S3xOXToEAkJCaxcuZL4+HjmzJmju+vqTXFxcRw+fBgzMzPdc127dr3jDdNeeeWV\nKrfZLyws5OOPP2bVqlW6G2UNHDhQlxwJIYQQQvyR3ub47N+/X3fL/MDAQDQaDfn5+VW2mT9/PjNn\nznyg9k+ePElISAh2dnZYWlrSsWNH3W3uhRBCCCHuRG8Vn4yMDIKDg3WPnZ2dSU9P162kHB0dTdeu\nXfH29q6yX1xcHM8//zwajYaoqCjdgodff/01y5Ytw8XFhblz55KRkYGzs/Nt7VfHyclar2XC6sYU\nhWFJ3xgn6RfjJX1jvKRvHk6dTW6+9XZBOTk5REdHs2zZMlJTU3XP+/v7ExUVxZAhQ0hKSmLy5Mls\n3ryZkSNH4ujoSOvWrfn0009ZvHgxHTp0uGv7d6PPCWFubnZ6nTwtHpz0jXGSfjFe0jfGS/qmZqpL\nDvU21OXu7k5GRobucVpaGm5ubgAcOHCArKwsJk2aRFRUFLGxscybNw8PDw+GDh2KSqXC19cXV1dX\nUlNT6d69O61btwYqVxa+cOHCHdt3d3fX1+kIIYQQogHQW+ITFhbGpk2bAIiNjcXd3V03zBUREcGG\nDRv44YcfWLx4McHBwcyZM4e1a9fy+eefA5Cenk5mZiYeHh689NJLJCUlAXDw4EGCgoJo164dMTEx\n5ObmUlBQwLFjx+jcubO+TkcIIYQQDYDehro6duxIcHAwEyZMQKVS8dZbbxEdHY2dnR0DBw684z79\n+vXj1VdfZdu2bZSVlfH2229jbm7OpEmTePnll7GyssLa2pr33nsPS0tLZs2axdSpU1GpVEybNg07\nOxn3FEIIIcTdNaq1uvQ5LirjrsZL+sY4Sb8YL+kb46Xvvtm5cxt9+/a/53YffriAceMm4OXlfcfX\n33jjFebPX1jb4dWYQeb4CCGEEKL+uHYtha1bN9Vo2xkzZt016QEMmvTcS6NaskIIIYQQd7Zw4fuc\nPRtLr15dGDRoCNeupfDBB0t4772/k56eRlFREU8//RxhYb2IinqOV155jR07tlFQkE9iYgJXryYz\nffosuncPY9iw/qxfv42oqOfo0uURjh07Qk5ODu+//x9cXV35+9/ncv36NUJCQtm+fSurV2+os/OU\nxEcIIYQwMj9sj+PwubTbnjcxUaHVPtgMlS6t3Bnfr/ldX3/iiUiio38gICCQxMQrLFnyP7Kzs+ja\ntRtDhgzn6tVk5s59g7CwXlX2S0tL5d//XsSBA/v4+eef6N49rMrrNjY2fPjhUpYu/YjfftuOl5cP\npaUlfPrpl+zdu5sffvjugc7nQUniIxq0i9nxmNoGIKO6QghRc61bV96A2M7OnrNnY1m7NhqVSk1u\nrua2bUND2wOVt7H54woNAO3addC9rtFoSEi4TEhIOwC6dw/DxKRu1x+TxEc0WIeuH+OrM9/jE9+E\n1zpOx0Qti/sJIeqH8f2a37E6U1cTz2+uoblly6/k5uby8cf/Izc3l2eeibxt21sTlztdL/XH1xVF\nQX3j57FKpUKlUtV2+NWSP4NFg5SYl8y351YBkJx7jd0pBwwckRBCGDe1Wo1Wq63yXE5ODk2aeKFW\nq9m1aztlZWUPfRxvbx/Onz8DwKFDB247pr5J4iManLzSfD49tZzyCi1PthqHlZklGy5toaBMf0uW\nCCFEfefnF8D58+coKPh9uKpv337s27ebGTNewMrKCnd3d5Yt++yhjtOjRy8KCgp44YWpnDx5HHt7\nh4cN/b7IfXxqidz3wjhoK7R8dOIzLuZcYnjAYIYE9OdA5kFWnPyJPj5hjG8x0tAhihvkO2O8pG+M\nV0Pom9xcDceOHaFv3/6kp6cxY8YLfPvtT7V6jOru4yNzfESDEh33CxdzLtHOrS2D/cMBGBLUl00X\ndrH76n56eXejiY2HgaMUQojGy9rahu3bt/LttytQlApeeumVOj2+JD6iwdh/7Qg7k/fiaePB5Nbj\nUasqR3JNTUx5LGg4n5z6kp8urmNau6l1PplOCCFEJVNTU/7+9/cMdnyZ4yMahITcJL4/H42VqRX/\nFzIFS1PLKq+3dWlNK6cgzmZdIDbznIGiFEIIYWiS+Ih6L7c0j09jlqOt0PJU8ETcrV1v20alUjEm\naARqlZqfLq6jvKLcAJEKIYQwNEl8RL1WXlHO/2JWkFOi4dFmEQS7tLzrtl62nvT06kZaUQa7kvfV\nYZRCCCGMhSQ+ol776eI64jVX6OAeykC/vvfcflizgVibWrHxylbySm+/w6gQQoiGTRIfUW/tSznE\nb1f342XjyZOtxtVowrKtmQ1DAwZSVF7ML5dqtgqxEEKI340dO4LCwkJWrPiS06dPVXmtsLCQsWNH\nVLv/zp3bANiwYR27du3QW5x3I4mPqJcuaxJYeX411qZW/F/oFCxNLWq8b2/v7nhau7M35RBX86/p\nMUohhGi4IiP/RNu2ofe1z7VrKWzdWvlH59ChI+jTJ1wfoVVLLmcX9Y6mJJfPYpajVSp4uu0kXK1c\n7mt/E7UJjwWNYMnJz1l1YS3TOzwnl7cLIRq9p5+exLx5C/D09OT69WvMnj0LNzd3ioqKKC4uZubM\nP9OmTVvd9v/4x9v07duf9u078Je/vEZpaaluwVKAzZs3smrVSkxM1Pj7B/L6639h4cL3OXs2lmXL\nPqOiogJHR0fGjHmcJUs+JCbmJOXlWsaMGU9ExDCiop6jS5dHOHbsCDk5Obz//n/w9PR86POUxEfU\nK2UV5XwWswJNaR6jmw+jtXOLB2on2KUlwS6tiM08x8mMWNq7tb33TkIIUUei437heFrMbc+bqFVo\nKx5swYUO7iE81nz4XV/v3TucvXt/Y8yY8ezevYvevcMJDAyid+++HD16mG+++Yp//ONft+23adNG\nmjULZPr0WWzbtllX0SkqKmLBgo+ws7Nj2rRniY+P44knIomO/oGnnnqWzz//LwAnThzj0qV4li79\ngqKiIqZMmUDv3n0BsLGx4cMPl7J06Uf89tt2xo+f+EDnfisZ6hL1yo8XfuZybgKdPdrTv2nvh2pr\nTPPhqFVqVl/8hTK5vF0I0chVJj67AdizZxc9e/Zh165tvPDCVJYu/QiNRnPH/a5cuUTbtu0A6NCh\nk+55e3t7Zs+eRVTUcyQkXEajybnj/ufOnaF9+44AWFlZ4e/fjKSkJADatesAgLu7O/n5tXNBilR8\nRL2x++oB9qYcxMfWi0mtxj708JSHjTt9fHqwI2kPO5J2M8iv7seahRDiTh5rPvyO1Rl9rtXVrFkg\nmZnppKZeJy8vj927d+Lq6s7cue9w7twZFi/+4I77KQqo1ZU/jytuVKPKyspYuPCffPnlt7i4uPLa\nay/f9bgqlYpbVw0tLy/TtWdiYnLLcWpnaVGp+Ih6IT7nCj9e+BkbM2ueC5mMuYl5rbQ71H8ANmbW\n/HplG5qS+r3wnxBCPKzu3Xvy6adL6NWrDxpNDt7ePgDs2rWD8vI7V8Z9ff04d+4sAMeOHQGgsLAA\nExMTXFxcSU29zrlzZykvL0etVqPVaqvs36pVMMePH72xXyFXrybj4+Orr1OUxEcYv5wSDZ+dXo6C\nwtTgJ3Gxcq61tq3NrBkeMJgSbSnrLv1aa+0KIUR91KdPOFu3bqJv3/5ERAxj5cpvmDlzGsHBbcnM\nzGT9+rW37RMRMYzY2BhmzHiBpKQEVCoVDg6OdOnyCM88M5llyz5j4sRIFi1aiJ9fAOfPn2PRogW6\n/du1a0/Llq2YNu1ZZs6cxvPPR2FlZaW3c1QptVU7qgf0VR4E/ZYfG7MybRn/Of4JCblJjAkaQb+m\nve67jXv1jbZCy/zDH3KtIJXXuryEr53Pw4Qsaki+M8ZL+sZ4Sd/UjJub3V1fk4qPMFqKorDywhoS\ncpPo4tGRcJ+eejmOidqEMUEjUFBYdWFtrY0jCyGEMD6S+AijtfvqfvZfO0xTO28mthqj13vttHIO\nItQ1mHjNFY6lnbr3DkIIIeolSXyEUbqYfYkfL67F1szmxmRmM70fc3TzYZiqTFgdt55SbZnejyeE\nEKLuSeIjjE52cQ6fn/4agGfaPomzpVOdHNfd2pXwpr3ILslhW+JvdXJMIYQQdUsSH2FUSrVlfBrz\nFXll+YwJGkGQU2CdHn+wfz/szG3ZnLCdnJI736xLCCFE/SWJjzAaiqLw/floEvOu0s2zM328e9R5\nDFamljzaLILSijJ+jt9Y58cXQgihX5L4CKOxM3kvB68fxc+uKRNajjbYwqHdmnSmqa0Xh64f47Im\n0SAxCCGE0A9JfIRRuJAdR3TcL9iZ2/JsSCRmdTCZ+W7UKjVjW4wE4KeLcnm7EEI0JJL4CIPLLMrm\n89PfAPBM20icLB0NHBE0dwygg3sol3MTOZx63NDhCCGEqCWS+AiDKtWW8lnMV+SXFTC+xUiaOwYY\nOiSd0YFDMVWb8nP8Rkq0pYYORwghRC2QxEcYjKIofHNuFUn5KfRo0pWeXt0MHVIVLlbODGjam5wS\nDVsSdhg6HCGEELVAEh9hMNuTdnMk9QQB9r6MbznKYJOZqzPQLxwHczu2Ju4isyjb0OEIIYR4SKb6\nbHzevHmcPHkSlUrFnDlzCA0NvW2bBQsWcOLECVasWMHBgweZMWMGQUFBALRo0YK5c+dy7do1Zs+e\nTXl5OaampvzrX//Czc2N4OBgOnbsqGvryy+/xMTERJ+nJGrJuayLrI5bj4O5Hc+ERGKm1utH8YFZ\nmlowMnAoy8+u5Of4DTzddpKhQxJCCPEQ9Pbb5tChQyQkJLBy5Uri4+OZM2cOK1eurLJNXFwchw8f\nxszs9yt4unbtyqJFi6ps98EHHzB+/HiGDh3KN998w7Jly3jttdewtbVlxYoV+joFoScZRVl8cfob\n1Co1z4RMxtHCwdAhVauLZwd2Xd3H0bST9M7pYVTzkIQQQtwfvQ117d+/nwEDBgAQGBiIRqMhPz+/\nyjbz589n5syZ92zrrbfeYvDgwQA4OTmRk5NT+wGLOlGiLeXTmK8oKC/k8ZajaObgZ+iQ7kmtUjM2\n6FGg8vL2CqXCwBEJIYR4UHqr+GRkZBAcHKx77OzsTHp6Ora2tgBER0fTtWtXvL29q+wXFxfH888/\nj0ajISoqirCwMKytrQHQarV8++23TJs2DYDS0lJmzZrF1atXGTx4ME899VS1MTk5WWNqqr+hMDc3\nO7213RAoisIH+z/nav41Bgb2YlS7AXV27IftGze3tvRM78KexMOcyY8lvFnd31W6IZLvjPGSvjFe\n0jcPp84mVtx6E7icnByio6NZtmwZqampuuf9/f2JiopiyJAhJCUlMXnyZDZv3oy5uTlarZbXXnuN\nbt260b17dwBee+01Hn30UVQqFU8++SSdO3cmJCTkrjFkZxfq7fzc3OxIT8/TW/sNwZaEnexPOkoz\nB3+GNx1SZ+9XbfVNhM9ADiaf4JuTa2huFYSlqWUtRNd4yXfGeEnfGC/pm5qpLjnU21CXu7s7GRkZ\nusdpaWm4ubkBcODAAbKyspg0aRJRUVHExsYyb948PDw8GDp0KCqVCl9fX1xdXXWJ0ezZs/Hz8yMq\nKkrX5hNPPIGNjQ3W1tZ069aNCxcu6Ot0xEM6k3men+M34mjhwDNtIzE10snM1XGydGSgX19yS/PY\nJJe3CyFEvaS3xCcsLIxNmzYBEBsbi7u7u26YKyIigg0bNvDDDz+wePFigoODmTNnDmvXruXzzz8H\nID09nczMTDw8PFi7di1mZmZMnz5d1/6lS5eYNWsWiqJQXl7OsWPHdFeDCeOSVpjBF7HfYqI24dmQ\nSBws6m+ZdqBvH5wsHNme+BsZRZmGDkcIIcR90tuf3R07diQ4OJgJEyagUql46623iI6Oxs7OjoED\nB95xn379+vHqq6+ybds2ysrKePvttzE3N+fbb7+lpKSEyMhIoHKy9Ntvv42npydjx45FrVbTr1+/\nO14uLwyruLyET2O+oqi8iCdbjcPf3tfQIT0UcxNzRgUOYdmZ71gdt55nQyYbOiQhhBD3QaU0ohUY\n9TkuKuOut1MUhf+d/poT6TH08enB+BajDBJHbfeNoigsPLaES5oEZnT4P1o4BdZa242JfGeMl/SN\n8ZK+qRmDzPERYlPCDk6kx9DcMYAxzUcYOpxao1KpdJe3r5LL24UQol6RxEfoxemMs/xyaRNOFo48\n0zYSE3XDuqO2n31Tunl25mr+NfalHDJ0OEIIIWpIEh9R61IL0/nyzHeYqk14LmQydua2hg5JLx4N\njMDCxJx1lzZRVF5k6HCEEEJP80KrAAAgAElEQVTUgCQ+olYVlRfz6amvKCov5omWY/C19zF0SHrj\nYGHPYL9+5JcVsPHyNkOHI4QQogYk8RG1pkKpYMWZlVwvTCO8aU8eadLJ0CHpXb+mvXCxdGZn8l7S\nCtMNHY4QQoh7kMRH1Jpfr2zjZEYsLZyaMzpwmKHDqRNmJmaMbj4MraIlOu4XQ4cjhBDiHiTxEbXi\nVHos6y9vwdnSianBkxrcZObqtHdrS5BjM2IyznI2S+4eLoQQxkwSH/HQrhek8dWZ7zFTm/FcyBRs\nzW0MHVKdUqlUjAl6FBUqfrq4Dm2F1tAhCSGEuAtJfMRDKSov4r8xX1KsLeHJVmNpaudl6JAMoqmd\nFz28unCtIJU9KQcNHY4QQoi7kMRHPLAKpYIvY78nrTCDAb596OzZwdAhGdSIZhFYmliy/tJmCsoK\nDR2OEEKIO5DERzywDZe3cDrzLK2cghgZOMTQ4RicnbktQwL6U1BeyPrLWwwdjhBCiDuQxEc8kBNp\nMWy8sg1XS2eebjsJtUo+SgB9fcJws3Jh99X9XCtINXQ4Qggh/kB+W4n7lpJ/neVnV2KuNuO50CnY\nmFkbOiSjYao25bHmw6lQKvjp4joa0RrAQghRL0jiI+5LYVkhn8Z8RYm2lMg2j+Nt28TQIRmdENc2\ntHIK4mzWBWIzzxk6HCGEELeQxEfUWIVSwbIz35FelMkgv3A6uocaOiSjVHl5+4jKy9vj1lFeUW7o\nkIQQQtwgiY+osXWXNnEm8zxtXFoyotlgQ4dj1LxsPenl3Y20wgx+S95n6HCEEELcIImPqJFjaafY\nnLADNysXnmrzhExmroFhAYOwMrViw5Wt5JXmGzocIYQQSOIjauBq/jVWnFmJhYk5z4VMwVomM9eI\nrbkNwwIGUlRezC+XNxs6HCGEEEjiUytS8q+z5uwm9qUcJjbzHEl5KeSW5lGhVBg6tIdWUFbIf099\nRWlFGZNbP46XraehQ6pXent3x8Panb1XD3I1/5qhwxFCiEbP1NABNAQ7k/ewN+XQbc+rVWrszGyw\nt7DHwdwOe3N7HCxu/bfy/+0t7DBTG19XaCu0fHH6GzKLsxji35/27iGGDqneMVGbMCZoOEtOfsGq\ni+uY3v5ZVCqVocMSQohGy/h+29ZDY4MepU/zriSmpaIpzSO3NBdNSeW/uSV5XC9IIynvarVt2Jha\nY29hh8ONRMje3K4yWbqZNN3419LUso7OCtZe+pVz2Rdp69KaoQED6+y4DU2wSyuCXVoRm3mOUxmx\ntHNra+iQhBCi0ZLEpxaYm5jT3i0Yb1PfO76uKArF2mJdMqQpyUNTmktuaR65JXmVyVJJLjklufe8\n26+5ifltSdHNZOnWpMnGzPqhJiAfST3B1sRdeFi78afgCTKZ+SGNaT6cs1kXiI5bTxuXVkZZ4RNC\niMZAfvrWAZVKhZWpFVamVnjauFe7bam2rDIhulEtupkUaUpvJEs3kqZLmiwU7n5XYLVKfSNBupkU\n3Rhau5ksWdjfGGqzw0RtUmXfpLwUvj77I5YmFjwXMgUrU6taeR8aMw8bd/r49GBH0h52Ju1hoF9f\nQ4ckhBCNkiQ+RsbcxAxXK2dcrZyr3U5boSW/rKBKMnRropRbWvn/V/NTSMjTVtuWrZlNZZJ0Ixm6\nkB1PWUUZT4dMuWeiJmpuqP8ADl0/xq9XtvFIk07Ym9sZOiQhhGh0JPGpp0zUJjhY2ONgYQ/V/P5U\nFIXC8iI0N5OhG//e+v+a0lyyirNJKbiu2294wCBC3YLr4EwaD2sza4YHDGblhdWsi/+VSa3HGTok\nIYRodCTxaeBUKhU2ZtbYmFnjRfWXopdoS8ktyUOhAndrtzqKsHEJ8+rK7qv72X/tCL19etDUztvQ\nIQkhRKMiM1aFjoWJOW7WLpL06FHl5e0jUFD48cJaWb1dCCHqmCQ+QtSxVs5BhLoGE6+5zPH0GEOH\nI4QQjYokPkIYwOjmwzBRmbA6bj2l2jJDhyOEEI2GJD5CGIC7tSvhTXuSVZzN9qTfDB2OEEI0GpL4\nCGEgEf79sTOzZVPCDnJKNIYORwghGgVJfIQwECtTS0YEDqZUW8rP8RsNHY4QQjQKkvgIYUDdm3TB\nx9aLQ9ePcVmTaOhwhBCiwZPERwgDUqvUjA16FICfLsrl7UIIoW+S+AhhYEFOzejgFsLl3EQOpx43\ndDhCCNGg6TXxmTdvHo8//jgTJkzg1KlTd9xmwYIFREZGAnDw4EG6detGZGQkkZGRvPPOOwBcu3aN\nyMhIJk6cyIwZMygtLQVg7dq1jBkzhnHjxvHjjz/q81SE0KvRzYdhqjbl5/iNlGhLDR2OEEI0WHpb\nsuLQoUMkJCSwcuVK4uPjmTNnDitXrqyyTVxcHIcPH8bMzEz3XNeuXVm0aFGV7RYtWsTEiRMZMmQI\nCxcuZNWqVYwaNYqPP/6YVatWYWZmxtixYxk4cCCOjo76OiUh9MbFypn+TXuzKWE7WxJ2MrzZIEOH\nJIQQDZLeKj779+9nwIABAAQGBqLRaMjPz6+yzfz585k5c+Y92zp48CD9+/cHIDw8nP3793Py5ElC\nQkKws7PD0tKSjh07cuzYsdo/EVGvlWsr6s28mUF+4TiY27E1cSdZxdmGDkcIIRokvVV8MjIyCA7+\nfXVvZ2dn0tPTsbW1BSA6OpquXbvi7V11kca4uDief/55NBoNUVFRhIWFUVRUhLm5OQAuLi6kp6eT\nkZGBs7Pzbe1Xx8nJGlNTk9o6xdu4uVWzTLqocwnXc3lz6X66hTRh2th2hg6nBuyY1H40Sw4tZ2Py\nFl7uPtXQAemdfGeMl/SN8ZK+eTh1tjr7rX915+TkEB0dzbJly0hNTdU97+/vT1RUFEOGDCEpKYnJ\nkyezefPmu7ZTk+dvlZ1d+IDR35ubmx3p6Xl6a1/cn9yCUt5dfoSc/BI2HbhCWBt3vN1sDR3WPbW2\naYOfXVP2JR6hm2tXAh39DR2S3sh3xnhJ3xgv6ZuaqS451NtQl7u7OxkZGbrHaWlpuLlVrvp94MAB\nsrKymDRpElFRUcTGxjJv3jw8PDwYOnQoKpUKX19fXF1dSU1NxdramuLiYgBSU1Nxd3e/Y/vu7u76\nOh1Rj5SVa1kcHUOGppi2zZxRFFi794qhw6oRtUrN2BaVl7evuvgzFUqFgSMSQoiGRW+JT1hYGJs2\nbQIgNjYWd3d33TBXREQEGzZs4IcffmDx4sUEBwczZ84c1q5dy+effw5Aeno6mZmZeHh40KNHD11b\nmzdvplevXrRr146YmBhyc3MpKCjg2LFjdO7cWV+nI+oJRVFYtvEccVc1PNLGg5fHtaO5jwNHzqWR\nnJ5/7waMQDMHPzp7tCcx7yoHr8u8NSGEqE16S3w6duxIcHAwEyZM4N133+Wtt94iOjqaLVu23HWf\nfv36cfjwYSZOnMiLL77I22+/jbm5OS+99BJr1qxh4sSJ5OTkMGrUKCwtLZk1axZTp07lqaeeYtq0\nadjZybhnY/fLvisciE0l0Nuep4e2Qq1S8cTgVijUn6oPwKjAoZipzVgbv5Hi8mJDhyOEEA2GSqkv\nl7zUAn2Oi8q4q+EdOpvKJz/H4mJvyZtTOuNgUzkh3tXVlun/3sGV63n8fWpXfOrBXB+A9Ze3sOHy\nFgb5hTMycIihw6l18p0xXtI3xkv6pmYMMsdHiLp0KSWXz9efxdLchBnjQnVJD4BKpWJkzwAA1u65\nbKgQ79tA3z44WTiyPWk3GUVZhg5HCCEaBEl8RL2XqSlm0U+nKNdW8PzI4DtWdEIDXQhoYseR8+kk\np9WPuT7mJuaMChxCeUU5q+PWGzocIYRoECTxEfVaUUk5H646RW5BKRP6BxEa6HrH7W6t+vy8t/5U\nfTp5tKeZgx8n0mO4mB1v6HCEEKLek8RH1FsVFQqfrTtDcno+4R28GdDJp9rtQ5q5ENDEnqPn00mq\nJ1UflUqlW739x4tr5fJ2IYR4SJL4iHrrx51xnIjLINjfiScGBKFSqardvr7O9fGzb8ojnp24mn+N\n/SmHDR2OEELUa5L4iHpp14mrbDqURBMXa14Y1RZTk5p9lEOaOdPMy56jF9JJTK0/V0Y8GhiBuYk5\nq+PXczwtxtDhCCFEvSWJj6h3zlzJ4uvNF7C1MmPG2FCsLc1qvG+Vqk89uq+Po4UDE1uOobyinP+d\nXsGXsd9TWFZk6LCEEKLekcRH1CvXMgtYsvo0AFGPheDuZH3fbbQNqKz6HKtnVZ8unh14o8vL+Nk1\n5XDqMf5xaCHnsi4aOiwhhKhXJPER9UZ+URkfrjpFYUk5fxrSihZNHR+oHZVKxaibV3jVo7k+AJ42\n7szq9CLDAwaRW5rHRyc+44cLayjVlho6NCGEqBck8RH1Qrm2go+jY0jLLmJYdz/CQpo8VHvBAc4E\nettz/GIGCdfrT9UHwERtwpCAAfy5UxSeNh7sSt7He4c/4LIm0dChCSGE0ZPERxg9RVFYvuk855Ny\n6NTSjdG9mz10m1Xn+tSvqs9NvvY+vNF5Ov2a9iK9MJMFRz9m3aVNlFeUGzo0IYQwWpL4CKP366FE\n9py6hp+nHc8Mb4P6Hpet11SwvzPNvR3qZdXnJjMTM8YEjWB6h+dwsnTk1yvb+PeRxaTkXzd0aEII\nYZQk8RFG7diFdFbtiMfJzoLpY0KxMDOptbar3M25ns31+aMWToHM6TqT7k26kJSfwvtHFrE1cZfc\n8FAIIf5AEh9htBKu5/HpuljMzNRMHxOKk51FrR+jjb8TzX0cOBGXwZXrubXefl2yMrXkydbj+L+Q\nKViZWLI6bj0fHv+vLHAqhBC3kMRHGKXsvBIW/XSKsrIKnhsRjJ+nnV6OU/Vuzlf0coy6FuoWzF8e\neYV2bm2Jy7nMvEML2ZdyCEVRDB2aEEIYnCQ+wuiUlGlZ9NMpsvNKGBseSMcWbno9Xhs/J4JuVH0u\nX6vfVZ+b7MxtebZtJJNbP44KNd+cW8Unp75EU1I/5zIJIURtkcRHGJUKReF/v5wh4XoePUObENHV\nV+/HrK9reN2LSqXikSadePORV2jp1JzTmWf5x6EFsuSFEKJRk8RHGJXVv13i6Pl0WjZ1ZPLglvdc\neLS2tPZzooWPAyfjMxtM1ecmJ0tHoto/w7igkZRqy2TJCyFEoyaJjzAae2OusX5/Au5OVkx7LKTG\nC4/WhoZ0hdedqFVq+jYNY3aXGfjZ/77kxdmsC4YOTQgh6pQkPsIoXEjK4cuN57C2MGXG2FBsrWq+\n8GhtaeXnRIumjpyKz+RSSsOq+tzkYePOrI6/L3mx+MT/ZMkLIUSjIomPMLi07EIWR1fOO3lxdFua\nuNgYJI6GcDfnmpAlL4QQjZkkPsKgCosrFx7NLyrjyUEtaOPvbNB4Wvs50fJG1Sc+RWPQWPRNlrwQ\nQjRGkvgIgynXVrB0zWmuZRYyqEtT+rT3NnRIAA3uvj7VkSUvhBCNjSQ+wiAUReHbrReJvZJN++au\njA9vbuiQdFr5OdHK15GYS5nEX23YVZ+bblvy4vCHsuSFEKJBksRHGMTWo8nsPH6Vpu62PPdoG9Tq\nurlsvaZ0V3g14Lk+f1RlyQtTK1nyQgjRIEniI+rcqfgMvt92EQcbc2aMDcXS3NTQId2mpW9l1ef0\npSziGknV56abS160lyUvhBANkCQ+ok4lp+Xzyc+xmJqoeWlMKM72loYO6a4a4t2ca8rO3JZn2kYy\npc0E1CpZ8kII0XBI4iPqjKaglA9XnaK4VMvUYa1p5mVv6JCq1dLXidZ+Tpy+3PiqPlB5eX9Xz478\npWvVJS+OpZ0ydGhCCPHAJPERdaKsXMvin06RmVvM6F4BdG3tYeiQaqQh3825pv645MXnp7/my9jv\nKCwrNHRoQghx3yTxEXqnKApfbDhHfEou3YI9GN7D39Ah1ViLpo609nMi9nIWccmNr+pz0+1LXhzn\nH4f+I0teCCHqHUl8hN6t23uFg2dSae7twFNDWtXZwqO15feqzyUDR2J4d1ryYuX5NZTIkhdCiHpC\nEh+hVwfPpLJmz2VcHSyJeiwEM1MTQ4d031o0daSNvxOxV7K5mJxj6HAMTrfkRefKJS9+u7qP+Yc+\n4LImwdChCSHEPUniI/Qm/qqGz9efxdLchBljQ7G3MTd0SA9M5vrcztfuliUvijJZcHQJ6+J/lSUv\nhBBGTRIfoRcZmiI++ukU2ooKXhjVFm83W0OH9FCCfBwJ9nfizJVsLiRJ1eemm0tezLi55EXCdv4l\nS14IIYyYXhOfefPm8fjjjzNhwgROnbrzJbALFiwgMjKyynPFxcUMGDCA6OhoAKZPn05kZCSRkZGM\nGDGCuXPnkpycTIcOHXTPT58+XZ+nIu5DUUk5H646RW5hGRMHtCCkmYuhQ6oVI3s2A6TqcydBN5a8\n6NGkC8my5IUQwojp7Za5hw4dIiEhgZUrVxIfH8+cOXNYuXJllW3i4uI4fPgwZmZmVZ5funQpDg4O\nuseLFi3S/f/s2bMZN24cAAEBAaxYsUJfpyAeQEWFwn/XxnI1vYB+Hb3p38nH0CHVmuY+DgQHOBN7\nOYsLSTm0aOpo6JCMipWpJZNajyPEtQ3fnvuJ1XHrOZV+hsltHsfVytnQ4QkhBKDHis/+/fsZMGAA\nAIGBgWg0GvLz86tsM3/+fGbOnFnlufj4eOLi4ujbt+9tbV66dIm8vDxCQ0P1FbZ4SCu3x3EqPpO2\nAc48MSDI0OHUOpnrc2+3LnkRr6lc8mJvykFZ8kIIYRT0lvhkZGTg5OSke+zs7Ex6errucXR0NF27\ndsXb27vKfu+//z5vvPHGHdtcvnw5Tz75ZJVjTJ8+nQkTJrB27dpaPgNxv3Ycv8qWI0l4udrw/Mi2\nmKgb3hSy5t4OtA1w5mxCNucTsw0djtH645IX3577iU9OLZMlL4QQBldnq0Pe+tdeTk4O0dHRLFu2\njNTUVN3za9asoX379jRt2vS2/UtLSzl69Chvv/02AI6OjsyYMYNHH32UvLw8xo0bR7du3XB3d79r\nDE5O1pjq8XJqNzc7vbVt7E5cSOObLRewtzHnb891x9PFxtAhVVGbfTNlRDB/XrSbjYeS6NnJt9ba\nbYiGuffhkcAQlh5aTkzqOd47vJBnO0+kW9OOQOP+zhg76RvjJX3zcPSW+Li7u5ORkaF7nJaWhpub\nGwAHDhwgKyuLSZMmUVpaSmJiIvPmzSMtLY2kpCR27tzJ9evXMTc3x9PTkx49enD48OEqQ1y2traM\nGTMGqKwmtW3blkuXLlWb+GRn6+8W+25udqSnN86/Zq9lFjBv+VHUKpg2ui0mFRVG9V7Udt+4WJvR\ntpkzp+Iy2HM0kZa+TvfeqVEz47k2T/Gbw37WxG1g4b7P6OLRgRd6TKJII5OfjVFj/nlm7KRvaqa6\n5FBviU9YWBgfffQREyZMIDY2Fnd3d2xtKy9pjoiIICIiAoDk5GRmz57NnDlzquz/0Ucf4e3tTY8e\nPQCIiYmhVatWutcPHDjAjh07mD17NoWFhZw7d46AgAB9nY64i7zCUj788RRFJeU8O7wNQT6NY8Lv\nyJ4BnL6Uxc97LvPaREl87kWtUtPXJ4zWTkF8dXYlh1OPE//rZQb59qObZyfMTMzu3YgQQtQCvSU+\nHTt2JDg4mAkTJqBSqXjrrbeIjo7Gzs6OgQMH3nd76enp+Pr+PqzQuXNn1qxZw+OPP45Wq+W5557D\nw6N+LHzZUJSVV/BxdAxpOUUM7+FP97aehg6pzgR6ORDSzIWYS5mcS8imlZ8kPzVxc8mLzQk7+DVh\nO9+fj2b95c2E+/Skl3d3rM2sDB2iEKKBUymN6FILfZYHG1v5UVEUvlh/lr2nr9O5lTvPjwxGbaRr\ncOmrby6l5PLu8iO0aOrI6xM71Ls1yAzN1LaCVSd+ZffVAxRri7E0saCndzfCm/bE0cLh3g0IvWls\nP8/qE+mbmjHIUJdo2DYcSGDv6esENLFj6rDWRpv06FMzL3tCA104FZ/JucQcWkvV5744WTkwqvlQ\nBvuHs+fqQbYn7WZr4i52Ju2hq2dHBvj2wcPm7nP2hBDiQUjiI+7b0fNp/LTrEk52Frw0JhQLs/q3\n8GhtGdkzgFPxmfy8+xKtfDtK1ecBWJlaMdCvL32b9uTQ9aNsTdjFvmuH2X/tCKFuwQz07UuAg1w9\nJ4SoHZL41IK4ZA2/HEjEwdqUpu62eLva1MtVyGviyvVcPlt3BguzyoVHHW0tDB2SQQU0uaXqk5BN\na3+5Q/GDMlObEub1CN2bdOFkeixbEnZyMv00J9NPE+TYjIF+4bRxbiHJpRDioUjiUwsOnk1l29Fk\n3WO1SoWHsxVN3W1p6m6Lj1vlv052FvX6h3Z2XgmLVp2irLyCqDEh+HrIvSTg96rPmj2XaeXnVK/7\n2BioVWo6uIfQ3q0tF3Pi2Zywk7NZF7iYcwlv2yYM9O1LR/dQTNQN848LIYR+yeTmWqCtqCCnSEvM\nhTSS0vNJSssnOS2f4lJtle1sLE11iZDPjaTI29UG83owVFRSquW9b46SmJrP+PDmRDxSf4Ye6mIy\n4Ic/nuRkfCavTmhPG6n61Mj99EtS3lW2JOzkWNopFBRcLJ3o59ubHk26YG5irudIGx+ZQGu8pG9q\nprrJzZL41JI/fhgVRSFTU0xSWn6VZCgtu4hb33CVCjycrCsTohvJUFM3W5ztjac6VKEofBwdw/GL\nGfRu14QpEa2MJraaqIsfFFeu5/L3L4/Q3MeB2ZNkrk9NPEi/ZBRlsi3xN/ZfO0xZRTm2Zjb09Qmj\nt08PbMys9RRp4yO/XI2X9E3NSOJzgzFczl5SqiU5ozIJupkMJaUXUFRSXmU7awvTykTIzZamHpVV\nIm9XGyzM67469OPOODYeSKSVryOvPN4eU5P6tQZXXf2gWLTqFCfiMpg1oT3BUvW5p4fpl7zSfHYm\n7+W35H0UlhdhbmJOmFdX+jftjZNl47iJpj7JL1fjJX1TM3q5nP3KlSv4+/s/6O6NloW5CYFeDgR6\n/X6fEkVRyMwtJjmtoEp16GJSDheScnTbqQB3Z2uautn8XiFys8XFwVJvFYbdp1LYeCARD2drpj0W\nUu+Snro0smcAJ+Iy+Hn3ZdrIXB+9sjO3ZUSzwQz07cO+lENsS9rNjqQ97EreRxePDgzw7YOXbeO5\noaYQouaqTXyeeuopli1bpnu8ZMkSXnzxRQD++te/snz5cv1G10ioVCpcHaxwdbCifZCr7vmSMi0p\nGQWVw2Vpv1eJjmQVcuT87yvdW1mY6CZQ30yGfNxsH7o6dD4xm+W/nsfG0pSXx4ZiYynLClTHz9OO\n9s1dORGXwZkr2QQHSNVH3yxNLenn25vePj04nHqCrQk7OXj9KAevHyXEtTUDfcMJdPQ3dJhCCCNS\nbeJTXl51+OXAgQO6xKcRjZAZjIWZCQFN7AloYq97TlEUsvNKfk+GblSI4q5quJis0W2nAtycrHRz\nhm7OH3JxsKzRzQZTswtZHB0DwLTRIXg4y/yJmrhZ9Vmz5xJt/KXqU1dM1aZ0b9KZRzw7cjrjLFsS\ndxKTcZaYjLM0c/BnkF9fgl1aoVZJxVKIxq7axOePP7RvTXbkB7phqFQqnO0tcba3pF3z36tDpWVa\nUjILSEqtnEx9szp09Hw6R2+pDlma/6E6dOPKMiuL3z8KBcVlfPjjKQqKy/nTkFayDtV98PO0o0OQ\nK8cvZhB7JYu2AS6GDqlRUavUhLoFE+oWTFzOZbYk7OB05jk+OfUlTWw8GOjbl84e7eVSeCEasfua\n4yPJjvEyNzPB39Mef8+q1aGc/FKS0vJuqRAVcCkll7irmir7uzta4eNui4+bDecTc7ieVUjEI770\nbudV16dS7z0aFsDxi5VzfYL9neV7YyDNHQNo7hjA1fxrbE3cxZHUEyw/u5J1lzbRz7cXPZp0xdK0\ncd+AU4jGqNrER6PRsH//ft3j3NxcDhw4gKIo5Obm6j048XBUKhVOdhY42VkQGvh7daisXEtKRmGV\nobKktHyOXUjn2IXK6lCHIFfG9gk0VOj1WpWqz+Us2jaTqo8heds2YUqbCQwPGMz2pN/Yl3KIny6u\nY+PlrfTx6UEfnzDszG0NHaYQoo5Uezl7ZGRktTuvWLGi1gPSJ2O4nN1Y3awOJafnk51XwiNtPBrM\nGlyG6JvE1DzeXnaYZl72/CWyk1R97sBQ35n8sgJ2Je9jV/JeCsoKMVOb0b1JF/r79sbVqvFMSK9Q\nKsgoyiK1MI3rBWmkFqbf+DcNBys7xgaOpJVzkKHDFH9Q33/X1BW5j88Nkvg0Tobqm8XRMRy7kM7M\n8e0IkarPbQz9nSnRlrI/5TDbkn4jqzgbtUpNR/dQBvmF423bxGBx1bYSbSmphWmkFqRXSXLSCtMp\nV6reXV6tUuNq6UxGcRYVSgU9mnRhdPPhWJtZGSh68UeG/t7UFw98H5/8/HxWrVrFn/70JwC+//57\nvvvuO/z8/PjrX/+Kq6trdbsL0ag9GubPsQvprNl9mbYBMtfH2FiYmNO3aRi9vLtxNO0kWxJ2ciT1\nBEdST9DGpSWDfPvS3LFZveg3RVHIK8sntSCN64XpN/6tTHKyS3Ju297CxBxvWy88bNzwtHbHw8Yd\nT2s3XK1cMFWbkmeSzUf7v2TftcPEZp7niVaPEeLaxgBnJkTtq7bi88orr+Dt7c2sWbO4fPkyjz/+\nOB988AGJiYkcPHiQ//znP3UZ60OTik/jZMi++Tg6hqMX0nl5XDtCA6Xqcytj+84oikJs5jm2JO4k\nLucyAP72vgz060uoaxujuBS+uuGpwvKi27Z3MLe/kdS465IcTxt3HMztq03o3NzsuJ6aw+aEnWy8\nshWtoqWzR3vGBY3E1txGn6co7sHYvjfG6oErPklJSSxcuBCATZs2ERERQY8ePejRowfr16+v3SiF\naIAe7RnA0Qvp/LznEiHNpOpjzFQqFW1dW9PWtTWXNQlsSdjJyYxYPotZjoe1GwN8+9DFsyNm6ge+\n4X2NlWhLSbslqbnX8Bt0a/MAACAASURBVJSblQtBjs2qJDke1m5YmT74EJWJ2oQhAf1p5xbM1+d+\n5EjqCc5lXeTxlqPp4BYin2VRb1X7Dba2/v2mdYcOHWLs2LG6x/KhF+Lemrrb0qmlG0fPpxNzKbPK\n1XXCeAU4+PFc6BSuF6SyJXEXh68f55tzq/jl0mb6+fYizOsRrEwtH+oYtT08pS9etp682mka25N2\n88ulTXx++mvaubXl8RajcbC4+1/VQhirar8tWq2WzMxMCgoKOH78uG5oq6CggKKi28uqQojbjQwL\n4Oj5yrk+Ic1c5I+GesTTxoPI1uMZHjCIHUl72JNygNVx6/n1yjZ6eXcnvGlP7M2r/+X/IMNTLZya\n3/fwlD6pVWoG+PYh1LUN35xbxcn001zMjmds0KN09ewon2lRr1Sb+Dz77LMMHTqU4uJioqKicHBw\noLi4mIkTJzJ+/Pi6ilGIes3H3ZbOLd04cj6dU/GZVe64LeoHJ0tHHgsaToR/P367eoCdSXvYnLCD\n7Um76ebZif6+fXCwsDf48JS+uVu7MaPD/7Hn6gHWxG9g+dmVHEk9wROtHsPZUu7wLuqHe17OXlZW\nRklJCba2v9/ga8+ePfTs2VPvwdU2mdzcOBlD3ySn5/PXzw/h72nH3Cmd5S9kjKNfHlSptowD146w\nLXEXGcVZqFChcPuPUgsTczytPep8eOph1aRvMouy+e78T5zNuoCliQWjmg8jzKurUUwCb8jq8/em\nLj3wfXxSUlKqbdjLq34tZyCJT+NkLH2zZM1pjpxLY/rYUNpL1cdo+uVhaCu0nEiPYffVA6hUaqMa\nnnoYNe0bRVE4cO0IP8X9QlF5EUGOzZjUahxu1v/f3p3HVVnn/R9/nQMH2Vc5oOyihuK+kGKau6Sm\nk2WSSzV1N82vabrHumvMqaymLJvpnn5pv2aaJjUbJ8rILMtsM81QcENFTUGURVZZFBHZzu8PjCTT\nTD2cA+f9fDx86Lm4zsXn6svy7rtdWsFoLe3h+6Y1XHbwiYmJISoqisDAQOD8h5S++eabV7FM61Pw\ncUz20jZ5JVUs+Fcq4cFePKFeH7tpFznfL22bijOVJH23mt2lGZiMJqZ0mcDIsOvU+2MF+r65NJe9\nnH3RokV88MEHnDp1ikmTJjF58mT8/R1nS3eRqyk00JNBMWbSDhSTnnmcft3U6yPtg28HH37T+3Z2\nFKfzzsEPeC/zI3YU72Z2j+kEewTZujyRFpyefPLJJy/0wZiYGKZOncp1113H7t27ee6559iwYQMG\ng4GIiAicne13jPqnVFfXWu3aHh4drHp9uXz21DadA9zZsDOfwrJqru/X2aF7feypXaSly2kbg8FA\nZ89ghnQaRHlNBfvKDvLtsVQMBiNR3uHq/blK9H1zaTw8OlzwY5f0ldipUyfuu+8+PvnkEyZMmMAz\nzzzTJic3i9haSKAng3uYOVp0kl2ZpbYuR+Sq83Lx5K5es/hN7zvwMLnz4eF1/GXbYnJPXnzOqEhr\nuaQumxMnTrBmzRqSk5NpaGjg3nvvZfLkydauTaRdunFYFGn7i/ngm2z6de3o0L0+0n71DYylm28U\nyZlrSSlI44VtLzM+YhQJkWNaZfdrkQu56FffN998w3vvvcfevXsZP348zz//PN27d2+t2kTapZCO\nHgzuYSZ1fzG7DpXSv3ugrUsSsQp3kzuze0xnoLkv/z6winVHvmBXyV5mx0wnyifc1uWJjVTXnWZj\n/re4OrsyMnRYq3/+n13VFRkZSd++fTEazx8Ve+6556xa3NWmVV2OyR7b5ljpKR5/fSthZk8W/Hqw\nQ/b62GO7SBNrtE1NfQ0fZK1jY/63GDAwOmw4k7uMx8XJ5ap+nvauLX/fnK4/zVe53/Bl7iZO19cQ\n7RPJgwPvs8rnuuxVXd8vVy8vL8fPr+WunHl5eVehNBHH1LmjB3E9g9i6r4idh0oZoF4faedcnV2Z\ncc2vGGDuw78PvMsXuRvZXZrBrJhb6OYXbevyxIpq6mvYkLeZL3I2Ul1/Gg+TO7+KnsiI0Hib1HPR\n4GM0Gpk7dy5nzpzB39+ff/zjH0RERPDWW2/x2muvMW3atNaqU6TdmTIsktR9RU1zfbp1xOiAvT7i\neLr5dWF+3Fw+yl7PlzmbeGnnPxgRMpSp0TfgeoUPfhX7UlN/ho353/J5ztecqqvG3dmNKV0SuD40\n3qZtfdHg87e//Y1ly5YRHR3NF198wRNPPEFjYyM+Pj68++67rVWjSLvUKcCDa3sGsWVfETsPljLw\nGvX6iGNwcXJhWtfJDDD34a3977IxP4U9pfuZGXMzPQOusXV5coVqG2rZmJ/CZ0c3UFV3CjdnNyZH\njWdk2HW42UG4vehydqPRSHR0UxfkmDFjyM/P5/bbb2fJkiUEBWlTKpErdeOwSAwG+OCbbBov/tg8\nkXYn0jucPw7+b26IHENl7QleSf8XK/a/Q3Vdta1Lk8tQ21DHl7mbeCLled7PXEt9YwMTI8fy9NB5\n3BA11i5CD/xMj8+PJ1x26tSJcePGWbUgEUfSKcCDIT2DSMkoYsd3JQyKMdu6JJFWZTI6M7nLBPoF\n9uat/e+wpWAb+45/R+I10+gbGGvr8uQS1DXUsflYKuuPfkll7Uk6OLmQEDmG0WHD8TC527q88/yi\nrTR/6cqThQsXMmPGDBITE9m9e/dPnvPiiy8yZ86cFsdqamoYO3YsycnJAMybN48bb7yROXPmMGfO\nHDZs2ADAmjVruPnmm5k+fbqG3qTNunFYFAYDrNmsXh9xXKFenXl40O+Z0iWB6rpqXtuznDf2/puT\ntVW2Lk0uoK6xno15KTy55QXePfQBpxvOMD5iFE8PfZQbu0ywy9ADP9Pjs3PnTkaOHNn8+vjx44wc\nORKLxYLBYGgOID8lNTWVo0ePkpSURFZWFvPnzycpKanFOZmZmaSlpWEymVocf/XVV/Hx8Wlx7MEH\nH2TUqFHNr6urq3nllVdYtWoVJpOJW265hXHjxuHr6/tz9yxiV4L93RnSM5iUjEL1+ohDczI6MSFy\nNH0DY3lr/yq2F6fzXXkm07tPZaC5r0Nu+2CPGhob2FKwjU+OfEH5mQpMRhNjwkcwLnwkXi6eti7v\nZ100+Kxbt+6yL5ySksLYsWMBiI6OprKykqqqKjw9f/iP8vzzzzN37lyWLFnSfCwrK4vMzMwWgeun\npKen07t3b7y8mtbqDxgwgB07djB69OjLrlnEVm4cFsmWfYV8sDmbAdcEaoWXOLRgjyAeHPh/2JC3\nmTVZ61iasZJtRbtIvOYmfDv4/PwFxCoaGhvYWriDdUc+53hNOSajM6PDhjM2fCQ+HS68b469uWjw\nCQkJuewLl5aWEhv7w/isv78/JSUlzcEnOTmZuLi48z7HokWLePzxx1m9enWL42+99RZLly4lICCA\nxx9/nNLS0hZPiv/++iJtUbC/O0Njg/l2byHbvythsHp9xMEZDUZGhw2nd0BPVh5YxZ7SfWRWHGZa\n1xsZ2mmQen9aUUNjA9uKdvHxkc8pPX0cZ4MT14cOY3zEyDYZRFvtgSnnbhBdUVFBcnIyS5cupaio\nqPn46tWr6devH2FhYS3eO3XqVHx9fenRowevvfYaS5YsoX///he8/oX4+bnj7Ox0hXdyYRfbKVJs\nqy20zR2TY9myr4i1W46SMKwLRmP7/8HeFtrFUdlL2wTixdPhD/Ll4c2s2JXMvw+8y57yvdw7eBaB\nHgG2Ls8mWqttGhsb2ZyzjVUZaymoKsbJ6MT4riO4qUcCAe5+P38BO2W14GM2mykt/eHp08XFxQQG\nNu1TsmXLFsrKypg1axa1tbXk5OSwcOFCiouLyc3NZcOGDRQWFuLi4kJwcDDx8T/s7jh69GiefPJJ\nJkyYcN71+/Xrd9Gaysutt0SyLW8j3t61lbYxAUN7BrF5byGffJNFXI/2vWVEW2kXR2SPbdPXux/h\ncZGs/O49dhft58FPnmZq9ESGhwzBaPhF63TatNZom0ZLIzuLd7M2+3OKqosxGowM63wtCZGj8Xf1\no/EUlJyyr6+PH7vsR1ZciWHDhrF48WISExPJyMjAbDY3D3MlJCSQkJAAND364tFHH2X+/Pkt3r94\n8WJCQkKIj4/n97//PY888ghhYWFs3bqVbt260bdvXx577DFOnDiBk5MTO3bsOO8aIm3N5GGRpGQU\nsWbzEQbFmDXXR+Qcfq6+3NfnLlILd7Dq0BreObia7UXpzO5xC2Z3bQB6pRotjewq2cvH2Z9RcKoI\no8FIfKfBTIgcQ0c3/5+/QBthteAzYMAAYmNjSUxMxGAwsGDBApKTk/Hy8vrFewHNmjWLP/zhD7i5\nueHu7s5zzz2Hq6srDz30EHfffTcGg4Hf/e53zROdRdqqID93hvYKYvOeQrYdKG73vT4iv5TBYODa\nTgOJ8e/OOwffZ1fJXham/o3JXSYwOmy4Q/X+XC0Wi4XdpRmszf6M/KoCDBi4NnggN0SOJdC9/Q0n\nXvTp7O2Nns7umNpa2xSXVzP/ta0EB7jz9F1x7XauT1trF0fSltpmR/Fu3vluNSfrqojwDmN2zHQ6\newbbuiyruZptY7FY2Ht8P2sPrye36hgGDAwK6s8NUWMIauM9aDYZ6hKRy2P2cye+VzDf7Ckg7UAx\n1/ZUr4/IhQww96G7XzSrDn5IWtEOnk/7v9wQOYbxEaNwMlpvMUtbZrFY2Ff2HR8dXk/OyTwMGBho\n7svEqLEEe7T/nzcKPiJ2aHJ8BN/uLWTN5mwGx5jbba+PyNXgafLgzthEBgb14e3v3uej7PXsLNnD\n7B7TCfcKtXV5dsNisXCg7BBrs9eTfSIHgP7mPkyMHNuue8l+TMFHxA6Z/dyJ7x3MN7sLSD1QxJCe\njvNDSeRy9e7Yk66+UbyfuZbNx1L5y7YljAq7jl4BMZjdA/Fx8XbI/X8sFgsHy7P4KHs9hyuPANAv\nsBcTo8YR4tnJtsXZgIKPiJ2aHB9Jyt5CPtx8hLiYIPX6iFwCN2c3ZsbcwgBzX1YeWMUXORv5Imcj\nAC5OLgS5dcTsHkiQe+A5f3fE1U6eHH61HSrPYm32ZxyqOAw0hcNJUeMI87r8DYrbOgUfETtl9nUj\nvlcwm3YXkLq/iCGx6vURuVQx/t2YH/cgu0szKDpVTNHpUoqrSyisLiG36th55/u4eGH+URgKcg8k\nwNW/Tc4Vyqo4wkfZ6zlYnglAbEAMk6LGEeEd9jPvbP8UfETs2OT4yLNzfY4Q10O9PiK/hKtzB+KC\nB7Q41mhppOJMJUXVJRRXl579u+lPZkV2c8/I94wGI4FuAWdDUVMYCnI3Y3bviJfJ0+6GzrIrj7I2\n+zP2lx0EoId/dyZFjSfKJ9zGldkPBR8ROxbo68aw3sFsTC9g6/4ihqrXR+SKGA1G/F398Hf1o4d/\n9xYfq22oo/T08eYwdO7fRdXnPwvSzdm1KRC5tewlMrt3xMXJpbVuCYCjJ3L5KHs9+45/B8A1fl2Z\nFDWeaN/IVq2jLVDwEbFzk4dGsnlPU6/Pter1EbEaFycTnT2Df3KFU1XtKYpPl1B06mwgOt3UW5R/\n8hhHT+Sed75fB9/mEHTuEJq/q+9V3WQx92Q+a7PXs6d0PwDdfLswKWo83fy6XLXP0d4o+IjYuY6+\nbgzr3YmN6cfYuq+Iob3U6yPS2jxdPPB08aCLT2SL442WRspqys8bOiuqLuFA+SEOlB9qcb6z0ZlA\nt4DmydXnzinyNHlccj15J4/xcfZnpJdmABDtE8nkLuPp7tf1iu+1vVPwEWkDJg+NYPOeAt7fdJhu\nYT509HGzdUkiQtPQWUe3ADq6BRD7o6c7nGmopbi6lOLq4uZQ9H0wKjhVdN61PEzuzcNm5/YWBboF\nYHIyAZBTkc+/93zAzpI9AER5hzOpy3hi/LrZ3Xwje6XgI9IGdPR1I+HacNamHOXpZdu4d0ossVHt\n56GBIu1RBycXwrw6E+bVucVxi8XCidqq5knVTUNnTX8fPZlL9omjLc43YMDf1Q+fDl5kV+ZgwUKE\nVxiTuoynp393BZ5fSMFHpI2YNqILAd6urPz8IP+btIubRnRh4tAIPcFdpI0xGAz4dPDCp4PXeXNx\nGhobKK0pazG5+vveosOVR4nyC2NC2Bh6BfRQ4LlMCj4ibYTBYGBk/xDCg7x45f09JG88zOFjJ/iv\nyT1wdzXZujwRuQqcjE7NQ129f/Sx2oY6Ogf5UVpaZZPa2ourN7VcRFpFl87eLPj1YHpE+LErs5Sn\nl28jr1g/CEXaOxcnk3p5rgIFH5E2yNvdhQdn9OWGIeEUl5/mmRXb2LKv0NZliYjYPQUfkTbKyWhk\n+siu/O6mXhgNBl5bs4+Vnx2kvqHR1qWJiNgtBR+RNm7gNWYev2MQnTt68Pn2PF74z04qqs7YuiwR\nEbuk4CPSDnQK8OCx2wcyOMZMZl4lTy1N42Buha3LEhGxOwo+Iu2Eq4szv50aS+LorpysruOFlTtZ\nn5aLxWKxdWkiInZDwUekHTEYDIyPC+fh2/rh6W7i7S8O8Y81GdTU1tu6NBERu6DgI9IOXRPux4I7\nB9M1xIfU/cU8++Z2CsuqbV2WiIjNKfiItFN+Xh14ZGZ/xgwMJb/0FH9ensaOgyW2LktExKYUfETa\nMWcnI7PGdeeeyT1paLCwJHkPqzZk0dioeT8i4pgUfEQcwNBewfzp9kGYfd34eMtR/vedXZyorrV1\nWSIirU7BR8RBhJk9eeLOQfTr2pF9R8p5elka2QUnbF2WiEirUvARcSDuribuv7k3N43oQvmJMzz3\n1na+3pVv67JERFqNgo+IgzEaDNwYH8ncW/vSweTE8nXf8cbH+6mta7B1aSIiVqfgI+KgenUJYMGd\ng4kI8uKb3QU899YOSitO27osERGrUvARcWAdfd2YP2cA1/XpxNGikzy1LI29h4/buiwREatR8BFx\ncCZnJ+6a2IM7Eq7hTF0Df3snnQ83Z9OoR12ISDuk4CMiAFzfL4RHZw/Ez7sD72/KZsl7e6iuqbN1\nWSIiV5WCj4g0i+rkzRN3DqZHhB+7Mkt5etk2courbF2WiMhVo+AjIi14u7vw0Ix+TBoaQXHFaZ59\ncxspGYW2LktE5KpQ8BGR8xiNBm6+Ppr7p/XGycnAPz/cx78/O0h9Q6OtSxMRuSIKPiJyQQO6B/L4\nHYMJ6ejBF9vzeGHlTspPnrF1WSIil82qwWfhwoXMmDGDxMREdu/e/ZPnvPjii8yZM6fFsZqaGsaO\nHUtycjIABQUF3HnnncyePZs777yTkpKmJ0zHxsYyZ86c5j8NDdqATeRqC/Z350+3DySuh5nM/Eqe\nWpbGdznlti5LROSyWC34pKamcvToUZKSknj22Wd59tlnzzsnMzOTtLS0846/+uqr+Pj4NL9+6aWX\nuPXWW3nrrbcYN24cS5cuBcDT05MVK1Y0/3FycrLW7Yg4NFcXZ+6dEsttY7px6nQdf/nPLtan5mDR\nkncRaWOsFnxSUlIYO3YsANHR0VRWVlJV1XJ1yPPPP8/cuXNbHMvKyiIzM5ORI0c2H1uwYAETJkwA\nwM/Pj4qKCmuVLSIXYDAYGDc4jIdv64+Xu4m3v8zk7x9kUFNbb+vSREQumdWCT2lpKX5+fs2v/f39\nm4eoAJKTk4mLiyMkJKTF+xYtWsS8efNaHHN3d8fJyYmGhgZWrlzJjTfeCEBtbS0PPfQQiYmJzb1A\nImJd3cN8WfDrwXQN9SHtQDHPvLmdguOnbF2WiMglcW6tT3Rul3hFRQXJycksXbqUoqKi5uOrV6+m\nX79+hIWFnff+hoYGHnnkEYYMGcLQoUMBeOSRR5gyZQoGg4HZs2czaNAgevfufcEa/PzccXa23nBY\nYKCX1a4tV0Ztc3UFBnrxlwdG8MaHGXy46TDPvLmdubf1Z2jvzr/4OmKf1Db2S21zZawWfMxmM6Wl\npc2vi4uLCQwMBGDLli2UlZUxa9YsamtrycnJYeHChRQXF5Obm8uGDRsoLCzExcWF4OBg4uPjefTR\nR4mIiOD+++9vvuZtt93W/O8hQ4Zw8ODBiwaf8vJqK9xpk8BAL0pKTlrt+nL51DbWc9OwSDr5ubLs\nkwMsXJbGDUPCmTaiC07Gn+9MVrvYL7WN/VLbXJqLhUOrBZ9hw4axePFiEhMTycjIwGw24+npCUBC\nQgIJCQkA5OXl8eijjzJ//vwW71+8eDEhISHEx8ezZs0aTCYTDzzwQPPHDx8+zCuvvMJf//pXGhoa\n2LFjR/M1RaT1DOkZTGhHT5a8v4dPtuRwpOAk906NxdvdxdaliYicx2rBZ8CAAcTGxpKYmIjBYGDB\nggUkJyfj5eXFuHHjftG1Vq5cyZkzZ5qXvUdHR/Pkk08SHBzMLbfcgtFoZPTo0fTp08catyIiPyPU\n7MkTdwzm9Y/2sSuzlKeWpvG7m3rTpbO3rUsTEWnBYHGg9ajW7B5U96P9Utu0nkaLhY9TjvL+xsM4\nORmYObY71/frjMFgOO9ctYv9UtvYL7XNpbnYUJd2bhaRq8ZoMDA5PpK5M/ri6uLMm59+xxsf76e2\nTpuLioh9UPARkauuV1QAT9w5iMhgLzbvKWThW9spqTht67JERBR8RMQ6Ovq48ejsAYzo24mcoiqe\nXpbGnsPHbV2WiDg4BR8RsRqTsxN33tCDO2+I4UxdIy+9k86azdk0Os7UQhGxMwo+ImJ1I/p25tHZ\nA/D37sDqTdm8vGo3VdW1ti5LRByQgo+ItIqoTt48cedgYiP92J11nLkvfc3ew8f1oFMRaVUKPiLS\narzcXZh7az8mx0dQVFbN/76TzotJuzhaqOW5ItI6FHxEpFUZjQamjYjm/z44kl5R/uw7Us5Ty9J4\n7cMMSrXyS0SsrNUeUioicq6ozj48OKMfGUfKePerTLZkFLHtQDFjBoYyaWgknm4mW5coIu2Qgo+I\n2FRspD897hzM1n1FJH99mE9Tc9mUXsCk+AjGDgzF5Oxk6xJFpB1R8BERmzMaDAyNDWbQNWa+3JHH\nR98e4d2vsvhyex6/Gt6FobHBGI3nP/ZCROSX0hwfEbEbJmcjE+LCef63Q7nh2nAqT9Xxr7X7eWpZ\nGnuztfmhiFw5BR8RsTseriamj+rKc78ZQnyvYPKKq/jfpHT++vZOrQATkSui4CMidivAx5X/mtyT\nBb8e3GIF2D8/zKC0UivAROSX0xwfEbF74UFeLVaApWQUkaYVYCJyGRR8RKTN0AowEblSCj4i0qb8\nsAIskC935LdYAXbTiC4MiQ3GaNAKMBH5aZrjIyJtksnZqXkFWMLZFWCvf7Sfp5ZqBZiIXJiCj4i0\naR6uJm79iRVgL2oFmIj8BA11iUi78P0KsPGDw1i1IYu92WXsW5bGkNggbhrRhY4+brYuUUTsgIKP\niLQrzSvAsrUCTETOp+AjIu1SbJQ/PSLPXwE2OT6SMQNDtAJMxEEp+IhIu3XuCrAvtuezNuUI73yV\nyRfbc7UCTMRBaXKziLR7JmcnEq49fwXY00vTyMgus3V5ItKKFHxExGH8eAVYbnEVLybt4sW3d5JT\npBVgIo5AQ10i4nDOXQH27oYsMrLL2LdUK8BEHIGCj4g4rPAgLx76iRVgYweGMSk+Ag9XrQATaW8U\nfETE4TWvAMsoInljFutSc9iYfkwrwETaIQUfERHOrgDrFcygmPNXgE0bEc21sUFaASbSDmhys4jI\nOX5qBdg/P9qnFWAi7YSCj4jIT/h+BdjC31zL0NhzVoAl7dIKMJE2TENdIiIX0dHHjXtu7MmEuHNW\ngGWXMSQ2mJtGRNn1CrBGi4W6+sbmP7X1DdTVNVLX0EhtXcM5x5s+Vn/2390jA4gMdMegoT1phxR8\nREQuwfkrwArPrgAL/dkVYBaLhYZGS3PIqKtrOBs+vg8lDU3HzwkotfWNzUGktv6ckHI2uNTVnf+e\nc4NMXX0D9Q2Wy7zbTAZ0D+T2hGvwdne5zGuI2CcFHxGRX+CnVoBt2n2M0EDP5sDxQ/j4IZRYLjeD\n/AyDAVycnTA5G3ExGXF1ccLL3QUXkxGTkxGTydj8cZOzEZezf5ucnXD58WuTESejgQ3pBew4WEJm\nfiV33hBDv64drVO8iA0YLBZrfTvan5IS643LBwZ6WfX6cvnUNvapPbRLXX1D8wqwUzX1ODudGySM\nuJiczgkf3wcRp5bnfB9afuqY6eLvMTkbcXa6+lM1AwI8+ffH+0jemEV9g4URfTuTOKYrri76f2Vb\naw/fN60hMNDrgh+z6lfxwoULSU9Px2AwMH/+fPr06XPeOS+++CK7du1ixYoVzcdqamqYPHky9913\nH9OmTaOgoIBHHnmEhoYGAgMD+ctf/oKLiwtr1qxh+fLlGI1Gbr31VqZPn27N2xERaeH7FWDj48IA\n2s1yd6PRQMK14fSK8uefH+1jY/ox9h8t478m96RbqK+tyxO5IlZb1ZWamsrRo0dJSkri2Wef5dln\nnz3vnMzMTNLS0s47/uqrr+Lj49P8+uWXX2bmzJmsXLmSiIgIVq1aRXV1Na+88grLli1jxYoVLF++\nnIqKCmvdjojIBRkNhnYTes4VavbksdsHMXFIBKUVNTz/7x2893UW9Q2Nti5N5LJZLfikpKQwduxY\nAKKjo6msrKSqqqrFOc8//zxz585tcSwrK4vMzExGjhzZfGzr1q2MGTMGgFGjRpGSkkJ6ejq9e/fG\ny8sLV1dXBgwYwI4dO6x1OyIiDsnkbOSWkdH8cdYAArxdWZtylGeWbyOvpOrn3yxih6wWfEpLS/Hz\n82t+7e/vT0lJSfPr5ORk4uLiCAkJafG+RYsWMW/evBbHTp8+jYtL08qCgIAASkpKKC0txd/f/4LX\nFxGRq6d7mC9P3RXHiL6dyCmu4ull2/g0NYdGx5kmKu1Eq81UO3cOdUVFBcnJySxdupSioqLm46tX\nr6Zfv36EhYVd0nUu5fi5/PzccbbiM3cuNplKbEttY5/ULvbrQm3z8O1xjNhbwJJ300n6MpN9Ryv4\nQ2J/zP7urVyhfPGq4AAAFARJREFU49L3zZWxWvAxm82UlpY2vy4uLiYwMBCALVu2UFZWxqxZs6it\nrSUnJ4eFCxdSXFxMbm4uGzZsoLCwEBcXF4KDg3F3d6empgZXV1eKioowm80/ef1+/fpdtKby8mrr\n3CyaaW/P1Db2Se1iv36ubboEefLkXYNZ/skBdh4q5f6/fsnMsd2J7xWsTQ+tTN83l8Ymq7qGDRvG\n4sWLSUxMJCMjA7PZjKenJwAJCQkkJCQAkJeXx6OPPsr8+fNbvH/x4sWEhIQQHx9PfHw8n376KVOn\nTmX9+vUMHz6cvn378thjj3HixAmcnJzYsWPHedcQERHr8HZ34f5pvflmTwH/+fwQ/1q7n12HSrk9\n4Rq8tOmh2DGrBZ8BAwYQGxtLYmIiBoOBBQsWkJycjJeXF+PGjftF1/r973/PH//4R5KSkujcuTO/\n+tWvMJlMPPTQQ9x9990YDAZ+97vf4eWl7j8RkdZiMBgY3qczPcL9eH3tfrYfLOFQfiW/viGGvtr0\nUOyUNjC8StT9aL/UNvZJ7WK/LqdtGhstrE/Lbd708Pp+nZkxWpseXm36vrk0Fxvq0tPZRUTkin2/\n6eHjdwwmNNCTr3cd48k30sjMr7R1aSItKPiIiMhVE2b25PE7BnHDkHBKKk7z3Fvbtemh2BUFHxER\nuapMzkamj+zactPDN7eRr00PxQ4o+IiIiFV8v+nh8D6dyCmq4qll21ivTQ/FxhR8RETEatw6OPPr\niT34/c29cevgxNtfZvLX/+zkeGWNrUsTB6XgIyIiVte/WyB/vvta+nfryIGcCp54Yyvf7i24pF33\nRa4mBR8REWkV3h5Nmx7++oYYGi3w+kf7+X+r93KyutbWpYkD0QYLIiLSagwGA8P7diYmwo9/fbSP\n7d+VkJlXya8n9qBPdICtyxMHoB4fERFpdYG+bjwycwDTR0ZzqqaOl95N5811B6iprbd1adLOKfiI\niIhNGI0GbhgScXbTQw82aNNDaQUKPiIiYlNNmx4OJuHaHzY9bHr0hTY9lKtPwUdERGzO5Gzk1lFd\neWRmfwK8Xfno26M8++Z28ktP2bo0aWcUfERExG5cE+7HU3fFcV3vThwtOslTS9NYn5arTQ/biYbG\nRlL3F7FwxXZeXb3XJjVoVZeIiNgVtw7O3DWpB/27dWTZugO8/cUh0jNLuWtiDwJ8XG1dnlyG02fq\n2bS7gM/Scjl+ogYDMGZQqE1qUfARERG71L97IF1CfFj+yQF2ZZbyxBupzB7XnSGxQRgMBluXJ5eg\n/OQZPt+Wy4Zdxzh9ph4XZyOjBoQwflAYQf7uNqlJwUdEROyWj4cLv7+5N5t2F/CfLw7xz4/2sfNQ\nCbcnxODpZrJ1eXIBOUUn+TQ1l9T9RTQ0WvB2N5EwPIqR/UPwcnexaW0KPiIiYtcMBgMjztn0cNt3\nJRzKr+TXN2jTQ3tisVjYm13Gp6k57DtSDkCnAHcmxIUzNDYIk7OTjStsouAjIiJtgtnXjT/OHMC6\n1Bze33iYl95NZ2T/EGaM6koHF/v4peqI6uob2bqviE/TcsgvaVqFFxPuS8K14fTqEoDRzoYlFXxE\nRKTNMBoNTBwSQa8of/750T427Mxn35Ey7pnck+gQH1uX51CqTtexYWc+X2zPo/JULUaDgSE9g5gQ\nF05EsJety7sgBR8REWlzwoO8eOKOQby/MZtPU3NY+NZ2Jg2NZMqwSJydtFOLNRVXnOaz1Fw27TlG\nbV0jri5OTIgLY+zAsDax6k7BR0RE2iSTsxO3ju5K364BvP7Rfj769gh7so5zz4096dzRw9bltTtZ\n+ZWsS81hx8ESLBbw9+7AuOFhjOjbGbcObSdOtJ1KRUREfsI14X48fXccKz8/yOY9hTy1LI1bro9m\nzKBQu5tf0tY0NlrYeaiUT1Nzmp+hFhHkxYS4MAbFmNtk75qCj4iItHluHZy5e1JP+nUNZPm6A/zn\ni0Psyizl7kk98Pe2/+EXe3OmroHNewpYn5pLccVpAPpEB5AQF8414b5teh8lBR8REWk3Bl4TSNdQ\nH5Z9vJ/0rOP86fWt9Izwo1uoL93DfAkP8myTvRStpbLqDF/syOOrHfmcqqnH2cnIiL6dGD84vN0M\nHyr4iIhIu+Lj4cIDt/Rh0+4CPtx8hJ2HStl5qBQAF2cjXTp70z3Ml26hvkSHeOPqol+F+aWnWJ+a\nQ0pGIfUNFjzdTNwYH8nogaH4eNh2w8GrTa0tIiLtzvebHo7o25njlTUcyqvgUF4lh/Iq+C6nggM5\nFQAYDQbCgjzpFupD91BfuoX5trtf9BdisVg4cLScdam57Dl8HIAgPzfGx4UT3yuYDqb2uTeSgo+I\niLRrAT6uBPgEMyQ2GIBTNXVk5lVy8GwYOlJwgqOFJ/l8Wx7Q9Mu/W6hvUxgK88Xs59am57T8WH1D\nI2kHivl0aw45xVUAdAv1YUJcOP26dsRobD/3+lMUfERExKF4uJro27Ujfbt2BKCuvoHsgpMcyqvg\nYG4lmfkVfLOngG/2FADg7W5qCkJhTWEoPMgTJ2PbmydUXVPPxvRjfLYtl/KTZzAYYFCMmQlxYUR3\ndpzNHxV8RETEoZmcnege1jT5edLQpiXc+aWnOJhb0TxEtv1gCdsPlgDQweREdIh304TpUB+6dPax\n60dmHK+s4bNtuWxMP0ZNbQMdTE6MHRjKuMFhBPq62bq8VqfgIyIicg6j0UCY2ZMwsydjBoZisVjO\nzhP6YXhs35Hy5gdxOhkNhAd50S3U52zPkA/eNn4COcCRwhN8mppL2v5iGi0WfDxdmDQ0gpH9Q/Bw\nddwn2yv4iIiIXITBYKCjrxsdfd0Y2qtpntDJ6loy8yubJkznVnCk8CTZBSdYn5YLQLC/O93DfJrn\nCgX6ts48oUaLhd1Zx1mfmtM8gTs00IMJceFc2zNIS/lR8BEREfnFvNxd6N8tkP7dAoGmDf+yj51o\nHhrLzK9kY3oBG9Ob5gn5eLr8MGE61Jcws+dVnURcV9/At3sLWZ+WS8HxagBio/yZEBdGbKR/u5qc\nfaUUfERERK5QB5MTMRF+xET4AdDQ2Ehe8anmobFDuRVsO1DMtgPFALi6OBEd4kP3s8NjXTp743IZ\ny8dPVtfy1Y58vtyRx4nqOpyMBob1CmZ8XDhhZs+reo/thYKPiIjIVeZkNBIR7EVEsBfjBoVhsVgo\nqTjdNE8otykMZWSXkZFddvZ8A5HBXs0rx7qF+uLpduF5OIVl1axPy2XzngLq6htx7+DMxCERjBkY\nip9Xh9a6zTZJwUdERMTKDAYDZj93zH7uDOvdCYATp2qbN1U8lFdBdsFJso6dYN3Wpvd07ujxw8aK\noT4E+LiScfg4SesPsOtQKRago48r4waHMbxPJ+1AfYms+l9p4cKFpKenYzAYmD9/Pn369DnvnBdf\nfJFdu3axYsUKTp8+zbx58zh+/DhnzpzhvvvuY9SoUTzwwAOUlzfNnq+oqKBfv37ce++93HjjjfTq\n1QsAPz8/Xn75ZWvejoiIyFXj7eHCwGsCGXjN2XlCtQ1kHats7hXKOlbJsdJTfL3rGAAers6cqqkH\nIKqTNwnXhjOge8c2uaeQLVkt+KSmpnL06FGSkpLIyspi/vz5JCUltTgnMzOTtLQ0TKam7ryvvvqK\nXr16cc8995Cfn89dd93FqFGjWgSaRx99lOnTpwMQFRXFihUrrHULIiIiraaDixM9I/3pGekPNO2w\nnFtcxaGzQ2NHCk/Qu2tHRvbtTLdQH01YvkxWCz4pKSmMHTsWgOjoaCorK6mqqsLT84fJVs8//zxz\n585lyZIlAEycOLH5YwUFBQQFBbW45uHDhzl58iR9+vQhLy/PWqWLiIjYnLOTkahO3kR18mZ8XNOx\nwEAvSkpO2rawNs5qwae0tJTY2Njm1/7+/pSUlDQHn+TkZOLi4ggJCTnvvYmJiRQWFvL3v/+9xfE3\n33yT2bNnt/gcDzzwAMXFxcycOZMpU6ZY6W5ERESkPWi1mVAWi6X53xUVFSQnJ7N06VKKiorOO/ft\nt99m//79PPzww6xZswaDwUBtbS3bt2/nySefBMDX15f//u//ZsqUKZw8eZLp06czZMgQzGbzBWvw\n83PH2dl624oHBnpZ7dpyZdQ29kntYr/UNvZLbXNlrBZ8zGYzpaWlza+Li4sJDGyawLVlyxbKysqY\nNWsWtbW15OTksHDhQqZMmUJAQACdOnWiR48eNDQ0UFZWRkBAAGlpaS0mR3t6enLzzTcDTb1JvXr1\n4vDhwxcNPuXl1Va6W3U/2jO1jX1Su9gvtY39UttcmouFQ6tNBR82bBiffvopABkZGZjN5uZhroSE\nBD7++GPeeecdlixZQmxsLPPnz2fbtm288cYbQNMwVnV1NX5+TZtB7dmzh5iYmObrb9myheeeew6A\n6upqDhw4QFRUlLVuR0RERNoBq/X4DBgwgNjYWBITEzEYDCxYsIDk5GS8vLwYN27cT74nMTGRP/3p\nT8ycOZOamhqeeOIJjGeX6ZWUlBAeHt587qBBg1i9ejUzZsygoaGB3/zmN+dNhhYRERE5l8Fy7uSb\nds6a3YPqfrRfahv7pHaxX2ob+6W2uTQ2GeoSERERsTcKPiIiIuIwFHxERETEYSj4iIiIiMNQ8BER\nERGHoeAjIiIiDkPBR0RERByGQ+3jIyIiIo5NPT4iIiLiMBR8RERExGEo+IiIiIjDUPARERERh6Hg\nIyIiIg5DwUdEREQchoLPVbBw4UJmzJhBYmIiu3fvtnU5co4XXniBGTNmcPPNN7N+/XpblyPnqKmp\nYezYsSQnJ9u6FDnHmjVrmDJlCtOmTWPDhg22LkeAU6dOcf/99zNnzhwSExPZtGmTrUtq05xtXUBb\nl5qaytGjR0lKSiIrK4v58+eTlJRk67IE2LJlC4cOHSIpKYny8nJuuukmxo8fb+uy5KxXX30VHx8f\nW5ch5ygvL+eVV17hvffeo7q6msWLFzNy5Ehbl+Xw3n//faKionjooYcoKirijjvuYN26dbYuq81S\n8LlCKSkpjB07FoDo6GgqKyupqqrC09PTxpXJ4MGD6dOnDwDe3t6cPn2ahoYGnJycbFyZZGVlkZmZ\nqV+qdiYlJYWhQ4fi6emJp6cnf/7zn21dkgB+fn589913AJw4cQI/Pz8bV9S2aajrCpWWlrb4IvT3\n96ekpMSGFcn3nJyccHd3B2DVqlWMGDFCocdOLFq0iHnz5tm6DPmRvLw8ampq+O1vf8vMmTNJSUmx\ndUkCTJo0iWPHjjFu3Dhmz57NH//4R1uX1Kapx+cq0xNA7M/nn3/OqlWreOONN2xdigCrV6+mX79+\nhIWF2boU+QkVFRUsWbKEY8eOcfvtt/PVV19hMBhsXZZD++CDD+jcuTP/+te/OHDgAPPnz9fcuCug\n4HOFzGYzpaWlza+Li4sJDAy0YUVyrk2bNvH3v/+d119/HS8vL1uXI8CGDRvIzc1lw4YNFBYW4uLi\nQnBwMPHx8bYuzeEFBATQv39/nJ2dCQ8Px8PDg7KyMgICAmxdmkPbsWMH1113HQAxMTEUFxdr2P4K\naKjrCg0bNoxPP/0UgIyMDMxms+b32ImTJ0/ywgsv8I9//ANfX19blyNnvfTSS7z33nu88847TJ8+\nnfvuu0+hx05cd911bNmyhcbGRsrLy6murtZ8EjsQERFBeno6APn5+Xh4eCj0XAH1+FyhAQMGEBsb\nS2JiIgaDgQULFti6JDnr448/pry8nD/84Q/NxxYtWkTnzp1tWJWI/QoKCmLChAnceuutADz22GMY\njfr/Y1ubMWMG8+fPZ/bs2dTX1/Pkk0/auqQ2zWDRpBQRERFxEIryIiIi4jAUfERERMRhKPiIiIiI\nw1DwEREREYeh4CMiIiIOQ8FHROxSXl4evXr1Ys6cOc1PpX7ooYc4ceLEJV9jzpw5NDQ0XPL5t912\nG1u3br2cckWkjVDwERG75e/vz4oVK1ixYgVvv/02ZrOZV1999ZLfv2LFCm30JiItaANDEWkzBg8e\nTFJSEgcOHGDRokXU19dTV1fHE088Qc+ePZkzZw4xMTHs37+f5cuX07NnTzIyMqitreXxxx+nsLCQ\n+vp6pk6dysyZMzl9+jRz586lvLyciIgIzpw5A0BRURH/8z//A0BNTQ0zZszglltuseWti8hVouAj\nIm1CQ0MDn332GQMHDuThhx/mlVdeITw8/LyHNrq7u/PWW2+1eO+KFSvw9vbmxRdfpKamhokTJzJ8\n+HC+/fZbXF1dSUpKori4mDFjxgDwySef0KVLF5566inOnDnDu+++2+r3KyLWoeAjInarrKyMOXPm\nANDY2MigQYO4+eabefnll/nTn/7UfF5VVRWNjY1A02Nkfiw9PZ1p06YB4OrqSq9evcjIyODgwYMM\nHDgQaHrgcJcuXQAYPnw4K1euZN68eVx//fXMmDHDqvcpIq1HwUdE7Nb3c3zOdfLkSUwm03nHv2cy\nmc47ZjAYWry2WCwYDAYsFkuLZ1F9H56io6NZu3YtaWlprFu3juXLl/P2229f6e2IiB3Q5GYRaVO8\nvLwIDQ3l66+/BiA7O5slS5Zc9D19+/Zl06ZNAFRXV5ORkUFsbCzR0dHs3LkTgIKCArKzswH48MMP\n2bNnD/Hx8SxYsICCggLq6+uteFci0lrU4yMibc6iRYt45plneO2116ivr2fevHkXPX/OnDk8/vjj\nzJo1i9raWu677z5CQ0OZOnUqX375JTNnziQ0NJTevXsD0LVrVxYsWICLiwsWi4V77rkHZ2f9uBRp\nD/R0dhEREXEYGuoSERERh6HgIyIiIg5DwUdEREQchoKPiIiIOAwFHxEREXEYCj4iIiLiMBR8RERE\nxGEo+IiIiIjD+P97I5ONuQHvVwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "JjBZ_q7aD9gh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Can We Calculate LogLoss for These Predictions?\n", + "\n", + "**Examine the predictions and decide whether or not we can use them to calculate LogLoss.**\n", + "\n", + "`LinearRegressor` uses the L2 loss, which doesn't do a great job at penalizing misclassifications when the output is interpreted as a probability. For example, there should be a huge difference whether a negative example is classified as positive with a probability of 0.9 vs 0.9999, but L2 loss doesn't strongly differentiate these cases.\n", + "\n", + "In contrast, `LogLoss` penalizes these \"confidence errors\" much more heavily. Remember, `LogLoss` is defined as:\n", + "\n", + "$$Log Loss = \\sum_{(x,y)\\in D} -y \\cdot log(y_{pred}) - (1 - y) \\cdot log(1 - y_{pred})$$\n", + "\n", + "\n", + "But first, we'll need to obtain the prediction values. We could use `LinearRegressor.predict` to obtain these.\n", + "\n", + "Given the predictions and the targets, can we calculate `LogLoss`?" + ] + }, + { + "metadata": { + "id": "dPpJUV862FYI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to display the solution." + ] + }, + { + "metadata": { + "id": "kXFQ5uig2RoP", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "0bbf2121-de39-4dc3-9898-a878aa7ba090" + }, + "cell_type": "code", + "source": [ + "predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn)\n", + "validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + "\n", + "_ = plt.hist(validation_predictions)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFKCAYAAADScRzUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzxJREFUeJzt3W9MnfX9//HX+cPZkXkQDjtXZ2Pn\nlqWuTBmW4FghrULFWJJF1NIVUpet6DSis5GprFo1MRn0D6ZtJKl2o5I2KvFkN/iapjSuLLHhyKYn\nIdSYoLuxdG0t5zgsFKhQcv1u9OfRzvZciAfOp/B83LLXuU7P53rnWp+7roueumzbtgUAAIzkTvcC\nAADA5RFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAM5k33Ai4lFhtJ9xKMkpOTqaGhsXQvw2jMyBkz\ncsaMnDEjZzOZUSgUuOxrXFFfAbxeT7qXYDxm5IwZOWNGzpiRs1TPiFADAGAwQg0AgMEINQAABiPU\nAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYzMh/PWsh2th8JN1L\nSKqtsTzdSwCABYkragAADEaoAQAwGKEGAMBghBoAAIM5/jDZ+Pi4Ghsb9emnn+rzzz/Xww8/rK6u\nLn3wwQfKzs6WJNXV1em2225TZ2en2tvb5Xa7tW7dOlVXV2tyclKNjY06efKkPB6PmpqatGTJklk/\nMAAA5gPHUHd3d+umm27SAw88oBMnTmjjxo1avny5Hn/8cZWVlSX2GxsbU2trq8LhsDIyMrR27VpV\nVFSou7tbWVlZamlp0dGjR9XS0qKdO3fO6kEBADBfOIa6srIy8d+nTp3SokWLLrlfX1+f8vPzFQgE\nJEmFhYWKRqOKRCKqqqqSJJWUlGjz5s2pWDcAAAvCtP8e9fr16/XJJ59oz549evXVV3XgwAHt27dP\nubm52rJli+LxuILBYGL/YDCoWCx20Xa32y2Xy6WJiQn5fL7LflZOTqa8Xs+3OCykWigUSPcSHF0J\na0w3ZuSMGTljRs5SOaNph/qNN97Qhx9+qCeeeEKbN29Wdna28vLy9Morr+ill17S8uXLL9rftu1L\n/j6X2/5VQ0Nj010W5kgsNpLuJSQVCgWMX2O6MSNnzMgZM3I2kxklC7vjT30fO3ZMp06dkiTl5eVp\nampKN9xwg/Ly8iRJ5eXlGhgYkGVZisfjifcNDg7KsixZlqVYLCZJmpyclG3bSa+mAQDAlxxD/d57\n76mtrU2SFI/HNTY2pmeffVbHjx+XJPX29mrp0qUqKChQf3+/hoeHNTo6qmg0qqKiIpWWlurQoUOS\nLvxgWnFx8SweDgAA84vjre/169fr6aefVm1trc6dO6dnn31WmZmZ2rRpk6666iplZmaqqalJfr9f\nDQ0Nqqurk8vlUn19vQKBgCorK9XT06Oamhr5fD41NzfPxXEBADAvuOzpPDSeYwvx+Qf/KMe3w3Mz\nZ8zIGTNyxoyczfkzagAAkD6EGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYA\nwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgB\nADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAg3md\ndhgfH1djY6M+/fRTff7553r44Ye1bNkyPfnkk5qamlIoFNL27dvl8/nU2dmp9vZ2ud1urVu3TtXV\n1ZqcnFRjY6NOnjwpj8ejpqYmLVmyZC6ODQCAK57jFXV3d7duuukmHThwQDt37lRzc7N2796t2tpa\nvfbaa7r++usVDoc1Njam1tZWvfrqq9q/f7/a29v12Wef6a233lJWVpZef/11PfTQQ2ppaZmL4wIA\nYF5wDHVlZaUeeOABSdKpU6e0aNEi9fb2avXq1ZKksrIyRSIR9fX1KT8/X4FAQH6/X4WFhYpGo4pE\nIqqoqJAklZSUKBqNzuLhAAAwvzje+v7C+vXr9cknn2jPnj367W9/K5/PJ0nKzc1VLBZTPB5XMBhM\n7B8MBr+23e12y+VyaWJiIvF+AABwedMO9RtvvKEPP/xQTzzxhGzbTmz/6n9/1Tfd/lU5OZnyej3T\nXRrmQCgUSPcSHF0Ja0w3ZuSMGTljRs5SOSPHUB87dky5ubm69tprlZeXp6mpKX33u9/VuXPn5Pf7\ndfr0aVmWJcuyFI/HE+8bHBzUzTffLMuyFIvFtGzZMk1OTsq2bcer6aGhsW9/ZEipWGwk3UtIKhQK\nGL/GdGNGzpiRM2bkbCYzShZ2x2fU7733ntra2iRJ8XhcY2NjKikpUVdXlyTp8OHDWrlypQoKCtTf\n36/h4WGNjo4qGo2qqKhIpaWlOnTokKQLP5hWXFz8jRYPAMBC5nhFvX79ej399NOqra3VuXPn9Oyz\nz+qmm27SU089pY6ODi1evFhVVVXKyMhQQ0OD6urq5HK5VF9fr0AgoMrKSvX09KimpkY+n0/Nzc1z\ncVwAAMwLLns6D43n2EK8rbKx+Ui6l5BUW2N5upeQFLfjnDEjZ8zIGTNyNue3vgEAQPoQagAADEao\nAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMR\nagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBg\nhBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwmHc6O23btk3vv/++zp8/rwcffFBH\njhzRBx98oOzsbElSXV2dbrvtNnV2dqq9vV1ut1vr1q1TdXW1Jicn1djYqJMnT8rj8aipqUlLliyZ\n1YMCAGC+cAz1u+++q48++kgdHR0aGhrS3XffrV/84hd6/PHHVVZWlthvbGxMra2tCofDysjI0Nq1\na1VRUaHu7m5lZWWppaVFR48eVUtLi3bu3DmrBwUAwHzheOv7lltu0a5duyRJWVlZGh8f19TU1Nf2\n6+vrU35+vgKBgPx+vwoLCxWNRhWJRFRRUSFJKikpUTQaTfEhAAAwfzleUXs8HmVmZkqSwuGwVq1a\nJY/HowMHDmjfvn3Kzc3Vli1bFI/HFQwGE+8LBoOKxWIXbXe73XK5XJqYmJDP57vsZ+bkZMrr9Xzb\nY0MKhUKBdC/B0ZWwxnRjRs6YkTNm5CyVM5rWM2pJevvttxUOh9XW1qZjx44pOztbeXl5euWVV/TS\nSy9p+fLlF+1v2/Ylf5/Lbf+qoaGx6S4LcyQWG0n3EpIKhQLGrzHdmJEzZuSMGTmbyYyShX1aP/X9\nzjvvaM+ePdq7d68CgYBWrFihvLw8SVJ5ebkGBgZkWZbi8XjiPYODg7IsS5ZlKRaLSZImJydl23bS\nq2kAAPAlx1CPjIxo27ZtevnllxM/5f3oo4/q+PHjkqTe3l4tXbpUBQUF6u/v1/DwsEZHRxWNRlVU\nVKTS0lIdOnRIktTd3a3i4uJZPBwAAOYXx1vfBw8e1NDQkDZt2pTYds8992jTpk266qqrlJmZqaam\nJvn9fjU0NKiurk4ul0v19fUKBAKqrKxUT0+Pampq5PP51NzcPKsHBADAfOKyp/PQeI4txOcfG5uP\npHsJSbU1lqd7CUnx3MwZM3LGjJwxI2dpeUYNAADSg1ADAGAwQg0AgMEINQAABiPUAAAYjFADAGAw\nQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAY\njFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAABiPUAAAYjFADAGAwQg0AgMEINQAA\nBiPUAAAYjFADAGAw73R22rZtm95//32dP39eDz74oPLz8/Xkk09qampKoVBI27dvl8/nU2dnp9rb\n2+V2u7Vu3TpVV1drcnJSjY2NOnnypDwej5qamrRkyZLZPi4AAOYFx1C/++67+uijj9TR0aGhoSHd\nfffdWrFihWpra7VmzRq9+OKLCofDqqqqUmtrq8LhsDIyMrR27VpVVFSou7tbWVlZamlp0dGjR9XS\n0qKdO3fOxbEBAHDFc7z1fcstt2jXrl2SpKysLI2Pj6u3t1erV6+WJJWVlSkSiaivr0/5+fkKBALy\n+/0qLCxUNBpVJBJRRUWFJKmkpETRaHQWDwcAgPnFMdQej0eZmZmSpHA4rFWrVml8fFw+n0+SlJub\nq1gspng8rmAwmHhfMBj82na32y2Xy6WJiYnZOBYAAOadaT2jlqS3335b4XBYbW1tuuOOOxLbbdu+\n5P7fdPtX5eRkyuv1THdpmAOhUCDdS3B0Jawx3ZiRM2bkjBk5S+WMphXqd955R3v27NGf//xnBQIB\nZWZm6ty5c/L7/Tp9+rQsy5JlWYrH44n3DA4O6uabb5ZlWYrFYlq2bJkmJydl23biavxyhobGvt1R\nIeVisZF0LyGpUChg/BrTjRk5Y0bOmJGzmcwoWdgdb32PjIxo27Ztevnll5WdnS3pwrPmrq4uSdLh\nw4e1cuVKFRQUqL+/X8PDwxodHVU0GlVRUZFKS0t16NAhSVJ3d7eKi4u/0eIBAFjIHK+oDx48qKGh\nIW3atCmxrbm5Wc8884w6Ojq0ePFiVVVVKSMjQw0NDaqrq5PL5VJ9fb0CgYAqKyvV09Ojmpoa+Xw+\nNTc3z+oBAQAwn7js6Tw0nmML8bbKxuYj6V5CUm2N5eleQlLcjnPGjJwxI2fMyNmc3/oGAADpQ6gB\nADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFq\nAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCE\nGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGDTCvXAwIBuv/12HThwQJLU\n2NioX/7yl7rvvvt033336e9//7skqbOzU/fee6+qq6v15ptvSpImJyfV0NCgmpoabdiwQcePH5+d\nIwEAYB7yOu0wNjamF154QStWrLho++OPP66ysrKL9mttbVU4HFZGRobWrl2riooKdXd3KysrSy0t\nLTp69KhaWlq0c+fO1B8JAADzkOMVtc/n0969e2VZVtL9+vr6lJ+fr0AgIL/fr8LCQkWjUUUiEVVU\nVEiSSkpKFI1GU7NyAAAWAMcraq/XK6/367sdOHBA+/btU25urrZs2aJ4PK5gMJh4PRgMKhaLXbTd\n7XbL5XJpYmJCPp/vsp+Zk5Mpr9czk+PBLAmFAulegqMrYY3pxoycMSNnzMhZKmfkGOpLueuuu5Sd\nna28vDy98soreumll7R8+fKL9rFt+5Lvvdz2rxoaGpvJsjCLYrGRdC8hqVAoYPwa040ZOWNGzpiR\ns5nMKFnYZ/RT3ytWrFBeXp4kqby8XAMDA7IsS/F4PLHP4OCgLMuSZVmKxWKSLvxgmW3bSa+mAQDA\nl2YU6kcffTTx09u9vb1aunSpCgoK1N/fr+HhYY2OjioajaqoqEilpaU6dOiQJKm7u1vFxcWpWz0A\nAPOc463vY8eOaevWrTpx4oS8Xq+6urq0YcMGbdq0SVdddZUyMzPV1NQkv9+vhoYG1dXVyeVyqb6+\nXoFAQJWVlerp6VFNTY18Pp+am5vn4rgAAJgXXPZ0HhrPsYX4/GNj85F0LyGptsbydC8hKZ6bOWNG\nzpiRM2bkzIhn1AAAYG4QagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMR\nagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBghBoAAIMRagAADEaoAQAwGKEGAMBg\nhBoAAIMRagAADOZN9wJwZdjYfCTdS3DU1lie7iUAQMpxRQ0AgMEINQAABiPUAAAYjFADAGAwQg0A\ngMEINQAABiPUAAAYbFqhHhgY0O23364DBw5Ikk6dOqX77rtPtbW1euyxxzQxMSFJ6uzs1L333qvq\n6mq9+eabkqTJyUk1NDSopqZGGzZs0PHjx2fpUAAAmH8cQz02NqYXXnhBK1asSGzbvXu3amtr9dpr\nr+n6669XOBzW2NiYWltb9eqrr2r//v1qb2/XZ599prfeektZWVl6/fXX9dBDD6mlpWVWDwgAgPnE\nMdQ+n0979+6VZVmJbb29vVq9erUkqaysTJFIRH19fcrPz1cgEJDf71dhYaGi0agikYgqKiokSSUl\nJYpGo7N0KAAAzD+OofZ6vfL7/RdtGx8fl8/nkyTl5uYqFospHo8rGAwm9gkGg1/b7na75XK5ErfK\nAQBAct/6u75t207J9q/KycmU1+v5VuvCwhMKBdK9BOMxI2fMyBkzcpbKGc0o1JmZmTp37pz8fr9O\nnz4ty7JkWZbi8Xhin8HBQd18882yLEuxWEzLli3T5OSkbNtOXI1fztDQ2EyWhQUuFhtJ9xKMFgoF\nmJEDZuSMGTmbyYyShX1Gfz2rpKREXV1dkqTDhw9r5cqVKigoUH9/v4aHhzU6OqpoNKqioiKVlpbq\n0KFDkqTu7m4VFxfP5CMBAFiQHK+ojx07pq1bt+rEiRPyer3q6urSjh071NjYqI6ODi1evFhVVVXK\nyMhQQ0OD6urq5HK5VF9fr0AgoMrKSvX09KimpkY+n0/Nzc1zcVwAAMwLLns6D43n2EK8rXIl/HvP\npuPfo06OW5bOmJEzZuTMiFvfAABgbhBqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYA\nwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgB\nADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFq\nAAAMRqgBADCYdyZv6u3t1WOPPaalS5dKkm644Qbdf//9evLJJzU1NaVQKKTt27fL5/Ops7NT7e3t\ncrvdWrdunaqrq1N6AAAAzGczCrUk/fznP9fu3bsTv/7jH/+o2tparVmzRi+++KLC4bCqqqrU2tqq\ncDisjIwMrV27VhUVFcrOzk7J4gEAmO9Sduu7t7dXq1evliSVlZUpEomor69P+fn5CgQC8vv9Kiws\nVDQaTdVHAgAw7834ivrjjz/WQw89pDNnzuiRRx7R+Pi4fD6fJCk3N1exWEzxeFzBYDDxnmAwqFgs\n5vh75+Rkyuv1zHRpWKBCoUC6l2A8ZuSMGTljRs5SOaMZhfqHP/yhHnnkEa1Zs0bHjx/Xr3/9a01N\nTSVet237ku+73Pb/NTQ0NpNlYYGLxUbSvQSjhUIBZuSAGTljRs5mMqNkYZ/Rre9FixapsrJSLpdL\nP/jBD/S9731PZ86c0blz5yRJp0+flmVZsixL8Xg88b7BwUFZljWTjwQAYEGaUag7Ozv1l7/8RZIU\ni8X06aef6p577lFXV5ck6fDhw1q5cqUKCgrU39+v4eFhjY6OKhqNqqioKHWrBwBgnpvRre/y8nL9\n4Q9/0N/+9jdNTk7q+eefV15enp566il1dHRo8eLFqqqqUkZGhhoaGlRXVyeXy6X6+noFAjzbAABg\numYU6quvvlp79uz52vZ9+/Z9bdudd96pO++8cyYfAwDAgsc3kwEAYDBCDQCAwQg1AAAGI9QAABiM\nUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAG\nI9QAABiMUAMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwbzpXgCQKhubj6R7CUm1NZanewkA\nrkBcUQMAYDBCDQCAwQg1AAAGI9QAABiMUAMAYDBCDQCAwQg1AAAGm5O/R/2nP/1JfX19crlc2rx5\ns372s5/NxccCRjH973lL/F1vwESzHup//OMf+ve//62Ojg7961//0ubNm9XR0THbHwsAwLww66GO\nRCK6/fbbJUk//vGPdebMGZ09e1ZXX331bH80gG/I9Kt+rvixEM16qOPxuG688cbEr4PBoGKx2JyG\n2vQ/fABMD/9bTg3+D8+VZc6/69u2bcd9QqFASj/z/1ruSunvBwALWar/jJ6PUjmjWf+pb8uyFI/H\nE78eHBxUKBSa7Y8FAGBemPVQl5aWqqurS5L0wQcfyLIsnk8DADBNs37ru7CwUDfeeKPWr18vl8ul\n5557brY/EgCAecNlT+ehMQAASAu+mQwAAIMRagAADDbnfz0LySX7utWenh69+OKL8ng8WrVqlerr\n69O40vRJNqPy8nJ9//vfl8fjkSTt2LFDixYtStdS02ZgYEAPP/ywfvOb32jDhg0XvcZ5dEGyGXEe\nXbBt2za9//77On/+vB588EHdcccdidc4j5LPJ6XnkA1j9Pb22r/73e9s27btjz/+2F63bt1Fr69Z\ns8Y+efKkPTU1ZdfU1NgfffRROpaZVk4zKisrs8+ePZuOpRljdHTU3rBhg/3MM8/Y+/fv/9rrnEfO\nM+I8su1IJGLff//9tm3b9n//+1/71ltvvej1hX4eOc0nlecQt74NcrmvW5Wk48eP65prrtG1114r\nt9utW2+9VZFIJJ3LTYtkM8IFPp9Pe/fulWVZX3uN8+iCZDPCBbfccot27dolScrKytL4+LimpqYk\ncR5JyeeTaoTaIPF4XDk5OYlff/F1q5IUi8UUDAYv+dpCkmxGX3juuedUU1OjHTt2TOub8OYbr9cr\nv99/ydc4jy5INqMvLPTzyOPxKDMzU5IUDoe1atWqxG1czqPk8/lCqs4hnlEbbCH+4fBN/e+Mfv/7\n32vlypW65pprVF9fr66uLt15551pWh2uVJxHX3r77bcVDofV1taW7qUY6XLzSeU5xBW1QZJ93er/\nvnb69OkFedvO6Stpq6qqlJubK6/Xq1WrVmlgYCAdyzQW59H0cB5d8M4772jPnj3au3evAoEvv7ua\n8+iCy81HSu05RKgNkuzrVq+77jqdPXtW//nPf3T+/Hl1d3ertLQ0nctNi2QzGhkZUV1dnSYmJiRJ\n//znP7V06dK0rdVEnEfOOI8uGBkZ0bZt2/Tyyy8rOzv7otc4j5LPJ9XnELe+DXKpr1v961//qkAg\noIqKCj3//PNqaGiQJFVWVupHP/pRmlc895xmtGrVKv3qV7/Sd77zHf30pz9dkLcrjx07pq1bt+rE\niRPyer3q6upSeXm5rrvuOs6j/89pRpxH0sGDBzU0NKRNmzYlthUXF+snP/kJ55Gc55PKc4ivEAUA\nwGDc+gYAwGCEGgAAgxFqAAAMRqgBADAYoQYAwGCEGgAAgxFqAAAMRqgBADDY/wOd/t8z0pRcYgAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "rYpy336F9wBg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Train a Logistic Regression Model and Calculate LogLoss on the Validation Set\n", + "\n", + "To use logistic regression, simply use [LinearClassifier](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier) instead of `LinearRegressor`. Complete the code below.\n", + "\n", + "**NOTE**: When running `train()` and `predict()` on a `LinearClassifier` model, you can access the real-valued predicted probabilities via the `\"probabilities\"` key in the returned dict—e.g., `predictions[\"probabilities\"]`. Sklearn's [log_loss](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html) function is handy for calculating LogLoss using these probabilities.\n" + ] + }, + { + "metadata": { + "id": "JElcb--E9wBm", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) \n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on training data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions. \n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "VM0wmnFUIYH9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 635 + }, + "outputId": "fcb8e9d7-06d6-4967-9566-e8aac205573d" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.60\n", + " period 01 : 0.58\n", + " period 02 : 0.57\n", + " period 03 : 0.57\n", + " period 04 : 0.55\n", + " period 05 : 0.54\n", + " period 06 : 0.54\n", + " period 07 : 0.53\n", + " period 08 : 0.53\n", + " period 09 : 0.55\n", + "Model training finished.\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGX6xvHvmUmvpEdqQieB0GwI\nhC4BRUARAhoBUURBUNz97Yq6uLqyu8riWlFAkUVRBFERgSi9iHQSCAQEKaGlkN7r7w80irShTGZC\n7s91ccnMOe+ZJ/OK3J7znvMYFRUVFYiIiIhUUyZbFyAiIiJyLRRmREREpFpTmBEREZFqTWFGRERE\nqjWFGREREanWFGZERESkWlOYEbnBNWvWjNOnT1+XYx0/fpywsLDrcixbiImJoVOnTkRFRdG7d2/6\n9u3LnDlzrvg48fHxjBo16orHhYWFcfz48SseJyKX5mDrAkREqtKf//xn+vfvD0BqaipDhgwhNDSU\nyMhIi48RERHBBx98YK0SReQK6cyMSA1VVFTE3/72N3r37k2fPn3417/+RVlZGQDr16+nS5cu9OnT\nh/nz59OuXbvLnlHIzMxkwoQJlWc8ZsyYUbnt9ddfp3fv3vTu3ZuHHnqI5OTkS77/q7Vr19KvX79z\n3uvfvz/r1q1jy5YtDBw4kL59+9KnTx+WLVt2xd9BQEAAUVFRbNy4EYCDBw/y4IMP0rt3b/r168fu\n3bsB2Lx5M9HR0UyYMIFnnnmGzZs306tXr8t+j2vXrqVXr1706dOHWbNmVX5uXl4eY8eOpU+fPvTo\n0YPnn3+ekpKSK65fRM5SmBGpoebMmcPp06f59ttv+fLLL9m2bRtLliyhrKyMv/71r7z00kssW7aM\nI0eOUFBQcNnjTZs2DW9vb2JjY5k3bx6ffvop27Zt46effmL58uUsWbKE2NhYevXqxaZNmy76/u91\n6NCB06dPk5SUBEBSUhKnT5/mjjvu4N///jfPPvssS5cuZfr06axYseKqvofS0lKcnJwoLy9n7Nix\n9O/fn9jYWF588UWeeOIJSktLAdi7dy/R0dH85z//sfh7fO6555g8eTLLli3DZDJVhpyvvvoKLy8v\nli1bRmxsLGazmYMHD15V/SKiMCNSY61Zs4bBgwfj4OCAi4sL/fr1Y+PGjRw5coTi4mK6dOkCnF1n\nUl5eftnjrV27lmHDhgFQq1YtevXqxcaNG/Hy8iI9PZ1vvvmGrKwsYmJiGDBgwEXf/z0nJye6devG\nqlWrAFixYgU9e/bEwcEBPz8/vvrqKw4dOkRISMh5IcMSSUlJLF++nF69evHzzz9z5swZBg0aBED7\n9u3x9fVl586dALi4uNChQ4cr/h47deoEwMCBAyvH/HrcDRs2UF5ezt///ndatGhxxfWLyFkKMyI1\nVHp6Ot7e3pWvvb29OXPmDFlZWXh5eVW+HxgYaPHxfj/Oy8uLM2fOEBQUxFtvvcXy5cvp2rUro0eP\n5tSpUxd9/4969+59Tpjp27cvAFOmTMHV1ZWRI0dy5513snz5covqfO211yoXAE+cOJG//vWvRERE\nkJ2dTWFhIX369CEqKoqoqCjOnDlDZmZm5fdzsZ/7Yt+jh4fHOe//qk+fPowYMYI33niDDh068Pe/\n/53i4mKL6heR8ynMiNRQ/v7+lX9Rw9k1L/7+/nh4eJCfn1/5flpa2jUdD+D2229nxowZbNy4kZtu\nuompU6de8v3f69y5M4mJiRw5coQjR45w++23V37eCy+8wLp16/jb3/7Gs88+S15e3mXr/POf/8zy\n5cuJjY1lwYIFleEoMDAQd3d3li9fXvlrw4YNlWtjrvTn9vb2Jjc3t/L99PT0c8ZFR0ezYMECli5d\nSkJCAl999dVlaxeRC1OYEamhunbtysKFCykrKyM/P5+vv/6aLl26EBISQmlpKZs3bwbg008/xTAM\ni443f/584Oxf3N9//z1du3Zlw4YN/P3vf6e8vBw3NzeaN2+OYRgXff+PnJyc6NSpE6+99ho9evTA\nbDZTUlJCTEwMKSkpAISHh+Pg4IDJdPX/SatTpw7BwcGVZ3jS09OZOHHiOcHuYj/3hb7H+vXrYzab\nK7/HRYsWVf5877zzDgsXLgQgKCiIunXrWvQdi8iF6dZskRogJiYGs9lc+fof//gHMTExJCUlcddd\nd2EYBlFRUfTp0wfDMHjxxRd59tln8fT0ZOTIkZhMJgzDoKKigrKyMqKios45/syZM3nqqad48cUX\niYqKwmQyMXr0aCIiIigqKuLbb7+ld+/eODk54evry5QpUwgMDLzg+xfSu3dvnnzyST766CMAHB0d\nGTRoECNGjADAZDLx/PPP4+rqyvfff8+qVav45z//eUXfkWEYTJs2jRdffJH//ve/mEwmRo4ciZub\n22W/24t9jy+//DKTJk3CycmJe++9t/JY/fv359lnn2XmzJkYhkHr1q0rbxcXkStnVFRUVNi6CBGx\nX/n5+bRt25Zt27bh6elp63JERM6jy0wicp777ruPpUuXArB06VIaNWqkICMidktnZkTkPNu2beOl\nl16iqKgId3d3XnzxRSIiImxdlojIBSnMiIiISLWmy0wiIiJSrSnMiIiISLVW7W/NTk3NsdqxfXzc\nyMi49DMmxDY0N/ZJ82K/NDf2SfNiuYCAi9+EoDMzl+DgYL78TmITmhv7pHmxX5ob+6R5uT4UZkRE\nRKRaU5gRERGRak1hRkRERKo1hRkRERGp1hRmREREpFpTmBEREZFqTWFGREREqjWFGRERkRvYmjUr\nLdrvjTf+w8mTJy66/a9/nXi9SrruFGZERERuUKdOnWTFiliL9p0w4Rlq165z0e3/+te061XWdVft\n2xmIiIjIhU2b9m/27Uugc+dbuPPOPpw6dZL//vdd/vnPl0hNTaGgoICHHx5Nx46dGTduNBMn/h+r\nV68kLy+XY8eOcuLEccaPf4YOHTpy1109+PbblYwbN5pbbrmNHTu2kZmZyb///Tr+/v689NILnD59\nilatIli1agVffrm0yn5OhRkREZEq8Pmqg2xNTDnnPbPZoKys4qqPeUvzQAZ3b3zR7UOHxrBo0eeE\nhjbi2LEjvPvuLDIy0rn11tvp0+duTpw4zgsv/JWOHTufMy4lJZmpU9/kxx9/4Ouvv6BDh47nbHd3\nd+eNN6YzffpbrFu3itq161JcXMSMGR+xceN6Pv/806v+ma6GwsxFHDyRRUFZBa5mw9aliIiIXLMW\nLcIB8PT0Yt++BBYvXoRhmMjOzjpv34iINgAEBgaSm5t73vbWrdtWbs/KyuLo0cO0atUagA4dOmI2\nV23PKYWZi5i1ZC85+cX8eWhbQoK9bF2OiIhUc4O7Nz7vLEpAgCepqTlV8vmOjo4AfP/9crKzs3nn\nnVlkZ2fzyCMx5+37+zBSUXH+maM/bq+oqMBkOvueYRgYRtWeCNAC4Iu4v2sjCovLeP3zOJLT1Z5d\nRESqH5PJRFlZ2TnvZWZmctNNtTGZTKxdu4qSkpJr/pw6deqyf/9eALZs+fG8z7Q2hZmLaN8skMfv\na01Ofgn/mb+LzNwiW5ckIiJyRRo0CGX//kTy8n67VNS1a3d++GE9EyY8jqurK4GBgcyePfOaPueO\nOzqTl5fH44+PIi5uJ15e3tda+hUxKi50/qgasebpuYAATz74Mp6vNhymXqAHfxnWDjcXXZmzB1V5\nalYsp3mxX5ob+3SjzEt2dhY7dmyja9cepKamMGHC48yb98V1/YyAAM+LbtPfzJfRr2MIWfnFrN5x\ngre+iGfikNY4OlTtwiYRERF75ubmzqpVK5g3by4VFeU8+WTVPmBPYeYyDMPggZ5NyckrZtv+VGYs\n3svjA1piMukuJxEREQAHBwdeeumfNvt8rZmxgMlk8Gi/cJrXr8X2A6nM/W7/BVd3i4iISNVTmLGQ\no4OJJ++LoH6QB2t3neTrDYdtXZKIiIigMHNFXJ0deHpwGwJrubJ44xFW7Thu65JERERqPIWZK+Tt\n7sTEIa3xcnfik+8OnPdoahEREalaCjNXIdDHjafvb42zk5mZ3ySw70i6rUsSERG5aoMG9SM/P5+5\ncz9iz574c7bl5+czaFC/S45fs2YlAEuXfsPatautVufFKMxcpQbBnjx5XwQAby7azdHT1f85ASIi\nUrPFxIygZcuIKxpz6tRJVqyIBaBv33506dLNGqVdkm7NvgYtGvgwul8407/aw+uf7+LZmPYE+bjZ\nuiwREREAHn74AaZM+Q/BwcGcPn2KZ599hoCAQAoKCigsLOTpp/9MWFjLyv1feeVFunbtQZs2bXnu\nuf+juLi4sukkwHffLWPhwvmYzSZCQhrxl788x7Rp/2bfvgRmz55JeXk5tWrV4r77hvDuu2+we3cc\npaVl3HffYKKi7mLcuNHccstt7NixjczMTP7979cJDg6+5p9TYeYa3dw8kAd7N2Nu7H6mzd/FpAfb\n4+3hbOuyRETEziw6uISdKbvPec9sMigrv/pHfbQNbMW9je++6PbIyG5s3LiO++4bzPr1a4mM7Eaj\nRk2IjOzK9u1b+eSTObzyymvnjYuNXUbDho0YP/4ZVq78rvLMS0FBAf/5z1t4enoyduyjHDp0kKFD\nY1i06HNGjnyUDz54H4Bdu3bw88+HmD79QwoKChg+PJrIyK4AuLu788Yb05k+/S3WrVvF4MHDrvrn\n/5UuM10H3drW4Z6OIaRmFjLt8zjyC0ttXZKIiMgvYWY9ABs2rKVTpy6sXbuSxx8fxfTpb5GVlXXB\ncUeO/EzLlq0BaNu2feX7Xl5ePPvsM4wbN5qjRw+TlZV5wfGJiXtp06YdAK6uroSENCQpKQmA1q3b\nAhAYGEhubu4Fx18pnZm5iI0nNxNc6EsjlyYW7d+/UyjZ+SWs2XmCtxfF8/RgtT0QEZHf3Nv47vPO\noli7N1PDho04cyaV5OTT5OTksH79Gvz9A3nhhZdJTNzL22//94LjKiqofNJ9+S9njkpKSpg27VU+\n+mgefn7+/N//PXXRzzUMg98/W7a0tKTyeGbzb383Xq8H0OrMzEWsSdrItB9msu30Tov2NwyDB3s1\npX2zABKPZTJj8d7KfwFERERspUOHTsyY8S6dO3chKyuTOnXqArB27WpKSy98JaF+/QYkJu4DYMeO\nbQDk5+dhNpvx8/MnOfk0iYn7KC0txWQyUVZWds745s3D2blz+y/j8jlx4jh169a31o+oMHMxw8Oi\ncXV0Yc6++ew9s9+iMSaTweh+YZVtDz5W2wMREbGxLl26sWJFLF279iAq6i7mz/+Ep58eS3h4S86c\nOcO33y4+b0xU1F0kJOxmwoTHSUo6imEYeHvX4pZbbuORRx5i9uyZDBsWw5tvTqNBg1D270/kzTf/\nUzm+des2NGvWnLFjH+Xpp8cyZsw4XF1drfYzGhXV/G9ba56eS604zT/WvokJg/FtHyPU27JUmV9Y\nyqvzdnAsJZd7OoYwoHNDq9VYU1n71KxcHc2L/dLc2CfNi+UCAjwvuk1nZi4hLLAJD4c/QEl5KdPj\nPuR0XrJF49xcHHh6cGsCarmweOMRVqvtgYiIiNUozFxG64BwHmg+iLzSfN7aNYuMwguv3P4jbw9n\nnhnSBi83Rz7+7gDb1PZARETEKqwaZqZMmcKQIUOIjo4mPv7cxyN3796dYcOGERMTQ0xMDMnJyZSX\nl/PCCy8QHR1NTEwMhw4dsmZ5FutQ+xYGNOpLZlEWb+2aRW5xnkXjAn3ceHpwG5ydzMxQ2wMRERGr\nsFqY2bJlC0ePHmX+/Pm88sorvPLKK+ftM3PmTObOncvcuXMJCgpi5cqV5OTk8Nlnn/HKK6/w6quv\nWqu8K9azfhd61IskOT+Fd+M/pLC0yKJxDYI9efLeVgC8pbYHIiIi153VwsymTZvo2bMnAI0aNSIr\nK+uyD8c5cuQIERFne0LUr1+fkydPnne7l60YhsGAxn25Lbg9R7OTmLVnLqXllj0cr0WIL6P7hVNU\nXMbrC+JIyci3crUiIiI1h9XCTFpaGj4+PpWvfX19SU1NPWefyZMnM3ToUKZOnUpFRQVNmzZlw4YN\nlJWV8fPPP5OUlERGRoa1SrxiJsPEA80H0dKvBfvSD/C/vfMpryi3aOzNzQN58M6mZOcV85/5u8jK\ntezMjoiIiFxalT0B+I93gI8fP57OnTvj7e3N2LFjiY2NJSoqih07dvDAAw/QrFkzGjZseNnntPj4\nuOFgxSftXuhWsL/4jeEfa99ke0ocAV4+jGw3GMMwLnuswb1bUFJh8Nn3+3lr0R7+ObYjbi6O1ii7\nRrjUbXpiO5oX+6W5sU+al2tntTATGBhIWlpa5euUlBQCAgIqXw8YMKDy95GRkRw4cICoqCiefvrp\nyvd79uyJn5/fJT8nw4qXbC51//8jLWJ4fcd7LD+4BocyJ/qE9rTomL3a1eZ0ag5rdp1k8vs/qO3B\nVdKzGeyT5sV+aW7sk+bFcjZ5zkzHjh2JjT3bZTMhIYHAwEA8PDwAyMnJYdSoURQXFwOwdetWmjRp\nQmJiIs8++ywA69atIywsDJPJPu8ed3N0Y2ybUfi5+LDk8HesP7HJonGGYfDgnc1o3/Rs24OZ36jt\ngYiIyLWw2pmZdu3aER4eTnR0NIZhMHnyZBYtWoSnpye9evUiMjKSIUOG4OzsTFhYGFFRUVRUVFBR\nUcGgQYNwdnZm6tSp1irvuqjl7M24No/wn+3vMn//V7g7utMuMOKy40wmg9H3hPH653Fs25/KJ98f\n4ME7m1p0qUpERETOpXYGl2Dp6b9jOcd5Y8f7lJaX8njrh2nua1mn7fzCUv49bwdJKbn07xRK/06h\n11pyjaFTs/ZJ82K/NDf2SfNiObUzsLL6nnV5LGI4ADN2z+FodpJF435te+Dv7cLXGw6zeucJa5Yp\nIiJyQ1KYuU6a+jRmZPgwistKeDfuQ5LzUy8/CKjl4cwz0W3wdHPk49j9ansgIiJyhRRmrqM2ga2I\nbjaQ3JI83t41i8yiLIvGBfm48fTg1jj90vYg8aj9PFtHRETE3inMXGed6txOv4a9SS/M4O1ds8gr\nsezW8ZBgr9+1PYjnWLKuoYqIiFhCYcYKejfoTte6HTmVl8z0uNkUlxVbNC4sxJdH7g6jsKiMaZ+r\n7YGIiIglFGaswDAM7mvSj5uD2nA4+yiz9nxMWbllPaZubRHEsF5n2x5Mmx9HVp5lQUhERKSmUpix\nEpNhIqbFYMJ8m5FwJpG5+xZY3MepR/u69LsjhJTMAl7/fBcFRZY1tBQREamJFGasyMHkwCOtYgjx\nqs/W5B18efDby/aa+tWAzqF0aVObY8m5vL1oNyWllgUhERGRmkZhxsqczU483nokwW6BrEpaz/dH\n11g0zjAMYu5sRrumAew7msHMbxLU9kBEROQCFGaqgIejO+PaPIKPcy2+/nkZG09utmicyWTw2D1h\nNK1X62zbgxUHLD6zIyIiUlMozFQRH5dajGvzCO6ObnyauIi41D0WjXN0MDP+vlbUDfBg9Y4TfPPD\nEesWKiIiUs0ozFShYPdAnmj9MI5mRz5MmMeBjEMWjXNzcWTikLNtD75af5g1ansgIiJSSWGmioV4\n1Wd0q4eoqKjg/fiPSMqxLJjU8nDmmSFn2x7M/W4/2/er7YGIiAgozNhEC9+mDA+LpqismHd2fUBK\nfppF44J8f2l74Gjm/cVqeyAiIgIKMzbTPqg1g5v2J6ckl3d2zSKrKNuicSHBXoy7txUVFWp7ICIi\nAgozNhVZ9w76hvQkrTCdd+I+IL+kwKJx4SG+PNrvbNuD1z+PIyXTsnEiIiI3IoUZG+sb2ovIOh04\nkXuK9+I/orisxKJxv7Y9yMorZtr8XWSr7YGIiNRQCjM2ZhgG9zftT7vACA5lHebDhE8s7uPUo31d\n7r4jhJSMAl7/PE5tD0REpEZSmLEDJsPEQ2HRNPdpwu60vczb/4XFD8cb2DmUyNa1OZqco7YHIiJS\nIynM2AlHkwOPtoqhgWc9fjy1ja8PLbNonGEYxPRuStsm/uw7msGsJXvV9kBERGoUhRk74uLgwuOt\nRxLkFsD3x9aw4thai8aZTSbG9A+nab1abE1MYZ7aHoiISA2iMGNnPJ08GNv6EWo5e/PlwW/58dQ2\ni8b9vu3Bqh0nWKK2ByIiUkMozNghP1cfxrYehZuDK58kLmR32l6Lxrm5OPL04LNtD75cf5g1u9T2\nQEREbnwKM3aqtkcwj7d+GAfDzAd7PuZg5mGLxvl4OjNxSBs8XB2ZG7uf7ftTrVypiIiIbSnM2LGG\n3g14pFUMZRXlvBc/mxO5pywaF/yHtgf7j6ntgYiI3LgUZuxcuF9zYloMpqC0kHd2zSKtIN2icaE3\neTFuYCsqKip48wu1PRARkRuXwkw1cGtwOwY1uYes4hze3jWTnOJci8aFh/ryyN2/tT3IzC2ycqUi\nIiJVT2GmmuhWrxO9G3QnteAM7+yaRUFpoUXjbgsL4v5ujcnKKz77DBrdsi0iIjcYhZlqpF/D3nSs\nfStJuSeZET+HEgv7OPW+tR6tG/mx90gGyzcfs3KVIiIiVUthphoxDIPoZvfSJqAlBzIP8dHeTymv\nuHz7AsMwePiuFnh7OPHlup85dDKrCqoVERGpGgoz1YzJMDEibChNajVkV+oePtv/pUVP+/V0c2J0\nv3DKyyt4/+sE8gvVlFJERG4MCjPVkKPZkcciRlDPozYbT25myc+xFo1r0cCHu+5oQFpWIf+LTVTL\nAxERuSEozFRTrg4uPNFmFAGufiw/uorVSRssGndPx1Aa1fFiy74UNuy27Lk1IiIi9kxhphrzcvJk\nXJtH8XLyZOFPi9lyesdlxziYTTzWLxxXZwc++f4Ap87kVUGlIiIi1qMwU835u/oyrs0juDq4MHff\n5ySc2X/5MbVcGdGnOcUl5bz/dQIlpZdfRCwiImKvrBpmpkyZwpAhQ4iOjiY+Pv6cbd27d2fYsGHE\nxMQQExNDcnIyeXl5jBs3jpiYGKKjo1m/fr01y7th1PG4iTERIzEbJmbt/h8/Zx297JhbmgcS2bo2\nx1JyWbDmYBVUKSIiYh0O1jrwli1bOHr0KPPnz+fQoUNMmjSJ+fPnn7PPzJkzcXd3r3z98ccfExoa\nyjPPPENycjLDhw9n+fLl1irxhtK4ViijWj7IjN3/Y3rchzzd7nFqewRfcszQnk346XgmK7YdJyzE\nlzaN/auoWhERkevHamdmNm3aRM+ePQFo1KgRWVlZ5OZe+jH8Pj4+ZGZmApCdnY2Pj4+1yrshtfIP\n44Hmg8gvLeCduA9IL7x0g0lnRzNj+rfEwWziw2/3kZGjdgciIlL9WO3MTFpaGuHh4ZWvfX19SU1N\nxcPDo/K9yZMnc+LECdq3b88zzzzDXXfdxaJFi+jVqxfZ2dm8//77l/0cHx83HBzMVvkZAAICPK12\nbGvoF9CNCqdSPo5bxPTdH/JSjz/h5exx0f0DAjx55J5w3vtyN3Ni9/PSY3dgNhlVWPHVq25zU1No\nXuyX5sY+aV6undXCzB/98Zkm48ePp3Pnznh7ezN27FhiY2MpKiqidu3afPDBByQmJjJp0iQWLVp0\nyeNmZORbreaAAE9SU6tft+kOfreTXD+d74+t4eWVbzK+7aO4OLhcdP9bmvqzuYk/O39K43/f7OHu\nO0KqrtirVF3n5kanebFfmhv7pHmx3KVCn9UuMwUGBpKWllb5OiUlhYCAgMrXAwYMwM/PDwcHByIj\nIzlw4AA7duygU6dOADRv3pyUlBTKysqsVeINrX+jPtx+080czUli5u65lJRf/Im/hmEwsm8LfDyd\n+Wr9YQ6eULsDERGpPqwWZjp27Ehs7Nkn0yYkJBAYGFh5iSknJ4dRo0ZRXFwMwNatW2nSpAkNGjQg\nLi4OgBMnTuDu7o7ZbL1LSDcywzAY1uw+WvmHkZjxE//b+9kl+zh5uDoyul8YFfza7sCyJpYiIiK2\nZrXLTO3atSM8PJzo6GgMw2Dy5MksWrQIT09PevXqRWRkJEOGDMHZ2ZmwsDCioqLIz89n0qRJPPjg\ng5SWlvLiiy9aq7wawWwy83D4A7y9axY7UuLxc/FlQOO+F92/WX0f+t0RwuKNR/ho+X4e7x+OYVSP\n9TMiIlJzGRXVvEGPNa813ijXMvNK8pm6/W1S8tN4oPkg7qh960X3LSsv59V5O/npeBYj+jQnsnXt\nKqzUcjfK3NxoNC/2S3NjnzQvlrPJmhmxH+6Objwe8TDuDm58un8R+9Mv/pA8s8nE6H7huDk7MO/7\nA5xMU7sDERGxbwozNUSgmz+PtnoIA4OZe+aSnJdy0X39vF3OtjsoLee9rxMoKdUibBERsV8KMzVI\nE5+GPNB8EAWlBbwbP5vc4oufdbm5eSBd29TmeGoun686VIVVioiIXBmFmRrmtpvaExXSg7SCM8zY\nPeeSt2xH92hCHX93Vu44zs6fUquwShEREcspzNRAd4X2on1gaw5lHeGTfQvPe6Dhr5wczTzWPxxH\nh7PtDtKzC6u4UhERkctTmKmBTIaJB1sMJtSrPluTd7D8yMqL7ls3wIPoHk3IKyxl5jd7KS+v1je/\niYjIDUhhpoZyMjsyOmI4vi4+LDn8HduSd110365tatOuaQD7kzJZsulIldUoIiJiCYWZGszLyZPH\nI0biYnZh7r7P+Tnr6AX3MwyDEX2a4+vlzNcbDvPT8cwqrlREROTiFGZquNoewYxq+QDlFeW8H/8R\naQXpF9zvbLuDs13QZyxOIE/tDkRExE4ozAhhfs24v0l/ckvymB4/m4LSggvu17ReLe7pGMqZ7CI+\nWpZ40YXDIiIiVUlhRgCIrNuBbvU6cTovmVm7P6as/MIPyut3RwhN69Vi+/5U1sadrOIqRUREzqcw\nI5XubXw3Lf1akJjxE58f+OqCZ15MJoPR/cJwd3Hg0xU/cSI11waVioiI/EZhRiqZDBMjw4dR16M2\nG05uZnXS+gvu5+vlwsi+LSgpLee9xQkUl6jdgYiI2I7CjJzDxcGZMREj8HbyZNHBb4lPTbjgfu2a\nBtCtXR1OpOYxf9XFG1eKiIhYm8KMnMfHpRZjIkbiaHJgdsI8knJOXHC/Id0aUzfAndU7T7B9v9od\niIiIbSjMyAXV96rLiPChlJSmFr6VAAAgAElEQVSX8l78R2QWZZ23z9l2By1xcjDx0bJ9nMlSuwMR\nEal6CjNyUa0DWjKgcV8yi7J4L242haVF5+1Tx9+d6J6/tjtIoKy83AaViohITaYwI5fUo14kHWvf\nSlLuST7a+ynlFeeHlS6ta3NzswAOHM/im41Hqr5IERGp0RRm5JIMw2BI04E082nM7rS9fHVw6QX3\nGd6nOX5eznzzwxH2H8uwQaUiIlJTKczIZZlNZh5p+SBBboGsTFrHhhM/nrePu4sjj93TEgODGd/s\nJbdA7Q5ERKRqKMyIRdwc3Xg8YiQeju7MP/AViek/nbdP47re9O8UQkZOEbOX7lO7AxERqRIKM2Kx\nADc/RrcajgmDWXvmciov+bx97uoQQvP6tdj5Uxprdl74lm4REZHrSWFGrkijWiE82GIwBaWFTI+b\nTU7xue0MTCaDR/uFn213sPIgx1PU7kBERKxLYUau2C3Bbekb0pMzhem8Hz+HkrJz18f4eDrz8F0t\nKC072+6gSO0ORETEihRm5Kr0De3FzUFtOJx9lI8TF5y3PqZtkwB6tK/LybQ8Plt5/voaERGR60Vh\nRq6KYRg82Px+Gno3YFvyLpYe/v68fQZ3a0S9QA/W7jrJtsQUG1QpIiI1gcKMXDVHsyOjWw3Hz8WX\npUdWsOX0jnO3O5gZ0z8cJ0cTHy1LJC2rwEaViojIjUxhRq6Jp5MHT7QeiauDC5/sW8DBzMPnbL/J\nz51hPZuSX1TKjG/2qt2BiIhcdwozcs2C3YN4pGUM5VQwY/ccUvPPnLO9c8RN3NoikIPHs1i84Yht\nihQRkRuWwoxcF819mxDddCB5JflMj59Nfkl+5TbDMHiodzP8vV1Y8sMREo+q3YGIiFw/CjNy3XSs\ncxs96keSnJ/CzD0fU1b+2y3Zbi6OjL4nHMMwmPFNAjn5xTasVEREbiQKM3JdDWjUlwj/cA5kHOSz\n/YvOuWW7cR1vBkaGkplbzOyliWp3ICIi14XCjFxXJsPEiPCh1POozQ+ntrLi2Npztve5rQEtGviw\n62Aaq3ao3YGIiFw7hRm57pzNToxpPZJazt58fWgZu1L3VG4zmQweuTsMD1dH5q86yLHkHBtWKiIi\nNwKjworn+qdMmUJcXByGYTBp0iQiIiIqt3Xv3p3g4GDMZjMAU6dOZd26dSxevLhynz179rBz585L\nfkZqqvX+MgwI8LTq8W90STknmLZjOhUVFUxs9zj1vepWbos7mMYbC+O5yc+Nvw2/BWcn8xUdW3Nj\nnzQv9ktzY580L5YLCPC86DYHa33oli1bOHr0KPPnz+fQoUNMmjSJ+fPnn7PPzJkzcXd3r3x9//33\nc//991eOX7ZsmbXKkypQz7MOD4cP4/34ObwXP5s/3/wkPi61AGjd2J9eN9fj+21JfLryACP6tLBx\ntSIiUl1Z7TLTpk2b6NmzJwCNGjUiKyuL3FzLOyi/8847PPHEE9YqT6pIK/8w7m18F1nFOUyPn01h\naWHltkFdG1E/0IN1cafYsi/ZhlWKiEh1ZrUwk5aWho+PT+VrX19fUlNTz9ln8uTJDB06lKlTp55z\nZ0t8fDw33XQTAQEB1ipPqlC3ep3pVOd2TuSeYnbCPMorzj4F2NHBxGP9w3F2NDNneSKpmWp3ICIi\nV85ql5n+6I9Lc8aPH0/nzp3x9vZm7NixxMbGEhUVBcDChQsZOHCgRcf18XHDweHK1ltciUtdoxPL\nPeH/IDnrs4g7vY9lJ75jRNuzlxMDAjwZc28Eb8zfyYfLEvnX2E44mC3L2Job+6R5sV+aG/ukebl2\nVgszgYGBpKWlVb5OSUk550zLgAEDKn8fGRnJgQMHKsPM5s2bef755y36nIyM/MvvdJW0MOv6imka\nTXLOuyw9sApPvIisewcAESG1uC0siM17k5n1ZTz3dWl02WNpbuyT5sV+aW7sk+bFcpcKfVa7zNSx\nY0diY2MBSEhIIDAwEA8PDwBycnIYNWoUxcVnnwK7detWmjRpAkBycjLu7u44OTlZqzSxEVcHVx6P\nGImHozsLflpMwpn9wLntDpZuOsq+I+k2rlRERKoTq4WZdu3aER4eTnR0NP/4xz+YPHkyixYt4vvv\nv8fT05PIyEiGDBlCdHQ0vr6+lWdlUlNT8fX1tVZZYmP+rr48FjECk2Hiwz0fczL3NACuzg6M6d8S\nk8lgxpK9ZKvdgYiIWMiqz5mpCnrOTPW0PXkXHybMw9fFhz/fPA4vp7OnD5f9eJQFaw4R0ciPCYMi\nMAzjguM1N/ZJ82K/NDf2SfNiOZtcZhK5lPZBbbg7tDfphRm8Hz+H4rISAHrfVp+wEB/iD51hxbbj\nNq5SRESqA4UZsZmokO7cGtyOI9nH+N+++ZRXlGMyzrY78HRzZMGagxw9rf9jERGRS1OYEZsxDINh\nzQfRyDuEnSnxfPvzdwDU8nBm1F1hlJZV8N7iBAqLS21cqYiI2DOFGbEpR5MDo1sNx9/Vj+VHV/Hj\nqW0ARDTy485b6pGcns+873+ycZUiImLPFGbE5jyc3HkiYiSuDq7MS/yCnzJ+Bs62O2gQ7MmG3af4\nce9pG1cpIiL2SmFG7EKQeyCjW8VQQQUzd/+PlPxUHMwmxtwTjrOTmf8t30+K2h2IiMgFKMyI3Wjq\n05ihze4lrzSf6XGzySvJJ8jXjZg7m1JYXMb7XydQWlZu6zJFRMTOVFlvJhFL3FH7VlLy0/j+2Bpm\n7v4f49o8wh0tbyLhcDqbEpL5cv3P3N+1sU1rLCsvp6i4jMJffhWV/PLP4jIKi0spLCmr3F5UXEZh\nydn3fz+msKSEwopsik25tK4bysN3tsV0kWfqiIjIpSnMiN25p1EUqQVp7Erdw6eJi3iwxf08eGcz\nDp3MZtmPxwhr4EtXCxuzlVdU/BYsSn4XOH4XQs6GjtJfQsfZfS4UTH4dU1Jq4dkhUxmGcz6Gcz4m\nl7P/NFzyMdUqwHAqAOPs8yq3F8XhstqRB7u3utqvTESkRlOYEbtjMkwMD4smfcd7/Hh6G0FuAdwZ\n0o3H7glnytztzFyyl2NpeaRnFvx2xuMiZ0OKS67tspTZZODiZMbZyYyXuxPOjmZcnMyV7zk4llLh\nlE+pOZciUw5FRjb5FVnklmeRX5Z7wWN6OXni79qAAFc/CktKiDsTz4bsb7lpuzc92te/pnpFRGoi\nhRmxS05mJ8ZEjOC1bW/z9c/L8Hfzo91NEdzXpRGfrz7IgpXn365tGPwSNBxwc3bAx9MZVyczzo5n\ng4eLk8PZEPKHQOLs6ICLsxmXyv3O7uvsaMbBbJBdnEtqQRppBWdILThz9p/5Z0gqOENe6S9d28t+\n+QUYGPi61KKeV2P8Xf0I+PWXmz9+Lr64ODhX1lxeUc47O0pIZB+f7/8GP+8htGnsXwXfsIjIjUO9\nmS5BPTNs73jOSabteJfyinKeajeGEK/6HEvOwdXdmcL84rPh45dw4uhgumgvp0sprygnozCT1F/C\nytngkk5qfhpphekUl53f9NLBMOPn6keAq+8vgcUff1ffXwKLDw4my/8/obC0kCk/vsmZ4jTKj7Tm\nL337ERLsdcU/hz3Qnxn7pbmxT5oXy12qN5PFYSY3NxcPDw/S0tI4cuQI7dq1w2Sy/c1QCjM3vj1p\n+3gv/iM8nNz5c/sn8XP1ueK5KSkv5UxB+m9BpSCt8izLmYIMyirKzhvjbHb6JaT8dnbF39WPADc/\najl7YzKu37//Kfmp/HPzmxSVleB4uBMvDO6Bv7frdTt+VdGfGfulubFPmhfLXXOYefnll2nevDm9\nevVi0KBBhIeH4+3tzUsvvXRdC70aCjM1w5qkjSz46Wtquwczsf0T1L8p4Ly5KSwtJLUysPx2OSi1\n4AyZRVlUcP6/6h6O7pVhpTK0uJ090+Lh6H5VZ3qu1p60fUyPn015kQs+p3ry/LAOuLk4VtnnXw/6\nM2O/NDf2SfNiuUuFGYvOhe/du5cXXniBTz/9lIEDBzJ27FiGDx9+3QoUuZyu9TqSnJ/KuhM/8MGe\nj+lZ1JFDKccrA0tawRlySi684LaWszeNa4X+7szKL5eEXP1wdbCfsx8t/Vtwd2hvlhyOJd33B95a\n5MYzQ9rhYLb9GVAREXtmUZj59eTNmjVreOqppwAoLj5/HYGINQ1q0o+0gjPsTd/Pvs0HKt83GSb8\nXHyo61mbAFd/An5Zu+Lv6oefiy9O5upzdqN3SDeO5RwnngR+zt/M7KVuPHJ3iyo9QyQiUt1YFGZC\nQ0Pp27cvvr6+tGjRgq+++gpvb29r1yZyDrPJzKiWD7Dp1DZqebnhUuZBgKsfPs61MJvMti7vujh7\nW/oQXt36NsnBR9lyaDv+610YGNnQ1qWJiNgti9bMlJWVceDAARo1aoSTkxMJCQnUq1cPLy/b33Gh\nNTM1040+N8n5qby69S0KS4op3HsbI7rcRufWtW1d1mXd6PNSnWlu7JPmxXKXWjNj0cX4ffv2cfr0\naZycnHj99dd59dVXOXDgwOUHishVCXILYGT4UDCV49J0F/9bGU/C4XRblyUiYpcsCjP/+Mc/CA0N\nZdu2bezevZsXXniBN99809q1idRovy4IxqkAh4ZxvPNlHEkpF17kLCJSk1kUZpydnQkJCWHlypUM\nHjyYxo0b28UzZkRudL1DutE6oCUmrzOUBe/lvwviyMgpsnVZIiJ2xaJEUlBQwLJly1ixYgWdOnUi\nMzOT7Oxsa9cmUuOZDBMPtRhMsFsgDsFHyXY6zH8XxFFQVGrr0kRE7IZFYWbixIl88803TJw4EQ8P\nD+bOncuIESOsXJqIALg4uDA6YjiuDi44N0zgeO4Jpn+1h9Kya2uiKSJyo7C4nUF+fj6HDx/GMAxC\nQ0NxdbWPh43pbqaaqSbOza9tHcxlruTE3U5keAOGRzW3q2fQ1MR5qS40N/ZJ82K5a34C8IoVK3jx\nxRcJDg6mvLyctLQ0Xn75Zbp06XLdihSRS2vp34K7Qu9kyeFYvMJ2sy7OAX9vV+6+I8TWpYmI2JRF\nYWbWrFksXrwYX19fAJKTk5kwYYLCjEgV6x3SjaSc48SlJeDZ+BCL1pnw93bh9vBgW5cmImIzFq2Z\ncXR0rAwyAEFBQTg6Vp9HxIvcKEyGiYfChhDsFkip7yFcg07z4dJ97D+WYevSRERsxqIw4+7uzocf\nfkhiYiKJiYnMmjULd3d3a9cmIhfw+wXB5pA94JrFW1/s5mRanq1LExGxCYvCzCuvvMKRI0f461//\nyrPPPsuJEyeYMmWKtWsTkYsIcgtgRNhQyivK8G65m/yyfP67II6sPDWAFZGax+K7mf7o0KFDNGrU\n6HrXc8V0N1PNpLk5a9nhFSw5/B2+Rm1ObG5JSLA3fxnWDmcn2zTe1LzYL82NfdK8WO6aezNdyN//\n/verHSoi10nvkO609g8nveIkDdod58jpHN5fnEB5+VX9P4qISLV01WHmKk/oiMh19PsFwSkOe6nf\nLJNdB9P4dMVP+jMqIjXGVYcZe3pQl0hN9uuCYBezCxk+2wiuU8zKHcf5bmuSrUsTEakSl3zOzMKF\nCy+6LTU19boXIyJXJ8gtgBHh0bwfPwdCt+OdezufrzqIn5cLNzcPtHV5IiJWdckws3379otua9Om\nzXUvRkSuXiv/MO4K7cWSw9/RoN1+Cje2YOaSvdTydKZxHW9blyciYjWXDDP//Oc/r+ngU6ZMIS4u\nDsMwmDRpEhEREZXbunfvTnBwMGbz2bsupk6dSlBQEIsXL2bWrFk4ODgwfvx4unbtek01iNQkvUO6\nk5Rzgri0BNpE+rN1ZQBvLoznuYfaE+TjZuvyRESswqJ2BsOGDTtvjYzZbCY0NJQnnniCoKCg88Zs\n2bKFo0ePMn/+fA4dOsSkSZOYP3/+OfvMnDnznIfvZWRk8M477/DFF1+Qn5/PW2+9pTAjcgV+XRD8\n2ra3ic/eRmTX3qxZXcLrn8fxXEx7PN2cbF2iiMh1Z9EC4DvuuIPg4GCGDx/OyJEjqVevHu3btyc0\nNJRnn332gmM2bdpEz549AWjUqBFZWVnk5uZe8nM2bdpEhw4d8PDwIDAwkJdffvkKfxwRcXFwYXSr\nh3Axu7CjYCWRt7uTklHAW1/sprikzNbliYhcdxadmdm+fTuzZ8+ufN2zZ09Gjx7NjBkzWLly5QXH\npKWlER4eXvna19eX1NRUPDw8Kt+bPHkyJ06coH379jzzzDMcP36cwsJCxowZQ3Z2Nk8++SQdOnS4\nZG0+Pm44OFjvAWGXekiP2Jbm5uICAjyZ4PQwr66fzmG31XRo24dNO88wd8VP/N+DN2MyWe9uRM2L\n/dLc2CfNy7WzKMycOXOG9PT0ymaTOTk5nDx5kuzsbHJyLHty4R+feTF+/Hg6d+6Mt7c3Y8eOJTY2\nFoDMzEzefvttTp48yUMPPcTq1asveRt4Rka+RZ9/NfRkRvulubm8+o4hlQuCfQJ+pEm99myMO8l0\n510M7t7YKp+pebFfmhv7pHmx3KVCn0Vh5qGHHqJPnz7UqVMHwzA4fvw4jz32GKtXr2bIkCEXHBMY\nGEhaWlrl65SUFAICAipfDxgwoPL3kZGRHDhwgDp16tC2bVscHByoX78+7u7upKen4+fnZ0mZIvIH\nv18Q3KldMDl5QSzfcgz/Wi50b1fX1uWJiFwXFq2ZGTRoECtXruSll15i8uTJxMbG8vDDD9O/f3+G\nDh16wTEdO3asPNuSkJBAYGBg5SWmnJwcRo0aRXHx2aZ4W7dupUmTJnTq1Ikff/yR8vJyMjIyyM/P\nx8fH53r8nCI1kskwERM2hCC3QDac2kiPngZebo588v0Bdv2UdvkDiIhUAxadmcnLy2POnDns3r0b\nwzBo06YNw4cPx8XF5aJj2rVrR3h4ONHR0RiGweTJk1m0aBGenp706tWLyMhIhgwZgrOzM2FhYURF\nRWEYBr1792bw4MEAPP/885hMV/2QYhEBXB1ceKzVQ7y67W2+OfY10f1G8NEXJ3lv8R7+MqwdoTd5\n2bpEEZFrYlHX7IkTJxIUFMRtt91GRUUFP/zwAxkZGUydOrUqarwkdc2umTQ3V2532l7ej5+Dj0st\n+voMY9bXh/B0d+L5mPb413K9Lp+hebFfmhv7pHmx3DV3zU5LS+Mvf/kLXbt2pVu3bjz33HMkJydf\ntwJFxPp+fUJwemEGWwpjGdKjEdl5xby+II68whJblycictUsCjMFBQUUFBRUvs7Pz6eoqMhqRYmI\ndfQO6U5r/3AOZBwkp1Y8d95Sj1Nn8nln0W5KSsttXZ6IyFWxaM3MkCFD6NOnDy1btgTOLuidMGGC\nVQsTkevv1wXBp7e9zaqk9QwPr0P7rAC2H0jlo2X7eOTusEs+CkFExB5ZfDfTp59+yoABAxg4cCCf\nffYZBw8etHZtImIFvy4IdjG7MC9xIX261aJRbS82JSTz5frDti5PROSKWXyr0E033UTPnj3p0aMH\nQUFBxMfHW7MuEbGiIPdARoRHU1Jeyux9H/Nw/0YE1nJlyQ9HWB930tbliYhckau+79mCm6BExI79\nfkHw5z8vYPz9LXF3cWDO8v3sOXzG1uWJiFjsqsOMrquLVH9RIT0qFwRvSl/D+EERmEwG7365h2PJ\nul1URKqHSy4A7tKlywVDS0VFBRkZGVYrSkSqxh8XBNcPq8uj/cKY/tUe3lgYz3Mx7fH1uvjDMUVE\n7MElH5p34sSJSw6uU6fOdS/oSumheTWT5ub6Ss5L4dVtb1NWUcoz7ceyZ28pC1Yfom6AB88+2A5X\nZ4tufNS82DHNjX3SvFjuqh+aV6dOnUv+EpEbw+8XBM/Y/T86tfGjW9s6HE/N5d2v9lBapmfQiIj9\nUuMjEQHOXRD84d55DOnRkIhGfiQcTmdu7H4t+hcRu6UwIyKVokJ6EPHLguBvDi9nTP9wGgR5sj7+\nFEs2HbV1eSIiF6QwIyKVTIaJh8KGEOQWyKqk9exO382E+yPw83Lmy3U/synhtK1LFBE5j8KMiJzj\n908I/iRxITkVaTx1f2tcnR348Nt9JB7VnYwiYl8UZkTkPL8tCC5hxu7/4e1tMO7eVgC8vWg3J9Py\nbFyhiMhvFGZE5IJ+vyD4g4RPaFrPi5F9m5NfVMrrn8eRlVtk6xJFRACFGRG5hN8vCP7q0FLuaHkT\nAzqHcia7kP8ujKeouMzWJYqIKMyIyMX9cUHw1tM76XdHCJ0ibuLo6RzeX5xAeblu2RYR21KYEZFL\n+uOC4OO5p3iodzPCQ3zYdTCNeSsO6Bk0ImJTCjMiclnnLgieQ2FZAU8MbEXdAHdW7ThB7JYkW5co\nIjWYwoyIWKSVfxh9f7cg2MnR4Kn7W1PLw4nPVx9kW2KKrUsUkRpKYUZELNbndwuCvz60DF8vF566\nvzXOTmZmfLOXfYfTbV2iiNRACjMiYrHfLwhembSOrad3Uj/Ik7EDWlJeXsHLH27mRGqurcsUkRpG\nYUZErshvC4Kd+SRxIUk5J2nZ0I/hfZqRk1/Ma5/t4nR6vq3LFJEaRGFGRK5YkHsgw8N+WxCcW5xH\n54jaPDawFdl5xbz26U5SMwtsXaaI1BAKMyJyVSICwisXBH+Y8All5WXc3akhg7s1JiOniNc+3Ul6\ndqGtyxSRGkBhRkSu2q8Lgvf/siAYIOq2+gzoHEpaViGvfbqTTLU9EBErU5gRkav224LgAFYmrWPD\n0S0A9LsjhLs6NCA5o4Cpn+0iO7/YxpWKyI1MYUZEromrgwujWw3HxezM9K0fsydtH4ZhcG9kQ3rd\nXI+TaXlM+2wXeYUlti5VRG5QCjMics2C3QN5pGUMAO/vnsP25DgMwyC6R2O6tq3DsZRcps2Po6Co\n1MaVisiNSGFGRK6LFn5NeS7ySZxMjsxOmMcPJ7dgGAYP3tmUjq2COXwqm9cXxFFYrEAjIteXwoyI\nXDdhgU0Y33Y0bo6ufJK4kFXH1mEyDEb2acGtLQI5eDyLNxfGU1xSZutSReQGojAjItdVA696PN3u\ncbydPPni4BK+/fk7DAMeuTuMdk0DSDyWydtf7qaktNzWpYrIDUJhRkSuu5vcg5jY/gn8XXxZemQF\nXxz8BrPJ4LF7wmnV0I89P6fz3td7KC1ToBGRa+dgzYNPmTKFuLizCwEnTZpERERE5bbu3bsTHByM\n2WwGYOrUqRw5coQJEybQpEkTAJo2bcoLL7xgzRJFxEr8Xf14uv3jvLVrFquTNlBYWsSw5vcxdmBL\n3lgYz86f0pi1ZC+j+4VjMhm2LldEqjGrhZktW7Zw9OhR5s+fz6FDh5g0aRLz588/Z5+ZM2fi7u5e\n+frIkSPceuutvPnmm9YqS0SqUC1nb55uO4Z34j5g06mtFJYWMiJ8KOPvi2Da57vYsi8FB7OJh+9q\ngclQoBGRq2O1y0ybNm2iZ8+eADRq1IisrCxyc9VNV6Sm8XByZ3zb0TSuFcrO1N28Hz8Hw1zGU/e3\npmFtL37Yc5qPY/dTUVFh61JFpJqyWphJS0vDx8en8rWvry+pqann7DN58mSGDh3K1KlTK/9DdvDg\nQcaMGcPQoUPZuHGjtcoTkSrk6uDC2NaPEO7XnL3p+3l71wdgLuHpwa2pH+jBml0n+XTlTwo0InJV\nrLpm5vf++B+p8ePH07lzZ7y9vRk7diyxsbG0bduWcePG0adPH5KSknjooYf47rvvcHJyuuhxfXzc\ncHAwW63ugABPqx1bro3mxj5dal6eCxjLW5s/YlPSdt7ZPYvnuoxnythOTJq+kRXbjlPLy5WH+rbA\n0CUnq9CfGfukebl2VgszgYGBpKWlVb5OSUkhICCg8vWAAQMqfx8ZGcmBAweIioqib9++ANSvXx9/\nf3+Sk5OpV6/eRT8nIyPfCtWfFRDgSWpqjtWOL1dPc2OfLJmXYY3vxyg188OpLTz/3Ws82fZRnh4U\nwb/m7WThqp8oLS7lnk6hVVRxzaE/M/ZJ82K5S4U+q11m6tixI7GxsQAkJCQQGBiIh4cHADk5OYwa\nNYri4rPN57Zu3UqTJk1YvHgxH3zwAQCpqamcOXOGoKAga5UoIjZgMkwMa34fPepFcjo/hWnb36XY\nlMufo9vg7+3CVxsOs2zzUVuXKSJXaEdKPKfzUmzy2VY7M9OuXTvCw8OJjo7GMAwmT57MokWL8PT0\npFevXkRGRjJkyBCcnZ0JCwsjKiqKvLw8/vSnP7Fy5UpKSkp48cUXL3mJSUSqJ8MwGNj4LlwdXFhy\n+Dte3/Eu49o8yv8Nbcs/P9nBgtWHcDSb6Hnzxc/Kioj9iE9N4IM9H9Opzu0MbXZvlX++UVHNV9xZ\n8/ScTv/ZL82NfbqaeVmdtIGFPy3G3cGNsW1G4VLqx78+2UFWXjEPRTWja5s6Vqq2ZtGfGft0I8xL\nYWkR/9j8H7KLc5h061MEu1vniopNLjOJiFiiW71OPNj8fvJLC3hj5/tkGaf409C2eLg6Mnf5fn7Y\nc8rWJYrIJXx7+DsyijK5s0FXqwWZy1GYERGb61D7Fka1fJDS8jLejfuADI7xp+g2uDo78MG3+9iy\nL9nWJYrIBRzLPs7qpA0EuPrRu0F3m9WhMCMidqFtYCvGRIwADN7fPYdUDvFMdBucHc3M/GYvOw+k\nXu4QIlKFysrLmLf/CyqoILrZvTiaHW1Wi8KMiNiNML9mjGvzCE4mJ2YnfMrJ8n08Pbg1DmYT07/e\nw56fz9i6RBH5xboTm0jKOcFtwe1p7tvEprUozIiIXWlcK5QJ7Ubj7ujGvP1fcLQ8jvGDIjAMg7cW\n7Wbf0QxblyhS42UUZvLNz8txd3RjYOO7bF2OwoyI2J/6nnV5ut0Yajl78+XBbzlYtoWxA1tSUVHB\nmwvj+el4pq1LFKnRPj/wNUVlxQxsfDeeTmefIZeckU9+YalN6lGYERG7FOwexMR2j+Pv6sfyIytJ\nLNvImHvCKS0r578L4jh8KtvWJYrUSLtS9xCflkCTWg25Pbg9AEkpuTw/czOL1h2ySU0KMyJit/xc\nfZnY7nFquwez9vhGErTfT+cAACAASURBVMrWMOru5hQWlzFt/i6OJVfv53OIVDcFpYUsOPA1DoaZ\noc3uxTAMyisqmBu7n7LyCto09rdJXQozImLXvJ29eKrdGBp41ePH09vYXbaC4X2akF9Yyn/m7+JE\nWp6tSxSpMb75OZbMoizuDOlOkHsgABt3n+LgiSzaNwugZUM/m9SlMCMids/d0Y3xbR6lSa2G7Erd\nTXx5LEN7NyQnv4Spn+0kOd16DWdF5Kyj2UmsO/4DQW4B3NmgGwC5BSUsWH0IZ0czQ3vY7o4mhRkR\nqRZcHFx4ovUoWvq1YF/6AeLKl3Jfj/pk5Rbz2mc7ScsssHWJIv/f3p1HR13f+x9/zp5tss9kD9kD\n2UkAgUDYkaoVBZWIYm/b67292Ou1tT31YC3e2x577bW/21+tP9va2lpcCCpuVQGRRRTCFkggZE/I\nvk0y2cg6mfn9ETrsiEiYmeT9OIcD+U5m5j28mcyL7/ezTFij1lFeLx1bU+b+xFVolGNbO27dW0Xf\nwAh3zovC39vNYfVJmBFCuAytSsO/pD5EljGd6u7TFNn+zjcXhNDZM8Sv3jhGZ8+go0sUYkLa3fA5\nDX1NzA6ZQbxfLADVTT3sPd5EaKAnyxy8KayEGSGES1EpVfxT8v3MC72Fhr4mTij+zvK5gZi6B/mf\nzcfp7htydIlCTCgdA2Y+rN6Bl8bTvqaM1To26NcGrFuegFrl2DghYUYI4XKUCiW5iatYFrmQ1v52\nitUfsmCWD62d/Ty3+Ti9/cOOLlGICcFms7Gl/B2GrSOsirsDL40nAHuON1Lb2suc5GASI/0cXKWE\nGSGEi1IoFKyM/QbfjFlB56CZUu1HzMnyoNF0hl/nHefM4IijSxTC5R1rP8HJjlIS/eKYFZwJQPeZ\nYd7eW427Ts19i+McXOEYCTNCCJelUChYEbWYexNW0jPcS7nuY7Kma6hr7eN/txQyMOSY1UiFmAgG\nLAO8Vf4eaqWa3MS7USgUAGzZVcnAkIVVOTH4eGodXOUYCTNCCJe3MDybh6atYcAySJXbdlLTbFQ3\n9fB/3yxkaHjU0eUJ4ZLer9pG93AvK6YswehhAKCszsyB4hamBOlZND3MwRWeI2FGCDEh3BKSxT+n\nrmPUOspp909JTBmivKGb57cWMWKRQCPEV1HTXcu+xnyCPYwsm7IAAMuolVd3lKMA1t2aiFKpcGyR\n55EwI4SYMDIMKXwv/dsoFQoaPPYSk9TLqdNmXnjnJJZRq6PLE8IlXLCmzNTVqM+uKbPzSAONpjMs\nyAglJtTbwVVeSMKMEGJCmeafwL9PfxidWkuL134ikjooqurgD+8VM2qVQCPEl9lVv4+mMy1kh84i\nzjcagM6eQd77vAYvdw2rFsQ6uMJLSZgRQkw4MT5R/Mf07+Gp8cDkdZiQac0cLW/nT38vwWq1Obo8\nIZyWaaCTD2s+Qa/xYmXsbfbjmz+tYGhklHsXxeLlrnFghZcnYUYIMSFF6EP5Yea/4avzoUtfiGFa\nLQdPtfCXj0uw2iTQCHExm83G5rKtjFhHWB3/TTw1HgCcrO7gSFk7cWE+ZKeGOLjKy5MwI4SYsII8\njfwwcz0G9wD69CX4T6viixPNvLajHJsEGiEuUNBWSElnOdP8E5gRlAHAiGWUVz8pR6lQjA36VTjP\noN/zSZgRQkxoAe5+/CBzPWFeIQzoK/FNKmH3sXrydlVKoBHirP6Rft6seB+NUs2ahHNrynycX0eb\neYAlWeFEGL0cXOWVSZgRQkx4Pjo9j03/V6K9IxnyqsM76QQ7jtSy9bNqR5cmhFN4r+pjeof7uC1q\nGQaPAADazP38/UAtPl5a7pof7eAKr07CjBBiUvDQePD9jIdJ8ItjxKsZr+RjfHiwig++qHF0aUI4\nVFXXaT5vOkioZzBLInOAsfEzr++swDJqJXdxPO46tYOrvDoJM0KIScNNrWN92rdJDUxi1KMdz+QC\n3tlfzraDdY4uTQiHsFgtvFH2NgD3T12FSqkC4FiFiaKqDqZN8WPWNKMjS7wmEmaEEJOKRqXh4ZR1\nzAyajtW9E4/kw2zZV8ynRxscXZoQN92ndZ/RfKaVeWGzifGJAmBoeJTXd5ajUip4cHmCffyMM3Pu\n80ZCCDEOVEoVDyWtQafW8XljPu7Jh3h9rxWNWklOeqijyxPipmjv7+Dj0zvx1upZGfMN+/EP9p+m\ns2eI2+dMISTA04EVXjsJM0KISUmpUJKbcDceand21O7GLekQf9s9FmjmJAc7ujwhxtW5NWUsrIu/\nEw+NOwBNpjNsP1RHgLcbd8yNcmyRX4FcZhJCTFoKhYKVsd8Y+1+pdgDdtIO8/OlBjpS2Obo0IcbV\n4dZjlJorSApIJNOYBowFnFd3lDFqtbF2WTw6jcrBVV47CTNCiElvedQi1iTcDZphNFMP8sdPP+d4\npcnRZQkxLs6M9PN2xQdolBpyz1tT5uCpVkrrukiPDWB6vMHBVX41cplJCCGAnPA5uKl1/O1UHuqE\nw7y4c5SMk9OIC/chLsyHCKMXapX8/0+4vncrP6Rv5Ax3xd5GgLs/AP2DFvJ2VaJRK1m7LMHBFX51\nEmaEEOKsWcGZ6FQ6/nTiVRRxRynqL6fwtBu2ch3KUXcMnn5M8TeQEBxMakQYvp4eji5ZiK+kwlzN\n/ubDhHmFsDhivv34u/uq6T4zzN3zozH4ujuwwusjYUYIIc6TbkjmkYzv8Gb5e7SrOhi1ddtv6wA6\nrFDQBJubQDGqxU3hia/Oh2C9P8He/vi5+eCrO/fLQ+3uElNbxcQ3YrXwRtlWFCi4P3G1fU2ZutZe\nPi1oIMjPnRW3THFwlddnXMPMM888Q2FhIQqFgg0bNpCWlma/bfHixQQHB6NSjf1lPvfccwQFBQEw\nODjIHXfcwfr161m1atV4liiEEJeY6h/PU7N/hNVm5cxIP11D3XQNddPWZ6a2o43mnk46B7sZsPbR\nr+llYMRMc+dp6Lz0sTRKDb467wsCztgvb3x0Pvi5+aDXeNk/WIQYLztr99Da30ZO2FyifSIBsNps\nbNpehs0GDy5PRKN2zUup4xZmDh06RG1tLXl5eVRVVbFhwwby8vIu+J6XXnoJT89L57C/+OKL+Pj4\njFdpQghxTZQKJXqtF3qtFxH6MAgEos7dPmq10tB2hpKGdsqaW6jtaKfX0oNCM4hCO4RSOwieI3RZ\n+2kf6Lji8yhQ4KPzxueC0HNpANKqNOP+msXE1NrfzrbaXfhovbkz9lb78c+Lmqlq6mHmVCPJ0f4O\nrPDrGbcwc+DAAZYuXQpAbGws3d3d9PX14eV19V03q6qqqKysZOHCheNVmhBC3BAqpZIpwXqmBOtZ\nQQwA5t4hKhu7qWjooqqxm7qqPkatNlBYUWiG8PO3EmRU4e03ipvHCBZlP93DPXQNddPY20RtT/0V\nn89D7X7J2R1fnQ++bnJZS1yZzWZjc+lWLFYL9yasxF09Niamb2CEt/ZUodOqyF0S7+Aqv55xCzMm\nk4nk5GT71/7+/rS3t18QZjZu3EhjYyNZWVk8/vjjKBQKnn32WZ566inefffda3oePz8P1OrxOz1r\nMOjH7bHF1yO9cU6TvS8Gg56EmED714PDFirquyip6aTkdCelpzspaRmx3+7hFkhipB850QFMnepD\nSLCWAesZOge66Og30znQRWd/19jvA110DJhpOtNyxefXqDT4u/sS4O6Lv7sv/h5++Lv7kKCMITZw\nigQdJzTe75m9NfmUd1WRFZrKsqQ59n8DeW8ep29ghO/emXzBv1lXdNMGANtstgu+fvTRR5k/fz4+\nPj488sgjbN++ncHBQTIyMoiIiLjmxzWb+290qXYGg5729t5xe3xx/aQ3zkn6cnnB3jqC00NYlB6C\n1WajpaOfysZuKhu6qWjs5lh5O8fK2wFQKCDC4HV2SngI6eFTCQhyuyCEDFoG6RrqsY/l6RrqoXuo\nG/NQt/33tj4TNi78uevv5kemMY0sYzoR+jAJNk5gvN8zfcNn+OuxN9GqtNwVdQcmUx8AVY3dbM+v\nJczgyS2JBpd4314t9I1bmDEajZhM5xadamtrw2A4twjPXXfdZf9zTk4O5eXlVFdXU19fz549e2hp\naUGr1RIcHMzcuXPHq0whhLiplAoFoYGehAZ62veB6u0fHgs3ZwNOTXMvdW197CpoBMDXS0tcuC9x\nYT7Eh4+teRPsaSTY88q7GVusFrqHeuke7qZzwEzVmWoONRxnZ91edtbtJdDNn8ygdDKN6YR7hUiw\nmaDeqfyQMyP9rIq7A383P2BsrNemHWUArFueOCHWTxq3MJOdnc3zzz9Pbm4uxcXFGI1G+yWm3t5e\nHnvsMV588UW0Wi2HDx/m1ltv5dFHH7Xf//nnnycsLEyCjBBiwtN7aJkeb7CvumoZtVLb0nvB2Zsj\npW32bRa0aiVRId7Eh/sQGza2qJ+X+4WDg9VKNQHufgS4+xHjE8U3DDk0tXRyqrOcgrZCTphOsaN2\nNztqd2N0DyTTmEZmUDqhnsESbCaIcnMV+S1HiPAKZWF4tv347oJG6lr7yE4JJiHC14EV3jjjFmYy\nMzNJTk4mNzcXhULBxo0b2bp1K3q9nmXLlpGTk8OaNWvQ6XQkJSWxYsWK8SpFCCFcilqlJDZsLKjc\nOmvsMn179yBVZ4NNZUM3FfVdlNd32e8TEuBB3NlgExfuQ7C/xyWhRKPSkG5IJt2QzPDoCKc6Silo\nK+KE6RTbanexrXYXQR7GsUtRQemEeAbd7JcubpCR0RHeKHt7bE2ZqefWlOnuG+KdfdV46NTcuyjO\nwVXeOArbxYNZXMx4XueT6//OS3rjnKQvN0//oIXq5rFgU9nYTVVTD0PDo/bbvdw1xIX5EBvmTVyY\nD7ekh9F1hTGGw6PDnOwopaC1kJMdpYxYxwYoh3gGjZ2xMaZf9ZKWuH7j9Z75sHoHH53eyaLwedyT\ncKf9+B8/KCa/uJV1yxNYlBl+w593PF1tzIyEmauQH8zOS3rjnKQvjmO12mho76OioZuqxm4qGrrp\n6Bm03+6uU5Ma409mgoHUmADcdZc/MT9oGeJkRwkFbUUUd5RisVoACPMKORts0jB6uNYmhM5sPN4z\nLWfa+OWh/8VL68VTtzyOm9oNgJJaM//zxjGigvX89KEZKJWudTlRwsx1kh/Mzkt645ykL87F3DtE\nVWM35fVdnKjppLVz7MyMWqUkOcqPzAQDGfGB6D20l73/oGWQE6YSjrYVUtJRhsU2duYnwiuUTGM6\n041pGDwCbtrrmYhu9HvGZrPxm2O/p7Krhn9JfYh0QwowNg5r48uHaOno56ffmkF0iPcNe86bxSGz\nmYQQQjiWn17HjKlGZkw1EhjoRUFxMwXl7Rwtb6ewqoPCqg4U2yAxwpfMBAOZCQb8vd3s93dTuzEz\neDozg6czYBmgqP0UBW2FlHRWUF/9Me9Vf0ykPoxMYzqZxjT7DszCcfKbj1DZVUN6YLI9yADsOFxP\nc0c/i6aHuWSQ+TJyZuYq5H+Zzkt645ykL87r4t60dvZTUN5OQXk7VU099uPRIXp7sAkJuHS7GYD+\nkX4KTacoaC2k1FyB1WYFYIp3BFnGdKYbU+3TgMXV3cj3TO9wHz/Pfw6LzcJTt/wIP7exmUod3YM8\n+ad8dBoVz/zLbDzdXHNbDLnMdJ3kB7Pzkt44J+mL87pab8y9QxyraOdoWTtldV1Yz34shAZ6kplg\nICvBQGSQ12WnbPeNnKGovZijrYWUd1XZg0209xQyg8bG2PjqZK+9K7mR75lXTm3mUEsB98TfyaKI\nefbjv9t6goLydr57+zSyU0NuyHM5goSZ6yQ/mJ2X9MY5SV+c17X2pm9ghMJKEwXl7Zys6WTEMhZO\nArzdxoJNooG4MJ/LDh7tHe6jsP0kBW1FlJur7CsQx/pEnR1jk4qPbuJd4vg6btR7prSzguePv0Sk\nPpwfz/g+SsXYQnhFVSZ+82YR8eE+PPFApkuvISRjZoQQQlwTL3cN2akhZKeGMDhs4WR1JwXl7RRW\nmfjkSD2fHKnH20NDRvzYpahpU/zQqMc+OPVaL+aFzWZe2Gx6hns53naSgrZCKrtqqOo+zVsV7xPn\nG02mMY0MYyre2sm9j9eNMjw6wuayrShQsHbqanuQGR4Z5bVPylEqFKxbnujSQebLSJgRQghxWW5a\ntX0AsWXUSkmtmaNl7RyvaOezwiY+K2zCXaciLTaQrAQDKTH+uGnHPla8tXpywueQEz6H7qEejrWf\noKC1iMquGiq6qtlS/h7xfrFjwcaQgl7r9SXViCvZfvpT2gc6WBwxnwh9mP34R/m1tHcNsnxmBOHG\nif33K2FGCCHEl1KrlKTGBJAaE4D11kQqG7vHZkaVtXPwVCsHT7WiUStJjvInK9FAelygfYsFH503\nC8OzWRieTddQN8faTlDQVki5uZJycyVbyt8lwTeWzKA00g0peGkuP/BYXKqpr4VP6vbip/Pl9ujl\n9uOt5n4+yq/D10vLynnRDqzw5pAwI4QQ4itRKhUkRPiSEOHLmsVx1LX2cfTszt/HK00crzShVChI\njDw35dtPrwPAV+fDooh5LIqYh3mwi4K2Igraiig1V1BqrmBz2TtM9Ysn05hGuiEZD42Hg1+t87La\nrGwu28qobZQ1iXfhph77O7bZbLy2oxzLqJXcJfFXXCBxIpEBwFchgxmdl/TGOUlfnNfN6k3L2Snf\nR8vaqWk+N+U7JtSbrLPBJsj/0oDSMdBpDzZ1vQ0AqBQqpvnHk2lMJ82QhLvafdzrv9m+Tl++aDzI\n62Vvk2FI5eHUdfbjR0rb+H/vniQ5yo8frsmYMGNlZDbTdZIfzM5LeuOcpC/OyxG96ewZ5FiFiaNl\nbZTXd9unfIcZPO3BJsJ46ZRv00DHWLBpLaS+rwkAtULFtIAEMo3ppAYm4a52u+T5XNH19qVnuJf/\nyn8Om83KU7N/ZJ/+Pjhs4cmXDtLbP8x/ffcWgi8THF2VhJnrJD+YnZf0xjlJX5yXo3vT2z/M8UoT\nx8pNnKzpxDI6NuU70OfclO/YMB+UFwWbtv52Cs6OsWnsawZAq9KSHTKLRRHzCXB37cX5rrcvfyl+\nnSOtx7kv4S4WhM+1H9+yu5JtB+u4Y24Uq3JibmSpDidh5jo5+s0vrkx645ykL87LmXozMGThZE0n\nR8vaKKrqYPDsbt/enloy4wPJTDAwdYofapXygvu1nGmjoK2QL5oO0TXUjVKhJNOYxtLIBRfM4nEl\n19OXUx1lvFD4Z6K8I3k8a719KnZjex9P/+UwfnodP//nW9BpVONRssPIOjNCCCGchrtOzcypRmZO\nNTJisVJS23l2awUTe443sed4E+46NRlxAWQmGEiJDkCnVRHsaeS26GUsn7KIo62F7Kzby5HW4xxp\nPU6iXxzLIhcy1T9+wowRuZzh0WE2l72DUqHk/sRV9iBjs9nYtKOcUauNtcsSJlyQ+TISZoQQQjiM\nRq0kLTaQtNhAHrrVRkVDl31m1IHiVg4Ut6JVK0mOPjfl29NNwy0hWcwKzqSks5xP6vZSZq6kzFxJ\nmFcISyMXkGVMR6WceB/oH5/+lI7BTpZGLiBcH2o/nl/cSnl9FxlxgWTEBTqwQseQMCOEEMIpKJUK\nEiP9SIz04/4l8dS29nK0bGwzzGMVJo5VmFApFaTGBLB6QQxhBi+SAhJJCkikrreBnbV7OdZ+gldO\nbeb9qm0siphHdugs3CbIYOHGvmZ21u0lwM2P26KX2Y/3D46Qt6sCrVrJ2qXxDqzQcSTMCCGEcDoK\nhYKoYG+igr1ZvSCW5o4zFJS3c6R0bC2boqoOFmeFcde8aDzcNETqw/lOygN0DHSyq34f+5sOsbXy\n73x8eifzQmezMCLbpTe8tNqsvFG6FavNyprEu9GptPbb3vmshp7+EVblxBDoO/Gmr18L1dNPP/20\no4v4Ovr7h8ftsT09deP6+OL6SW+ck/TFebl6b/QeWhIifFmQEUpUiDfVzT2cqO7ks8Jm3N3URBr1\nKBQKPDTuJAdMZX7YHNzUOup6Gikxl7O3YT+mwU6MHoFOtXXCtfbl86Z8Pm/KJ8uYzq1Ri+3Ha1t6\n+eu2UoL9PfjnO5JQXWYD0InC01N3xdvkzIwQQgiXoVAoyIgLJDnKn51H6nl//2n+tq2MPccaeWBZ\nAvHhvgB4ajxYEbWEJRE5HGw5yqf1n5HffIT85iOkBExjaeQC4nyjXWKwcPdQD+9VfYy72o3V8d+0\nH7fabPxtexk2Gzy4PMG+4edkJGFGCCGEy9GolXxj9hRmJwfz1p4qDhS38MtXC5idFMS9i+Ls2ydo\nVBrmhc1mbugsTphOsbNuLyc7SjjZUcIU7wiWRi4gw5BinxXkjN6qeJ8ByyC5iXfjo/O2H/+ssIma\n5h5mTTOSFOXvwAodT8KMEEIIl+Wn1/HwN5NYlBnGa5+Uk3+qlWMVJm6fM4VbZ0WgUY/NaFIqlKQb\nUkg3pFDdfZqdtXspMp3izydfJdA9gCUR85kdMgPteWNRnMFJUwkFbUVEe08hO/QW+/Ge/mHe3lOF\nm1bFmsWTc9Dv+WTMzFW4+jXmiUx645ykL85rovfG39uNnPRQArzdKKvvorCyg4OnWgn0diPY3+OC\ny0l+br5kBWWQZUzHYrNQ1X2aE6ZTfNF0kGHrCKGewTct1FytL0Ojw7xY9BeGRodZn/4dvHXnFo17\n7ZNyqhp7uGdhHCnRk+OszNXGzEiYuYqJ/uZ3ZdIb5yR9cV6ToTcKhYIpwXoWpIdiGbVx6rSZ/FOt\nVDX1EBWsR+9xYUDx0nqSGphEdugsNAo1p3vqOdVZxt6G/XQP9RDkYcRznHftvlpfPqjeRnFHKcum\nLGRm8HT78cqGbl77pJxwgxffvm3qJVtATFQSZq7TZHjzuyrpjXOSvjivydQbjVpFSkwAMxKNtJoH\nKK7pZO/xJvoHLcSE+lwyUFan0pHoH0dO2Fy8tXqazrRQaq5gb8N+mvpa8Hf3G7dp3VfqS31vE6+W\nvkmAmx/fSXnAvgDgqNXKb986QU//MI+sSiHQZ/JMxZbZTEIIISad0EBPfnhfOscrTWz+tIIdh+s5\nUNzC6gWxzEsLueSMhptax6KIeeSEzeFYWxE768YW4TvWfoI432iWRS4kKSBx3AcLW21W3ih7G6vN\nSm7iqgsuee062khDex/zUkPsM7eEhBkhhBATmEKhYHq8gZRof3YcrueD/af568el7DnWyNplCcSF\nXXrGRaVUMSN4OllBGZSZK9lZt5eSznIqu2oI9gxiaUQOM4Kno1GOz0fovsZ8anvqmRGUwbSABPtx\nc+8Q7+yrxtNNzT2LYsfluV2VXGa6isl0WtbVSG+ck/TFeU323qiUShIifJmbEkzPmWFO1nSyr6iZ\nNvMAMaHeuOsuDSYKhYJA9wBmBWeSYUhhaHSYiq5qCk3FHGg6xKjNSohnMBqV5rrrurgvXUPdvHTi\nb2hUWv4t/dvoVOcurfxtexm1Lb3cvySexEi/635OVyVjZq7TZH/zOzPpjXOSvjgv6c0Yd52arEQj\nSVF+1Lf2cfLseBqlcmz7hCutoOut1ZNhSGFOyAwUKKjuqaW4o4x9jQc4M9JPsKcR9+vYA+rivmwq\neZOGvibuS1hJvG+M/fip0528ubuK6BBv1i1PdInF/m40CTPXSd78zkt645ykL85LenOhgLNTuf30\nOsrquzheaeJQSSuBvu4E+blfMSy4q92YFpDA/LA5eGjcaehtpMRcwZ6GL2gfMGFwD8Bbq7/sfS/n\n/L6cMJ3i7zU7iPWJ4t6ElfYaRixWfvtWEWcGRvj3e1Lx00+MjTO/KhkALIQQQlxEqVSwICOMGVON\nvPd5DbuONvLbt4pIjQkgd0kcIQGeV7yvh8ad5VMWsShiPkdajrGz/jMOtRRwqKWAaf4JLI1cQKJf\n3DWfQRm0DJFX9i4qhYr7p66+YJDxjsN1tHT2szgzjKhg76s8yuQlYUYIIcSk5ummYe3SBBakh/L6\nzgpOVHdw6nQnS2eEc2d29GXH0/yDRqlmTuhMbgnJ4lRHmX2wcElnORH6MJZGLmC6IdU+tfpKPqzZ\ngXmoixVRSwjxDLIfN3UN8MEXp/H20LAqJ+YqjzC5SZgRQgghgDCDFz/KzaCg3ETergq2H6rnQHEr\nqxfEkJ166VTu8ykVSlICp5ESOI3TPXXsrN3L8faT/KX4dd5382NRxHzmhMzETX3ppZK63gZ213+O\nwT2AW6csvuC2Nz6tYNhi5aEViXi4Xf9A44lOxsxchVxjdl7SG+ckfXFe0ptro1AoCA30ZEFGKBq1\nkpJaM0fL2jlR3Um40RP/axiv4qvzITMonZlBmVhtVqq6T3Oyo4TPG/MZsgwR4hVkn6Xk7q7hf/P/\nSPdwD99NeZAgT4P9cY5Xmnjv8xoSInzJXRI/KQf9nu9qY2YUNpvNNl5P/Mwzz1BYWIhCoWDDhg2k\npaXZb1u8eDHBwcGoVGOn3p577jm8vb154okn6OjoYGhoiPXr17No0aKrPkd7e+94lY/BoB/XxxfX\nT3rjnKQvzkt6c306ewbZsruSQyVtAGSnBHPPwlh8vK78wXqxvuEz7G3cz2cN++kbOYNaqeaW4EyW\nRORQN1zLX4+9yazgTL6VlGu/z9DIKE/96SDm3iE2fnsm4QavG/7aXI3BcOWB1eN2menQoUPU1taS\nl5dHVVUVGzZsIC8v74Lveemll/D0PDfA6qOPPiIlJYWHH36YxsZGvvOd73xpmBFCCCHGi7+3G99b\nmcKi6WZe31nBFydbOFrezp3Z0SydEY5a9eWrAXtpPbk9ehnLIheQ33yET+v38UXTIfY3HUapVOKp\n9mBV3B0X3OfDA7WYugdZcUukBJlrMG5h5sCBAyxduhSA2NhYuru76evrw8vryk257bbb7H9ubm4m\nKCjoit8rhBBC3CyJkX5s/KeZ7C1s4p3Pqtmyu5K9hU3cvySOtNjAa3oMrUpLTvhc5oXN5nj7SXbW\n7aW2p57Vid9EN84lpwAACrtJREFUrz332djS2c+2g7X46XXcmR01Tq9oYhm3MGMymUhOTrZ/7e/v\nT3t7+wVhZuPGjTQ2NpKVlcXjjz9uvx6Ym5tLS0sLv//978erPCGEEOIrUSoVLJoexsypRt7bV8Ou\nYw385s0i0mIDuH9JPEH+17bDtlKhJNOYxnRDKh4+KgZ6rPbbbDYbr+0owzJq4/4l8bhpZZ7Otbhp\nf0sXD8159NFHmT9/Pj4+PjzyyCNs376dFStWALB582ZKSkr48Y9/zPvvv3/VQU9+fh6o1Vef8vZ1\nXO0anXAs6Y1zkr44L+nNjWEAHnvAn7sWx/PSuycoqjRx6nQnK3NiuW9pwleedeR1bswvnxc2Unza\nTGaikRXzYib9oN9rNW5hxmg0YjKZ7F+3tbVhMJzr2F133WX/c05ODuXl5YSHhxMQEEBISAjTpk1j\ndHSUzs5OAgICrvg8ZnP/+LwAZMCcM5PeOCfpi/OS3tx4nmoF/7E6laNl7eTtquDt3ZXsPFTHPQtj\nmZMSfNWp3P9wfl8Ghiz8YWsRapWSexfGYDL1jfdLcClXC+Pjto95dnY227dvB6C4uBij0Wi/xNTb\n28t3v/tdhofHpgkePnyY+Ph4jhw5wssvvwyMXabq7+/Hz2/ybaYlhBDCNSgUCmZMNfKLh2ezcl40\n/UMW/vxhCb/cdJSa5p6v9Fjvf1FDV98wt82OJMjv2i5ZiTHjdmYmMzOT5ORkcnNzUSgUbNy4ka1b\nt6LX61m2bBk5OTmsWbMGnU5HUlISK1asYGhoiCeffJK1a9cyODjIz372M5TKcctbQgghxA2h06hY\nOS+a7NRgtuyu4khpG7945QjZaSGsXhCLj6f2qvdvaOvjk8MNGHzduG32lJtU9cQxruvM3Ayyzszk\nJL1xTtIX5yW9ublKa828vrOchvYzuOtU3JkdzZKsS6dyGwx62tp6+O/XCqho6Oaxe9OueXbUZOOQ\ny0xCCCHEZDV1ih8bvz2TB5cnoFQoyNtVycaXD3GyuuOS791/soWKhm4yEwwSZK6ThBkhhBBiHKiU\nShZnhvPLf53DoswwWjr7+T9bCvntW0W0nZ280tc/zJbdlWg1Su5fEu/gil2XTGAXQgghxpGXu4Z1\nyxPtu3IfrzRxsqaDW2dFMjxqo7d/hHsWxhLg8+X7PonLkzAjhBBC3ASRQXp+snY6h0vb2LK7kg8P\n1AIQEuDB8pkRDq7OtUmYEUIIIW4ShULBrGlBpMcF8nF+LUfK2vnWisRr2uNJXJmEGSGEEOIm02lU\n3DU/hodXpcsssxtAoqAQQgghXJqEGSGEEEK4NAkzQgghhHBpEmaEEEII4dIkzAghhBDCpUmYEUII\nIYRLkzAjhBBCCJcmYUYIIYQQLk3CjBBCCCFcmoQZIYQQQrg0CTNCCCGEcGkSZoQQQgjh0iTMCCGE\nEMKlKWw2m83RRQghhBBCXC85MyOEEEIIlyZhRgghhBAuTcKMEEIIIVyahBkhhBBCuDQJM0IIIYRw\naRJmhBBCCOHSJMxcxjPPPMOaNWvIzc2lqKjI0eWI8/zqV79izZo1rF69mh07dji6HHGRwcFBli5d\nytatWx1dijjP+++/z5133smqVavYs2ePo8sRwJkzZ/j+97/PunXryM3NZd++fY4uyaWpHV2Aszl0\n6BC1tbXk5eVRVVXFhg0byMvLc3RZAsjPz6eiooK8vDzMZjN33303y5cvd3RZ4jwvvvgiPj4+ji5D\nnMdsNvPCCy/w9ttv09/fz/PPP8/ChQsdXdak98477xAdHc3jjz9Oa2sr3/rWt9i2bZujy3JZEmYu\ncuDAAZYuXQpAbGws3d3d9PX14eXl5eDKxMyZM0lLSwPA29ubgYEBRkdHUalUDq5MAFRVVVFZWSkf\nlE7mwIEDzJkzBy8vL7y8vPj5z3/u6JIE4OfnR1lZGQA9PT34+fk5uCLXJpeZLmIymS74R+Xv7097\ne7sDKxL/oFKp8PDwAOCtt94iJydHgowTefbZZ3niiSccXYa4SENDA4ODg3zve99j7dq1HDhwwNEl\nCeD222+nqamJZcuW8eCDD/KTn/zE0SW5NDkz8yVktwfns3PnTt566y1efvllR5ciznr33XfJyMgg\nIiLC0aWIy+jq6uJ3v/sdTU1NPPTQQ+zevRuFQuHosia19957j9DQUP785z9TWlrKhg0bZKzZ1yBh\n5iJGoxGTyWT/uq2tDYPB4MCKxPn27dvH73//e/70pz+h1+sdXY44a8+ePdTX17Nnzx5aWlrQarUE\nBwczd+5cR5c26QUEBDB9+nTUajWRkZF4enrS2dlJQECAo0ub1AoKCpg3bx4AU6dOpa2tTS6bfw1y\nmeki2dnZbN++HYDi4mKMRqOMl3ESvb29/OpXv+IPf/gDvr6+ji5HnOc3v/kNb7/9Nlu2bOHee+9l\n/fr1EmScxLx588jPz8dqtWI2m+nv75fxGU5gypQpFBYWAtDY2Iinp6cEma9BzsxcJDMzk+TkZHJz\nc1EoFGzcuNHRJYmzPvroI8xmM4899pj92LPPPktoaKgDqxLCuQUFBXHrrbdy3333AfDTn/4UpVL+\nH+toa9asYcOGDTz44INYLBaefvppR5fk0hQ2GRQihBBCCBcm8VwIIYQQLk3CjBBCCCFcmoQZIYQQ\nQrg0CTNCCCGEcGkSZoQQQgjh0iTMCCFumoaGBlJSUli3bp19t+DHH3+cnp6ea36MdevWMTo6es3f\nf//993Pw4MHrKVcI4SIkzAghbip/f382bdrEpk2b2Lx5M0ajkRdffPGa779p0yZZXEwIcQFZNE8I\n4VAzZ84kLy+P0tJSnn32WSwWCyMjI/zsZz8jKSmJdevWMXXqVEpKSnjllVdISkqiuLiY4eFhnnrq\nKVpaWrBYLKxcuZK1a9cyMDDAD37wA8xmM1OmTGFoaAiA1tZWfvSjHwEwODjImjVruOeeexz50oUQ\nN4iEGSGEw4yOjvLJJ5+QlZXFj3/8Y1544QUiIyMv2XjPw8ODV1999YL7btq0CW9vb379618zODjI\nbbfdxvz589m/fz9ubm7k5eXR1tbGkiVLAPj444+JiYnhP//zPxkaGuLNN9+86a9XCDE+JMwIIW6q\nzs5O1q1bB4DVamXGjBmsXr2a3/72tzz55JP27+vr68NqtQJj24xcrLCwkFWrVgHg5uZGSkoKxcXF\nlJeXk5WVBYxtHBsTEwPA/Pnzef3113niiSdYsGABa9asGdfXKYS4eSTMCCFuqn+MmTlfb28vGo3m\nkuP/oNFoLjmmUCgu+Npms6FQKLDZbBfsPfSPQBQbG8uHH37I4cOH2bZtG6+88gqbN2/+ui9HCOEE\nZACwEMLh9Ho94eHh7N27F4Camhp+97vfXfU+6enp7Nu3D4D+/n6Ki4tJTk4mNjaWY8eOAdDc3ExN\nTQ0AH3zwASdOnGDu3Lls3LiR5uZmLBbLOL4qIcTNImdmhBBO4dlnn+UXv/gFf/zjH7FYLDzxxBNX\n/f5169bx1FNP8cADDzA8PMz69esJDw9n5cqV7Nq1i7Vr1xIeHk5qaioAcXFxbNy4Ea1Wi81m4+GH\nH0atlh+BQkwEsmu2EEIIIVyaXGYSQgghhEuTMCOEEEIIlyZhRgghhBAuTcKMEEIIIVyahBkhhBBC\nuDQJM0IIIYRwaRJmhBBCCOHSJMwIIYQQwqX9fzswdjzKycFdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "i2e3TlyL57Qs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see the solution.\n", + "\n" + ] + }, + { + "metadata": { + "id": "5YxXd2hn6MuF", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) \n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on training data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions. \n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " \n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "UPM_T1FXsTaL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "i-Xo83_aR6s_", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Calculate Accuracy and plot a ROC Curve for the Validation Set\n", + "\n", + "A few of the metrics useful for classification are the model [accuracy](https://en.wikipedia.org/wiki/Accuracy_and_precision#In_binary_classification), the [ROC curve](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) and the area under the ROC curve (AUC). We'll examine these metrics.\n", + "\n", + "`LinearClassifier.evaluate` calculates useful metrics like accuracy and AUC." + ] + }, + { + "metadata": { + "id": "DKSQ87VVIYIA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 + }, + "outputId": "6d0269d3-5c9d-44ca-ea3d-1194ea6efc58" + }, + "cell_type": "code", + "source": [ + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "AUC on the validation set: 0.69\n", + "Accuracy on the validation set: 0.74\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "47xGS2uNIYIE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "You may use class probabilities, such as those calculated by `LinearClassifier.predict`,\n", + "and Sklearn's [roc_curve](http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics) to\n", + "obtain the true positive and false positive rates needed to plot a ROC curve." + ] + }, + { + "metadata": { + "id": "xaU7ttj8IYIF", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 347 + }, + "outputId": "8749116d-665c-4023-8cae-a637182f6e81" + }, + "cell_type": "code", + "source": [ + "validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + "# Get just the probabilities for the positive class.\n", + "validation_probabilities = np.array([item['probabilities'][1] for item in validation_probabilities])\n", + "\n", + "false_positive_rate, true_positive_rate, thresholds = metrics.roc_curve(\n", + " validation_targets, validation_probabilities)\n", + "plt.plot(false_positive_rate, true_positive_rate, label=\"our model\")\n", + "plt.plot([0, 1], [0, 1], label=\"random classifier\")\n", + "_ = plt.legend(loc=2)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFKCAYAAAAqkecjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VfX9x/FXbu7N3nuTkJBBkC3I\nHoKogDLDRqt1tFprq7+20p/6a7VqW2uH1mqtrRVUCBCmgAiKqIDsEcgmJIHsvW5y1/n9QXslMgJk\nnHuTz/Px6KP3nLs+fL3JO59zzv1+HRRFURBCCCFEt9OoXYAQQgjRW0kICyGEECqREBZCCCFUIiEs\nhBBCqERCWAghhFCJhLAQQgihEm13v2FFRUOnvp6vrxs1Nc2d+pq9kYxjx8kYdpyMYcfJGHZcV4xh\nYKDnFffbfSes1TqqXUKPIOPYcTKGHSdj2HEyhh3XnWNo9yEshBBC2CsJYSGEEEIlEsJCCCGESiSE\nhRBCCJVICAshhBAqkRAWQgghVCIhLIQQQqhEQtiGfP31l/zmN/931fvfffdt1q9f030FCSGE6FLX\nFcLZ2dlMmTKFVatWXXbfvn37mDdvHgsWLOCvf/1rpxcohBBC9FTtTlvZ3NzMCy+8wKhRo654/4sv\nvsi7775LcHAwS5cuZdq0acTFxXV6oV3JZDLxu9/9huLiCxgMBr7//UcZMeI25s2byfvvr8HNzY03\n3vgTffvGAnDgwD4qKyv41a9eIjAwCIBt27Zw/PhRamtryc8/y8MP/4Bduz7h3Ll8nnvuRZKTB5Ca\n+hG7d+8EYNy4CSxdej95ebm8+OJzeHl5ExYWYa1p/fpUdu3agYODhnHjJrJo0dLuHxghhBBdqt0Q\ndnJy4p133uGdd9657L6ioiK8vb0JDQ0FYMKECezfv79DIZz6WS6HMsuv+/GOjg6Yzco1H3NrYhAp\nk69e06ef7sDJyYk33vg7lZUVPP74I6xenXbVx5eVlfLWW//EwcGhzf6iokLefPMfbNmykVWr3uOf\n//yA7du3sGvXJ/j6+rJ9+xbeeed9AB5++D4mTZrCe+/9gwceeJhx4yby6qsvYzJBcfEF9uzZzZtv\nvgvAD37wIJMmTbneIRFCCHETFEVh54lMmnU13Jt0GxpN15+xbTeEtVotWu2VH1ZRUYGfn59128/P\nj6Kiomu+nq+v2zXn5XR1c8LR0eGq919Je493dXO66uTZAIWFeUyYMJbAQE8CAz1xc3NBpzPj6Kgh\nIMADd3d33Nyc8PR0AWDo0MEEBXm1eQ1PTxeGDBlEUJAXfftG0r9/EiEhPkRHR5CdfYayskKGDRtK\naKgvACNG3Ep5eRHnzxcwceIY/Pw8mTBhLHv37uXChbMUF5/nqaceA8BgaKGlpRZ3d2c8PFyu+W/p\niK563d5ExrDjZAw7TsbwxlTV6Vm5PYM9hV+ii8gGjYW7bhlGpH9Al793t6+i1N7KFDNvi2LmbVHX\n/XqBgZ7XtTLTtR6j1xupq2u2Pkavb6G6uhmLRaGyspHmZgv19c00NLQAYDQql71eQ0MLBoOFiooG\n6ur0mEyK9bZeb6C+vgW93mB9Xn19Ew0NrRiNZqqrmzCbddTWNtHSYqS52cTIkaP52c9+2eY9du/+\nAp2updNXooLrH0dxdTKGHSdj2HEyhtdmtljIKapj+zeF1DcbKChtwMG5CV1MOk59alCMOga7TsXF\n4typ49glqygFBQVRWVlp3S4rKyMoKKgjL6mKpKT+HD16GLh4qFmj0eDp6YmbmztVVZWYzWZOnz7V\nofeIj08gPf0UJpMJk8nEmTOniY9PICqqD5mZGQAcPXoEgISEJI4ePUJLSwuKovCnP71Ka2tLx/6R\nQgjRiyiK0uZ/xZVNrN2Ty0O/28PvPjrGqbNVFJTW4xhcgPOAr3H0qiFMG8srE3/BL2fP6rY6O9QJ\nR0RE0NjYyPnz5wkJCeHzzz/n1Vdf7azaus3tt9/BsWNH+NGPHsFkMvI//7MCgLlzU/j5z39CVFQf\nYmL6dug9QkPDuOee2fzoRw9jsSjMnHkvISGh3Hffg7z00q9Yu/YjwsLCMZmMhISEkJKyiMceewiN\nRsP48RNxdnbpjH+qEEL0OBkFNdQ2tnL2Qj1HssupbTS0+5ykfk4Yw45zQV+Iu9aNlIRZDAsadNm1\nPl3NQVGUa17VlJ6ezm9/+1suXLiAVqslODiYyZMnExERwdSpUzl06JA1eO+44w4efPDBa75hZx8m\nkUMvnUPGseNkDDtOxrDjeuoYthhMNOlN7D5yHqPJQl5xHedKr/3vjA33Qud48YCvvtWMr6cz/aN9\ncQwuZPPZ7RjMBgYFJLMgYQ7ezt8eLu6KMbza4eh2Q7izSQjbJhnHjpMx7DgZw46z1zHcl15Cq8Hc\nZp9FgQNnSsm7UH/N53q56YgI8uDWxCBcnLQMjQ9Ep738bGulvppVGank1J7FTetKSvwshgcPvqz7\n7c4Q7vYLs4QQQoj/Wv9FHh/vL7iuxyZG+dDcYmLaiCj8vV2IDPLA2ckRTTuHkC2Kha8ufMOGvI8x\nmA3cEtCfRQlz8Hb2uubzuoOEsBBCiG6359gFUj/PpeWS7ndIvwBG9g9u8ziLRSE61IsQP7ebep8q\nfQ0fZK4lqyYXV60r9/VfyK3BQ7r93O/VSAgLIYToEoqicCK3iobmby+UOpJdwcm8qjaPS4j04WeL\nOzcYFUXh6+JvSMvdSqvZwAD/JBYlzsHH2bvT3qMzSAgLIYS4IYqiUN9spKC0Hovl4r7S6mYamg2U\n1eg5W1x3XVcoD+jrx2Ozb8FZd/UJnG5GdUsNH2SsI7MmB1etC8uSUhgZMsxmut9LSQgLIYRol8ls\nIauwlrc2pdPUYrru54X6u5EY5UvfsG/Pvwb7uREX3vkdqaIo7Cs5SFrOVlrMrfT3T2BJ4jyb634v\nJSHciR58cBkvvvhbQkPDOv21S0qK+d///TnvvruyQ69z4MA+SkqKmT17Hq+99lvS00/yxBNPkZFx\ngkWLvtdJ1QoheoLz5Y0cOFPGsZwKSqoun+2wf7QvEYEe+Hg4A6CgEBfujZuLjlA/NzSa7us8a1pq\n+SBzHRnV2bg4urA0cT63hQ63ye73UhLCvcxtt4223t6/fx///OcqPD09mTp1gl1+rUEI0bk+3n+O\nw5kVmMwWLlQ2XXb/mAEhzBgTTbDvzV0o1dkUReFAyWHW5WyhxdxCkl88SxLn4evio3Zp10VCmIvL\nEF66POHq1as4c+Y0BoOBWbPmMnPmLH7zm/8jICCQrKwMyspKee65F0lISORPf/o96emniIrqg8lk\nBKC8vIyXX/41RqMRjUbDL37xLA4ODrzwwnOEh0dw6tRJZs+eS15eLmfOpDN79nzmzk1pU9MHH/yb\nPXt24+Cg4dFHH2/TXe/cuZ1169bg6KghOjqWn//8l5SWlvLCC8+i0Wgwm80899wLgMNl+44ePczZ\ns3n4+flRVVXBz3/+ExYtWsqePZ/y7LO/4YsvPmP16lU4OmpJSEjiRz/6yWXj89/lG4UQPcunh4tY\n/8XZNvsCvF2YOTqawf0C8HRzUqmyK6ttrePDzPWcrsrExdGZxYlzGR06wua730vZXAin5W7lWPn1\nz9PsqHHAbLn2fCNDgm5hTtyMaz7mv8sTGgwGQkLC+NGPfkprawspKbOYOfPiPKIGg4HXXnuDjRvX\nsWPHxzg5OXHq1EneeeffVFSUs3DhbAD+8Y+3mDHjXm6//Q4+/3wX//zn33nwwUfIycnm5Zdfpb6+\nnmXLUli7djMGg4Ff/vJnbUK4qKiQPXt28/bb71FcfIFVq97jvvu+nYlMr9fzhz+8jqenJ4899hB5\nebkcOnSAW28dyf33f5+srEwqKytJTz9x2b7/Wrx4OWlpa3n11b+QmXkGuLh29L///S5vvfUvnJyc\nePbZX3Dy5PE242NPH24hxJUVljVQXqPHYDKTUVDD8ZzKNud54yN9+PG8gWgdNVec9EJtiqLwTekR\n1uVsRm9qIdG3H0uS5uHn4qt2aTfM5kJYLUlJ/XFwcMDZ2Zn6+joeffQBtFottbU11scMGjQEgMDA\nYM6cOc25c2fp338AGo2G4OAQwsLCAcjKyuDRRx8HYOjQ4bz33j8ACA+PwNvbB53OCV9fPwIDg2hu\nbqapqbFNLdnZWdbXjYiI5Be/eJaSkmLr/V5eXjzzzFMAFBTkU1dXy4gRt7Fixf/Q0NDApEm3M2DA\nQNzcXC/bV1h47qpjkJ9/lrKyUn7604u1NzU1Ulpa2mZ8hBD2p9VoZu/xYoxmCzUNrew+cv6qj500\nNJylU+Nt9ue9trWOjzLXk16VibOjE4sS5jAmbKTN1tsemwvhOXEz2u1aL9VZ04tptToAjh07wtGj\nh3njjb+j1WqZOnWc9TGOjt9eRn9xZQ7aXHhg+e+1+jjw39lAjUYTDg6ay57/3de6lKOjBstVunuj\n0chrr/2O9977EH//AH72sycB6Ns3jvfe+4iDBw/w1ltvMH36Pdx114zL9l2LTnfxEPRrr73RZv+2\nbVus4yOEsB8ms4UTuVX8dcPlRxe93Z2YMToao8lC3zAvYsO9cOyGRexvlqIoHCw9ytqczehNehJ8\n41iSOB9/V/vrfi9lcyGstrq6WoKCgtFqtXz11ReYzRaMRuMVHxsV1YfU1A9RFIWyslJrt/rfpRGn\nTr2T48ePkJiYdEM1JCQk8d5772Iymaivr+P3v3+ZJ574KQDNzU04Ojri7x9AWVkpmZkZmEwmdu36\nhLCwcMaPn4i3tw+ff/4pOp3usn3x8YlXfd+oqGjOncunpqYaX18/3n33be65Z/YN1S6E6D5Gkxl9\na9v5lg00cjq7gopaPas/y21z3yP3JOPqrMVJqyE+0qdbr17uiLrWBj7KWs+pyjM4OTqxMGE2Y8Nu\ns9vu91ISwt8xfPhIPvjg3zz++MOMGzeB0aPH8uqrL1/xsXFx/ejbN5ZHHvkekZFR9OsXD8D3v/8o\nL7/8Alu2bESr1fHMM89iMt3A9+pCw5g27W4ef/xhFEXhkUces97n7e3DrbeO5PvfX05cXD8WL17G\nX/7yGs888xx//OPvcHV1Q6PR8OST/0NrayuvvvpSm31nzqRf9X1dXFz48Y+f4umnf4yTk45+/RII\nCAi87rqFEN0j41w1v199/LofP3ZgKHPG97V+lcheKIrCobJjrM3eRLNJT7xPLEuS5hPg6qd2aZ1G\nVlESgIxjZ5Ax7DgZw/ZV17fw9Jv7rNvuLlqSor8NJWdnLRXVzQyOC8CiKIwZEIK3nYUvQL2hgdWZ\naZyoPI2TRsesuOmMC78NjUPXHzKXVZSEEEJcJquwht9+eMy6/befTsDZqe2Uj/b+h4yiKBwpP0Fq\n9kaajM308+nL0qT5BLj6q11al5AQFkIIG3U0u4Jj2RVUN7RyrrQBfeu3p7VefuS2ywLY3jUYGlmd\ntYHjFafQaXTM73cv4yNGdUv3qxYJYSGEsCEWReHjfefYsu8cJvPlZwv9vZx5+ZFRaB17VjAdKbvY\n/TYam4j1jmZpUgpBbgFql9XlJISFEEIlJrMFRVEoKm9iw948Tp+ruewxt/T15/ZhEfQJ8cTb3bZm\nrOoMDYZG1mRv5Fj5SXQaHXP7zWRixJge3f1eSkJYCCG6UUWtnj3HLrD9m8KrPkbj4MDyOxMY3C8A\nLxubKrIzHSs/xeqsNBqNTfT1jmZZ0nyC3HrXNzIkhIUQohsczizng13Z1H1nnV1/LxdC/d3wdHPi\n9mERbZb866kaDU2kZm/kSPkJdBotc+JmMClybK/pfi8lISyEEJ1AURQamo1U1OrRt5p4e/NpHDUO\nOOkcaW4x0dzadq6Ax2YPYEh8IJoeMOHEjThekc7qzDQajI3EeEWxLCmFYPfeuyiMhLAQQnTQH1Yf\nu+L5XABHjQlvDyecnRyJCvJg0dR4gnxcu7lC9TUam1ibvYnDZcfRarTMjpvO5MhxvbL7vZSEsBBC\n3KDq+haOZFew59iFNovdaxwciAz2oH+0L80tJiYNCScq+MqTNPQmJypO81HWehoMjUR7RbEsaT4h\n7sFql2UTJISFEOI67DxYyGfHLlDXZKDVYL7s/jtHRJEyOU6FymxXk7GZtdmbOVR2FK2DI7Ni72Zy\n5DgcNT3r+80dISEshBDteGtTOgczyoGL3a6TToOiwN239WHq8AhcnLW97txue05VnuGjzPXUGRro\n4xnJsv4phEr3exkJYSGE+A6LReGTg4V8dvQ8VfWt1v0RgR78+sERKlZm+5qNzazL2cI3pUdwdHDk\nnr53MiVqgnS/VyEhLITotRRFobS6GYsCZrOF//vXIfy9XKiqb7nssROHhLN8WoIKVdqP9MoMPsxc\nT52hnijPcJYlLSDMI0TtsmyahLAQotcwmS00tZj464ZT5J6vu+Jjqupb0Gk1GE0WhicE8sD0JFyc\n5FfltTQb9azP3cKBksM4Ojgys+80pkZNlO73OsgnSwjR41ksClv3n2Pjl/mX3efmrGV4YiCOGg2N\neiMzx0QTEejR/UXaqdNVWXyYuY7a1joiPcJY1n8B4R6hapdlNySEhRA9ktFkpqK2ha9PlVw2ReTg\nuACm3hpJYpQPDnJB1U3Rm/Sk5WxlX8khNA4apsdMZVqfydL93iAJYSFEj2H6z3ndusZWmlpMl90/\neWg4i6fGy5XMHZRRlc2qzLXUttYR7hHKsqQFRHqGqV2WXZIQFkLYNUVROJJVwfZvCsgv+XYx+7AA\ndxqaDcSFe5MQ6cPkYRE9bvm/7qY3tbAhdytfFx9E46Dh7ugpTIuejFYjUXKzZOSEEHappqGVvAt1\nvLkx/bL7fjhrAMMTe+98xF0hszqHVRlrqWmtJcw9hOX9FxDpGa52WXZPQlgIYTfKapp5/t2DGEyW\ny+4bkRTEuEFhJEf7qVBZz9ViamFD3ja+unAAjYOGu6Jv587o26X77SQyikIIm1VW00xGQQ05RbXs\nP1122f0DYvwI8XfjjlsjCfDufYsidLWs6lw+yFxLVUsNoe7BLE9aQJRXhNpl9SgSwkIIm1JS1cQv\n3/nmqvdHBXvwvbuS6BMiCyN0lRZTK5vytrH3wn40Dhqm9ZnMXTFT0En32+lkRIUQNkFRFCwW5bIA\nTozyYVBcAGEB7iRE+uCkk6/AdKWcmjxWZqylqqWaEPdgliel0McrUu2yeiwJYSGEqnYdLuLDXTmX\n7f/9D0bj7+2iQkW9U6vZwKa87Xxx/msccOCOPpO4O3oKOked2qX1aBLCQghVpH6ey47vTKIxINaf\nuoZW7hkTIwHcjXJqzrIqcy2V+iqC3YJYlpRCjHeU2mX1ChLCQohuY1EUjmZVXPa1oqQ+vvxw9gCi\nI/2oqGi4yrNFZzOYDWzO28Ge818DMCVqAjNi7pDutxtJCAshulx2US0n8irZfqBt5zsiKYhH7kmW\nqSNVkFubz6qMVCr0VQS7Bf6n++2jdlm9joSwEKLL1DW28uqa41yoaGqzf1RyMPMnxeHj4axSZb2X\nwWxky9kdfF70FQC3R45nRt9pOEn3qwoJYSFEpzNbLLyz5QwHM8qt+wbG+jOkXwDDE4Nwd5Ff+Go4\nW1fAyow1lDdXEuQawNKkFGJ9otUuq1eTEBZCdJpGvZFdh4vY/PW5NvufnD+QgbEB6hQlMJiNbM3/\nhM8KvwRgcuQ4ZvadhpOjk8qVCQlhIcQNUxSFgrIGPjtygUa9keO5lVd83ONzbmFwvwBZtUhF+XUF\nrMxIpay5gkBXf5YmpRDnE6N2WeI/riuEX3rpJU6cOIGDgwMrVqxg4MCB1vs++OADNm/ejEajYcCA\nAfzyl7/ssmKFEOp7c8MpDmdVXPE+ByA0wJ0RiUHcMSISFyf5O18tRrORj/M/ZVfhFygoTIoYyz2x\nd0r3a2Pa/Qk5ePAgBQUFrFmzhry8PFasWMGaNWsAaGxs5N1332Xnzp1otVoeeOABjh8/zuDBg7u8\ncCFE92kxmNjy9Tm2f+d7vTGhXkwbEUl8pA/e7k5ylbONKKgv4v0zayhtLifAxY+lSfPp5xurdlni\nCtoN4f379zNlyhQAYmNjqauro7GxEQ8PD3Q6HTqdjubmZtzc3NDr9Xh7e3d50UKI7pN7vo6XVh1p\ns2/J1HhuHyYT+dsao8XEhyc3siljJwoKEyJGc2/s3ThL92uz2g3hyspKkpOTrdt+fn5UVFTg4eGB\ns7Mzjz32GFOmTMHZ2Znp06cTEyPnGoToKQ5nlreZWOPJ+QMZEOOPRiMdr60pqC9iZUYqJU1l+Lv4\nsjRpPvG+cWqXJdpxwydsFEWx3m5sbOTtt99mx44deHh4cN9995GZmUliYuJVn+/r64ZW27kTsAcG\nymoqnUHGseN6yhgeSC/htQ+PoG81W/etf2VGtyye0FPGsLsYzUbWn9nGxoydWBQLd8SNZ+nA2bjo\nZNrPjuiuz2G7IRwUFERl5bdXPpaXlxMYGAhAXl4ekZGR+PldXER7+PDhpKenXzOEa2qaO1pzG4GB\nnjLNXSeQcew4ex7D3PN1HM4q5+tTJTS1mNrc1yfEk+fuG05dbef+7F6JPY+hGgobzrPyTCrFTaX4\nufiyNHE+YxOGUFHRQANGtcuzW13xObxaqLcbwmPGjOH1119n4cKFnD59mqCgIDw8PAAIDw8nLy+P\nlpYWXFxcSE9PZ8KECZ1auBCiaz35+lfUNxku2z8qOYR5E2Px9ZRZrWyNyWJix7nP+KTgMyyKhbFh\nI5kdNx0XrXS/9qbdEB46dCjJycksXLgQBwcHnn/+edLS0vD09GTq1Kk8+OCDLF++HEdHR4YMGcLw\n4cO7o24hRAdV17fw8qoj1gC+pa8/owYEMyw+CJ1Wo3J14mqKGopZmbGGC40l+Dr7sCRpHkl+8WqX\nJW6Sg3LpSd5u0BUtvhy+6jgZx46zhzE8nV/NmxvTCfFzI7+k3rp/0ZR+TB2u/sLt9jCGajFbzOwo\n+Iwd53ZjUSyMCRvB7LgZuH6n+5Ux7DibOhwthLB/jXojL686QknVxfO6+SX1aB0dMJkVnr1vODGh\nXipXKK7lfEMxKzNSOd9YjI+zN0sS59HfP0HtskQnkBAWohd44s9fttn+21MTcO6GK51Fx5gtZnYW\nfM72c7sxK2ZGhd7K3H4zcNW6ql2a6CQSwkL0cNlFtdbbf3hsjFxoZScuNJawMiOVooYLeDt5sSRp\nHsn+V//mibBPEsJC9HCvfHAUgNEDQiSA7YDZYubTwj1sy9+FWTFzW8hw5vabiZtOut+eSEJYiB4o\nv6SeP6aewNX520POD9ydpGJF4noUN5ayMiOVwobzeDt5sjhxHgMC5L9bTyYhLISd07eayC6qpbKu\nhaq6FnYc/HaRhUa9EVdnLfeMiZapJm2Y2WJmd+FePs7fiUkxMzJkGPP6zcRN56Z2aaKLSQgLYccK\nyxr4v38duuJ9Ph5OvPj9kbi56Lq5KnEjSprKWJmRSkF9EV5OnixOnMstAf3VLkt0EwlhIezUlyeL\n+de2TOt2yqQ4jGYLCZE+RAR64OYiP962zKJY2F24l635OzFZTNwaPIT58ffiLt1vryI/pULYmTc3\nnOLk2SoMRgsA7i5anr//VgJ85MIde1HaVM6qjFTy6wvxdPJgUcJcBgUmt/9E0eNICAthJyyKwl/T\nTnEs5+KCKs5Ojvh7ufDrB0egcZDzvfbAolj4rOhLtpz9BJPFxPDgwcyPvxcPnbvapQmVSAgLYSf+\ntiHdGsCjkkN4aKacN7QnZc0VrMpI5WxdAR46dxb1X8TgoFvULkuoTEJYCBtnURTSz1ZxJLsCgBmj\n+zBnfKzKVYnrZVEs7Cn6is1nd2C0mBgaNJCU+Fl4OnmoXZqwARLCQtiw6voWnn5zX5t9EsD2o7y5\ngpUZazlbdw4PnTvL+y9kaNBAtcsSNkRCWAgbo281seHLs6DAriPnrftvTQzivjtl0n57YFEsfHF+\nH5vytmO0GBkSeAsLEmZL9ysuIyEshI1QFIUX3z9MfsnlS6j99SfjcXWWH1d7UNFcxarMVHJr83HX\nubEsKYVhwYPULkvYKPmpFsIGZBfVWud4/q8fzhqAr6cz0aGeOGo0KlUmrpdFsbD3/H425W3DYDEy\nKHAACxNm4+V05XVkhQAJYSFU99sPjpJ1yUpHS++IZ/LQCBUrEjeqUl/Fqoy15NSexV3rxpLEeQwL\nHoyDfHVMtENCWIhuoigKpdXNGIwWymv1HMoo43huJSazAkCQrys/SRlEsK/MmGQvLIqFry4cYEPe\nNgxmAwMDklmYMAdvZ+l+xfWREBaiG5jMFv69PZOv00uveP/koeEsvUMuurInVfpqVmWuI7smFzet\nK4v6L+TW4CHS/YobIiEsRBerqNXz87f2W7f7RXgTHeKFs5OGiYPD8fNyUbE6caMUReGr4m/YkLuV\nVrOBWwKSWJQwF29nL7VLE3ZIQliILlLX2Ep+aQN/WXfSum/S0HCWTo2XbslOVelr+DBzHZk1Obhq\nXVmetIARIUPlv6e4aRLCQnQyi0Xh71tOczCjvM3+ny4YxIAYf5WqEh2hKAr7ig+SlruVFnMrA/wT\nWZQ4Fx9nb7VLE3ZOQliITtKoN/L+jkz2HC+27vNy0zF6QCh3j+qDh6us62uPalpq+SBzHRnV2bhq\nXVialMJtIcOk+xWdQkJYiE6gKAqL/ndbm30zRvdh1ri+ssKRnVIUhf0lh1ifs5UWcwv9/RJYnDgX\nXxcftUsTPYiEsBAdVFrdzIq/H7BuPzSjPwPj/HF3kc7XXtW01PJh5nrOVGfh4ujCksT5jAodLt2v\n6HQSwkLcBEVR2PDlWY5kVVBS1Wzdf9+dCYwaEKJiZaIjFEXhQMlh1uduQW9qIckvniWJ86T7FV1G\nQliIG9RqMPPkG1/RajAD4OGqo1FvZPWLd9Pc2KJydeJm1bbW8WHmek5XZeLi6MzixLmMDh0h3a/o\nUhLCQtyA5hYTj/9pr3V71rgY7hkTA4C7q05C2A4pisLB0qOszdmM3qQn0bcfS5Lm4efiq3ZpoheQ\nEBbiOlTVtfCHNccprf720POP5t7CkH6BKlYlOqqutZ6PstZzqjIDZ0cnFibMYWzYSOl+RbeREBai\nHfkl9bzw78Nt9v3u0VEE+LieTJlYAAAgAElEQVSqVJHoKEVROFR2jLXZm2g26Yn3jWNp4jz8Xf3U\nLk30MhLCQlyDxaK0CeAXvj+S8AB3FSsSHVXX2sDqrDROVp7GydGJBfGzGRs+Eo2DLBcpup+EsBBX\ncSSrgr9uOGXdfvvpCei0jipWJDpCURSOlB0nNXsTTaZm+vn0ZWlSCgHS/QoVSQgLcQWP/XEv+laT\ndfsXS4ZKANuxekMDq7M2cKIiHSeNjvnx9zI+fJR0v0J1EsJCXCJtbx6n86utATwgxo8n5g1E6yi/\nrO2RoigcLT/BmuyNNBmbifWOYVlSCoFuMoe3sA0SwqLXyy+p54+pJ1AUhaaWb7vfu0ZGMX9SnIqV\niY5oMDSyOmsDxytOodPomNfvHiZEjJbuV9gUCWHRa+lbTTzx5y8xW5Q2++MjvHl01gB8PJxVqkx0\n1NHyk6zJ2kCjsYlY72iWJqUQ5BagdllCXEZCWPRK2w4UsG5PXpt9f/vpBJyd5LyvPWs0NLEmewNH\ny0+i02iZ228mEyPGSPcrbJaEsOh1Nuw9y5Z956zbrz0+RrreHuB4+SlWZ22gwdhIX+8+LE1KIdhN\nJlMRtk1CWPQaWYU1vJF2ynreNyrYg//73giVqxId1WhsIjVrI0fKT6DTaJkdN53JkeOk+xV2QUJY\n9HhGk4UX/n2Y8xWN1n1D+gXw+JxbVKxKdIYTFel8lJVGg6GRGK8oliWlEOwepHZZQlw3CWHRo5nM\nFh55dU+bfX//n4nylSM712RsZm32Jg6VHUOr0TIr9m5ujxov3a+wOxLCosc6X9HIc+8etG4/NKO/\nrPXbA5ysOM1HWWnUGxro4xXJ8qQUQtyD1S5LiJsiISx6nLLqZp75+4E2+567fzjRIV4qVSQ6Q7Ox\nmbU5mzlYehStgyP39r2L26PG46iRK9qF/ZIQFj3Or947ZL0dFeTBs/cPx1Ejhynt2anKM3yUuZ46\nQwNRnhEsS0ohzEOOagj7JyEseozDmeW8uTHduv2nH43Fy91JxYpERzUb9azL2cw3pUdwdHBkZt87\nmRo1Qbpf0WNICAu7V9vYyk/f+LrNvtEDQiSA7dzpqkw+zFxPbWsdkZ7hLEtKIdwjVO2yhOhU1xXC\nL730EidOnMDBwYEVK1YwcOBA630lJSX89Kc/xWg00r9/f3796193WbFCfFfa3jy27iuwbk8aEs6y\naQkqViQ6Sm/Ssz5nK/tLDuHo4MiMmGnc0WeidL+iR2o3hA8ePEhBQQFr1qwhLy+PFStWsGbNGuv9\nr7zyCg888ABTp07lV7/6FcXFxYSFhXVp0UIAvLkxncOZ5dbtv/x4HB6uOhUrEh11vOQMb37zPrWt\ndUR4hLG8/wLpfkWP1m4I79+/nylTpgAQGxtLXV0djY2NeHh4YLFYOHLkCK+99hoAzz//fNdWK8R/\n1DUZrAE8d0Jfpo+KVrcg0SF6UwtpOVvZV3IQjYOG6TFTmdZnsnS/osdrN4QrKytJTk62bvv5+VFR\nUYGHhwfV1dW4u7vz8ssvc/r0aYYPH85TTz11zdfz9XVD28mLowcGenbq6/VW9jKORzPLef6d/QD4\nejpz/z22M/OVvYyhLTlZmsHfDq+kqrmGPt7hPDbyPqJ9I9Uuy67J57DjumsMb/jCLEVR2twuKytj\n+fLlhIeH8/DDD7Nnzx4mTpx41efX1DTfVKFXExjoSUVFQ6e+Zm9kL+OYe6GOl1YesW4/s3SozdRt\nL2NoK1pMLWzI/Zivir9B46DhrugpLBt+LzXVehnHDpDPYcd1xRheLdTbDeGgoCAqKyut2+Xl5QQG\nXlyZxNfXl7CwMKKiogAYNWoUOTk51wxhIW5GRa2ezIIa/rU907rvnZ9NlO//2qnM6hw+yFxHdUsN\nYe4hLOufQpRnBFpH+cKG6F3a/cSPGTOG119/nYULF3L69GmCgoLw8PC4+GStlsjISM6dO0d0dDSn\nT59m+vTpXV606F3e2pTOwYzyNvve/fkkHBwcVKpI3KwWUysb87bx5YX9aBw03Bl9O3dF345WI+Er\neqd2P/lDhw4lOTmZhQsX4uDgwPPPP09aWhqenp5MnTqVFStW8Itf/AJFUYiPj2fy5MndUbfoJV5f\nf5JjORePxDhpNcwa15c7RkRKANuh7JpcVmWspaqlhlD3YJYlpdDHS879it7NQbn0JG836Irj7HL+\no+NsbRw3fZXPpq/yrdsTBoexfFqCTYevrY2hrWg1G9iUt40vzu/DAQem9pnI3TFT0V2h+5Ux7DgZ\nw46zqXPCQnS311KPk3622ro9PCGQ++5MVLEicbNyavJYlbGWypZqQtyCWNY/hWivKLXLEsJmSAgL\nm6EoCp8cLLIG8C19/flJyiCVqxI3o9VsYHPedvac//pi9xs1kekxU9E5ymQqQlxKQljYjB+89gUG\nowWA5GhfCWA7lVubz8qMVCr1VQS7BbEsKYUYb+l+hbgSCWGhOkVReGnlEWsAj0oO4YHpcvjZ3hjM\nBjaf3cGeoouLaUyJmsD0mDtwku5XiKuSEBaq+5+/7aO6vhWAu0ZGMX9SnMoViRt1tu4cK8+kUq6v\nJMgtgGVJKfT1jla7LCFsnoSwUE1BaQN/25RuDeD770pk/CBZ/MOeGMxGtpzdwedFXwEwOXIcM/ve\nKd2vENdJQlio4lhOBa+vP2Xdnj6qjwSwnTlbV8DKjDWUN1cS6OrPsqQFxPpEq12WEHZFQlh0u9zz\ndW0C+KmFg0mO9lOxInEjjGYjW/N3srtwLwCTIsdyT987cXJ0UrkyIeyPhLDoNoqisOazXHYeKrLu\ne+upCTjpZLk6e5FfV8jKjFTKmssJcPVnWVIKcT4xapclhN2SEBbdQlEUnvvnQS5UNAGgcXDgb0+N\nR9fJy1qKrmE0G/k4/1N2FX6BgsKEiDHcG3sXztL9CtEhEsKiS1XXt9CoN/LWptOUVl9cxnLMgBAe\nnNFf5crE9SqoL+L9jFRKm8oIcPFjadJ8+vnGql2WED2ChLDoEgajmU8OFrLhy/w2+xdP6ceU4TJp\nvz0wWkxsz9/Fp4V7sCgWxoeP5t7Yu3DROqtdmhA9hoSw6HTNLUYe/9OX1m0fDyeGJwYREeghV0Db\nicL686zMSKW4qRR/F1+WJs0n3le+vy1EZ5MQFp3KbLG0CeD5E2OZNjIKjQ2vfiS+ZbKY2H5uNzsL\nPseiWBgbfhuzY+/GReuidmlC9EgSwqLTnMyr5E9rT1q3n71vODGhXipWJG5EYcN5Vp652P36Ovuw\nNGk+iX791C5LiB5NQlh0WH5JPS/8+3CbfRLA9sNkMbHj3Gd8UvAZFsXCmLCRzI6bjqt0v0J0OQlh\n0SH6VlObAO4T4smz9w2Xw8924nxDMe9nrOFCYwm+zj4sSZxHkn+82mUJ0WtICIsOSf0813r77acn\notNqVKxGXC+zxcwnBZ+x/dxuLIqF0aEjmNNvOq5aV7VLE6JXkRAWN01RFL44XgzAk/MHSQDbiQuN\nJaw8s4aixmJ8nL1ZnDiPZP8EtcsSoleSEBY37e9bzlhv39JX5n62dWaLmZ0Fe9h+bhdmxcyo0FuZ\n22+GdL9CqEhCWNyUf27L4JszZQDMHheDg5wDtmnFjaWszFhDYcMFvJ28WJw4lwEBSWqXJUSvJyEs\nbphFUfjqZAkAM0b3YeYYmcDfVpktZnYVfsG2/E8xKWZGhgxjXr+ZuOnc1C5NCIGEsLgJz7170Hp7\nzniZQ9hWlTSVsfJMKgUNRXg7ebIocS63BMic3ULYEglhcd0sisIrq45SXHlxJaR5EyWAbZHZYmZ3\n0V4+PrsTk2JmRMhQ5ve7R7pfIWyQhLC4Lt+dD3r6qD7cfVsfFSsSV1LaVMb7GakU1Bfh5eTJooQ5\nDAxMVrssIcRVSAiLdimK0iaAf7FkKPGRPipWJL7LoljYXbiXrfk7MVlMDA8ezPz4e/HQuatdmhDi\nGiSERbue+PO3Afzi90cSFiC/2G1JWVM5KzPWkl9fgKfOg4XJcxgcOEDtsoQQ10FCWFxVo97IP7ae\noanFBMCP5w2UALYhFsXCZ0VfsvXsJxgtJoYFDSIlfhYeTvLfSAh7ISEsLmO2WHjod3va7Js+qg+D\n4gLUKUhcpqy5glUZqZytK8BD5859/RcxJOgWtcsSQtwgCWFhpSgKz//zIOcrmqz7okM86RvmxdwJ\nciW0LbAoFvac/5rNedsxWkwMDRpISvwsPJ081C5NCHETJIQFAK1GMw//fg9mi2Ld9+D0JMbcEqpi\nVeJS5c2VrMpYS15dPh46d5b3X8jQoIFqlyWE6AAJYUGrwcy8X2y1bi+a0o+pwyNVrEhcyqJY2Ht+\nPxvztmG0GBkceAsLE2ZL9ytEDyAhLPjBa19Yb//v8uH0DfNSsRpxqUp9Fasy1pJTexZ3nRvLkuYz\nNGiQzNUtRA8hIdzLvbc903r7l8uHSQDbCIti4csLB9iY+zEGi5FBgQNYmDAbLydPtUsTQnQiCeFe\nSlEUnvjzl9avHz1z363EhsoveFtQqa9mVUYqObVncdO6sjhxHsODB0v3K0QPJCHcS31+7II1gJP6\n+DJ6YBgVFQ0qV9W7WRQLX134hg15H2MwGxgYkMzChDl4O8sfR0L0VBLCvVBVXQurdmYDMH9SLHeN\nlDmg1Valr+GDzLVk1eTipnVlUf+F3Bo8RLpfIXo4CeFeZu+J4jbnge+4Va6CVpOiKHxV/A0bcrfS\najYwwD+JRYlz8HH2Vrs0IUQ3kBDuRfKK69oE8F9/Mh5HjUbFinq36pYaPshYR2ZNDq5aF5YnLWBE\nyFDpfoXoRSSEe4mMc9X8fvVxACKDPPjVAyNUrqj3UhSFfSUHScvZSou5lWT/RBYnzpXuV4heSEK4\nF3hzwykOZ1VYt3+2eIiK1fRuNS21fJC5jozqbFwcXViaOJ/bQodL9ytELyUh3MPpW03WAI4O8eSZ\npcPQaeUQdHdTFIX9JYdZn7OFFnML/f0SWJw4F18XWZdZiN5MQrgHK6lq4pfvfAOAm7OW5+6/VeWK\neqfa1jo+yFzHmaosXBydWZI4j1Ght0r3K4SQEO6pDEazNYABUibHqVhN76QoCt+UHmFdzmb0phYS\nffuxJGkefi6+apcmhLAREsI91B9TT1hv/+XH4/Bw1alYTe9T21rHR5nrSa/KxNnRiUUJcxgTNlK6\nXyFEG9cVwi+99BInTpzAwcGBFStWMHDg5cun/eEPf+D48eOsXLmy04sUN0bfaiKrqBaA3zw0UgK4\nGymKwsHSo6zN2YzepCfBN44lifPxd5XuVwhxuXZD+ODBgxQUFLBmzRry8vJYsWIFa9asafOY3Nxc\nDh06hE4nv+zVdvpcNX/4z1eRAEL93VWspnep0dfx9ql/c6oyAydHJxYmzGZs2G3S/QohrqrdEN6/\nfz9TpkwBIDY2lrq6OhobG/Hw+HYt01deeYWf/OQnvPHGG11XqWiXwWhuE8Arlg5TsZreQ1EUDpUd\nY13uZpoMzcT7xLIkaT4Brn5qlyaEsHHthnBlZSXJycnWbT8/PyoqKqwhnJaWxogRIwgPD7+uN/T1\ndUOrdbzJcq8sMFAmuAeY98xW6+3Nr95zwx2YjOONq22p553DH3LowgmcHZ14cOhCpsaNQ+MgXwO7\nWfI57DgZw47rrjG84QuzFEWx3q6trSUtLY1//etflJWVXdfza2qab/Qtrykw0FNW/wFW786h1WAG\n4Ccpg6isbLyh58s43hhFUThSdpzU7E00mZrp59OXJ8bcj0bvQlVlk9rl2S35HHacjGHHdcUYXi3U\n2w3hoKAgKisrrdvl5eUEBgYCcODAAaqrq1myZAkGg4HCwkJeeuklVqxY0Ulli+uRd6GOnYeKABiV\nHMItff1VrqhnazA0sjorjeMV6ThpdMyPv5fx4aMI9vCmQi+//IQQ16/dEB4zZgyvv/46Cxcu5PTp\n0wQFBVkPRd95553ceeedAJw/f55nnnlGAribWSwKr665eB64b5gXD83sr3JFPduRshOkZm+k0dhE\nrHcMy5JSCHSTP3qEEDen3RAeOnQoycnJLFy4EAcHB55//nnS0tLw9PRk6tSp3VGjuAqjycwP/rAX\ny39OEfxw1gCVK+q5GgyNrMneyLHyk+g0Oub1u4cJEaPl3K8QokOu65zw008/3WY7MTHxssdERETI\nd4S7kUVReOTVL6zbD8/sj5+Xi4oV9VzHyk+xOiuNRmMTfb2jWZY0nyC3QLXLEkL0ADJjlh3St5p4\n7I97rds/TRnEADkP3OkaDU2kZm/kSPkJdBotc+NmMDFyrHS/QohOIyFsR9buyWX7gcI2+55aMJjk\nGPk+amc7XpHO6sw0GoyNxHj1YVnSfILdg9QuSwjRw0gI2wFFUfjrhnSOZle02f/7H4zG31sOQXem\nRmMTa7M3cbjsOFqNltlx05kcKd/7FUJ0DQlhG1dc2cT//uPb1ZCmDItg0ZR+MhViFzhRcZqPstbT\nYGgk2iuKZUkphEj3K4ToQhLCNuzMuWpevWQaykfvTWZEUrCKFfVMTcZm1mZv5lDZUbQaLbNi7+b2\nqPHS/QohupyEsA27NIBf/P5IwgJkMYbOdqryDB9mrqfe0EAfz0iW9U8h1F3+0BFCdA8JYRtlNJmt\nt99+egK6Tp5vu7drNjazLmcL35QeQevgyL197+L2qPE4amSchRDdR0LYBjXqjTzx5y8BiAh0lwDu\nZOmVGXyYuZ46Qz1RnuEsS1pAmEeI2mUJIXohCWEbU13fwtNv7rNuPzhdpqHsLM1GPetzt3Cg5DCO\nDo7M7DuNqVETpfsVQqhGQtiGGE2WNgH83P3D6RMiS5J1htNVWXyYuY7a1joiPcNZlpRCuEeo2mUJ\nIXo5CWEbciL329WqViwbRnSIl4rV9Ax6k560nK3sKzmExkHDjJg7uKPPJOl+hRA2QULYRiiKwpsb\n0wG4c0QUceHeKldk/zKqslmVuZba1joiPMJYlpRChGeY2mUJIYSVhLCNeObvB6y3Z46JVq+QHkBv\namFD7la+Lj6IxkHD3dFTmBY9Ga1GPu5CCNsiv5VsQH2TgfIaPQAP3J2Eq7P8Z7lZmdU5rMpYS01r\nLeEeoSxLWkCkdL9CCBslv+1twO8/OgZARKAHYwfKxUI3o8XUwobcj/mq+Bs0Dhruir6dO6Nvl+5X\nCGHT5DeUyowmMxcqmwBYNi1e5WrsU1Z1Lqsy11LdUkOYewjLklKI8opQuywhhGiXhLDKnvjzV9bb\n/SJ8VKzE/rSYWtmUt429F/ajcdBwZ5/J3BkzBZ10v0IIOyG/rVTy3Uk5nlk6VMVq7E9OTR4rM9ZS\n1VJNiHswy5NS6OMVqXZZQghxQySEu5lFUTiZW8Vf1p+07ps9Lka64OvUajawKW8bX5zfhwMO3NFn\nEnfHTJXuVwhhl+Q3Vzf76mQJ723PtG7/5qGRhPrL6kjXI6fmLKsyUqlsqSbYLYjl/VOI9opSuywh\nhLhpEsLd7MuTxcDFK6EXTI6TAL4OBrOBzXk72HP+awCmRk1kesxUdI46lSsTQoiOkRDuRkaThbwL\n9QD8cPYAQvzcVK7I9uXW5rMqI5UKfRXBboEsS0ohxruP2mUJIUSnkBDuRu9+fAYAD1edBHA7DGYD\nW85+wudFF68evz1qPDNipuEk3a8QogeREO5GBzPKAfjhrAEqV2LbztadY+WZVMr1lQS5BrCsfwp9\nvaPVLksIITqdhHA3OVdab72d2MdXxUpsl8FsZGv+J3xW+CUAkyPHMbPvNJwcnVSuTAghuoaEcDf5\n89qLX0mSaSmvLL+ugJUZqZQ1VxDo6s/SpBTifGLULksIIbqUhHA3KCpvpK7JAMD0UXJR0aWMZiMf\n53/KrsIvAJgUMZZ7Yu+U7lcI0StICHexovJGnv/nQQC83HQE+8oFWf91rr6QlWdSKW0uJ8DFj6VJ\nKfTz7at2WUII0W0khLuQ0WSxBjDA7384WsVqbIfRYmJb/qd8WrAHBYUJEWO4N/YunKX7FUL0MhLC\nXehf2zKst99+eiI6rUbFamxDQX0RKzNSKWkqw9/Fl6VJKcT7xqpdlhBCqEJCuIsYTRYOnCkD4OGZ\n/Xt9ABstJnbk72Jn4R4sioXx4aO4N/ZuXLTOapcmhBCqkRDuAvVNBp58/dslCm9LDlGxGvUVNpxn\n5ZlUiptK8XPxZWnifBL84tQuSwghVCch3Ml2HznPB59mW7eXTI1XsRp1mSwmdpzbzScFn2NRLIwN\nv43ZsXfjonVRuzQhhLAJEsKdKOd8bZsAfu7+4USHeKlYkXqKGopZmbGGC40l+Dr7sDRpPol+/dQu\nSwghbIqEcCcxGM28vOqodfvdn0/CwcFBxYrUYbaY2VHwGTvO7caiWBgTNoLZcTNwle5XCCEuIyHc\nCRRF4eUPvg3gP/1obK8M4PMNxazMSOV8YzG+zj4sSZxHkn/vPRwvhBDtkRDuBKt2ZlNQ2gDA/Xcl\n4uXeu77varaY2VnwOdvO7cKiWBgdeitz+s3AVeuqdmlCCGHTJIQ7qLiyic+PXQBg0pBwxg8KU7mi\n7nWhsYSVGakUNVzAx9mbxYlzSfZPVLssIYSwCxLCHfS///gGgMggD5ZNS1C5mu5jtpj5tHAP2/J3\nYVbM3BY6nLlxM3HTSfcrhBDXS0K4A6rqWqy3f754iIqVdK/ixlJWZqRS2HAebycvFifOZUBAktpl\nCSGE3ZEQ7oCahlYAbunrj5uLTuVqup7ZYmZX4Rdsy/8Uk2JmZMgw5vWbiZtOFqUQQoibISHcAfkl\n9QDERXirXEnXK2kqY+WZVAoaivBy8mRx4lxuCeivdllCCGHXJIRvktli4aPdOQB4uvXcLtiiWNhd\nuJet+TsxWUzcGjyU+fH34C7drxBCdJiE8E26dGKOcQNDVayk65Q2lbMqI5X8+kI8nTxYlDCXQYHJ\napclhBA9hoTwTThbXM/Z4ouHoh++pz+Omp61QpJFsfBZ0ZdsOfsJJouJ4cGDmR9/Lx46d7VLE0KI\nHuW6Qvill17ixIkTODg4sGLFCgYOHGi978CBA7z22mtoNBpiYmL4zW9+g6aHhdJ3vbzqCACxYV7c\n1r9nrZBU1lzByjOp5NcX4KnzYGHyHAYHDlC7LCGE6JHaDeGDBw9SUFDAmjVryMvLY8WKFaxZs8Z6\n/3PPPcf7779PSEgITzzxBF9++SUTJkzo0qLVlH62CrNFAeCZpcNUrqbzWCwWPivcy+azOzBaTAwL\nGkRK/Cw8nKT7FUKIrtJuCO/fv58pU6YAEBsbS11dHY2NjXh4eACQlpZmve3n50dNTU0XlquuwrIG\nXks9AVycnEOj6RnzQ5c3V/CXk2+TVZmHh86d5f0XMjRoYPtPFEII0SHthnBlZSXJyd9ejOPn50dF\nRYU1eP/7/+Xl5Xz99df8+Mc/7qJS1ffRrotXQ7u7aHvE5BwWxcIX5/exKW87RouRIUEDWRA/C08n\nD7VLE0KIXuGGL8xSFOWyfVVVVTz66KM8//zz+Pr6XvP5vr5uaLWON/q21xQY6Nmpr3clNQ0tZBXV\nAvCXpycR5GvfX9EpbazgbwdXklGRg6eTO48Nu4/RUT3n8LpauuOz2NPJGHacjGHHddcYthvCQUFB\nVFZWWrfLy8sJDAy0bjc2NvLQQw/x5JNPMnbs2HbfsKam+SZLvbLAQE8qKho69TWv5IFXPrPedjCZ\nu+U9u4JFsbD3/H425W3DYDEyOHAACxJmExseZrf/JlvRXZ/FnkzGsONkDDuuK8bwaqHe7mXMY8aM\n4ZNPPgHg9OnTBAUFWQ9BA7zyyivcd999jB8/vpNKtT0f7z9nvf3nJ9r/Q8NWVeqr+Muxv7M2ZxM6\njY7vJS/m+wOW4eUkfzULIYQa2u2Ehw4dSnJyMgsXLsTBwYHnn3+etLQ0PD09GTt2LBs3bqSgoIB1\n69YBMGPGDBYsWNDlhXcXk9nC+i/OAnDPmGg83exvrWCLYuGrCwfYkLcNg9nAoIBkFiTMwdtZwlcI\nIdR0XeeEn3766TbbiYnfrhebnp7euRXZEIui8IM/fGHdvndsjIrV3JwqfTWrMtaSXZuHm9aVxf0X\nMTx4MA4OPePKbiGEsGcyY9Y1XKhosn4n+Nn7httVcCmKwlfFB9iQ+zGtZgO3BCSxKGEu3s5eapcm\nhBDiPySEr2H3kSIAxgwIISbUfsKrSl/Dh5nryKzJwVXryvKkBYwIGWpXf0QIIURvICF8Dc66i8Mz\nMC5A5Uquj6Io7Cs+SFruVlrMrQzwT2RR4lx8nHv+UotCCGGPJISvYV96CXBxdixbV9NSyweZ68io\nzsZV68KypBRGhgyT7lcIIWyYhPBVfHWyhKYWEwA+HrZ7RbSiKOwvOcT6nK20mFvo75/AksR50v0K\nIYQdkBC+ApPZwj+3ZQAXv5bk4mSbw1TTUsuHmes5U52Fi6MLSxLnMyrUvi4gE0KI3sw200Vlf153\n0nrbFr+WpCgKB0oOsz53C3pTC0l+8SxJnIevi4/apQkhhLgBEsLfcaGyidP51QB87+5Em+sqa1vr\n+DBzPaerMnFxdGZx4lxGh46wuTqFEEK0T0L4O7Z8nQ9ATKgn4waGqVzNtxRF4ZvSI6zL2YLepCfR\ntx9Lkubh53LtBTOEEELYLgnh7ziSVQHAD+4doHIl36ptreOjzDTSqzJwdnRiUcIcxoSNlO5XCCHs\nnITwJbKLaq0zZAX4uKpczcXu91DZMdZmb6LZpCfeN46lifPwd/VTuzQhhBCdQEL4Ehv2XlyoYWCs\nv8qVQF1rA6uz0jhZeRonRycWxM9mbPhINA7tLnwlhBDCTkgI/0dNQytZRbUAPHpvsmp1KIrCkbLj\npGZvosnUTLxPLEuS5hMg3a8QQvQ4EsL/sXXfOetttb4XXG9oYHXWBk5UpOOk0ZESP4tx4bdJ9yuE\nED2UhDAXu8/Pj10A4Mn5A1V5/6PlJ1iTvZEmYzNxPjEsTUwh0E39w+JCCCG6joQw0KA3Wm8P6Nu9\nwddgaGR11gaOV5xCp+ls59UAAAyASURBVNExr989TIgYLd2vEEL0AhLCQEOTAYAxt4Sg6cav/Rwt\nP8marA00GpuI9Y5maVIKQW72sWKTEEKIjpMQBl58/wgABqOlW96vwdBIavZGjpafRKfRMbffTCZG\njJHuVwghepleH8Jmi4VWoxmAqbdGdvn7HSs/xeqsNBqNTfT17sPSpBSC3QK7/H2FEELYnl4fwqt3\n5wLg6qwlLrzrlv9rNDaRmrWRI+Un0Gm0zImbwaTIsdL9CiFEL9arQ9hiUdh95DwAi6f067L3OVGR\nzkdZaTQYGonximJZUgrB7kFd9n5CCCHsQ68O4RXvHLDeHj0gpNNfv9HYxNrsTRwuO45Wo2V23HQm\nR46T7lcIIQTQi0NYURTKa/QAPDFvYKcvhnCy4jQfZaX9f3v3Hxt1nedx/DmdtvyaWpm1U/qTlnK4\ntbdyuOqGK1KoLQWW8y632GljiyFG4wU1eiZGGmObi1ZNwNs/NFnPeH9c4c4iO9l1dxW8GLhloYCw\nHm5/SanKtqW2M/SHHfqDTvu9P9BZOOsUnHa+M53X46/v8JkfL96hefUz3+E7fHV5iKU3ZbAtt5Ql\ni5Jn9DVERCSyRW0Jd7kvAZCwMI6/WT5z/y1oeHyYd9re5eSXfyTWYuXvczZxb8ZarDHWGXsNERGZ\nG6K2hP/3nAeAH986c+dm/+Rp5r9af8ng5SEyE9KpzC0l1Tbzb3OLiMjcEJUlPDY+gevrb0zKWpIQ\n9PMNj4+wv+1dTnx5GqvFyn3LNlKUWaDdr4iIBBSVJVz97yf9x2tuTwnquZoutvKfrb9kYGyQzIQ0\nKnOd2v2KiMh1icoS/uYDWY//7Eff+zKVI74R9rf9huPdp7BarGzJLmHD0nXa/YqIyHWLuhJ+59A5\n//Gqv/p+V6pqvvgpe1v3MzA2SIYtlcrbnKTZgttRi4hI9ImqEh4bn+D9E38G4L78rBt+/IhvFFfb\nbznWfZIYSww/zS6mZGmhdr8iIvK9RFUJ/9Pu//Ef/8M9y27osS19Z9nbsp/+sQHSbClU5jrJSEid\n6YgiIhJFoqaEO91e//G/PHT3dT9u1DeK69zvOHrhBDGWGDZnFVGSVUhsTNSMTkREZknUNMkvft0E\nwA8zbyY9yXZdj2nta2Nv6376RvtJXbSEbbc5yUhIm82YIiISRaKihPu+GuWC58oVsrZt/OG09x/1\njfGr9vc40tVAjCWGTVn3sjHrXu1+RURkRkVFq+y76hPRS+wLA973bP859rS8w8XRflIWJbMt10nm\nTemzHVFERKLQnC/hnr5hTrb0AlBV+ePvvN+ob4xft7/P77uOYcFCydJCNmUXEafdr4iIzJI53TAj\nYz52/tuVryu0LYhjeVrilPdr62+nruUdLo72sWRRMttyS1l6U0Yoo4qISBSa0yX8qyOf+49feXT1\nt9bHJi7zbvv7HO48igULxZnr+Gl2MXHWuFDGFBGRKDVnS9g3Mcl/n+oA4J9LV7Jg3rV/1XMDn1PX\nsg/PyEWSFzqozC0lOzHTjKgiIhKl5mwJf/MtSQB52Xb/8eWJy7z72QEOdxwFoCizgC3ZG7T7FRGR\nkJuTJTwy5uPA15envH9dDpavv6ShfeAL9rTso3fEg2PhLVTmOlmWuNTMqCIiEsXmZAm3dQ74jzf+\nJJPLE+P85rMDHOr4AwD3Zqxly7IS4rX7FRERE83JEn7rdy0ArPlRCp9/9WfqWurpHfbgWHALFbml\n5NycZW5AERER5mgJj4z5wDJBXOanvHq6AYDCjHv4u2UlxFvjTU4nIiJyxZwr4f6hMSbm9zNv2Z84\n7r7ELQt+QGVuKctvzjY7moiIyDXmVAmPT4zz8yNvM++2JiwWWJeez305m5in3a+IiISh6yrh2tpa\nzpw5g8Vioaqqittvv92/duzYMV599VWsVitr165lx44dsxY2kPNfdfAfzfV45vdijC7g/uX/yPoV\nK03JIiIicj2mLeGTJ09y/vx56uvraW9vp6qqivr6ev/6Cy+8wFtvvUVycjIVFRWUlJSwfPnyWQ19\ntaHhEeqbf8uRL49gYODryWS8YwXrN6uARUQkvE1bwg0NDRQVFQGQk5PD4OAgXq8Xm81GR0cHiYmJ\npKSkAFBQUEBDQ0PISvjT7h5+fvoNYhZ6mRxbwPhnf83k0A948n4VsIiIhL9pS9jj8ZCXl+e/bbfb\ncbvd2Gw23G43drv9mrWOjo6Az7d48UJiY61BRP6LE52fYpl/CV9PBrfG/S133JPKxtVZJCzUOeDv\nIykpwewIEU8zDJ5mGDzNMHihmuENfzDLMIygXrC/fziox1/tJ+m3si73XxkZuuz/s9FLY4xeGpux\n14gWSUkJuN1DZseIaJph8DTD4GmGwZuNGX5XqcdM90CHw4HH4/Hf7u3tJSkpacq1np4eHA5HsFlv\niG3+vJC+noiIyEyZtoTz8/M5ePAgAE1NTTgcDmw2GwDp6el4vV46Ozvx+XwcOnSI/Pz82U0sIiIy\nR0z7dvQdd9xBXl4eZWVlWCwWqqurcblcJCQkUFxcTE1NDU8//TQAmzdvJjtbF8UQERG5HhYj2JO8\nN2g23mfX+Y/gaY7B0wyDpxkGTzMMXlidExYREZHZoRIWERExiUpYRETEJCphERERk6iERURETKIS\nFhERMYlKWERExCQqYREREZOE/GIdIiIicoV2wiIiIiZRCYuIiJhEJSwiImISlbCIiIhJVMIiIiIm\nUQmLiIiYJKJKuLa2FqfTSVlZGZ988sk1a8eOHWPr1q04nU5ef/11kxKGv0AzPH78OKWlpZSVlbFz\n504mJydNShneAs3wG7t376aysjLEySJHoBl2d3dTXl7O1q1bef75501KGBkCzXHv3r04nU7Ky8t5\n8cUXTUoY/s6ePUtRURF79uz51lpIesWIECdOnDAeeeQRwzAM49y5c0Zpaek165s2bTIuXLhgTExM\nGOXl5UZbW5sZMcPadDMsLi42uru7DcMwjMcff9w4fPhwyDOGu+lmaBiG0dbWZjidTqOioiLU8SLC\ndDN84oknjA8++MAwDMOoqakxurq6Qp4xEgSa49DQkLF+/XpjfHzcMAzD2L59u/Hxxx+bkjOcXbp0\nyaioqDCee+45o66u7lvroeiViNkJNzQ0UFRUBEBOTg6Dg4N4vV4AOjo6SExMJCUlhZiYGAoKCmho\naDAzblgKNEMAl8vFkiVLALDb7fT395uSM5xNN0OAl19+maeeesqMeBEh0AwnJyc5ffo0hYWFAFRX\nV5Oammpa1nAWaI5xcXHExcUxPDyMz+djZGSExMREM+OGpfj4eN58800cDse31kLVKxFTwh6Ph8WL\nF/tv2+123G43AG63G7vdPuWa/EWgGQLYbDYAent7OXr0KAUFBSHPGO6mm6HL5eLuu+8mLS3NjHgR\nIdAM+/r6WLRoES+99BLl5eXs3r3brJhhL9Ac582bx44dOygqKmL9+vWsXLmS7Oxss6KGrdjYWObP\nnz/lWqh6JWJK+P8zdLXNoE01w4sXL/Loo49SXV19zQ+4TO3qGQ4MDOByudi+fbuJiSLP1TM0DIOe\nnh62bdvGnj17aG5u5vDhw+aFiyBXz9Hr9fLGG29w4MABPvzwQ86cOUNra6uJ6eS7REwJOxwOPB6P\n/3Zvby9JSUlTrvX09Ez59kK0CzRDuPKD+/DDD/Pkk0+yZs0aMyKGvUAzPH78OH19fTzwwAM89thj\nNDU1UVtba1bUsBVohosXLyY1NZXMzEysViurV6+mra3NrKhhLdAc29vbycjIwG63Ex8fz5133klj\nY6NZUSNSqHolYko4Pz+fgwcPAtDU1ITD4fC/fZqeno7X66WzsxOfz8ehQ4fIz883M25YCjRDuHIu\n88EHH2Tt2rVmRQx7gWa4ceNG3nvvPfbt28drr71GXl4eVVVVZsYNS4FmGBsbS0ZGBl988YV/XW+j\nTi3QHNPS0mhvb2d0dBSAxsZGsrKyzIoakULVKxH1LUq7du3i1KlTWCwWqquraW5uJiEhgeLiYj76\n6CN27doFwIYNG3jooYdMThuevmuGa9as4a677mLVqlX++27ZsgWn02li2vAU6N/hNzo7O9m5cyd1\ndXUmJg1fgWZ4/vx5nn32WQzDYMWKFdTU1BATEzH7hZAKNMe3334bl8uF1Wpl1apVPPPMM2bHDTuN\njY288sordHV1ERsbS3JyMoWFhaSnp4esVyKqhEVEROYS/XopIiJiEpWwiIiISVTCIiIiJlEJi4iI\nmEQlLCIiYhKVsIiIiElUwiIiIiZRCYuIiJjk/wDsnGJDI2kU/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "PIdhwfgzIYII", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**See if you can tune the learning settings of the model trained at Task 2 to improve AUC.**\n", + "\n", + "Often times, certain metrics improve at the detriment of others, and you'll need to find the settings that achieve a good compromise.\n", + "\n", + "**Verify if all metrics improve at the same time.**" + ] + }, + { + "metadata": { + "id": "XKIqjsqcCaxO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "40962832-0c45-4a82-a55c-eecd6066d571" + }, + "cell_type": "code", + "source": [ + "# TUNE THE SETTINGS BELOW TO IMPROVE AUC\n", + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000005,\n", + " steps=500,\n", + " batch_size=20,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss (on training data):\n", + " period 00 : 0.60\n", + " period 01 : 0.58\n", + " period 02 : 0.58\n", + " period 03 : 0.56\n", + " period 04 : 0.55\n", + " period 05 : 0.55\n", + " period 06 : 0.54\n", + " period 07 : 0.54\n", + " period 08 : 0.53\n", + " period 09 : 0.53\n", + "Model training finished.\n", + "AUC on the validation set: 0.73\n", + "Accuracy on the validation set: 0.75\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xlc1HX+wPHXd2a4b5ARRFFEPEAR\nzyTvA0XN1DRFW8uj3Fpbrfy1W5Zpx1q72X24ZZdtppSZHR7kkZrmhXhyiKKigty33Mz8/nBjMwEH\nZOALvJ+Pxz4eOzOfz3few3um3n3fn+/3oxiNRiNCCCGEEE2UprEDEEIIIYS4HVLMCCGEEKJJk2JG\nCCGEEE2aFDNCCCGEaNKkmBFCCCFEkybFjBBCCCGaNClmhGjmunTpQkpKSr0c68qVK/j7+9fLsRrD\nrFmzGDRoEKGhoYwZM4Zx48axZs2aWh/n5MmTzJs3r9bz/P39uXLlSq3nCSFqpmvsAIQQoiE9+eST\nTJw4EYD09HSmT5+Oj48PQ4YMMfkYgYGBfPzxx+YKUQhRS3JmRogWqqSkhOeee44xY8YwduxYXnnl\nFSoqKgD45ZdfGDp0KGPHjiU8PJzevXvf8oxCTk4OixYtqjzj8eGHH1a+9sYbbzBmzBjGjBnD/fff\nT2pqao3P/2bPnj1MmDDhhucmTpzI3r17OXz4MJMnT2bcuHGMHTuWrVu31vpv4O7uTmhoKPv37wfg\n3Llz/OlPf2LMmDFMmDCBU6dOAXDo0CHCwsJYtGgRixcv5tChQ4SEhNzy77hnzx5CQkIYO3YsH330\nUeX7Xrt2jQULFjB27FhGjhzJs88+S1lZWa3jF0JcJ8WMEC3UmjVrSElJYfPmzXz77bdERkby448/\nUlFRwVNPPcULL7zA1q1buXjxIkVFRbc83uuvv46TkxMRERF8+eWXrFu3jsjISM6ePcu2bdv48ccf\niYiIICQkhAMHDlT7/O8FBweTkpLC5cuXAbh8+TIpKSnceeed/POf/+Tpp59my5YtrFq1ih07dtTp\n71BeXo6lpSUGg4EFCxYwceJEIiIiWL58OX/5y18oLy8HICYmhrCwMF577TWT/47PPPMMy5YtY+vW\nrWg0msoiZ9OmTTg6OrJ161YiIiLQarWcO3euTvELIaSYEaLF2r17N9OmTUOn02Ftbc2ECRPYv38/\nFy9epLS0lKFDhwLX15kYDIZbHm/Pnj3MnDkTAGdnZ0JCQti/fz+Ojo5kZWXxww8/kJuby6xZs5g0\naVK1z/+epaUlw4cPZ9euXQDs2LGDUaNGodPpcHNzY9OmTSQkJNChQ4ebigxTXL58mW3bthESEsL5\n8+fJzMxk6tSpAPTp0wdXV1eOHTsGgLW1NcHBwbX+Ow4aNAiAyZMnV8757bj79u3DYDDw/PPP061b\nt1rHL4S4TooZIVqorKwsnJycKh87OTmRmZlJbm4ujo6Olc/r9XqTj/f7eY6OjmRmZtK6dWveeecd\ntm3bxrBhw5g/fz5Xr16t9vk/GjNmzA3FzLhx4wBYsWIFNjY2zJkzh9GjR7Nt2zaT4nz11VcrFwA/\n8cQTPPXUUwQGBpKXl0dxcTFjx44lNDSU0NBQMjMzycnJqfz7VPe5q/s72tvb3/D8b8aOHcvs2bN5\n6623CA4O5vnnn6e0tNSk+IUQN5NiRogWqlWrVpX/oobra15atWqFvb09hYWFlc9nZGTc1vEABgwY\nwIcffsj+/fvx9PRk5cqVNT7/e4MHDyYuLo6LFy9y8eJFBgwYUPl+S5cuZe/evTz33HM8/fTTXLt2\n7ZZxPvnkk2zbto2IiAi+/vrryuJIr9djZ2fHtm3bKv+3b9++yrUxtf3cTk5OFBQUVD6flZV1w7yw\nsDC+/vprtmzZQnR0NJs2bbpl7EKIqkkxI0QLNWzYMDZs2EBFRQWFhYV89913DB06lA4dOlBeXs6h\nQ4cAWLduHYqimHS88PBw4Pq/uLdv386wYcPYt28fzz//PAaDAVtbW7p27YqiKNU+/0eWlpYMGjSI\nV199lZEjR6LVaikrK2PWrFmkpaUBEBAQgE6nQ6Op+z/SvLy88PDwqDzDk5WVxRNPPHFDYVfd567q\n7+jt7Y1Wq638O27cuLHy87333nts2LABgNatW9O2bVuT/sZCiKrJpdlCtACzZs1Cq9VWPn7ppZeY\nNWsWly9fZvz48SiKQmhoKGPHjkVRFJYvX87TTz+Ng4MDc+bMQaPRoCgKRqORiooKQkNDbzj+6tWr\neeyxx1i+fDmhoaFoNBrmz59PYGAgJSUlbN68mTFjxmBpaYmrqysrVqxAr9dX+XxVxowZw1//+lc+\n++wzACwsLJg6dSqzZ88GQKPR8Oyzz2JjY8P27dvZtWsXL7/8cq3+Roqi8Prrr7N8+XLefPNNNBoN\nc+bMwdbW9pZ/2+r+ji+++CJLlizB0tKSe+65p/JYEydO5Omnn2b16tUoikLPnj0rLxcXQtSeYjQa\njY0dhBBCvQoLC+nVqxeRkZE4ODg0djhCCHETaTMJIW4yZcoUtmzZAsCWLVvw9fWVQkYIoVpyZkYI\ncZPIyEheeOEFSkpKsLOzY/ny5QQGBjZ2WEIIUSUpZoQQQgjRpEmbSQghhBBNmhQzQgghhGjSmvyl\n2enp+WY7touLLdnZNd9jQjQOyY06SV7US3KjTpIX07m7V38RgpyZqYFOp731INEoJDfqJHlRL8mN\nOkle6ocUM0IIIYRo0qSYEUIIIUSTJsWMEEIIIZo0KWaEEEII0aRJMSOEEEKIJk2KGSGEEEI0aVLM\nCCGEEKJJk2JGCCGEaMZ2795p0ri33nqN5OSkal9/6qkn6iukeifFjBBCCNFMXb2azI4dESaNXbRo\nMW3aeFX7+iuvvF5fYdW7Jr+dgRBCCCGq9vrr/yQ2NprBg/sxevRYrl5N5s033+fll18gPT2NoqIi\n5s6dz8CBg3n00fk88cTf+PnnnVy7VsClS4kkJV1h4cLFBAcPZPz4kWzevJNHH51Pv353EBUVSU5O\nDv/85xu0atWKF15YSkrKVXr0CGTXrh18++2WBvucUswIIYQQDeCrXec4Epd2w3NarUJFhbHOx+zX\nVc+0EZ2qfX3GjFls3PgVPj6+XLp0kfff/4js7Cz69x/A2LF3kZR0haVLn2LgwME3zEtLS2Xlyrc5\nePBXvvvuG4KDB97wup2dHW+9tYpVq95h795dtGnTltLSEj788DP27/+Fr75aV+fPVBdSzFQjISmX\nYgNYSyNOCCFEM9CtWwAADg6OxMZG8/33G1EUDXl5uTeNDQwMAkCv11NQUHDT6z179qp8PTc3l8TE\nC/To0ROA4OCBaLUNu+eUFDPV+PCHaErKDLwwrz+OtpaNHY4QQogmbtqITjedRXF3dyA9Pb9B3t/C\nwgKA7du3kZeXx3vvfUReXh4PPjjrprG/L0aMxpvPHP3xdaPRiEZz/TlFUVAUpb7Dr5Gcd6jGyN5t\nybtWypfb4xs7FCGEEKJONBoNFRUVNzyXk5ODp2cbNBoNe/bsoqys7Lbfx8urLWfOxABw+PDBm97T\n3KSYqcaovu3o2t6Fw7FpHD2T3tjhCCGEELXWvr0PZ87Ece3a/1pFw4aN4Ndff2HRokewsbFBr9fz\n6aerb+t97rxzMNeuXeORR+Zx4sQxHB2dbjf0WlGMVZ0/akLMeXqu2AALX9uNrbWOlx68A3sbC7O9\nl6idhjw1K0wneVEvyY06NZe85OXlEhUVybBhI0lPT2PRokf48stv6vU93N0dqn1N1szUoF1rByYN\n9mHD7gTW7YjnoQkBjR2SEEIIoTq2tnbs2rWDL7/8D0ajgb/+tWFvsCfFzC2M6d+Oo2fSOBCdSr9u\nrQnq1KqxQxJCCCFURafT8cILLzfa+8uamVvQajTMGdcNrUbh821xFBbf/kIpIYQQQtQfKWZM0Nbd\nnrsHdiCnoJT1u841djhCCCGE+B0pZkw0dkB7vPX27Dt5ldPnMxs7HCGEEEL8lxQzJtJpNcwdf73d\n9Nm2OIpKyhs7JCGEEEIgxUyteLd2YNyA9mTllfD1z9JuEkII0TxMnTqBwsJC/vOfzzh9+uQNrxUW\nFjJ16oQa5+/evROALVt+YM+en80WZ3WkmKmlCQM74OVux+7jycRezGrscIQQQoh6M2vWbLp3D6zV\nnKtXk9mxIwKAceMmMHTocHOEViO5NLuWdFoNc8d146XPI/l0axwvzOuPtaX8GYUQQqjP3Ln3sWLF\na3h4eJCScpWnn16Mu7ueoqIiiouLefzxJ/H37145/h//WM6wYSMJCurFM8/8jdLS0spNJwF++mkr\nGzaEo9Vq6NDBl7///Rlef/2fxMZG8+mnqzEYDDg7OzNlynTef/8tTp06QXl5BVOmTCM0dDyPPjqf\nfv3uICoqkpycHP75zzfw8PC47c8p/xauhsFowGAwVPmaj6cjoXd4s/XgJb7Zc577Qjo3cHRCCCGa\nmo3nfuRY2qkbntNqFCoMdb8Rfy99D+7pdFe1rw8ZMpz9+/cyZco0fvllD0OGDMfX148hQ4Zx9OgR\n1q5dwz/+8epN8yIittKxoy8LFy5m586fKs+8FBUV8dpr7+Dg4MCCBQ+RkHCOGTNmsXHjV8yZ8xAf\nf/wBAMePR3H+fAKrVn1CUVERDzwQxpAhwwCws7PjrbdWsWrVO+zdu4tp02bW+fP/xqxtphUrVjB9\n+nTCwsI4efLGHtzVq1eZMWMGU6dO5bnnnjNpTkNaGfke/9j7DgZj1QXNpEE+eLrZsvPoFeIv5zRw\ndEIIIcStXS9mfgFg3749DBo0lD17dvLII/NYteodcnNzq5x38eJ5unfvCUCvXn0qn3d0dOTppxfz\n6KPzSUy8QG5u1f/+i4uLISioNwA2NjZ06NCRy5cvA9CzZy8A9Ho9BQUFVc6vLbOdmTl8+DCJiYmE\nh4eTkJDAkiVLCA8Pr3z9lVdeYe7cuYSEhPD888+TnJzMlStXapzTkNxt3YhMPc5uh32M8B5y0+sW\nOi1zxnXj5f8c5ZMtsTw/tz9WFtoqjiSEEELAPZ3uuuksirn3ZurY0ZfMzHRSU1PIz8/nl19206qV\nnqVLXyQuLoZ3332zynlGI2g0CgCG/545Kisr4/XX/8Vnn32Jm1sr/va3x6p9X0VR+P3Oj+XlZZXH\n02r/9+/K+toe0mxnZg4cOMCoUaMA8PX1JTc3t7ICMxgMHD16lBEjRgCwbNky2rRpU+OchjbV724c\nrez5/vw2Ugur3jW7k5cTIf3akZZdxKZfzjdwhEIIIcStBQcP4sMP32fw4KHk5ubg5dUWgD17fqa8\nvOrbjHh7tycuLhaAqKhIAAoLr6HVanFza0VqagpxcbGUl5ej0WioqKi4YX7XrgEcO3b0v/MKSUq6\nQtu23ub6iOYrZjIyMnBxcal87OrqSnr69aIgKysLOzs7Xn75ZWbMmMFrr712yzkNzcHSngf7zKDM\nUM4XsV9X226aPKQjehcbfjpymYSkqk/XCSGEEI1l6NDh7NgRwbBhIwkNHU94+Foef3wBAQHdyczM\nZPPm72+aExo6nujoUyxa9AiXLyeiKApOTs7063cHDz54P59+upqZM2fx9tuv0769D2fOxPH2269V\nzu/ZM4guXbqyYMFDPP74Ah5++FFsbGzM9hkVY32d4/mDpUuXMnTo0MozLTNmzGDFihX4+PiQnp5O\nSEgI33//PV5eXsyfP59Zs2axc+fOaudUp7y8Ap3OfO2d139dzcHLUdwfNJW7uoysckz0+Uyeem8f\nbfX2vPXEMCyl3SSEEEI0GLOtmdHr9WRkZFQ+TktLw93dHQAXFxfatGmDt/f1U07BwcGcPXu2xjnV\nyc4uNEP017m7OzCp/V2cTjnDupOb8LH2QW97czx6B0tG9m7LzqgrfLzpFFOH+ZotJnGdufvMom4k\nL+oluVEnyYvp3N0dqn3NbG2mgQMHEhFx/VKu6Oho9Ho99vb2wPWtwtu1a8fFixcrX/fx8alxTmNx\nsLRnepfJlBnK+U8N7aYpwzrSysmabYcuceFqXgNHKYQQQrRcZjsz07t3bwICAggLC0NRFJYtW8bG\njRtxcHAgJCSEJUuW8NRTT2E0GuncuTMjRoxAo9HcNEcNeusDidIHciztJLuv7GdEu8E3jbG21DFn\nbFdeXX+cT7bEsmx2P3RaucGyEEIIYW5mWzPTUMx5eu73p//ySwt46dBrlFSUsqT/Y1W2mwA+3xbH\n7uPJ3D2wA5MGdzRbbC2dnJpVJ8mLeklu1EnyYrpGaTM1Nw6W9kzrPIkyQ1mN7aZ7h3fC1dGKzQcS\nuZQqX1AhhBDC3KSYqYU+rXvSy70H53MvsvvK/irH2FjpmB3alQqDkU82x1JeUXXRI4QQQoj6IcVM\nLU3vMhl7Czu+T9hGWjU30+ve0Y1BPTy5lFbA1oOJDRyhEEII0bJIMVNLv2831XQzvbCRnXC2t+T7\n/RdJSm+cuxgLIYQQLYEUM3XQWx9IkHsPEnIvsufKr1WOsbW24P7f2k1bYqmoZgduIYQQQtweKWbq\nQFEUwrpMxs7Clu8Stlbbbgrq1IrggNZcuJrPT4cvN3CUQgghRMsgxUwdOVjaM92EdtOMUZ1xtLPk\n218ucDXzWgNHKYQQQjR/Uszcht76nrdsN9nbWDBrdGfKKwx8siW2cit1IYQQQtQPKWZug6IoTO8y\n6Xftpowqx/XpoqdfVz0JSXnsOHqlgaMUQgghmjcpZm6To6WDSe2m+0Z3xt7Ggo17Ekg14+aYQggh\nREsjxUw9uN5u6k5C7oVq202Otpb8aXRnSssNfLolDkPT3kVCCCGEUA0pZurB9XbT5Fu2m/p11dO7\nszvxl3P4OSqpgaMUQgghmicpZuqJo6VD5c301sZV3W5SFIVZoztjZ61jw+4E0nOKGiFSIYQQonmR\nYqYe9dH3pKd7d87lXGDvlQNVjnGyt2LGKD9Kyir4bGscTXzTciGEEKLRSTFTjypvpqez5buELaQX\nZlY5LjjAg0BfN2ITs9l7IrmBoxRCCCGaFylm6tn1dtNESg1lfBH3VbXtpgdCu2JjpSN81zmy8oob\nIVIhhBCieZBixgz6tA66ZbvJxcGKsBGdKC6t4LNt0m4SQggh6kqKGTNQFIXpnW/dbhoU6EmAjyun\nz2ex/1RKA0cphBBCNA9SzJiJk5Vp7abZoV2xstSyfudZsvNLGiFSIYQQommTYsaM+rQOomergOvt\npqSq201uTtZMG96JwpJy/hNxRtpNQgghRC1JMWNG12+md8/1dtO5LWQUVd1uGhrUhq7ezhw/l8Gh\nmNQGjlIIIYRo2qSYMTMnKwfu/a3dVM3eTRpFYfa4blhaaFi7PZ7ca6WNEKkQQgjRNEkx0wD6tg4i\nsFUAZ3PO80vSwSrH6J1tmDLUl2vF5Xzx05kGjlAIIYRouqSYaQDXb6Z3D7Y6Gzad21xtu2lkn7b4\ntXXi6Jl0IuPSGjhKIYQQommSYqaBmNpumjuuGxY6Df/56Qz5hdJuEkIIIW5FipkG1K91r1u2m1q7\n2jJ5cEfyC8v4csfZBo5QCCGEaHqkmGlAv+3dZKuzYVNC9Vc3je7XDt82jhyKSeVYfHoDRymEEEI0\nLVLMNDAnK8fr7aaK0urbTRqFOeO6odMqfB5xhoKiskaIVAghhGgapJhpBP1a96JHK3/O5pxnXzXt\npjat7Jg4yIfca6WE75R2kxBCCFEdKWYagaIozPjv1U3fJmwhoyirynGhd3jT3sOB/adTOJlQdUtK\nCCGEaOmkmGkkN7abqt67SavRMG9cN7QahTXb4igsLm+ESIUQQgh1M2sxs2LFCqZPn05YWBgnT568\n4bURI0Ywc+ZMZs2axaxZs0hNTcVgMLB06VLCwsKYNWsWCQkJ5gyv0V1vN3Wrsd3UVm/PhDs7kJ1f\nwlc/S7tJCCGE+COduQ58+PBhEhMTCQ8PJyEhgSVLlhAeHn7DmNWrV2NnZ1f5ePv27eTn57N+/Xou\nXbrEP/7xDz744ANzhdjorrebpnAu5zW+TdiCv1tXWtm43jRuXHB7jsans/fEVfp1bU2Az81jhBBC\niJbKbGdmDhw4wKhRowDw9fUlNzeXgoKCGudcvHiRwMBAALy9vUlOTqaiosJcIaqCk5Uj9/rdTWlF\nKWurubpJp9Uwd1w3NIrCZ1vjKCqRdpMQQgjxG7OdmcnIyCAgIKDysaurK+np6djb21c+t2zZMpKS\nkujTpw+LFy+mc+fOrFmzhgceeIDExEQuX75MdnY2rVq1qvZ9XFxs0em05voYuLs7mO3YvxnfaijR\nuTEcTT7FibzjjO40tMo4po7046sd8Ww+dIlHpvQ0e1xq1xC5EbUneVEvyY06SV5un9mKmT8yGo03\nPF64cCGDBw/GycmJBQsWEBERQWhoKFFRUdx333106dKFjh073jTvj7KzC80Ws7u7A+np+WY7/u/d\n43M3MWnn+Pz4RrwtO+BWRbtpZFAb9h9PYsuvF+ne3oWu7V0aJDY1asjcCNNJXtRLcqNOkhfT1VT0\nma3NpNfrycjIqHyclpaGu7t75eNJkybh5uaGTqdjyJAhxMfHA/D444+zfv16nn/+efLy8nBzczNX\niKribOVU2W76Im5Dle0mC52GueO7oSjw6dZYSkqbdwtOCCGEMIXZipmBAwcSEREBQHR0NHq9vrLF\nlJ+fz7x58ygtvb6R4pEjR/Dz8yMuLo6nn34agL179+Lv749G03KuHu/v0Zvubt2Izz7H/uRDVY7x\n8XQktL836TnFfLO3eV/tJYQQQpjCbG2m3r17ExAQQFhYGIqisGzZMjZu3IiDgwMhISEMGTKE6dOn\nY2Vlhb+/P6GhoRiNRoxGI1OnTsXKyoqVK1eaKzxVUhSFGV3v4aVDr/Ptuc34u3apst00cZAPUWcz\n2Bl5hX5d9fi1dW6EaIUQQgh1UIy3WpSicubsNTZWL/PQ1aN8HhtOZ5dOLAx6CEVRbhpz7kouL39x\nFL2rLc/P6YelhfkWQauR9JnVSfKiXpIbdZK8mK5R1syIuvt9u2lfctU30+vU1olRfduRmlXIpn0X\nGjhCIYQQQj2kmFGh39pNNjobvj23mcxq9m66Z2hH9M42RBy+REJybgNHKYQQQqiDFDMq5WzlxFS/\nCZRUlLI2bkOVl6hbWWiZM64rRiN8uiWOsvKbr4ASQgghmjspZlTsDo8+dHfrypnsc+yr5uqmLt4u\njOjtRXLGNX74VdpNQgghWh4pZlTsertpCjY6a74992O17aapw3xxc7Rmy4FLJKbIQjIhhBAtixQz\nKne93XR3je0ma0sds8d1xWA08vHmWMorpN0khBCi5ZBipgn4fbupupvpBXRwZUjPNlxJL2DzgcQG\njlAIIYRoPFLMNAG/bzdtPPcjmUXZVY6bNrwTLg5W/PjrRS6n1bxDuRBCCNFcSDHTRDhbOTHlv+2m\nL6tpN9la63ggtCsVBiOfbI6lwiDtJiGEEM2fFDNNyACPPgS4dSUu+2y17aZAXzcGdvcgMTWfbYcu\nNXCEQgghRMOTYqYJURSFmSa0m8JG+eFkb8l3+y6QlHGtgaMUQgghGpYUM02Ms5UTUzpNqLHdZGdt\nwf1julBeYeTTLbEYDE16+y0hhBCiRlLMNEEDPPvi79aFuOyz/Jp8uMoxvfzcGeDfmvPJefx05HID\nRyiEEEI0HClmmiBFUZjZ5X/tpqziqttNM0M642hrwbe/nCclq7CBoxRCCCEahhQzTZSLtTNTOk2g\nuKKEtbFVt5vsbSz40+gulJUb+GRzLMWl5Y0QqRBCCGFeUsw0Yaa0m/p21dO/m55zSbks//QICUmy\nu7YQQojmRYqZJuy3dpO1tuZ207zx/owd4E16dhEvfxHFpl/Oyz1ohBBCNBtSzDRxLtbOTPGrud1k\nodNw77BO/G1mL1wcLPl+/0Ve/iKKVFlHI4QQohmQYqYZCPbsi7/rf9tNV6tuNwF08Xbh+bl3EBxw\n/SqnZZ8eZs/xpCoLICGEEKKpkGKmGfjtZnrWWms2nq2+3QTXtzx4aEIAD08MQKfRsGbbGd755hR5\n10obMGIhhBCi/kgx00z8vt30Zdw3tzzb0r9ba16Y159u7V04fi6D5z4+xPFzGQ0UrRBCCFF/pJhp\nRoI9+9LNtTOxWfEcuHrkluNdHa1ZHBZE2IhOFJaU8/aGk3y+LY6S0ooGiFYIIYSoH1LMNCOKonBf\n16lYa6355uyPZBfn3HKORlEY3d+b5x7oR1t3O3YfT2b5p4e5cDWvASIWQgghbp8UM83M9XbTXRRX\nFLO2mr2bqtJWb8/SB/oypn87UrOL+MfnR/l+/wW5hFsIIYTqSTHTDAV79qtVu+k3Fjot00f48WRY\nEE72lmz65QKvrI0iLVsu4RZCCKFeUsw0Q/9rN1mZ3G76vW4dXHlhXn/6d9OTkJTHsk+P8MuJZLmE\nWwghhCpJMdNMuVg7c08d2k2/sbO24OGJ3Zk/wR+NovDp1jje3XiK/EK5hFsIIYS6SDHTjN3p2f93\n7abIOh1jQIAHL8ztT5d2zhw7m8FzHx/mZEJmPUcqhBBC1J0UM83Y/26mZ8WGs98RlXayTsdxc7Lm\nyRm9uHe4LwVFZbz59Qm++OkMJWVyCbcQQojGJ8VMM+dq7cKfuk3DYDTy8ekv+DwmnKLyolofR6NR\nGHtHe5Y+0BevVnbsikrihc+OkJiSb4aohRBCCNNply9fvryxg7gdhWZcw2FnZ2XW4zcUT7vWBLn3\n4GLeJWKyznAk5TjtHNrgZuNa62M52VsxqIcnxWUVnEzIZN/Jq2g1Cp28nFAUxQzRV6255Ka5kbyo\nl+RGnSQvprOzs6r2NcVoxktUVqxYwYkTJ1AUhSVLlhAYGFj52ogRI/Dw8ECr1QKwcuVK7O3t+fvf\n/05ubi5lZWUsWLCAwYMH1/ge6enmOzPg7u5g1uM3tApDBVsv7mDbxV0AjPAezISOoVhodHU6XvSF\nLD7eHENOQSl+bZ148C5/3J1t6jPkajW33DQXkhf1ktyok+TFdO7uDtW+Vrd/i5ng8OHDJCYmEh4e\nTkJCAkuWLCE8PPyGMatXr8bOzq7y8RdffIGPjw+LFy8mNTWVBx54gG3btpkrxBZHq9FyV8cxBLh1\nZU3MenZe2ktsZjyzA2bgZe9dMBR0AAAgAElEQVRZ6+MF+Ljywrw7+DziDJFxaSz75DD3hXTmzu4e\nDXqWRgghRMtmtjUzBw4cYNSoUQD4+vqSm5tLQUFBjXNcXFzIybl+T5S8vDxcXFzMFV6L5uPUnqf6\nPcagNneQfC2Ffx15mx2X9mAw1v5uv/Y2FjwyMYAH7+oGwMebY3l/02kKisrqO2whhBCiSmY7M5OR\nkUFAQEDlY1dXV9LT07G3t698btmyZSQlJdGnTx8WL17M+PHj2bhxIyEhIeTl5fHBBx/c8n1cXGzR\n6bRm+QxQ82mtps2BhZ6zGZTch1VHvuDbc5s5kxvPgjsewN3OrdZHm6h3ZEDPtryxLoqjZ9K5cDWP\nRWG96d1Fb4bYr2u+uWnaJC/qJblRJ8nL7TNbMfNHf1yas3DhQgYPHoyTkxMLFiwgIiKCkpIS2rRp\nw8cff0xcXBxLlixh48aNNR4324y32m8Jvcx2Fh14uu9jrIv7hhPp0Sze+hLTOk+kv0fvWreKNMDj\nUwPZeiiRTb9cYNmHBxjVpy1Th/liaVG/BWdLyE1TJHlRL8mNOkleTFdT0We2NpNerycjI6PycVpa\nGu7u7pWPJ02ahJubGzqdjiFDhhAfH09UVBSDBg0CoGvXrqSlpVFRIfcyMTcHS3se6nE/f+p6L0YM\nfB4bzkenv6Cg7Fqtj6XRKIwP7sCz9/fF082WHUev8MKaSLmEWwghhNmYrZgZOHAgERERAERHR6PX\n6ytbTPn5+cybN4/S0uuXox05cgQ/Pz/at2/PiRMnAEhKSsLOzq7yaidhXoqiENymH0v6P4GvUweO\np59ixaHXic48U6fjtfdwYNnsfozs05bkjGu89HkkWw4mYjDI/k5CCCHql1kvzV65ciWRkZEoisKy\nZcuIiYnBwcGBkJAQ1qxZw6ZNm7CyssLf35+lS5dSWFjIkiVLyMzMpLy8nEWLFhEcHFzje8il2fXP\nYDSw49Iefjz/ExXGCoZ4BTO503gstZZ1Ot7p85l8vDmW3GuldG7nzIN3daOV0+1dwt1Sc6N2khf1\nktyok+TFdDW1mcxazDQEKWbM53J+Mmti1nH1Wip621Y84B9GB0fvOh0rv7CUz7ed4Wh8OjZWWv4U\n0oUBAa3rfAl3S8+NWkle1Etyo06SF9PVVMzIHYBr0NLvzOhk5UCwZz9KDWWczozj4NVIwEhHpw5o\nlNp1KK0stPTrqsfNyZqT57M4HJtGSlYh3Tq4YFmHq9Faem7USvKiXpIbdZK8mK6mOwDL3kyiRhZa\nC6b4TWBh0HwcLR3YfGE7r0etIq0wvdbHUhSFwYFteH5ufzp5OXE4No3nPj5MzMUsM0QuhBCipZAz\nMzWQivl/Wtm4EuzZj5ySXGKyznAg+Qh2FnZ4O3jVulVkZ23BnT080Gk1nEzIZP+pFIpKyuni7YxW\nY1p9LblRJ8mLeklu1EnyYjo5MyPqha2FDbMDZjA3YCZajY71Zzay6uSn5JbUvt+r1WiYcGcHlszq\nQ2tXW346cpkX1kRyOa3mu0QLIYQQfyRnZmogFXPV2th70N+jN8kFKcRmxXMwJRJ321Z42NX+br8u\nDlYM7uFJYXH5f3fhTsZCp6Wjl2ONZ3wkN+okeVEvyY06SV5MJ2dmRL1ztnJiQdA87vWbSGlFKatP\nfc5/Yr+iqLy41seystQya0wXFk0NxNZKx1c/n2PlumNk5dX+WEIIIVoeKWZEnWkUDcPaDeSpfoto\n5+DFwauRvHz4Dc7lXKjT8Xp2asULD95BL79WxF3KYenHhzkYk1LPUQshhGhupM1UAzn9Zxp7S3sG\nePYFo7HyEu7SijJ8nX3Q1uES7v7d9Lg6WnMqIbPyEm7/9i5Y/O4SbsmNOkle1Etyo06SF9NJm0mY\nnU6jY4JvKE/0eQQ3axe2X9rNq5HvkFxQ+zMriqIwpGcbls/th28bRw7FpPLcJ4eJTcw2Q+RCCCGa\nOjkzUwOpmGvPxdqZYM9+XCu7RnTmGQ5cPYKVxoL2ju1qfQm3vY0FA3t4oFUUTpzL5NdTVykpraBz\nO2ccHKwlNyokvxn1ktyok+TFdDWdmZHtDGogt5m+PacyYlgbu4H8sgI6O/syy38artYudTpWQnIu\nq3+IIS27iLbu9jz34AB0RkM9Ryxul/xm1Etyo06SF9PVtJ2BtJmE2fRo5c8zdzxBj1b+xOcksOLw\nGxxOiaIu9bNvGyeWz+nH0KA2XEkv4Jl/7ycjt8gMUQshhGhqpJgRZuVgac+fezzAfV2nUmE0sCZm\nPZ9Er+VaWWGtj2VtqeOB0K5MGdqR9OwiXl13jOz8EjNELYQQoimRYkaYnaIo3NmmP0v6PU5Hp/ZE\npZ3kH4deJzYrvk7HGx/cgekhnUnPKebVdcfIvSb9ZiGEaMmkmBENxt3Wjcd7P8LdHUPJLyvg3eMf\n8VX8d5RW1L4YuW9MV0Lv8CYlq5DX1h+joKjMDBELIYRoCqSYEQ1Ko2gY02EET/Z9FA9bPXuu7OeV\nI29zKe9KrY6jKAr3DvNlZJ+2XEm/xmvrj1NYLAWNEEK0RFLMiEbh7dCWv/dbxPC2g0gtTOPVo++y\n9cJOKgwVJh9DURRmjPJjSE9PElPzeeOrExSVlJsxaiGEEGokxYxoNJZaC6Z2vpu/Bj2Eo6UDP16I\n4I2of5NemGnyMTSKwv1juhIc0JqE5Dze2nCSkjLTCyIhhBBNnxQzotF1dfXjmf6P00ffkwt5iaw4\n8gb7kw6ZfAm3RqMwd3w3+nbVE385h3e+OUlZuRQ0QgjRUkgxI1TB1sKWud3vY47/DLSKli/PfMO/\nT35GXqlpN5PSajTMn+BPUKdWxFzM5r1vT1NeITfVE0KIlkCKGaEqfT168Uz/x+ni0onTmbH849Dr\nnEiPNmmuTqvhkUnd6e7jysmETD74LpoKgxQ0QgjR3EkxI1THxdqZR4MeZKrf3RRXlPDhqTWsjf2a\n4vLiW8610GlYcE8Puno7czQ+nY9+jMVgaNI7dgghhLgFKWaEKmkUDcPbDeLvfRfS1r4Nv149wsuH\n3yQh5+It51pZaFk4NZBOXk4ciknls61xGJr2FmRCCCFqIMWMULU29h482fdRRrcfTmZxNm9EreK7\nhK2U3+ISbmtLHY/d25MOHg7sO3WVtT/F12lPKCGEEOonxYxQPZ1Gx0TfsTzW+2FcrV34KfFnVu77\nN2UVNd8kz9ZaxxPTg2jrbs/Px5II33VOChohhGiGpJgRTUYnZx+W9H+Mbq6dibp6mlUnP6XkFlsh\n2NtY8H9hQXi62fLTkct8+8v5BopWCCFEQzG5mCkoKAAgIyODyMhIDHKViGgE1jpr/hw4m75ePTmT\nfY53j39EUXlRjXMc7Sx5ckYv9C42/PhrIj/sv9BA0QohhGgI2uXLly+/1aAXX3yRnJwcvLy8mDZt\nGlevXuXgwYMMHz68AUKsWWGh+XZMtrOzMuvxRd1oFQ0jugzgYkYSMVlniMs6Ry99Dyy1FtXOsbbU\n0cvPnaj4dKLOZmBloaVTW6cGjLplkN+Meklu1EnyYjo7O6tqXzPpzExMTAz33nsvW7duZfLkybz1\n1lskJibWW4BC1JZOo2V2wAwGePblUv4V3oz69y1vsOfmZM2TM3vh4mDFVz+fY+fR2m1uKYQQQp1M\nKmZ+WzS5e/duRowYAUBpqVSSonFpFA33dZ3KEK87Sb6WwptR/ya7OKfGOXpnG/4vLAhHO0vWbo9n\n74nkBopWCCGEuehMGeTj48O4ceNwdXWlW7dubNq0CSenW5+iX7FiBSdOnEBRFJYsWUJgYGDlayNG\njMDDwwOtVgvAypUr2bt3L99//33lmNOnT3Ps2LHafibRgmgUDdM6T8RSa8GOS3t4I+rfLOo1Hzcb\n12rneLrZ8X9hQfzry2Os2RqHhU5DcIBHA0YthBCiPplUzLz00kvEx8fj6+sLgJ+fX+UZmuocPnyY\nxMREwsPDSUhIYMmSJYSHh98wZvXq1djZ2VU+vvfee7n33nsr52/durVWH0a0TIqiMMl3HJZaS7Zc\n2M7rUatY2Gs+rW3dq53T1t2exdODeHXdMT76MQYLrYa+XfUNGLUQQoj6YlKbKTY2lpSUFCwtLXnj\njTf417/+RXx8fI1zDhw4wKhRowDw9fUlNze38oooU7z33nv85S9/MXm8aNkURWG8TwiTfMeRU5LL\nG1GrSC5IqXFOew8HHp/eEysLLR98H83xsxkNFK0QQoj6ZFIx89JLL+Hj40NkZCSnTp1i6dKlvP32\n2zXOycjIwMXFpfKxq6sr6enpN4xZtmwZM2bMYOXKlTfczOzkyZN4enri7l79f1kLUZWQ9sOY1nkS\n+aUFvHns31zKr3mRr28bJx67tydarcL7m05x+kJmA0UqhBCivpjUZrKysqJDhw6Eh4czbdo0OnXq\nhEZTu/vt/fHOqwsXLmTw4ME4OTmxYMECIiIiCA0NBWDDhg1MnjzZpOO6uNii02lrFUttuLs7mO3Y\n4vZUl5up7mNwdXLggyNf8M7x1SwZ8iidW3Ws8Tj29tY8//FB3t14muUPDaCHbytzhd3syW9GvSQ3\n6iR5uX0mFTNFRUVs3bqVHTt2sGDBAnJycsjLy6txjl6vJyPjf6ft09LSbjjTMmnSpMr/P2TIEOLj\n4yuLmUOHDvHss8+a9AGyswtNGlcX7u4OpKfXfLmvaBy3yk0Phx7M9g9jTWw4L+x+i0cCZ9PZpVO1\n49u4WLNgcnfe+eYUz68+yOLpQXIfmjqQ34x6SW7USfJiupqKPpNOrzzxxBP88MMPPPHEE9jb2/Of\n//yH2bNn1zhn4MCBREREABAdHY1er8fe3h6A/Px85s2bV3l595EjR/Dz8wMgNTUVOzs7LC0tTQlN\niGr19ejFg93/hMFQwfsnPiE680yN4wN9W/HwxO6UlRt44+vjXLhac8EuhBBCHRSjiTvvFRYWcuHC\nBRRFwcfHBxsbm1vOWblyJZGRkSiKwrJly4iJicHBwYGQkBDWrFnDpk2bsLKywt/fn6VLl6IoCqdP\nn+bNN9/ko48+MukDmLOilYpZvWqTm5jMM3x4ag0Go5G53e8jyL17jeMPxaTy4Q/R2Frp+NvM3rTT\n29dHyC2C/GbUS3KjTpIX09V0ZsakYmbHjh0sX74cDw8PDAYDGRkZvPjiiwwdOrReA60LKWZaptrm\nJj47gVUnP6XcUM793abTz6NXjeP3n7rKx5tjcbC14O8ze9OmlV2N48V18ptRL8mNOkleTHfbbaaP\nPvqI77//ng0bNrBx40a+/vprVq1aVW8BCmFunV18WRj0EFZaS9bErOfX5MM1jh/Yw5NZY7qQX1jG\nq+uPkWrGtVlCCCFuj0nFjIWFBa6u/7ujauvWrbGwqH5TPyHUyMepPQt7zcfWwoa1cRvYfXl/jeOH\n9/IibKQfuQWlrFx3jIzcmnfnFkII0ThMKmbs7Oz45JNPiIuLIy4ujo8++uiGO/cK0VR4O7TlsV4P\n42jpwNdnv+OnxJ9rHD+6XzumDO1IZl4Jr647RnZ+SQNFKoQQwlTa5cuXL7/VoODgYCIiIli7di07\nd+7Ezs6OJUuWmLQI2NzMuXW6bM2uXreTGwdLewJb+XMyPYbj6acxGo34OXdEUZQqx3du54zRaOTY\n2QxOJmTSt6sea0vz3duoKZPfjHpJbtRJ8mI6Ozural8z+WqmP0pISKjcq6kxyQLglqk+cpNZlMXb\nxz4koziLke2GMLnT+GoLGqPRyNe7E9h26BJe7nb8bUYvHGzl9gF/JL8Z9ZLcqJPkxXS3vQC4Ks8/\n/3xdpwqhCm42rjze5xFa2+rZeXkv4fGbMBgNVY5VFIV7h/kysk9bktKv8Vr4cQqLyxo4YiGEEFWp\nczFTxxM6QqiKs5UTj/d+GC97T35JOsDa2A01FjQzRvkxpKcnl1ILeOOrExSVlDdwxEIIIf6ozsVM\ndafjhWhqHCztWdTrz7R3aMfBlEg+i15HhaGiyrEaReH+MV0JDmhNQnIeb319gpLSqscKIYRoGDXu\nzbRhw4ZqX/vjDthCNGV2Frb8tddDrDrxCUfTTlBmKGdu9/uw0Nz8E9FoFOaO70ZZhZHIuDTe2XiS\nRVMDsTDjhqdCCCGqV2Mxc/To0WpfCwoKqvdghGhMNjprFgQ9yIcn13AyI5oPTn7G/B73Y6m9eaGv\nVqNh/gR/yssNHD+XwXvfnubRe3qg09b5ZKcQQog6qvPVTGohVzO1TObMTVlFGR+d/oLTmbF0cvbh\nkcA5WOusqx5bbuCdb05y+kIWfTq78/CkALSallvQyG9GvSQ36iR5Md1t7800c+bMm9bIaLVafHx8\n+Mtf/kLr1q1vP8o6kmKmZTJ3bsoN5XwWs55jaSfp4OjNgp5zsbWwrXJsSVkFb319grhLOdzh35qH\n7vJHo2mZa8rkN6Nekht1kryY7rYvzb7zzjvx8PDggQceYM6cObRr144+ffrg4+PD008/XW+BCqEW\nOo2OOf4z6O/Rm4t5l3jr2IfklxZUOdbKQsvCqYF08nLiUEwqn22Nw9C0T3gKIUSTYlIxc/ToUV57\n7TVGjx7NqFGjeOWVV4iOjmb27NmUlcm9NkTzpNVomdVtGoPa3MGVgmTePPYBuSV5VY61ttTx2L09\n6eDhwL5TV1n7U7zcvkAIIRqIScVMZmYmWVlZlY/z8/NJTk4mLy+P/Hw5PSaaL42iIazLPYxoN5iU\na6m8EbWKrOLsKsfaWut4YnoQ7fT2/HwsifBd56SgEUKIBlDj1Uy/uf/++xk7dixeXl4oisKVK1f4\n85//zM8//8z06dPNHaMQjUpRFO7pdBeWWku2XdzJ60dXsbDXfPS2rW4aa29jweKwIP65NoqfjlzG\nQqdhytDG3/ZDCCGaM5OvZiooKODixYsYDAa8vb1xdnY2d2wmkQXALVNj5Sbi4i6+P78NJ0sH/tpr\nPp52VS9+zyko4ZW1UaRlFzF5sA8TBvo0cKSNQ34z6iW5USfJi+luewHwtWvXWLNmDe+++y6rVq0i\nPDyc4uLiegtQiKZiTIcRTPW7m9zSfN6M+jeX85OrHOdsb8WTYb1wc7Tm218usO3QpQaOVAghWg6T\nipmlS5dSUFBAWFgY06ZNIyMjg2effdbcsQmhSsPbDWJmlylcKyvkrWMfcCG36kLFzcmaJ2f2wsXB\niq9+PsfOo1caOFIhhGgZTCpmMjIy+Pvf/86wYcMYPnw4zzzzDKmpqeaOTQjVGuh1B/f7T6ekooR3\njn/I2ezzVY7TO9vwf2FBONpZsnZ7PHtPVH0mRwghRN2ZVMwUFRVRVFRU+biwsJCSkhKzBSVEU9Df\nozdzA+6j3FDBeyc+JjYrvspxnm52/F9YEPY2FqzZGseB0ykNHKkQQjRvJhUz06dPZ+zYsTz66KM8\n+uijjB8/npkzZ5o7NiFUr5e+B/N73I8RI/8+8SmnMmKqHNfW3Z7F04OwsdLx0eYYIuPSGjhSIYRo\nvkwqZqZOncq6deuYNGkSkydPZv369Zw7d87csQnRJHRv1Y1HAuegUTR8eOpzjqaeqHJcew8HHp/e\nEysLLR98H83xsxkNHKkQQjRPJu+I5+npyahRoxg5ciStW7fm5MmT5oxLiCalq6sfC4IexFJjwafR\nX3LwamSV43zbOPHYvT3RahXe33SK0+czGzhSIYRofuq8va/c2VSIG3Vy9mFhr/nY6Kz5T+xX/JJ0\noMpxnds5s3BKIKDwzsZTnJKCRgghbkudi5k/7qIthID2ju14rPfDOFjYs/7Mt+y8tLfKcf4dXHn0\nnh4YDEbe+OoE7286TXpOUZVjhRBC1KzG7QyGDh1aZdFiNBrJzq56fxohWjove08e6/0wbx/7kI3n\nfqS0oozQDiNu+i0F+rrx9J/68OWOeCLj0jh+NoMx/dsxbkB7bKxM2mlECCEEt9jOICkpqcbJXl5e\n9R5Qbcl2Bi1TU8hNRlEmbx/7kMzibEa3H87dHUOr/I8Dg9HIoZhUNuxOIDu/BCc7S+4Z2pGBPTzR\nNLEzoE0hLy2V5EadJC+mq2k7A5P3ZlIrKWZapqaSm+ziHN4+/iFphRkMazuQKX4T0ChVd3dLSivY\ndvgSWw8mUlpuoH1rB2aM8qNzO3Xsg2aKppKXlkhyo06SF9Pd9t5MQoi6cbF25rFej9DGzoPdV/az\nLm4jBqOhyrFWllomDvJhxfwBDAhoTWJqPq+sjZL1NEIIcQtSzAhhZk5WDizq/WfaOXjx69XDrIlZ\nT4Whotrxro7WzJ8QwDOz+tCxjSORcWk8s/oQ3+xJoKikvAEjF0KIpsGsbaYVK1Zw4sQJFEVhyZIl\nBAYGVr42YsQIPDw80Gq1AKxcuZLWrVvz/fff89FHH6HT6Vi4cCHDhg2r8T2kzdQyNcXcFJYV8f6J\nT7iQl0iQe3fmBMxEp6l5oW9TW0/TFPPSUkhu1EnyYrqa2kxmu2Ti8OHDJCYmEh4eTkJCAkuWLCE8\nPPyGMatXr8bOzq7ycXZ2Nu+99x7ffPMNhYWFvPPOO7csZoRoKmwtbHg06EE+OPkZx9NP88GpNTzU\n/X4stRbVztEoCsEBHvT2c69cT/Ppljh2HU0ibGQnuni7NOAnEEIIdTJbm+nAgQOMGjUKAF9fX3Jz\ncykoKLjlnODgYOzt7dHr9bz44ovmCk+IRmGts+KRnnPxd+tCTOYZVp34hOLyW2/a+vv1NMH/XU/z\nzy+P8f63p2Q9jRCixTPbmZmMjAwCAgIqH7u6upKeno69vX3lc8uWLSMpKYk+ffqwePFirly5QnFx\nMQ8//DB5eXn89a9/JTg4uMb3cXGxRafTmutj1HhaSzSuppybZ9wX8NaBTzicdJyVUe9wb/fx3Nmu\nLxpNzf994e7uwBJfd84kZrH6u9NEnknnREImk4b6MnWEH7bW1Z/laShNOS/NneRGnSQvt6/B7sz1\nx6U5CxcuZPDgwTg5ObFgwQIiIiIAyMnJ4d133yU5OZn777+fn3/+uca7DWdnF5otZullqldzyM2f\n/KZjp9izJ+lX3j74KV+d2sJ4nxCC3LtXe/n2b1xtLfhbWBCHYlL5encCX+88S8TBRKYM6cjAwMZb\nT9Mc8tJcSW7USfJiukZZM6PX68nI+N+uwGlpabi7u1c+njRpUuX/HzJkCPHx8Xh5edGrVy90Oh3e\n3t7Y2dmRlZWFm5ubucIUotFoNVqmdr6bYe0GsfXiDg6nRPHx6S/wsvfkLp/R9GjlX2MhrygKAwI8\n6NXZnW2H/rueZmscO6OuMGOkn6ynEUK0GGZbMzNw4MDKsy3R0dHo9frKFlN+fj7z5s2jtLQUgCNH\njuDn58egQYM4ePAgBoOB7OxsCgsLcXGRfyCL5q2VjSuzuk1j6R2L6de6F8kFKXxwag2vRr5LdOaZ\nW27qamVx43qaS6kFsp5GCNGimPXS7JUrVxIZGYmiKCxbtoyYmBgcHBwICQlhzZo1bNq0CSsrK/z9\n/Vm6dCmKorB+/Xo2bNgAwCOPPMLIkSNrfA+5NLtlas65uXotlc0XtnMs7SQAHZ3ac5fPGLq4djJp\nfkJyLut3nCUhOQ+dVtOg+z0157w0dZIbdZK8mE62M6gj+ZKpV0vIzZX8ZDZf2M7JjGgA/Jw7clfH\nMXRy9rnlXON/70/z9X/vT+NoZ9kg62laQl6aKsmNOkleTCfFTB3Jl0y9WlJuEvMu8+OFn4jJPANA\nVxc/7uo4Bh8n71vOLSmrIOLQJbYcSqS0zIB3a3uzrqdpSXlpaiQ36iR5MZ0UM3UkXzL1aom5OZ+b\nyObzPxGXfRaA7m5dGd9xNN4ObW85NyuvmG/2JHAgOhWAvl3cuXd4J9ydbeo1xpaYl6ZCcqNOkhfT\nSTFTR/IlU6+WnJuz2Qn8cP4nEnIvANDTvTvjfULwsve85Vxzr6dpyXlRO8mNOkleTCfFTB3Jl0y9\nWnpujEYjZ7LP8eP5CC7kXUJBobc+kHE+IXjY6W8591BsKl///If1ND080Whubz1NS8+Lmklu1Eny\nYjopZupIvmTqJbm5zmg0Ep0Zx48XfuJyfhIKCv08ejG2wyj0tq1qnGuO9TSSF/WS3KiT5MV0UszU\nkXzJ1EtycyOj0cjJjGh+PP8TyddS0CgaBnj0IbTDKNxsai5Orq+nOc+B6BTg9tbTSF7US3KjTpIX\n00kxU0fyJVMvyU3VDEYDx9JOsfnCdlIL09AqWoLb9CO0/QhcrJ1rnHs+OY91O+NJSMpDp1UY3c+b\n8cG1W08jeVEvyY06SV5MJ8VMHcmXTL0kNzUzGA1Eph5ny4XtpBdlotPoGNTmDka3H4GTVfX/QPht\nPc2G3Qlk5dV+PY3kRb0kN+okeTGdFDN1JF8y9ZLcmKbCUMGhlCi2XtxBVnE2FhoLhrQNJsR7GA6W\n9tXOKymrIOLwJbYcrN16GsmLeklu1EnyYjopZupIvmTqJbmpnXJDOQeuHmHbxV3klORiqbVkeNtB\njPQegp2FbbXzarueRvKiXpIbdZK8mE6KmTqSL5l6SW7qpqyijH3Jh4hI3EV+aQHWWmtGeA9mRLtB\n2OiqX/Br6noayYt6SW7USfJiOilm6ki+ZOolubk9pRWl7E06wPbE3RSUXcNWZ8Mo76EMbTsQa51V\nlXOMRiOHY9P4eve5atfTSF7US3KjTpIX00kxU0fyJVMvyU39KC4vYc+V/ey4tIfC8iLsLewIaT+M\nIV7BWGotq5xT03oayYt6SW7USfJiOilm6ki+ZOolualfReVF7Lq8j12XfqG4ohhHSwdGtx/OoDZ3\nYKG1qHJOdn4J3+xJ4NfT19fT9OnizsNTeqI1GBoydGEi+c2ok+TFdFLM1JF8ydRLcmMe18oK2Xlp\nLz9f2UdpRSnOVk6EdhhBsGc/dJqq7zfz+/U0FjoNof29GRfcHisLbQNHL2oivxl1kryYToqZOpIv\nmXpJbswrv7SA7Zd2s/fKAcoMZbhZuxDaYRR3ePRGq7m5SPnt/jTf7DlPZm4xbo5WhI30o3dndxTl\n9vZ7EvVDfjPqJHkxnbsjIgsAACAASURBVBQzdSRfMvWS3DSM3JJ8fkrcxb6kg5QbK3C3cWOcTwh9\nWwehUTQ3jbd3tGHND6fZdugSFQYj/h1cmDmqM21a2TVC9OL35DejTpIX00kxU0fyJVMvyU3Dyi7O\nYVviLg4kH6HCWIGHrZ5xPiH00ve4oaj5LS8pWYV8uSOe0+ez0GoUQvq2Y8LADrXaGkHUL/nNqJPk\nxXRSzNSRfMnUS3LTODKLsth6cSeHUo5iMBrwsvdkvE8Iga0CUBTlhrwYjUaOn8tg3Y6zZOQW42Rv\nybThnRjg31paT41AfjPqJHkxnRQzdSRfMvWS3DSutMIMtl7cwZGUYxgx4u3gxXif0Qzr2o+MjIIb\nxpaWVbDt0CU2H0ykrNyAX1sn7gvpjHfr6v/BJOqf/GbUSfJiOilm6ki+ZOoluVGHlGupbLmwg6Np\nJwDo5NqBoW0G0bNVwE0LhTNyili/6xxR8ekoCgzv5cXkIR2xs6760m9Rv+Q3o06SF9NJMVNH8iVT\nL8mNuiQVXGXzhe2cSD8NgKu1C8PbDiS4TX9sdNY3jD19IZMvt58lJasQexsLpg7zZVCgJxppPZmV\n/GbUSfJiOilm6ki+ZOoluVGnUqtrfHMygkNXj1JmKMNaa8WdbfozrO1A3GxcK8eVVxjYHnmZ7/dd\npKSsAh9PB+4L6ULHNo6NGH3zJr8ZdZK8mE6KmTqSL5l6SW7U6be8FJRdY1/SIfZe2U9uaT4KCkHu\n3RnhPYSOTu0rx2fnl/D1z+c4GJMKwOBAT6YM88XRtuqtFETdyW9GnSQvppNipo7kS6Zekht1+mNe\nyg3lHE09wa7Lv3ClIBmADo7ejGg3mCD37pXras5cymbt9niupF/D1krH5CEdGdarDVrNzfeyEXUj\nvxl1kryYToqZOpIvmXpJbtSpurwYjUbO5pxn1+W9nM6Iw4gRFytnhrUbyMA2/bHR2VBhMPBz1P+3\nd+fRUdV53sffVZWN7HsCZGELQhL2NQQiIihij9puiWjsM9rO8UGPs6inOem2o9M2/eDoPLato62t\nz+PQPWNU6G4dF7RVFDUsKrKEhECAEEK2IpV9reX5I7EaEEI6UKlb5PM6x0Pd1K1b3+u3Lnxyf7+6\nt5o/bj1CZ7edpLgQbl8xmctSorywJ5ceHTPGpL4MnsLMEOlDZlzqjTENpi91HQ1sqfqcbTVf0ePs\nJdASwKLR81manE3sqBha2nvY+GkFW/fUALAwI4Fblk4iKixwOHbhkqVjxpjUl8FTmBkifciMS70x\npr+lL+29HXxRvZ0tx7+guacFEyZmxGWwLLlvXs3hmhb+8EE5R2tbCQywcF32OFbMTcbPoqGnodAx\nY0zqy+ApzAyRPmTGpd4Y01D6Ynfa+aZ+Dx9XbaWqtRqA1LBklqUsYUZsJsX76nlzSwVtnb0kRgdz\n+4rJZIyPPs9W5Uw6ZoxJfRk8hZkh0ofMuNQbY7qQvrhcLg41HeHjqq3ste7HhYvIwAiWJmUzM3o2\nm4tr+GRXNS4XzJkcR+6Vk4iNGHWR9+DSpWPGmNSXwVOYGSJ9yIxLvTGmi9WX+g4rW45/TnHNV/Q4\negiwBJA1eh6XjZrJO59aOXS8GX8/M9dmpXLNghT8/Szn3+gIp2PGmNSXwfNamFm3bh27d+/GZDJR\nUFDA9OnT3c8tW7aMxMRELJa+v4SefPJJjh49yj/+4z+SlpYGwOTJk3nkkUcGfA+FmZFJvTGmi92X\njt4Ovjixgy3Hv6CpuxkTJqbFppNoz+CTLzppae8lLjKIvCvTmDkpVjewHICOGWNSXwZvoDDj56k3\n3bFjB5WVlRQVFVFRUUFBQQFFRUWnrfPSSy8REhLiXj569Cjz58/nmWee8VRZIuJDgv2DWZG6lGXJ\nS9hVv4ePqrayx1rCHkpImj+Wie2T2fO1i99s3Mu0CTGsXp5GQnSwt8sWkWHmsTBTXFzM8uXLAZg4\ncSLNzc20tbURGhrqqbcUkUuUxWxhbuIs5iTMpKL5KB9XbWVPQwkuqolZGIZf4wT2lvfyyMuNXD0/\nhR9kjSMwQENPIiOFx8KM1WolIyPDvRwdHU1DQ8NpYaawsJDq6mrmzJnDgw8+CMChQ4e49957aW5u\n5v777yc7O3vA94mKCsbPg+PlA53WEu9Sb4zJ032Jj59OVtp0atsaeK/8Ez458iWtYbsJm+sPtmTe\n/aaN7fvruOu6TBbPGKOhp1PomDEm9eXCeSzMnOnMqTkPPPAAS5YsISIigvvuu4/Nmzcza9Ys7r//\nfq655hqqqqq48847+eCDDwgIOPd9Wmy2Do/VrLFM41JvjGk4+2IhiB8kX8OyxKV8WbODLVVfYIs8\nTFDkYVqb4nnyTyf486fjuWPFZYyN0xlhHTPGpL4MnlfmzMTHx2O1Wt3L9fX1xMXFuZdvuOEG9+Oc\nnBzKy8tZuXIlq1atAiAlJYXY2Fjq6upITk72VJki4uOC/UexPOVyrkhazLcNe/moaiuVVBEYWc/R\n9jIe+3MpS8fP5YbsSQQHDdvvbyIyjDx2Kc3s7Gw2b94MQElJCfHx8e4hptbWVu6++256enoA2Llz\nJ2lpabz11lu8/PLLADQ0NHDy5EkSEhI8VaKIXEIsZgtzEmby8Jz7eXDOGmbGTcMS0or/hD183vsH\nfvLHDXy8+whO374ahYichcd+TZk9ezYZGRnk5eVhMpkoLCxk06ZNhIWFsWLFCnJycsjNzSUwMJD0\n9HRWrlxJe3s7Dz30EB999BG9vb08+uijAw4xiYicyWQyMSFiHBOmjcPa2cjHx7byefUOHAmlvFl/\ngPfeHs/qGVczK3Wct0sVkYtEF80bgMYyjUu9MSaj9qXT3smHh7/k42Of02tuByDSmcytmVcxPWHy\niJgkbNTejHTqy+DpCsBDpA+Zcak3xmT0vjicDt7Zv52/HPsMR1AjABGWWP4ubRnzEmfiZ75059QY\nvTcjlfoyeAozQ6QPmXGpN8bkK32xO5y8sWMnW098CZE1mEwQbAnhytTFLB6zkNCAkPNvxMf4Sm9G\nGvVl8LzybSYREaPys5i5LWsB17TN5PdbvmVP89e0xx3n7cObee/IRywcPYcrkpeQGBLv7VJFZBAU\nZkRkxIoMDeT+Hyzg4PHL2PBhCTUcgMRKPj+xnc9PbOfypEXcMHEVARZ9EUHEyDz21WwREV+RlhTJ\noz9axOoZV2E6cAXdB2di7gnj0+Nf8qudT3O05Zi3SxSRASjMiIgAZrOJK2Yn8at/WMSS1Nl07F6I\nvTaV+g4rT331H/zP4Q9wOB3eLlNEzkJhRkTkFGHBAfxo5RR+snoeUS2z6S6dh6s3kPeO/oV/+/pZ\natrrvF2iiJxBYUZE5CwmJ0fy2F3zuSJtBh17FuFoGEtVazX/e8ev+fjYZzhdTm+XKCL9FGZERM4h\nMMDC7VdN5uFb5xPeOI/u8lk47BY2Hvofntn1Iic7bd4uUURQmBEROa+pqVE8dtd8csbNomP3Ipy2\neA42HeaXO/6d4pqv8PHLdYn4PIUZEZFBGBXox50rp/AvN81nVO1Ceg5n0tPr4Pelr/Pi3v+ktafN\n2yWKjFgKMyIif4PM8TE8fvdCssbMo3NPNs6WaPZYS3h8+1Psbtjn7fJERiSFGRGRv1FwkB93rZrK\nA9ctIPB4Nj2VU2jr6eTFvf/Jf+4votPe6e0SRUYUhRkRkSGaMSmWX/54IfNjF9C1dxGu9nC2137N\nL7f/H8pth7xdnsiIoTAjInIBQoL8uefvMrhvVRb+R5bQWz0RW1czv971IhsPvk2Po9fbJYpc8hRm\nREQugtmT43j8x1nMDs+ma/8CXF0hfFy1lfU7f82xluPeLk/kkqYwIyJykYQFB3Dv9Zncu2IxlkM5\n2GtTqe2o59++epZ3j3yo2yGIeIjCjIjIRTZvSjyP353NtKAcusvm4ugJ4J0jH/Lk189R117v7fJE\nLjkKMyIiHhAREsB9P8zkx0tzMJdfjt06hmOtx1m342m2VH2h2yGIXEQKMyIiHmIymViYnsjjdy0m\n3XQF3Qdn0ttr4o2Df+bZb3+HravJ2yWKXBIUZkREPCwyNJAHbp7O3y+6AtOBy3HY4jhgO8Tj2/+d\nHbXf6HYIIhdIYUZEZBiYTCayp43mFz/KIc2+nJ7DmXT19PLq/tf43b4NtPW0e7tEEZ+lMCMiMoyi\nw4P4l1tnkj9vOa4DOThaovi2YR+/2P4Ue637vV2eiE9SmBERGWYmk4mcGWP41/ylTOi8it5jl9HW\n3cELe/4ffyh9gy57l7dLFPEpCjMiIl4SGzGKh/Jmkzf9ahwHsnG2h/FlzU4e3/7vHLQd9nZ5Ij5D\nYUZExIvMJhPLZifxr7cvJ6VlJb3VE7B1NfH0rhfYdOh/6NXtEETOS2FGRMQA4iNH8ZPVc7llyrU4\nyrNwdgXz0bHP+NWOX1PVWu3t8kQMTWFGRMQgzCYTK+Yl82ju1YxtvAZ7XQp1nfU8sfM3vH/0Y90O\nQeQcFGZERAwmMTqYgtXz+eGE67AfnIejx5+3D7/PU18/T31Hg7fLEzEchRkREQMym02sXJBC4U2r\nSKhfif3kaCpbj/HL7U/z2fFiXWhP5BQeDTPr1q0jNzeXvLw89uzZc9pzy5YtY/Xq1eTn55Ofn09d\nXZ37ua6uLpYvX86mTZs8WZ6IiOGNiQ3hZ3dkcV3SD7FXzKS3F4rK/8gzu35HU3ezt8sTMQQ/T214\nx44dVFZWUlRUREVFBQUFBRQVFZ22zksvvURISMj3Xvv8888TERHhqdJERHyKxWzm2qxxzJgYy2/f\nH0tD6HbKOchjxU9y+5QbmZs4y9sliniVx87MFBcXs3z5cgAmTpxIc3MzbW1t531dRUUFhw4dYunS\npZ4qTUTEJyXFh1J4+xKuibsZ+9EMunvt/N/9/81LezbQ1qvbIcjI5bEwY7VaiYqKci9HR0fT0HD6\nxLXCwkJuu+02nnzySff47/r161m7dq2nyhIR8Wl+FjPXL5lAwaobiTqxHEdrJN9a9/LYl09RcrLM\n2+WJeIXHhpnOdOZktQceeIAlS5YQERHBfffdx+bNm+nq6mLmzJkkJycPertRUcH4+VkudrlucXFh\nHtu2XBj1xpjUl+ERFxfGjKnX8d8fpPGn0g9oH3OQ/9j9CleMy+bvZ99MkH/QWV8jxqO+XDiPhZn4\n+HisVqt7ub6+nri4OPfyDTfc4H6ck5NDeXk5hw8fpqqqii1btlBbW0tAQACJiYksWrTonO9js3V4\nZgfo+4A1NLR6bPsydOqNMakvw++aeSlMSbqV337wJc0xO/jk6Bd8U72fH0+/jQkR49zrqTfGpL4M\n3kChz2PDTNnZ2WzevBmAkpIS4uPjCQ0NBaC1tZW7776bnp4eAHbu3ElaWhpPP/00Gzdu5PXXX+eW\nW25hzZo1AwYZERGB8aPD+cXtK1ganIu9ZjxNPTae+up5NpW/Q6/T7u3yRDzOY2dmZs+eTUZGBnl5\neZhMJgoLC9m0aRNhYWGsWLGCnJwccnNzCQwMJD09nZUrV3qqFBGRS56/n4XcZZcxpzqR3360lbbY\nnXx0/FN2N5TyDzNu11CGXNJMLh+/8pInT8/p9J9xqTfGpL4YQ0+vgzc+O8BnDR/hF1+FCTNLUueT\nFDSW1PBkRockYDF7bq6hDJ6OmcEbKJAP2wRgEREZHgH+Fm6/Mp15VWN4ccsndMR9w2eV29zP+5n8\nSAlLYlxEMuPCk0kNTyEmKAqTyeTFqkWGTmFGROQSNTk5kl/mXsfbxZnsrq6ktrMac0gzzpBmKpxH\nOdxy1L1uiH9If7DpDzhhyYQGfP+ipiJGpDAjInIJCwywcPPlafyvuNlUVJ6k/FgTZcdslB61UtdZ\nizm0CVNIM22hzZT0lp12rZqYoGh3wEkNTyYlbCwBlgAv7o3I2SnMiIiMEOHBAcydEs/cKfHAZTS3\n93DgmI2yY00cOGajprkJc0gz5tAm/MNasDlbONm1m6/rdwNgNpkZHZJwyhmcFBKD4zX/RrxOYUZE\nZISKCAlg/tQE5k9NAKCprZsD/Wduyipt1JV1YArsxBzSTEBEC4GRbdS46qluq+GLEzsACDD7kxyW\ndNoQVbTm38gwU5gREREAIkMDWZCewIL0vnBja+12B5sDx5qoP9IJJiemUW2MimwlPK4D16gmDjcf\npaL5iHs7oafMv0kNTyE1PIlQf82/Ec9RmBERkbOKCgskKyORrIxEABpbuvrDTd/Zm9oTXX0rmu2E\nRHUQO6YL//AW2mhg38ky9p0y/yZ2VMxpZ2+SQscSYPH3xm7JJUhhRkREBiU6PIhFmaNZlDkaAGtT\nJ2XfDUsds1G5txuIByYRGuZkbKqdkKg2uv1PUtt1gq/qvuWrum+Bvvk3Y0MS3WdvxoUnkxgSj9nk\nsQvTyyVMYUZERIYkNnIUiyNHsXj6aFwuFw3NXf1DUv2Tivd1A9FANOEh6UxOtRCV0IlrVBMNPTVU\ntZ2gqu0En5/YDkCAJYDUsCRSwpMYF55Calgy0UGRmn8j56UwIyIiF8xkMhEfOYr4yFHkzBiDy+Wi\nvqmTssq+YFNWaWP3/i7YbwKiiAxNID3lchLHOvAPb6HRXktly3EONR3hYNNh93bD/EP/eu2b/v9C\n/IO9t6NiSAozIiJy0ZlMJhKigkmICubymWNxuVzUNna4vwZeVmlj+/4G2N+3flTYWKakZJKVHExY\nTCdNzjoqW6o42lLFvpOl7DtZ6t52WEAofiY/zCYzFpMZc/9/FpMZs9lyys/6Hlv6H39/fQtm8/d/\ndubr3esO8v3Ouf5p6/atE9qreUMXg+7NNADdM8O41BtjUl+My2i9cblc1JzscH9bquxYE22dve7n\nY8IDmZISxZTUKMaMttCGlaMtVRxtPkZjlw2Hy4nT5cThcvT/6cR52mOnF/fub5MUOoZpsVOZFptO\ncthYzRs6h4HuzaQwMwCjHfzyV+qNMakvxmX03jhdLk5Y291fAy87ZqO9y+5+PjYiqD/cRJKaGE6Q\nv4UAfzMB/hb8/cyYz5hX43K5cLoDj/OMx46zhh93MHKeur7jlNc7vret717jdDlxOs/c/unPn7m+\nw+Wkhy7KGipwuBwAhAeEkRkzhczYdKZEpxGoKy67KcwMkdEP/pFMvTEm9cW4fK03TpeL4/Vt7mBz\n4FgTHd32c64f4NcXbAL8zQT4/TXoBLp/bjltnUA/yznX9+9fN9D/9HX8LKaLPhk5Li6MqpoGyhoP\nstfaN5zW1tsOgJ/Zj8lRE5kWk8602KlEBUVe1Pf2NQozQ+RrB/9Iot4Yk/piXL7eG6fTRVV9G2XH\nbNSc7KDX7qCn10l3/589vQ567P1/9jro7n98Mf+FM5kYREDqXz5LoPJ3B6TvApSFsaPDCcDlDklO\nl5PKlir2WkvZa93PifZa9/uPDR3NtNi+YJMSljTihqMUZobI1w/+S5l6Y0zqi3GNxN64XC7sDhc9\n3wWeU4PPKYHnzOcGCki97nUddJ/yugsRHzmKhRkJLMxIJDH69G9qney0se9kX7A5aKvA3j8cFRYQ\nSmbMVKbFTuWyqDSC/AIvqAZfoDAzRCPx4PcV6o0xqS/Gpd54jsvlotfudAef7vMEpF67s28du5P2\nbgfbS2rcgWj86DAWpicyPz2BiJDT58t02bsosx1ir3U/JdYyWnvbgP7hqMiJZMb2hZvooKhh/38w\nHBRmhkgHv3GpN8akvhiXemNMcXFhVFXb2HXQyraSOkqONOJ0uTCbTKSPjyIrPZFZk2MJCjj9Sip9\nw1HH2Wfdz96TpVS31bifGxs6mmkxU8mMnUpqePIlMxylMDNEOviNS70xJvXFuNQbYzqzL83tPewo\nrWNbSR1HaloACPA3MzstjoUZiWSMj8Ji/n44aeyysc9ayt6TpZTbKrA7+yZLh/mHkhE7hWkxU5kS\nPdmnh6MUZoZIB79xqTfGpL4Yl3pjTAP1pa6xg+KSWraV1FHf1AlAeLA/86YmkJWRyPjRYWf9dlWX\nvZsDtr9+O6q1p384ymQhLap/OComnZhRvjUcpTAzRDr4jUu9MSb1xbjUG2MaTF9cLheHT7SwraSO\n7aV17osLxkeNIisjkYUZCSREnf0WD06Xk2Otx/uCjbWU420n3M+NCUnsn2eTzjgfGI5SmBkiHfzG\npd4Yk/piXOqNMf2tfbE7nOw/2khxSR27yhvosfdNHJ4wJpysjETmTY0nPPjcF9qzdTW5z9gcsB1y\nD0eF+oeQETOFabHpTI1OI8gv6MJ2zAMUZoZIB79xqTfGpL4Yl3pjTBfSl85uO7sONlBcUsf+o424\nXGA2mcicEM3CjARmTYojMMByztd3O3ooazzIvv5w09LTV4fFZCEtcoL7mjYxo6KHVN/FpjAzRDr4\njUu9MSb1xbjUG2O6WH1pbutme2k9xSW1VNb2bS/Q38LsyXFkZSYwNfXsE4e/43Q5qWqt7h+O2k/V\nKcNRo0MS3MFmXHiK14ajFGaGSAe/cak3xqS+GJd6Y0ye6EvNyXaKS+rYVlKLtbkLgPCQABZMTWBh\nRgLjEs8+cfhUtq4m9p0sY591Pwdsh+g9YzgqM3YqU6MnM2oYh6MUZoZIB79xqTfGpL4Yl3pjTJ7s\ni8vloqK6heKSWnaW1bsnDidGB7uvOBwfOeq82+lx9HCg/2J9+6ylNJ8xHPXdJOJYDw9HKcwMkQ5+\n41JvjEl9MS71xpiGqy92h5N9hxvZtr+WXQet9PZPHJ40NoKFGQnMmxJP2AATh7/jdDk53nqCvf0X\n66tqrXY/lxiSwI2TfkBGzGUe2YeBwozfOZ8RERGRS4KfxczMtFhmpsXS2W3n6wMNbNtfS+lRG4eq\nm/nvvxwkc3w0WZmJzJgUS6D/2ScOm01mUsKTSAlP4toJV9HU3dx3sT5r37ejjjZXeizMDERnZgag\n32SMS70xJvXFuNQbY/J2X2yt3WzfX8e2/bUcq+u7uF5QgIU5k+NYmJnI1JQozOaB59d8x+VynXcu\nzoXQmRkRERH5nqiwQFYuSGHlghSqre1s67/i8Bf7avliXy0RoX0Th7MyEklJCB0wrHgyyJyPzswM\nwNuJWc5NvTEm9cW41BtjMmJfnC4Xh443s61/4nB7V983mUbHBPddcTg9gdhBTBy+2Lw2AXjdunXs\n3r0bk8lEQUEB06dPdz+3bNkyEhMTsVj6xuWefPJJwsPDWbt2LSdPnqS7u5s1a9ZwxRVXDPgeCjMj\nk3pjTOqLcak3xmT0vvTanew7fJLiklq+PXQSu6Nv4nBaUgRZGYnMnRJP6Cj/YanFK8NMO3bsoLKy\nkqKiIioqKigoKKCoqOi0dV566SVCQkLcy++++y6ZmZncc889VFdXc9ddd503zIiIiIhn+PuZmTU5\njlmT4+josvP1gb4L8x041sTB48384cNypk+MISsjkRmTYvD3O/cVhz3JY2GmuLiY5cuXAzBx4kSa\nm5tpa2sjNDT0nK9ZtWqV+3FNTQ0JCQmeKk9ERET+BsFBfiyZMYYlM8bQ2NLF9tI6ivfVseuglV0H\nrYwKtJB/9WUsTE8c9to8FmasVisZGRnu5ejoaBoaGk4LM4WFhVRXVzNnzhwefPBB9+ShvLw8amtr\neeGFF877PlFRwfh5MAkOdFpLvEu9MSb1xbjUG2Pyxb7ExYVx2cQ47vxBJkdrWtjydRXbS2pxmc1e\n2Z9h+zbTmVNzHnjgAZYsWUJERAT33XcfmzdvZuXKlQC89tprlJaW8vDDD/PWW28NOEPaZuvwWM1G\nH8scydQbY1JfjEu9MaZLoS8hfiauXZDCtQtSAM/NZfXKnJn4+HisVqt7ub6+nri4OPfyDTfc4H6c\nk5NDeXk5SUlJxMTEMHr0aKZOnYrD4aCxsZGYmBhPlSkiIiI+zmO3vszOzmbz5s0AlJSUEB8f7x5i\nam1t5e6776anpweAnTt3kpaWxldffcUrr7wC9A1TdXR0EBUV5akSRURE5BLgsTMzs2fPJiMjg7y8\nPEwmE4WFhWzatImwsDBWrFhBTk4Oubm5BAYGkp6ezsqVK+nu7uanP/0pq1evpquri5///OeYB7hl\nuYiIiIgumjeAS2Es81Kl3hiT+mJc6o0xqS+DN9CcGZ32EBEREZ+mMCMiIiI+TWFGREREfJrCjIiI\niPg0hRkRERHxaQozIiIi4tMUZkRERMSnKcyIiIiIT1OYEREREZ/m81cAFhERkZFNZ2ZERETEpynM\niIiIiE9TmBERERGfpjAjIiIiPk1hRkRERHyawoyIiIj4NIWZs1i3bh25ubnk5eWxZ88eb5cjp3ji\niSfIzc3lpptu4oMPPvB2OXKGrq4uli9fzqZNm7xdipzirbfe4rrrruPGG29ky5Yt3i5HgPb2du6/\n/37y8/PJy8tj69at3i7Jp/l5uwCj2bFjB5WVlRQVFVFRUUFBQQFFRUXeLkuAbdu2cfDgQYqKirDZ\nbPzwhz/kqquu8nZZcornn3+eiIgIb5chp7DZbDz33HNs3LiRjo4OfvOb37B06VJvlzXi/fGPf2T8\n+PE8+OCD1NXV8aMf/Yj333/f22X5LIWZMxQXF7N8+XIAJk6cSHNzM21tbYSGhnq5Mpk3bx7Tp08H\nIDw8nM7OThwOBxaLxcuVCUBFRQWHDh3SP5QGU1xcTFZWFqGhoYSGhvKLX/zC2yUJEBUVxYEDBwBo\naWkhKirKyxX5Ng0zncFqtZ72oYqOjqahocGLFcl3LBYLwcHBALz55pvk5OQoyBjI+vXrWbt2rbfL\nkDMcP36crq4u7r33XlavXk1xcbG3SxLg2muv5cSJE6xYsYI77riDn/zkJ94uyafpzMx56G4PxvOX\nv/yFN998k1deecXbpUi/P/3pT8ycOZPk5GRvlyJn0dTUxLPPPsuJEye48847+eSTTzCZTN4ua0T7\n85//zJgxY3j55ZcpKyujoKBAc80ugMLMGeLj47Fare7l+vp64uLivFiRnGrr1q288MIL/O53vyMs\nLMzb5Ui/LVu22YjDRQAABBtJREFUUFVVxZYtW6itrSUgIIDExEQWLVrk7dJGvJiYGGbNmoWfnx8p\nKSmEhITQ2NhITEyMt0sb0b755hsWL14MwJQpU6ivr9ew+QXQMNMZsrOz2bx5MwAlJSXEx8drvoxB\ntLa28sQTT/Db3/6WyMhIb5cjp3j66afZuHEjr7/+Orfccgtr1qxRkDGIxYsXs23bNpxOJzabjY6O\nDs3PMIDU1FR2794NQHV1NSEhIQoyF0BnZs4we/ZsMjIyyMvLw2QyUVhY6O2SpN+7776LzWbjn/7p\nn9w/W79+PWPGjPFiVSLGlpCQwNVXX82tt94KwM9+9jPMZv0e6225ubkUFBRwxx13YLfbefTRR71d\nkk8zuTQpRERERHyY4rmIiIj4NIUZERER8WkKMyIiIuLTFGZERETEpynMiIiIiE9TmBGRYXP8+HEy\nMzPJz8933y34wQcfpKWlZdDbyM/Px+FwDHr92267je3btw+lXBHxEQozIjKsoqOj2bBhAxs2bOC1\n114jPj6e559/ftCv37Bhgy4uJiKn0UXzRMSr5s2bR1FREWVlZaxfvx673U5vby8///nPSU9PJz8/\nnylTplBaWsqrr75Keno6JSUl9PT08Mgjj1BbW4vdbuf6669n9erVdHZ28s///M/YbDZSU1Pp7u4G\noK6ujoceegiArq4ucnNzufnmm7256yJykSjMiIjXOBwOPvzwQ+bMmcPDDz/Mc889R0pKyvduvBcc\nHMzvf//70167YcMGwsPDeeqpp+jq6mLVqlUsWbKEL7/8kqCgIIqKiqivr+fKK68E4L333mPChAk8\n9thjdHd388Ybbwz7/oqIZyjMiMiwamxsJD8/HwCn08ncuXO56aabeOaZZ/jpT3/qXq+trQ2n0wn0\n3WbkTLt37+bGG28EICgoiMzMTEpKSigvL2fOnDlA341jJ0yYAMCSJUv4r//6L9auXcvll19Obm6u\nR/dTRIaPwoyIDKvv5sycqrW1FX9//+/9/Dv+/v7f+5nJZDpt2eVyYTKZcLlcp9176LtANHHiRN55\n5x127tzJ+++/z6uvvsprr712obsjIgagCcAi4nVhYWEkJSXx6aefAnDkyBGeffbZAV8zY8YMtm7d\nCkBHRwclJSVkZGQwceJEdu3aBUBNTQ1HjhwB4O2332bv3r0sWrSIwsJCampqsNvtHtwrERkuOjMj\nIoawfv16Hn/8cV588UXsdjtr164dcP38/HweeeQRbr/9dnp6elizZg1JSUlcf/31fPzxx6xevZqk\npCSmTZsGwKRJkygsLCQgIACXy8U999yDn5/+ChS5FOiu2SIiIuLTNMwkIiIiPk1hRkRERHyawoyI\niIj4NIUZERER8WkKMyIiIuLTFGZERETEpynMiIiIiE9TmBERERGf9v8BPZxkbt+cjhUAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "wCugvl0JdWYL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "id": "VHosS1g2aetf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "One possible solution that works is to just train for longer, as long as we don't overfit. \n", + "\n", + "We can do this by increasing the number the steps, the batch size, or both.\n", + "\n", + "All metrics improve at the same time, so our loss metric is a good proxy\n", + "for both AUC and accuracy.\n", + "\n", + "Notice how it takes many, many more iterations just to squeeze a few more \n", + "units of AUC. This commonly happens. But often even this small gain is worth \n", + "the costs." + ] + }, + { + "metadata": { + "id": "dWgTEYMddaA-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.000003,\n", + " steps=20000,\n", + " batch_size=500,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "\n", + "evaluation_metrics = linear_classifier.evaluate(input_fn=predict_validation_input_fn)\n", + "\n", + "print(\"AUC on the validation set: %0.2f\" % evaluation_metrics['auc'])\n", + "print(\"Accuracy on the validation set: %0.2f\" % evaluation_metrics['accuracy'])" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 8c0411eedcc4d5c1d88cc73306bcb79e946c154d Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 12:53:02 +0530 Subject: [PATCH 08/11] Created using Colaboratory --- sparsity_and_l1_regularization.ipynb | 1148 ++++++++++++++++++++++++++ 1 file changed, 1148 insertions(+) create mode 100644 sparsity_and_l1_regularization.ipynb diff --git a/sparsity_and_l1_regularization.ipynb b/sparsity_and_l1_regularization.ipynb new file mode 100644 index 0000000..6491b01 --- /dev/null +++ b/sparsity_and_l1_regularization.ipynb @@ -0,0 +1,1148 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "sparsity_and_l1_regularization.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "yjUCX5LAkxAX" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "g4T-_IsVbweU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Sparsity and L1 Regularization" + ] + }, + { + "metadata": { + "id": "g8ue2FyFIjnQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Calculate the size of a model\n", + " * Apply L1 regularization to reduce the size of a model by increasing sparsity" + ] + }, + { + "metadata": { + "id": "ME_WXE7cIjnS", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "One way to reduce complexity is to use a regularization function that encourages weights to be exactly zero. For linear models such as regression, a zero weight is equivalent to not using the corresponding feature at all. In addition to avoiding overfitting, the resulting model will be more efficient.\n", + "\n", + "L1 regularization is a good way to increase sparsity.\n", + "\n" + ] + }, + { + "metadata": { + "id": "fHRzeWkRLrHF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "Run the cells below to load the data and create feature definitions." + ] + }, + { + "metadata": { + "id": "pb7rSrLKIjnS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "3V7q8jk0IjnW", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Create a boolean categorical feature representing whether the\n", + " # median_house_value is above a set threshold.\n", + " output_targets[\"median_house_value_is_high\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] > 265000).astype(float)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pAG3tmgwIjnY", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1209 + }, + "outputId": "b2b92073-a84d-44c0-adf0-0229a914815c" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.6 2654.1 542.0 \n", + "std 2.1 2.0 12.6 2246.4 433.1 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1447.0 295.0 \n", + "50% 34.2 -118.5 29.0 2124.5 433.5 \n", + "75% 37.7 -118.0 37.0 3144.0 649.0 \n", + "max 42.0 -114.5 52.0 37937.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1436.1 504.0 3.9 2.0 \n", + "std 1157.2 394.7 1.9 1.1 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 790.0 280.0 2.6 1.5 \n", + "50% 1166.0 410.0 3.5 1.9 \n", + "75% 1727.0 607.0 4.7 2.3 \n", + "max 28566.0 6082.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.62654.1542.01436.1504.03.92.0
std2.12.012.62246.4433.11157.2394.71.91.1
min32.5-124.31.02.01.03.01.00.50.0
25%33.9-121.818.01447.0295.0790.0280.02.61.5
50%34.2-118.529.02124.5433.51166.0410.03.51.9
75%37.7-118.037.03144.0649.01727.0607.04.72.3
max42.0-114.552.037937.06445.028566.06082.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.6 28.5 2618.5 533.2 \n", + "std 2.1 2.0 12.5 2011.4 392.4 \n", + "min 32.5 -124.3 1.0 24.0 5.0 \n", + "25% 33.9 -121.8 18.0 1492.8 300.0 \n", + "50% 34.3 -118.5 29.0 2141.0 434.5 \n", + "75% 37.7 -118.0 37.0 3163.0 648.0 \n", + "max 41.9 -114.3 52.0 25957.0 4819.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1414.0 494.7 3.9 2.0 \n", + "std 1125.0 358.9 1.9 1.2 \n", + "min 13.0 4.0 0.5 0.1 \n", + "25% 788.0 283.0 2.6 1.5 \n", + "50% 1168.0 407.0 3.6 1.9 \n", + "75% 1708.0 601.2 4.8 2.3 \n", + "max 35682.0 4769.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.628.52618.5533.21414.0494.73.92.0
std2.12.012.52011.4392.41125.0358.91.91.2
min32.5-124.31.024.05.013.04.00.50.1
25%33.9-121.818.01492.8300.0788.0283.02.61.5
50%34.3-118.529.02141.0434.51168.0407.03.61.9
75%37.7-118.037.03163.0648.01708.0601.24.82.3
max41.9-114.352.025957.04819.035682.04769.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 12000.0\n", + "mean 0.2\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 0.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count12000.0
mean0.2
std0.4
min0.0
25%0.0
50%0.0
75%0.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value_is_high\n", + "count 5000.0\n", + "mean 0.3\n", + "std 0.4\n", + "min 0.0\n", + "25% 0.0\n", + "50% 0.0\n", + "75% 1.0\n", + "max 1.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value_is_high
count5000.0
mean0.3
std0.4
min0.0
25%0.0
50%0.0
75%1.0
max1.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "gHkniRI1Ijna", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "bLzK72jkNJPf", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def get_quantile_based_buckets(feature_values, num_buckets):\n", + " quantiles = feature_values.quantile(\n", + " [(i+1.)/(num_buckets + 1.) for i in range(num_buckets)])\n", + " return [quantiles[q] for q in quantiles.keys()]" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "al2YQpKyIjnd", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\"\n", + "\n", + " bucketized_households = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"households\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"households\"], 10))\n", + " bucketized_longitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"longitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"longitude\"], 50))\n", + " bucketized_latitude = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"latitude\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"latitude\"], 50))\n", + " bucketized_housing_median_age = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"housing_median_age\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"housing_median_age\"], 10))\n", + " bucketized_total_rooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_rooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_rooms\"], 10))\n", + " bucketized_total_bedrooms = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"total_bedrooms\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"total_bedrooms\"], 10))\n", + " bucketized_population = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"population\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"population\"], 10))\n", + " bucketized_median_income = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"median_income\"),\n", + " boundaries=get_quantile_based_buckets(training_examples[\"median_income\"], 10))\n", + " bucketized_rooms_per_person = tf.feature_column.bucketized_column(\n", + " tf.feature_column.numeric_column(\"rooms_per_person\"),\n", + " boundaries=get_quantile_based_buckets(\n", + " training_examples[\"rooms_per_person\"], 10))\n", + "\n", + " long_x_lat = tf.feature_column.crossed_column(\n", + " set([bucketized_longitude, bucketized_latitude]), hash_bucket_size=1000)\n", + "\n", + " feature_columns = set([\n", + " long_x_lat,\n", + " bucketized_longitude,\n", + " bucketized_latitude,\n", + " bucketized_housing_median_age,\n", + " bucketized_total_rooms,\n", + " bucketized_total_bedrooms,\n", + " bucketized_population,\n", + " bucketized_households,\n", + " bucketized_median_income,\n", + " bucketized_rooms_per_person])\n", + " \n", + " return feature_columns" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "hSBwMrsrE21n", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Calculate the Model Size\n", + "\n", + "To calculate the model size, we simply count the number of parameters that are non-zero. We provide a helper function below to do that. The function uses intimate knowledge of the Estimators API - don't worry about understanding how it works." + ] + }, + { + "metadata": { + "id": "e6GfTI0CFhB8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def model_size(estimator):\n", + " variables = estimator.get_variable_names()\n", + " size = 0\n", + " for variable in variables:\n", + " if not any(x in variable \n", + " for x in ['global_step',\n", + " 'centered_bias_weight',\n", + " 'bias_weight',\n", + " 'Ftrl']\n", + " ):\n", + " size += np.count_nonzero(estimator.get_variable_value(variable))\n", + " return size" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "XabdAaj67GfF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Reduce the Model Size\n", + "\n", + "Your team needs to build a highly accurate Logistic Regression model on the *SmartRing*, a ring that is so smart it can sense the demographics of a city block ('median_income', 'avg_rooms', 'households', ..., etc.) and tell you whether the given city block is high cost city block or not.\n", + "\n", + "Since the SmartRing is small, the engineering team has determined that it can only handle a model that has **no more than 600 parameters**. On the other hand, the product management team has determined that the model is not launchable unless the **LogLoss is less than 0.35** on the holdout test set.\n", + "\n", + "Can you use your secret weapon—L1 regularization—to tune the model to satisfy both the size and accuracy constraints?" + ] + }, + { + "metadata": { + "id": "G79hGRe7qqej", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Task 1: Find a good regularization coefficient.\n", + "\n", + "**Find an L1 regularization strength parameter which satisfies both constraints — model size is less than 600 and log-loss is less than 0.35 on validation set.**\n", + "\n", + "The following code will help you get started. There are many ways to apply regularization to your model. Here, we chose to do it using `FtrlOptimizer`, which is designed to give better results with L1 regularization than standard gradient descent.\n", + "\n", + "Again, the model will train on the entire data set, so expect it to run slower than normal." + ] + }, + { + "metadata": { + "id": "1Fcdm0hpIjnl", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classifier_model(\n", + " learning_rate,\n", + " regularization_strength,\n", + " steps,\n", + " batch_size,\n", + " feature_columns,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " regularization_strength: A `float` that indicates the strength of the L1\n", + " regularization. A value of `0.0` means no regularization.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " feature_columns: A `set` specifying the input feature columns to use.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `LinearClassifier` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 7\n", + " steps_per_period = steps / periods\n", + "\n", + " # Create a linear classifier object.\n", + " my_optimizer = tf.train.FtrlOptimizer(learning_rate=learning_rate, l1_regularization_strength=regularization_strength)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " linear_classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=feature_columns,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value_is_high\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " \n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss (on validation data):\")\n", + " training_log_losses = []\n", + " validation_log_losses = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " linear_classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_probabilities = linear_classifier.predict(input_fn=predict_training_input_fn)\n", + " training_probabilities = np.array([item['probabilities'] for item in training_probabilities])\n", + " \n", + " validation_probabilities = linear_classifier.predict(input_fn=predict_validation_input_fn)\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_probabilities])\n", + " \n", + " # Compute training and validation loss.\n", + " training_log_loss = metrics.log_loss(training_targets, training_probabilities)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_probabilities)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_log_losses.append(training_log_loss)\n", + " validation_log_losses.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_log_losses, label=\"training\")\n", + " plt.plot(validation_log_losses, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " return linear_classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "9H1CKHSzIjno", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 725 + }, + "outputId": "7dfeff11-f4ad-4e73-ddb8-4088866b73b6" + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.1,\n", + " # TWEAK THE REGULARIZATION VALUE BELOW\n", + " regularization_strength=0.0,\n", + " steps=300,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "print(\"Model size:\", model_size(linear_classifier))" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss (on validation data):\n", + " period 00 : 0.31\n", + " period 01 : 0.28\n", + " period 02 : 0.26\n", + " period 03 : 0.25\n", + " period 04 : 0.25\n", + " period 05 : 0.24\n", + " period 06 : 0.24\n", + "Model training finished.\n", + "Model size: 800\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGACAYAAABY5OOEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXax/HvmZn0RspMEkoghBIM\nhK50EEIXkR66ZWFRUFDXXWFVsITVXXVVRPfFSu+hSYn0JgghQCAQQggJoYT0hPQyef9gNxpJQobM\npN6f69prnXnOeeae29nlxznPOUcpKioqQgghhBCillJVdwFCCCGEEJUhYUYIIYQQtZqEGSGEEELU\nahJmhBBCCFGrSZgRQgghRK0mYUYIIYQQtZqEGSHquNatWxMXF2eUuW7evMljjz1mlLmqw9SpU+nV\nqxdDhgxh8ODBDBs2jOXLlxs8T2hoKC+88ILB+z322GPcvHnT4P2EEOXTVHcBQghRld544w1GjhwJ\nQEJCAhMmTMDT05M+ffpUeA5fX1++++47U5UohDCQHJkRop7Kzc3lnXfeYfDgwQwdOpQPP/yQwsJC\nAI4ePUrfvn0ZOnQo69evp1OnTg89opCamsrcuXOLj3gsW7aseOzf//43gwcPZvDgwUybNo27d++W\n+/7/HD58mBEjRpR4b+TIkRw5coRTp04xatQohg0bxtChQ9m9e7fBPdBqtQwZMoTjx48DEBkZyZQp\nUxg8eDAjRozgwoULAPz666/4+/szd+5cXn/9dX799VcGDhz40D4ePnyYgQMHMnToUL799tviz83M\nzGT27NkMHTqUAQMG8NZbb5Gfn29w/UKI+yTMCFFPLV++nLi4OHbu3MmWLVsIDg7mp59+orCwkDff\nfJP33nuP3bt3Ex0dTXZ29kPn+/TTT3FwcCAoKIg1a9awdu1agoODuXr1Knv27OGnn34iKCiIgQMH\ncuLEiTLf/73u3bsTFxdHbGwsALGxscTFxdGjRw8++ugj5s+fz65du/j666/Zt2/fI/WhoKAAc3Nz\n9Ho9s2fPZuTIkQQFBbFo0SJeeuklCgoKALh06RL+/v588sknFe7j3//+dxYuXMju3btRqVTFIWfr\n1q3Y29uze/dugoKCUKvVREZGPlL9QggJM0LUW4cOHWL8+PFoNBosLS0ZMWIEx48fJzo6mry8PPr2\n7QvcX2ei1+sfOt/hw4eZNGkSAA0aNGDgwIEcP34ce3t7kpOT2bFjB2lpaUydOpVnnnmmzPd/z9zc\nnCeffJIDBw4AsG/fPvz8/NBoNDg7O7N161auXbtGs2bNHggZFREbG8uePXsYOHAgUVFRJCUlMXbs\nWAA6d+6Mk5MTZ8+eBcDS0pLu3bsb3MdevXoBMGrUqOJ9/jfvsWPH0Ov1vPvuu7Rp08bg+oUQ90mY\nEaKeSk5OxsHBofi1g4MDSUlJpKWlYW9vX/y+Tqer8Hy/38/e3p6kpCRcXV1ZsmQJe/bsoV+/fsyc\nOZM7d+6U+f4fDR48uESYGTZsGACLFy/GysqK5557jkGDBrFnz54K1fmvf/2reAHwa6+9xptvvomv\nry/p6enk5OQwdOhQhgwZwpAhQ0hKSiI1NbW4P2V977L6aGtrW+L9/xk6dCjPPvssn3/+Od27d+fd\nd98lLy+vQvULIR4kYUaIesrFxaX4D2q4v+bFxcUFW1tbsrKyit9PTEys1HwA3bp1Y9myZRw/fhx3\nd3c+/vjjct//vd69exMeHk50dDTR0dF069at+PPefvttjhw5wjvvvMP8+fPJzMx8aJ1vvPEGe/bs\nISgoiI0bNxaHI51Oh42NDXv27Cn+z7Fjx4rXxhj6vR0cHMjIyCh+Pzk5ucR+/v7+bNy4kV27dhEW\nFsbWrVsfWrsQonQSZoSop/r168emTZsoLCwkKyuLbdu20bdvX5o1a0ZBQQG//vorAGvXrkVRlArN\nt379euD+H9x79+6lX79+HDt2jHfffRe9Xo+1tTXe3t4oilLm+39kbm5Or169+Ne//sWAAQNQq9Xk\n5+czdepU4uPjAfDx8UGj0aBSPfr/pTVq1Ag3N7fiIzzJycm89tprJYJdWd+7tD56eHigVquL+xgY\nGFj8/ZYuXcqmTZsAcHV1pXHjxhXqsRCidHJpthD1wNSpU1Gr1cWvP/jgA6ZOnUpsbCzDhw9HURSG\nDBnC0KFDURSFRYsWMX/+fOzs7HjuuedQqVQoikJRURGFhYUMGTKkxPzffPMN8+bNY9GiRQwZMgSV\nSsXMmTPx9fUlNzeXnTt3MnjwYMzNzXFycmLx4sXodLpS3y/N4MGDefnll/nxxx8BMDMzY+zYsTz7\n7LMAqFQq3nrrLaysrNi7dy8HDhzgH//4h0E9UhSFTz/9lEWLFvHZZ5+hUql47rnnsLa2fmhvy+rj\n+++/z4IFCzA3N2f06NHFc40cOZL58+fzzTffoCgK7du3L75cXAhhOKWoqKiouosQQtRcWVlZdOzY\nkeDgYOzs7Kq7HCGEeICcZhJCPGDMmDHs2rULgF27duHl5SVBRghRY8mRGSHEA4KDg3nvvffIzc3F\nxsaGRYsW4evrW91lCSFEqSTMCCGEEKJWk9NMQgghhKjVJMwIIYQQolar9ZdmJyTcM9ncjo7WpKSU\nf48JUZL0zHDSM8NJzwwnPTOc9MxwpuyZVlv2RQhyZKYcGo364RuJEqRnhpOeGU56ZjjpmeGkZ4ar\nrp5JmBFCCCFErSZhRgghhBC1moQZIYQQQtRqEmaEEEIIUatJmBFCCCFErSZhRgghhBC1moQZIYQQ\nQtRqEmaEEEKIOuzQof0V2u7zzz/h9u1bZY6/+eZrxirJ6CTMCCGEEHXUnTu32bcvqELbzp37Og0b\nNipz/MMPPzVWWUZX6x9nIIQQQojSffrpR1y+HEbv3l0ZNGgod+7c5rPPvuIf/3iPhIR4srOzef75\nmfTs2Zs5c2by2mt/5eDB/WRmZnDjRgy3bt3klVdep3v3ngwfPoCdO/czZ85MunZ9gpCQYFJTU/no\no3/j4uLCe++9TVJSPN7ePhw4sI8tW3ZV2feUMCOEEEJUgQ0HIjkdHm/UObt66xjfv0WZ4xMnTiUw\ncAOenl7cuBHNV199S0pKMo8/3o2hQ5/i1q2bvP32m/Ts2bvEfvHxd/n44y84efIXtm3bTPfuPUuM\n29jY8PnnX/P110s4cuQADRs2Ji8vlw0bNrB16y42bFhr1O/5MBJmynA9LYZcC2cssK3uUoQQQohK\na9PGBwA7O3suXw5j+/ZAFEVFenraA9v6+nYAQKfTkZGR8cB4+/Ydi8fT0tKIiblOu3btAejevSdq\nddU+o0nCTBl+DFtL7sU8/t71NezMJdAIIYSonPH9W5R7FMXUzMzMANi7dw/p6eksXfot6enp/OlP\nUx/Y9vdhpKio6KHjRUVFqFT331MUBUVRjF1+uWQBcBn6Nu7BvdwMNkZsq+5ShBBCiEeiUqkoLCws\n8V5qairu7g1RqVQcPnyA/Pz8Sn9Oo0aNuXLlEgCnTp184DNNTcJMGfo16UVLZ0/OxJ/nfEJYdZcj\nhBBCGKxpU0+uXAknM/O3U0X9+vXnl1+OMnfui1hZWaHT6fjhh28q9Tk9evQmMzOTiRMncv78Wezt\nHSpbukGUotKOH9UiCQn3TDZ3rnkGfw0KwMbMmreeeB1rM2uTfVZdodXamfTfSV0kPTOc9Mxw0jPD\nSc8qLj09jZCQYMaNe4ZLl64xd+6LrFmz2aifodXalTkmR2bK0djBnaGeA0nLu8fmyJ+quxwhhBCi\nRrK2tuHAgX2MHz+eBQv+wssvV+0N9mQB8EMM9OjL2fhQTt4JpouuA22cW1V3SUIIIUSNotFoeO+9\nf1Tb0SyTHplZvHgxEyZMwN/fn9DQ0BJjGzZsYPz48fj7+7No0aLi1dIRERH4+fmxatUqU5b2UJE3\n04i5k45apWZKm/GoFBWrwzeRU5BTrXUJIYQQoiSThZlTp04RExPD+vXrCQgIICAgoHgsOzubnTt3\nsnr1atatW0dUVBRnz54lKyuL999/n+7du5uqrApbtiOMv//nOJk5+TSxa8ggj36k5Kay7dqe6i5N\nCCGEEL9jsjBz4sQJ/Pz8APDy8iItLa34xjtWVlYsX74cMzMzsrOzycjIQKvVYm5uzjfffINOpzNV\nWRXWt0ND0jLy2Hr0OgBDPP1ws9Zx5NYvXE2JqubqhBBCCPE/JgsziYmJODo6Fr92cnIiISGhxDbL\nli1j4MCBDBkyhCZNmqDRaLC0tDRVSQYZ1NWDRlobDoTc5Mbde5ipNExpMx4FhdXhG8krzKvuEoUQ\nQghBFS4ALu0K8JkzZzJt2jRmzJhB586d6dy5s8HzOjpao9GY5rbJM5/xZeE3J9hw6Bofzu6FVuvD\n8Hv9+SliPwfiDjG1wxiTfG5tV97lc6J00jPDSc8MJz0zXH3pWf/+/dmxYwerV6+ma9eudOzYsXgs\nMzOTESNGcODAgTL3DwoKYvDgwQQGBmJnZ8fAgQOrouxiJgszOp2OxMTE4tfx8fFotVrg/t0Hr169\nSteuXbG0tKRPnz6EhIQ8UphJSckyWs1/1MlbR6dWWkIiEthxKJLubd0Y4P4kJ2PP8dOV/XjbedPM\n3sNkn18byX0ZDCc9M5z0zHDSM8PVp54VFupJTMxg1KiJQMl7uGVlZVFYqC+zF3fu3CYwcCudOvVg\n9OjRJCTcM0nfquU+Mz179iQoKAiAsLAwdDodtrb3n3FUUFDAm2++SWZmJgAXLlzA09PTVKVUiv+A\nFphpVGw4GEl2bgHmanOmeI+liCJWXd5Ivr6guksUQgghSvX885OJi4sDIC7uDs89N4m//nUeL7/8\nZ2bMmM6lSxdLbB8QsIjjx4+SmZnBvHkv8dJLf2LFiu+Lx3/+eTczZz7Liy8+z0cf3b+w59NPP+Lc\nuRB++OEblixZwubN6wH46qvPefHF55kxYzp79uwEYM6cmSxf/h1z577I9OkTi2urLJMdmenUqRM+\nPj74+/ujKAoLFy4scfhp9uzZTJs2DY1GQ+vWrRkwYAAXL17ko48+4tatW2g0GoKCgliyZAkNGjQw\nVZkP5eJgxfDuTdl69Drbjl3Hf0BLWjp60btRd47eOkFQ9H6eaj642uoTQghROwRG/sTZ+AtGnbOj\nrh2jWzxV5nifPk9y/PgRxowZz9Gjh+nT50m8vFrSp08/zpw5zerVywkI+NcD+wUF7aZ5cy9eeeV1\n9u//mX377h+cyM7O5pNPlmBnZ8fs2TO4di2SiROnEhi4geeem8G6dT8CcO5cCFFR1/j66+/Jzs5m\n+nR/+vTpB4CNjQ2ff/41X3+9hCNHDjB+/KRK98Gka2b+8pe/lHjt7e1d/M+jR49m9OjRJcbbtm3L\nypUrTVnSIxn6hAfHL9xhX/BNevu600hryzNeQ7mYeJmgmIN00LajsV3D6i5TCCGEKKFPnyf58svP\nGDNmPMeOHWbOnFdZt24la9euJD8/v8yLbqKjo+jQ4f7Sj44df1sCYm9vz/z5rwMQE3OdtLTUUvcP\nD79Ehw6dgPtXMDdr1pzY2FgA2re/vx5Hp9ORlpZmlO8pdwCuADONmol+rfhiUyir90bwxsSOWGos\nmeQ9hqXnv2PV5Q280eVl1CrTLEQWQghR+41u8VS5R1FMoXlzL5KSErh7N4579+5x9OghXFx0vP32\n+4SHX+LLLz8rdb+iIlCpFAD0+vsX8OTn5/Ppp//kxx/X4Ozswl//Oq/Mz1UUhd9f91NQkF88n1r9\n25+Vxno8pDybqYI6tHChvZcz4TdSOR0eD8Bjzq3p5taF2Izb7LtxuJorFEIIIR7UvXsvli37it69\n+5KWlkqjRo0BOHz4IAUFpa/79PBoSnj4ZQBCQoIByMrKRK1W4+zswt27cYSHX6agoACVSkVhYWGJ\n/b29fTh79sx/98vi1q2bNG5sugtmJMwYYKJfSzRqFesPRJKTd/8HMKblU9ib27Ereh9xmXeruUIh\nhBCipL59n2TfviD69RvAkCHDWb9+Na++Ohsfn7YkJSWxc+f2B/YZMmQ4YWEXmDv3RWJjY1AUBQeH\nBnTt+gR/+tM0fvjhGyZNmsoXX3xK06aeXLkSzhdffFK8f/v2HWjd2pvZs2fw6quzmTVrDlZWVib7\njkqRsY7xVBNTXjZX2mV5W45EseOXaIZ282BcvxYAnE+4yLILK/C0b8prnV9EpdTfjFifLmU0FumZ\n4aRnhpOeGU56ZjhT9qxaLs2uq4Z1b4qzvSU/n4rlTtL9S8vba9vSWdee6+kxHLp5vJorFEIIIeoX\nCTMGsjBT4z+gJYX6ItbsjShevDSu1UhszKzZfm0PCVlJ1VylEEIIUX9ImHkEnVq50NbTibDoFEIi\n7j9vys7clvEtR5Kvz2dN+CajrdAWQgghRPkkzDwCRVGYNLAVapXCuv1Xyc2/v4q7s2sH2rk8RkTq\nNY7f/rWaqxRCCCHqBwkzj8jNyZrBj3uQlJ7LzhMxwP2Q4996FFYaS7ZE7iQlp/SbCQkhhBDCeCTM\nVMJTPZriaGfBnl9juPvfB142sHBgdIsR5BTmsubKZjndJIQQQpiYhJlKsDTXMKF/CwoKi1i772rx\n+93du+Dt2JJLSVc4FRdSjRUKIYQQdZ+EmUrq6q2jTVNHQq8lce5qIvDfNTXeYzBXm7Pp6nbScuU+\nBUIIIYSpSJippN8vBl6zL4L8gvuLgZ2tnHjGaxhZBdlsiNhazVUKIYQQdZeEGSNo5GKDX5fGJKbl\nsPvkjeL3ezfqhpeDJ+cSLhASH1qNFQohhBB1l4QZI3m6pycONubsPBlDYmo2ACpFxeQ2YzFTadhw\nZSsZ+ZnVXKUQQghR90iYMRIrCw3j+7cgv0DP2v2/LQZ2tdYy3HMQ9/Iz2BSxoxorFEIIIeomCTNG\n1O0xV1o1duDs1UQuRP32SIP+TXrT1K4Jp++GcCHxUjVWKIQQQtQ9EmaMSFEUJg9qjaLAmr0R5Bfo\nAVCr1ExpMw61ombdlS1kF2RXc6VCCCFE3SFhxsia6Gzp36kxd1Oy+fn0b4uBG9q6MaRZf1Jz09gS\nubMaKxRCCCHqFgkzJjCqtyd21mbs+CWa5PSc4vcHNX2SRrbuHL99ivDkq+XMIIQQQoiKkjBjAtaW\nZozt50Vevp51ByKL39eoNEzxHodKUbEmfDM5BbnVWKUQQghRN0iYMZGe7dzxamhPcHg8l6KTi9/3\nsG+Mn0dfknKS2RG1pxorFEIIIeoGCTMmolIUpgxqjQKs3htBQaG+eGxYMz9crbUcvvkL11Kjq61G\nIYQQoi6QMGNCTd3s6NuxEXeSstgXfLP4fTO1GVPajANgVfgG8grzq6tEIYQQotaTMGNio/s0x9bK\njG3Hr5Ny77c1Ms0dmtGvcU/isxLZdX1vNVYohBBC1G4SZkzM1sqM0X2bk5tXyMZDkSXGRngNwdnS\nif2xR4hJj62mCoUQQojaTcJMFejj25BmbnacDLvLlRspxe9bqM2Z5D0GfZGeVZc3UqAvqMYqhRBC\niNpJwkwVUKkUJg9qBdxfDFyo/20xsLdTS3o2fILbmXEExRysrhKFEEKIWsukYWbx4sVMmDABf39/\nQkNDS4xt2LCB8ePH4+/vz6JFiygqKnroPrWZV0MHevu6czMhkwMht0qMjWoxjAYWDgRFH+BWxp1q\nqlAIIYSonUwWZk6dOkVMTAzr168nICCAgICA4rHs7Gx27tzJ6tWrWbduHVFRUZw9e7bcfeqCMf28\nsLbQsPVoFGmZecXvW2msmNh6NIVFhay6vJFCfWE1VimEEELULiYLMydOnMDPzw8ALy8v0tLSyMjI\nAMDKyorly5djZmZGdnY2GRkZaLXacvepC+ytzRnVpznZuYVs+sNi4LYubejq2okb925yIPZoNVUo\nhBBC1D4aU02cmJiIj49P8WsnJycSEhKwtbUtfm/ZsmWsWLGCadOm0aRJkwrt80eOjtZoNGrTfAlA\nq7Uz6nzjBnlzIuwuxy/E8Uy/lng3cyoem9V9IhG7r7Lz+s/0a9WVhvZuRv3sqmLsntUH0jPDSc8M\nJz0znPTMcNXRM5OFmT/635qY35s5cybTpk1jxowZdO7cuUL7/FFKSpZR6iuNVmtHQsI9o887ob8X\n/1gVwpINZ3lneldUKqV4bFzLZ/j24kqW/LKceZ1moVJq1xptU/WsLpOeGU56ZjjpmeGkZ4YzZc/K\nC0km+5NSp9ORmJhY/Do+Ph6tVgtAamoqp0+fBsDS0pI+ffoQEhJS7j51ScvGDejR1o0bdzM4fK7k\nYuCOunZ00LbjWlo0R26dqKYKhRBCiNrDZGGmZ8+eBAUFARAWFoZOpys+XVRQUMCbb75JZmYmABcu\nXMDT07Pcfeqacf28sLJQE3gkintZeSXGxrd6BhuNNduu7SYpO7mMGYQQQggBJjzN1KlTJ3x8fPD3\n90dRFBYuXEhgYCB2dnYMHDiQ2bNnM23aNDQaDa1bt2bAgAEoivLAPnWVg60FI3s1Z93+q2w+HMWz\nQ71/G7OwY0zLEay4vJ414ZuZ0+FPKIpSzmxCCCFE/aUUVWRhSg1myvOZpj5fWlCo590fTnM7MZO3\npnfB092+eKyoqIivQ38gLCmcyd5j6dHwcZPVYUxyjtlw0jPDSc8MJz0znPTMcHVuzYx4OI1axZRB\nrSgCVv18Bf3vcqWiKExsPRpLtSWbr/5Eam5a9RUqhBBC1GASZqpZaw9HnnjMlet37nEstOTdfx0t\nGzCqxTByCnNYGx5Yoau7hBBCiPpGwkwNMP7JFliYq9l06BoZ2fklxno2fIJWji24mHSZ4LvnqqlC\nIYQQouaSMFMDONpZ8HTPZmRk57PlaFSJMUVRmOw9BnOVGRuvbuNeXt25I7IQQghhDBJmaoiBXZrg\n7mzNobO3iIkruXjKxcqZp72GkpmfxYaIrdVUoRBCCFEzSZipITRqFZP8WlFUBKv2llwMDNC3cQ+a\nOzQlJD6UcwkXq6lKIYQQouaRMFOD+Hg60bm1lmu30jlxMa7EmEpRMdl7HBqVhvVXtpCZb7rHOAgh\nhBC1iYSZGsa/f0vMNSo2HowkK6egxJibjY7hzQaSnnePzVd3VFOFQgghRM0iYaaGcXawZHiPZqRn\n5bP1WNQD4wM8+tDErhG/xp0hLCm8GioUQgghahYJMzXQkMc90DlaceDMLW7Gl7x6Sa1SM8V7HCpF\nxdrwQLILcqqpSiGEEKJmkDBTA5lp7i8G1hcVsWpvxAM3y2ts15DBTfuTkpvK1mu7qqlKIYQQomaQ\nMFND+Xo506GFCxGxqfx6+e4D40Oa9cfdxpVjt04SkXKtGioUQgghagYJMzXYRL+WaNQqNhyIJDu3\n5GJgjUrDlDbjUFBYfXkjuYV51VSlEEIIUb0kzNRg2gZWDOvmQWpGHjuORz8w3szeg/4evUnMSean\nqKCqL1AIIYSoASTM1HDDujXFxcGSvcGx3E7MfGD8Kc/B6KxcOBh7jOtpMdVQoRBCCFG9JMzUcOZm\naiYOaEmhvojVpSwGNlebMbnNOIooYtXljeTrC8qYSQghhKibJMzUAh1autCuuTOXY1I4cyXhgfEW\nDTzp06gHcVnx7Lm+rxoqFEIIIaqPhJlaQFEUJvm1RKNWWHfgKrl5hQ9sM9JrCE6Wjvx84xCx925V\nQ5VCCCFE9ZAwU0u4Olkz+HEPktNz+elE9APjlhpLJrUeg75Iz6rLGynUPxh4hBBCiLpIwkwt8lT3\nZjjZWxB06gZ3kx980GQb51Z0d+/KzYzb7L1xqOoLFEIIIaqBhJlaxMJcjX//lhQUFrF634OLgQFG\nt3gKB3M7dl/fx53MB2+2J4QQQtQ1EmZqmc6ttTzWzJGLUcmcu5r4wLi1mRX+rUdTUFTIqssb0Rfp\nq6FKIYQQoupImKll7i8GboVapbB2/1Xy8h9cG+Or9aGLawei029wMPZYNVQphBBCVB0JM7VQQxcb\nBnZtQmJaDrtOln6jvLEtn8bWzIYdUXuIz3rwCI4QQghRV0iYqaVG9GhGA1tzdp28QXxq9gPjdua2\njG81knx9AWvCN8npJiGEEHWWhJlayspCw/j+LSgo1LNu39VSt+mka097Fx+upkZx7NavVVyhEEII\nUTUkzNRiT7RxpXWTBpyLTCT02oOnkhRFYULrUVhprNh6bSfJOSnVUKUQQghhWhJmajFFUZg8qBUq\nRWHN3qvkFzy4GNjBwp4xLUeQW5jHmvDNpV7OLYQQQtRmJg0zixcvZsKECfj7+xMaGlpi7OTJk4wf\nPx5/f3/mz5+PXq9Hr9fz9ttv4+/vz9SpU7l27Zopy6sTGmttGdC5MfGp2ew5FVvqNt3cOtPGqRWX\nkyM4GXemiisUQgghTMtkYebUqVPExMSwfv16AgICCAgIKDH+zjvv8MUXX7Bu3ToyMzM5evQo+/fv\n5969e6xbt46AgAD++c9/mqq8OmVkL0/sbczZ+Us0iWkPLgZWFIWJrcdgoTZn89UdpOWmV0OVQggh\nhGmYLMycOHECPz8/ALy8vEhLSyMjI6N4PDAwEDc3NwCcnJxISUkhOjoaX19fADw8PLh9+zaFhfKM\noYexttQwrp8XeQV61h+ILHUbZytHnvEaTnZBNuuubJHTTUIIIeoMjakmTkxMxMfHp/i1k5MTCQkJ\n2NraAhT/d3x8PMePH2fu3LmEhoayfPlypk+fTkxMDLGxsaSkpODi4lLm5zg6WqPRqE31NdBq7Uw2\ntzE93c+WX8LucuZKAjeTs+nYWvfANqNc/AhNuUhoQhiRORH08OhiklpqS89qEumZ4aRnhpOeGU56\nZrjq6JnJwswflXYkICkpiVmzZrFw4UIcHR3p27cvISEhTJ48mdatW9O8efOHHkFISXnwgYvGotXa\nkZBwz2TzG9uEJ71498dkvtp0nvdeeByN+sEDb+O9RrE46d98G7wON3Uj7MxtjVpDbetZTSA9M5z0\nzHDSM8NJzwxnyp6VF5JMdppJp9ORmPjb5cLx8fFotdri1xkZGcyYMYN58+bRq1ev4vdfffVV1q1b\nx7vvvkt6ejrOzs6mKrHO8XC1o1/HRsQlZ7H3dOmLgXXWLjzVfBAZ+Zlsurq9iisUQgghjM9kYaZn\nz54EBQUBEBYWhk6nKz61BPCPK+nrAAAgAElEQVThhx8yffp0+vTpU/xeeHg48+fPB+DIkSM89thj\nqFRy9bghRvdpjq2VGduPR5NyL7fUbfo36U1T+yYE3z1HaEJYFVcohBBCGJfJTjN16tQJHx8f/P39\nURSFhQsXEhgYiJ2dHb169WLr1q3ExMSwadMmAJ566inGjRtHUVERY8eOxcLCgo8//thU5dVZNpZm\njO3nxY+7w1l/4CqzRrZ9YBuVomKK9zg+Ov05664E0qJBc6zNrKqhWiGEEKLylKJaflmLKc9n1tbz\npfqiIgJWnOH6nXTemNiRNk0dS91u9/X9/HQ9iO7uXZnSZpxRPru29qw6Sc8MJz0znPTMcNIzw9W5\nNTOi+qgUhSmDWqEAa/ZGUFBY+kMmBzXtR2Pbhpy4c5rLyRFVW6QQQghhJBJm6ihPd3t6t2/IrcRM\nDpy5Weo2apWaKW3GoVJUrAnfTE5B6WtshBBCiJpMwkwdNqZvc2wsNWw9dp20jNKDShO7Rgz06Edy\nTgrbo3ZXcYVCCCFE5UmYqcPsrM0Z3ac5OXmFbDhY9nOuhjYbgJu1jsM3fyEy9XoVViiEEEJUnoSZ\nOq5vh0Y0dbXjRFgcEbGppW5jpjZjcptxKCisvryRvML8Kq5SCCGEeHQSZuo4lUph8qBWAKzeG0Gh\nvvTFwM0dmvJkk17EZyey8/rPVVmiEEIIUSkSZuqBFo0c6NnOjdj4DA6dvV3mdiOaD8bF0on9N44Q\nk176HYSFEEKImkbCTD0xtl8LrCw0bDkSRXpmXqnbmKvNmdxmLEUUsfLyBvL1BVVcpRBCCGE4CTP1\nhIONOc/09iQrt4BNh8teDNzKsQW9GnXjTuZdgqIPVGGFQgghxKORMFOP9O/UiMZaG46F3uHa7bQy\nt3vGaxiOFg0IijnAzXtln5YSQgghagIJM/WIWqVi8sD7i4FX/RyBXl/6kyysNJZM9B6NvkjPqvCN\nFOoLq7JMIYQQwiASZuqZ1h6OdPNxJSbuHkdCyz7q4uPszRNunYm9d4v9N45UYYVCCCGEYSTM1EPj\n+rXAwlzN5kPXyMgu+54yY1qOwM7clp3Re4nLjK/CCoUQQoiKkzBTDznaWTCypyeZOQUElrMY2MbM\nGv/WoynQF7Dq8kb0RaXfo0YIIYSoThJm6im/Lo1xd7bm8LnbRMell7ldB21bOup8uZ4ew+Gbv1Rh\nhUIIIUTFSJippzRqFVMGtqKI/y4GLip9MTDA+FYjsTGzZvu13SRmJ1VdkUIIIUQFSJipx9o0c6Kr\nt46o2+kcv3CnzO3sze0Y13Ikefp8Vl/eRFE5wUcIIYSoahJm6rkJ/VtgbqZi06FrZOaUvRi4i2sH\n2jq3ISL1Gsdv/1qFFQohhBDlkzBTzznZWzKiRzPuZeWz9ej1MrdTFIWJ3qOxVFuyJXInKTmlP4Fb\nCCGEqGoSZgSDunrg6mjFgZCb3Lh7r8ztGlg4MLrlcHIKc1l7JVBONwkhhKgRJMwIzDT37wxcVASr\n90aUG1J6uD9Oa8cWhCWFc/ru2SqsUgghhCidhBkBQNvmznRs6cLVm2mcDLtb5naKojDJeyzmanM2\nRmwjLbfsIzlCCCFEVZAwI4pNHNASM42KDQcjyc4tKHM7FysnRjYfSlZBNhsitlZhhUIIIcSDJMyI\nYi4NrBjevSlpmXlsO1b2YmCAPo2709yhGecSLhASH1pFFQohhBAPkjAjShj6hAfaBpbsC77JrYSM\nMrdTKSqmeI9Fo9Kw4cpWMvIzq7BKIYQQ4jcSZkQJZho1E/1aoS8qeuhiYFcbHU95DuJefgabr+6o\nwiqFEEKI30iYEQ/o0MIFXy9nwm+kcjq8/Kdl92/SGw+7xpyKC+Fi4uUqqlAIIYT4jUnDzOLFi5kw\nYQL+/v6EhpZcV3Hy5EnGjx+Pv78/8+fPR6/Xk5mZyZw5c5g6dSr+/v4cPXrUlOWJckzya4lGrbD+\nQCQ5eWUvBlar1ExpMw61ombtlUCy8rKrsEohhBDChGHm1KlTxMTEsH79egICAggICCgx/s477/DF\nF1+wbt06MjMzOXr0KFu2bMHT05OVK1fy+eefP7CPqDo6R2uGPNGUlHu57PglutxtG9m6M7hZf1Jz\n0/i/4NUU6gurpkghhBACE4aZEydO4OfnB4CXlxdpaWlkZPy2oDQwMBA3NzcAnJycSElJwdHRkdTU\n+7fJT09Px9HR0VTliQoY3r0pzvYW/HwqljtJ5S/wHdz0SZrZe3Ai9gxfnf+e7IKcKqpSCCFEfWey\nMJOYmFgijDg5OZGQkFD82tbWFoD4+HiOHz9O3759GT58OLdv32bgwIFMmTKFv/3tb6YqT1SAhZka\n/wEtKdQXseYhi4E1Kg0vd5hBJ/e2hKdc5dMzX8nzm4QQQlQJTVV9UGl/ECYlJTFr1iwWLlyIo6Mj\n27Zto2HDhnz33XeEh4ezYMECAgMDy53X0dEajUZtqrLRau1MNndtMNjFll/C7nI2IoHIuAx6+DYs\nZ2s73nCdxQ9nN/Bz5BE+ObuU+b1n08yxSZXVW1vV99/Zo5CeGU56ZjjpmeGqo2cmCzM6nY7ExMTi\n1/Hx8Wi12uLXGRkZzJgxg3nz5tGrVy8AQkJCiv/Z29ub+Ph4CgsLUavLDispKVkm+gb3/4UkJMjt\n+sf2bU5oZCLLtoTi4WKNhVnZ/z60WjuebjIcW+zZErmTt/d/zAttp+Dj7F2FFdcu8jsznPTMcNIz\nw0nPDGfKnpUXkkx2mqlnz54EBQUBEBYWhk6nKz61BPDhhx8yffp0+vTpU/xe06ZNOX/+PAC3bt3C\nxsam3CAjqoa7sw2DHm9CUnouO0/EPHR7RVEY4NGHF9pOQV+k5z+hP3Ls1skqqFQIIUR9ZLIjM506\ndcLHxwd/f38URWHhwoUEBgZiZ2dHr1692Lp1KzExMWzatAmAp556igkTJrBgwQKmTJlCQUEBixYt\nMlV5wkAjejTjZNhd9vwaQ892brg6Wj90n466djhY2PN/oT+y9kogidnJPO01BJUitzcSQghhPEpR\neas6awFTHgKUQ4wlnbp8l/9sC8PXy5l549qXuk1pPUvISuKr898Rn51IZ117prYZj5narCpKrhXk\nd2Y46ZnhpGeGk54Zrs6dZhJ1T1dvHd4eDQi9lsS5yMSH7/BfWmtnXu8yGy+HZpyJP88X576RZzkJ\nIYQwGgkzosIURWHywFaoVQpr90WQX1Dxm+PZmtnwcocZdNa1Jyotmk+ClxKfVfFAJIQQQpRFwoww\nSCOtLQM6NyYhNYfdJ28YtK+Z2oxnfSYyqOmTxGcn8smZpUSlPXxBsRBCCFEeCTPCYCN7eeJgY87O\nkzEkphr2LCaVomKk11Amth5NVkE2n5/9P0LiQx++oxBCCFGGCoeZ/z2KIDExkeDgYPR6vcmKEjWb\nlYWG8U+2IL9Az9r9Vx9pjl6NujHL9znUiorvL65m343D5d5hWAghhChLhcLM+++/z+7du0lNTcXf\n35+VK1fKZdP1XDcfV1o2duDs1UQuRCU90hw+zq15rdNLOFjcv8Hehoit8pBKIYQQBqtQmLl06RLj\nxo1j9+7djBo1is8//5yYGFnrUJ/9bzGwosCavRHkFzzakbrGdg35S+fZNLJ158itEyy7sJycglwj\nVyuEEKIuq1CY+d/h/0OHDtG/f38A8vLyTFeVqBU8XO3o36kxd1Oy+fm0YYuBf8/RsgGvdnqRNk6t\nuJgUzmdn/0NabroRKxVCCFGXVSjMeHp6MmzYMDIzM2nTpg1bt27FwcHB1LWJWmBUb0/srM3Y8Us0\nyek5jzyPlcaSF32fo4f748Teu8W/gr/kdkacESsVQghRV6kXVWDxy5NPPkmXLl147rnnUKvVFBYW\nMnbsWCwsLKqgxPJlZZnuCJGNjYVJ568LzDRqbK3MOHMlgeR7ufTr3OSRe6ZSVLRzaYNGpeF84kVO\nx52lqX1jXKycjVx1zSK/M8NJzwwnPTOc9MxwpuyZjU3ZmaNCR2YuX75MXFwc5ubm/Pvf/+af//wn\nERERRitQ1G4927nTvKE9weHxnI9IqNRciqIwuFl/nntsIgX6fJae/44Td4KNVKkQQoi6qEJh5oMP\nPsDT05Pg4GAuXLjA22+/zRdffGHq2kQtoVIUpgxqhQJ8vPoM126lVXrOLm4dmdNhBpZqC1Zd3sBP\nUT/LpdtCCCFKVaEwY2FhQbNmzdi/fz/jx4+nRYsWqFRyvz3xm2Zu9kwd3Jr0zFz+ufYspy7frfSc\nLR2b85fOs3G2dGJ39D5WXF5Pgb7ACNUKIYSoSyqUSLKzs9m9ezf79u2jV69epKamkp4uV5uIkvp1\nbMQ7f+qGWqXwn21h/PRLdKWPprja6Hijyxya2XtwKi6Epee+Iys/y0gVCyGEqAsqFGZee+01duzY\nwWuvvYatrS0rV67k2WefNXFpojbq7O3Kgimdcba3IPBIFN/vvExBYeXuFm1nbsvcjjNpr21LROo1\nPjnzFUnZyUaqWAghRG2nFFXwr85ZWVlcv34dRVHw9PTEysrK1LVVSELCPZPNrdXamXT+uuh/PUvL\nyOWLzRe4fied1k0aMHt0O2ytzCo1t75Iz5bInRyIPYqduS0v+j5HU/smRqq8+sjvzHDSM8NJzwwn\nPTOcKXum1dqVOVahIzP79u1j0KBBLFy4kLfeeovBgwdz+PBhoxUo6h4HWwv+OqkjXVpruRKbSsCK\nYO4mV+70kEpRMablCMa1HElGXiafhfyH0IQwI1UshBCitqpQmPn222/Zvn07mzZtIjAwkI0bN/L1\n11+bujZRy1mYqZn1TFuGd2/K3ZRsPlgRzJUbKZWet1+TnsxsNw2AZRdWcOjm8UrPKYQQovaqUJgx\nMzPDycmp+LWrqytmZpU7ZSDqB5WiMKavF88N8yYnr5CP153j+IU7lZ7XV+vDvE6zsDW3YWPENjZf\n3YG+SJ7kLoQQ9VGFwoyNjQ3ff/894eHhhIeH8+2332JjY2Pq2kQd0tu3Ia9P6ICluZrvdl4m8Mg1\n9JW80qmpfRPe6DwHN2sdB2KP8u3FVeQVyt06hRCivqlQmAkICCA6Opo333yT+fPnc+vWLRYvXmzq\n2kQd493UkQVTO6NrYMVPv8Twf9vCyMsvrNSczlZOvN75JVo2aM75hIt8fnYZ9/IyjFSxEEKI2qDC\nVzP90bVr1/Dy8jJ2PQaTq5lqlor07F5WHksDLxBxM43mDe15eYwvDjbmlfrcAn0Bq8M3cSouBGdL\nJ2a3fx5XG12l5qwq8jsznPTMcNIzw0nPDFejr2Yqzbvvvvuou4p6zs7anNf9O9Ldx42o2+l8sDyY\nWwmVO5qiUWmY1mYCw5r5kZSTzMdnlnI1JcpIFQshhKjJHjnMyHNyRGWYaVT86ak2jOrtSVJ6DotX\nneFiVFKl5lQUheHNBzG1zXhyCnP58tw3nI47a6SKhRBC1FSPHGYURTFmHaIeUhSFET09+fPTPuQX\nFPHZxlAOhtys9Lzd3Lswu/0LaFRm/HhpLXuiD0j4FkKIOkxT3uCmTZvKHEtISDB6MaJ+euIxV5wd\nLFmyOZSVP0dwNyWb8U+2QKV69MDs7dSS1zu/xFfnv2dH1B6SspPxbz0KtUptxMqFEELUBOWGmTNn\nzpQ51qFDB6MXI+qvFo0ceGtaFz7beJ6fT8cSn5LNzKcfw9K83J9ouRrauvFGlzl8HfoDv9w5RUpu\nKi+0nYKVxtKIlQshhKhuj3w1U00hVzPVLJXtWVZOPl9vvUhYdAoeOlteGeuLk33lwkdOQS4/hK3m\nYlI4DW3ceKn98zhaNqjUnMYkvzPDSc8MJz0znPTMcNV1NVOFwsykSZMeWCOjVqvx9PTkpZdewtXV\ntdT9Fi9ezPnz51EUhQULFuDr61s8dvLkST799FNUKhWenp4EBASwefNmtm/fXrzNxYsXOXu2/AWc\nEmZqFmP0rKBQz5q9ERw6d5sGtubMHduepm5l/4grolBfyKar2zly6wQO5va82P55mtg1rNScxiK/\nM8NJzwwnPTOc9Mxw1RVm1IsWLVr0sAnu3LlDQUEBY8aMoVOnTiQlJdGqVSvc3Nz4/vvvGTly5AP7\nnDp1ioMHD7J8+XI6duzIokWLGDduXPH4888/z7Jly3j22WfZvn07NjY2DBs2jNGjRzN69GgaN26M\nRqOhX79+5daWlWW6O77a2FiYdP66yBg9U6kUfL2csbLQEHIlgV/C4mjkYoO786PfdVqlqPBx9sZC\nY8G5hIucvhtCY7tG6KxdKlWrMcjvzHDSM8NJzwwnPTOcKXtmY2NR5liFrmY6c+YMn3zyCYMGDcLP\nz48PP/yQsLAwnn32WfLz80vd58SJE/j5+QHg5eVFWloaGRm/3UskMDAQNzc3AJycnEhJKfkAwqVL\nl/LSSy9VpDxRBymKwuDHPZgzuh0AXwZeIOjUjUpdlaQoCn4efXmh7RT0RXr+E/oDx26dNFbJQggh\nqkmFwkxSUhLJycnFr+/du8ft27dJT0/n3r3SDyclJibi6OhY/NrJyanEFVC2trYAxMfHc/z4cfr2\n7Vs8Fhoairu7O1qt1rBvI+qcjq20zJ/cGQdbc9YfiGRl0BUKCiv3QMlOOl9e6fhnrDVWrL0SyLZr\nu+UhlUIIUYtV6FKRadOmMXToUBo1aoSiKNy8eZM///nPHDx4kAkTJlTog0r7G3VSUhKzZs1i4cKF\nJYLPpk2bGDVqVIXmdXS0RqMx3eW25Z2jE6Uzds+0Wjv+3cSR97/7lUPnbpOalc/fpnXF1urRn9yu\n1balqdvf+MfhL/k55iAZ+nReemI65urqeRq8/M4MJz0znPTMcNIzw1VHzyp8NVNGRgbR0dHo9Xo8\nPDxo0KD8q0GWLFmCVqvF398fgAEDBrBt27biIzIZGRlMmzaNefPm0adPnxL7Dh48mB07dmBu/vDn\n9cgC4JrFlD3LyStg2fZLnItMpKGLDXPH+qJtYFWpOTPyM/m/0OVEpUXj5dCMmb7TsTWr2ifCy+/M\ncNIzw0nPDCc9M1yNfjZTZmYmy5cv58svv+Trr79m/fr15OTklLtPz549CQoKAiAsLAydTlccZAA+\n/PBDpk+f/kCQuXv3LjY2NhUKMqJ+sTTXMGd0OwZ1bcLtxEw+WBFM5K20Ss1pa2bDKx1m0FnXnmtp\n0XwSvJSErMo9VkEIIUTVqtDVTG+++Sbm5uYMGTIEHx8frly5wq5duxg0aFCZ+7i7uxMZGckXX3zB\n0aNHWbhwIUeOHOHmzZs0bNiQ119/nZSUFLZs2cKWLVvIz8+nbdu2REdHc/78eZ5++ukKfQG5mqlm\nMXXPFEWhbXNn7K3NOHMlkV8uxuHqZEUjre3Ddy6DWqWmvbYthUWFhCZeIvjuObwaeFbZvWjkd2Y4\n6ZnhpGeGk54ZrrquZqrQaaZp06axYsWKEu9NnTqVlStXVr66SpLTTDVLVfbsYlQSX229SE5eIaN6\ne/JUj2aVfmbYsVsnWR+xFbWiYvpjE+moa2ekassmvzPDSc8MJz0znPTMcDX6NFN2djbZ2dnFr7Oy\nssjNza18ZUJUQtvmziyY2hlne0u2HL3Otz9dJr+gclcl9WrUjVm+z6JSVHx3cRX7bhyWh1QKIUQN\nV6GrmSZMmMDQoUNp27YtcH8NzNy5c01amBAV0Vhry1vTu7BkcygnwuJISstmzhjfSl3p5OPszaud\nXuLr89+zJXInSdkpjG05Qh5SKYQQNVSFjsyMHTuWtWvX8swzzzBq1CjWrVtHZGSkqWsTokIcbMz5\n68SOdPHWEXEzjQ9WBHMnKbNSczaxa8gbXebQyNadI7d+YdmFFeQUyNFIIYSoiSoUZuD+gl4/Pz8G\nDBiAq6sroaGhpqxLCIOYm6mZNdKHp3o0JT4lm8UrzxAek/LwHcvhaNmAVzu9SBunVlxMusxnZ/9D\nWm66kSoWQghhLBUOM38k6whETaNSFEb38eKF4W3IySvkk/XnOBp6u1JzWmksedH3OXq4dyX23i3+\nFfwltzPijFSxEEIIY3jkMFPZq0aEMJWe7dz5i38HLM3V/LArnM2Hr6GvRPhWq9RM8h7LiOZDSMlN\n5ZMzXxGefNWIFQshhKiMchcA9+3bt9TQUlRU9MCDIYWoSVp7OPL3aV34fON5dp6I4W5yFn966jHM\nzR5tEa+iKAxp1h9nS0dWXd7A0vPfMdl7LN3cuxi5ciGEEIYqN8ysWbOmquoQwujcnKz5+7QufBl4\ngeArCSSln+WVMe1wsC37xksP09WtIw0sHFh2YTkrL28gKTuZYZ4D5UilEEJUo3JPMzVq1Kjc/whR\n09lamfH6hA70bOvG9TvpfLAimJvxGZWas6Vjc/7SeTbOlk7sit7HisvrKdAXGKliIYQQhnrkNTNC\n1BZmGhXPD2/DqD7NSUrPZfGqM1yIqtzzl1xtdLzRZQ5N7ZtwKi6Epee+Iys/++E7CiGEMDoJM6Je\nUBSFET2aMWukDwWFRXy28TwHQm5Wak47c1vmdfwz7bVtiUi9xichX5GUnWykioUQQlSUhBlRrzze\nxpW/TeqInZUZq36OYM2+CPT6R7/SyVxtzp/aTqF/k97EZd7lX2e+JCY91ogVCyGEeBgJM6Le8Wrk\nwFvTutDQxYZ9wTdZsjmU7NxHX/OiUlSMaTmCcS1HkpGXyWch/+FC4iUjViyEEKI8EmZEveTSwIoF\nUzrj4+nE+WtJfLg6hOT0nErN2a9JT2a2m0YR8H+hyzl087hxihVCCFEuCTOi3rK21DBvnC/9OjYi\nNj6D91cEEx1XuccV+Gp9eLXTLGzNbdgYsY3NV3egL6rck7yFEEKUT8KMqNfUKhVTB7XCv38L0jPy\n+HB1CCERCZWas6l9E97oPAc3ax0HYo/y3cVV5BXmGaliIYQQfyRhRtR7iqIw6HEP5oxph4LC0sAL\n7Pn1RqWeP+Zs5cTrnV+iZYPmnEu4yOdnl3Evr3L3txFCCFE6CTNC/FfHllrenNwJB1tzNhyMZPme\nKxQUPvopImsza+Z0+BOPu3UiOv0G/wr+kruZ8UasWAghBEiYEaKEpm52vD29Kx6uthw5f5t/bzhP\nVk7+I8+nUWmY1mYCQ5v5kZSTzMdnlhKZet2IFQshhJAwI8QfONpZ8ObkTnRo4cLlmBQCVp4hPvXR\n7+6rKApPNR/ElDbjySnMZcnZZQTHnTVixUIIUb9JmBGiFJbmGuaMbsegrk24k5TFB8uDibyZVqk5\nu7t3YXb7F9CozPjh0lqCog9Ual2OEEKI+yTMCFEGlUrBf0BLpg1uTVZOAf9ce5aTl+IqNae3U0te\n7/wSjhYN2B61hzXhmynQFxqpYiGEqJ8kzAjxEP06NmLeeF/MNArLtl9i+7HrlTqi0tDWjTe6zKGJ\nXSN+uXOKvwUFcODGEbnaSQghHpF60aJFi6q7iMrIyjLd/TtsbCxMOn9dVFd7pnO0pkMLFy5EJRFy\nNZGE1Gx8vVxQq5RHms9SY0EX146k5aZzJTmSsOQrHIg9Suy9W5ipzNBaOaNS5O8aZamrvzNTkp4Z\nTnpmOFP2zMbGoswxpaiWn7RPSLhnsrm1WjuTzl8X1fWepWXm8eXmUK7dTqdlYwfmjG6HnbV5pea0\nsIM9l45x4s5pbmXcAcDWzIbH3TrRzb0LjWzdjVF6nVLXf2emID0znPTMcKbsmVZrV+aYHJkph6Ry\nw9X1nlmaq+n2mCvxqdlciErmzJV42no6VSrQODnYodO40btRd3xdfNCo1NzKvENEyjWO3jrJhcRL\nFOgLcbF2xlxdueBUV9T135kpSM8MJz0zXHUdmZEwUw75IRuuPvRMrVbRqbUWfRGcu5rIybC7eLrb\noW1g9Ujz/b5nDhZ2+Dh782STXjSxbUi+Pp9radGEJYVzMPYYNzPuYKE2x9nSqV6fhqoPvzNjk54Z\nTnpmuOoKMxqTfKIQdZxKURjdpzmujlb8uDucTzecZ9rg1vRu39Ao82tUGjro2tFB14603HucvhvC\nyTvBnEu4wLmEC9ib2xWfhnK3cTXKZwohRG1l0jCzePFizp8/j6IoLFiwAF9f3+KxkydP8umnn6JS\nqfD09CQgIACVSsX27dv59ttv0Wg0vPLKK/Tr18+UJQpRKT3buePiYMmXgRf4YXc4cSlZjOnrhUp5\ntIXBpXGwsMPPoy8DmvThxr2bnLwTzOm759h34zD7bhymqX0Turt3obOuPdZm1kb7XCGEqC1MFmZO\nnTpFTEwM69ev59q1ayxYsID169cXj7/zzjusWLECNzc3XnnlFY4ePYqvry9Lly5l8+bNZGVlsWTJ\nEgkzosZr7eHIW9O68NnG8+w+eYP45Gz+NOIxLMzURv0cRVFoat+EpvZNGN3iKUITL3EyLpjLSRHE\npMey6eoO2rv40M29C95OLev1aSghRP1isjBz4sQJ/Pz8APDy8iItLY2MjAxsbW0BCAwMLP5nJycn\nUlJSOHHiBN27d8fW1hZbW1vef/99U5UnhFG5Olnz92ldWBp4gTMRCSStDuGVsb40sC37HG9lmKnN\n6Ozans6u7UnNTeNU3P3TUGfiz3Mm/jwNLByKT0O5WmtNUoMQQtQUJrs0++2336Zv377FgWbSpEkE\nBATg6elZYrv4+HgmT57Mhg0b2LhxI1FRUaSmppKens7LL79M9+7dy/2cgoJCNBrj/g1YiEeVX6Bn\n6aZz7D8di0sDK9554Qk8GzpUyWcXFRVxNek6h66f4HhsMNn5OQC0dm5OP8/udPfojLXZoy1SFkKI\nmqzKFgCXlpmSkpKYNWsWCxcuxNHREYDU1FS+/PJLbt++zbRp0zh48CBKOesPUlKyTFaz3GPAcNIz\nmNS/BQ2szdh8OIo3lhzlxZE++Hq5lLm9MXvmiJZRzZ5meJOhnE+4yMk7wVxJiuRKUhTfh2ygg7Yd\n3dw708rRq1afhpLfmeGkZ4aTnhmuuu4zY7Iwo9PpSExMLH4dHx+PVvvb4e6MjAxmzJjBvHnz6NWr\nFwDOzs507NgRjUaDh3oLv8kAACAASURBVIcHNjY2JCcn4+zsbKoyhTA6RVEY3r0ZOkdrvv3pEp9v\nCmWSXysGdG5cZTWYq83o6taRrm4dSc5JKT4NdfpuCKfvhuBo0YBu7p3p5t4FFyv535cQonYz2V/N\nevbsSVBQEABhYWHodLriNTIAH374IdOnT6dPnz7F7/Xq1YuTJ0+i1+tJSUkhKyur+IiNELVNV28d\nf53UETsrM1bvjWD13ggK9foqr8PJ0pEhzQawsNtfebXTi3R370pWQRa7o/ez8MRH/Dvka07cCSan\nILfKaxNCCGMw6eMMPv74Y4KDg1EUhYULF3Lp0iXs7Ozo1asXXbt25f/bu/fgJu873+PvR7Z8kSVf\nZOtiy3dz9QWwgTQEAoGw7WnK6SVtF5cuyUz3MCebySTZ2WQmQzawnW4yobOb6UmaSbvd7UyTTidu\nCYfS022TtoEMSbnEYIxtsAEDxnfJtnyR75Z0/pAsMAHCY5D1yHxfMxnsx5L184dH+Jvf831+v/Ly\n8tBjt2zZwtatW3n33XfZu3cvAP/wD//Aww8/fMvXkO0MtEUy+6ye/lH+z97TtPcMs6wonf/91RIS\n469OikYis3HvBKecdRzp/JTz/RcBiIuJo8KyjPszV7IgtfCWl3cjTc4z9SQz9SQz9SJ1mUn2ZroF\nOZHVk8xubGRsip/8tp76S31kW4w8861lpKckAJHPrGe0j2Od1RzrOkHvmBuAjAQzX8hcyRfsq0hP\n1N7saKQzi0aSmXqSmXqyN9MsyXYG2iKZ3Zg+Vsd9xVY8I5Ocbu7l+NluFuemkmaKj3hmBn0ii9KK\n2JC9lkVphQC0DLbS6D7PwbaPudB/CZ2iYElMJ0anjTsHI51ZNJLM1JPM1JO9mWZJihltkcxuTqco\nLCtKJylBz4kmF0caushMN7Ag16yJzBRFIT3RzHJLKQ9lr8WSmMHI5AgX+i9S66rno7ZP6Bntwxhn\nIDU+JaKXoeQ8U08yU08yU0/2ZhLiHqAoCn+zOgdLaiI/PdDAm/+3nrbeUdYWW8mY5UaV4ZAQm8AD\nWat5IGs1zpEejnVWc7TrBH/tPM5fO49jNWRwv30V99krSEtIjfRwhRD3OOmZuQW5XqqeZHb7rnQP\n8fp7p+kbHEcBli/IYFOFg+IC813d2+lu8fl9NLkvcLSzmlpXPZO+KRQUlpgXcn/mKpZnlKCP0c/J\nWOQ8U08yU08yU08agGdJihltkczUmZj00tg+yG8/usClzkBu1rRENpY7WLcsk6SEuSkO1BqZHOWk\ns5ajndVcGrwCQGJsIitty1mTuYo8U05YL0PJeaaeZKaeZKaeFDOzJMWMtkhm6k1ndqlzkA9PtnHs\njJMpr4+4WB1fKLaxqSKbPPvN38SR1jXs5GhnNce7TjAwEfi7tyfZuN++kvvsFaTEJ9/115TzTD3J\nTD3JTD0pZmZJihltkczUuz4zz+gkh093cPBkOz0Dgf2VirKS2VSRzaolVvSx2tyGwOvz0ug+z9HO\nak67Gpjye9EpOorNi/hC5irKMorR6+5Om56cZ+pJZupJZupJMTNLUsxoi2Sm3s0y8/n91F/s5cOT\n7dQ19+IHTAY965dnsWFFFhkp2mkYvt7w5Agnuk9xpLOaK0NtACTFGlhlX8H9mavIMTru6DKUnGfq\nSWbqSWbqSTEzS1LMaItkpt7tZObsH+VQTTuHazsYHptCUWB5UQabVjooztdmw/C0Dk9X8DLUSYYm\nPQBkJdlZk7mK1fYKTHHGz/kOnyXnmXqSmXqSmXpSzMySFDPaIpmppyaziUkvx886+fBkG5e7As+x\nBRuG12q4YRgCl6HO9DVxpLOaup4z+Pw+dIqO0vSl3J+5ktL0pbe9KJ+cZ+pJZupJZupJMTNLUsxo\ni2Sm3mwzu9Q5yIcn2jh29mrD8P0lgYbhXJt2G4YBhiY8VHef4mhnNW2eDgCM+iRW28tZk7kahzHz\nls+X80w9yUw9yUw9KWZmSYoZbZHM1LvTzIZGJvi4rnNmw7Aj2DC8WLsNw9Nahzo41lnNp901eCaH\nAcgxObjfvopV9hUY9UmfeY6cZ+pJZupJZupJMTNLUsxoi2Sm3t3KzOfzUxdsGK6/OLNh+KEVjtDG\nllo15ZuivreRo52f0tDbhM/vI0aJoSyjmDWZq1hqXhS6DCXnmXqSmXqSmXpSzMySFDPaIpmpF47M\nnO4RDtV0cPj01YbhFQsy2FSRzdL8NE03DAMMTgxxvOskRzur6RzuBiA5zsR99gruz1zFsvwFcp6p\nJO9N9SQz9aSYmSUpZrRFMlMvnJlNTHo5drabD0+20zLdMGw2BFYYLrNj0HDDMIDf7+fKUBtHO09Q\n3V3DyNQoAAWpOZSaSyi3lmEzWCI8yugg7031JDP1pJiZJSlmtEUyU2+uMrvYEVhh+Ph0w7Bex/3F\ndjZVODTfMAww6Z2krvcsRzuraew7h9fvA8BhzKTcUka5tQx7ki3Co9QueW+qJ5mpJ8XMLEkxoy2S\nmXpzndnQyAQfn+7kYM3VhuEFjhQ2VThYGQUNwwCJKToONh6nxllHY985pvxeILCNwnRhk5VkD+v+\nUNFG3pvqSWbqSTEzS1LMaItkpl6kMvP5/Jy+2MvBk+3UXewFINmg58EoaBi+NrPRqVHqes5yyllH\nQ18TU74pAKyGDMotyyi3lpFtzLrnCxt5b6onmaknxcwsSTGjLZKZelrIzOke4WBNOx+f7pzZMLwy\nm+K8NM0VAjfLbGxqjIbeRmqcddT3NjLpmwQgIzE9NGOTa8rW3M8zF7RwnkUbyUw9KWZmSYoZbZHM\n1NNSZuOTXo7foGF4U7mDtRpqGL6dzMa9E5zpbaLGeZq63rNMeCcAMCekhQqbvOQcdIr2L6vdDVo6\nz6KFZKaeFDOzJMWMtkhm6mkxM7/fz8XOQT480c6njd1Mef3E6XWsKbGzsTzyDcNqM5vwTnK2r4ka\nZx11PWcY844DkBqfQrmljBXWMgpT8uZ1YaPF80zrJDP1pJiZJSlmtEUyU0/rmQ2OTHC4toNDNR30\nDgYbhrMDDcOrFluJjZn7AuBOMpv0TdHYd44aZx2ne84wGrzdOyXOxPLgjM2C1IJ5V9ho/TzTIslM\nPSlmZkmKGW2RzNSLlsx8Pj+nm3v58GQb9Zf6gEDD8PoVgYZhc/LcNQzfrcymfFM0uZs55TxNrauB\n4akRAEx6I8utpZRbyliYWnjbG2BqWbScZ1oimaknxcwsSTGjLZKZetGYWbd7hIMnAw3DI+OBhuHy\nhRY2VjjmpGE4HJl5fV7O91+kxnmaU6760D5RSXoDyzNKKbeWsThtQdQWNtF4nkWaZKaeFDOzJMWM\ntkhm6kVzZuOTXo6d6ebDk21c6fYAYDcb2FjhYG1pJoaE2LC8brgz8/q8NA9cDhU2gxOB1zLEJrIs\nI7Dy8GLzQvS68Px84RDN51mkSGbqSTEzS1LMaItkpt58yMzv94dWGP600TmjYXhTRTY5VuNdfb25\nzMzn93FxoCVU2PSPDwCQEJNAWUYxFdYylpoXoY/Rxp1eNzMfzrO5JpmpJ8XMLEkxoy2SmXrzLbPB\n4QkOn+7gUE07vYOBu4YWZqewqSKblYstd6VhOGILDfp9XB5spcZ5mhpnHe7xfgDiY+Ioyyim3FJG\ncfpi4mLi5nxsn2e+nWdzQTJTT4qZWZJiRlskM/Xma2Y+n5/a5h4+PNlOw3TDcFIc65dn8dCKrDtq\nGNZCZtObYNY46zjpPE3vWOBnjNPpKclYSrmljJL0JSTExkd0nNO0kFm0kczUm5fFzCuvvEJtbS2K\norBz506WLVsW+trRo0d57bXX0Ol0FBQU8PLLL/Ppp5/yzDPPsHDhQgAWLVrESy+9dMvXkGJGWyQz\n9e6FzLr7rq4wPDI+hU5RKF+YwcYKB0tn0TCstcz8fj9tng5qnHXUOE/jHO0BQK+LpTh9CeWWMkoz\nlpIYG7ktIrSWWTSQzNSLVDETtu6148eP09LSQlVVFc3NzezcuZOqqqrQ13ft2sXbb7+N3W7n6aef\n5vDhwyQkJHDffffx+uuvh2tYQogIsJkNVD68kG+sLww0DJ9o48Q5FyfOuchMN7Cx3MEDYWwYDjdF\nUcgxOcgxOfifhV+iY7iLGudpTjrrqHXVU+uqJ1aJYWn6IsotyyjLKMagT4z0sIWYN8L2L8eRI0fY\nvHkzAEVFRQwMDODxeDAaA42A+/btC31sNptxu91kZmaGazhCCA2I18ewfnkWDy7LpDnYMFzd6ORX\nfz7Pex9dZE2JjU0V2WTf5YbhuaQoCg5jJg5jJlsKv0TncHeox6au5yx1PWeJUWJYYl5IuaWMZZYS\nkvSGSA9biKgWtstML730Ehs2bAgVNNu2bePll1+moKBgxuOcTiff/e53+fWvf825c+f4/ve/T25u\nLgMDAzz11FOsXbv2lq8zNeUlNjY6130QQkD/0Dh/Ot7CH45cxuUOrMZbUpjOIw/ks6YsC33s/FmJ\nt2Owi6NtNRxrreFSfysAMYqOUttivpBdwX2O5SQnRHarCCGi0ZzN6d6oZurt7eWJJ55g9+7dpKWl\nkZ+fz1NPPcWXv/xlWltbeeyxx/jggw+Ii7v5nQFu90jYxizXS9WTzNSTzOChZZmsL7VTe6GHD2va\nabjYS8PFXlKS6li/PIsN1zUMR2tmepJ40LKOBy3rcI30UuMKzNjUdp2ltussP6v+FQvTiii3lLHc\nUkpK/N0rbKI1s0iSzNSbdz0zVquVnp6e0OdOpxOLxRL63OPxsGPHDp599lnWrVsHgM1m45FHHgEg\nNzeXjIwMuru7ycnJCdcwhRAaodMplC+yUL7IQldfcIXhuk5+99fL/P5IC+ULM9hU4WBJXlqkh3pX\nWAzpfDFvI1/M20jvaB81rjpOOes4577AOfcFfn1uP0Wp+ZRbl7HCUkpqfEqkhyyEZoWtmFm7di1v\nvPEGlZWVNDQ0YLVaQz0yAK+++iqPP/4469evDx07cOAALpeLv//7v8flctHb24vNZgvXEIUQGmU3\nG/jO5oU8ur6QY2c/2zD8P9YUsCQ7GUvq/GiiTU80szl3A5tzN+Ae6+eUq54a52ma+y9zof8Svzn3\nWwpT8im3llFuKSMtITXSQxZCU8J6a/a//du/UV1djaIo7N69mzNnzmAymVi3bh2rV6+mvLw89Ngt\nW7bwla98heeee47BwUEmJyd56qmn2LBhwy1fQ27N1hbJTD3J7PP5/X6a26+uMOz1Bf7ZyrUZWbXY\nysrFFjLTkyI8yruvf3yAWlcDNc7TXOi/hJ/Az52fnEu5tYwVljIyEs239b3kPFNPMlNvXq4zMxek\nmNEWyUw9yUydoZEJznd6OHTiCmcvu0OFjSMjiZWLLaxabMVhSQr7ZpdzbXBiKFTYnO+/iM/vAyDX\n5KDcsowV1jKshoybPl/OM/UkM/WkmJklKWa0RTJTTzJTbzqz4bFJTp3v4USTi/pLfUx5A7/gbWmJ\nrAzO2OTbTfOusBma8HC6p4EaZx1N7guhwsZhzKTCuoxySxm2JOuM58h5pp5kpp4UM7MkxYy2SGbq\nSWbq3Siz0fEp6i72Ut3o5PTFXiYmA7/g05MTQjM2hY5kdPOssBmeHOF0zxlOOU9ztu88Xr8XgKwk\nOyuCPTaZSTas1mQ5z1SS96Z6UszMkhQz2iKZqSeZqfd5mY1Peqm/2MeJc05One9hbCLwCz7VGEfF\nokBhsygnFZ1ufhU2I5Oj1PeepcZZx5m+JqZ8UwDYDFbKs4rJiLWQbXKQmWQlVhedqy3PJXlvqifF\nzCxJMaMtkpl6kpl6ajKbnPJx5nIfJ5pc1Jx3MTwW+AVvMugpX2hh1WILS/LS7spu3loyNjVGfW8j\nNc46GnobmfRNhr4Wq8SQmWQjx+Qg2+Qgx5SFw5hFvAZ3+44keW+qJ8XMLEkxoy2SmXqSmXqzzWzK\n66OptZ8TjU5OnnMxOBL4BW+Ij6V8YQYrF1spKUhDP89WFZ/wTjKqH+R06zlahzpoG+qgfbgzNHMD\noKBgNWQEChxjVrDQycKon393id0ueW+qJ8XMLEkxoy2SmXqSmXp3IzOfz8/5tn6qm1ycPOfCPTQO\nQEJcDMsXZLBykYWywnTi4+ZHYXN9Zl6fl+4RF61D7bR62mkb6qB1qIMx79iM56XFp4YKm5xgkZMa\nnzLvmqpvRN6b6kkxM0tSzGiLZKaeZKbe3c7M5/dzqWOQE00uqpuc9AwEfqHHxeooK0xn5WILyxdk\nkBgfvX0mt5OZ3++nd6yPK0PB4iZY5AxOzHyeUZ80Y/Ymx5iFxZCBTplfl+rkvanevNvOQAghooVO\nUShypFDkSOHbG4u40u2husnJiSZXaOXh2BiFknwzKxdbWbEwA2OiPtLDvusURSEjMZ2MxHQqrMtC\nxwfGB2kdaqfN0xG8TNVOo/s8je7zocfEx8ThMGaRY8oi2+ggRxqNxRySs0wIIa6hKAp5dhN5dhOP\nri+ko2eY6iYXJ5qc1Db3UtvcS4xOYUleGisXW6hYaCE5aX43zqbEJ5MSn0xpxtLQsZHJUdo8gcKm\n1dNB61A7lwevcHHgcugxMUoMWUk2soMzOLkmB1lJmSTExkfgpxDzmVxmugWZYlRPMlNPMlMvUpl1\n9Y1woslJdZOLlq7A6ysKLMpOZeViCysXW0kzafMX9VxkNuGdpGO4MzR70zrUQcdwJ5M3aDSevkyl\n5UZjeW+qJz0zsyTFjLZIZupJZuppIbOe/tHAJagmFxfaB0LHixzJrFxkZdViCxka2ggzUpndqNG4\nzdPB6NRnG42zTcECRyONxlo4z6KNFDOzJMWMtkhm6klm6mktM/fQOCfPBS5FNbX2M/2vap7dxKrg\njI3dbIjoGLWU2XSjcetQx4wi5/pG4yS9gRyjI2KNxlrKLFpIMTNLUsxoi2SmnmSmnpYzGxyeoOa8\ni+omF40t12yEaUkK7fDtyJj7jTC1nNm0gfEh2jztgQIneKmqZ6xvxmPiYuKCl6imG42zyEyyhaXR\nOBoy0xopZmZJihltkczUk8zUi5bMPKOT1F6Y3gizlylv4J9bm9kQnLGxkGebm40woyWz613faNw2\n1EHXiDO0uSZ8ttE4x+jAYbzzRuNozSyS5NZsIYSYZ4yJetaWZbK2LJPR8SlqmwOFTV1zL78/0sLv\nj7SQkZIQah4uzJp/G2HeKYM+kUVpRSxKKwod+0yjsaeDDk8nrZ4O6Aw85vpG4+kixxinvUZjcedk\nZuYWpCpXTzJTTzJTL9ozC2yE2Ut1k4vaC1c3wkwzxQc3wrSwMPvuboQZ7Zl9nmsbjduCt4rfstHY\nmEW2yUHuLRqN53tm4SCXmWZJihltkczUk8zUm0+ZTU55abjs5kSjk1MXekIbYSYb9JQHd/henJt6\nxxthzqfMbte1jcbXrodzs0bja++mshgysFlT7rnM7pQUM7MkxYy2SGbqSWbqzdfMprw+Gq+4ORHc\nL2oouBFmUkIsK6Y3wsw3o49VX9jM18xm42qj8fR6ODduNM5PzcaWYCPbmInDmIXDaCdOdha/JSlm\nZkmKGW2RzNSTzNS7FzLz+fyca+0PbqngpN8zAUBifAzLizJYudhCaWE68frb2wjzXsjsToxOjQb3\no+oIbrrZ/plG40AfjoVsYybZxiwcpiyyjZkkx81NE3c0kGJmlqSY0RbJTD3JTL17LTOf38/FjkGq\nGwP7RfUOBjfC1Ac2wly12MqyovRbboR5r2V2N6SYE6hruUDbUCftnsBif+2ezs/04Zj0RhzGTLJN\nWYEix5iJzWAhRjc/dlxXQ+5mEkIIcUM6RWGBI4UFjhS2blpAS/dQYIfvYHFzoslFbIyO0gIzKxdb\nWLEwg6SE+bcR5lyLi9GTa8om15QdOub3++kbcwduF/d00j4U+PP6jTdjdbGB28VDMziBy1SJsdpZ\nFXo+kWJGCCGiiKIo5NuTybcn8+j6Qtpdw4Edvs+5OHWhh1MXeojRKSwNboRZvshCskH6PO4WRVFI\nTzSTnmhmuaU0dHxkcpR2Tyftns5godNBx3A3V4baQ7eLA6QnmIMzOIE+nGxjFuaEVLlMdYfkMtMt\nyLSsepKZepKZepLZjXX2Dodmalq6r26EuTgnlbUrssmzGCKy+nC0utPzbPp28enipn0oUOh4Jodn\nPC4xNvFqH07wcpU9yYY+DKsah5v0zMySFDPaIpmpJ5mpJ5l9Plf/aLCwcdLcMRg6nmKMozjPTElB\nGsX5ZlKN2tzlWwvCcZ75/X4GJgYDMzhDV/twnCM9+Ln661in6LAbrGSbggVOcBZH64v+STEzS1LM\naItkpp5kpp5kpo57aJwrPSMcq+vgzOU+BoO3fENgz6iSfDPF+WYW56QSH3fvNa3ezFyeZ+PeCTo8\nXTNmcdqHO5nwTsx4XGp8ytVLVMHLVRmJ6XO2+ebnkQZgIYQQYZFmimdRYQbLC9Lw+f20OT2cueym\n4XIf51r7aXe18sGnrcTGBBqNi/PNlBSYybOZ7uoqxOLm4mPiKEjJpSAlN3TM5/fRM9pLW3AWpz3Y\ndFzf20h9b2PocXExcTiSMmfM4txra+LIzMwtyP/9qSeZqSeZqSeZqXezzCanvJxvG6Dhch9nLrlD\nvTYQWKxvaV4axQVmSvLNWFLvrTtxtHqeeSaGr87gBAudG6+JkzGjD8dhzCQlLjmsPVPzcmbmlVde\noba2FkVR2LlzJ8uWLQt97ejRo7z22mvodDoKCgp4+eWX0ekC02RjY2Ns2bKFJ598kkcffTScQxRC\niHuaPjaG4uBlJh6CoZEJzra4abjUx5nLfVQ3uahucgFgTU0MFjZpLM1LwyC3f0eEMS6JJeaFLDEv\nDB2b9E3RNdwdnMG5ekfVCWctJ5y1V5+rTwreLn61D2c+rIkTtmLm+PHjtLS0UFVVRXNzMzt37qSq\nqir09V27dvH2229jt9t5+umnOXz4MBs2bADgrbfeIiUlJVxDE0IIcRMmQxz3LbVx31Ibfr+fbvdo\nqLBpvOLmUE07h2raURQoyEwOXJLKT6PIkXLH+0eJ2dPrYgP7SpkcoWOBNXH6gzM4HaHLVTdbE2f6\nVvHALE50rYkTtmLmyJEjbN68GYCioiIGBgbweDwYjUYA9u3bF/rYbDbjdrsBaG5u5sKFCzz00EPh\nGpoQQojboCgKdrMBu9nAwyuz8fp8XOoYouFyHw2X+7jYPsjFjkH+318vE6+PYXFuaqCZuMBMVrpB\nbgGPsMCaOGmkJ6ax3FISOj46NUp7sNm4fei6NXGukZ5gDjQbBxf9yzZmYk5I0+Tfa9iKmZ6eHkpK\nroZnNptxuVyhAmb6T6fTySeffMIzzzwDwJ49e3jppZfYv39/uIYmhBBiFmJ0OhZkp7AgO4WvrStg\ndHyKxituzlwKNBOfbu7ldHMvAKnGuFBhU5xvJiXp3mlG1brE2EQWpBawILUgdGx6TZzQJapgkVPb\n00BtT8M1z02Ycau4w5RJZpI94mvizNmr36jPuLe3lyeeeILdu3eTlpbG/v37WbFiBTk5Obf9fdPS\nDMTGhu9a360ajsSNSWbqSWbqSWbqhSOz3Ow0vvhA4GOne4Tacy5OnXNx6ryLT+q7+KS+C4D8zGRW\nLLJQvshKcaGZhLjouJn2XjrP7KSynKt9OH6/n/6xQVr627jc38Zldyst/e0091/mQv+l0ONiFB1Z\nyXbyU7P5SszDFFpyb/TtwypsZ5PVaqWnpyf0udPpxGKxhD73eDzs2LGDZ599lnXr1gFw6NAhWltb\nOXToEF1dXcTFxWG323nggQdu+jpu90i4fgTNdrJrmWSmnmSmnmSm3lxkpgArCs2sKDTj+9IiWrs9\nnAlekjrXOsDlzkH2f9RMbIzCwuxUivPTKCkwk2szodPgpQs5zwB0OGJzcWTksjYjcGR6TZzpPpzp\nP1sHOjDFGzF508IykojczbR27VreeOMNKisraWhowGq1hi4tAbz66qs8/vjjrF+/PnTsRz/6Uejj\nN954A4fDcctCRgghhDbpFIU8u4k8u4kv35/HxOS1t4D3cbbFzdkWN+99dBFjop6leYHCpjg/jYyU\n6Gk8vRfdbE0c99gACxxZuPtG53xMYStmKioqKCkpobKyEkVR2L17N/v27cNkMrFu3Tr2799PS0sL\ne/fuBWDLli1s3bo1XMMRQggRQXH6GEoKAovxsREGhyc409IX6rf5tNHJp41OAGxpiaG1bZbkpmFI\niI5LUvcynaIjPTGN2JjI/F3Jonm3IFOM6klm6klm6klm6mk5M7/fT1ffSPAWcDdnr7gZn/ACgRme\ngixTaMuFwqzkObsFXMuZadW8XDRPCCGE+DyKopCZnkRmehKbV+Uw5fVxsWMw1G9zqWOI5vZBDnxy\nmYS4GJbkpoX6bexmuQVcSDEjhBBCY2JjdCzKSWVRTipff7CQkbHALeDT/TanLvRw6kLgBpM0U3zw\nFvDALuDJBrkF/F4kxYwQQghNMyTEUrHIQsWiwB2xPQOjgY0yg43EH9d18nFdJwC5VmOo32Zhdgpx\n+uhepl/cHilmhBBCRJWMlETWL09k/fIsfH4/V7qHQv0259v6ueL08MdjV4IzPCmhfpscm1GTt4CL\nOyfFjBBCiKilUxTy7cnk25P5ypp8xie9nG/tD2y5cMnNmcuB/6AZkyF4C3h+4K4qc3JCpIcv7hIp\nZoQQQswb8foYSgvTKS1MB2DAM86ZFjdnLgWaiY+fdXL8bOAWcLvZEOq3WZKbRmK8/EqMVvI3J4QQ\nYt5KMcazpsTOmhI7fr+fjt6RUGHTdKWfv5xs4y8n29ApCoWO5MCsTb6Zgqx7ZxuD+UCKGSGEEPcE\nRVFwZCThyEjib1YHbgFvbh+g4bKbM5f7aG4f4ELbAL/9+BKJ8TEsyTOTaTYEVjK2GbGkJspt4Bol\nxYwQQoh7UmyMjsW5aSzOTePR9YUMj03S2OIOFTc151zUXPP4xPhY8mxGcm2mYIFjwm42oNNJgRNp\nUswIIYQQQFKCmKworgAADRNJREFUnpWLraxcbAUgISmemoZOWro9tHQP0dI1RNOVfhqv9IeeE6fX\nkWsNFDa5diN5NhNZGUlztkqxCJBiRgghhLgBkyGOpflmluabQ8dGx6dodQaKmytdQ7R0D3GxY5AL\n7QOhx8TGKGRbjKHZmzy7iWxLEvpYWfMmXKSYEUIIIW5TYnxsaHXiaROTXtpcw6HZm5buIdpcHi53\nXd2jSKcoZGUkkRecvcmzm8ixGkmIk1/Dd4OkKIQQQtyBOH0MhVnJFGYlh45NeX109AyHipuW7iFa\nuz20uTx8UtcFgALY0w2BS1ShPhwjhgR9hH6S6CXFjBBCCHGXxcboyA0WKQ8Gj/l8fjr7RkKXp1q6\nhrjiHKKzd4SjZ7pDz7WkJoRmb6YLneQk2XPqVqSYEUIIIeaATnf11vA1pXYAfH4/rv7R0AzOlW4P\nLV1DVDe5qG5yhZ6bZoqfUeDk2U2kGuPkVvEgKWaEEEKICNEpCrY0A7Y0A/cttQHg9/txD41fvUQV\n/PPa3cIBkg36GbeJ59pNWFIS7skCR4oZIYQQQkMURcGcnIA5OYHy4E7hENiaYfo28elLVfWX+qi/\n1Bd6jCE+llzbzDupbGnzfy0cKWaEEEKIKJBijGeZMZ5lRemhY57RSa50XzuD46HxurVw4vUx5NiC\nd1EFC5zMdMO8WgtHihkhhBAiShkT9RTnmym+0Vo419xJNb1Vw7TYGB051qTQ5ak8W3SvhSPFjBBC\nCDGP3GgtnPFJL20uzzV3Unm40u3hUufVtXBidMG1cK7pw8mxGomP036BI8WMEEIIMc/F62Moykqh\nKCsldGzK66N9erG/YB9Oq9NDq9PDx3WdwDVr4Uz34NhM5GpwLRwpZoQQQoh7UGyMLlCk2E2hY16f\nj67ekdDsTeB28eBaOA1X18KxpiYGL08Fmo1zbSaSDZFbC0eKGSGEEEIAEKPT4bAYcViMPFAaOObz\n+3G5R2fcJt7SNUR1o5PqRmfouebkeP7XV8tYkp18k+8ePlLMCCGEEOKmdIqCzWzAZp65Fk7v4Fho\nkb+W7iHaXcO4h8YAKWaEEEIIoXGKopCRkkhGSiIV16yFY7GYcLmGbvHM8Jg/N5kLIYQQ4p4kxYwQ\nQgghopoUM0IIIYSIamHtmXnllVeora1FURR27tzJsmXLQl87evQor732GjqdjoKCAl5++WXGx8d5\n4YUX6O3tZXx8nCeffJKNGzeGc4hCCCGEiHJhK2aOHz9OS0sLVVVVNDc3s3PnTqqqqkJf37VrF2+/\n/TZ2u52nn36aw4cPMzw8TGlpKTt27KC9vZ3vfe97UswIIYQQ4pbCVswcOXKEzZs3A1BUVMTAwAAe\njwej0QjAvn37Qh+bzWbcbjdf//rXQ8/v7OzEZrOFa3hCCCGEmCfCVsz09PRQUlIS+txsNuNyuUIF\nzPSfTqeTTz75hGeeeSb02MrKSrq6uvjJT34SruEJIYQQYp6Ys3Vm/H7/Z4719vbyxBNPsHv3btLS\n0kLH3333Xc6ePcvzzz/PgQMHUBTlpt83Lc1AbBh3+bRYTJ//IDGDZKaeZKaeZKaeZKaeZKZeJDIL\nWzFjtVrp6ekJfe50OrFYri6s4/F42LFjB88++yzr1q0DoL6+nvT0dDIzM1m6dCler5e+vj7S09Nv\n+jpu90i4foSILf4TzSQz9SQz9SQz9SQz9SQz9cKZ2a2KpLDdmr127Vref/99ABoaGrBaraFLSwCv\nvvoqjz/+OOvXrw8dq66u5uc//zkQuEw1MjIyY8ZGCCGEEOJ6YZuZqaiooKSkhMrKShRFYffu3ezb\ntw+TycS6devYv38/LS0t7N27F4AtW7ZQWVnJiy++yLZt2xgbG2PXrl3odLIUjhBCCCFuTvHfqJkl\nioRzClCmGNWTzNSTzNSTzNSTzNSTzNSbd5eZhBBCCCHmQtTPzAghhBDi3iYzM0IIIYSIalLMCCGE\nECKqSTEjhBBCiKgmxYwQQgghopoUM0IIIYSIalLMCCGEECKqSTFzA6+88gpbt26lsrKS06dPR3o4\nUePcuXNs3ryZX/7yl5EeStT44Q9/yNatW/nmN7/JBx98EOnhaNro6CjPPPMMf/d3f8e3v/1tDh48\nGOkhRY2xsTE2b97Mvn37Ij0UzTt27Bj3338/27dvZ/v27fzgBz+I9JCiwoEDB/jqV7/Ko48+yqFD\nh+b89eds1+xocfz4cVpaWqiqqqK5uZmdO3dSVVUV6WFp3sjICD/4wQ9Ys2ZNpIcSNY4ePcr58+ep\nqqrC7XbzjW98gy9+8YuRHpZmHTx4kNLSUnbs2EF7ezvf+9732LhxY6SHFRXeeustUlJSIj2MqHHf\nfffx+uuvR3oYUcPtdvPmm2/y3nvvMTIywhtvvMFDDz00p2OQYuY6R44cYfPmzQAUFRUxMDCAx+OZ\nsUmm+Ky4uDh+9rOf8bOf/SzSQ4kaq1evZtmyZQAkJyczOjqK1+slJiYmwiPTpkceeST0cWdnJzab\nLYKjiR7Nzc1cuHBhzn+5iHvHkSNHWLNmDUajEaPRGJHZLLnMdJ2enp4ZO3WbzWZcLlcERxQdYmNj\nSUhIiPQwokpMTAwGgwGAvXv3sn79eilkbkNlZSXPPfccO3fujPRQosKePXt44YUXIj2MqHLhwgWe\neOIJvvOd7/DJJ59Eejia19bWxtjYGE888QTbtm3jyJEjcz4GmZn5HLLbgwi3P//5z+zdu5ef//zn\nkR5KVHj33Xc5e/Yszz//PAcOHEBRlEgPSbP279/PihUryMnJifRQokZ+fj5PPfUUX/7yl2ltbeWx\nxx7jgw8+IC4uLtJD07T+/n5+/OMf09HRwWOPPcbBgwfn9L0pxcx1rFYrPT09oc+dTicWiyWCIxLz\n2eHDh/nJT37Cf/7nf2Iy3XxHWAH19fWkp6eTmZnJ0qVL8Xq99PX1kZ6eHumhadahQ4dobW3l0KFD\ndHV1ERcXh91u54EHHoj00DTLZrOFLmnm5uaSkZFBd3e3FIS3kJ6eTnl5ObGxseTm5pKUlDTn7025\nzHSdtWvX8v777wPQ0NCA1WqVfhkRFkNDQ/zwhz/kpz/9KampqZEejuZVV1eHZq96enoYGRmZcUlY\nfNaPfvQj3nvvPX7961/z7W9/myeffFIKmc9x4MAB/uu//gsAl8tFb2+v9Gd9jnXr1nH06FF8Ph9u\ntzsi702ZmblORUUFJSUlVFZWoigKu3fvjvSQokJ9fT179uyhvb2d2NhY3n//fd544w35JX0L//3f\n/43b7ebZZ58NHduzZw9ZWVkRHJV2VVZW8uKLL7Jt2zbGxsbYtWsXOp38/5i4uzZt2sRzzz3HX/7y\nFyYnJ/mXf/kXucT0OWw2G1/60pf427/9WwD++Z//ec7fm4pfmkKEEEIIEcXkf2uEEEIIEdWkmBFC\nCCFEVJNiRgghhBBRTYoZIYQQQkQ1KWaEEEIIEdWkmBFCzJm2tjZKS0tDOxJXVlbyT//0TwwODt72\n99i+fTter/e2H/+d73yHY8eOzWa4QogoIcWMEGJOmc1m3nnnHd555x3effddrFYrb7311m0//513\n3pE9rIQQM8iieUKIiFq9ejVVVVU0NjayZ88epqammJycZNeuXRQXF7N9+3aWLFnC2bNn+cUvfkFx\ncTENDQ1MTEzw0ksv0dXVxdTUFF/72tfYtm0bo6Oj/OM//iNut5u8vDzGx8cB6O7u5rnnngNgbGyM\nrVu38q1vfSuSP7oQ4i6RYkYIETFer5c//elPrFy5kueff54333yT3NxcGhsb2blzJ/v27QPAYDDw\ny1/+csZz33nnHZKTk/n3f/93xsbGeOSRR3jwwQf561//SkJCAlVVVTidTh5++GEA/vCHP1BYWMj3\nv/99xsfH+c1vfjPnP68QIjykmBFCzKm+vj62b98OgM/nY9WqVXzzm9/k9ddf58UXXww9zuPx4PP5\ngMA2I9erra3l0UcfBSAhIYHS0lIaGho4d+4cK1euBAIbxxYWFgLw4IMP8qtf/YoXXniBDRs2sHXr\n1rD+nEKIuSPFjBBiTk33zFxraGgIvV7/mePT9Hr9Z44pijLjc7/fj6Io+P3+GfvCTBdERUVF/P73\nv+fTTz/lj3/8I7/4xS9499137/THEUJogDQACyEizmQykZ2dzUcffQTApUuX+PGPf3zL5yxfvpzD\nhw8DMDIyQkNDAyUlJRQVFVFTUwNAZ2cnly5dAuB3v/sddXV1PPDAA+zevZvOzk6mpqbC+FMJIeaK\nzMwIITRhz549/Ou//iv/8R//wdTUFC+88MItH799+3Zeeuklvvvd7zIxMcGTTz5JdnY2X/va1/jw\nww/Ztm0b2dnZlJWVAbBgwQJ2795NXFwcfr+fHTt2EBsr/wQKMR/IrtlCCCGEiGpymUkIIYQQUU2K\nGSGEEEJENSlmhBBCCBHVpJgRQgghRFSTYkYIIYQQUU2KGSGEEEJENSlmhBBCCBHVpJgRQgghRFT7\n/7EF9q4CNCPgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "yjUCX5LAkxAX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution." + ] + }, + { + "metadata": { + "id": "hgGhy-okmkWL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "A regularization strength of 0.1 should be sufficient. Note that there is a compromise to be struck:\n", + "stronger regularization gives us smaller models, but can affect the classification loss." + ] + }, + { + "metadata": { + "id": "_rV8YQWZIjns", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "linear_classifier = train_linear_classifier_model(\n", + " learning_rate=0.1,\n", + " regularization_strength=0.1,\n", + " steps=300,\n", + " batch_size=100,\n", + " feature_columns=construct_feature_columns(),\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)\n", + "print(\"Model size:\", model_size(linear_classifier))" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From e7ca0219a98bba824d0c76f06b08c8e20c498364 Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 13:18:03 +0530 Subject: [PATCH 09/11] Created using Colaboratory --- intro_to_neural_nets.ipynb | 1216 ++++++++++++++++++++++++++++++++++++ 1 file changed, 1216 insertions(+) create mode 100644 intro_to_neural_nets.ipynb diff --git a/intro_to_neural_nets.ipynb b/intro_to_neural_nets.ipynb new file mode 100644 index 0000000..53149f1 --- /dev/null +++ b/intro_to_neural_nets.ipynb @@ -0,0 +1,1216 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "intro_to_neural_nets.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "O2q5RRCKqYaU", + "vvT2jDWjrKew" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "eV16J6oUY-HN", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Intro to Neural Networks" + ] + }, + { + "metadata": { + "id": "_wIcUFLSKNdx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Define a neural network (NN) and its hidden layers using the TensorFlow `DNNRegressor` class\n", + " * Train a neural network to learn nonlinearities in a dataset and achieve better performance than a linear regression model" + ] + }, + { + "metadata": { + "id": "_ZZ7f7prKNdy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In the previous exercises, we used synthetic features to help our model incorporate nonlinearities.\n", + "\n", + "One important set of nonlinearities was around latitude and longitude, but there may be others.\n", + "\n", + "We'll also switch back, for now, to a standard regression task, rather than the logistic regression task from the previous exercise. That is, we'll be predicting `median_house_value` directly." + ] + }, + { + "metadata": { + "id": "J2kqX6VZTHUy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's load and prepare the data." + ] + }, + { + "metadata": { + "id": "AGOM1TUiKNdz", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2I8E2qhyKNd4", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "pQzcj2B1T5dA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1209 + }, + "outputId": "a5e7c8cb-8965-4663-eafb-e3ce71f67bac" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.5 28.6 2637.2 538.0 \n", + "std 2.1 2.0 12.6 2192.7 423.0 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1448.0 295.0 \n", + "50% 34.2 -118.5 29.0 2114.0 430.0 \n", + "75% 37.7 -118.0 37.0 3155.0 646.0 \n", + "max 42.0 -114.3 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1426.6 500.2 3.9 2.0 \n", + "std 1114.8 385.8 1.9 1.1 \n", + "min 3.0 1.0 0.5 0.0 \n", + "25% 788.0 281.0 2.6 1.5 \n", + "50% 1163.0 407.0 3.5 1.9 \n", + "75% 1725.2 602.0 4.8 2.3 \n", + "max 16122.0 5189.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.528.62637.2538.01426.6500.23.92.0
std2.12.012.62192.7423.01114.8385.81.91.1
min32.5-124.31.02.01.03.01.00.50.0
25%33.9-121.818.01448.0295.0788.0281.02.61.5
50%34.2-118.529.02114.0430.01163.0407.03.51.9
75%37.7-118.037.03155.0646.01725.2602.04.82.3
max42.0-114.352.037937.05471.016122.05189.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.7 -119.6 28.6 2659.2 542.8 \n", + "std 2.1 2.0 12.6 2149.1 417.8 \n", + "min 32.6 -124.3 1.0 18.0 3.0 \n", + "25% 33.9 -121.8 18.0 1484.8 300.0 \n", + "50% 34.3 -118.6 29.0 2167.5 443.0 \n", + "75% 37.7 -118.0 37.0 3145.2 655.0 \n", + "max 42.0 -114.6 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1436.7 503.7 3.9 2.0 \n", + "std 1223.7 381.4 1.8 1.2 \n", + "min 8.0 4.0 0.5 0.1 \n", + "25% 793.0 284.0 2.6 1.5 \n", + "50% 1176.5 415.0 3.5 2.0 \n", + "75% 1712.2 608.0 4.7 2.3 \n", + "max 35682.0 6082.0 15.0 52.0 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.7-119.628.62659.2542.81436.7503.73.92.0
std2.12.012.62149.1417.81223.7381.41.81.2
min32.6-124.31.018.03.08.04.00.50.1
25%33.9-121.818.01484.8300.0793.0284.02.61.5
50%34.3-118.629.02167.5443.01176.5415.03.52.0
75%37.7-118.037.03145.2655.01712.2608.04.72.3
max42.0-114.652.032627.06445.035682.06082.015.052.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.2\n", + "std 115.6\n", + "min 15.0\n", + "25% 119.8\n", + "50% 180.3\n", + "75% 264.4\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.2
std115.6
min15.0
25%119.8
50%180.3
75%264.4
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 207.6\n", + "std 116.9\n", + "min 22.5\n", + "25% 119.2\n", + "50% 180.4\n", + "75% 265.9\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean207.6
std116.9
min22.5
25%119.2
50%180.4
75%265.9
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "RWq0xecNKNeG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Building a Neural Network\n", + "\n", + "The NN is defined by the [DNNRegressor](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor) class.\n", + "\n", + "Use **`hidden_units`** to define the structure of the NN. The `hidden_units` argument provides a list of ints, where each int corresponds to a hidden layer and indicates the number of nodes in it. For example, consider the following assignment:\n", + "\n", + "`hidden_units=[3,10]`\n", + "\n", + "The preceding assignment specifies a neural net with two hidden layers:\n", + "\n", + "* The first hidden layer contains 3 nodes.\n", + "* The second hidden layer contains 10 nodes.\n", + "\n", + "If we wanted to add more layers, we'd add more ints to the list. For example, `hidden_units=[10,20,30,40]` would create four layers with ten, twenty, thirty, and forty units, respectively.\n", + "\n", + "By default, all hidden layers will use ReLu activation and will be fully connected." + ] + }, + { + "metadata": { + "id": "ni0S6zHcTb04", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "zvCqgNdzpaFg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural net regression model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "U52Ychv9KNeH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A `DNNRegressor` object trained on the training data.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "2QhdcCy-Y8QR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Train a NN Model\n", + "\n", + "**Adjust hyperparameters, aiming to drop RMSE below 110.**\n", + "\n", + "Run the following block to train a NN model. \n", + "\n", + "Recall that in the linear regression exercise with many features, an RMSE of 110 or so was pretty good. We'll aim to beat that.\n", + "\n", + "Your task here is to modify various learning settings to improve accuracy on validation data.\n", + "\n", + "Overfitting is a real potential hazard for NNs. You can look at the gap between loss on training data and loss on validation data to help judge if your model is starting to overfit. If the gap starts to grow, that is usually a sure sign of overfitting.\n", + "\n", + "Because of the number of different possible settings, it's strongly recommended that you take notes on each trial to help guide your development process.\n", + "\n", + "Also, when you get a good setting, try running it multiple times and see how repeatable your result is. NN weights are typically initialized to small random values, so you should see differences from run to run.\n" + ] + }, + { + "metadata": { + "id": "rXmtSW1yKNeK", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "eda1ac91-75fa-49f2-f572-8735086a8020" + }, + "cell_type": "code", + "source": [ + "dnn_regressor = train_nn_regression_model(\n", + " learning_rate=0.008,\n", + " steps=500,\n", + " batch_size=10,\n", + " hidden_units=[10, 2],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 187.06\n", + " period 01 : 162.55\n", + " period 02 : 158.74\n", + " period 03 : 159.71\n", + " period 04 : 164.83\n", + " period 05 : 147.35\n", + " period 06 : 148.93\n", + " period 07 : 176.86\n", + " period 08 : 136.24\n", + " period 09 : 131.05\n", + "Model training finished.\n", + "Final RMSE (on training data): 131.05\n", + "Final RMSE (on validation data): 135.63\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VPXZ8PHvLNn3fSUJeyAhECCQ\nDUgCQhBwA6lWUmutvq21WvWptk/V2lK3ttqKinVpa8XH1qq4ICCKJIEQCIQESCAQtuz7HrLPzHn/\nCBkJhBAgyUzC/bmuXnXOmXPOPXOGzD2/7VYpiqIghBBCCDGCqE0dgBBCCCHElZIERgghhBAjjiQw\nQgghhBhxJIERQgghxIgjCYwQQgghRhxJYIQQQggx4mhNHYAQ5mzy5MkEBASg0WgA0Ov1RERE8OST\nT2Jra3vV5/3vf//L6tWrL9q+ceNGfv3rX/O3v/2N+Ph44/b29naio6NZvHgxL7zwwlVfd6CKiop4\n7rnnOHPmDAA2NjY8+OCDLFq0aMivfSXWr19PUVHRRe9JRkYG9957L/7+/hcd89VXXw1XeNekpKSE\nhQsXMnbsWAAURcHd3Z3f/OY3TJ069YrO9dJLL+Hr68udd9454GM+//xzPv74YzZs2HBF1xJiuEgC\nI8RlbNiwAW9vbwA6Ozt55JFHePPNN3nkkUeu6nzV1dW88847fSYwAD4+Pnz55Ze9Epjk5GQcHR2v\n6npX43/+53+4+eab+dvf/gbAoUOHuPvuu9m6dSs+Pj7DFse18PHxGTHJyqVoNJper2HLli387Gc/\nY9u2bVhaWg74PI899thQhCeESUkXkhBXwNLSknnz5pGXlwdAR0cHTz/9NEuWLGHp0qW88MIL6PV6\nAI4dO8Ydd9xBYmIiN998M7t27QLgjjvuoKysjMTERDo7Oy+6xsyZM8nIyKCtrc24bcuWLcTExBgf\nd3Z28oc//IElS5aQkJBgTDQAsrOzue2220hMTOTGG28kPT0d6P5FHxsby3vvvceKFSuYN28eW7Zs\n6fN15ufnM336dOPj6dOns23bNmMi99prr7FgwQJuueUW3nrrLRISEgD41a9+xfr1643Hnf/4cnE9\n99xzrFmzBoADBw6wcuVKbrjhBlavXk1xcTHQ3RL1i1/8gvj4eNasWUNFRcVl7ljfNm7cyIMPPsjd\nd9/NH//4RzIyMrjjjjt4+OGHjV/2W7duZfny5SQmJvKDH/yAoqIiAF599VWefPJJVq1axbvvvtvr\nvA8//DD/+Mc/jI/z8vKIjY3FYDDwl7/8hSVLlrBkyRJ+8IMfUFlZecVx33jjjbS3t3P69GkAPvzw\nQxITE0lISODRRx+lvb0d6H7fn3/+eVasWMHWrVt73YdLfS4NBgO///3viYuLY9WqVRw7dsx43X37\n9nHrrbdy4403snTpUrZu3XrFsQsx6BQhxCVNmjRJKS8vNz5uaGhQ7rrrLmX9+vWKoijKm2++qdx3\n331KV1eX0tbWpqxcuVL57LPPFL1eryxdulTZtGmToiiKcvjwYSUiIkJpbm5W9u7dqyxatKjP633y\nySfKE088ofzP//yP8djm5mZl4cKFykcffaQ88cQTiqIoymuvvabcfffdSkdHh9LS0qLccsstyo4d\nOxRFUZTly5crX375paIoivLpp58ar1VcXKxMnTpV2bBhg6IoirJlyxblhhtu6DOOn//850p8fLzy\nr3/9Szl58mSvfcePH1dmz56tVFVVKV1dXcpPf/pTJT4+XlEURXniiSeU119/3fjc8x/3F1dISIiy\nceNG4+uNiIhQ0tLSFEVRlE2bNim33nqroiiK8v777yt33XWX0tXVpdTV1Snx8fHG9+R8/b3HPe/z\njBkzlDNnzhifP23aNCU9PV1RFEUpLS1VZs2apRQUFCiKoih///vflbvvvltRFEVZt26dEhsbq9TW\n1l503s2bNyt33XWX8fErr7yirF27VsnPz1cWL16sdHZ2KoqiKO+9957y6aefXjK+nvdlypQpF22P\niIhQTp06pezfv1+JiopSKioqFEVRlKeeekp54YUXFEXpft9XrFihtLe3Gx+//vrr/X4uU1JSlMWL\nFytnz55V2tralFWrVilr1qxRFEVRbrvtNiUjI0NRFEU5c+aM8uijj/YbuxDDQVpghLiMpKQkEhMT\nWbhwIQsXLiQyMpL77rsPgJSUFFavXo1Wq8Xa2poVK1awe/duSkpKqKmpYdmyZQBMmzYNX19fcnJy\nBnTNZcuW8eWXXwKwfft24uPjUau/++eanJzM97//fSwtLbG1teXmm2/m66+/BuCzzz5j6dKlAMya\nNcvYegGg0+m47bbbAAgJCaGsrKzP6//pT3/irrvuYtOmTSxfvpyEhAT+/e9/A92tIxEREXh4eKDV\nalm+fPmAXlN/cXV1dXHDDTcYz+/l5WVscVq+fDlFRUWUlZWRmZnJDTfcgFarxcXFpVc324XKy8tJ\nTEzs9b/zx8oEBQURFBRkfGxtbU1UVBQAu3fvZu7cuQQGBgJw++23k5GRgU6nA7pbpFxdXS+6Zlxc\nHEePHqWhoQGAb775hsTERBwdHamrq2PTpk00NjaSlJTELbfcMqD3rYeiKHz44Yd4eXkRFBTEjh07\nuPHGG/Hy8gLgzjvvNH4GAKKiorCysup1jv4+l/v372fBggXY2dlhbW1tvFcAbm5ufPbZZ5w6dYqg\noCBeeumlK4pdiKEgY2CEuIyeMTB1dXXG7g+ttvufTl1dHU5OTsbnOjk5UVtbS11dHQ4ODqhUKuO+\nni8xd3f3y14zJiaGJ598koaGBjZv3swDDzxgHFAL0NzczPPPP8/LL78MdHcphYWFAbBp0ybee+89\nWlpaMBgMKOeVO9NoNMbBx2q1GoPB0Of1raysuPfee7n33ntpamriq6++4rnnnsPf35/GxsZe43Hc\n3Nwu+3oGEpe9vT0ATU1NFBcXk5iYaNxvaWlJXV0djY2NODg4GLc7OjrS0tLS5/UuNwbm/Pt24eP6\n+vper9HBwQFFUaivr+/z2B62trZER0eTkpLCrFmzaGpqYtasWahUKl599VX+8Y9/sHbtWiIiIvjd\n73532fFEer3e+D4oisKECRNYv349arWa5uZmvvnmG9LS0oz7u7q6Lvn6gH4/l42NjXh6evba3uO5\n557jjTfe4J577sHa2ppHH3201/0RwhQkgRFigFxdXUlKSuJPf/oTb7zxBgDu7u7GX9sADQ0NuLu7\n4+bmRmNjI4qiGL8sGhoaBvxlb2FhQXx8PJ999hmFhYWEh4f3SmA8PT350Y9+dFELRGVlJU8++SQf\nffQRU6ZMoaCggCVLllzR66yrqyMvL8/YAuLo6Mjq1avZtWsX+fn5ODg40Nzc3Ov5PS5MihobG684\nLk9PT8aNG8fGjRsv2ufo6HjJaw8mNzc3srOzjY8bGxtRq9W4uLhc9tglS5bwzTffUF9fz5IlS4z3\nPzIyksjISFpbW3nxxRf585//fNmWjAsH8Z7P09OTW2+9lSeeeOKKXtelPpf9vbfu7u489dRTPPXU\nU6SlpfHzn/+cefPmYWdnN+BrCzHYpAtJiCtwzz33kJ2dzb59+4DuLoOPP/4YvV5Pa2srn3/+OQsW\nLMDf3x9vb2/jINmsrCxqamoICwtDq9XS2tpq7I64lGXLlvH222/3OXV54cKFfPTRR+j1ehRFYf36\n9ezcuZO6ujpsbW0ZN24cOp2ODz/8EOCSrRR9aW9v56GHHjIO7gQoLCzk0KFDzJ49m/DwcDIzM6mr\nq0On0/HZZ58Zn+fh4WEc/FlcXExWVhbAFcU1ffp0qqurOXTokPE8v/zlL1EUhRkzZrBjxw70ej11\ndXXs3LlzwK/rSsTExJCZmWns5vrPf/5DTEyMseWtP/Hx8WRnZ7N9+3ZjN0xaWhq/+93vMBgM2Nra\nEhwc3KsV5GokJCTw9ddfGxON7du389Zbb/V7TH+fy/DwcNLS0mhra6Otrc2YOHV1dZGUlERVVRXQ\n3fWo1Wp7dWkKYQrSAiPEFbC3t+f+++/nxRdf5OOPPyYpKYni4mKWLVuGSqUiMTGRpUuXolKpePnl\nl/ntb3/La6+9ho2NDa+88gq2trZMnjwZJycnYmJi+PTTT/H19e3zWnPmzEGlUnHjjTdetO/73/8+\nJSUlLFu2DEVRCA0N5e6778bW1pb58+ezZMkS3Nzc+NWvfkVWVhZJSUmsW7duQK/R19eXN954g3Xr\n1vGHP/wBRVGwt7fn17/+tXFm0ve+9z1uvfVWXFxcWLx4MSdOnABg9erVPPjggyxevJipU6caW1mC\ng4MHHJe1tTXr1q1j7dq1tLS0YGFhwcMPP4xKpWL16tVkZmayaNEifH19WbRoUa9Wg/P1jIG50B//\n+MfLvgfe3t784Q9/4IEHHqCrqwt/f3/Wrl07oPfP3t6ekJAQjh8/zowZMwCIiIhg8+bNLFmyBEtL\nS1xdXXnuuecAePzxx40zia5ESEgIP/nJT0hKSsJgMODm5sbvfve7fo/p73MZHx9PSkoKiYmJuLu7\ns2DBAjIzM7GwsGDVqlX88Ic/BLpb2Z588klsbGyuKF4hBptKOb8jWgghrlBmZiaPP/44O3bsMHUo\nQojriLQBCiGEEGLEkQRGCCGEECOOdCEJIYQQYsSRFhghhBBCjDiSwAghhBBixBmR06irq/ueNjkY\nXFxsqa9vHbLzi6sn98Y8yX0xX3JvzJfcm4Hx8HC45D5pgbmAVqsxdQjiEuTemCe5L+ZL7o35kntz\n7SSBEUIIIcSIIwmMEEIIIUYcSWCEEEIIMeJIAiOEEEKIEUcSGCGEEEKMOJLACCGEEGLEkQRGCCGE\nECPOkCYw+fn5LFq0iPfffx+AU6dOcdddd7FmzRqefPJJdDodAF988QUrV67k9ttv56OPPhrKkIQQ\nQohRLyXl2wE975VXXqKsrPSS+3/1q0cHK6RBN2QJTGtrK2vXriUqKsq47c9//jP3338/77//Pj4+\nPmzdupXW1lZef/113n33XTZs2MC//vUvGhoahiosIYQQYlQrLy9j+/ZtA3ruww8/hq+v3yX3v/DC\ny4MV1qAbslIClpaWvP3227z99tvGbYWFhYSFhQEwb948PvjgA9zd3Zk2bRoODt3LBc+cOZOsrCwS\nEhKGKjQhhBBi1Hr55RfJyzvCvHkRLF68lPLyMv761/U8//zvqa6uoq2tjR/96H5iYubx4IP38+ij\nj5Oc/C0tLWcpKiqktLSEhx56jKioGJYtW8jmzd/y4IP3ExExl6ysTBoaGnjxxb/g7u7O73//FBUV\n5UybFsaOHdv59NMtw/Y6hyyB0Wq1aLW9Tz9p0iRSU1O55ZZb2LVrFzU1NdTU1ODq6mp8jqurK9XV\n1UMVlhBCCDFs/rvjJPuPVV20XaNRodcrV3XOiGBPVidMuOT+O+9MYuPG/zJ27HiKigpYv/4d6uvr\nmDMnkqVLl1NaWsJTT/2KmJh5vY6rqqrkz39ex9696Xz++SdERcX02m9nZ8crr7zBG2+8ys6dO/D1\n9aezs4O33nqX3bt38d///vuqXs/VGtZijk888QTPPPMMGzduZM6cOSjKxTevr20XcnGxHZI6ElUt\ntRytymeq56RBP7cYHP0V9hKmI/fFfMm9MS0bW0s0GlWf+y61fSDn7O++OjvbYmVlgZ2dFRERs/Dw\ncMDZ2Zr//OcEP//5fajValpamvHwcMDSUouLix12dlZERc3Fw8OByZPH0tHRhoeHAyqVyvi8uLhY\nPDwcGDcugIaGBmpqyoiMnIOHhwM33ZTIk08+Pqyft2FNYHx8fHjzzTcB2LVrF1VVVXh6elJTU2N8\nTlVVFTNmzOj3PENVwXPD0U/ZV5HFU3Mfw8vOc0iuIa6eh4fDkFYiF1dH7ov5kntjeisiA1gRGXDR\n9mu9N/0d29DQSkdHFy0tHVhY2FBd3czWrV9SWVnDK6+8SVNTEz/+cRLV1c10duqor2/p9dz6+hY6\nO3VUVzejKIrxeU1N7VRXN3P2bDtnz7bT1aWgVmuMz7tcXFfDbKpRr1u3jpSUFAA2btxIQkIC06dP\nJycnh6amJlpaWsjKymL27NnDGZZRqPsUFBRSStJNcn0hhBDiWqnVavR6fa9tDQ0N+Pj4olarSU3d\nQVdX1zVfx8/Pn+PHjwKwb9/ei6451IYsgcnNzSUpKYlPP/2U9957j6SkJBYsWMBrr73GypUr8fT0\nJC4uDmtrax577DHuvfde7rnnHn72s58ZB/QOt+nuIbjZurC3IpPWrjaTxCCEEEJci8DAsRw/foyW\nlrPGbXFxCaSn7+Lhh3+KjY0Nnp6e/POfb/dzlsuLjp5HS0sLP/3pvRw6lI2jo9O1hn5FVMpABp2Y\nmaFsEt1dk84Hhz/j1gnLWBSwYMiuI66cNIebJ7kv5kvujfkaDfemqamRrKxM4uIWUl1dxcMP/5QP\nPvhkUK/RXxfSsI6BGQkWjYvlo9zN7CxJJ2HMPNQqWaxYCCGEuJCtrR07dmzngw82oCgGfv7z4V30\nThKYC9hb2THXeyZpZRkcrjnKDI9QU4ckhBBCmB2tVsvvf/+8ya4vzQt9iBsTC0By8S4TRyKEEEKI\nvkgC0wcfOy+CXSZysuEMxc1lpg5HCCGEEBeQBOYS4s+1wqQUp5k4EiGEEEJcSBKYS5jqNhlPW3cy\nK7Np7jx7+QOEEEIIMWwkgbkEtUrNAv8YdIqeXaV7TB2OEEIIMahWrVpBa2srGza8S27u4V77Wltb\nWbVqRb/Hp6R8C8CWLZtITU0esjgvRRKYfkR6z8JaY82u0r3oDDpThyOEEEIMuqSkHxIaGnZFx5SX\nl7F9+zYAbrxxBQsWxA9FaP2SadTn0ekNnG37bnlla6010b4R7CjeRVbVYeZ4zzRhdEIIIcTl/ehH\nd/Hccy/h7e1NRUU5v/71Y3h4eNLW1kZ7ezuPPPJLpk79bomQZ599hri4hcyYEc5vfvM4nZ2dhIV9\nV5Pw66+38vHHH6LRqAkKGs8TT/yGl19+kby8I/zzn29jMBhwdnZm5crvsX79K+TkHEKn07Ny5WoS\nE5fx4IP3ExExl6ysTBoaGnjxxb/g7e19za9TEpjzfPjtSfYdq+TZ+yKxt7EAYIF/DMnFaSQX7yLC\nKxyV6uqqhwohhLj+bDz5JdlVORdt16hV6A1XtxB+uOc0bpuw/JL758+PZ/funaxcuZpdu1KZPz+e\n8eMnMn9+HAcO7Of//u9fPPvsny46btu2rYwbN56HHnqMb7/92tjC0tbWxksvvYqDgwM/+9l9nDp1\nkjvvTGLjxv9yzz338fe/dxdpPngwi9OnT/HGG/+gra2Nu+++g/nz4wCws7PjlVfe4I03XmXnzh2s\nXv39q3rt55MupPO4OVnT3NpF2uFy4zZ3G1fC3KdS1FzK6cZCE0YnhBBCXF53AtO9jllaWiqxsQtI\nTf2Wn/70Xt5441UaGxv7PK6g4DShodMBCA+fZdzu6OjIr3/9GA8+eD+FhWdobGzo8/hjx44yY0Z3\nT4WNjQ1BQeMoLi4GYPr0cAA8PT05e3ZwJsZIC8x5YsN8+GzXaVKyS1k8Zwzqc60tcWNiOVRzhOSS\nNMY7B5k2SCGEECPGbROW99laMpS1kMaNG09tbTWVlRU0Nzeza1cK7u6ePPXUWo4dO8prr/21z+MU\nBdTq7u89w7nWoa6uLl5++Y+8++4HuLm58/jjv7jkdVUqFedXV9Tpuozn02g0511ncEowSgvMeext\nLJgf7k9VQxtHztQZt090HoefvQ+HqnOpa683YYRCCCHE5UVFxfLWW+uZN28BjY0N+Pn5A5CamoxO\n1/eklICAQI4dywMgKysTgNbWFjQaDW5u7lRWVnDsWB46nQ61Wo1er+91fHBwCNnZB84d10ppaQn+\n/gFD9RIlgbnQspixAOw4UGLcplKpiPePxaAY2FkiU6qFEEKYtwUL4tm+fRtxcQtJTFzGhx/+H488\n8jNCQkKpra1l8+YvLjomMXEZR47k8PDDP6W4uBCVSoWTkzMREXP58Y9/wD//+Tbf/34S69a9TGDg\nWI4fP8a6dS8Zj58+fQaTJwfzs5/dxyOP/Iyf/ORBbGxshuw1qpTBassZRkNZgtzDw4GHX0rmTFkT\nL/wkCg/n7je/S9/Fk+nPYVAM/CHmN1hpLIcsBtG30VB+fjSS+2K+5N6YL7k3A+Ph4XDJfdIC04f4\ncD8UIOVgqXGbhcaCWL9IWnVt7KvIMl1wQgghhJAEpi9zpnhib2PBrkPldOm+6+Ob5xeJRqUhpTht\n0AYhCSGEEOLKSQLTBwuthnnTfTjb1sW+vCrjdmcrJ2Z6hlHRWsWxuhMmjFAIIYS4vkkCcwnxM/xQ\nAcnZpb23n6tSnVwiVaqFEEIIU5EE5hLcnW0IG+/G6bImCiqajNsDHccwzimQI7XHqGytNmGEQggh\nxPVLEph+JMzqnje/40DvVpg4/+5WmNSS3cMekxBCCCEkgelXyFhXPJ1tyMir7FXkcYZHKM5WTuwp\nz6S1q82EEQohhBDXJ0lg+qFWqYgL96NLZ+hVH0mj1rDAL5pOfSd7yvebMEIhhBDi+iQJzGXEhvlg\noVWTkl2K4byp09F+c7BQW5BashuDYjBhhEIIIcT1RxKYy7C3sWDuVC+qGtrIPf1dfSR7CzvmeM+k\ntr2enJqjJoxQCCGEuP5IAjMACTP9AEjOKum1Pc4/pnt7sUypFkIIIYaTJDADEOTtyDhfRw6fqqW6\n4btBu7723gS7TOREw2mKm8tMGKEQQghxfZEEZoASZp6rj3SJhe1SZGE7IYQQYthIAjNAEcHn6iMd\n7l0faarbZDxt3MmsPEhz51kTRiiEEEJcPySBGaBL1UdSq9Qs8I9BZ9CRVrrXhBEKIYQQ1w9JYK5A\nT32kHVm9u5EifWZhrbFmZ+kedAadaYITQgghriOSwFwBd2cbpk9w50x5E2fKv6uPZK21Jto3gqbO\nZrKqDpswQiGEEOL6IAnMFYo3Tqnu3QqzwD8aFSqSi9NQzlvwTgghhBCDTxKYKxQy1hVPl4vrI7nb\nuDHNfSpFzSWcaSo0YYRCCCHE6CcJzBVSq1TE91EfCSB+jCxsJ4QQQgwHSWCuQsy07vpIydklveoj\nTXQej5+9Dwerc6lvbzBhhEIIIcToJgnMVeipj1Td0N6rPpJKpSLOPxaDYmBn6R4TRiiEEEKMbpLA\nXKWFM/0B2HFBfaQIrxnYW9iRVrqXTn2nKUITQgghRj1JYK5SoLcD430dybmgPpKFxoJY37m06trY\nV5FlwgiFEEKI0UsSmGsQf4n6SPP8o1Cr1KSU7JYp1UIIIcQQkATmGlyqPpKzlRMzPcMob6nkeP1J\nE0YohBBCjE6SwFwDC62G+dN9L6qPBN9VqU4u3mWK0IQQQohRbUgTmPz8fBYtWsT7778PwP79+7nz\nzjtJSkri//2//0djYyMA77zzDqtWreL2228nNTV1KEMadHEzfPusjxTkGMBYxwBya49R1VptmuCE\nEEKIUWrIEpjW1lbWrl1LVFSUcdvzzz/Ps88+y4YNGwgPD+fDDz+kuLiYLVu28MEHH/Dmm2/y/PPP\no9fr+zmzeblUfST4rhUmpSTdFKEJIYQQo9aQJTCWlpa8/fbbeHp6Gre5uLjQ0NC9wFtjYyMuLi5k\nZGQwb948LC0tcXV1xc/Pj5MnR9a4kYRz9ZEunFI9w2MazlZO7C3fT5uura9DhRBCCHEVtEN2Yq0W\nrbb36f/3f/+XNWvW4OjoiJOTE4899hjvvPMOrq6uxue4urpSXV3N5MmTL3luFxdbtFrNUIWOh4fD\nFT1/gZs9/95xkv15VTxweziOdpbGfUsnxfHvnM853JTD8skLBzvU686V3hsxPOS+mC+5N+ZL7s21\nGbIEpi9r167ltddeY9asWbz44ot88MEHFz1nINOO6+tbhyI8oPsDVV3dfMXHzQ/z4cMdJ/k8+QSJ\ncwOM22c4z+Bj9WY2H9tBhMts1CoZN321rvbeiKEl98V8yb0xX3JvBqa/JG9Yv02PHz/OrFmzAIiO\njiY3NxdPT09qamqMz6msrOzV7TRSxIb5YNlHfSR7CzvmeM+ktr2OnJo8E0YohBBCjB7DmsC4u7sb\nx7fk5OQQGBhIZGQkKSkpdHZ2UllZSVVVFRMmTBjOsAaFnXXf9ZEA4vzPDeaVKtVCCCHEoBiyLqTc\n3FxefPFFSktL0Wq1bNu2jd/97nc8+eSTWFhY4OTkxHPPPYejoyOrV69mzZo1qFQqnnnmGdTqkdnN\nkjDTn12Hy9mRVULYeDfjdl97bya7TOB4/UlKz5bjZ+9jwiiFEEKIkU+ljMC17oey3/Ba+yWffS+T\n02VNvPCTKDycbYzbc2qO8rfD7xLlE8GaKbcPRqjXHekzNk9yX8yX3BvzJfdmYMxmDMz1IGGmPwqQ\nfEF9pBC3YNxt3NhfmU1z51nTBCeEEEKMEpLADLLZwR7d9ZEOldHZ9d2CfGqVmjj/GHQGHbvLMkwY\noRBCCDHySQIzyHrqI7W069h/rHd9pEif2VhrrNhZko7OoDNRhEIIIcTIJwnMEIgL76mP1HtlXhut\nNVE+ETR2NpNdlWOa4IQQQohRQBKYIeDu1FMfqfmi+kgL/GNQoSK5RKZUCyGEEFdLEpghcqn6SB62\nboS6T6GwqZgzjYWmCE0IIYQY8SSBGSJTx7ri6WLDvrwqzrZ19doXf25hu2RZ2E4IIYS4KpLADBG1\nSkVCuB9dOgNph8t77ZvkMh5fO2+yq3Oob28wUYRCCCHEyCUJzBCKuUR9JJVKRfyYWAyKgZ2le0wY\noRBCCDEySQIzhHrXR6rttW+2Vzh2FrbsLsugU99pogiFEML8HS+q5+m/Z1DT0GbqUIQZkQRmiCXM\n9AdgR1bvlXktNRbE+kbS0tXK/opsU4QmhBAjwsb92VQ57yTtWIGpQxFmRBKYIRbo7cB4X0dyTtVS\ndcGvh/n+UahVapJL0hiBJamEEGLINZztoFC9H41LNdnVh0wdjjAjksAMg576SCkX1EdytnJipmcY\n5S2VHK8/aZrghBDCjG3PzUPj1N0FX60vQm8wmDgiYS4kgRkGs4M9+6yPBBB3bkp1iixsJ4QQF9lT\nsRcAlaIG+zpOltWbOCJhLiTiLDjGAAAgAElEQVSBGQYWWvUl6yONdQogyDGA3JpjVLXWmChCIYQw\nP/ll1bTZFaDV2zHFLhyV2sDewqOmDkuYCUlghklcuC8q1cUr8wLE+8egoJBastsEkQkhhHn64lgq\nKo2BcJcIIsdMA+B4Q76JoxLmQhKYYeLuZMP08X3XRwr3DMPJ0pG95Zm06dpNFKEQQpiPTl0XZzpz\nQK/h1tAFhPlMAoOGBlUpOr2MgxGSwAyrhFl910fSqDXM94+mXd/BnvL9pghNCCHMyta8fWDZhheT\ncLK2w0KtxRlfVNZnyS0pvfwJxKgnCcwwmhp06fpIsb5zsVBrSS3ejUGRXxdCiOvb7oruVcqXTlhg\n3DbJeQIAe4tyTBKTMC+SwAyj8+sj7Tpc1mufvaUdEV7h1LTXkVuTZ6IIhRDC9E7UFtKiqULb4sXs\noLHG7bFB0wE4ffaUqUITZkQSmGFmrI+UVYrB0Hvxurgx56pUy2BeIcR17LNjOwCY7jwblUpl3D7O\nzQd1ly1nNeV06Loudbi4TkgCM8x66iPVNLaTe6Z3fSQ/ex8muUwgv/4kpWfLL3EGIYQYvRo7milo\nP46hzY7loRG99qlUKtw1Aai0OjIKZDbS9U4SGBO4VH0k6J5SDZBSLAvbCSGuP9+c3gUqA24dwXi6\n2F60P8RtMgAHyo4Md2jCzEgCYwKB3g6M9+u7PlKo+xTcrV3ZX5nN2c4WE0UohBDDr8ugY3d5BopO\nS8K4yD6fM3/cNBSDiuK2M8McnTA3ksCYSEJ43/WR1Co1cWNi6TLoSCvLME1wQghhApkVB+mkDUNN\nAJHBfn0+x9PJEYsON9q1tTS2Nw9zhMKcSAJjIrODPXGw7bs+UqTPbKw1VuwsSUdv0F/iDEIIMXoo\nisLXZ3aiKDDFbga21tpLPtfHMhCVCnadkenU1zNJYEzk/PpI+/J610ey0VoT6TObxs4msqsOmyhC\nIYQYPqcaC6jqqMBQ70VcyIR+nzvDawoAh6uODUdowkxJAmNCC2Z010dKzr64PtIC/xhUqGRKtRDi\nurCjaBcAlg3jCRnr2u9zI8dPQumyoKKzEEVR+n2uGL0kgTGh/uojedq6E+oeTEFTEWcaC00UoRBC\nDL3atnoO1xzB0OLI3KApaDX9fzU521lj1eGNXtNGcZMsOXG9kgTGxIz1kQ5c3AoT539uYTuZUi2E\nGMVSS3ejoKCrCCQ21HdAxwTYjgMgvVDGwVyvJIExsalBrni52JCRV0Vza2evfZNdJuBr5012dQ4N\nHY0milAIIYZOh76T9NJ9KF2WeKrGE+BlP6DjZvtOBeBo7fGhDE+YMUlgTEytUhEf7odObyAtp3dT\nqEqlIm5MDAbFwM6SPSaKUAghhk5G+QHa9O3oqsYQE+rXq3RAf2YE+WFocaDWUEanvvPyB4hRRxIY\nM9BffaQIr5nYWdiSVraXTr3U/hBCjB4GxUBKyW5Q1OirAoic6jXgYx1sLbHt8gGVgbxaKe54PZIE\nxgzYWVsQGdJdHynndO/6SJYaC2J859LS1cr+yiwTRSiEEIPvWN0JKlur0NV6E+zrjauj9RUdP96h\ne7r1vmIZB3M9kgTGTPTUR0rOvrg+0ny/KNQqNSnFu2XKoBBi1OiZoKCrCCQ61PuKj48ICEbRazjR\neHKwQxMjgCQwZiLA69L1kVysnQn3mEZZSwX59dJUKoQY+SpaqjhadxxNqxsWXS7MmuxxxeeYEuCG\nocmVFhqobasfgiiFOZMExowkzDxXH6mvKtVjzk2pLpEp1UKIkS/13CKdraVjmDXJA2vLS5cOuBR7\nGwscDd1LUeTWyKq81xtJYMzI7Mnn6iMdvrg+0linQAIdx5Bbk0d1a+0lziCEEOavtauVveWZWCp2\nGOo9iQ71uepzBbtMAuBA2dHBCk+MEJLAmJH+6iMBxPvHoqAYf7kIIcRIlF6+n05DF53lATjbWzMl\n0OWqzzVjTACGdhsKW85I8dvrjCQwZiZuhh8qFezIunhl3nDPaThZOrKnfD9tunYTRCeEENdGb9CT\nWpKOVqWlrdyXyBBv1OqBrf3Sl8mBLhga3dHRSUFT8SBGKsydJDBmxs3JmhkT3CmoaOZ0We/6SFq1\nlvn+UbTrO9hbnmmiCIUQ4url1Bylrr0e+/axoLe4qtlH57OztsBVNQaA3Jq8wQhRjBBDmsDk5+ez\naNEi3n//fQAeeughkpKSSEpKYsWKFTz11FMAvPPOO6xatYrbb7+d1NTUoQxpRIif2T0oLbmPVpgY\n37lo1VpSSnZjUAzDHZoQQlyTnokIVSe8CfC0x99jYKUD+hPiMRHFoOJgpQzkvZ4MWQLT2trK2rVr\niYqKMm5bt24dGzZsYMOGDYSGhnL77bdTXFzMli1b+OCDD3jzzTd5/vnn0euv737M/uojOVjaE+EV\nTk1bLUdq5R+rEGLkKG4u5WTDGTy1Aehb7a659aVHaIAXhrPOVHWUc7azZVDOKczfkCUwlpaWvP32\n23h6el607/Tp0zQ3NxMWFkZGRgbz5s3D0tISV1dX/Pz8OHny+l6USK1SET/Tv7s+0uGLS8Ubp1RL\nlWohxAjS8zerqzwQtUrF3CsoHdCfSWOcMDS6A3Cs/sSgnFOYvyufeD/QE2u1aLV9n/69995jzZo1\nANTU1ODq6mrc5+rqSnV1NZMnT77kuV1cbNFqNYMb8Hk8PByG7NwDdXP8RDbuPM3Ow+XctSwEzXmD\n3Dw8HAgpmMSRqnzaLJoIcPYzYaTDyxzujbiY3BfzZS73pqG9iQNVh/CwcafojC2zgj2YMNZ90M7v\nYx1EDSc42XyKpaHzBu28Q8lc7s1INWQJzKV0dnZy4MABnnnmmT73D2Sp/Pr61kGO6jseHg5UVzcP\n2fmvRORUT3YeKic5o4DpE3r/Q4/xiuJIVT4bD3/NXVNWmSjC4WVO90Z8R+6L+TKne7PlzHZ0Bh0u\n7ZMpQsXsSR6DGtsUj0B2dllyoPQIVVVNA65qbSrmdG/MWX9J3rDPQtq/fz9hYWHGx56entTU1Bgf\nV1ZW9tntdD3qqY+0o4+Veae5T8HN2pX9lVnS5yuEMGs6g45dpXux0VpTfMwZGysN4RMHr/UFIDjA\nFX2jG636s5S1VAzquYV5GvYEJicnh+DgYOPjyMhIUlJS6OzspLKykqqqKiZMmDDcYZmlAC8HJvg5\nkXu6lqoLWp3UKjVxY2LoMujYXZZhogiFEOLysqoO09TZzGS7MOoa9cya7ImlxeAOA5jk74yhqTsp\nOlp7fFDPLczTkCUwubm5JCUl8emnn/Lee++RlJREQ0MD1dXVuLm5GZ/n6+vL6tWrWbNmDQ899BDP\nPPMMarUsT9MjfqZfd32k7LKL9kX5zMZKY8nO0j2yAqUQwiwpikJy8S5UqNBVBgAQM0izj85na63F\n1zIIgCOSwFwXhmwMTGhoKBs2bLhoe8/aL+frWRtGXGz2ZE/+8+0Jdh0u45Z5Y3v9arHR2hDpE0Fq\nyW6yq3OY7TXDhJEKIcTFTjcWUtRcyjS3EA5/24abozUTxzgPybVC/H1IbnHkFAV06Dux0lgOyXWE\neZCmDjN3fn2kjLzKi/bH+UejQkWKTKkWQpihnoXrfJSptHfqiQr1Qj1EA2yDA53RN7phQM+J+lND\ncg1hPiSBGQF66iMl9zGY19PWgxC3YM40FVHQVGSC6IQQom/17Q0cqs7Fz96Hk/ndDf5RIYPffdRj\nor8zSpMHAEfr8ofsOsI8SAIzAvRXHwlkYTshhHlKLUnHoBiI9Ijk6Jl6xvk64uNmN2TXs7HSMsZu\nDIpeIwN5rwOSwIwQ302pvrg+0mSXCfjYeZFVdZiGjsbhDk0IIS7Soe9kd1kG9hZ2tFd5oShD2/rS\nY0qAG4YmV6rbaqhtqxvy6wnTkQRmhJgS5IKXqy37+qiPpFKpiPOPwaAY2FWyx0QRCiHEd/ZVZNGq\na2OeXyQZR2rQqFXMmTL0a3xNDnBBf66sgHQjjW6SwIwQapWK+HC/S9ZHmuM9EzutLWllGXTpu0wQ\noRBCdFMUhZSS3WhUGsZbhVFcdZaw8W442A79rKCJ/k7GcTB5ksCMapLAjCCx07yxtFCTnF2KwdC7\n5IKlxpIYv7mc7Wphf+VBE0UohBDdBRUrWiqZ6RlGzvHulcIHq/L05dhYaQly9UZpt+VY3QlZI2sU\nkwRmBLG1tiByqjc1je0cPl170f75flGoVWqSi3cNqKaUEEIMhZ5lHeL8YtlztAI7ay1h4we3dEB/\nJgc4o290p0PfwRmZnTlqSQIzwiTM7K483deUahdrZ2Z4hFLWUsGJBlkDQQgx/Cpbq8mtPcY4p0DO\n1tvSeLaTiCleWGiH7+tmynnjYPJkNtKoJQnMCNNffSSA+DHdZeSTi3cPd2hCCEFqSfffnjj/WNJz\nu4sqDlf3UY8J/k6ozrqBopKBvKOYJDAjUMK5+kjJ2Re3wox1DCDQYQw5NUepabu4m0kIIYZKm66N\nveWZOFs5MdkxmKz8ajxdbBjv6ziscVhbagnycsHQ7EJxcynNnWeH9fpieEgCMwLNmuyJg60FaYfL\n6ezqPUBNpVIRNyYGhe5ZAEIMNRlvJXrsKdtPh76TBX7RHDpZR2eXgegQb1RDVDqgP8HnupEUFI7V\nnRj264uhJwnMCHS5+kgzPcNwsnRgT9l+2nRtJohQXA8Kmor42+F/suaTh+ULQmBQDKSU7MZCbUG0\n3xxj91HkMHcf9egZyAsynXq0kgRmhOqpj7Qjq/SiX8BatZZ5ftG06zt4ft8rZFflyK9kMWhO1J/m\n1ey3+VPma+TU5NGl7+K/+Z/LdNXrXE7NUWrb65njPZPONg3HCuuZ5O+Ep7ONSeKZ6OeMut0Rtd6K\nvLp8+Rs4CmlNHYC4Oj31kbJP1HCmvJlxF/QxLwpcQKuulZSS3byTu4EJzmNZOXEFAQ7+JopYjGSK\nopBXl89XBd9yqrEA6C5hkRi0kLymPL4+tZPU0nQSzg0iF9efnlpscf4x7MmpQAGiTNT6AmBlqWGs\njxNF9W40acooPVuOv4OvyeIRg08SmBEsYaY/2Sdq2JFVwjjfqb32Wai1rJy4gli/SD49uZmcmqP8\ncf+rzPWZxU3jEnGyGt5BdWJkMigGcmry+KrgW4qau+twhboFsyRoIeOcAgEIC5xAWuF+tpz5hgiv\ncBws7U0ZsjCB0rPlnGg4TbDLRHzsvHg9NwOtRk1E8NCXDuhPcKAzZ467o3EvI68uXxKYUUa6kEaw\n/uoj9fCy9eAnYT/k5zPuw8fOi73lmTyz9498VfAtnVJyQFyCQTGQWXmQ5/f9lbdy/kVxcynhHtP4\nVcTD/HT6j4zJC4CDlT3Lxi6mTdfOptPbTBi1MBVj68uYGAormymvbSV8oju21hYmjau7LpIbgFSn\nHoUkgRnB1CoVCefqI+3qoz7S+YJdJ/LrOb/gzsm3Yam2YNPpbfx+7584UHlQ+oaFkd6gZ095Jmsz\n/sw/j3xAeUslEV4z+c3cR/nxtCTGOPj1edw8v0h87LxIL9tHcfPF0/vF6NXceZb9ldl42LgR4hZM\nek734F1Tdh/1mODnhMZgjbbTmVONBbTrOkwdkhhEksCMcDHn6iOl9FEf6UJqlZpYv0ieiXqcGwLi\naO5s5h9HPuDlrPUUyHLb17UufRc7S/bwzN4/8n7ef6ltqyfGdw6/jXycH4bcgY+dV7/Ha9QaVk28\nCQWFj/K/kKT4OpJWmoHOoCPOPxaDATLyKnGwtSB0rKupQ8PKQsM4X0faa1zRK3pZoXyUkTEwI1xP\nfaSdh8o4fLqWGRMuX2/ERmvDLRNuJMZ3Lp+d2szB6lz+lPkac7xncvP4pThbOQ1D5MIcdOg72V26\nl+1FqTR2NmOh1rLAP4YbAhbgYu182ePLa1vIOF7NjHGuBLtOZLp7CIdqjpBVdYhZXjOG4RUIU9IZ\ndOwqTcdaY02kzyxyz9TR3NrFoln+aDXm8ft4coALp3Lc0fqeJq8un2nuUy9/kBgRJIEZBRJm+rHz\nUBk7skoGlMD08LB1475pPyC//hSfnNjEvoosDlblcENgHIsCFmCpsRzCqIUptenaSC3ZQ3LxLs52\ntWCpseSGgDgSAubhaOlw2eMr6lrZtPsMe49WoiiwZM4YvpcwkVsnLOdI7TE+PbmFae5T5TM0ymVX\n5dDY2Uz8mFistdak554EIHqa6buPegQHOPPlHmc0WJBXK+vBjCaSwIwC39VHqqOqvhVPF9srOn6S\ny3ieiHiIveUH+OL0Vjaf+YbdZfu4efxSZnvNQK0yj19S4tqd7WohpTiNlJLdtOnasdHasDRoEXFj\nYrC3sLvs8d2JSwF7j1agKODvYU+HTs/2zBLmT/fFx82NhID5fF2YzDeFKSwbt3gYXpUwBUVRSC5O\nQ4WKOP8YWtu7OHiiBl93OwK9Lp8ED5fxfk5o1Ro0rR5UUUZNWy3uNm6mDksMAklgRomEmX6cLG0k\nObuU7yVMvOLj1So10b4RzPScxrbCZHYU7+JfR/9Dakk6qyauYOx5s07EyNPY0cyO4p3sLN1Dp74T\news7bhqXyHz/KGy0l19orLKulU3pBew58l3icnNsEOGTPDhd2cJz7+7j39tP8Mjq6SwJjCejPJNv\nilKI8o3A1dplGF6hGG5nmooobC4mzD0Edxs3Ug+WotMbiArxMknpgEuxstAwzseR01XOWASVcbQ2\nn/n+UaYOSwwCSWBGiVmTPXH89gRph8u5Zd44rCw0V3Uea601N49fSqzvXD47tYWsqsP8+cDrzPaa\nwc3jl8qX0QhT117P9qJU0sv20WXQ4WTpyIpxS4jxnYvVALp3Kutb+XJ3AXuOVGJQFPw97LgpZiwz\nJ3ugPvclFRnqTUiQC7ln6jh0spYZE925efyNvJf3IZ+e3My9oWuG+mUKE0g5N3U6fkwMAOm5FaiA\nqBDz6T7qERzowolMdyzoLisgCczoIAnMKGGhVTN/hi9fpheyL6+SeWHXtmCTm40r94auYUHDGT45\n8QWZlQc5VJ3LooAFLAqIw1prNUiRi6FQ3VrL14XJZFQcQK/ocbN24YbAOCK9Z2OhufzaHJX1rXyZ\nXsCe3O7Exc/DjpsvSFx6qFQq7lg0id/+fR//+fYEIWNdifAOZ2fpHrKqDjO//jQTXcYN1UsVJlDf\n3kB2dQ5+9j5MdB5PVUMbJ0oamRLogqujtanDu8jkABe+2G2LteJIfv1J9AY9GvXV/cgT5kMSmFFk\nwXQ/Nu8pZEdWKbHTfAalGXeC81h+Ofvn7KvI4otTW9la8C3pZfu4afxS5njPlPExZqa8pZJtBTvI\nrDyIgoKnrTtLAhOI8Aof0B/sqvpzXUU9iYu7HTfFjmVWH4nL+fzc7Vg4y59vMov5en8Ry6KCuH3S\nTfwp8zU+OvE5v4p4WD4ro8jO0j0YFANx/jGoVCr2nivcGG0Ga7/0ZbyvI1qNCpo9aHc8xenGQkmq\nRwFJYEaR8+sjnS5vYrzv4EyHVqvURPrMZobHNLYXpbC9KJUNef8ltSSdlRNXMMF57KBcR1y94uZS\nvirYwcHqHAB87bxJDEog3DNsQIlDVUMbX+4uID23AoOi4Otux00xQcwO9uw3cTnfzbFB7D1awZfp\nhUSH+hDkGMBc71lkVBwgvWwfsX6R1/QahXno1HeyuywDews7ZnuFoygK6bkVWFqomTnJw9Th9cnS\nQsN4XydOVjhh6djdjSQJzMgnCcwokzDrXH2kA6WDlsD0sNZasXzcEqJ95/D5qa1kVh7kL1lvEO4Z\nxi3jb8TdxvQLV11vTjcW8lXBtxypPQZAoMMYEoMSCHWfMqDEpbqhjU3pBaTndCcuPm623Bw79ooS\nlx621hasXDCed7ce4+OUk9y3IoSbxy/lYHUOm05vY6ZnGLYWVzZDTpif/RXZtHS1khiYgKXGgpOl\njVQ1tBEV4oWNlfl+pUwOcOb4HlfUqDlad5ybxieaOiRxjcz30yauypTA7vpI+49VcsfCCTjYDv46\nHK7WLtwT8n0W+MfwyYlNZFcdJqfmKAlj5rEkMB5rrfn1gY8miqJwouEUWwt2kF/fve7GeKexLA1a\nSLDrxAF1HVY3tPFleneLi97QnbjcFDOWiGBP1Oqr73qMneZDcnYpe45UEh/uzwR/J5YGLeKzU1vY\nUrCdVRNvuupzC9NTFIXkkjTUKjXzzg2ETc81n9IB/ZkS6MIXu7U4KF4UN5fS3HlWCo+OcFfdKV1Q\nUDCIYYjB8l19JOWy9ZGu1TinQB6b9QB3T70Dews7vi5M5pm9fyS9bB8GxTCk174eKYpCbk0eLx1Y\nzyvZb5Fff5IprpP4RfhPeHTWT5niNumyyUtNQxvvbs3jf9/ay67D5Xi62HD/TVNZe+9c5k71uqbk\nBUCtVnHXokkA/N/2fAwGhbgxsXjYuJFakk5FS+U1nV+Y1vH6k5S3VDLTMwxnKye6dAb251XiZG/J\n1EDzboEd5+uIVqNGV9+9BkxenSxqN9L1m8Dcc889vR6vX7/e+N9PP/300EQkrllPfaTkrMvXR7pW\napWaOd4z+W3kL1k29gY6dB3837GPeXH/Ok7US92RwWBQDBysyuHF/a/wxuF/cqapkGnuU/nl7Ad5\ncMaPB9SX3524HOPXb+1l56FyPJxtuH9Fd+ISOdX7mhOX803wdyIqxIvCimbScsqxUGtZOXEFBsXA\nxyc2SZ2kESyl5FzVaf9YAA6fqqGlXUdUyOB+hoaChVbDBD9H6socAUlgRoN+u5B0Ol2vx3v37uWB\nBx4AkD9CZuz8+kgvfXiQeWE+hE/yuOq1YQbCUmPJjWNvIMongi9Of8W+iiz+mv0mMzxCuWX8Mjxs\nZeXLK6U36DlQdYhthclUtFSiQsUsz+ksCUrAz95nQOeoaWxj855C0g6XozcoeLnaclNMEHOnXHtr\nS39WxU0gK7+GT1JPMXuyB6FuU5jiOom8unxya/OkHs0IVNVaQ27NMcY6BjDWKQD4rvso2gzXfulL\ncIALx4rqsVHbkVeXj0ExyOy4EazfBObC5ujzkxZzWmlRXOymmCDKalvIK6wnr7Aea0sNc6Z4Eh3q\nw0R/pyG7fy7Wztw99Q4W+EfzyYlNHKzOJbcmj7gxsSQGJQxo1dfrnc6gY19FFtsKk6lpq0WtUjPX\nexaLA+PxtvMc0DlqG9vZvKeAXT2Ji4sNN8WMHZRuooFwcbBieXQgn6Se5vO0Au5cNJFVE1fw7L6/\n8PGJTQS7TsJCLUPwRpLUkt0odHcJAjS3dnL4VC0Bnvb4e46MsSSTA5wBFfY6X6oNJyg9W84YBz9T\nhyWu0hX9BZGkZeRwdbTmf9fMory2hfTcCtJzK9h5qJydh8rxdLYhOtSb6FBv3J2HJqEIcgzg0ZkP\nkFV1iE9PbmF7USp7yzNZcW4Wk/zquVinvov08n1sL0ylvqMBrUpDrO9cbgiMH/AMr9rGdjbvLWTX\noTJj4rIiJoi5U73QqIf3PV8cEcCuQ+V8e6CE+TN88XP3YoFfNMklaaQUp3FDYNywxiOuXpuunb3l\nmThbORHuMQ2AfXlV6A2K2Q/ePd84XycstGraalzAE/Jq8yWBGcH6TWAaGxvZs2eP8XFTUxN79+5F\nURSampqGPDhx7Xzc7Fi5YDy3zhtHXlE96TnlHDhezWdpZ/gs7QzBAc7ETPNh1mQPrC0H9xexSqVi\nltcMprmHsKN4J9sKk/n38Y3sLN3DbROWE+x65TWbRqN2XQdpZXvZXpRKc+dZLNQWxI+JZVHAApyt\nBjYVvq6pnc17Ctl5LnHxdLFhRXQQkSHDn7j0sNCquWPhRNZ9cph/b8/nse/N4Maxi9hfmc3Wgu3M\n8Z6Jk5WjSWITV2ZveSbt+g5uCIw3LoiYnluBSgWRU71MHN3AWWjVTPBzIq+kHVtPFUfrjrM4KN7U\nYYmr1O83lqOjY6+Buw4ODrz++uvG/xYjh1qtIiTIlZAgV9Ys1pF5vIrdORUcK2rgWFED73+dz6zJ\nHsSEejM50OWK1wDpj6XGgsSghcbxMRnlB3j14NtMc5/KbROW4WlrnotfDbXWrjZSS3aTXJxGi64V\na40ViwPjSRgzb8DTO+uavmtx0ekVPJ27W1xMmbicb/oEN0LHuZJ7uo7sEzXMnOTB8nFL+M/xjXxx\n6iuSpq42dYjiMgyKgZSS3ViotcT6zgWgvLaFM+VNTBvnhpP9yCorMjnAmbzCelwtPDndWEi7rkNK\no4xQ/SYwGzZsGK44xDCysdIyL8yXeWG+VDW0kZ5TbuxmSs+twM3RiqhQH2KmeePlMngLjzlZOZI0\nZTUL/KL5+MQmcmqOcrT2OAv8o1katAhbi9E9PsagGGjpaqWho4nsqsOklqTTrm/HVmvDsrE3EOcf\nM+CF3uqa2tmyt7vFRadX8HC2ZkX0WKJCzSNx6aFSqbhz4USeLuiukzRtnCsxvnPYVbqHvRWZzPOP\nJMgxwNRhin7k1uRR01ZLtM8c7C3tANhzpGftl5HT+tIjOMAFOINNhw+16kpONJySQeUjVL8JzNmz\nZ/n444/54Q9/CMB//vMf/v3vfxMYGMjTTz+Nu7v7cMQohpCnsw23zBvHTbFjOVHcwO7cCvYfq+LL\n9AK+TC9ggr8TMaHeRAR7YWs9OF1MAY7+PDLzJxyszuXTk5vZUbyLjIoDLB+7mBjfuSOuyJpBMXC2\nq4XGjmYaOxpp6mymsaOJxp7/72iisbOJps7mXuvjOFjYkxh0I/P8Ige8+F99cweb9xT0SlyWRwcR\nFeKNVmM+icv5fNzsWDTbn237ivlqXzErooO4feLN/DX7b3yU/wWPzXpAxkSZseSS3QDEnas6bVAU\n9uRWYG2pIXziyGs9HevjiKVWTWOFE/jC0drjksCMUP1+Iz399NP4+XUPcDpz5gwvv/wyf/3rXykq\nKuLZZ5/lL3/5y7AEKYaeWqVicoALkwNcuGvRJLLyq0nLKedYYT0nSxr5YPsJZk7q7mKaGuR6zTNZ\nVCoV4Z7TCHULJrkkjZgXxw0AACAASURBVG0FO/gw/zNSS/ewcsJyprpNHqRXdvUuTEwaO5to6mim\n4dz/XyoxuZBWpcHRypFAhzE4WTngZOWIr503c7xnYqkZ2ErJ9c0dbNlTSOqhUnR6BXcna1ZEBxEV\nar6Jy/lWRI9lT24Fm/cUEBPqzUSXccz0DCOr6jD7K7KZ6zPL1CGKPpSeLSe//iSTXCYYp+7nFzVQ\n29RBbJjPkC7NMFQstGrG+zmRV6TDeYwVR2U9mBGr3wSmuLiYl19+GYBt27aRmJhIdHQ00dHRbN68\neVgCFMPPylJDVKg3UaHe1Da2s+dIBbtzysk4WknG0Uqc7S2JCvUmJtQHX3e7a7qWhcaCxYHxRPrM\n5svT20gv28/rh/5OiFswt01YPuBpw1fiu8TkvNaRc4lJY8e55GSAiYmTMTFx7E5OLB1xtHLE2dIR\nJytHHK0csNPaXvUMvvrmDrbsLST1YBk6vQF3p+4Wl+gRkrj0sLXWsjJuPP/ccoyPUk7x/24K4Zbx\ny8ipOcrnp7Yw3SNUxiGYoZTi7taXeP8Y47b0IyNr7Ze+BAe6kFdYj5fFGIraTlLdWitrVY1A/SYw\ntrbf9cfv27fv/7d33/Ft1/e+x18almV5SfLeeyVxhjPtOImzCCMlQAihKeH0XE7PbaHtaQ/tLYey\neqGloe05vQU6oIuGwyEkrDADgUzbmc6y4x3He0ve29L9w4OYgMmwLMn+PB8PHuCf5J8+4htb73wn\nd9555+jXsqR6evAZ/sC8JTWC0po2ss7VcjS/gQ+OVPDBkQqigrxYmhzIoqQAPNxcrvl1vDSebEm8\nk2UhabxR/A55zQXkm4pYHpLKzVFrcb+CuSEWq4X2vk7a+j4LJp8fymnra7/iYBLpFYbXcBDx1ngO\n/3v4a1cvdGo3m/0ctHQM9bjsHw4uPl5avrbU+YLLpZYmB7H/VDVHz9ezcl4I8WEG1oZn8P7Fvewp\n/5QNMTfZu0RxiY6+To7X5+CrNTLLNwmA3v5BThQ04OPlSny43s4VXrvE4dpVnf6gKiHfVIifLs3O\nVYmrNW6AGRwcpLm5mc7OTk6dOjU6ZNTZ2Ul3d/dX3ryoqIj777+fb37zm9xzzz309/fz0EMPUV5e\njru7O7/73e/w9vZm9+7dvPTSSyiVSu666y42bdo0Me9OTBiFQkFsiDexId7cvTqO0yVNZJ6rI7es\nmbLaNl79pJi5sb6kJQcxK8p4zR+yYZ7BfH/ev3K26TxvlLzL/qpMjtXlcHPUWhaqZ3GxqfYLw8kV\nBROlGm+N55hgotcM9ZJcGk5sGUy+SkvHZz0u/QNDwWV9WgRLk4OcNriMUCoUbFkTz8+3n+SVj4t4\n7JsLWRuRQXbtCT6tOMjS4EX4usnfgh3F4Zqj9FsGyAhLH52jdLq4iZ6+QdYsCJ3QlYqTLSrIC42L\nElO1F4TDeVMRy0MlwDibcQPMt771LW6++WZ6enr47ne/i7e3Nz09PWzZsoW77hp/+WNXVxdPPvkk\nqampo9dee+01DAYDv/nNb9ixYwcnTpwgNTWV559/nl27duHi4sKdd97J2rVr0eudN91PdRoXFYuS\nAliUFIC5vZcj5+vIOlfHicJGThQ24qVzYcnMQJYmBxF2DTt0KhQK5vjNZIZPAgeqMvmg7BN2Fe9m\nV/HuL3z+UDAZ6jG5dAjHkYLJV2np6OWDIxXsP109HFxcuSUtkvQpEFwuFRMyNCk8M7eOg2dqyJgX\nwu2xN/PXvFd4o/hd/nX2P9m7RMHQMRaHqrPRqlxZErRg9ProydNOPHwEoFYpiQvxJu+imbB4X4rM\nJQxYBlDL7tBOZdzWWrFiBYcPH6a3txcPj6EPIq1Wy49//GPS09PHvbFGo+HFF1/kxRdfHL22b98+\nvv/97wOwefNmALKzs0lOTh7dVyYlJYWcnBxWrVp17e9KTBqDpys3LY7gxkXhXKxrJ+tcHUfO1/HR\n8Uo+Ol5JuL8HS5ODWDwzAC/dlU1YHeGiVLMmfAWLA+ezr/IwSo0VzaB2dG6Jt8YLvasXbg4cTL5K\na0cvHxytYN+poeBi9HJlfWok6bOnVnC51MaMGE4UNfLGwQssTPInxX8OB6qyOdOUR4GpWDY4dACn\nGs/R0ttKRuhS3IZXyLV29JJb1kxUkBdBPtc3980RJIQbyLtoxk8VRlPPKS60lhNviLF3WeIqjBtg\nampqRv/70p13o6OjqampITg4+MtvrFajVo+9fXV1NQcPHuRXv/oVvr6+PP744zQ1NWE0frZNutFo\npLGx8arfiLAvhUJBVJAXUUFebF4dy5mSZjLP1XLuQjP/80kxr+0rITnah6XJQcyJ9bmqD2dPjQe3\nxtyIn58njY3tNnwXk6e1s48PjpSz/1Q1fcPB5ZbUoR4XF/XUDC4j9B6u3Lo0kp37SnnrUBnfWBvP\npvhb2Xb8d+wq3s1/LPyB0y2ln2r2Vx5GgYIVl0zePXq+HqsV0pzo6IDxJEYYALC0+YJq6HRqCTDO\nZdwAs2rVKqKiovDzG1rr//nDHP/xj39c1YtZrVaioqL47ne/y+9//3v+9Kc/MWPGjMue81UMBh1q\nte1+wfn5yS7D1yso0Jsb06Npae/lwKkqPj1eyemSJk6XNOGp07BiXgirF4YTc5UHSzpL23T3DmBu\n78Hc1ktLe+/Qf7f3Ym4b+vfZkib6+gfx9dayaU08axeF42LDP9O2drXt8vUbZ5B5ro59p6q5fWUc\nKdGJrGpeyicXDnO67TQ3xmXYptBp6Grbpri5jLK2CuYHJzMzImr0+rGCRlRKBTelRzvd7rtfxGB0\nx1VzmqZqLepINcWtJZP++8VZfp85qnEDzLZt23j77bfp7OzklltuYf369WN6S66Wr68vCxcuBCA9\nPZ1nn32WjIwMmpqaRp/T0NDA3Llzx72P2dx1zTV8lan0t3xHkZbkT1qSPxX17WTl1nEkr453M8t4\nN7OMEF930pIDSZ0ZiP4rfinau20GBi20d/XT2tlLa0cfrZ1D/7R19A1d6/zsWm/f4Lj3Mnq5cvPK\nGJbNDsZFraTFhn+mbe1a2+WulTH8dudZnt95mh/dPZe1wavIqjjBq2d3k+CeiIeL8w9T2Nu1tM2b\neR8BkOa/ZPR7qxo6uFDTyrw4X/q6+2js7pvwWu0hNsSbvDITM2eFc6HlAqXVNXhpJidU2Pv3mbMY\nL+SNG2A2bNjAhg0bqK2t5c033+Qb3/gGISEhbNiwgbVr16LVXtnuoSOWL1/OoUOH2LhxI3l5eURF\nRTFnzhweeeQR2traUKlU5OTk8PDDD1/VfYVzCA/wJDzAkzszYsgtM5F5rpYzJU3s3FfKrv2lzIry\nYWlyIPPifCetN8JqtdLVO0BLRx9tHWNDSGtHH22XBJOOrn7G6x9UKMBLpyFA74a3hyve7hq8PTR4\nuWuG/ttdM3pdq1E57bydiTI7xpfZMT6cLW3mZGEjCxL9uTlyDa+XvMt7Fz5ic8Lt9i5x2mnpbSWn\n4SzB7oEkGGJHr4/s/eLsk3c/LzFcT16ZCYM1FLhAfnORbKroRK5oynVQUBD3338/999/Pzt37uSp\np57iZz/7GSdOnPjS78nNzWXbtm1UV1ejVqvZs2cPv/71r/n5z3/Orl270Ol0bNu2Da1Wy4MPPsh9\n992HQqHggQcekIMipzi1SsncWF/mxvrS0d3Psfz60fky5y40o3NVsyjJn7TkIGKCva7pg76vf/BL\ng8hI78nItYHB8Yct3VzVeLtrCPZxx9tDg7e76/C/h/7xGg4mnm4u171D8XRz9+o48spM7Pi0hNkx\nPqwIXcrhmmMcqj5CesiS0d1fxeQ4VJWNxWohI3Tp6M+dxWIlO68OnauaObFT6/iYoXORoM/kAy5D\n82AkwDgPhfUKJp20tbWxe/du3njjDQYHB9mwYQPr16/H33/id0m9ErbsdpNuPfupaeokM7eW7Nw6\nWjqGuqgDjDqWzgokbVYgsVG+lFWYaB3pKblk6KbtkmDS2tlHd+/AuK+lVimGw8dnPSWX9pBcGk40\nTrhd+mS63p+ZnftK+OBoBbelR3FrehR5zYX8/sxfiNfH8P15/zrte6qux9W0Tf9gP49k/QKr1cpT\nSx8ePeYit6yZ/9xxhox5Idy7zv5HfEykgUEL3/t/hzB4aiBpL4NWC0+nPzopZ3PJZ82VueYhpMOH\nD/P666+Tm5vLDTfcwC9/+Uvi4+MnvEAhAIJ93dmUEcvG5TGcv2giM7eOnOHltm8evIBCAZaviNue\nOhd8vFzxdvccCiceGvTuGrxGek6Gw4rOVS0fjA5ifVokWbl1vH+knKXJQcz0SWCWTxK5zfmcbsxl\nnn+yvUucFo7Xn6ajv5MbIlaOOaMrO9f5jw74MmqVkrhQb3IvmEjziuVU0ymqOmoI9wy1d2niCowb\nYP7lX/6FyMhIUlJSMJlM/O1vfxvz+NNPP23T4sT0pFQqmBXtw6xoH7p6BjheUM+x/AYUSgU6jQpv\nd9fhQKJBPxxMvNw1eOpcpuzeKVOZm6uaOzNi+Mt7+by2r4Tv3DaLjXHryTcV8WbJu8z0SUSjuvZj\nKsRXs1qt7Ks8hFKhZHnIZ5uPdvcOcLKoEX+9GzEhXnas0HYSww3kXjDh0R8EnCK/uUgCjJMYN8CM\nLJM2m80YDIYxj1VVVdmuKiGG6bRqVswNYcXcEOlyncJSZwWy71Q1xwsaWFVhJiHcj5Vh6eytOMAn\nFQe5KWq1vUuc0opbSqnprGO+/xwM2s92Qc8paqSv30LarMAp22M5Mg+ms1GPQqMg31TEukjZSNUZ\njPvXVaVSyYMPPsijjz7KY489RkBAAIsWLaKoqIjf/va3k1WjEGKKUyoUfGPt0PD0f39czKDFwo2R\nq/HUePBR+aeYe1rsXOHUtm/41OmMsLE7rI8cHbBkimxe90UiAj3QalSUVPQQ7hlKaetFugd67F2W\nuALjBpj/+q//4u9//zvHjh3jxz/+MY899hhbt27lyJEj7Ny5c7JqFEJMA1FBXqQnB1HV2MGB0zW4\nqbVsiL6JPks/b5W+b+/ypqym7mbONZ0nwjOMKK/w0eumth4Kys3EhXrjr3ezY4W2pVIqiQ/TU2/q\nIsojGovVQpG51N5liSvwlT0wMTFDWyuvXr2a6upq7r33Xp577jkCAgImpUAhxPSxMSMGN1cVbx68\nQEd3P4uD5hPuGcqJ+tOUtly0d3lT0oGqLKxYWRmWPmaYKDuvDitT5+iA8SSEDw2bufYOvdd8U5E9\nyxFXaNwA8/kxz6CgINauXWvTgoQQ05e3u4Zbl0bR2TPAm4cuoFQo2RS/AYCdxW9jsVrsXOHU0jPQ\nQ1bNcbw1nmNWe1mtVrLz6lGrlCxMtM92GZNpZB5MU60bWpWW/OZCO1ckrsRVLdmYqpO4hBCOY/X8\nUAKNOvafqqayoYNo7wgWBsyjsr2aI7VfvnmmuHpHak/SM9jDspA01MrP1nSU17dT09TJ3DhfdNqp\nvwIsPMADN1cVxRWtJBhjaeox0dDV9NXfKOxq3ABz6tQpMjIyRv8Z+XrFihVkZGRMUolCiOlErVLy\n9TVxWK3wysdFWK1Wbou9GY1Kw+7SD+ke6LZ3iVOCxWrhQFUmaqWa9JDFYx4bmbw7HYaPYGgeTFyo\nnnpzN5G6aADOm6QXxtGNu4z6ww8/nKw6hBBiVHK0D3NjfTld0sSJwkYWJvqzLmIV71z4kA/KPuGO\nuPX2LtHpnW8upKG7idSghXhqPEavDwxaOHq+Hk+dC7Oirv3wXmeTGG7gbGkzis6hIbP85iIyQpfa\nuSoxnnEDTEhIyGTVIYQQY2xeHUtuWTM7Pi1mdowPq8OWkVVzjH1Vh1kavIgA96k/N8OW9lUeBmDl\n55ZO55aZaO/qZ8380Gm1MWRixNBE3urqQQIMfhS1lDJgGRgztCYcy/T50ymEcCoBBh03LAzH1NbL\nB0fKcVG5cEfceixWC6+XvGvv8pxaTUcdBeZi4vTRlx2YOXJ0QOo0GT4aEe7viZurmoLyFpKM8fQN\n9nGh9aK9yxLjkAAjhHBY69Mi0Hto+OBoBU0t3czxnUm8IZa85gJym/LtXZ7T2l81tHHd53tfunr6\nOVXcRJCPjsjALz9EbypSKhUkhOlpaOkmTBsFwPlmWU7tyCTACCEcllajZtPKWPoHLOzYV4JCoWBT\n3K0oUPB6yTsMWMY/dVxcrrO/i2N1OfhojST7zhjz2PGCBgYGp/bRAeMZ2Q+mr1WPWqmWibwOTgKM\nEMKhLZkRQGyINycLG8m/aCLYI5BlIak0dDVxoCrL3uU5ncyao/Rb+skITUOpGPsRkJ1bhwJInYIn\nT1+Jkf1gSio7ifWOorqjltZeOX/NUUmAEUI4NIVCwZa1cSiAVz4ZOidpffQNuKt1vF+2l7Y++YC5\nUoOWQQ5UZeGq0pAavHDMYw0t3RRVtZIYYcDopbVThfYV5u+BzlVNYYWZJJ+hs7kKZFdehyUBRgjh\n8CIDvVg2J4jqxk72n6rB3UXHLdE30DPYwzule+xdntM43ZhLS28rS4IW4KYee77RkWm298sXUSoV\nxIfpaWzpIVgTCch+MI5MAowQwincsTwGN1c1bx68QHtXH+nBiwl2DyS79jgVbVX2Ls8p7K8aWjq9\n4nP7m1itVrLy6tColaTE+9mjNIeRGDE0jGRqcMFb40WBqViOsHBQEmCEEE7By13DhvQounoHePNQ\nGSqlijvjbsWKlZ3Fu7FarfYu0aGVt1VyobWcmT6JBOjGhpTSmjYazN2kJPjh5jq99z1JHJ7IW1TZ\nSpJPPB39nVS2V9u5KvFFJMAIIZzGqpQQgnx0HDhVTXldOwnGWOb6zeJC60VO1p+2d3kObV/lFy+d\nhul3dMB4Qv09cNeqKagwM8M4NA9GTqd2TBJghBBOQ61SsmVNPFbglb1D5yTdHrsetVLNm6Xv0zvY\nZ+8SHVJrbxs5DWcIdA8g0RA35rH+AQvH8+vx9tAwI2L6HB3wZZSKoXkwTa09+KnCUKCQ/WAclAQY\nIYRTmRllZF6cL8VVrRzLb8DXzciasOW09Lbycfk+e5fnkA5VZzNoHSQjdOll+7ucLW2is2eA1BmB\nKJXTb++XLzKynLqipo9wr1DK2srpHuixc1Xi8yTACCGczubVcahVSl7bV0Jv3yBrI1birfFib8UB\nmrtN9i7PofQP9nOo+gg6tRuLA1Mue1yGjy43sqFd4fAwksVqochcYueqxOdJgBFCOB1/vRs3Lg7D\n3N7Le0fK0apduS32ZvotA7xZ8p69y3MoJxrO0NHfydLgxWhUmjGPtXf1cba0mTB/D0L9Pb7kDtPP\nZ/NgWkgyJgBDp3cLxyIBRgjhlG5ZEonB05UPj1bQ0NLNwoB5RHlFcKrxHEXmUnuX5xCsViv7Kw+j\nVChZHpp62ePH8hsYtFil9+VzlAoFCeEGmtt6cLf64qbWkm8qkpVuDkYCjBDCKblqVGxaGcPAoIXX\nPh0+Jyn+VgB2Fe9m0DJo5wrtL7+xmKqOGub4zcKoNVz2eHZeHQoFLJ4RYIfqHNvIcuriyjYSDHE0\n95hp6G6yc1XiUhJghBBOa3FSAHGh3uQUNZJXZiLCK4wlQQuo7qglq/aYvcuzu/eLhiY1rwy9fOl0\nbXMnF2ramBllRO/hOtmlObyRibwF5S2fLaeW1UgORQKMEMJpKRQKvrE2HoViaFn1wKCFW6NvQqty\n5Z0Le+jq77J3iXbT3G3ieM0Zwj1DiPaOuOzx7DyZvDueYD93PNxcKKw0k2gcWnqeL8cKOBQJMEII\npxYe4MmKOcHUNnexL6cab1dPboxcTWd/F++VfWzv8uyiva+Dt0s/wGq1sjJs2WVLpy1WK9m59Wg1\nKubFTe+jA77M0DwYPaa2XgZ73QjQ+VNkLqXfMmDv0sQwCTBCCKd3+/JodK5q3jpcRltXHyvD0vF3\n8+VgdTY1HXX2Lm/SVLZXs/38azyS9QtONpwhyMOfFP/Zlz2vuLKF5rYeFiT44+qiskOlzuGzYSQz\nM3zi6bP0U9pSZueqxAgJMEIIp+ep03Dbsii6ewd448AF1Eo1d8Stx2K18HrxO1N69cigZZCchrP8\n58nf88vj/48jdScwavVsit/AL2/4D9TKy882ypS9X65I4iX7wYwsp5ZjBRzH9D61SwgxZaxMCeHA\n6RoOnakhY14wswKSmGFM4LypkLNN55njN9PeJU6ojr5OMmuOcrA6m5beVgBm+CSQEZpOkjEOpUKJ\nm4uWDvrHfF9f/yAnChrw8XIlfvgDWnyxYN+heTAFFS3ce9MC1Eo1+aYibucWe5cmkB4YIcQUoVIq\n2bImbuicpI+LAdgY9zWUCiVvFL9D/2D/+DdwElXtNfx3/k4eyfo5uy98SPdANytCl/LY4h/xwJz7\nmOmTgFLx5b/aTxU30dM3yJKZgSgVcnTAeBQKBYnhesztvbS0DxLrHUV1Ry2tvW32Lk0gPTBCiCkk\nKdLI/AQ/ThY2cuR8PakzA8kIXcqnlYfYV3mYGyJX2rvEazJoGeRc03n2V2VS3HIBAF83HzJCl7Ik\naAFuau0V30uODrg6iREGThQ2UljRQpJPPAXmYvJNRSwJWmDv0qY9CTBCiCll88pYzpY2s3NfCfPi\nfLkpcg3H6nL4oPwTFgWloHf1tneJV6yzv4usmmMcqMrC3NsCQJIxnozQpcz4ip6WL9La0UtemYmo\nIE+CfNxtUfKUk3DJRN71MQm8yXucby6UAOMAJMAIIaYUX70bNy0OZ3fmRd7LLmfjihhujb6RVwpf\nZ3fph9w7Y7O9S/xK1R21HKjK5FjdKfot/WhUGpaHpLIiNI1A92vfNffo+XosVitps4ImsNqpLdhH\nh5fOhYIKM/+iS0Lv6k2BuRiL1XLVAVJMLAkwQogp56YlERw+V8ueYxWkzw4iNXghh6qzOVp3kmUh\nqUR5h9u7xMtYrJahYaLKTIpahs5y8tEayQhNY0nQQnQubtf9Glm5daiUChYl+V/3vaYLxfC5SMcL\nGmhs6SHJGE927XEq26uJ8Aqzd3nTmsRHIcSU4+qi4q6VsQwMWtnxSQlKhZI74zcAsLP4bSxWi50r\n/ExXfxd7Kw7wRPY2Xjj3D4paSkkwxPLt2d/kidT/w6rw5RMSXqoaOqho6CA52gdPnearv0GMGllO\nnV9hJmn4WIHzcqyA3UkPjBBiSlqY6M++nGpOlzSRe6GZWdFRzPefw8mGMxyry7H7HIbaznr2V2Vy\nrPYkfZZ+XJQupAcvZkXoUoI9Jn6CbZYcHXDNEiOG5sEUVrRwz8w4FCjINxVyU9RqO1c2vUmAEUJM\nSQqFgi1r43nib8d4ZW8x//c+A7fH3sLZpvO8XfoBc/1mob2K1TsTwWK1kNdcwP7KTArMQ0u9jVoD\nK0LTSA1aiLuLzjava7FyJK8OnauaObG+NnmNqSzQqMPLXUNBuRmdegaRXmGUtVXQPdCNm/r6e8fE\ntZEAI4SYssL8PciYF8K+nGo+OVnFukXh3BCRwXtlH/PhxU+5LfbmSamjq7+bI7XHOVCVRVOPCYB4\nfQwZYUtJ9p1h88mg+eVmWjr6yJgbjItaZg5crZH9YI7lN1Bn6iLJGE9ZWwWFphLm+ifbu7xpy6Z/\nkouKilizZg0vv/wyAA899BBf+9rX2Lp1K1u3bmX//v0A7N69m40bN7Jp0yZ27txpy5KEENPM7cui\ncdeq2Z1ZRmtnH2vCV2Bw1bOv8hANXU02fe26zgZ2FL7JT7N+zusl79La18bS4EU8vOiH/FvK/2aO\n36xJWcmSlVsLIKuPrsPIuUhD+8EMHStwXo4VsCub9cB0dXXx5JNPkpqaOub6v//7v7Ny5coxz3v+\n+efZtWsXLi4u3Hnnnaxduxa9Xra4FkJcPw83F25fHs3LHxXx+oFS/tfNSdwRt56/5L7MGyXv8u3Z\n35zQ17NYLZxvLmR/VebouTkGVz03Ra4mLXgRHi6Tu/9KT98AJ4sa8de7ERPiNamvPZUkDE/kLagw\ns2xOEm5qN/JNRVit1stO+xaTw2YBRqPR8OKLL/Liiy+O+7wzZ86QnJyMp6cnACkpKeTk5LBq1Spb\nlSaEmGZWzA1m/6kaDp+tZeW8EOYFJhOnj+Zc03nym4tI8om/7tfoHujhSO0JDlRl0tjdDECsPoqM\n0HRm+85ApbTPqc8nCxvp67eQOitQPmivQ6BRh7eHhoKKFpQKJYmGWE41nqOhq5EAd1mWbg8267tU\nq9VotZdPkHv55Ze59957+eEPf4jJZKKpqQmj0Tj6uNFopLGx0VZlCSGmIZVSyTfWxgHwysdFWIGN\ncbeiQMGu4t0MWgav+d71XY28VvQ2P818il3FuzH3tpIatJCHFv6AH6Z8h3n+yXYLL/DZ0QGpsvro\nugzNgzHQ1tlHbXPXaOiVYST7mdRJvBs2bECv15OUlMQLL7zAc889x7x588Y850qOvTcYdKjVtvuF\n4OfnabN7i+sjbeOYnKFd/Pw8ycyr5/CZGvIqWli1IIHVpnT2lh4ipzWHm+OvvNfXYrVwti6fD4r3\ncao2DwCjm547Ym9idUw6Xq4etnobV6WppZuCCjNJkUZmxkkvwfVaMCOQo+frqTZ3kz43hVcKXqe0\no5S7/G66pvs5w8+NI5vUAHPpfJhVq1bxxBNPsG7dOpqaPptI19DQwNy5c8e9j9ncZbMa/fw8aWxs\nt9n9xbWTtnFMztQuG9IiOZZXx1935xEb6MmaoJVklp9gx7l3SXRPwlMzfvDoGejhSN1JDlRljk4A\njvGOJCMsnTm+M1EpVfS2WWnEMf5/HDhXh9UKCxP9nKaNHFmocWjJ9Im8OhbG+RLoHkBufRE1dSZc\nVC5XdS9n+rmxp/FC3qSup/ve975HZWUlAEePHiUuLo45c+Zw7tw52tra6OzsJCcnhwUL5JAsIcTE\n8/HWcvOSCFo7+3g36yKeGg9uiVpL90A375Z99KXf19DVxK7i3fw08xfsLHobU7eZxYHz+cnC7/Pv\n8+8nxX+2XYeJMrn+JAAAHKpJREFUvojVauXTE5WoVUoWJkrvy0TwN7ih99BQWGHGarUywxhPv6Wf\n0taL9i5tWrJZD0xubi7btm2juroatVrNnj17uOeee/jBD36Am5sbOp2Op59+Gq1Wy4MPPsh9992H\nQqHggQceGJ3QK4QQE+3GxeEcOlvLR8crWTYnmOUhqRyuPkJm9VGWBS8h1DMYGAoABeZi9ldmktdc\ngBUr3hpP1oSvID1k8Vf21thbRX0HlfXtLEjww117db0D4ospFAoSIwwcyaunpnloP5hPKw9x3lRI\nojHO3uVNOzYLMLNmzWL79u2XXV+3bt1l12688UZuvPFGW5UihBCjNC4qNq+K5fdv5fLqJ8X8YNMc\n7oy7lefO/Jldxbv59ux/5lhdDgeqMqnragAgyiuCjLClzPWbhVrpmPt/Wq1W2rv7qWvuos7UxdHz\n9YDs/TLREsOHAkxhhZn0OdG4KNXkNxdBrL0rm34c8ydRCCFsaH6CH0kRBs6WNnO2tInZMfEk+87g\nXNN5/uPw/6XP0o9KoWJRYAoZoUsd6tThgUELjS3d1Jm6qGvuonY4sNQ2d9LZMzDmuX4GN2ZFG7/k\nTuJajO4HU25mVUoosfpo8k1FtPS2onf1tnN104sEGCHEtKNQKPj6mjie+Otx/mdvMTMijdwRu54i\ncwmuKlfWhmSwNHgJ3q72G87u7OkfCifNXdSaOkd7VhrM3Qxaxq7WVCoU+BvciAvVE+SjI9BHR5DR\nnbkzAulo67bTO5ia/PVuGDxdKahoGZ0Hk28qIr+5iNTghfYub1qRACOEmJZC/TxYmRLCJyer+PhE\nJTctjuCptJ+iUblM2jCRxWKlqbX7kl6ULuqaO6kzddHW1X/Z83WuaiKDPAk06gjycSfIOBRW/PRu\nqFWXr8lwc1XTMRlvZBoZORcpO6+e6qbOoWMFSt4l3yQBZrJJgBFCTFu3LYvi6Pl6dmdeJHVmIHoP\n25ws3N07MDrM81lQ6aLe3MXA4NjeFIUC/LzdiAzyGg4qQ2El0KjDU+ciu+k6gIRwA9l59RRWtLAq\nJQS9qzcFpmIsVsuknG0lhkiAEUJMW+5aF+5YHs0/9hTy+v5S7ls/45rvZbFaMbX1XDYvpdbURWtH\n32XP12pUhPl7EGh0Hx7yGQor/gadnBjt4BIjhg52LKgws3p+KDOM8WTVHqe8rYoo73A7Vzd9SIAR\nQkxry+cEs/9UNZm5dWSkhBATPP5EzN6+waFwcsm8lNrmLupNXfQNWC57vo+XlllRxtGQEujjTpCP\nDm93jfSmOCk/by1GL1cKK1qwWK0k+SSQVXucfFOhBJhJJAFGCDGtKZUKtqyN55f/ncMrHxfx03sX\noADM7b1jhnvqTEO9Kaa23svuoXFRDgWUS+alBBp1BBh1uLo41gZ34vqNnIuUlVtHTWMniYZYFCjI\nNxVxc9Rae5c3bUiAEUJMe/FhehbPCODo+Xoe/fNRTO299PZdfsCjwdOVpAjDmHkpQT469J6uKKU3\nZVpJCNeTlVtHfoWZtf5hRHqFc7Gtkq7+bnQutplLJcaSACOEEMCmjBhyLzTT2NJDoFE3Zl5KoI+O\nAIMON1f5lSmGJIYPzYMprGhh7YIwknziKWsrp9Bcwjz/ZDtXNz3IT6MQQgBGLy3/9b10lAoFSqX0\npojx+end8PHSUlhhxjK8H8z7ZR+TbyqUADNJZKq7EEIMU6uUEl7EFUsM19PZM0BVQwcRXmHo1G6c\nby7CarV+9TeL6yYBRgghhLgGI8upCytaUCqUJBrjMPe2UD98hpawLQkwQgghxDVICBs+F6nCDECS\nMQGA86Yiu9U0nUiAEUIIIa6Br94NX28tRZXD+8EY4wCGTqcWNicBRgghhLhGieGG0XkwBq2eIPcA\nilsu0Dd4+VlWYmJJgBFCCCGuUUL48DBS+cgwUjz9ln5KW8rsWda0IAFGCCGEuEYj+8EUVLQAMMNn\nZB5Mod1qmi4kwAghhBDXyMdbi59+eB6MxUqsdxQuShfyZSKvzUmAEUIIIa5DQriBrt4BKhs6cFG5\nEKePprazHnNPi71Lm9IkwAghhBDXIWl0GGl4HoxPPAD5pmK71TQdSIARQgghrsPnJ/LOMA4FGJkH\nY1sSYIQQQojrYPTS4q93o6hqaB5MgM4fg6ueQlMxFqvF3uVNWRJghBBCiOuUGKGnu3eQioZ2FAoF\nM3zi6Rropryt0t6lTVkSYIQQQojrlDAyD6Z8aOKuHCtgexJghBBCiOuU+LmJvAmGWJQKpRwrYEMS\nYIQQQojrZPB0JcDgRlFlC4MWCzoXNyK9wrjYVkFXf5e9y5uSJMAIIYQQEyAh3EBP3yAV9R3A0LEC\nVqwUmEvsXNnUJAFGCCGEmACJEcPLqYeHkUaOFchvluXUtiABRgghhJgACWFjJ/KGe4birtZx3lSE\n1Wq1Z2lTkgQYIYQQYgIYPF0JMOooqhqaB6NUKEk0xtHS20pdV4O9y5tyJMAIIYQQEyQpXE9v3yDl\ndZ/NgwE4L8NIE04CjBBCCDFBEr70XCRZTj3RJMAIIYQQEyQxfOxEXr2rN8HugZS0XKBvsN+epU05\nEmCEEEKICeLt4UqQj47iylYGBofOQUryiaffMkBJywU7Vze1SIARQgghJlBCuIHe/kHK69oBmDF8\nrIAMI00sCTBCCCHEBPr8MFKMdyQuSheZyDvBJMAIIYQQE+izibxD+8G4qFyIM0RT19WAuafFnqVN\nKRJghBBCiAnk7a4h2Ned4qqW0XkwM0ZPp5ZemIkiAUYIIYSYYAnhevr6LVysHZkHM7ycWk6nnjAS\nYIQQQogJlvi5/WD8dX4YtQYKzCUMWgbtWdqUIQFGCCGEmGAJYUMTeQuHA4xCoSDJGE/3QDfl7VX2\nLG3KkAAjhBBCTDAvdw0hvu4UV7deMg9GjhWYSDYNMEVFRaxZs4aXX355zPVDhw6RkJAw+vXu3bvZ\nuHEjmzZtYufOnbYsSQghhJgUI/Ngymrbhr42xqJUKGU/mAliswDT1dXFk08+SWpq6pjrvb29vPDC\nC/j5+Y0+7/nnn+fvf/8727dv56WXXqKlRZaZCSGEcG6Jn1tO7aZ2I8ornPK2Sjp6O+1Z2pRgswCj\n0Wh48cUX8ff3H3P9j3/8I1u2bEGj0QBw5swZkpOT8fT0RKvVkpKSQk5Ojq3KEkIIISZFwsiGduXm\n0WtJxgSsWDlbn2+vsqYMtc1urFajVo+9fVlZGQUFBfzbv/0bv/rVrwBoamrCaDSOPsdoNNLY2Dju\nvQ0GHWq1auKLHubn52mze4vrI23jmKRdHJe0jf34AZFBXpTWtKE36HBRq0hXzePdsj384dh2lkUs\nYl3cCiL0ofYu1SnZLMB8kaeffppHHnlk3OdYrdavvI/Z3DVRJV3Gz8+TxsZ2m91fXDtpG8ck7eK4\npG3sLybYi4u1bRw7W0N8mB5PjGyOv51Pqw6w98Jh9l44TIx3JMtD05jrNwu1clI/lh3eeAF80v5P\n1dfXc+HCBX70ox8B0NDQwD333MP3vvc9mpqaRp/X0NDA3LlzJ6ssIYQQwmYSw/V8crKKggoz8cNL\nq5eHpnL7nDXsKzjGweps8k1FlLZexFPjQXrwYpYGL8ag1du5csc3aQEmICCAvXv3jn69atUqXn75\nZXp6enjkkUdoa2tDpVKRk5PDww8/PFllCSGEEDYzci5SYUULLP3sulKpZLbfTGb7zaShq5FD1UfI\nrj3BBxc/YU/5Pmb7zmRFaCpx+hgUCoWdqndsNgswubm5bNu2jerqatRqNXv27OHZZ59Frx+bKrVa\nLQ8++CD33XcfCoWCBx54AE9PGbMVQgjh/DzcXAj186CkupX+AQsu6svXzvjr/NgY9zXWR6/jRP0p\nDlZlc7rxHKcbzxHoHsDykFQWBabgptba4R04LoX1SiadOBhbjunKmLHjkrZxTNIujkvaxjG8sreI\nvSeq+MmWeaM9MuO1jdVqpaytnANVWZxqOMegdRBXlYbFgfNZFpJKsEfgZJZvVw4xB0YIIYSYjhLD\nDew9UUVBRctogBmPQqEg2juSaO9INsa1k1VzjEPVRzhYnc3B6mzi9NEsD01jju9MVErbrch1dBJg\nhBBCCBuKD9OjYORcpKir+l4vjSc3Rq5mbXgG55rzOViVRaG5hOKWC3hrvFgaspj04MV4u3rZpHZH\nJgFGCCGEsCEPNxfC/D0oqW6jf2AQl2vYx0ylVDHXbxZz/WZR19nAwepsjtae5P2yj/nw4ifM9ZvF\n8pA0YvVR02bSrwQYIYQQwsYSwg1UNHRQWt1GYsRXDyONJ9Ddn7viN3Br9I0cr8/hYFU2OQ1nyWk4\nS7B7IMtDU1kYkIJW7TpB1TsmCTBCCCGEjSWG6/n4RCUFFebrDjAjtGpXloWkkh68hJKWMg5WZ3G6\nMZdXC9/krZIPWBw0n+UhqQS6+3/1zZyQBBghhBDCxuLDh+bBjBzsOJEUCgVxhmjiDNG09LaSWXOM\nzOojHKjK5EBVJgmGWJaHppHskzSlJv1KgBFCCCFszF3rQliABxdqWunrH7TZ6+hdvbklai03Rqzi\nTFPe6KTfQnMJBlc96SFDO/16ajxsVsNkkQAjhBBCTILEcAMV9R2U1rQREmzbowJUShUp/rNJ8Z9N\nTUcdB6uzOVZ3kncu7OH9sr3M809mRWgaUV4RTjvpVwKMEEIIMQkSww18dLySgnIzyxeET9rrBnsE\ncnfC7WyIuYmjdSc5WJXNifrTnKg/TahH8PCk33loVJpJq2kiSIARQgghJkF8mDcKxch+MJPPTa0l\nI3QpK0LSKDKXcrA6i7NN53ml4HXeLHmf1KAFLAtJxV/na5f6rpYEGCGEEGIS6LQuhAd4cqG2jZ6+\nAbvVoVAoSDDGkmCMxdzTwuGao2TWHOXTykN8WnmIJGM8K0LTmOmTiFJx+dlNjkICjBBCCDFJEsP1\nlNe1U3jRTLDB/oczGrR6vha9jpsiV3O64RwHqrPJNxWRbyrCR2sgPWQJaUGL8NC427vUy6ieeOKJ\nJ+xdxNXq6uqz2b3d3V1ten9x7aRtHJO0i+OStnE8g4NWjp6vp62rj5hgL9xcHaMfQalQEuwRRFrw\nQub4zsSKhbLWCs6bCtlflUljVxPerl7oXb0ntS539y/fjE9Oo/4cOb3VcUnbOCZpF8clbeN4evsH\n+fk/TlLV2IFapSRjbjA3p0ag93C8XXO7+ruHJv1WZ9HQ1QRAuGcoy0PTmO8/B43KxeY1jHcatQSY\nz5EfeMclbeOYpF0cl7SNYxq0WMgtb+G/PyygqbUHF7WSlfNCuGlJBN7ujrcSyGK1UGgu4WBVNuea\nzmPFirtaR2rwQpaFpOLrZrTZa0uAuQryA++4pG0ck7SL45K2cVx+fp7U1rWSea6Wd7IuYmrrReOi\nZHVKKDcuDsdT53hBBqC528zhmiNk1Ryjo78TBQqWh6ZxV/wGm7yeBJirID/wjkvaxjFJuzguaRvH\ndWnb9A9YOHy2hnezyzG39+LqomLNglDWLQrHw832wzTXot8ywKmGsxyuPoJBq+efZ26xyetIgLkK\n8gPvuKRtHJO0i+OStnFcX9Q2/QODHDhdw3vZ5bR29qHVqFi7IIx1i8LQaR0zyNjaeAHGMaY/CyGE\nENOci1rFmgVhLJ8TzP5T1bx/pJx3si6y92QV6xaFsXZBmMOsWnIE8n9CCCGEcCAaFxU3LApnxdwQ\nPj1VxQdHKnjrUBkfH69k3aJwVs8PlSCDBBghhBDCIblqVNy0OIKMuSF8mlPFh0creOPgBT46XslN\ni8NZlRKKq0Zl7zLtxnH3CBZCCCEEbq5qbkmN5JnvpHH7sigsFis795fykz9msedYBb39g/Yu0S4k\nwAghhBBOwM1VzdeWRvHMd1K5dWkkfQMWdnxawkN/zObjE5X0D0yvICMBRgghhHAiOq0Lty2L5pnv\npHFLagQ9fYP8z95iHvrTET7NqaJ/wGLvEieFBBghhBDCCXm4ubBxRQzPfCeVm5aE09nTz8sfFfEf\nL2Sz/3Q1A4NTO8hIgBFCCCGcmKdOw6aMWJ75dhrrFoXR3tXPPz4s5OEXjnDoTM2UDTISYIQQQogp\nwMtdw+ZVcWz7diprFoTS0tHH3z4o4JEXj5J5rpZBy9QKMhJghBBCiClE7+HKljXxbPt2KqtSQmhu\n6+Ev7+XzyJ+PcSSvDovF6Tbg/0ISYIQQQogpyODpyj03JPDL/51Kxtxgmlq6eeGd8zz6l6Mcy6/H\n4nwnCY0hAUYIIYSYwny8tdx7YyJP/+sSls0Oot7UzR/fzuPxvx7jZGGD0wYZ2YlXCCGEmAZ89W78\n881J3JIawTuZF8nKq+P5N3MJ9/dgw7Io5sb6olAo7F3mFZMAI4QQQkwj/gYd962fwS1pkezOLONo\nXj3Pvn6OiEBPbl8WRXK0j1MEGQkwQgghxDQUaNTxr1+byS2pkbyTWcbx/AZ+u/Ms0cFe3JYexcwo\no0MHGQkwQgghxDQW4uvOtzfMYn1qB29nlnGysJH/fO0MsSHe3LYsiqQIg0MGGQkwQgghhCDU34MH\nbk+mor6dtw+Xcaq4iV+/epr4MD23L4siIdxg7xLHkAAjhBBCiFHhAZ58b+NsLta18dahMs6WNrPt\nlVMkRRi4bVkUcaF6e5cISIARQgghxBeIDPTiB5vmUFrTytuHysgtM5FfbmZmlJHb0qOICfG2a30S\nYIQQQgjxpWKCvfn3zXMpqWrlrcMXyCszkVdmYnaMDxvSo4gK8rJLXRJghBBCCPGVYkO9+dHd8yis\nMI8OLZ0tbWZVSgj33JAw6fVIgBFCCCHEFUsIN/B/tugpKDfzTtZFOrr77VKHBBghhBBCXBWFQkFS\npJGkSKPdarDpWUhFRUWsWbOGl19+GYBTp07x9a9/na1bt3LfffdhMpkA2L17Nxs3bmTTpk3s3LnT\nliUJIYQQYgqwWYDp6uriySefJDU1dfTa3/72N5555hm2b9/OvHnzeO211+jq6uL555/n73//O9u3\nb+ell16ipaXFVmUJIYQQYgqwWYDRaDS8+OKL+Pv7j1773e9+R1hYGFarlfr6egIDAzlz5gzJycl4\nenqi1WpJSUkhJyfHVmUJIYQQYgqw2RwYtVqNWn357Q8ePMjPf/5zoqOjufXWW3nvvfcwGj8bQzMa\njTQ2No57b4NBh1qtmvCaR/j5edrs3uL6SNs4JmkXxyVt47ikba7PpE/iXb58OcuWLePXv/41L7zw\nAiEhIWMet1qtX3kPs7nLVuXh5+dJY2O7ze4vrp20jWOSdnFc0jaOS9rmyowX8mw6iffzPv74Y2Bo\n9vK6des4efIk/v7+NDU1jT6noaFhzLCTEEIIIcTnTWqAefbZZ8nPzwfgzJkzREVFMWfOHM6dO0db\nWxudnZ3k5OSwYMGCySxLCCGEEE7GZkNIubm5bNu2jerqatRqNXv27OGpp57iZz/7GSqVCq1WyzPP\nPINWq+XBBx/kvvvuQ6FQ8MADD+DpKeOCQgghhPhyCuuVTDpxMLYcN5RxScclbeOYpF0cl7SN45K2\nuTIOMwdGCCGEEGIiSIARQgghhNORACOEEEIIpyMBRgghhBBOxykn8QohhBBiepMeGCGEEEI4HQkw\nQgghhHA6EmCEEEII4XQkwAghhBDC6UiAEUIIIYTTkQAjhBBCCKcjAeYSv/jFL9i8eTN33303Z8+e\ntXc54hLPPPMMmzdvZuPGjXz00Uf2LkdcoqenhzVr1vDGG2/YuxRxid27d3Prrbdyxx13sH//fnuX\nI4DOzk6++93vsnXrVu6++24OHTpk75Kcms1Oo3Y2x44do7y8nB07dlBaWsrDDz/Mjh077F2WAI4c\nOUJxcTE7duzAbDZz++23c8MNN9i7LDHsD3/4A97e3vYuQ1zCbDbz/PPP8/rrr9PV1cWzzz5LRkaG\nvcua9t58802ioqJ48MEHqa+v55/+6Z/48MMP7V2W05IAMyw7O5s1a9YAEBMTQ2trKx0dHXh4eNi5\nMrFw4UJmz54NgJeXF93d3QwODqJSqexcmSgtLaWkpEQ+HB1MdnY2qampeHh44OHhwZNPPmnvkgRg\nMBgoLCwEoK2tDYPBYOeKnJsMIQ1ramoa84fJaDTS2Nhox4rECJVKhU6nA2DXrl0sX75cwouD2LZt\nGw899JC9yxCfU1VVRU9PD9/+9rfZsmUL2dnZ9i5JALfccgs1NTWsXbuWe+65h5/85Cf2LsmpSQ/M\nl5ATFhzP3r172bVrF3/961/tXYoA3nrrLebOnUtYWJi9SxFfoKWlheeee46amhruvfde9u3bh0Kh\nsHdZ09rbb79NcHAwf/nLXygoKODhhx+WuWPXQQLMMH9/f5qamka/bmhowM/Pz44ViUsdOnSIP/7x\nj/z5z3/G09PT3uUIYP/+/VRWVrJ//37q6urQaDQEBgaSlpZm79KmPR8fH+bNm4darSY8PBx3d3dM\nJhM+Pj72Lm1ay8nJIT09HYDExEQaGhpkOPw6yBDSsKVLl7Jnzx4A8vLy8Pf3l/kvDqK9vZ1nnnmG\nP/3pT+j1enuXI4b99re/5fXXX+e1115j06ZN3H///RJeHER6ejpHjhzBYrFgNpvp6uqS+RYOICIi\ngjNnzgBQXV2Nu7u7hJfrID0ww1JSUpg5cyZ33303CoWCxx9/3N4liWHvv/8+ZrOZH/zgB6PXtm3b\nRnBwsB2rEsJxBQQEsG7dOu666y4AHnnkEZRK+fuqvW3evJmHH36Ye+65h4GBAZ544gl7l+TUFFaZ\n7CGEEEIIJyORXAghhBBORwKMEEIIIZyOBBghhBBCOB0JMEIIIYRwOhJghBBCCOF0JMAIIWyqqqqK\nWbNmsXXr1tFTeB988EHa2tqu+B5bt25lcHDwip//9a9/naNHj15LuUIIJyEBRghhc0ajke3bt7N9\n+3ZeffVV/P39+cMf/nDF3799+3bZ8EsIMYZsZCeEmHQLFy5kx44dFBQUsG3bNgYGBujv7+exxx5j\nxowZbN26lcTERPLz83nppZeYMWMGeXl59PX18eijj1JXV8fAwAAbNmxgy5YtdHd388Mf/hCz2UxE\nRAS9vb0A1NfX86Mf/QiAnp4eNm/ezJ133mnPty6EmCASYIQQk2pwcJCPP/6Y+fPn8+Mf/5jnn3+e\n8PDwyw630+l0vPzyy2O+d/v27Xh5efGb3/yGnp4ebr75ZpYtW0ZWVhZarZYdO3bQ0NDA6tWrAfjg\ngw+Ijo7mZz/7Gb29vezcuXPS368QwjYkwAghbM5kMrF161YALBYLCxYsYOPGjfzud7/jpz/96ejz\nOjo6sFgswNDxHp935swZ7rjjDgC0Wi2zZs0iLy+PoqIi5s+fDwwdzBodHQ3AsmXLeOWVV3jooYdY\nsWIFmzdvtun7FEJMHgkwQgibG5kDc6n29nZcXFwuuz7CxcXlsmsKhWLM11arFYVCgdVqHXPWz0gI\niomJ4b333uP48eN8+OGHvPTSS7z66qvX+3aEEA5AJvEKIezC09OT0NBQDhw4AEBZWRnPPffcuN8z\nZ84cDh06BEBXVxd5eXnMnDmTmJgYTp06BUBtbS1lZWUAvPPOO5w7d460tDQef/xxamtrGRgYsOG7\nEkJMFumBEULYzbZt23jqqad44YUXGBgY4KGHHhr3+Vu3buXRRx/lG9/4Bn19fdx///2EhoayYcMG\nPv30U7Zs2UJoaCjJyckAxMbG8vjjj6PRaLBarXzrW99CrZZfe0JMBXIatRBCCCGcjgwhCSGEEMLp\nSIARQgghhNORACOEEEIIpyMBRgghhBBORwKMEEIIIZyOBBghhBBCOB0JMEIIIYRwOhJghBBCCOF0\n/j8ZOfHywY2d3AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "O2q5RRCKqYaU", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution" + ] + }, + { + "metadata": { + "id": "j2Yd5VfrqcC3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**NOTE:** This selection of parameters is somewhat arbitrary. Here we've tried combinations that are increasingly complex, combined with training for longer, until the error falls below our objective (training is nondeterministic, so results may fluctuate a bit each time you run the solution). This may not be the best combination; others may attain an even lower RMSE. If your aim is to find the model that can attain the best error, then you'll want to use a more rigorous process, like a parameter search." + ] + }, + { + "metadata": { + "id": "IjkpSqmxqnSM", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "b74e840e-819f-4df4-bf1b-e2c890f58619" + }, + "cell_type": "code", + "source": [ + "dnn_regressor = train_nn_regression_model(\n", + " learning_rate=0.001,\n", + " steps=2000,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 162.33\n", + " period 01 : 159.35\n", + " period 02 : 156.65\n", + " period 03 : 152.98\n", + " period 04 : 148.63\n", + " period 05 : 144.46\n", + " period 06 : 138.59\n", + " period 07 : 131.69\n", + " period 08 : 119.71\n", + " period 09 : 119.24\n", + "Model training finished.\n", + "Final RMSE (on training data): 119.24\n", + "Final RMSE (on validation data): 120.68\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FWX6//H3Kem9Jychjd5CCgmE\n0EINTSyIirDoWnZt68+yq+7qqouNtezacMW173dtiAVpgvQWCIEAIaGENNJ7r+fM7w/WKCXhHEjC\nhNyv6/K6OGVmnsnnGXNn5pl5NIqiKAghhBBC9CDaK90AIYQQQghLSQEjhBBCiB5HChghhBBC9DhS\nwAghhBCix5ECRgghhBA9jhQwQgghhOhx9Fe6AUKo2cCBAwkMDESn0wFgNBqJjo7mySefxN7e/pLX\n++WXXzJ//vzz3l+5ciVPPPEE//rXv4iPj297v7GxkTFjxjBt2jReeumlS96uuXJycnjhhRfIzMwE\nwM7Ojvvvv58pU6Z0+bYtsWzZMnJycs77mSQmJnLHHXcQEBBw3jLr1q3rruZdltOnTzN58mRCQkIA\nUBQFT09P/vKXvzBkyBCL1vXqq69iMBi45ZZbzF7mu+++Y8WKFXz66acWbUuI7iIFjBAX8emnn+Lr\n6wtAc3MzDz30EO+++y4PPfTQJa2vpKSEf//73xcsYAD8/Pz44YcfzipgNm/ejLOz8yVt71I8+uij\nzJ07l3/9618ApKSksHjxYtauXYufn1+3teNy+Pn59ZhipT06ne6sfVizZg333Xcf69evx9ra2uz1\nPPLII13RPCGuKLmEJIQFrK2tGTduHGlpaQA0NTXx17/+lenTpzNjxgxeeukljEYjAOnp6dx8880k\nJCQwd+5ctm/fDsDNN99Mfn4+CQkJNDc3n7eNyMhIEhMTaWhoaHtvzZo1xMXFtb1ubm7mueeeY/r0\n6UyaNKmt0AA4cOAA119/PQkJCcycOZNdu3YBZ/6iHzt2LJ988glz5sxh3LhxrFmz5oL7efz4cUaM\nGNH2esSIEaxfv76tkHvrrbeYMGEC1157LcuXL2fSpEkAPP744yxbtqxtuV+/vli7XnjhBRYuXAjA\n/v37ueGGG5g6dSrz588nNzcXOHMm6v/9v/9HfHw8CxcupLCw8CKJXdjKlSu5//77Wbx4MX//+99J\nTEzk5ptv5sEHH2z7Zb927Vpmz55NQkICv/nNb8jJyQHgzTff5Mknn2TevHl89NFHZ633wQcf5IMP\nPmh7nZaWxtixYzGZTPzjH/9g+vTpTJ8+nd/85jcUFRVZ3O6ZM2fS2NjIqVOnAPjiiy9ISEhg0qRJ\nPPzwwzQ2NgJnfu4vvvgic+bMYe3atWfl0F6/NJlM/O1vf2PixInMmzeP9PT0tu3u3buX6667jpkz\nZzJjxgzWrl1rcduF6HSKEKJdAwYMUAoKCtpeV1ZWKrfeequybNkyRVEU5d1331XuuusupaWlRWlo\naFBuuOEG5dtvv1WMRqMyY8YMZdWqVYqiKMqhQ4eU6OhopaamRtmzZ48yZcqUC27v66+/Vh577DHl\n0UcfbVu2pqZGmTx5svLVV18pjz32mKIoivLWW28pixcvVpqampS6ujrl2muvVTZt2qQoiqLMnj1b\n+eGHHxRFUZRvvvmmbVu5ubnKkCFDlE8//VRRFEVZs2aNMnXq1Au244EHHlDi4+OVjz/+WDl58uRZ\nnx07dkwZOXKkUlxcrLS0tCj33HOPEh8fryiKojz22GPK22+/3fbdX7/uqF1Dhw5VVq5c2ba/0dHR\nyo4dOxRFUZRVq1Yp1113naIoivKf//xHufXWW5WWlhalvLxciY+Pb/uZ/FpHP+Off87h4eFKZmZm\n2/eHDx+u7Nq1S1EURcnLy1OioqKUrKwsRVEU5f3331cWL16sKIqivPHGG8rYsWOVsrKy89a7evVq\n5dZbb217/frrrytLlixRjh8/rkybNk1pbm5WFEVRPvnkE+Wbb75pt30//1wGDx583vvR0dFKRkaG\nsm/fPiU2NlYpLCxUFEVRnnrqKeWll15SFOXMz33OnDlKY2Nj2+u33367w365ZcsWZdq0aUptba3S\n0NCgzJs3T1m4cKGiKIpy/fXXK4mJiYqiKEpmZqby8MMPd9h2IbqDnIER4iIWLVpEQkICkydPZvLk\nyYwePZq77roLgC1btjB//nz0ej22trbMmTOHnTt3cvr0aUpLS5k1axYAw4cPx2AwcPjwYbO2OWvW\nLH744QcANm7cSHx8PFrtL4fr5s2bWbBgAdbW1tjb2zN37lx+/PFHAL799ltmzJgBQFRUVNvZC4DW\n1lauv/56AIYOHUp+fv4Ft//yyy9z6623smrVKmbPns2kSZP47LPPgDNnR6Kjo/Hy8kKv1zN79myz\n9qmjdrW0tDB16tS29fv4+LSdcZo9ezY5OTnk5+eTlJTE1KlT0ev1uLm5nXWZ7VwFBQUkJCSc9d+v\nx8oEBwcTHBzc9trW1pbY2FgAdu7cyahRowgKCgLgxhtvJDExkdbWVuDMGSl3d/fztjlx4kSOHj1K\nZWUlABs2bCAhIQFnZ2fKy8tZtWoVVVVVLFq0iGuvvdasn9vPFEXhiy++wMfHh+DgYDZt2sTMmTPx\n8fEB4JZbbmnrAwCxsbHY2NictY6O+uW+ffuYMGECDg4O2NratmUF4OHhwbfffktGRgbBwcG8+uqr\nFrVdiK4gY2CEuIifx8CUl5e3Xf7Q688cOuXl5bi4uLR918XFhbKyMsrLy3FyckKj0bR99vMvMU9P\nz4tuMy4ujieffJLKykpWr17Nvffe2zagFqCmpoYXX3yR1157DThzSSksLAyAVatW8cknn1BXV4fJ\nZEL51XRnOp2ubfCxVqvFZDJdcPs2Njbccccd3HHHHVRXV7Nu3TpeeOEFAgICqKqqOms8joeHx0X3\nx5x2OTo6AlBdXU1ubi4JCQltn1tbW1NeXk5VVRVOTk5t7zs7O1NXV3fB7V1sDMyvczv3dUVFxVn7\n6OTkhKIoVFRUXHDZn9nb2zNmzBi2bNlCVFQU1dXVREVFodFoePPNN/nggw9YsmQJ0dHRPPvssxcd\nT2Q0Gtt+Doqi0K9fP5YtW4ZWq6WmpoYNGzawY8eOts9bWlra3T+gw35ZVVWFt7f3We//7IUXXuCd\nd97h9ttvx9bWlocffvisfIS4EqSAEcJM7u7uLFq0iJdffpl33nkHAE9Pz7a/tgEqKyvx9PTEw8OD\nqqoqFEVp+2VRWVlp9i97Kysr4uPj+fbbb8nOziYiIuKsAsbb25vf/va3552BKCoq4sknn+Srr75i\n8ODBZGVlMX36dIv2s7y8nLS0tLYzIM7OzsyfP5/t27dz/PhxnJycqKmpOev7Pzu3KKqqqrK4Xd7e\n3oSGhrJy5crzPnN2dm53253Jw8ODAwcOtL2uqqpCq9Xi5uZ20WWnT5/Ohg0bqKioYPr06W35jx49\nmtGjR1NfX8/SpUt55ZVXLnom49xBvL/m7e3Nddddx2OPPWbRfrXXLzv62Xp6evLUU0/x1FNPsWPH\nDh544AHGjRuHg4OD2dsWorPJJSQhLHD77bdz4MAB9u7dC5y5ZLBixQqMRiP19fV89913TJgwgYCA\nAHx9fdsGySYnJ1NaWkpYWBh6vZ76+vq2yxHtmTVrFu+9994Fb12ePHkyX331FUajEUVRWLZsGdu2\nbaO8vBx7e3tCQ0NpbW3liy++AGj3LMWFNDY28oc//KFtcCdAdnY2KSkpjBw5koiICJKSkigvL6e1\ntZVvv/227XteXl5tgz9zc3NJTk4GsKhdI0aMoKSkhJSUlLb1/PGPf0RRFMLDw9m0aRNGo5Hy8nK2\nbdtm9n5ZIi4ujqSkpLbLXJ9//jlxcXFtZ946Eh8fz4EDB9i4cWPbZZgdO3bw7LPPYjKZsLe3Z9Cg\nQWedBbkUkyZN4scff2wrNDZu3Mjy5cs7XKajfhkREcGOHTtoaGigoaGhrXBqaWlh0aJFFBcXA2cu\nPer1+rMuaQpxJcgZGCEs4OjoyN13383SpUtZsWIFixYtIjc3l1mzZqHRaEhISGDGjBloNBpee+01\nnn76ad566y3s7Ox4/fXXsbe3Z+DAgbi4uBAXF8c333yDwWC44LZiYmLQaDTMnDnzvM8WLFjA6dOn\nmTVrFoqiMGzYMBYvXoy9vT3jx49n+vTpeHh48Pjjj5OcnMyiRYt44403zNpHg8HAO++8wxtvvMFz\nzz2Hoig4OjryxBNPtN2ZdNNNN3Hdddfh5ubGtGnTOHHiBADz58/n/vvvZ9q0aQwZMqTtLMugQYPM\nbpetrS1vvPEGS5Ysoa6uDisrKx588EE0Gg3z588nKSmJKVOmYDAYmDJlyllnDX7t5zEw5/r73/9+\n0Z+Br68vzz33HPfeey8tLS0EBASwZMkSs35+jo6ODB06lGPHjhEeHg5AdHQ0q1evZvr06VhbW+Pu\n7s4LL7wAwJ/+9Ke2O4ksMXToUH7/+9+zaNEiTCYTHh4ePPvssx0u01G/jI+PZ8uWLSQkJODp6cmE\nCRNISkrCysqKefPmcdtttwFnzrI9+eST2NnZWdReITqbRvn1hWghhLBQUlISf/rTn9i0adOVbooQ\noheRc4BCCCGE6HGkgBFCCCFEjyOXkIQQQgjR48gZGCGEEEL0OFLACCGEEKLH6ZG3UZeUXPi2yc7g\n5mZPRUV9l61fXDrJRp0kF/WSbNRLsjGPl5dTu5/JGZhz6PW6K90E0Q7JRp0kF/WSbNRLsrl8UsAI\nIYQQoseRAkYIIYQQPY4UMEIIIYTocaSAEUIIIUSPIwWMEEIIIXocKWCEEEII0eNIASOEEEKIHkcK\nGCGEEOIqs2XLT2Z97/XXXyU/P6/dzx9//OHOalKnkwJGCCGEuIoUFOSzceN6s7774IOPYDD4t/v5\nSy+91lnN6nQ9cioBIYQQQlzYa68tJS0tlXHjopk2bQYFBfn885/LePHFv1FSUkxDQwO//e3dxMWN\n4/777+bhh//E5s0/UVdXS05ONnl5p/nDHx4hNjaOWbMms3r1T9x//91ER48iOTmJyspKli79B56e\nnvztb09RWFjA8OFhbNq0kW++WdNt+ykFjBBCCNFFvtx0kn3pxee9r9NpMBqVS1pn9CBv5k/q1+7n\nt9yyiJUrvyQkpC85OVksW/ZvKirKiYkZzYwZs8nLO81TTz1OXNy4s5YrLi7ilVfeYM+eXXz33dfE\nxsad9bmDgwOvv/4O77zzJtu2bcJgCKC5uYnlyz9i587tfPnlZ5e0P5dKCphfKWsoJ/N0Bv76Pljr\nrK90c4QQQojLMnjwUACcnJxJS0vl++9XotFoqa6uOu+7YWHhAHh7e1NbW3ve5yNGRLR9XlVVRXZ2\nJsOHjwAgNjYOna5753eSAuZX1mb9xO6CfdjqbBnpM4JYQzRBTn3QaDRXumlCCCF6oPmT+l3wbImX\nlxMlJTVdvn0rKysANmxYR3V1NW+//W+qq6u5885F53331wWIopx/dujczxVFQas9855Go+n235VS\nwPyKvngImuJKTF557MhPZEd+IgYHX2L9RhLtG4mTteOVbqIQQgjRIa1Wi9FoPOu9yspK/PwMaLVa\ntm7dREtLy2Vvx98/oO1up71795y3za4mdyH9ykCDN7blQ6naN46mY1HY1AdQUFfM1yd/4C87n+e9\nw59wpDQNo6l7QxJCCCHMFRQUwrFj6dTV/XIZaOLESezatZ0HH7wHOzs7vL29+fDD9y5rO2PGjKOu\nro577rmDlJQDODu7XG7TLaJRLnSeSOW68rSbu7sDmxKz2ZaST0pGKYquGRvvQhwM+TRoKwFwsXZm\ntN9IRvuNxNves8vaIs7WXadchWUkF/WSbNTrasimurqK5OQkJk6cTElJMQ8+eA///e/XnboNLy+n\ndj+TS0jn0Om0hPf3JLy/JxU1Tew4lM+2FGfKkvqgcajGpU8hdc55rM/exPrsTfRzDWGMXwzh3sOx\nkYG/Qgghegl7ewc2bdrIf//7KYpi4oEHuvehd3IG5hwXqopNisLRzHK2puRz8EQpRlqx9izGpU8R\ntbpCAGx1NkT5jCDWL4ZgZxn42xWuhr9YrkaSi3pJNuol2ZhHzsBcJq1Gw7BQD4aFelBV18yuwwVs\nS3GkaL8fGpt6XPoUgUceO/P3sjN/L74OPozxiyZGBv4KIYQQXULOwJzD3KpYURSO5VSyLSWfpGMl\ntBqN6F3L8AgpodYqFxMmtBotwz2HMMYvmsHuA9Bpu/ce+auN/MWiTpKLekk26iXZmEfOwHQBjUbD\noCA3BgW5saChhd1HCtmWkk/eAU/Q98UloAQbn3xSSo6QUnIEF2snRvmNJNZvJN72Xle6+UIIIUSP\nJmdgznE5VbGiKGTkV7PtYD5704tobjGic6jBu28p9XbZNCtNAPR1CSHWEE2kd5gM/LWA/MWiTpKL\nekk26iXZmKejMzDyHJhOpNFo6Ofvwm9nDea1+8ayaNpA/B0NFBwKpWrveKzyonDX+JNRlcl/0r7k\niR1/4//SVpBZlX3Bpx4KIYQQXWXevDnU19fz6acfceTIobM+q6+vZ968OR0u//ND7NasWcXWrZu7\nrJ3tkUtIXcTeVk98ZADxkQFkFZ45K7PnqDV5eV5orfviO6CCZqcsdhXsZVfBXnztvYk1nBn462zd\nfsUphBBCdKZFi26zeJmCgnw2blzPxImTmTmz40Knq0gB0w2CfZ0JTnBm/qR+7EsrZltKPhlH7AED\nTt5VuAeXUNKQxTcnV/NdxlqGewwm1hDNEPeBMvBXCCGERX7721t54YVX8fX1pbCwgCeeeAQvL28a\nGhpobGzkoYf+yJAhw9q+//zzzzBx4mTCwyP4y1/+RHNzc9vEjgA//riWFSu+QKfTEhzcl8ce+wuv\nvbaUtLRUPvzwPUwmE66urtxww00sW/Y6hw+n0Npq5IYb5pOQMIv777+b6OhRJCcnUVlZydKl/8DX\n1/ey91MKmG5ka61n3AgD40YYOF1cy7aUfHanWpG91xV0Qfj3r0JxzyGlNJWU0lScrZ0Y5RtFrN9I\nfBy8r3TzhRBCWGjlyR84UHz4vPd1Wg1G06UNHYjwHs71/Wa3+/n48fHs3LmNG26Yz/btWxk/Pp6+\nffszfvxE9u/fx//938c8//zL5y23fv1aQkP78oc/PMJPP/3Ixo3rAWhoaODVV9/EycmJ++67i4yM\nk9xyyyJWrvyS22+/i/fffxeAgweTOXUqg3fe+YCGhgYWL76Z8eMnAuDg4MDrr7/DO++8ybZtm5g/\nf8El7fuvdWkBc/z4ce69915uu+02Fi5cSEtLC48//jjZ2dk4ODjwxhtv4OLiwvfff8/HH3+MVqtl\n/vz53HjjjV3ZLFUI8HZkwdQBzJvYl/3HStiWks+xdGvACwe3Onz6lVFhPMWGnC1syNlCX5dgYv2i\nifAOw1Zvc6WbL4QQQqXGj4/nrbf+yQ03zGfHjq3cf/9DfP75p3z22ae0tLRga2t7weWysk4RHh4F\nQEREVNv7zs7OPPHEIwBkZ2dSVVV5weXT048SHh4JgJ2dHcHBoeTm5gIwYkQEAN7e3lRVVXXKfnZZ\nAVNfX8+SJUuIjY1te+/LL7/Ezc2NV199lS+++IKkpCRiY2N5++23WbFiBVZWVsybN4+pU6fi6ura\nVU1TFWsrHbHDfIkd5ktBWR3bUwrYeaSAU/scQOOPf99arH3yyKjKIqMqi69OfEeU9whiDdGEOAfJ\nE3+FEELFru83+4JnS7ryLqTQ0L6UlZVQVFRITU0N27dvwdPTm6eeWkJ6+lHeeuufF1xOUUCrPfM7\nxfS/s0MtLS289trf+eij/+Lh4cmf/vT/2t2uRqPh1/ejtLa2tK1Pp/tlOERn3bTSZXchWVtb8957\n7+Ht/culj82bN3PNNdcAcNNNNzF58mRSUlIYPnw4Tk5O2NraEhkZSXJyclc1S9X8PByYP6kfr94X\nxz3XDmNokCd5J13I3DkEjk4iwBiBjdaOXQX7eHX/MpYkvsqG7C1UNcmteEIIIX4RGzuW5cuXMW7c\nBKqqKvH3DwBg69bNtLa2XnCZwMAg0tPTAEhOTgKgvr4OnU6Hh4cnRUWFpKen0drailarxWg0nrX8\noEFDOXBg//+Wqycv7zQBAYFdtYtddwZGr9ej15+9+ry8PLZt28bLL7+Mp6cnTz/9NKWlpbi7u7d9\nx93dnZKSkq5qVo+g12mJHuRN9CBvSiob2H4on+2HCjix3xrwxhDcgGNAIQUNp/g2Yw3fn1rHMI/B\nxPqNZKjHIBn4K4QQvdyECfH8/ve/5aOPPqOxsYHnnnuazZs3csMN89m48UdWr/7+vGUSEmbx5z8/\nyoMP3kNYWDgajQYXF1eio0dx552/oV+//ixYsIg33niNN998l2PH0nnjjVdxcDgzZc6IEeEMHDiI\n++67i9bWVn7/+/uxs7Prsn3s8gfZvfnmm7i5ubFw4UISEhJ44IEHmDVrFsuWLaOmpoYhQ4Zw+PBh\n/vznPwPwj3/8A4PBwE033dTuOltbjej1veuXtNFoIimtiPWJ2exPK8KkgJ29kb7D6ql3yKSgLh8A\nF1tnJgSPIj5kDP7Olz/KWwghhFCjbr0LydPTk+joaADGjh3Lm2++ycSJEyktLW37TnFxMeHh4e2t\nAoCKivoua6Oan44Y6uPIPdcMpXxiX3YcLmB7SgFH9uqAMPwCBuMRXEp+63G+T9/A9+kbCHUJIsY3\nikjvMBys7K908y+bmrPpzSQX9ZJs1EuyMY9qnsQ7fvx4tm/fDkBqaiohISGMGDGCw4cPU11dTV1d\nHcnJyYwcObI7m9XjuDvbck1cCEt/H8vD80cQNcCL4nxrjuzwo3bfeIKbJhBoH0JmVQ6fH1vJEzuW\nsPzQxxwoPkyLseVKN18IIYS4bF12CenIkSMsXbqUvLw89Ho9Pj4+vPLKKzz//POUlJRgb2/P0qVL\n8fT0ZN26dbz//vtoNBoWLlzYNtC3PWqdC+lKqqprZufhAral5FNc0QCAjzcY+lVRYXWKooYiAOz0\ntkR4DSfaN5J+riFoNT1nNomems3VTnJRL8lGvSQb83R0BkYmczxHT+9UJkXhWE4l21Ly2X+smFbj\nmXiDQ8C1TwmFppNUNZ+5B9/VxoVonwiifSPwd/S7ks02S0/P5moluaiXZKNeko15Oipg5Em8Vxmt\nRsPgIDcGB7lR3ziApGMl7Ekt5FhmJVmZXuh1XoQOaMXWp4jcpuNtD8rzd/Qj2ieCkT7huNn2jmfw\nCCGE6LnkDMw5rtaquLy6kcSjRexOLeJ0SS0AdrYaQgc1glse2fUZGBUjGjT0dw0l2jeSCO9h2Om7\n7hY4S12t2fR0kot6STbqJdmYRy4hWaA3dKrTxbXsPlrIntQiKmqaAHB10RA4sIYG+2xO15959LNe\nq2e45xBifCIY4jEQvfbKnrDrDdn0RJKLekk26iXZmEcKGAv0pk5lUhRO5FayO7WQfeklNDSdeTqj\nrx/4hFRQrs+gtPHMLe4OensifMKI8Ykk1OXKTGHQm7LpSSQX9ZJs1EuyMY8UMBborZ2qpdXIoYwy\n9qQWkZJR+r/BvwrBIQrOASUUmk5Q03Lm0pOHrTvRvhFE+0Tg242zZPfWbNROclEvyUa9JBvzyCBe\ncVFWeh1RA72JGuhNXWML+/83+Dc9sxIyfdDrfAgd0IK1dwGnm0+yLusn1mX9RKCTP9G+kUR5h+Ni\n035HE0IIITqTnIE5h1TFZ/tl8G8hp0vqALCzg5CBDZhcT5PbkIlJMaFBwyD3/kT7RDDCaxi2eptO\nb4tko06Si3pJNuol2ZhHLiFZQDpV+3KLa9mTWsieo78a/OsKfQZUU2eXTUFDHgDWWivCvIYS4xvJ\nILf+nTa5pGSjTpKLekk26iXZmEcKGAtIp7q49gf/mvAOqaBMl0F5UzkAjlYORPmEE+MbQZBTn8sa\n/CvZqJPkol6SjXpJNuaRAsYC0qks097g36BQE87+xRQYT1LXeubSk7ed5/8G/0biZe9h8bYkG3WS\nXNRLslEvycY8UsBYQDrVpft58O/uI4Ucy60EQK9TCB3YgpVXPrlNGbSYzkwmGeIcSLRvJJHeYThZ\nO5q1fslGnSQX9ZJs1EuyMY8UMBaQTtU5yqoaSUwrYs85g3+DB9ZhdDnN6YYsFBS0Gi1D3AcQ7RtJ\nmOcQrHXW7a5TslEnyUW9JBv1kmzMI7dRi27n4WLLzNFBzBwddNbg37SDAANxdRtAQP8qam2yOVKW\nzpGydGx01oR7DSfGN5IBbn171EzZQgghupecgTmHVMVdx6QoHM+pZM/Rcwb/Gox4BZdTqs2gsvnM\npScXa6f/Df6NJMDRgEajkWxUSnJRL8lGvSQb88glJAtIp+oePw/+3Z1axKGzBv+24uhfRIExg4bW\nBgB8HXyI9olgxtBxKHVWV7bh4jxyzKiXZKNeko15pICxgHSq7lfX2EJSejF7Uot+GfyrNxEyoBm9\nZz6nm07RqrSiQcMQj4HEGWIY5jG4054vIy6PHDPqJdmol2RjHhkDI1TNwdaKCeH+TAj3bxv8uzu1\nkBNH64BQ7OxCCBpUi9Eth9SydFLL0nG2dmK030jiDDF42ll+S7YQQoieTc7AnEOqYvXILa5ld2oh\nib968m//flo8Qoo5XpfadolpoFs/4gwxhHkNw0orNXl3k2NGvSQb9ZJszCOXkCwgnUp9TIpCWlYF\nG/af5tDJUgD693FkUFgjmc2pZFRlAmee+jvKN4oxhphunSW7t5NjRr0kG/WSbMwjBYwFpFOpl5eX\nE7sO5LJqVxZHTp2ZqqCvvzNjo50o1R1nb2EytS1nnjnT1yWEOEMMEd5hWOtk4G9XkmNGvSQb9ZJs\nzCMFjAWkU6nXr7PJLKhm1c4sDv7vjEyQrxMzYwPQuBaxO38f6RUnALDT2xHjG0GcYRT+jn5XrO1X\nMzlm1EuyUS/JxjxSwFhAOpV6XSibnKIaftidzf70YhQgwMuB2WOCCQ7Usacwid0F+6huPrNMsHMg\ncYYYIr1HYKu3uQJ7cHWSY0a9JBv1kmzMIwWMBaRTqVdH2eSV1rFmdxZ7jhahKODrbs+s2CCiB3uS\nVnGMnfl7OVp2DAUFG501I31sHuBKAAAgAElEQVQiiDPEEOgUcFkzZAs5ZtRMslEvycY8UsBYQDqV\nepmTTVFFPat3Z7P7SCFGk4KXqy2zYoMZM8yXmpZqdhXsY3f+PiqazjxvJsDRQJwhhmjfCOz0dt2x\nG1cdOWbUS7JRL8nGPFLAWEA6lXpZkk1pZQNrE3PYfiifVqOCu7MNM0YFMX6EHzqdhrTy4+zM38vh\n0qOYFBNWWiuivEcQ5x9DiHOQnJWxgBwz6iXZqJdkYx4pYCwgnUq9LiWbipom1iXmsPVgHs2tJlwc\nrZkRE8iEcH9srHVUNdWQWJDEzvxEShvP3Nnk6+BDnCGGGN9IHK0cumJXripyzKiXZKNeko15pICx\ngHQq9bqcbKrqmvlxbw6bDuTR1GzEyd6KadF9mBQZgJ2NHpNi4nhFBrvy95JScoRWxYheqyfcaxhx\nhhj6u/aVszLtkGNGvSQb9ZJszCMFjAWkU6lXZ2RT29DChn25bNx/moamVhxs9UwZ2YcpIwNwsD3z\nvJja5joSC/ezM38vRfXFAHjbeTLGEMMovyicrds/oHojOWbUS7JRL8nGPFLAWEA6lXp1Zjb1jS38\nlJzHj3tzqGtsxc5Gx6TIAKZF98HJ3hoARVHIqMpiZ34iB4oP0WJqRavREuY5lDhDDIPc+6PVaDul\nPT2ZHDPqJdmol2RjHilgLCCdSr26IpvG5lY2H8hjfWIO1fUtWFtpiY/wJyEmEBfHX54VU99Sz96i\nA+zK30tebQEA7rZujPGLJtYQjauNS6e2qyeRY0a9JBv1kmzMIwWMBaRTqVdXZtPcYmRrSj7rEnOo\nqGlCr9MyYYSBGaMDcXe2bfueoihk1+SyM28vScUHaTY2o0HDMM9BjPGLYajHIHRaXZe0Ua3kmFEv\nyUa9JBvzSAFjAelU6tUd2bS0mth5uIDVu7Mpq25Ep9UwNsyPmaOD8HI9+zkxja2N7C9KYUd+Ijk1\npwFwsXYm1hDNGL9oPOzcu7StaiHHjHpJNuol2ZhHChgLSKdSr+7MptVoYndqIat3Z1Nc0YBWoyF2\nqA+zxgTj625/3vdza/LZlZ/IvqIDNLQ2okHDIPf+jDHEEOY5BL1W3y3tvhLkmFEvyUa9JBvzSAFj\nAelU6nUlsjGaTOxLK+aH3dnkl9ah0UD0IG9mjwkmwMvxvO83G5tJLj7Ezvy9nKrKAsDJypFRflGM\nMcTgY+/Vre3vDnLMqJdko16SjXmkgLGAdCr1upLZmBSF5GMlrNqVRW5xLQBRA7yYPSaYIN8LH2AF\ndUXsyt9LYuF+6lrqAejvGkqcYRThXsOw0ll1W/u7khwz6iXZqJdkYx4pYCwgnUq91JCNoiiknCxj\n1a5MMgvOtCWsrwdz4oLpa7jwnUgtplZSSo6wMy+R45UZADhaOTA9KJ5x/rE9vpBRQy7iwiQb9ZJs\nzCMFjAWkU6mXmrJRFIXUrHJW7czixOkqAIYGuzF7TDADA93aXa64vpRd+XvZnrebRmMTrjYuJARP\nZoxfdI+9e0lNuYizSTbqJdmYRwoYC0inUi+1ZnMsp4Lvd2aRll0BwIA+rsyJC2ZIkFu70w/UttSx\nMXsrW07vpMXUgqetOzNDphLtG9HjHo6n1lyEZKNmko15pICxgHQq9VJ7NifzqvhhVxaHMsoACDU4\nM2dMMGF9PdotZKqaqlmfvZmdeXtoVYz42nszK3Qa4V7Dekwho/ZcejPJRr0kG/NIAWMB6VTq1VOy\nySqsZtXOLA6cKAUg0MeROWOCiRjghbadQqasoYJ1WRvZU7gfk2Kij6OB2aHTGeoxSPWTSPaUXHoj\nyUa9JBvzSAFjAelU6tXTsjldXMsPu7PYl1aMAvh7OTA7NpjoQd5otRcuSorrS1iduYH9RSkoKIS6\nBDEndDoD3Pp1a9st0dNy6U0kG/WSbMwjBYwFpFOpV0/NpqCsjtW7s9mTWoRJUfBxt2fOmCBGD/Vt\n94xMXm0Bq0/9SEppKgAD3foxJ3Q6IS5B3dl0s/TUXHoDyUa9JBvzSAFjAelU6tXTsymuqGfNnmx2\nHi7EaFII9nViwdQB9PNvfyLI7OpcVp1aT1r5cQCGeQxmduh0+jgZuqvZF9XTc7maSTbqJdmYRwoY\nC0inUq+rJZvSqga+3nqKxKNFAIwe6sO8CX3PmjTyXCcqTrHq1HoyqjIBiPQOY1bINHwdvLulzR25\nWnK5Gkk26iXZmEcKGAtIp1Kvqy2b47mVfLbxBNlFNVhbaZk1OojpMYFYW134eTCKopBWfpxVp9aT\nU3MaDRpifCOZGTIVzys4ceTVlsvVRLJRL8nGPFLAWEA6lXpdjdmYFIWdhwr4etspquua8XC25aZJ\n/Yga6NXu3UeKonCoNJUfTv1Ifl0hOo2OMYYYEoIn4WrT/uWornI15nK1kGzUS7IxjxQwFpBOpV5X\nczYNTa38sCuLH/flYjQpDOzjyi1T+hPo0/7Ba1JM7C9KYXXmj5Q0lGGl1TPOP5ZpQfE4WZ8/0WRX\nuZpz6ekkG/WSbMwjBYwFpFOpV2/Ipqi8ni82neTgyVI0Ghg/wsB140NxtrdudxmjyUhi4X7WZG6k\noqkSG5018X3GMbnPeOyt7Lq8zb0hl55KslEvycY8UsBYQDqVevWmbI5klvH5TyfJL63DzkbP3Lhg\nJkUFoNe1/3TeFlMrO/MSWZf9EzXNtdjp7ZgSOIGJAXHY6m26rK29KZeeRrJRL8nGPFLAWEA6lXr1\ntmxajSa2HMjj2+2Z1De14utuz82T+xPW16PD5ZqNzWw9vYsN2Vuoa63HycqRacHxjDOM7pKZr3tb\nLj2JZKNeko15pICxgHQq9eqt2dTUN/Ptjky2HMhDUSCsrwc3TeqHn4dDh8s1tDawKWc7m3K3d+nM\n1701l55AslEvycY8UsBYQDqVevX2bE4X1/LZTydIy65Ap9UwOSqAa+KCsbft+KxKV8983dtzUTPJ\nRr0kG/NIAWMB6VTqJdmcuYX6wIlSvth0gpLKRhztrLh+Qijjwwztzq/0szMzX29iR14ixk6c+Vpy\nUS/JRr0kG/NIAWMB6VTqJdn8oqXVyI/7cvlhVzZNLUb6eDuyYEp/Bga6XXTZzp75WnJRL8lGvSQb\n80gBYwHpVOol2ZyvoqaJlVsz2HmkEICRg7yZP7Evnq4Xv326qL6ENZ0w87Xkol6SjXpJNuaRAsYC\n0qnUS7Jp36n8aj7beJyM/Gqs9FqmxwQya3QQNtYXH6x74ZmvEwhxCTRr25KLekk26iXZmEcKGAtI\np1IvyaZjJkUh8WgRX20+SWVtM25ONsyb2JfRQ3zMujR07szXwz0HMztkOgEXmflaclEvyUa9JBvz\nSAFjAelU6iXZmKexuZU1e3JYl5hDq9FEX39nFkwZQIifs1nLn5n5eh0ZVVnAxWe+llzUS7JRL8nG\nPFLAWEA6lXpJNpYpqWzgq80nSTpWAkDccF9umNAXV8eLP5X3l5mv15FTk4cGDaN8o5gZMgWPc2a+\nllzUS7JRL8nGPB0VMLpnnnnmma7a8PHjx7npppvQarWEhYXx+OOP8/rrr7N27Vq++eYb3N3dCQ4O\n5vvvv+fPf/4zK1asQKPRMHTo0A7XW1/f3FVNxsHBpkvXLy6dZGMZB1srogf7MLCPK9lFtaRmlrPl\nYD5ajYZgX2d0Hdx2rdFo8LL3JM4wCn8nA/l1haRXnGBb3m6qmmsIcDJgq7c9sx3JRbUkG/WSbMzj\n4ND+H1z6rtpofX09S5YsITY29qz3H374YeLj48/63ttvv82KFSuwsrJi3rx5TJ06FVdX165qmhC9\nyqAgN565PZptKfms3HaKFVsy2HYwn5sm9SO8v2eH42M0Gg3hXsMI8xzSNvP19rzd7CnYx3j/MUwN\nmogX7f+FJIQQXeXyH8PZDmtra9577z28vS983fxnKSkpDB8+HCcnJ2xtbYmMjCQ5ObmrmiVEr6TV\napgY4c9LvxvNtOg+lFU38ubKw7zy+UFOl9RefHmNlmjfCJ4a9SgLBt2Ao5UjP+Vu4+ndL/H54e+p\nbanrhr0QQohfdNkZGL1ej15//ur/85//8OGHH+Lh4cFTTz1FaWkp7u6/XFN3d3enpKSkq5olRK9m\nb2vFzZP7MyHcwGc/neDIqXKe/mAv8RH+XDsuFEe7jqcl0Gl1xBlGEeMb1Tbz9cqja/lBu5E4wygm\nBY7D3fbiD9MTQojL1WUFzIXMnTsXV1dXBg8ezPLly3nrrbeIiIg46zvmjCl2c7NHr++8yejO1dGg\nIXFlSTadw8vLibBBviSlFfHv7w6zKTmPvWnF3JowiBmxweh0Fz85e6NPAnPC4tmYsYPVx35i8+kd\nbMvbRVxgNNcMmkqgq3837Im4GDlm1EuyuTzdWsD8ejzMpEmTeOaZZ5g+fTqlpaVt7xcXFxMeHt7h\neioq6rusjTIyXL0km84X5GnP07dF89P+03y/M5N3vznMD9tPcfOU/gwNdr/4CoDZAycT5RpJUtFB\nNuRsZVt2ItuyExnmMYipQfH0cw3p4r0Q7ZFjRr0kG/N0VOR12RiYC3nggQfIzc0FIDExkf79+zNi\nxAgOHz5MdXU1dXV1JCcnM3LkyO5slhC9ml535sm9L94dy/gRBvJL63j184O8+fUhisz8Y0Gv1TPa\nbyR/iXmI34fdRqhLMEfK0vlH8ju8uv9tDpWkYlJMXbwnQojepMueA3PkyBGWLl1KXl4eer0eHx8f\nFi5cyPLly7Gzs8Pe3p4XX3wRDw8P1q1bx/vvv49Go2HhwoVcc801Ha5bngPTO0k23SO7sIbPNh7n\n+Okq9DoNU6P7MDs2GDubC5+wbS+Xk5WZbMjewpGyNAB8HXyYEjiBaJ9w9NpuPfnba8kxo16SjXnk\nQXYWkE6lXpJN91EUhX3pxXy1+SRl1U04O1hzw4RQ4ob7oT3ntuuL5ZJfW8jGnK3sKzqASTHhauPC\npD7jiDPEtD1LRnQNOWbUS7IxjxQwFpBOpV6STfdrbjGybm8Oa3Zn09xqIsjXiVunDKBfgEvbd8zN\npbyxgk2529mZv5dmYzP2ejvG+8cysc9YnKwdu3I3ei05ZtRLsjGPFDAWkE6lXpLNlVNe3ciKLRns\nOVoEwOghPsyb2Bd3Z1uLc6ltqWP76d1sOb2T2pY6rLR6Yv2imRw4Hk87j67ahV5Jjhn1kmzMIwWM\nBaRTqZdkc+WdOF3JfzeeILuwBmsrLTNHB7Fw1lCqKy2/M7DZ2MzugiR+ytlKWWMFGjREeocxNSie\nPheZAVuYR44Z9ZJszCMFjAWkU6mXZKMOJkVh5+ECvt56iuq6Zrzc7LhubAgxQ3zOGx9jDqPJSHLx\nITbkbCGvtgCAwe4DmBo4kQFufTuc6kB0TI4Z9ZJszCMFjAWkU6mXZKMuDU2t/LA7iw37TtNqNBHs\n68RNk/oxMPDSnsSrKApHy4+zIXszJypPARDk1IepQRMZ4TUUraZbn/pwVZBjRr0kG/NIAWMB6VTq\nJdmok1Gr5b1vDrE3rRiA8H6e3BjfFz8Ph0teZ2ZVDhtytnCoJBUFBW87T6YETiDGNxIrXcfTHYhf\nyDGjXpKNeaSAsYB0KvWSbNTp51xO5Vfz5aYTHD9dhVajYUK4gbljQ3B2sL7kdRfVFbMxZyuJhckY\nFSPO1k7E9xnLOP/R2OntOnEvrk5yzKiXZGMeKWAsIJ1KvSQbdfp1LoqicPBEKV9uyaCovB5bax0z\nRgcxLboPNlaXPn9ZZVMVm3N3sCNvD43GJmx1tozzH018n7G42Dh31q5cdeSYUS/JxjxSwFhAOpV6\nSTbqdKFcWo0mtqXk8+32TGobWnBzsuG6caGMGeaLVnvpg3LrWxrYkbeHTae3U9Nci16jI8Y3iilB\nE/Cx97rcXbnqyDGjXpKNeaSAsYB0KvWSbNSpo1zqG1tZm5jNj/tyaWk1EeDlyE2T+jE0xLyJItvT\nYmwhsXA/G3O2UtJQhgYNI7yGMS1oIkHOfS5r3VcTOWbUS7IxjxQwFpBOpV6SjTqZk0t5dSMrt51i\n95FCFGBYiDvz4/sR4H15T+A1KSYOlhxhQ/ZmcmryABjg2pepQRMZ7D6g19+CLceMekk25pECxgLS\nqdRLslEnS3LJLqzhy80nScuuQKOBuOF+XDcuFDcnm8tqg6IoHKs4yYbsLaRXnAAgwNHA1MAJRHiH\nodNe+vibnkyOGfWSbMwjBYwFpFOpl2SjTpbmoigKh0+V89Xmk+SV1mFtpWV6dCAJowLbnfHaEjk1\np9mYvZXk4kMoKHjYujM5cDyxfiOx1l36HVE9kRwz6iXZmEcKGAtIp1IvyUadLjUXo8nEzsOFfLPt\nFFV1zTg7WHPtuBDGhfmh017+Q+tK6svYmLuVPQVJtJpacbRyYGLAWMYHxOJgZX/Z6+8J5JhRL8nG\nPFLAWEA6lXpJNup0ubk0Nreyfm8u6xJzaGox4udhz/z4foT19eiUMSzVzTVsyd3JtrzdNLQ2YK2z\nZqxhFJP6jMPN1vWy169mcsyol2RjHilgLCCdSr0kG3XqrFwqa5v4dnsm2w/loygwKNCVmyb1J8i3\n/f+BWaKxtZEd+Ylszt1BZVMVWo2WaJ8IpgZNxM/Bp1O2oTZyzKiXZGMeKWAsIJ1KvSQbdersXPJK\navlqSwaHMsoAiB3qw/Xj++LhYtsp6281tbKv8AAbcrZSVH9m+oPhnoOZGhhPX9fgTtmGWsgxo16S\njXmkgLGAdCr1kmzUqatyOZpVzpebTpJTXItep2VqdACzRgdjb3v5A33hzC3Yh0uPsiF7C5nVOQCE\nugRzfb9ZhLgEdco2rjQ5ZtRLsjGPFDAWkE6lXpKNOnVlLiZFYfeRQlZuO0VFTROOdlZcExfMxAh/\n9LrOmZ1aURROVmayIWcLqWXp6DU6bh18IzG+kZ2y/itJjhn1kmzM01EBo3vmmWee6b6mdI76+uYu\nW7eDg02Xrl9cOslGnboyF41GQ6CPE/ER/thY6ziWU8mBE6UkphXh5mSDn4f9ZQ/01Wg0eNi5Ee0b\nQahLECmlqSQVHQRFob9raI9+GJ4cM+ol2ZjHwaH9Z0RJAXMO6VTqJdmoU3fkotNpGdDHlXFhBppb\njaRlV5CYVszR7AoMHg64O3fO+BgvOw+Gew4htewYh0pTKW4oZZjHoB77IDw5ZtRLsjGPFDAWkE6l\nXpKNOnVnLjbWOsL6ehIz2IeKmiZSM8vZfqiA/NI6gnydcLC1uuxtOFk7MtInnIzKLI6WH+N4ZQbD\nPYdg0wMfgifHjHpJNuaRAsYC0qnUS7JRpyuRi6OdFTGDfRgc5EZeaR2pWeVsTs6jvrGVYD9nrK0u\n74yJjc6aaJ8IShvLSS07xoHiwwxy74+T9eXN3dTd5JhRL8nGPFLAWEA6lXpJNup0JXPxcLFl/Ag/\nDJ4OZBZUc/hUOVsP5qPVagjydbysJ/rqtDrCvYYBcKg0lX1FBwh0CsDTzqOzmt/l5JhRL8nGPFLA\nWEA6lXpJNup0pXPRaDT4ezkyMcIfB1s9x3MrOXiylD2pRTg5WGHwdLjkgbgajYYBbn3xsvPgYPFh\n9hYl42ztSKBzQCfvRde40tmI9kk25pECxgLSqdRLslEnteSi02ro5+/C+HADRpPC0awKktJLOHyq\nDF93ezxd7C553f6OfvR368vh0qMkFx+iqbWJge79VH+HklqyEeeTbMwjBYwFpFOpl2SjTmrLxdpK\nx7BQD0YP9aW6rpnUzAp2Hi4kp6iGQB9HnOwvbTCuu60bEd7DSSs/weGyo+TVFjDccwh6Fd+hpLZs\nxC8kG/NIAWMB6VTqJdmok1pzcbC1YuQgb4aFulNYVk9qVgVbDuRTVd9MiK8zNtaWFx72VvZE+0SQ\nU3Oao+XHOFqWzjDPwdjqO+c27s6m1myEZGMuKWAsIJ1KvSQbdVJ7Lu5Otowd7kcfbyeyC6s5klnO\nloN5KAoE+TpZ/ERfK50VI33CqW6u4UhZOvuLUhjg1hcXG+cu2oNLp/ZsejPJxjxSwFhAOpV6STbq\n1BNy0Wg0GDwdmBjhj7ODNSdOV5GSUcauI4U42lkR4O1o0XgWrUbLMI/B2OhtSClJZW/hfgwOvvg4\neHfhXliuJ2TTW0k25pECxgLSqdRLslGnnpSLVqsh1ODMhHB/ANJzKkg6VsLBE6V4udnh7Wr+QF+N\nRkOoSzD+jn4cLDnCvqIDWOusCXEOUs3g3p6UTW8j2ZhHChgLSKdSL8lGnXpiLlZ6LUOC3Rkz1Jfa\nhhZSs8rZfaSQjPwqQvyccbQz/4m+vg7eDPEYyOHSNA6WHKGquYYh7gPRajpnssnL0ROz6S0kG/N0\nVMBc+SNMCCGuEA8XW+6aM4Snb4tmcJAbR06V8+xH+0hKL7ZoPYFOAfxx5P0EOBrYmZ/IspQPqG9p\n6KJWCyFAChghhCDI14lHbw7n7muGgALLvj3CF5tOYDSZzF6Hm60rD0Xew3DPwaRXnODV/W9T2lDW\nha0WoneTAkYIITgzpmX0EF+eXDwSX3d71u/N5eXPDlJV22T2Omz1Ntw9fDGT+oyjsL6Yl5Pe4lRV\nVtc1WoheTAoYIYT4FX9PB55aPJKoAV4cz63kmY/2cTy30uzltRotN/Sfw80Dr6O+tYHXDywnqfBA\nF7ZYiN5JChghhDiHnY2ee68bxvz4ftTUtfDyZwfYsC8XRVHMXsc4/1juDfsteo2eD49+xurMDRYt\nL4TomBQwQghxARqNhoRRgfzxlnAcbPV89tMJ3v0+lcbmVrPXMdhjAI+OvA8PWzfWZG7g46Of02Js\n6cJWC9F7SAEjhBAdGBjoxtO3x9DP34W9acU898l+CsrqzF7ez8GHP458gBDnIPYVHeCNg+9R01zb\nhS0WoneQAkYIIS7CzcmGPy2IYEpUAPmldfzt4ySLbrV2snbkwYi7ifIewamqLF5JeovCOstu1RZC\nnE0KGCGEMINep2XB1AHcfc0QFEVh2bdH+HLTSbNvtbbSWXH70AXMCJ5CaWM5r+x/i/TyE13caiGu\nXlLACCGEBUYP8eWp34zEx92edXtzePXzg1TVmfdEVY1Gw+zQaSwecjMtxhbeTnmfnXmJXdxiIa5O\nUsAIIYSF/L0c+ev/brVOz6nk2Q/3cvJ0ldnLx/hG8kDE3djpbfnvsa/55uRqTIr5D80TQlxGAZOV\nldWJzRBCiJ7l51utb4zvS1VdM0v/m8yGJPNvte7nGsIfox7Ax96LjTlb+ffhT2kyytw4QpirwwLm\n9ttvP+v1smXL2v7917/+tWtaJIQQPYRGo2HGqCAevTnizK3WG0+wfNVRs2+19rL34NGo+xjg1o+U\n0lT+kfwOlU3mn8kRojfrsIBpbT37INyzZ0/bv+WBTEIIccbgoDO3Wvf1dybxaBHPf7KfwvJ6s5a1\nt7Ln/hF3MMYvmtyaPF5OeovcmrwubrEQPV+HBYxGoznr9a+LlnM/E0KI3szNyYbHFkQyOSqAvNI6\n/vbRPvYfKzFrWZ1Wx4JB87i270yqmqp5LfkdDpce7eIWC9GzWTQGRooWIYRon16n5dapA7h7zhBM\nisLb3xzmq83m3Wqt0WiYGjSRO4cvQlEU3j30MZtytsnZbiHaoe/ow6qqKnbv3t32urq6mj179qAo\nCtXV1V3eOCGE6IlGD/UlwNuRt1ceZm1iDpkF1fxu7jBcHKwvumy41zAeivw97x76iK9P/kBRQynz\n+89Fp9V1Q8uF6Dk0Sgfl/aJFizpc+NNPP+30BpmjpKSmy9bt5eXUpesXl06yUSfJpX31ja18sCaN\n5OMluDpac+91w+nn72LWshWNlbxz6EPyagsY7D6AO4bdip3ezqLtSzbqJdmYx8vLqd3POixg1EoK\nmN5JslEnyaVjiqKwLjGHFVsz0Go03Dy5P5Mi/c26JN/Y2sSHqf/lSFkavg4+3BN2O5527mZvW7JR\nL8nGPB0VMB2OgamtreWjjz5qe/35558zd+5c/vCHP1BaWtppDRRCiKuVRqNhxuggHr0pHHtbPf+3\n4TjvrTpKU7Pxosva6m34Xdhi4vuMpbCuiJeT3uRUVXY3tFoI9euwgPnrX/9KWVkZAJmZmbz22ms8\n9thjjBkzhueff75bGiiEEFeDwcHuPH1bNH0Nzuw5WsRznyaZdau1VqNlXv9ruGnAddS3NvD6gXdJ\nKjrYDS0WQt06LGByc3N55JFHAFi/fj0JCQmMGTOGm2++Wc7ACCGEhdydbXns1kgmRfqTV1LHko/3\nkXzcvFutxwfEck/Y7eg1ej5M/S9rMzfKHUqiV+uwgLG3t2/79969exk9enTba7mlWgghLKfXaVk4\nbSB3zRmC0ajw1srDfLXFvFuth3gM5JGoe3G3deOHzB/5+OgXtJjMe+qvEFebDgsYo9FIWVkZOTk5\nHDhwgLi4OADq6upoaGjolgYKIcTVKHaoL0/+ZiTebnas3ZPDa1+kUG3GrNYGR1/+OPJ+QpwD2VeU\nzJsHllPbXNcNLRZCXTosYO666y5mzpzJnDlzuPfee3FxcaGxsZEFCxZw7bXXdlcbhRDiqhTg7chf\nF0cT0d+TtOwKnv1oHxl5F58LydnaiT9E/I4o7xFkVGXxctKbFNYVd0OLhVCPi95G3dLSQlNTE46O\njm3v7dixg7Fjx3Z549ojt1H3TpKNOkkul8+kKKzdk83KbacsutXapJhYnbmBdVk/Yae3485hCxnk\n3r/tc8lGvSQb81zyc2Dy8/M7XLHBYLj0Vl0GKWB6J8lGnSSXznM0q5x3v0+lpr6F2KE+/Gb6IGys\nL/4E3sSC/fxf+goUFG4eeB1xhlGAZKNmko15OipgOpxKYNKkSYSEhODl5QWcP5njJ5980uGGjx8/\nzr333sttt93GwoUL297fvn07d955J8eOHQPg+++/5+OPP0ar1TJ//nxuvPHGi++VEEJcZYb871br\nZd8eYXdqEbnFtdx33XB83O07XG6UXxTutm68d/gT/pv+NcX1pcztO6ObWi3EldFhAbN06VK+++47\n6urqmDVrFrNnz8bd3aB8CTUAACAASURBVLynQNbX17NkyRJiY2PPer+pqYnly5e3FUX19fW8/fbb\nrFixAisrK+bNm8fUqVNxdXW9xF0SQoiey93ZlscWRPL5phNsTs7jbx/v485ZQ4gY4NXhcv3dQnl0\n5P28c+gDNuZspaShjEfG39lNrRai+3U4iHfu3Ll88MEH/POf/6S2tpZbb72VO++8k1WrVtHY2Njh\niq2trXnvvffw9vY+6/1//etfLFiwAGvrM5OapaSkMHz4cJycnLC1tSUyMpLk5OTL3C0hhOi5rPRa\nFk0byJ2zB2M0Kry58jBfb83AZOr4uS/e9p78Mep+Brj2JaXkCM9seo3KposPChaiJ+qwgPmZn58f\n9957L2vXrmX69Ok899xzFx3Eq9frsbW1Peu9zMxM0tPTmTHjl1ObpaWlZ53VcXd3p6TEvAc7CSHE\n1WzMMD/+8puReLvasXp3Nq9+cZDq+o5vtba3sue+8DsY4xfNqYoc/r7vDbKrc7upxUJ0nw4vIf2s\nurqa77//npUrV2I0Gvnd737H7NmzLd7Yiy++yJNPPtnhd8x5sqSbmz16fddNLd/RoCFxZUk26iS5\ndB0vLydeD/Xkn58lk5hayHMfJ/H44mgGBnV8Of9B79vpdzyQT1NW8o8D/+LemEXEBUZ3U6uFOeS4\nuTwdFjA7duzg66+/5siRI0ybNo2XXnqJAQMGXNKGioqKOHXqFI8++igAxcXFLFy4kAceeOCsaQn+\nf3v3HR1Vua8P/NnTMmmQSa+E9AiEVI6GjhBAaVKDmID3ci0X0J9eRJHjEV269IB6jkfAroCJSBex\nBZCOBAWCASIhBQgkpPdk0qb8/kiIDIEklGmZ57OWK85+9zt840vkYc+797ekpAQRERGdvldlZdf9\nQ+4Ud4abLq6NaeK6GMYTE++Dt7MNth+6gJdWH8GcMUEYGdn5rdYTQ8bAVtMLazM24D+pXyKrMA8P\n+8VBJHTr4jvpEX9uuueOb6MODQ1F3759ER4eDpGo42/4t99+u8tffNWqVVAoFDp3IQGtdzjt27cP\njY2NmDRpErZt2waxWIxp06Zh69atsLe/ddG8jdoycW1ME9fFsDIuVeCT7zJQ19CC2P7umDs+BFbS\nm1+RvrY2hfXF+Dh9LcoaKxDhEoa5/eJhJZYZuHK6Hn9uuueOb6O+dpt0ZWUlFAqFzlh+fn6nv+jZ\ns2exYsUKFBQUQCKRYNeuXVi1alWHu4vkcjkWL16M+fPnQxAELFy4sNPwQkRkyfr3dcRr/zUIa749\ni9SMIlwpqcOiaQPgqrj1rdYetm5YEvMMPj+bhD9Kz6D8ZDmeGvg4FHLe7Unmq9MrMCdOnMDzzz+P\npqYmODo64pNPPoGvry+Sk5Px6aef4tChQ4astR2vwFgmro1p4roYR4tKg417s7H/VAGsrSR4YmI/\nRAQ565xz49qoNCpsztqBX6/+jl4yezwZNg9+vfsYunQCf266646vwPz73//GunXrEBAQgL179+LV\nV1+FRqNB7969sWXLlnteKBERdY9UIkLiuBAEePXCVynn8cG205g42BePDPWHSHTzfTESkQSPhkyH\nh607tmV/j/dPfYyE0JkY5B5p4OqJ7l6nO7lEIhECAgIAAKNHj0ZBQQHmzp2L1atXw83NzSAFEhHR\nrQ0e4IFlidFwdbDGD0fz8O/Nf6C2k1utBUHAKJ+h+N/w/4ZEkGDdn99gZ24KNFqNAasmunudBpgb\nd7d7eHggLi5OrwUREdHt6eNmj1cfj0FEoDMyLrV2tb5wtabTOf2dQrAkZiGcrZ2wK28fPj+bjEZV\nk4EqJrp7t3UvXVedUYmIyDhs5FIsmh6GqcP9UVnThH9+fRIpqZc6neNu64YlMX89ufdfaR+iorHS\nIPUS3a1ON/GGhYXBycmp/XV5eTmcnJyg1WohCAIOHDhgiBo74CZey8S1MU1cF9OTcbG1q3VdQwsm\nDe6LR4b5dfoXULVGjc3Z3+FIwTHYS+3w5MB58O/ta8CKLQ9/brrnjp8DU1BQ0Okbe3l53XlVd4EB\nxjJxbUwT18U0lVQ14D9bTqOwvB4jIzyRMDbklpt7gdanoB8sOIpt2d9DBAFzQmfgfo9oA1ZsWfhz\n0z13HGBMFQOMZeLamCaui+mSyKV45cNfcbmkDtEhLnhyUn9IJZ3vHDhXkYUvziajQdWIuD4jMTlg\nPJ/cqwf8uemezgIMf1cSEfVQCns5XpwThdA+Djh5vhTvb0lHQ5Oq0zn3OQZjSfQiuFo7Y8/lA/j0\nzFdoVDUaqGKi7mOAISLqwWzkEjw/KxxRwS44l1eJlRtOoaa+847WbraueCFmEUIUgThT9ifeO/kh\nyhu4uZdMCwMMEVEPJ5WIseCRARge7om84lq8lXwSpVUNnc6xldpgYfh8DPeKxdX6Iqw88QFyqy4Z\npmCibmCAISKyACKRgHnjQzAh1hcllQ14K/kk8kvqOp0jFokRHzIV8cGPQKlqwH9OfYLUwhMGqpio\ncwwwREQWQhAETB8RgNmjg1Bd14x/fp2GrCtVXc4b7j0YC8Pnw0osQ/K5zdie8wOf3EtGxwBDRGRh\nxg7ywROT+qGpRY33Nv2BP3LKupwT6hiEJTGL4Gbjgr2XD+GT0+vRwM29ZEQMMEREFii2vzuemT4Q\nAoDV287g1zOFXc5xtXHBC9GLEKoIwtnyc3jv5BqUNZTrv1iim2CAISKyUAMDnPDCo5GwthLjix/P\nIeW3y13OsZFaY0H4f2OE9xAU1hfjnROrkVN10QDVEuligCEismCBXr2x9LEoKOytsHl/Drbsz0FX\nzzcVi8SYFTwFs0OmQalqwAenPsXRq8cNVDFRKwYYIiIL5+Vih2UJ0XB3tMHPv13G2p8yodZ0vUl3\nmNcDeCbif2AlluHrzC3Ylv09N/eSwTDAEBERnHrL8XJCFPw87HHkTCHWbD+L5hZ1l/OCFYFYEvMM\n3Gxcse/KYXx0ei0aVJ0/Y4boXmCAISIiAIC9jQxLHo1E/74K/JFThn9t+gPKxpYu57naOGNJzEL0\ncwzBn+Xn8e6JNShVcnMv6RcDDBERtZPLJHh2RjgGhboiK78a//z6FKrqmrqcZy2xxtMDH8con6Eo\nUpbgnROrkFWZa4CKyVIxwBARkQ6pRISnJvfHqCgv5JfW4a2kkyiuVHY5TywSY0bQZMwJnY4GdSNW\n/fEZfi34zQAVkyVigCEiog5EIgEJccGYMtQPZdWNeDvpJPKKars1d4jn/Xg24glYS+TYcH4btmR9\nB7Wm6/00RLeDAYaIiG5KEARMGeqHhLHBqFW2YMWGNGTmda8rdZAiAC/GPAN3WzccyP8VH51eC2UL\nN/fSvcMAQ0REnXowyhtPTemPFpUG/9qcjpPnS7s1z9naCS9EL0R/p1Ccq8jCuydXo0TZddsCou5g\ngCEioi797T43PDcrHGKRgA93nMGh9KvdmmctkePpgY9jtM9wFCtL8c6JVThfkaPnaskSMMAQEVG3\n9O/riBfnRMJWLsW6nzPxY+qlLp/aCwAiQYRpQRPxWOhMNKmbsTr9cxwuSNV/wdSjMcAQEVG3+Xn0\nwssJUXDqZYVtBy9g494caLoRYgBgsOcgPBv5JGwk1th4/ltsztrBzb10xxhgiIjotng42WJZYgy8\nnG2x58QVfP7Dn1Cpu9dCINDBD0tinoGnrTsO5h/Fh+lfQtnS9S3aRDdigCEiotumsLfCS49FIcCr\nF45lFGPVtjNoau7e1RRna0f8X/QCDHC6D5mV2Xjn5GoUK7u3MZjoGgYYIiK6I3bWUrwQH4kwfyec\nuVCOdzeeQl1D160HgNbNvU8NnIcxfUagRFmGd06sRmZFtp4rpp6EAYaIiO6YlUyMZ6aHIba/G3Kv\n1uCfX6ehoqaxW3NFgghTAycg4b5ZaFE3Y036FziYf1TPFVNPwQBDRER3RSIWYf7EfoiL8cHVsnq8\nlXwSheX13Z4f6xGDZyOfgo3EGpuzdmDj+W+5uZe6xABDRER3TSQImD06ENNH+KOipglvJ6fhwtWa\nbs8PcOiLF2OehZedBw4XpGJ1+heo5+Ze6gQDDBER3ROCIGBCbF88/lAo6htb8M43p5BxsaLb852s\nFfi/qAUY6NwfWZU5eOfEKhTVl+ixYjJnDDBERHRPDQ/3xMKpYVBrtHh/Szp+P1fc7blyiRWeCEvE\nWN9RKG0ox7snV+NceZYeqyVzxQBDRET3XFSwCxbHh0MmFeGT7zKwLy2/23NFgghTAh7C3Pvi0aJu\nwZr0L7D/yhE9VkvmiAGGiIj0IqSPAi/NiYK9rQzJu7Ow4/CFbrUeuOZ+j2j8v6inYSe1xdbsnThZ\n/IceqyVzwwBDRER608fNHssSouDcW46dv15C8p4saDTdDzH+vX3xfPT/QiKSYHvOj2hSN+uxWjIn\nDDBERKRXrgobLEuMhreLHfanFeCTnRloUXWv9QAAuNm4YIzPcFQ1VWN33n49VkrmhAGGiIj0zsHO\nCksfi0Swd28czyzBf7amo6FJ1e35Y/s+CAer3vjl8kGUNXT/zibquRhgiIjIIGzkUvxffAQiAp3x\n56VKvPPNKdQou/eRkJVYhkcCHoZKo8L2nB/0XCmZAwYYIiIyGJlUjIXTBmBomAcuFdXi7eQ0lFU3\ndGtujFsE/Hv3RXrpWfZNIgYYIiIyLLFIhP96OBQPPdAHxRVKvJV0EgWldV3OEwQBs4KnQICArdk7\n2W7AwjHAEBGRwQmCgJkjAzFrVCCq6prxz6/TkJNf3eU8H3svDPYchML6YhwqSDVApWSqGGCIiMho\nxt/fB/Mn3IeGJjXe3XgKp3PLupwzyX88rCVy/HhxD2qbu75yQz0TAwwRERnVkDAPPDM9DADwwdYz\nSD1b1On59jI7TPAbiwZVA76/sMsQJZIJYoAhIiKjCw90xuLZEZDLxPjshz+x+/iVTs8f7hULd1s3\nHL36O67UFhioSjIlDDBERGQSgrwdsPSxKPS2k2Hj3mxsO5h7y9YDYpEYM4MmQwsttmR9d1stCqhn\nYIAhIiKT4e1qh78nRMNNYY0fU/Ow7udMqDU3f2pvqGMQwp37I7f6EvskWSAGGCIiMinODtZ4OSEa\nvm72OHy6EB9+exYtqpvfMj0taCIkIgm+zf2JfZIsDAMMERGZnF62Mrw4JxL3+SpwKrsM/9qUjqbm\njiHG2dqJfZIsFAMMERGZJGsrCZ6bGY7oEBecv1KFbYdyb3qebp+kcgNXScbCAENERCZLKhHhyUn9\n4Kawxt6T+bhYWNPhHCuxDFPb+yT9aIQqyRgYYIiIyKRJJWLMHRcCrRZYf4tNvdFuEQhgnySLwgBD\nREQm776+jhgywB2XS+qw53h+h3FBEDCzrU/SFvZJsggMMEREZBZmPRgIO2spdhy5gLKqjh2sW/sk\n/Q1F7JNkERhgiIjILNjbyBD/YCCaWzRI3pN104fXTfIf19YnaTf7JPVwDDBERGQ2Bg9wx32+CpzO\nLcfxzJIO43/1SWpkn6QejgGGiIjMhiAImDs+BFKJCN/8kg1lY0uHc9gnyTLoNcBkZWVhzJgxSE5O\nBgCcOnUKjz76KBITEzF//nxUVFQAAHbu3Inp06dj5syZ2LJliz5LIiIiM+emsMGkwX1RXd+MrQc6\nPhvm+j5Jm9knqcfSW4BRKpV44403EBsb235s7dq1WLlyJZKSkhAZGYnNmzdDqVRizZo1WLduHZKS\nkrB+/XpUVVXpqywiIuoBxt/fB17Otjjwx1VkXen4Z0aoYxDCXQbgAvsk9Vh6CzAymQyfffYZXF1d\n24998MEH8PHxgVarRXFxMdzd3ZGeno6wsDDY29tDLpcjKioKaWlp+iqLiIh6AIlYhHnjQwEAX+06\nD5W647NhpgWyT1JPprcAI5FIIJfLOxw/dOgQxo8fj7KyMkyePBllZWVwdHRsH3d0dERpaam+yiIi\noh4i0Ls3RkZ64WpZPX4+ltdh3NnaEWP6jGjtk3RpnxEqJH2SGPoXHD58OIYNG4Z3330Xn376Kby8\nvHTGu/NZpUJhA4lErK8S4eJir7f3prvDtTFNXBfT1dPX5qnp4UjPKcMPqXkYN8QfXi52OuNzFJNw\nvDgNe68cwoQBI+Fm52KkSjvq6WujbwYNMHv27EFcXBwEQcC4ceOwatUqREZGoqysrP2ckpISRERE\ndPo+lZVKvdXo4mKP0tJavb0/3TmujWniupguS1mb2aOD8NGOs3h/w0kseTQSgiDojE/2G4+1f36D\nz3/bhCcHzjNSlbosZW3uVmchz6C3Ua9atQrnzp0DAKSnp8PPzw/h4eE4c+YMampqUF9fj7S0NMTE\nxBiyLCIiMmMxIS4YGOCEzMtVOHq2qMN4e5+ksgz2SepB9HYF5uzZs1ixYgUKCgogkUiwa9cuvPnm\nm3j99dchFoshl8uxcuVKyOVyLF68GPPnz4cgCFi4cCHs7XlZjYiIukcQBCSMDcYrn/+GTftyMDDA\nCfY2Mp3xmcFTsOL4B9iSvRPLBj0HsUh/2xDIMAStGd4gr8/LbrysZ7q4NqaJ62K6LG1tdv9+GRv3\n5WDwAHf8z8R+Hca/ydyGI1d/w4ygyRjlM9QIFf7F0tbmTpnMR0hERET6MjrGG75u9jh6tgh/Xqro\nMD7JfzysJdbsk9RDMMAQEVGPIBaJ8PhDoRCE1mfDNLeodcbtZLaY4BfHPkk9BAMMERH1GL7u9oiL\n8UFJZQN+SL3UYXy4Vyw82vokXa7NN3h9dO8wwBARUY/yyDA/OPWyws/HLiO/VPejIrFIjBltfZK2\nZO1knyQzxgBDREQ9ilwmwWNjQ6DWaPFVynlobggp1/dJOsE+SWaLAYaIiHqciEBnxIS4IKegGgf/\nuNph/FqfpB3sk2S2GGCIiKhHenRMMKytxNh6IBdVdU06Y+yTZP4YYIiIqEdS2FthxogANDSpsOGX\njk/gHes7Cg5WvfHLlUMoayg3QoV0NxhgiIioxxoR6YVAr944kVmC9JwynTErsQxTAydApVFhe/YP\nRqqQ7hQDDBER9VgiQcDc8SEQiwQk7z6PxmaVzni0azgCevshvSwD5yqyjFQl3QkGGCIi6tG8Xeww\n/v4+KK9pwo7DF3XGrvVJEiBga9ZOqDXqW7wLmRoGGCIi6vEmDe4LV4U19py4grwi3R5EPvaeGOL5\nNxQpS3CoINVIFdLtYoAhIqIeTyYVY+64EGi1wLqfM6HWaHTG2SfJ/DDAEBGRRejX1xGx/d2RV1yL\nvSd02wjYyWwx0W9sW5+kFCNVSLeDAYaIiCxG/OhA2FlL8e3hiyivbtQZG+b1QFufpOPsk2QGGGCI\niMhi9LKRYdaoQDS1qJG8+7xOLyT2STIvDDBERGRRhoS5I7SPA9Jzy3HyfKnOWKhjECLYJ8ksMMAQ\nEZFFEQQBc8eHQiIW4etfsqBs1H02zNTr+iQ1qppu8S5kbAwwRERkcdwdbTBpsC+q65qx7WCuzpiz\ntSPirvVJyttvpAqpKwwwRERkkR56wBeezrY4cKoAOQXVOmNxbX2S9l4+iFIl+ySZIgYYIiKySBKx\nqPXZMADWp2RCpf7r2TDtfZK0amzPYZ8kU8QAQ0REFivYxwEjIjxRUFqPXb9f1hm71ifpNPskmSQG\nGCIismgzRgagl60M3x25hOJKZftx9kkybQwwRERk0WzlUswZEwSVWoOvUnSfDeNj74khXvejSFmC\ngwVHjVgl3YgBhoiILN6gUFeE+TvhXF4lUjOKdMYm+Y2DtcQaP13cwz5JJoQBhoiILJ4gCEgcGwyZ\nVISNe3NQq2xuH2OfJNPEAENERATA2cEajwz1R11DCzbvz9EZ0+mTVMM+SaaAAYaIiKhN3CBv9HG1\nw69ninAur7L9uFgkxsygKa19krK/Y58kE8AAQ0RE1EYsEmHeQ6EQBOCrlEy0qP668yjEMbCtT1Ie\njhefMmKVBDDAEBER6fDz6IXR0d4ormzAD0fzdMamBU6EVCTBjhz2STI2BhgiIqIbTB3mD4W9FX46\nloeCsvr2407WjhjTZwSqm2vYJ8nIGGCIiIhuYG0lQcLYYKg1WnyVkgnNdXtexvqOgsLKgX2SjIwB\nhoiI6CYig1wQHeyC7PxqHEq/2n5cJpZhauDD7JNkZAwwREREtzAnLhhymRhb9ueiuu6vPS9RruEI\ndGjrk1TOPknGwABDRER0Cwp7K0wfEYCGJhW+2ZvdflwQBMwIauuTlM0+ScbAAENERNSJUZFe8Pfs\nhd/PleB07l97XtgnybgYYIiIiDohEgmYNz4UYpGApF3n0dT819WWSX7jYCOxxo8X2CfJ0BhgiIiI\nuuDjaodxf+uD8ppGfHfkYvtxO5ktJviPRaO6ETtz2SfJkBhgiIiIumHykL5wcZBj9/EruFxc2358\nmOcD8LR1R2oh+yQZEgMMERFRN8ikYswdFwqNVot1P2dCo2l9NoxYJMaMoMnsk2RgDDBERETd1N/P\nEQ/0d8OlolrsTfvraktrn6Qw9kkyIAYYIiKi2zD7wSDYyiXYfugCKmoa249PC5zAPkkGxABDRER0\nG3rZyjBrVCCamtVI3p3V/pFRa5+kkahursGuvH1GrrLnY4AhIiK6TUMHeiDExwF/5JQhLau0/fhY\n35FQWDlg3+VD7JOkZwwwREREt0kQBMwdHwKJWMDXe7KgbFQBuNYnaQJUWjW25Xxv5Cp7NgYYIiKi\nO+DhZIsJsX1RVdeM7Ydy249HuQ5EkIM/zpT9yT5JesQAQ0REdIcefsAXHk422J9WgNyCagDX+iRN\nhgABW9gnSW8YYIiIiO6QVCLCvPGh0AJYn5IJlVoDAPC298RQrwdQrCzBwfxfjVtkD8UAQ0REdBeC\nfRwwPNwD+aX12H38Svvxif5jW/skXfyFfZL0gAGGiIjoLs0cFYheNlLsPHIRJVUNAAA7Kfsk6RMD\nDBER0V2ylUsxe0wQmlUaJO063/5sGPZJ0h8GGCIionvg/vvcMMDPERkXK3Dsz2IArX2SZga39kna\nnMU+SfcSAwwREdE9IAgCEseFQCYRYePebNQ1tAAAghWBiHQJw8Ua9km6lxhgiIiI7hEXB2tMGeqH\nWmULNu/PaT8+NXAi+yTdYwwwRERE91DcIB94u9jhyOlCnL9cCQBwslawT9I9xgBDRER0D0nEIjz+\nUCgEAOtTzqNF1fpsmOv7JJ0oSMfF6jxcqb2KovoSlDdUoKa5Fg2qBrRoVNwr0w0SYxdARETU0/h7\n9sKD0d7YezIfP6ZewiPD/Nv7JH2Z8TVWHvm40/kCBEhEEkjb/pGIpJCKpTqvZdeOXztPLG2bI207\nRwKZSNrhHKnOvBtei6WQCGIIgmCY/1B3gQGGiIhID6YN90daVil+OpaH+/u5wcPJFlGuAyEIAqq1\nlaiurUeLpgUtGhVUGlXbv7egRa3qeEyjQlNzE5o1LWhRt0AL/V6h6TwkXfdaJEWIYxBiPWL0Ws/N\nMMAQERHpgbWVBI/FBWP19jNYn3IeL86JhEgQEOU6EC4u9igtrb3j91Zr1GhpCzh/BZ3W0NOs1j3W\nISSpbwxNt56v0qjQrGlBU0tT+zkarUanlmJlac8LMFlZWViwYAEef/xxJCQkoLCwEC+//DJUKhUk\nEgneeecduLi4YOfOnVi/fj1EIhFmzZqFmTNn6rMsIiIig4gKdkFkkDNOZZfhyOlCDA/3vCfvKxaJ\nIRaJIYfVPXm/23EtPF0LOXYyO4PXAOhxE69SqcQbb7yB2NjY9mPvv/8+Zs2aheTkZMTFxWHt2rVQ\nKpVYs2YN1q1bh6SkJKxfvx5VVVX6KouIiMigHosLhlwmxpb9OaiubzZ2OXdNLBJDLrGCncwWCrkD\npCLjfJijtwAjk8nw2WefwdXVtf3Y8uXLMW7cOACAQqFAVVUV0tPTERYWBnt7e8jlckRFRSEtLU1f\nZRERERmUYy85pg33R32jChv3Zhu7nB5DbwFGIpFALpfrHLOxsYFYLIZarcaGDRswadIklJWVwdHR\nsf0cR0dHlJaW6qssIiIig3swyht+Hr3w25/FOHOh3Njl9AgGv+6jVqvx4osv4oEHHkBsbCy+//57\nnfHu3PuuUNhAIhHrq0S4uNjr7b3p7nBtTBPXxXRxbUzH83Oi8Ny/D2LDL9kYHOnNtblLBg8wL7/8\nMnx9fbFo0SIAgKurK8rKytrHS0pKEBER0el7VFYq9Vbf3e4MJ/3h2pgmrovp4tqYFjupCGMH+SDl\nt8tIWJ4CGysJbKwksJa3frXR+Sptf2193di1cyViy3gObWchz6ABZufOnZBKpXj22Wfbj4WHh+OV\nV15BTU0NxGIx0tLSsGzZMkOWRUREZBCtfZKaUVjRgNr6JlTVNeFqeT1u98G7MqmoLexIdcLPzcLO\nzQKRVGL+AUjQ6ul5xWfPnsWKFStQUFAAiUQCNzc3lJeXw8rKCnZ2rbdcBQQE4LXXXkNKSgq++OIL\nCIKAhIQETJ48udP31uffKPg3FtPFtTFNXBfTxbUxXdevjVarRWOzGg1NKigbVVC2f22BslHVerzD\nmAoN173W3OYf5VKJSDf4tIedWwei679K9biN43qdXYHRW4DRJwYYy8S1MU1cF9PFtTFd93JttFot\nmlrUaGhSQ9nY0knYuXUgUmtuLwpIxKL2QBMZ5IyZowLvyfdyI5P5CImIiIjuLUEQIJdJIJdJoLC/\n/QfbabVaNKs0HcPODVd5bvq1SYWy6kY9fFddY4AhIiKyYIIgwEoqhpVUfEcByFjMfxcPERERWRwG\nGCIiIjI7DDBERERkdhhgiIiIyOwwwBAREZHZYYAhIiIis8MAQ0RERGaHAYaIiIjMDgMMERERmR0G\nGCIiIjI7DDBERERkdhhgiIiIyOwwwBAREZHZEbRardbYRRARERHdDl6BISIiIrPDAENERERmhwGG\niIiIzA4DDBEREZkdBhgiIiIyOwwwREREZHYYYK7z1ltvIT4+HrNnz8bp06eNXQ5dZ+XKlYiPj8f0\n6dOxe/duY5dD5lUOLAAABhtJREFU12lsbMSYMWOwfft2Y5dC19m5cycmT56MadOm4cCBA8YuhwDU\n19dj0aJFSExMxOzZs3H48GFjl2TWJMYuwFT8/vvvyMvLw6ZNm5Cbm4tly5Zh06ZNxi6LABw7dgzZ\n2dnYtGkTKisrMXXqVIwdO9bYZVGbjz76CL179zZ2GXSdyspKrFmzBtu2bYNSqcSqVaswcuRIY5dl\n8b799lv4+flh8eLFKC4uxrx585CSkmLssswWA0yb1NRUjBkzBgAQEBCA6upq1NXVwc7OzsiV0aBB\ngzBw4EAAQK9evdDQ0AC1Wg2xWGzkyig3Nxc5OTn8w9HEpKamIjY2FnZ2drCzs8Mbb7xh7JIIgEKh\nwPnz5wEANTU1UCgURq7IvPEjpDZlZWU6v5kcHR1RWlpqxIroGrFYDBsbGwDA1q1bMXz4cIYXE7Fi\nxQosXbrU2GXQDfLz89HY2Iinn34ac+bMQWpqqrFLIgATJkzA1atXERcXh4SEBLz00kvGLsms8QrM\nLbDDgun55ZdfsHXrVnz55ZfGLoUA7NixAxEREfDx8TF2KXQTVVVVWL16Na5evYq5c+di//79EATB\n2GVZtO+++w6enp744osvkJmZiWXLlnHv2F1ggGnj6uqKsrKy9tclJSVwcXExYkV0vcOHD+Pjjz/G\n559/Dnt7e2OXQwAOHDiAK1eu4MCBAygqKoJMJoO7uzsGDx5s7NIsnpOTEyIjIyGRSNCnTx/Y2tqi\noqICTk5Oxi7NoqWlpWHo0KEAgNDQUJSUlPDj8LvAj5DaDBkyBLt27QIAZGRkwNXVlftfTERtbS1W\nrlyJTz75BA4ODsYuh9q8//772LZtGzZv3oyZM2diwYIFDC8mYujQoTh27Bg0Gg0qKyuhVCq538IE\n+Pr6Ij09HQBQUFAAW1tbhpe7wCswbaKiotC/f3/Mnj0bgiBg+fLlxi6J2vz000+orKzEc889135s\nxYoV8PT0NGJVRKbLzc0N48aNw6xZswAAr7zyCkQi/n3V2OLj47Fs2TIkJCRApVLhtddeM3ZJZk3Q\ncrMHERERmRlGciIiIjI7DDBERERkdhhgiIiIyOwwwBAREZHZYYAhIiIis8MAQ0R6lZ+fjwEDBiAx\nMbG9C+/ixYtRU1PT7fdITEyEWq3u9vmPPvoofvvttzspl4jMBAMMEemdo6MjkpKSkJSUhI0bN8LV\n1RUfffRRt+cnJSXxgV9EpIMPsiMigxs0aBA2bdqEzMxMrFixAiqVCi0tLXj11VfRr18/JCYmIjQ0\nFOfOncP69evRr18/ZGRkoLm5Gf/4xz9QVFQElUqFKVOmYM6cOWhoaMDzzz+PyspK+Pr6oqmpCQBQ\nXFyMF154AQDQ2NiI+Ph4zJgxw5jfOhHdIwwwRGRQarUae/bsQXR0NJYsWYI1a9agT58+HZrb2djY\nIDk5WWduUlISevXqhffeew+NjY14+OGHMWzYMBw9ehRyuRybNm1CSUkJRo8eDQD4+eef4e/vj9df\nfx1NTU3YsmWLwb9fItIPBhgi0ruKigokJiYCADQaDWJiYjB9+nR88MEH+Pvf/95+Xl1dHTQaDYDW\n9h43Sk9Px7Rp0wAAcrkcAwYMQEZGBrKyshAdHQ2gtTGrv78/AGDYsGHYsGEDli5dihEjRiA+Pl6v\n3ycRGQ4DDBHp3bU9MNerra2FVCrtcPwaqVTa4ZggCDqvtVotBEGAVqvV6fVzLQQFBATgxx9/xPHj\nx5GSkoL169dj48aNd/vtEJEJ4CZeIjIKe3t7eHt74+DBgwCAixcvYvXq1Z3OCQ8Px+HDhwEASqUS\nGRkZ6N+/PwICAnDq1CkAQGFhIS5evAgA+P7773HmzBkMHjwYy5cvR2FhIVQqlR6/KyIyFF6BISKj\nWbFiBd588018+umnUKlUWLp0aafnJyYm4h//+Acee+wxNDc3Y8GCBfD29saUKVOwb98+zJkzB97e\n3ggLCwMABAYGYvny5ZDJZNBqtXjiiScgkfB/e0Q9AbtRExERkdnhR0hERERkdhhgiIiIyOwwwBAR\nEZHZYYAhIiIis8MAQ0RERGaHAYaIiIjMDgMMERERmR0GGCIiIjI7/x/FibkSuQdbcQAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "c6diezCSeH4Y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Evaluate on Test Data\n", + "\n", + "**Confirm that your validation performance results hold up on test data.**\n", + "\n", + "Once you have a model you're happy with, evaluate it on test data to compare that to validation performance.\n", + "\n", + "Reminder, the test data set is located [here](https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv)." + ] + }, + { + "metadata": { + "id": "icEJIl5Vp51r", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "61356a86-4e08-4c2f-9e8d-0cf2520ab1ce" + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "# YOUR CODE HERE\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_testing_input_fn = lambda: my_input_fn(test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Final RMSE (on test data): 122.78\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "vvT2jDWjrKew", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below to see a possible solution." + ] + }, + { + "metadata": { + "id": "FyDh7Qy6rQb0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Similar to what the code at the top does, we just need to load the appropriate data file, preprocess it and call predict and mean_squared_error.\n", + "\n", + "Note that we don't have to randomize the test data, since we will use all records." + ] + }, + { + "metadata": { + "id": "vhb0CtdvrWZx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "california_housing_test_data = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_test.csv\", sep=\",\")\n", + "\n", + "test_examples = preprocess_features(california_housing_test_data)\n", + "test_targets = preprocess_targets(california_housing_test_data)\n", + "\n", + "predict_testing_input_fn = lambda: my_input_fn(test_examples, \n", + " test_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + "test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn)\n", + "test_predictions = np.array([item['predictions'][0] for item in test_predictions])\n", + "\n", + "root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(test_predictions, test_targets))\n", + "\n", + "print(\"Final RMSE (on test data): %0.2f\" % root_mean_squared_error)" + ], + "execution_count": 0, + "outputs": [] + } + ] +} \ No newline at end of file From 9d9fa47f56d50f7f21dda3cbf038dc8872427799 Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 14:05:31 +0530 Subject: [PATCH 10/11] Created using Colaboratory --- improving_neural_net_performance.ipynb | 1858 ++++++++++++++++++++++++ 1 file changed, 1858 insertions(+) create mode 100644 improving_neural_net_performance.ipynb diff --git a/improving_neural_net_performance.ipynb b/improving_neural_net_performance.ipynb new file mode 100644 index 0000000..aff4f7d --- /dev/null +++ b/improving_neural_net_performance.ipynb @@ -0,0 +1,1858 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "improving_neural_net_performance.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "jFfc3saSxg6t", + "FSPZIiYgyh93", + "GhFtWjQRzD2l", + "P8BLQ7T71JWd" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "JndnmDMp66FL" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "cellView": "both", + "colab_type": "code", + "id": "hMqWDc_m6rUC", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "eV16J6oUY-HN" + }, + "cell_type": "markdown", + "source": [ + "# Improving Neural Net Performance" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "0Rwl1iXIKxkm" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objective:** Improve the performance of a neural network by normalizing features and applying various optimization algorithms\n", + "\n", + "**NOTE:** The optimization methods described in this exercise are not specific to neural networks; they are effective means to improve most types of models." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "lBPTONWzKxkn" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, we'll load the data." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "VtYVuONUKxko", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import math\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "california_housing_dataframe = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", + "\n", + "california_housing_dataframe = california_housing_dataframe.reindex(\n", + " np.random.permutation(california_housing_dataframe.index))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "B8qC-jTIKxkr", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def preprocess_features(california_housing_dataframe):\n", + " \"\"\"Prepares input features from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the features to be used for the model, including\n", + " synthetic features.\n", + " \"\"\"\n", + " selected_features = california_housing_dataframe[\n", + " [\"latitude\",\n", + " \"longitude\",\n", + " \"housing_median_age\",\n", + " \"total_rooms\",\n", + " \"total_bedrooms\",\n", + " \"population\",\n", + " \"households\",\n", + " \"median_income\"]]\n", + " processed_features = selected_features.copy()\n", + " # Create a synthetic feature.\n", + " processed_features[\"rooms_per_person\"] = (\n", + " california_housing_dataframe[\"total_rooms\"] /\n", + " california_housing_dataframe[\"population\"])\n", + " return processed_features\n", + "\n", + "def preprocess_targets(california_housing_dataframe):\n", + " \"\"\"Prepares target features (i.e., labels) from California housing data set.\n", + "\n", + " Args:\n", + " california_housing_dataframe: A Pandas DataFrame expected to contain data\n", + " from the California housing data set.\n", + " Returns:\n", + " A DataFrame that contains the target feature.\n", + " \"\"\"\n", + " output_targets = pd.DataFrame()\n", + " # Scale the target to be in units of thousands of dollars.\n", + " output_targets[\"median_house_value\"] = (\n", + " california_housing_dataframe[\"median_house_value\"] / 1000.0)\n", + " return output_targets" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "Ah6LjMIJ2spZ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1209 + }, + "outputId": "216c08ea-ee8c-4060-e6a8-250455d110a5" + }, + "cell_type": "code", + "source": [ + "# Choose the first 12000 (out of 17000) examples for training.\n", + "training_examples = preprocess_features(california_housing_dataframe.head(12000))\n", + "training_targets = preprocess_targets(california_housing_dataframe.head(12000))\n", + "\n", + "# Choose the last 5000 (out of 17000) examples for validation.\n", + "validation_examples = preprocess_features(california_housing_dataframe.tail(5000))\n", + "validation_targets = preprocess_targets(california_housing_dataframe.tail(5000))\n", + "\n", + "# Double-check that we've done the right thing.\n", + "print(\"Training examples summary:\")\n", + "display.display(training_examples.describe())\n", + "print(\"Validation examples summary:\")\n", + "display.display(validation_examples.describe())\n", + "\n", + "print(\"Training targets summary:\")\n", + "display.display(training_targets.describe())\n", + "print(\"Validation targets summary:\")\n", + "display.display(validation_targets.describe())" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 12000.0 12000.0 12000.0 12000.0 12000.0 \n", + "mean 35.6 -119.6 28.7 2631.7 537.3 \n", + "std 2.1 2.0 12.6 2151.2 417.6 \n", + "min 32.5 -124.3 1.0 2.0 1.0 \n", + "25% 33.9 -121.8 18.0 1453.0 297.0 \n", + "50% 34.2 -118.5 29.0 2123.0 431.0 \n", + "75% 37.7 -118.0 37.0 3146.0 647.0 \n", + "max 41.9 -114.6 52.0 32627.0 6445.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 12000.0 12000.0 12000.0 12000.0 \n", + "mean 1425.8 499.9 3.9 2.0 \n", + "std 1149.8 380.3 1.9 1.1 \n", + "min 6.0 1.0 0.5 0.0 \n", + "25% 788.0 281.0 2.6 1.5 \n", + "50% 1165.0 407.0 3.5 1.9 \n", + "75% 1727.0 606.0 4.7 2.3 \n", + "max 35682.0 6082.0 15.0 55.2 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count12000.012000.012000.012000.012000.012000.012000.012000.012000.0
mean35.6-119.628.72631.7537.31425.8499.93.92.0
std2.12.012.62151.2417.61149.8380.31.91.1
min32.5-124.31.02.01.06.01.00.50.0
25%33.9-121.818.01453.0297.0788.0281.02.61.5
50%34.2-118.529.02123.0431.01165.0407.03.51.9
75%37.7-118.037.03146.0647.01727.0606.04.72.3
max41.9-114.652.032627.06445.035682.06082.015.055.2
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation examples summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " latitude longitude housing_median_age total_rooms total_bedrooms \\\n", + "count 5000.0 5000.0 5000.0 5000.0 5000.0 \n", + "mean 35.6 -119.5 28.4 2672.3 544.4 \n", + "std 2.1 2.0 12.6 2247.5 430.7 \n", + "min 32.5 -124.3 2.0 11.0 3.0 \n", + "25% 33.9 -121.8 18.0 1478.8 296.0 \n", + "50% 34.2 -118.5 28.5 2143.5 439.0 \n", + "75% 37.7 -118.0 37.0 3159.5 653.0 \n", + "max 42.0 -114.3 52.0 37937.0 5471.0 \n", + "\n", + " population households median_income rooms_per_person \n", + "count 5000.0 5000.0 5000.0 5000.0 \n", + "mean 1438.7 504.4 3.9 2.0 \n", + "std 1143.2 394.4 1.9 1.2 \n", + "min 3.0 3.0 0.5 0.1 \n", + "25% 793.0 282.0 2.6 1.5 \n", + "50% 1171.0 414.0 3.6 1.9 \n", + "75% 1705.5 602.0 4.8 2.3 \n", + "max 16122.0 5189.0 15.0 41.3 " + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomerooms_per_person
count5000.05000.05000.05000.05000.05000.05000.05000.05000.0
mean35.6-119.528.42672.3544.41438.7504.43.92.0
std2.12.012.62247.5430.71143.2394.41.91.2
min32.5-124.32.011.03.03.03.00.50.1
25%33.9-121.818.01478.8296.0793.0282.02.61.5
50%34.2-118.528.52143.5439.01171.0414.03.61.9
75%37.7-118.037.03159.5653.01705.5602.04.82.3
max42.0-114.352.037937.05471.016122.05189.015.041.3
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Training targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 12000.0\n", + "mean 207.6\n", + "std 116.1\n", + "min 15.0\n", + "25% 120.0\n", + "50% 180.4\n", + "75% 265.2\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count12000.0
mean207.6
std116.1
min15.0
25%120.0
50%180.4
75%265.2
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Validation targets summary:\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " median_house_value\n", + "count 5000.0\n", + "mean 206.6\n", + "std 115.8\n", + "min 15.0\n", + "25% 118.8\n", + "50% 180.4\n", + "75% 264.5\n", + "max 500.0" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
median_house_value
count5000.0
mean206.6
std115.8
min15.0
25%118.8
50%180.4
75%264.5
max500.0
\n", + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "NqIbXxx222ea" + }, + "cell_type": "markdown", + "source": [ + "## Train the Neural Network\n", + "\n", + "Next, we'll train the neural network." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "6k3xYlSg27VB", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns(input_features):\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Args:\n", + " input_features: The names of the numerical input features to use.\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " return set([tf.feature_column.numeric_column(my_feature)\n", + " for my_feature in input_features])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "De9jwyy4wTUT", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None):\n", + " \"\"\"Trains a neural network model.\n", + " \n", + " Args:\n", + " features: pandas DataFrame of features\n", + " targets: pandas DataFrame of targets\n", + " batch_size: Size of batches to be passed to the model\n", + " shuffle: True or False. Whether to shuffle the data.\n", + " num_epochs: Number of epochs for which data should be repeated. None = repeat indefinitely\n", + " Returns:\n", + " Tuple of (features, labels) for next data batch\n", + " \"\"\"\n", + " \n", + " # Convert pandas data into a dict of np arrays.\n", + " features = {key:np.array(value) for key,value in dict(features).items()} \n", + " \n", + " # Construct a dataset, and configure batching/repeating.\n", + " ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " # Shuffle the data, if specified.\n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " features, labels = ds.make_one_shot_iterator().get_next()\n", + " return features, labels" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "W-51R3yIKxk4", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_regression_model(\n", + " my_optimizer,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network regression model.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " as well as a plot of the training and validation loss over time.\n", + " \n", + " Args:\n", + " my_optimizer: An instance of `tf.train.Optimizer`, the optimizer to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for training.\n", + " training_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for training.\n", + " validation_examples: A `DataFrame` containing one or more columns from\n", + " `california_housing_dataframe` to use as input features for validation.\n", + " validation_targets: A `DataFrame` containing exactly one column from\n", + " `california_housing_dataframe` to use as target for validation.\n", + " \n", + " Returns:\n", + " A tuple `(estimator, training_losses, validation_losses)`:\n", + " estimator: the trained `DNNRegressor` object.\n", + " training_losses: a `list` containing the training loss values taken during training.\n", + " validation_losses: a `list` containing the validation loss values taken during training.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " steps_per_period = steps / periods\n", + " \n", + " # Create a DNNRegressor object.\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " dnn_regressor = tf.estimator.DNNRegressor(\n", + " feature_columns=construct_feature_columns(training_examples),\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer\n", + " )\n", + " \n", + " # Create input functions.\n", + " training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " batch_size=batch_size)\n", + " predict_training_input_fn = lambda: my_input_fn(training_examples, \n", + " training_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + " predict_validation_input_fn = lambda: my_input_fn(validation_examples, \n", + " validation_targets[\"median_house_value\"], \n", + " num_epochs=1, \n", + " shuffle=False)\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"RMSE (on training data):\")\n", + " training_rmse = []\n", + " validation_rmse = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " dnn_regressor.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " # Take a break and compute predictions.\n", + " training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn)\n", + " training_predictions = np.array([item['predictions'][0] for item in training_predictions])\n", + " \n", + " validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn)\n", + " validation_predictions = np.array([item['predictions'][0] for item in validation_predictions])\n", + " \n", + " # Compute training and validation loss.\n", + " training_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(training_predictions, training_targets))\n", + " validation_root_mean_squared_error = math.sqrt(\n", + " metrics.mean_squared_error(validation_predictions, validation_targets))\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, training_root_mean_squared_error))\n", + " # Add the loss metrics from this period to our list.\n", + " training_rmse.append(training_root_mean_squared_error)\n", + " validation_rmse.append(validation_root_mean_squared_error)\n", + " print(\"Model training finished.\")\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"RMSE\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"Root Mean Squared Error vs. Periods\")\n", + " plt.tight_layout()\n", + " plt.plot(training_rmse, label=\"training\")\n", + " plt.plot(validation_rmse, label=\"validation\")\n", + " plt.legend()\n", + "\n", + " print(\"Final RMSE (on training data): %0.2f\" % training_root_mean_squared_error)\n", + " print(\"Final RMSE (on validation data): %0.2f\" % validation_root_mean_squared_error)\n", + "\n", + " return dnn_regressor, training_rmse, validation_rmse" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "code", + "id": "KueReMZ9Kxk7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 797 + }, + "outputId": "a7fbd5ad-d212-4fbc-f2cc-affb71a76ca6" + }, + "cell_type": "code", + "source": [ + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0007),\n", + " steps=5000,\n", + " batch_size=70,\n", + " hidden_units=[10, 10],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 141.30\n", + " period 01 : 132.06\n", + " period 02 : 120.77\n", + " period 03 : 112.41\n", + " period 04 : 108.40\n", + " period 05 : 107.49\n", + " period 06 : 104.89\n", + " period 07 : 103.65\n", + " period 08 : 104.84\n", + " period 09 : 102.61\n", + "Model training finished.\n", + "Final RMSE (on training data): 102.61\n", + "Final RMSE (on validation data): 101.84\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlUFFfaBvCnuptmbZAdXBBBBEVw\nRcVdRMF9Q+ICMcaYSdQkkzijyTcmMxmzmT0aNdFJNIImijtuuMU9ahSjoiwqIorIvu901/eHkx5J\nQ0eUpht4fudwDl33raq3+8Lh5datW4IoiiKIiIiImhCJvhMgIiIiqi8WMERERNTksIAhIiKiJocF\nDBERETU5LGCIiIioyWEBQ0RERE2OTN8JEBkyT09PuLi4QCqVAgCUSiX8/PywZMkSmJmZPfFxt2zZ\ngtDQUI3t27dvx1tvvYVvvvkGw4YNU28vLy9H//79MXLkSHz00UdPfN7HlZqaig8++AC3b98GAJia\nmmLBggUIDAzU+bnrY9WqVUhNTdX4TM6dO4c5c+agbdu2GvscOHCgsdJ7Kvfu3cPw4cPRoUMHAIAo\nirCzs8M//vEPdOnSpV7H+uyzz9C6dWtMnz79sffZtWsXtm7dioiIiHqdi6ixsIAh+hMRERFwcnIC\nAFRWVuL111/Ht99+i9dff/2JjpeVlYX//Oc/tRYwAODs7Iw9e/bUKGB+/vlnWFpaPtH5nsTf/vY3\nTJgwAd988w0A4PLly5g1axb2798PZ2fnRsvjaTg7OzeZYqUuUqm0xnvYt28f5s+fj5iYGMjl8sc+\nzsKFC3WRHpFe8RISUT3I5XIMGjQI8fHxAICKigq88847CAoKwqhRo/DRRx9BqVQCABISEjBt2jQE\nBwdjwoQJOHnyJABg2rRpuH//PoKDg1FZWalxjp49e+LcuXMoKytTb9u3bx8GDBigfl1ZWYn33nsP\nQUFBCAgIUBcaAHDp0iVMnjwZwcHBGD16NM6cOQPg4X/0AwcOxIYNGzBu3DgMGjQI+/btq/V9JiUl\noVu3burX3bp1Q0xMjLqQ+/rrrzFkyBBMnDgRa9asQUBAAADgzTffxKpVq9T7Pfr6z/L64IMPEBYW\nBgC4ePEipkyZghEjRiA0NBR3794F8HAk6q9//SuGDRuGsLAwPHjw4E96rHbbt2/HggULMGvWLHz8\n8cc4d+4cpk2bhtdee039x37//v0YO3YsgoOD8eyzzyI1NRUAsGLFCixZsgQhISFYv359jeO+9tpr\n+P7779Wv4+PjMXDgQKhUKnzxxRcICgpCUFAQnn32WWRkZNQ779GjR6O8vBzJyckAgM2bNyM4OBgB\nAQF44403UF5eDuDh5/7hhx9i3Lhx2L9/f41+qOvnUqVS4d///jeGDh2KkJAQJCQkqM97/vx5TJo0\nCaNHj8aoUaOwf//+eudO1OBEIqpTp06dxPT0dPXr/Px8cebMmeKqVatEURTFb7/9Vpw7d65YVVUl\nlpWViVOmTBF37twpKpVKcdSoUWJ0dLQoiqJ45coV0c/PTywqKhLPnj0rBgYG1nq+bdu2iYsXLxb/\n9re/qfctKioShw8fLkZFRYmLFy8WRVEUv/76a3HWrFliRUWFWFJSIk6cOFE8evSoKIqiOHbsWHHP\nnj2iKIrijh071Oe6e/eu2KVLFzEiIkIURVHct2+fOGLEiFrzeOWVV8Rhw4aJP/zwg3jz5s0abYmJ\niWLv3r3FzMxMsaqqSnz55ZfFYcOGiaIoiosXLxZXrlypjn30tba8vL29xe3bt6vfr5+fn3jq1ClR\nFEUxOjpanDRpkiiKohgZGSnOnDlTrKqqEnNzc8Vhw4apP5NHafuMf/+cu3fvLt6+fVsd7+PjI545\nc0YURVFMS0sTe/XqJaakpIiiKIrfffedOGvWLFEURXH58uXiwIEDxZycHI3j7t27V5w5c6b69Vdf\nfSUuXbpUTEpKEkeOHClWVlaKoiiKGzZsEHfs2FFnfr9/Lp07d9bY7ufnJ966dUv89ddfRX9/f/HB\ngweiKIri22+/LX700UeiKD783MeNGyeWl5erX69cuVLrz+WxY8fEkSNHisXFxWJZWZkYEhIihoWF\niaIoipMnTxbPnTsniqIo3r59W3zjjTe05k7UGDgCQ/QnwsPDERwcjOHDh2P48OHo168f5s6dCwA4\nduwYQkNDIZPJYGJignHjxuH06dO4d+8esrOzMWbMGACAj48PWrdujatXrz7WOceMGYM9e/YAAA4f\nPoxhw4ZBIvnfr+vPP/+MGTNmQC6Xw8zMDBMmTMDBgwcBADt37sSoUaMAAL169VKPXgBAdXU1Jk+e\nDADw9vbG/fv3az3/J598gpkzZyI6Ohpjx45FQEAAfvzxRwAPR0f8/Pxgb28PmUyGsWPHPtZ70pZX\nVVUVRowYoT6+o6OjesRp7NixSE1Nxf3793HhwgWMGDECMpkM1tbWNS6z/VF6ejqCg4NrfD06V8bV\n1RWurq7q1yYmJvD39wcAnD59Gn379kX79u0BAFOnTsW5c+dQXV0N4OGIlI2NjcY5hw4diuvXryM/\nPx8AcOjQIQQHB8PS0hK5ubmIjo5GQUEBwsPDMXHixMf63H4niiI2b94MR0dHuLq64ujRoxg9ejQc\nHR0BANOnT1f/DACAv78/jI2NaxxD28/lr7/+iiFDhsDc3BwmJibqvgIAW1tb7Ny5E7du3YKrqys+\n++yzeuVOpAucA0P0J36fA5Obm6u+/CGTPfzVyc3NhZWVlTrWysoKOTk5yM3NhUKhgCAI6rbf/4jZ\n2dn96TkHDBiAJUuWID8/H3v37sW8efPUE2oBoKioCB9++CE+//xzAA8vKfn6+gIAoqOjsWHDBpSU\nlEClUkF85HFnUqlUPflYIpFApVLVen5jY2PMmTMHc+bMQWFhIQ4cOIAPPvgAbdu2RUFBQY35OLa2\ntn/6fh4nLwsLCwBAYWEh7t69i+DgYHW7XC5Hbm4uCgoKoFAo1NstLS1RUlJS6/n+bA7Mo/32x9d5\neXk13qNCoYAoisjLy6t139+ZmZmhf//+OHbsGHr16oXCwkL06tULgiBgxYoV+P7777F06VL4+fnh\n3Xff/dP5REqlUv05iKKIjh07YtWqVZBIJCgqKsKhQ4dw6tQpdXtVVVWd7w+A1p/LgoICODg41Nj+\nuw8++ACrV6/G7NmzYWJigjfeeKNG/xDpAwsYosdkY2OD8PBwfPLJJ1i9ejUAwM7OTv3fNgDk5+fD\nzs4Otra2KCgogCiK6j8W+fn5j/3H3sjICMOGDcPOnTtx584d9OjRo0YB4+DggOeff15jBCIjIwNL\nlixBVFQUOnfujJSUFAQFBdXrfebm5iI+Pl49AmJpaYnQ0FCcPHkSSUlJUCgUKCoqqhH/uz8WRQUF\nBfXOy8HBAW5ubti+fbtGm6WlZZ3nbki2tra4dOmS+nVBQQEkEgmsra3/dN+goCAcOnQIeXl5CAoK\nUvd/v3790K9fP5SWlmLZsmX49NNP/3Qk44+TeB/l4OCASZMmYfHixfV6X3X9XGr7bO3s7PD222/j\n7bffxqlTp/DKK69g0KBBMDc3f+xzEzU0XkIiqofZs2fj0qVLOH/+PICHlwy2bt0KpVKJ0tJS7Nq1\nC0OGDEHbtm3h5OSkniQbGxuL7Oxs+Pr6QiaTobS0VH05oi5jxozB2rVra711efjw4YiKioJSqYQo\nili1ahVOnDiB3NxcmJmZwc3NDdXV1di8eTMA1DlKUZvy8nK8+uqr6smdAHDnzh1cvnwZvXv3Ro8e\nPXDhwgXk5uaiuroaO3fuVMfZ29urJ3/evXsXsbGxAFCvvLp164asrCxcvnxZfZy///3vEEUR3bt3\nx9GjR6FUKpGbm4sTJ0489vuqjwEDBuDChQvqy1w//fQTBgwYoB5502bYsGG4dOkSDh8+rL4Mc+rU\nKbz77rtQqVQwMzODl5dXjVGQJxEQEICDBw+qC43Dhw9jzZo1WvfR9nPZo0cPnDp1CmVlZSgrK1MX\nTlVVVQgPD0dmZiaAh5ceZTJZjUuaRPrAERiierCwsMCLL76IZcuWYevWrQgPD8fdu3cxZswYCIKA\n4OBgjBo1CoIg4PPPP8c///lPfP311zA1NcVXX30FMzMzeHp6wsrKCgMGDMCOHTvQunXrWs/Vp08f\nCIKA0aNHa7TNmDED9+7dw5gxYyCKIrp27YpZs2bBzMwMgwcPRlBQEGxtbfHmm28iNjYW4eHhWL58\n+WO9x9atW2P16tVYvnw53nvvPYiiCAsLC7z11lvqO5OeeeYZTJo0CdbW1hg5ciRu3LgBAAgNDcWC\nBQswcuRIdOnSRT3K4uXl9dh5mZiYYPny5Vi6dClKSkpgZGSE1157DYIgIDQ0FBcuXEBgYCBat26N\nwMDAGqMGj/p9Dswfffzxx3/6GTg5OeG9997DvHnzUFVVhbZt22Lp0qWP9flZWFjA29sbiYmJ6N69\nOwDAz88Pe/fuRVBQEORyOWxsbPDBBx8AABYtWqS+k6g+vL298dJLLyE8PBwqlQq2trZ49913te6j\n7edy2LBhOHbsGIKDg2FnZ4chQ4bgwoULMDIyQkhICJ577jkAD0fZlixZAlNT03rlS9TQBPHRC9FE\nRPV04cIFLFq0CEePHtV3KkTUgnAMkIiIiJocFjBERETU5PASEhERETU5HIEhIiKiJocFDBERETU5\nTfI26qys2m+bbAjW1mbIyyvV2fHpybFvDBP7xXCxbwwX++bx2Nsr6mzjCMwfyGRSfadAdWDfGCb2\ni+Fi3xgu9s3TYwFDRERETQ4LGCIiImpyWMAQERFRk8MChoiIiJocFjBERETU5LCAISIioiaHBQwR\nERE1OSxgiIiImpljx448VtxXX32G+/fT6mx/8803GiqlBscChoiIqBlJT7+Pw4djHiv2tdcWonXr\nNnW2f/TR5w2VVoNrko8SICIiotp9/vkyxMdfw6BBfhg5chTS0+/jyy9X4cMP/42srEyUlZXh+edf\nxIABg7BgwYt4441F+PnnIygpKUZq6h2kpd3Dq68uhL//AIwZMxx79x7BggUvws+vL2JjLyA/Px/L\nln0BOzs7/Pvfb+PBg3T4+Pji6NHD2LFjX6O9TxYwREREOrLl6E38mpCpsV0qFaBUik90TD8vB4QG\ndKyzffr0cGzfvgUdOrgjNTUFq1b9B3l5uejTpx9GjRqLtLR7ePvtNzFgwKAa+2VmZuDTT5fj7Nkz\n2LVrG/z9B9RoNzc3x1dfrcbq1Stw4sRRtG7dFpWVFVizZj1Onz6JLVt+fKL386RYwDwiO78M6QXl\ncLYy0XcqRERET61zZ28AgEJhifj4a9i9ezsEQYLCwgKNWF/f7gAABwcHFBcXa7R369ZD3V5QUIA7\nd27Dx6cbAMDffwCk0sZ9vhMLmEdEn0nBySvpeHWKL7p72Ok7HSIiauJCAzrWOlpib69AVlaRzs9v\nZGQEADh06AAKCwuxcuV/UFhYiBdeCNeIfbQAEUXN0aE/touiCInk4TZBECAIQkOnrxUn8T4isHc7\nyGUSfLf3OnILy/WdDhERUb1JJBIolcoa2/Lz8+Hs3BoSiQTHjx9FVVXVU5+nTZu2SEy8DgA4f/6s\nxjl1jQXMI9o5WGDuRB+UlFfjm13XUK1U6TslIiKiemnfvgMSExNQUvK/y0BDhwbgzJmTeO21l2Fq\nagoHBwesW7f2qc7Tv/8glJSU4OWX5+Dy5UuwtLR62tTrRRBrGycycLocdrOzs8B7353F+fhMjO7X\nHiFD3XV2Lqqfxhpypfphvxgu9o3hag59U1hYgNjYCxg6dDiysjLx2msvY9OmbQ16Dnt7RZ1tnAPz\nB4IgYFawF1IeFGHf2TvwdGkFHzdbfadFRERkUMzMzHH06GFs2hQBUVThlVcad9E7jsD8we9V8Z0H\nRXg/4gJM5DK8+3wfWCuMdXZOejzN4T+W5oj9YrjYN4aLffN4tI3AcA5MHdo7KfBMgAeKy6qwZvc1\nKFWcD0NERGQodFrAJCUlITAwEJGRkTW2nzx5Ep6enurXu3fvxpQpUzB16lRERUXpMqV6CejZBr06\n2SPxbj6iT6foOx0iIiL6L50VMKWlpVi6dCn8/f1rbK+oqMCaNWtgb2+vjlu5ciXWr1+PiIgI/PDD\nD8jPz9dVWlrtv30YC/f/GyVVpQAezoeZPdoLdlYmiD6dguspuXrJi4iIiGrSWQEjl8uxdu1aODg4\n1Nj+zTffYMaMGZDL5QCAy5cvw8fHBwqFAiYmJujZsydiY2N1lZZWxlI57hamY9uNaPU2MxMjvDSh\nKyQSAWuir6OgpFIvuREREdH/6OwuJJlMBpms5uFv376NhIQEvPbaa/jkk08AANnZ2bCxsVHH2NjY\nICsrS+uxra3NIJM1/JLFIbbBuJRzBeceXMQwj77o2doHwMNJRM/ll+O73XH44UAi/vWiP6SSxl1x\nkB7SNqGL9If9YrjYN4ZL330TEBCA6OhobNy4EX5+fujRo4e6raSkBOPGjcPRo0fr3D8mJgZBQUHY\nvn07FAoFRowY0RhpqzXqbdQffvghlixZojXmcW6KyssrbaiUNMzr8ywWH/wQ35zfiCV934CpzBQA\n0L+zPS5et8NvN7LwQ3QcxvV31VkOVDvO2jdM7BfDxb4xXIbQN0qlCtnZxZg0aTqAmnf4lpaWQqlU\n1Zljevp9bN++Ez179segQSM09m8oBrEOTEZGBpKTk/G3v/0NAJCZmYmwsDC88soryM7OVsdlZmai\ne/fujZWWBpdWbRDsGoC9tw9h+429mNk5BMDD+TDPj+mMf607j50nk9GprRU8Xaz1licREVFtnn9+\nJj744DM4OTnhwYN0vPXWQtjbO6CsrAzl5eV4/fW/o0uXrur499//F4YOHY7u3XvgH/9YhMrKSvWD\nHQHg4MH92Lp1M6RSCVxd3bF48T/w+efLEB9/DevWrYVKpUKrVq0wZcozWLXqK1y9ehnV1UpMmRKK\n4OAxWLDgRfj59UVs7AXk5+dj2bIv4OTk9NTvs9EKGEdHRxw+fFj9OiAgAJGRkSgvL8eSJUtQWFgI\nqVSK2NhY/N///V9jpVWrke2H4besOJxJP4+ejr7obNMJAGBhaoSXxnfFRxtj8e3ua/jX831gaSbX\na65ERGS4tt/cg0uZVzW2SyUClKonW4ath4MPJnccW2f74MHDcPr0CUyZEoqTJ49j8OBhcHf3wODB\nQ3Hx4q/YuPEHvP/+Jxr7xcTsh5ubO159dSGOHDmIw4djAABlZWX47LMVUCgUmD9/Lm7duonp08Ox\nffsWzJ49F9999y0A4LffYpGcfAurV3+PsrIyzJo1DYMHDwUAmJub46uvVmP16hU4ceIoQkNnPNF7\nf5TOJvHGxcUhPDwcO3bswIYNGxAeHl7r3UUmJiZYuHAh5syZg9mzZ2P+/PlQKPR7XVAmkSGs81RI\nBAk2JWxDefX/HuzYsa0VJg9xQ35xJb7bEw9V01sHkIiImrGHBcxJAMCpU8cxcOAQHD9+BC+/PAer\nV69AQUFBrfulpCSja9duAIAePXqpt1taWuKttxZiwYIXcefObRQU1H6ncELCdXTv3hMAYGpqCldX\nN9y9excA0K3bw/k1Dg4OKC4urnX/+tLZCEzXrl0RERFRZ/ujE4OCg4MRHBysq1SeiIuiLUa6DMWB\nO0ex69Z+POM5Sd0W3NcFCal5uJqcg5hzqRjVr70eMyUiIkM1uePYWkdLdDkHxs3NHTk5WcjIeICi\noiKcPHkMdnYOePvtpUhIuI6vv/6y1v1EEZD89wYV1X9Hh6qqqvD55x9j/fpNsLW1w6JFf63zvIIg\n4NH/6aurq9THk0r/d+NNQz0AgCvxahHcIRBO5o44kfYLkvJuqbdLBAEvjO2CVhZybDuejJv3aq9m\niYiI9MHffyDWrFmFQYOGoKAgH23atAUAHD/+M6qrq2vdx8WlPRIS4gEAsbEXAAClpSWQSqWwtbVD\nRsYDJCTEo7q6GhKJBEqlssb+Xl7euHTp4n/3K0Va2j20beuiq7fIAkYbI4kM4Z2nQoCAjfFRqFD+\nbw0YSzM5/jLeGyJEfLs7DsVlVXrMlIiI6H+GDBmGw4djMHTocAQHj8HmzRvx+uvz4e3dFTk5Odi7\nd7fGPsHBY3Dt2lW89trLuHv3DgRBgJVVK/j59cULLzyLdevWYsaMcCxf/jnat++AxMQELF/+mXr/\nbt26w9PTC/Pnz8Xrr8/HSy8tgKmpqc7eIx/m+Ae1DevtuLkXh1OPY1i7gQjxGF+jbffp29h58ja6\nd7TDK1N8IAhcH0ZXDOG2Q9LEfjFc7BvDxb55PHyY41Ma02EkHMzscOzuadzKT6nRNtbfFZ3bW+O3\nm9k4dOGefhIkIiJqYVjAPAa51AhhXqEAgMiELahU/u9ykUQi4MVxXWBpLkfUzzdxO71QX2kSERG1\nGCxgHpN7K1cMbTsAmaXZ2Hf7UI02KwtjzB3XBSqViNU741BazvkwREREusQCph7GuQfDzsQGh1OP\nI6UwtUabt6sNxvR3RXZBOdbvT2iw28SIiIhIEwuYejCWyjGz81SIEBEZH4UqVc1b0SYMdEWndq1w\nITELP19K01OWREREzR8LmHrqZO2OQW38kV6SgQMpR2q0SSUS/GW8NyxMjfDTkRu484AzzImIiHSB\nBcwTmOg+CtbGrXDwzs+4W1RzpMVaYYwXxnZBtVLE6l1xKKuofcEgIiIienIsYJ6AicwEM71CoBJV\niIjfAqWq5mqEvu62GNXXBZl5ZdgQk8j5MERERA2MBcwT6mzbCf7OfkgrTsfBOz9rtE8a7Ab3NpY4\ndz0DJ6+k6yFDIiKi5osFzFOY3HEsrOSW2J9yBGnFNYsUmVSCl8Z3hbmJDBsPJeFeZsM8fZOIiIhY\nwDwVMyNTTPeaDKWoRGR8lMalJFsrEzw/pjOqqlVYvSsOFZXKOo5ERERE9cEC5in52HWBn2NPpBbd\nw5G7JzTae3jYY6RfO6TnlCLyYKIeMiQiImp+WMA0gKmdxkMht8De24fwoCRToz1kqDs6OCtwOu4B\nTl/lfBgiIqKnxQKmAZgbmWGa52RUq6oRGR8Flaiq0S6TSvDShK4wNZYh4mAi7meX6ClTIiKi5oEF\nTAPpbt8VPR18cbvwDo7dPaXRbt/KFLNHeaGy6uF8mMoqzochIiJ6UixgGlBop4mwMDLH7uQYZJZm\na7T39nJAQM82SMsqwabDN/SQIRERUfPAAqYBKeQWCO00AVWqKmxM0LyUBADPBHSEi4MFTly+j7PX\nH+ghSyIioqaPBUwD6+nQDd3svHEz/zZOpp3VaDeSSfHyxK4wlkvxw4FEZOSW6iFLIiKipo0FTAMT\nBAHPeE6GmcwUO2/tQ3ZZrkaMo40ZZgV7oqJSidU741BVzfkwRERE9cECRgesjBUI8RiPSmUlNiVs\nrfVZSP26OGFwt9ZIzSzG5qM39ZAlERFR08UCRkf6OPWEt60XEvNu4sz987XGTA/0QBt7cxyNTcOF\nBM31Y4iIiKh2LGB0RBAETPecDBOpCbbf3IO88nyNGGMjKV6e0BVyIwnW7Y9HZn6ZHjIlIiJqeljA\n6JC1SStM8RiLcmUFNiVuq/VSUms7c4SP9ERZhRLf7opDtVLzziUiIiKqiQWMjvk7+8HL2gPXcxJx\n7sHFWmMG+DhjQFcn3E4vwtZjtxo5QyIioqaHBYyOCYKAGV4hMJbKsfVGNPIrCmqNCxvpCWdbMxz8\n9S4u3chq5CyJiIiaFp0WMElJSQgMDERkZCQA4NKlS5g+fTrCw8MxZ84c5OY+vMXY29sb4eHh6i+l\nsnndVmxrao2J7mNQVl2GnxJ31HopyVj+cD6MkUyC7/fGI6egXA+ZEhERNQ06K2BKS0uxdOlS+Pv7\nq7etW7cOH3/8MSIiItCjRw9s2bIFAGBhYYGIiAj1l1Qq1VVaejOwTV94tHLD1ezruJjxW60xbR0s\nMHNEJ5SUV+Ob3ZwPQ0REVBedFTByuRxr166Fg4ODetvy5cvRrl07iKKIjIwMODk56er0BkciSDDT\nayrkEiNsubELhZVFtcYN8nVG3y6OuJVWiB0nkhs5SyIioqZBprMDy2SQyTQPf+LECbz//vtwc3PD\n+PHjAQCVlZVYuHAh0tLSEBQUhNmzZ2s9trW1GWQy3Y3S2NsrdHNcKDCjYiLWX4rCrjt78Ub/ubXG\nvTGzF/76xXHsP5eKPj6t0buzo07yaYp01Tf0dNgvhot9Y7jYN09HEGubkNGAVqxYAWtra4SFham3\niaKITz/9FAqFAi+99BJ+/PFHjB8/HoIgICwsDO+++y58fHzqPGZWVu2jFw3B3l6h0+OrRBW+iF2N\n5II7eKFrOHo41P4+7zwowvsRF2Ail+Hd5/vAWmGss5yaCl33DT0Z9ovhYt8YLvbN49FW5DXqXUiH\nDh0C8PDOnKCgIFy8+PC24unTp8Pc3BxmZmbo168fkpKSGjOtRiURJAjzmgojiQybE3eguLKk1rj2\nTgpMG+6B4rIqfLsrDkoV58MQERH9rlELmBUrViA+Ph4AcPnyZXTo0AHJyclYuHAhRFFEdXU1YmNj\n4eHh0ZhpNTpHcweM6TASRVXF2Hpjd51xw3q0QW9PeyTdK8CuUymNlyAREZGB09kcmLi4OCxbtgxp\naWmQyWSIiYnBe++9h3fffRdSqRQmJib4+OOPYWtrCycnJ4SEhEAikSAgIAC+vr66SstgBLQbhEuZ\nV/FrxiX0cuwGH7suGjGCIOC5UZ2R8qAIe8+kwNOlFbxdbfSQLRERkWHR+RwYXWjKc2Aedb/4AZb9\n+hXMjcywpO9CmBmZ1Rp3O70QH0RchLmpEd6d7Qcri5Y5H4bXjA0T+8VwsW8MF/vm8RjMHBiqqbWF\nE0Z1CERBZRG23dxTZ1wHZ0tMHdYRhSWVWBN9HSpVk6s5iYiIGhQLGD0b4TIU7Sxa42z6BVzLSaw7\nrndbdO9oh/g7edjzS0qj5UdERGSIWMDomVQiRVjnUEgECTYlbEVZde2PEBAEAc+P6QxbS2PsOnUb\nial5jZwpERGR4WABYwDaKlojqH0A8isKsPPm3jrjLEyN8JcJXSFAwLe7r6GwtLIRsyQiIjIcLGAM\nRLBrAFqbO+HU/XNIzL1ZZ1yj47LTAAAgAElEQVTHNlaYMsQN+cWV+E/0daia3hxsIiKip8YCxkDI\nJDKEdZ4KiSDBxoQolFdX1Bkb1NcFPm62iLudiwPnUhsxSyIiIsPAAsaAtLdsh0CXIcgpz8Pu5AN1\nxkkEAXPGdkYrCzm2H0/GjXv5jZglERGR/rGAMTCjXQPhaOaA4/dO42b+7TrjLM3k+Mt4b4gQ8e3u\nayguq2rELImIiPSLBYyBMZIaIazzVAgQEBm/BZXKuifqerpYY+LADsgtrMD3e+PRBNckJCIieiIs\nYAyQm1V7DGs3EFllOdiTfFBr7Bh/V3RxtcZvN7Nx6Ne7jZQhERGRfrGAMVDj3IJgb2qLo3dP4nbB\nnTrjJBIBc8d5w9Jcjqhjt5B8v7ARsyQiItIPFjAGSi6VY6bXVIgQEREfhSpl3XNcrMzleHFcF6hU\nIr7ZFYfScs6HISKi5o0FjAHzsHbDkLb9kVGaiX0ph7XGdnG1wbgBrsguKMe6fQmcD0NERM0aCxgD\nN95tFGxNrHE49ThSC+9pjx3QAZ7tWuFiUhaOxqY1UoZERESNjwWMgTORGWOGVwhUogoR8VtQraqu\nM1YiEfDieG9YmBph89EbuPOAj2onIqLmiQVME+Bl44EBrfvifskDxKQc1RprrTDG3HFdUK0UsXpn\nHMoq6i54iIiImioWME3EpI6j0crYCgfuHMW9ovtaY33cbDG6X3tk5pdh+4nkRsqQiIio8bCAaSJM\nZabqS0mR8VugVCm1xk8c1AFONmY4GnuPl5KIiKjZYQHThHjbeqKfU2/cLb6PQ6nHtcbKpBKEjewE\nUQQ2xCTyqdVERNSssIBpYqZ4jIWVXIH9tw/hfvEDrbFdXG3Qt4sjbqcX4sRl7ZediIiImhIWME2M\nmZEZpnlORrWoRGRC1J9eSnomoCNM5FJsO3YLhaV1P1eJiIioKWEB0wT52nujt2N33Cm8i5/vndIa\n28rCGJMGuaGkvBpbj91qpAyJiIh0iwVMEzXVYwIURhbYkxyDjNIsrbEBvdqgnYMFTl1Jx417+Y2U\nIRERke6wgGmiLOTmCPWciCpVNSLjo6ASVXXGSiUShAd5AgAiYhKhVNUdS0RE1BSwgGnCejr4ooe9\nD5ILUnD83hmtsR3bWGFwN2fcyyrBkQvaH0lARERk6FjANHGhnhNhbmSG3bf2I6s0R2tsyNCOsDA1\nwo5Tt5FXVNFIGRIRETU8FjBNnKVcgakeE1CpqsLGBO2XkixMjRAy1B0VlUpsPnqjEbMkIiJqWCxg\nmoHejt3hY9cFN/KTcfr+Oa2xA32d4d7aEufjM3Htdm4jZUhERNSwdFrAJCUlITAwEJGRkQCAS5cu\nYfr06QgPD8ecOXOQm/vwD+ju3bsxZcoUTJ06FVFRUbpMqVkSBAHTPCfBVGaKHTf3Iqcsr85YiSAg\nPMgTggBEHkxEVTUn9BIRUdOjswKmtLQUS5cuhb+/v3rbunXr8PHHHyMiIgI9evTAli1bUFpaipUr\nV2L9+vWIiIjADz/8gPx83upbX62MrTDFYxwqlJXYlLAVopZHB7g4KjC8V1tk5JXhwLk7jZglERFR\nw9BZASOXy7F27Vo4ODioty1fvhzt2rWDKIrIyMiAk5MTLl++DB8fHygUCpiYmKBnz56IjY3VVVrN\nWj+nXuhi44mEvBv4Jf2C1thJg9xgZSHHnl/uICu/rJEyJCIiahg6K2BkMhlMTEw0tp84cQLBwcHI\nzs7G+PHjkZ2dDRsbG3W7jY0NsrK0L8xGtRMEATO8psBEaoztN6ORX1FQZ6ypsQzPBHREVbUKGw8l\naR2xISIiMjSyxj7h4MGDMWjQIHz66adYs2YN2rRpU6P9cf6QWlubQSaT6ipF2NsrdHZsXbOHAs9W\nTsGaC5uwLXkXFg+aB0EQao0dO9gCZ69n4srNbCRnlqBfV+dGzrb+mnLfNGfsF8PFvjFc7Jun06gF\nzKFDhzBixAgIgoCgoCCsWLECPXr0QHZ2tjomMzMT3bt313qcvLxSneVob69AVlaRzo7fGHwV3eBp\nfR6x6XHYe/U4+jr3qjP2mWHuuJacg2+2XUZba1MYy3VXGD6t5tA3zRH7xXCxbwwX++bxaCvyGvU2\n6hUrViA+Ph4AcPnyZXTo0AHdunXD1atXUVhYiJKSEsTGxqJ3796NmVaz8/BSUgjkEiNsuxGNwsq6\nf0mcbc0R3NcFOYUViD6T0nhJEhERPQWdjcDExcVh2bJlSEtLg0wmQ0xMDN577z28++67kEqlMDEx\nwccffwwTExMsXLgQc+bMgSAImD9/PhQKDqs9LTtTG0xwH42oG7uwJXEnXvAJrzN2bH9XnL2WgZjz\nqejf1Qmt7cwbMVMiIqL6E8QmOHtTl8NuzWlYTyWq8EXsN0guSMGcrmHo6eBbZ+ylG1lYse0qvFxa\n4e/Te9Q5b0afmlPfNCfsF8PFvjFc7JvHYzCXkKhxSQQJwrxCIJPIsCVxJ4qrSuqM7eFhj+4d7ZCQ\nmo9z1zMaMUsiIqL6YwHTzDmaO2Bsh5EoqirGthvRWmOnB3pALpPgp6M3UVpe3UgZEhER1R8LmBYg\noN0guCja4PyDWMRlx9cZZ9/KFGP7u6KwpBI7TiY3YoZERET1wwKmBZBKpAjrHAqpIMWPidtRVl33\nyrtBfVzgaGOGo7H3cOcBr88SEZFhYgHTQrSxcEaQawDyKwqw4+a+OuOMZBKEjewEUQQiDiZC1fTm\neBMRUQvAAqYFCWo/DK3NnXD6/jkk5N6oM87b1QZ9Ojsg+X4hTl6+34gZEhERPR4WMC2ITCJDWOep\nECBgU8I2VCgr64x9JsADJnIpth67haLSuuOIiIj0gQVMC9Pesh0CXYYgpzwX0bcO1BlnrTDGpEFu\nKCmvxtZjtxoxQyIioj/HAqYFGt1hBBzM7HDs3mncyk+pMy6gVxu0c7DAySvpuHmv7idbExERNTYW\nMC2QXGqEMK9QAMDGhChUKatqjZNKJAgf6QkA2BCTCKVK1Wg5EhERacMCpoVyb+WKIW37I6M0C/tS\nDtcZ17GtFQb5OuNeVjGOXExrxAyJiIjqxgKmBRvnFgxbE2scTj2O1MJ7dcaFDHWHuYkMO08mI6+o\nohEzJCIiqh0LmBbMRGaMGV4hUIkqRCZEoVpV++MDFGZyTB3WEeWVSmw+Wvft10RERI2FBUwL52Xj\ngQGt+yCtOB0H7/xcZ9xAX2e4t7bE+fhMXEvJbcQMiYiINLGAIUzqOAatjK1wIOUo7hc/qDVGIggI\nG+kJQQAiDyahqpoTeomISH9YwBBMZaaY5jkJSlGJyPgoKFXKWuPaOykwvGdbZOSW4sD51EbOkoiI\n6H9YwBAAwMeuC/wce+JO0V0cvXuyzriJg9xgZS7HnjMpyMqv+6GQREREusQChtRCOo2DwsgCe28f\nREZpVq0xZiYyPBPQEVXVKvx4mBN6iYhIP1jAkJqFkTlCPSeiSlWNjfFRUIm1z3Pp28URXi6t8NvN\nbFy6UXuhQ0REpEssYKiGng6+6G7fFbcKUnAi7ZdaY4T/TuiVSgRsOnQDFZW1z5khIiLSFRYwpCG0\n0ySYyUyx69Z+5JTVfst0aztzBPd1QU5hOfb8ktKo+REREbGAIQ1WxgqEeIxHpbISmxK2QRTFWuPG\n9neFraUJDpxLRXpOSSNnSURELRkLGKpVH6ee6GLriYS8G/gl/ddaY4yNpJgR6AGlSkTkwaQ6Cx0i\nIqKGxgKGaiUIAmZ4ToGJ1BjbbuxBfkVBrXHdPezQzd0W8XfycC4+o5GzJCKilooFDNXJ2qQVJnUc\ng3JlOX5M2F7rCIsgCJgxohOMZBJsPnITpeW1P0+JiIioIbGAIa0GtO6LTq3cEZcTjwsZv9UaY9/K\nFGP7u6KgpBI7TyY3coZERNQSsYAhrQRBwAyvEMglRoi6sQtFlcW1xgX3cYGjjRmOxN5DakZRI2dJ\nREQtDQsY+lP2ZrYY7z4KJVWl2JK0s9YYI5kEYSM7QRSBiJhEqDihl4iIdIgFDD2WIW37o4Nle8Rm\nXsFvWXG1xni72qBPZwfcul+IU1fSGzlDIiJqSXRawCQlJSEwMBCRkZEAgPT0dDz33HMICwvDc889\nh6ysh8vQe3t7Izw8XP2lVHJlV0MjESQI6zwVMokMmxN3oKSqtNa4ZwI8YCKXIurnmygqrWzkLImI\nqKXQWQFTWlqKpUuXwt/fX73tyy+/RGhoKCIjIzFixAisW7cOAGBhYYGIiAj1l1Qq1VVa9BSczB0w\nxnUECiuLsO1GdK0x1gpjTBzkhpLyamw9dquRMyQiopZCZwWMXC7H2rVr4eDgoN72z3/+E0FBQQAA\na2tr5Ofn6+r0pCPDXQajnaINzj24iGs5CbXH9GqDtvYWOHklHTfTal8/hoiI6GkIoo6XT12xYgWs\nra0RFham3qZUKjFr1izMnz8f/v7+6NGjBwICApCWloagoCDMnj1b6zGrq5WQyThKoy8peffw1qEP\n0crUCp8Fvw0zI1ONmOu3c7D461Po0NoSX/x1CKRSTrciIqKGI2vsEyqVSixatAj9+vVTX15atGgR\nxo8f//Apx2Fh6N27N3x8fOo8Rl5e7fMvGoK9vQJZWbwNWBtzWGFk+wDsTzmM/5zbgumekzVi7C3k\nGOjrjFNX0rE5JgEj/No99XnZN4aJ/WK42DeGi33zeOztFXW2Nfq/xW+99Rbat2+PBQsWqLdNnz4d\n5ubmMDMzQ79+/ZCUlNTYaVE9BbsGwNncEafSziIpr/a5LlOHusPcRIYdJ5ORV1TRyBkSEVFz1qgF\nzO7du2FkZIRXX31VvS05ORkLFy6EKIqorq5GbGwsPDw8GjMtegIyiQxhnadCgICN8VGoUGrecaQw\nkyNkqDvKK5XYfPSGHrIkIqLmSmeXkOLi4rBs2TKkpaVBJpMhJiYGOTk5MDY2Rnh4OADA3d0d//rX\nv+Dk5ISQkBBIJBIEBATA19dXV2lRA3K1dEGAyyAcST2BPckxmOIxTiNmULfWOHklHefjMzG4Wy66\nuNroIVMiImpudD6JVxd0ed2Q1yXrp1JZhQ/Pf4Gsshy80Wse3Kzaa8TceVCEf//wKxytzfDu831g\nJHuygT/2jWFivxgu9o3hYt88HoOaA0PNi1xqhJmdp0KEiI3xUahSVmnEtHdSIKBnWzzILUXM+VQ9\nZElERM0NCxh6ah1bdcDgNv3xoDQT+1OO1BozaZAbLM3l2HMmBdn5ZY2cIRERNTcsYKhBTHAPho2J\nNQ6lHkNq0T2NdjMTGaYFdERltQqbDnNCLxERPR0WMNQgTGQmmOE1BSpRhcj4KChVms+z6tvFEV4u\nrfDbzWxcupGlhyyJiKi5YAFDDaazTSf4O/shrTgdB+8c02gXBAFhIz0hlQjYdOgGKqr40E4iInoy\nLGCoQU3uOBZWcgX2pxzG/eIHGu2t7cwR1McFOYXl2HMmpfETJCKiZuGJC5iUlJQGTIOaCzMjU0zz\nnAylqERkQhRUokojZlx/V9haGuPAuVSk55ToIUsiImrqtBYwf3yo4qpVq9Tfv/POO7rJiJo8X3tv\n9HbsjjuFd3H07kmNdmO5FDMCO0GpEhF5MAlNcCkiIiLSM60FTHV1dY3XZ8+eVX/PPzqkzVSPCbAw\nMsee5BhklmpO2O3uYQdfd1vE38nD+fhMPWRIRERNmdYCRhCEGq8fLVr+2Eb0KAu5OUI7TUSVqhob\nE7ZqXEoSBAEzRnSCkUyCn47cQGl5dR1HIiIi0lSvOTAsWqg+ejr4opudN27m38aptLMa7Q6tTDHW\nvz0KSiqx81SyHjIkIqKmSuvDHAsKCvDLL7+oXxcWFuLs2bMQRRGFhYU6T46aNkEQ8IznJCTlJ2Pn\nrX3wtu0MW1PrGjHBfdvjTNwDHLl4DwN9nOHiWPdzL4iIiH6ndQTG0tISq1atUn8pFAqsXLlS/T3R\nn7EytkSIxzhUKCvxY+I2jblTRjIJwkZ6QhSBiIOJUHFuFRERPQatIzARERGNlQc1Y32deuFixmVc\nz03E2fQL8G/tV6Pdu4MN/Lwc8GtCJk5dScfgbq31lCkRETUVWkdgiouLsX79evXrn376CRMmTMCr\nr76K7OxsXedGzYQgCJjuNRnGUjm23dyD/IoCjZhpwz1gLJci6uebKCqt1EOWRETUlGgtYN555x3k\n5OQAAG7fvo3PP/8cixcvRv/+/fH+++83SoLUPNiYWGOi+xiUVZfhp8QdGpeSrBXGmDSwA0rKq7Ht\n+C09ZUlERE2F1gLm7t27WLhwIQAgJiYGwcHB6N+/P6ZNm8YRGKq3gW36wqOVG65mX8fFzMsa7cN7\nt0VbewucuJyOm2maozRERES/01rAmJmZqb8/f/48+vXrp37NW6qpviSCBDO8QmAkMUJU0i4UVRbX\naJdKJAgP6gQAiIxJhFKl+RgCIiIi4E8KGKVSiZycHKSmpuLSpUsYMGAAAKCkpARlZWWNkiA1Lw5m\ndhjnFoTiqhJEJe3SaPdo2woDfZyRmlmMo7FpesiQiIiaAq0FzNy5czF69GiMGzcO8+bNg5WVFcrL\nyzFjxgxMnDixsXKkZmZYu4FwtXTBxczLuJx1TaM9ZJg7zE1k2HEiGfnFFXrIkIiIDJ3WAmbIkCE4\ndeoUTp8+jblz5wIATExM8Pe//x0zZ85slASp+ZEIEoR1ngqZIMXmxO0orSqt0W5pJseUoe4or1Ri\n89GbesqSiIgMmdYC5v79+8jKykJhYSHu37+v/nJzc8P9+/cbK0dqhpzNHTGqQyAKKouw7eYejfbB\n3Vqjg7Mlzl3PQHxKrh4yJCIiQ6Z1IbuAgAB06NAB9vb2ADQf5rhhwwbdZkfN2giXobiUeRVn0y+g\nl0M3dLH1VLdJBAHPBnni3z/8ioiDSfj3nD56zJSIiAyN1hGYZcuWwdnZGRUVFQgMDMRXX32FiIgI\nREREsHihpyaVSBHWORQSQYJNCdtQXl1eo729kwIBPdriQW4pYs6n6ilLIiIyRFoLmAkTJuD777/H\nl19+ieLiYsycORMvvPACoqOjUV5erm1XosfSTtEaI12GIq8iH7tu7ddonzS4AyzN5Yg+nYKM3NJa\njkBERC2R1gLmd87Ozpg3bx7279+PoKAgvPfeexg4cKCuc6MWIrhDIJzMHHAi7RfcyKu5Cq+ZiRGe\nCeiIymoVlm++xLVhiIgIwGMWMIWFhYiMjMTkyZMRGRmJv/zlL9i3b5+uc6MWwkgiQ1jnUAgQsDFh\nKyqVNZ+F1K+LI3p42OHKzWz8dIR3JRER0Z9M4j116hS2bduGuLg4jBw5Eh999BE6derUWLlRC9LB\nygXD2g3E0bsnsSf5ICZ7jFW3CYKAF8Z2wcc/XsKRi/fQ1t4cQ7q30WO2RESkb4L4x6fqPcLLywuu\nrq7o1q0bJBLNwZoPP/xQ68GTkpIwb948PPfccwgLC0N6ejreeustVFdXQyaT4ZNPPoG9vT12796N\nH374ARKJBKGhoZg6darW42ZlFT3m26s/e3uFTo9PdatUVuL9818gpywXC3vNRwcrlxrtSokEr39x\nHGUV1fj79B7o1K6VnjKlR/F3xnCxbwwX++bx2Nsr6mzTOgLz+51GeXl5sLa2rtF27949rSctLS3F\n0qVL4e/vr9725ZdfIjQ0FKNHj8bGjRuxbt06LFiwACtXrsTWrVthZGSEkJAQjBgxAq1a8Y9TSyOX\nyhHmFYIvL32LyIQovOn3Gowk//sRdbI1x7yJXfHZ5t+wcsdVvD2rN+ysTPWYMRER6YvWOTASiQQL\nFy7E22+/jXfeeQeOjo7o06cPkpKS8OWXX2o9sFwux9q1a+Hg4KDe9s9//hNBQUEAAGtra+Tn5+Py\n5cvw8fGBQqGAiYkJevbsidjY2AZ4a9QUeVi7Y1AbfzwoycCBlCMa7V7trTEj0ANFpVVYvvUqyiur\n9ZAlERHpm9YRmC+++ALr16+Hu7s7jhw5gnfeeQcqlQpWVlaIiorSfmCZDDJZzcP//nRrpVKJTZs2\nYf78+cjOzoaNjY06xsbGBllZWVqPbW1tBplMqjXmaWgbsiLde6FVKOIPJOLQnZ8R0KkvXK3bqdvs\n7RUIDeqM7OJK7D+TgohDN/Dms36QSPh0dH3i74zhYt8YLvbN09FawEgkEri7uwMAhg8fjg8//BCL\nFy/GiBEjnviESqUSixYtQr9+/eDv74/o6Oga7Vqm5Kjl5eluPRBelzQMz3hMwsrL32HFmfX4e+9X\nIJVIa/TNpAGuuH0vH79cTcd3O69g4iA3PWfccvF3xnCxbwwX++bxaCvytF5CEoSa/9U6Ozs/VfEC\nAG+99Rbat2+PBQsWAAAcHByQnZ2tbs/MzKxx2Ylapi62nujn1Bt3i+/jUOpxjXaZVIKXJ3aFnZUJ\ndp9OwYWETD1kSURE+vJY68D87o8FTX3t3r0bRkZGePXVV9XbunXrhqtXr6KwsBAlJSWIjY1F7969\nn+o81DxM8RgLS7kC+28fwoOSDI12hZkcr4b4wlguxX/2XkdqBv+bISJqKbTeRu3j4wNbW1v165yc\nHNja2kIURQiCgGPHjtV54Li4OCxbtgxpaWmQyWRwdHRETk4OjI2NYWFhAQBwd3fHv/71Lxw4cADf\nffcdBEFAWFgYxo8frzVp3kbdclzOisOaqxvQwdIFHwYtRk5OiUbMpaQsrNh+FTaWxnh7lh+szOV6\nyLTl4u+M4WLfGC72zePRdglJawGTlpam9cBt2uhnMTEWMC3L93EbcTHzMmb6TkJ/O/9aY6LPpGDH\niWR0bGuFRdN7QCat1+AiPQX+zhgu9o3hYt88nideB0ZfBQrRo6Z2moCk/FvYdGUnzHwU6G7fVSNm\nrH97pGUV43x8JiJiEvHcKK+nvuRJRESGi/+mksFTyC0wz/d5yGVyrLu2CTfzb2vECIKA2aM7o72j\nAievpOPwRe0LLRIRUdPGAoaaBBfLtljYfy5UogrfXllf66ReYyMpXpniA0tzOX46cgPXbufqIVMi\nImoMLGCoyeju7I0ZXiEorS7D1799h/yKAo0YG0sTLJjsA6lEwOqdccjI1d2aQUREpD8sYKhJ8Xfu\njbEdgpBXkY9Vl79HWXW5RkzHNlaYFeyF0opqLN92BaXlfNwAEVFzwwKGmpxg1wAMbN0XacXp+M/V\nCFSrNAuUAT7OCOrTDuk5pVgTfQ0q1Z+v8ExERE0HCxhqcgRBQGinifCx64KEvBuIjI+CSlRpxE0d\n2hFd3Wxw5VYOth6/pYdMiYhIV1jAUJMklUjxvPcMdLB0wa8Zl7D71gGNGIlEwEvjveFkY4YD51Jx\nJi5dD5kSEZEusIChJksuleMl39lwMLXDodRjOHbvtEaMmYkRXg3xhamxDOv3J+LWfc2Jv0RE1PSw\ngKEmzUJujvnd50Aht8DWpN34LfOqRoyTjRlenuANpUqFr7ddRV5RhR4yJSKihsQChpo8O1NbzPN9\nHkZSI6y7/mOtC911dbPFM8M6oqCkEiu2XUFllVIPmRIRUUNhAUPNgotlW7zQNVzrQncj/NphoI8z\nUh4UYd3+BGh5DBgRERk4FjDUbHjbemKmloXuBEFAeJAn3NtY4tz1DOw7e0dPmRIR0dNiAUPNSj/n\n3hjnVvdCd0YyCRZM8oG1whjbjyfjtxvZesqUiIieBgsYanaC2gdgYJt+SCtOx9qrGzQWurOyMMar\nU3xhJJPg2+hrSMsq1lOmRET0pFjAULMjCAKe6TQRvnbeSMy7WetCd+2dFHh+TGdUVCqxfNsVFJdV\n6SlbIiJ6EixgqFmSCBLM9p6udaG7Pp0dMba/K7Lyy7Fqx1VUKzVX8yUiIsPEAoaaLfVCd2b/Xeju\nruZCdxMHdUAPDzskpObjpyM39JAlERE9CRYw1KxZyM0xv9sLDxe6u7Ebl/6w0J1EEDB3XBe0tTfH\n0dg0HLuUpqdMiYioPljAULNnZ2qDed2eh1xqhPW1LHRnIpfhlSm+sDA1wsZDSUhMzdNTpkRE9LhY\nwFCL4KJoi7ldn1UvdJf+h4Xu7FuZYv6krgCAlTvikJ1fpo80iYjoMbGAoRajs20nhHlNRWl1GVbW\nstCdp4s1Zo7ohOKyKizfdgXlldV1HImIiPSNBQy1KH2de2G8W/AjC93VHGkZ2qMNAnq2wb2sEqyN\nvg4VHzdARGSQWMBQizOy/TAMauOPtOJ0rLkaobHQ3bThHvByaYVLN7Kx66TmgyGJiEj/WMBQiyMI\nAkI7TUA3O28k5d1ERPyWGgvdyaQSzJvkA/tWJog+k4Lz8ZoPhiQiIv1iAUMtkkSQ4DnvGXCzao8L\nGb9h1639NdotTI3w6hRfGMul+H5vPO48KNJTpkREVBsWMNRiyaVG+Ivvc3A0s8fh1OP4+e6pGu1t\n7C3wl3HeqKpWYfm2KygoqdRTpkRE9EcsYKhFszAyx/xuc2ApV2DbjWjEZl6p0d7dww6Th7ghr6gC\nK7dfRVU1HzdARGQIdFrAJCUlITAwEJGRkeptGzZsgLe3N0pKStTbvL29ER4erv5SKpW6TIuoBttH\nFrr74fpPGgvdje7XHn27OOJmWgEiYhIh8s4kIiK901kBU1paiqVLl8Lf31+9befOncjJyYGDg0ON\nWAsLC0RERKi/pFKprtIiqlU7RRvM9Xm40N03f1joThAEzB7lhfZOCpy6mo5DF+7pMVMiIgJ0WMDI\n5XKsXbu2RrESGBiI119/HYIg6Oq0RE+ss83Dhe7KalnoTm4kxatTfGFlLsfmozcQdztHj5kSEZHO\nChiZTAYTE5Ma2ywsLGqNraysxMKFCzFt2jSsW7dOVykR/am+zr0wwW0U8irysfK372osdGetMMaC\nKT6QSiT4Zuc1PMgt1WOmREQtm0zfCQDAokWLMH78eAiCgLCwMPTu3Rs+Pj51xltbm0Em091lJnt7\nhc6OTU+nMfpmht04lElKcPDmCaxL2Ij/G7wARlIj9flfqVLhix8vYeWOOHz62mBYmBrpPCdDx98Z\nw8W+MVzsm6djEAXM9GH907AAACAASURBVOnT1d/369cPSUlJWguYvDzd/edrb69AVhbX/DBEjdk3\n49qNRkZ+Di5nXsMXJ7/HrC7TIBEeDlj6tLdGcB8XHDifive/P4u/hnSDRNJyL4vyd8ZwsW8MF/vm\n8Wgr8vR+G3VycjIWLlwIURRRXV2N2NhYeHh46DstauH+uNDdzlv7arSHDHWHj5st4pJzEXXspp6y\nJCJquXQ2AhMXF4dly5YhLS0NMpkMMTEx6N+/P86cOYOsrCzMnTsX3bt3x6JFi+Dk5ISQkBBIJBIE\nBATA19dXV2kRPbbfF7r7/OIqHEk9AWvjVhjWbiAAQCIR8Jfx3nhvwwXEnL+LtvYWGODjrOeMiYha\nDkFsgota6HLYjcN6hktffZNTlotPL65EUWUxnu868//bu/O4qO973+Ov32zAwLDPsIOCiguoAdyI\nJqZqkqaJabPUxGqb3tw+2ub0cU57cpradEl70ts8bNOec9N40iZNT1Nz09iYpaZJjFncEtxR3AEF\n2ZdhE5gZllnuH4Ojo4YD6ji/gc/z8eCBMD+GL75nhje/5fulwHK+YLd02Hnypf0MOF08trKASWkx\n1318wSbPGfWSbNRLshkZVR9CEkLtvBPdPUyY1sBLx1+lsrPKd1tSvJFvfzEPl9vDs28coaO7L4gj\nFUKI8UMKjBAjkGFK9U1094cjL9HY2+y7bcbEeB743GS6bQP87o0j9A/KTNJCCBFoUmCEGKGp8ZNZ\nPe3L3onuyvwnultalM6imSnUNPfw3++ekOUGhBAiwKTACDEKc5MLuDvn83T1n/Wb6E5RFFbdmsuk\n9Bj2nmjlnV01QR6pEEKMbVJghBilZZmLuTm9mEZbM88f/guDbicAep2Gf/pSPvHRYbyxo4qDFdYg\nj1QIIcYuKTBCjJKiKNw3eTmzzHlUdJ1m/fENuD1uAGIiDfzzvTMx6DU8/4/j1Lf2Bnm0QggxNkmB\nEeIKaBQND01/kOyYCRxoLfOb6C4zycTDX5hO/4CLZ14/TI99IIgjFUKIsUkKjBBXyKDV862ZD5Fk\ntPBR7Q4+rtvpu23OVAvLb5xA29k+nnvrKE6XO4gjFUKIsUcKjBBXIVJv5J9mPUyMwcQblf+gtPWw\n77blCydSOMXMydou/vphZRBHKYQQY48UGCGuUkJEHN8+N9Hdsb9S2XkaAI2i8PCd00g3R7H1YANb\nS+uDPFIhhBg7pMAIcQ2cm+jOA34T3YUbdPzzvflEReh55cNKTtZ0BnegQggxRkiBEeIamRo/mVXT\n7sfh7GNd2Yt09nUBkBgbwXfuyQfgv946SmuXI5jDFEKIMUEKjBDX0NzkAr6Ycwdd/Wf5r7I/YR/0\nlpUpGbGsunUKvY5Bfvf6YRz9ziCPVAghQpsUGCGusaWZN3Nz+o3eie6OvOSb6O7m2WksKUinwWrj\nub8fpdsml1cLIcSVkgIjxDXmnejuLmab86jsqvKb6O6BpZOYMTGeo1Ud/PD53WzZVyeXWAshxBWQ\nAiNEAGgUDV+b/iA55ya6O+Wd6E6r0fDd+2eyculkFODVjyp54k97OVrdHtwBCyFEiJECI0SAGLR6\nvjnzIZKNFj6q28HHtTsAb4lZWpTBU9+cz+Ib0mhut/PbDWX87vXDtHbagzxqIYQIDVJghAigSL2R\nf5r9MDGGaF4/9Q8OtJT5bjMZDXz1tlye+PocpqTHcLCyjR//cQ+vbz9N34Cc5CuEEMORAiNEgMWH\nx/HIrP9FuDaMvxx/1TfR3TmZSSZ+8JUCvnX3DExGA+/squHx53ez61gzHo8nSKMWQgh1kwIjxHWQ\n/hkT3Z2jKApzpyXxy2/M567iCfQ6nLzw9nGeermUM83dwRm0EEKomPZnP/vZz4I9iNGyB3B138jI\nsIDev7hyoZ5NYkQCiREJ7G85xMHWw+g1etJMqWiV839H6LQapmXFsWBGEh09/Ryr7mDHoUY6uvvI\nSY0hzKAN4k9weaGey1gm2aiXZDMykZFhn3mbFJiLyINKvcZCNmlRKcQYTBxvL+dw2zH2NpcSoYsg\nNTIJzQVFxhiuZ+60JKakx3CmuYej1R1sL2tAr9WQlWxCo1GC+FP4Gwu5jFWSjXpJNiMzXIFRPCF4\nkN1q7QnYfZvNpoDev7hyYymb3gEbW2q2sr2hBKfbSZLRwp3Zt3KDOR9F8S8nLrebbQcbeXNHFfZ+\nJykJRh5cMpm87IQgjd7fWMplrJFs1EuyGRmz2fSZt0mBuYg8qNRrLGbT2dfFe2c+YlfTPtweN5mm\nNO7Kvp1p8VMuKTI99gHe3FnN9kMNeDwwe1IiK5ZMIinOGKTRe43FXMYKyUa9JJuRkQIzCvKgUq+x\nnE2r3co71R+wv+UQAJNjs1meczvZMRMu2ba2pYdXPqykoq4LnVbh1jmZ3FmcRbhBd51H7TWWcwl1\nko16STYjIwVmFORBpV7jIZv6nkbernqfo+0nAMhLmMpd2beTbkr1287j8bDvZCt/23qKju5+YqIM\nfHnxJObPSLpkz02gjYdcQpVko16SzchIgRkFeVCp13jKpursGTad3kxlVxUAhZZZ3Jl9Kxaj2W+7\n/kEX7+2u4b09tQw63eSkRbNy6RQmpkRft7GOp1xCjWSjXpLNyEiBGQV5UKnXeMvG4/FwsqOSTVXv\nUdvTgEbRsCCliM9PWEpceKzftm1dDjZsPcWBcisKcOPMFO69OYeYSEPAxznecgklko16STYjIwVm\nFORBpV7jNRuPx8Mh61HernqfFnsrOo2Om9IWcGvWLZgMUX7bnjjTwSsfVdJgtRERpmX5jRNZUpiO\nThu4OSvHay6hQLJRL8lmZIYrMAGdB6aiooIVK1ag0WiYOXMmAH/5y19YuXIlDz30EAaD96/DTZs2\n8fjjj7Nx40YURWHGjBnD3q/MAzM+jddsFEUhJTKJhanzSIhIoKa7jhMdFexs2IXT7STDlIZe4z2B\n1xwbwc2zU4k2Giiv7eJgZRv7TrZiiYsI2NVK4zWXUCDZqJdkMzLDzQMTsMsW7HY7Tz75JAsWLPB9\n7q233qK9vR2LxeK33bp169i4cSN6vZ777ruPZcuWERsbe7m7FWLc0mq0LEgpoihpNp827GHzmY94\n98yHbG8o4dasW7gprRiDVo9Wo2FJYTpzp1l4a2c12w418B9/K1PNZddCCHEtBGy/ssFg4IUXXvAr\nK0uXLuV73/ue31USZWVl5OfnYzKZCA8Pp6CggNLS0kANS4iQp9foWJxxIz8vXsNd2bfj9rh589Q7\n/Hz3r/ikYTcutwvwrna9+rZcnnhoDlMyYjl0qo2f/HEPr207haNfVrsWQoS2gO2B0el06HT+dx8V\nFXXJdm1tbcTHx/s+jo+Px2q1DnvfcXFGdLrArQkz3DE3EVySjb/VyXfzpVlL2XTyA96r2Mpfy9/g\n44adrMi7k+LMIjSKBrPZRMGMFD4pa+RPbx/jvd217Dnewte+MIPFBenXZFkCyUW9JBv1kmyuTnBm\nvhrGSM4p7uy0B+z7y4lV6iXZfLZlKUuYGz+X92s+4pOGPTyz+7/ZeOQ9lufcTl7CNBRFYWpaNE8+\nPNd32fV//LWUTdtPsXLZ1V12Lbmol2SjXpLNyAxX8gJ3acIIWSwW2trafB+3trb6HXYSQoxMTJiJ\nL0/5Ij+d/33mJRfSZGvh94f/zG8O/BcVnacBCNNr+eKibP7P/55HUa6Z043d/OKl/fzp3ROctckJ\nhUKI0BH0AjNr1iyOHDlCd3c3NpuN0tJSioqKgj0sIUJWYkQ8X52+gh/N+1dmm/Oo7q7h/x78A787\n+AI13XXebWIjeORL+Xz/wRtINUfyyeEmHn9+F5v31OJ0uYP8EwghxP8sYPPAHD16lLVr19LQ0IBO\npyMpKYni4mJKSko4dOgQ+fn5zJ49m8cee4zNmzfz4osvoigKq1atYvny5cPet8wDMz5JNlempruO\nTac3c7KzEoDZ5jzuzL6NlMgk4Pxq12/trMLW5yQ53siDSyeTP8LVriUX9ZJs1EuyGRmZyG4U5EGl\nXpLN1anoPMWm05up7q5FQWFucgFfmLiMhAjvSfS9jkHe3FnFtoPe1a5n5STwwNLJ/+Nl15KLekk2\n6iXZjIwUmFGQB5V6STZXz+PxcLT9BJtOb6bR1oxW0bIwbR63ZS0hJsz7QlHX2ssrH1RQPrTa9bI5\nGdy5YAIRYZc/519yUS/JRr0km5GRAjMK8qBSL8nm2nF73BxoKeMf1Vtoc7Rj0OhZnLGQZZk3Y9Qb\n8Xg87C+38rePK2kfWu36vptzWJCXjOai1a4lF/WSbNRLshkZKTCjIA8q9ZJsrj2X20VJ0z7eq/6Q\nswPdROjCWZq5mFsyFhKmNVy62nVq9CWXXUsu6iXZqJdkMzJSYEZBHlTqJdkEzoBrkB0NJWw5sxWb\n047JEMXtWUu4MW0eeo2OtrMO/rb1NPtPtgKwMD+Fexd7V7uWXNRLslEvyWZkpMCMgjyo1EuyCTyH\n08FHtTv5uG4H/a4B4sPjuGPiMuYlF6BRNJys6eSVDyuoH1rt+q7iiTxw+zS6Om3BHrq4DHnOqJdk\nMzJSYEZBHlTqJdlcPz0DvWyp2cqOoRWvk40W7sy+jdnmPNweD9sPNfLmDu9l1ykJkWSnmDDHRlzw\nFk50pMFv3TNx/clzRr0km5GRAjMK8qBSL8nm+uvs6+K9Mx+yq2k/bo+bTFMay7M/z9T4ydj6nLy5\ns4odhxpxuS99GTHoNL5Ckxgb7ldwEmPCCdMHbj0z4SXPGfWSbEZGCswoyINKvSSb4GmxW3mnagsH\nWssAmBybzfKc28mOmUBsnJHy021YuxxDb33n/33WgaPfddn7jIk0+PbW+O+9iSAmynDJ1U5i9OQ5\no16SzchIgRkFeVCpl2QTfHU9jfyjajNH208CkJcwjVUFdxMxGI1Oc+k8MR6PB1uf84Jy419wOrr7\ncV/mJUin1ZwvNjH+JScxNpxwg+rWoVUlec6ol2QzMlJgRkEeVOol2ajHqa5qNp3ezOmz1b7P6TU6\nInQRROjCL3gfftHHEX6fMyhh9Pcr9PZC11kXbWf7fAWnrcuBrc952e8fbdSTeMH5Nt6S432LM4Wh\n0cjeG5DnjJpJNiMzXIGRP2OEEKM2KXYi3yv4Fic6KjjYcYj23rM4nH04nA5sg3baHB24PJc/dPRZ\nFBTCdeFEWMKJSA0nWxeOQQlDcetxO3U4B7T092mw26G3F2p7PFSf1UKVHo9TBy49eDRoNQqJMRcf\nljr/8WfNKCyECC3yTBZCXBFFUZiekMvNU4su+UvS4/Ew6HbicDp8xcb//YVvl97W7uikz9V36TfV\nAibvmz4F9BePyaNBcRvodmrpGtRRYdfh6dZDtQ6Py1tyDJowosOMxEZEEh8VhcUUjSU6mrT4WJJj\nTei18rIoRCiQZ6oQ4ppTFAWDVo9BqycmLPp//oLLcHvc9Dn7hyk/n/F5lwPHYB92Z+9l9wJ5gLND\nbzXuCz6oA48HwgctzEucy10z52M0GK78P0EIEVBSYIQQqqRRNBj1ERj1EVd8H4OuQRyuPhyDjqH3\nfThcfdgG7XTaeumw9dLlsNPTb8M+6MDustEf1sqO7n+w4+MPSdPM4M7cReRnpsicNkKojBQYIcSY\npdfq0Wv1RBs++0TAix1tquHtk9uo156kQXuA31eWYjiYwRzzXO6YOYs4U1gARyyEGCkpMEIIcYG8\nlCzyUr6GbcDO34/vZF/bXgaiaynpr+WTrR+Q4pnBrVPmUTg5Cb1OE+zhCjFuyWXUF5FL29RLslGn\nsZ6L2+PmUPNJ3j21naaBalDAM2BA6cyiKKGIz82cRGZSlCoPMY31bEKZZDMychm1EEJcIY2ioSBl\nOgUp07Ha23n31HZK20pxJlWyz32K3TuTiO+fyuIpeSzISybaKCf+CnE9yB6Yi0grVi/JRp3GYy79\nrgH2NB5gy5mddA62AeC2mXC3ZjE9No+bZmaQn52AThvcQ0zjMZtQIdmMjOyBEUKIayhMa+CmjAUs\nSp9PZVcVH9V8wjGOo5l4lHJnOcf2pBPxUQ7FUyayMD+FNHNUsIcsxJgjBUYIIa6QoihMicthSlwO\nnX1d7GjYxc76PThSq3F6qtnaYeGD17LIjMxiYX4q86YnERl+8fR7QogrIYeQLiK79dRLslEnycXf\noGuQA61lbKv7lLreBgDcjiicLZkonekUTEpmYX4K0yfEB3zNJslGvSSbkZFDSEIIcZ3otXrmpxQx\nL7mQM921bKv/lIOtR9BMOA4ZFRy0prHv75nEGuIpzvOWmaR4Y7CHLUTIkQIjhBABoCgKE2OymBiT\nxT2Tevi0cTc7G3bTnVyDLrmGvm4z7x3P5J1diUxKj2VhfgpzplpksUkhRkieKUIIEWAxYSbumLiM\nW7Nuocx6lG31JVRxhrBoKzpnFGca0jm1pY1XPgyjKNfCwvwUpmTGolHh3DJCqIUUGCGEuE50Gh2F\nSbMpTJpNXU8D2+tL2N9yEH3WScKzTqF0pbPr9FlKjjaTGBPOwvwUivOTSYy58vWghBir5CTei8iJ\nVeol2aiT5HJ1egdtlDTuZUf9Ljr7uwCIciXTXZNKf1siChqmZsWxMD+FglwzYXrtiO9bslEvyWZk\n5CReIYRQqSh9JLdm3cLSzJs50nacbfUlVHSeQpPdTMIkE/quiZw4NcCJmk4iPtAyZ2oSC2emkJMa\nrcrlC4S4XgJaYCoqKnjkkUd46KGHWLVqFU1NTTz22GO4XC7MZjO//vWvMRgMzJgxg4KCAt/X/fnP\nf0arHflfGUIIEeo0ioZZ5jxmmfNosrWwvb6EPc0HsEcfJqpQi4Uc2qtS2FHmYkdZI8nxRm7MT6Y4\nL0VWyBbjUsAOIdntdr75zW8yYcIEcnNzWbVqFT/84Q+56aab+PznP89vf/tbkpOTWblyJfPmzWPP\nnj0jvm85hDQ+STbqJLkEjn3QwZ7mA2yv/xSrox2A5LA09GezqToeidMJigJ5ExNYODOF2ZMS/VbI\nlmzUS7IZmeEOIQVsoQ6DwcALL7yAxWLxfW7Pnj0sWbIEgFtuuYVdu3YF6tsLIUTIM+ojuCVjIT+d\n/30emfUwMxKm0tzfQF34TuLnfULBTZ1kpOo5UtXOc28d5V+f/YT/t6WCmuYeQvD0RiFGJWCHkHQ6\nHTqd/907HA4MBu9KrQkJCVitVgAGBgZ49NFHaWho4LbbbuPrX//6sPcdF2dEpwvcIabhGp8ILslG\nnSSXwEuyFLF4ahHNPa28f2oHW6tLONG3B226hgU3zCTsbA4HDw3yUWk9H5XWMyElmoWzUslOi2FC\nSgyJseFyzowK9A04aWqzEdk3KM+bqxS0k3gv/OvgscceY/ny5SiKwqpVqygqKiI/P/8zv7az0x6w\nccluPfWSbNRJcrm+tERwR/ptfC55MftaStleX8Kh1kPAIdLnpLHAMJOWqjgOn+rk5c0nfV9nDNOR\nbokiwxxFuiWSdEsUaYmRhBvkWo5AcLndtHQ4qLf20mC1ed+32bB2OvAAOq2G6RPiKMq1MHtyIlER\nskbW5ajmKiSj0UhfXx/h4eG0tLT4Di89+OCDvm3mz59PRUXFsAVGCCHGu3BdGIvSFrAwdT6VXafZ\nVl/CYesx6mkg0mzk1ulFTDTm01jror7NTn1rL5X1XVTUdfndjyU2gnRLFOnmSDIsUaRbojDHRsgk\neiPk8Xho7+7zKyn1rTaaO2w4Xf6H8SLDdUzJiCUpPoLaVhuHT7dz+HQ7Wo3C1Kw4CnPNFEw2Ex1p\nCNJPE1qua4EpLi7m/fff5+6772bLli0sWrSIqqoq1q1bx9NPP43L5aK0tJTbb7/9eg5LCCFClndF\n7ElMiZtEu6OTTxp382njHrY17mAbO4jUG8mckM6CmRmkGlMxDMTT1alQZ+2lvrWXequN0gorpRVW\n330a9BrSzVGkm6O8pcYcSZo5atzvJeixD1BvtdFg9f6/NbR59670Dbj8tjPoNWRYokhL9P7fJSdG\noI3spdPZQl1PNY22ZmZOz+Qu3TQaa3UcKLdyrLqDY9UdrH+/nNyMWApzLRRMMcsVZsMI2FVIR48e\nZe3atTQ0NKDT6UhKSuLpp59mzZo19Pf3k5qaylNPPYVer+fXv/41u3fvRqPR8LnPfY5vf/vbw963\nXIU0Pkk26iS5qM/A0IrYVb2nqbBW09bX4Xd7bFgMWaZ0MqMzyDSlEadNor3D5Ss1da02mtptuNz+\nvx7iTGFDhcZ7GCrDHEVSvBGdNmDXgwRF34CTxjb7JYd/um0DfttpFIXkBKO34CVGkm6OIjkhjAF9\nN3U99dT2NFDXU09jbzNOj+uy3ystKoXi1LnkhE/jeFUvB8qtnGo467t9UloMhblmCnPN43JG5uEO\nIclMvBeRF2P1kmzUSXJRr3PZ9A7aqO2up6a7npqeOmq76zg74J+ZOSKBrOgMX7FJMabQ2eU8X2qG\nfpl39vT7fZ1Oq5CaEDl0GOp8sYmONKj+pGGny01zh/18SRl633a275JtE2PCvSVl6NyhdHMUCbEG\nrH2t1A5TVnSKltSoFDKj08k0pZFpSifJaKHF3cjmk9s53HYct8eNTqPjBnM+xalzSdSmcbCyjQPl\nrZTXdXHut/SEZBNFUy0U5ppJihsfK5hLgRkFeTFWL8lGnSQX9Roum67+s9R013lLTXcdNT31OJwO\n3+0KCimRSd5SE51OlimD1Khk+vo9vkLjPQTl/cU/4HT73b/JqL/gEJT3fWqiEX0AryD9LG6Ph7az\nfTRctEelud1+yV6maKOeNHOUX1lJTYxEr4fG3ma/stLQ24zrorKSFpVKRnSar6ykRCah01x6tsa5\nbLoHetjTdICSpr202tu8t0UksCBlDvNTilCc4ZRWWjlQbuXEmU7cQ7+y081RFE01U5hrIS0xMoD/\ne8ElBWYU5MVYvSQbdZJc1Gs02Xg8HqyOdmqHykxNdx11PQ0MuAd92+g0OtKiUsgyDZWa6AySjGbw\nKLR2OYYOP3lLTb21F2uX/54MRYHkeOPQnprzV0QlRF+bS7w9Hg/d9kFfqTp3rkpjm43+Qf9DOGEG\nLemJkaSZI33nqqQN7TkadDtp8pUVb2FpvLisaHSkRaaMqKxczsXZeDweTp89Q0njXkpbDzPoHkSj\naJiRMJUbU+cyPT4XR7+bQ5Vt7C9v5fiZDt9JwikJRgpzLRTlmsmwRKl+z9doSIEZBXkxVi/JRp0k\nF/W62mxcbhfN9la/Q08X73UI0xrINKWTObSXJis6g4TwOBRFwdHvHLoqx3+PjaPfv0xEhGkvKjXe\nPR8RYZ9dBnz3fVFZ6XUM+m2n1SikJHhLU9pQSUlPjCQ+JhyNovjKSk1Pve+8leHKSpYpnQxTOqmR\nSWg1V743abhsHE4H+1sOUdK4l9qeBgBiDCbmp8xhQcoczMYE7H1Oyk63caDcypGqdgaH9oBZYiMo\nzDVTNNXChGRTyJcZKTCjIC/G6iXZqJPkol6ByGbQNUiDrcnv0FOLrRUP53+VROkjyTSl+/bSZJoy\niAnz/iI6d9lxfavNr9Q0d9i5+LdRYky47xBUQkw4LZ32obJio737or07gDk24nxJGXqfFBfhO8l4\n0O2ksbfJdwhouLJy7pyVa1FWLmek2dT1NFDSuI99LaU4nN6feUpsDsWpc5ltzkOv1dM34ORIVQcH\nylspO9Xu29uUEB1GYa73nJmctJiQvDReCswoyIuxekk26iS5qNf1yqbP2UddT4Pv0FNNdz3tl7vy\naegkYW+pSceoP39VzcCgi6Z2u+8QVN3Q4aiL96gAxEQZhg7/ePeqpJujSE2IJMxwvmSMuKxEpXj3\nIAWwrFzOaLMZcA1yyHqEksa9VHZVAWDURTAnuYAbU+eSFpXi3W7QxbHqDvaXWzl0qg1HvxPw/p8V\nTvGeMzMlIwatJjSuHJMCMwryYqxeko06SS7qFcxsegdsQ4Wm1ncIqmeg128bS0Si99BTdAZZpgwy\nTKkYtOcncfN4PHTbBqiz9tLR3U9SXASpiZGYjP4TvV1SVrrrabS1DFtWzp2zcj3KyuVcTTatdiu7\nmvazu2k/3UNXk2WZMliQOoeipNlE6MIB71VWx890cqC8lYOVbb4yGBWhp2CKmaJcM1Oz4lR9GbwU\nmFGQF2P1kmzUSXJRLzVl4/F4zl/5NLSnpran3ndYBECjaLxXPg1dyp0VnU5aZIpfyThfVuqp7R66\ndHnYsuItLMEsK5dzLbJxuV0cbT9JSeNejrWfxIMHg0ZPgWUWxalzyY7J8p0D43K7Ka/tYn+5d9LC\nc3PaRIbrmD0pkcJcCzMmxgXlKrHhSIEZBTU94YU/yUadJBf1Uns2bo8bq6PdW2aG9tLU9TQyeNGV\nT+lRqZgjEmi2tVy2rKRHpfoOAamxrFzOtc6mq/8su5sOsKtxr2/iwiSjheLUOcxLLsRkiPJt63Z7\nqKzv4kC5lQMVVt/cPuEGLbMmJVKUayYvO4EwffD/D6XAjILan/DjmWSjTpKLeoViNi63iyZbCzU9\n3nNparvraLA14/a40Wt0pIVgWbmcQGXj9rip7KyipGkvh1qP4PS40Cpa8hOnU5w6l2nxk9Eomgu2\n91Dd2M2Bciv7y1t9k/gZ9BpmZidQmGthZk7CsFeEBZIUmFEIxSf8eCHZqJPkol5jJZtB1yCd/V0k\nhMeHZFm5nOuRTe+gjX3NBylp3EujrRmAuLBYFqQUMT9lDgkRcX7bezwealt62V/eyv5yKy0ddsC7\ncnbexHgKc83MnpxIZPj1WxNLCswojJUn/Fgk2aiT5KJeko16Xc9sPB4PtT31fNq4l/0tB+l3DaCg\nMDV+MsWpc8lPnI7+ogn4PB4PDW029p9s5UCFlQarDfDOqzNtQhxFuRZumJx4yQnV15oUmFGQJ7x6\nSTbqJLmol2SjXsHKps/Zz8HWw5Q07aPq7BnAO2/P3OQCilPnkhKZdNmva2q3ec+ZKbdS0+Idt0ZR\nyM2MZVlRBrMnHdkYqQAACfhJREFUJwZkvFJgRkGe8Ool2aiT5KJeko16qSGbZlsLJY372NN8gN5B\n7x6W7JgsilPmcoNlJuG6sMt+XWuXg9JyKwfKWznd2E26OZJ/f3heQMYoBWYU1PCgEpcn2aiT5KJe\nko16qSkbp9vJ4bbjlDTu5WRHJR48hGkNFCXNpjh1LlmmjM9ckqCzpx+tRiE6MjCHkoYrMME5rVgI\nIYQQqqDT6CiwzKTAMpN2Rye7m/ezq3Efnzbu5dPGvaRGJlOcOpe5yQVE6o1+XxtnuvxemutB9sBc\nRE2tWPiTbNRJclEvyUa91J6N2+PmZEclJY17Odx2HJfHhU6jY7Y5j+KUuUyOy/a7HDtQZA+MEEII\nIUZMo2iYnpDL9IRcegZ62dN8gF2N+9jfcoj9LYdICI+nOHUO81OKiA2LCcoYZQ/MRdTeisczyUad\nJBf1kmzUKxSz8Xg8VHfX8GnjXkpbyhhwD6KgsDj9Ru6bsjwg31P2wAghhBDiqiiKQnbMBLJjJnDf\n5OUcaDnE7qYDvgUlrzcpMEIIIYQYlQhdOAvT5rMwbX7QxqDeNbSFEEIIIT6DFBghhBBChBwpMEII\nIYQIOVJghBBCCBFypMAIIYQQIuRIgRFCCCFEyJECI4QQQoiQIwVGCCGEECEnoAWmoqKCpUuX8vLL\nLwPQ1NTE6tWrWblyJf/yL//CwMAAAJs2beLee+/l/vvv57XXXgvkkIQQQggxBgSswNjtdp588kkW\nLFjg+9wzzzzDypUreeWVV8jKymLjxo3Y7XbWrVvHn//8Z9avX89LL71EV1dXoIYlhBBCiDEgYAXG\nYDDwwgsvYLFYfJ/bs2cPS5YsAeCWW25h165dlJWVkZ+fj8lkIjw8nIKCAkpLSwM1LCGEEEKMAQFb\nC0mn06HT+d+9w+HAYDAAkJCQgNVqpa2tjfj4eN828fHxWK3WQA1LCCGEEGNA0BZz9Hg8o/r8heLi\njOh02ms9JJ/hlu8WwSXZqJPkol6SjXpJNlfnul6FZDQa6evrA6ClpQWLxYLFYqGtrc23TWtrq99h\np8sJZHkRQgghhPpd1wJTXFzM+++/D8CWLVtYtGgRs2bN4siRI3R3d2Oz2SgtLaWoqOh6DksIIYQQ\nIUbxjOSYzRU4evQoa9eupaGhAZ1OR1JSEk8//TRr1qyhv7+f1NRUnnrqKfR6PZs3b+bFF19EURRW\nrVrF8uXLAzEkIYQQQowRASswQgghhBCBIjPxCiGEECLkSIERQgghRMiRAiOEEEKIkCMF5gK//OUv\nWbFiBQ888ACHDx8O9nDEBX71q1+xYsUK7r33XrZs2RLs4YgL9PX1sXTpUt54441gD0VcYNOmTSxf\nvpx77rmHbdu2BXs4ArDZbHznO99h9erVPPDAA+zcuTPYQwppQZvITm327t1LTU0NGzZs4PTp0zz+\n+ONs2LAh2MMSwO7du6msrGTDhg10dnbypS99iVtvvTXYwxJDnnvuOWJiYoI9DHGBzs5O1q1bx+uv\nv47dbud3v/sdixcvDvawxr0333yTiRMn8uijj9LS0sLXvvY1Nm/eHOxhhSwpMEN27drF0qVLAcjJ\nyeHs2bP09vYSFRUV5JGJOXPmMHPmTACio6NxOBy4XC60WpnQMNhOnz7NqVOn5JejyuzatYsFCxYQ\nFRVFVFQUTz75ZLCHJIC4uDjKy8sB6O7uJi4uLsgjCm1yCGlIW1ub34NJ1mRSD61Wi9FoBGDjxo3c\ndNNNUl5UYu3ataxZsybYwxAXqa+vp6+vj29961usXLmSXbt2BXtIAvjCF75AY2Mjy5YtY9WqVfzg\nBz8I9pBCmuyB+QwyPY76fPjhh2zcuJE//elPwR6KAN566y1mz55NRkZGsIciLqOrq4tnn32WxsZG\nvvrVr7J161YURQn2sMa1v//976SmpvLiiy9y8uRJHn/8cTl37CpIgRlyuTWZzGZzEEckLrRz505+\n//vf88c//hGTSRZAU4Nt27ZRV1fHtm3baG5uxmAwkJycTHFxcbCHNu4lJCRwww03oNPpyMzMJDIy\nko6ODhISEoI9tHGttLSUhQsXAjB16lRaW1vlcPhVkENIQ2688UbfOk3Hjh3DYrHI+S8q0dPTw69+\n9Sv+8Ic/EBsbG+zhiCH/+Z//yeuvv87f/vY37r//fh555BEpLyqxcOFCdu/ejdvtprOzE7vdLudb\nqEBWVhZlZWUANDQ0EBkZKeXlKsgemCEFBQXMmDGDBx54AEVReOKJJ4I9JDHk3XffpbOzk+9+97u+\nz61du5bU1NQgjkoI9UpKSuK2227jy1/+MgA//vGP0Wjk79VgW7FiBY8//jirVq3C6XTys5/9LNhD\nCmmyFpIQQgghQo5UciGEEEKEHCkwQgghhAg5UmCEEEIIEXKkwAghhBAi5EiBEUIIIUTIkQIjhAio\n+vp68vLyWL16tW8V3kcffZTu7u4R38fq1atxuVwj3v7BBx9kz549VzJcIUSIkAIjhAi4+Ph41q9f\nz/r163n11VexWCw899xzI/769evXy4RfQgg/MpGdEOK6mzNnDhs2bODkyZOsXbsWp9PJ4OAgP/3p\nT5k+fTqrV69m6tSpnDhxgpdeeonp06dz7NgxBgYG+MlPfkJzczNOp5O7776blStX4nA4+N73vkdn\nZydZWVn09/cD0NLSwr/9278B0NfXx4oVK7jvvvuC+aMLIa4RKTBCiOvK5XLxwQcfUFhYyPe//33W\nrVtHZmbmJYvbGY1GXn75Zb+vXb9+PdHR0fzmN7+hr6+PO+64g0WLFlFSUkJ4eDgbNmygtbWVJUuW\nAPDee++RnZ3Nz3/+c/r7+3nttdeu+88rhAgMKTBCiIDr6Ohg9erVALjdboqKirj33nt55pln+NGP\nfuTbrre3F7fbDXiX97hYWVkZ99xzDwDh4eHk5eVx7NgxKioqKCwsBLwLs2ZnZwOwaNEiXnnlFdas\nWcPNN9/MihUrAvpzCiGuHykwQoiAO3cOzIV6enrQ6/WXfP4cvV5/yecURfH72OPxoCgKHo/Hb62f\ncyUoJyeHd955h3379rF582ZeeuklXn311av9cYQQKiAn8QohgsJkMpGens727dsBqK6u5tlnnx32\na2bNmsXOnTsBsNvtHDt2jBkzZpCTk8PBgwcBaGpqorq6GoC3336bI0eOUFxczBNPPEFTUxNOpzOA\nP5UQ4nqRPTBCiKBZu3Ytv/jFL3j++edxOp2sWbNm2O1Xr17NT37yE77yla8wMDDAI488Qnp6Onff\nfTcff/wxK1euJD09nfz8fAAmTZrEE088gcFgwOPx8I1vfAOdTl72hBgLZDVqIYQQQoQcOYQkhBBC\niJAjBUYIIYQQIUcKjBBCCCFCjhQYIYQQQoQcKTBCCCGECDlSYIQQQggRcqTACCGEECLkSIERQggh\nRMj5/3nBlDPDtKsVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "flxmFt0KKxk9" + }, + "cell_type": "markdown", + "source": [ + "## Linear Scaling\n", + "It can be a good standard practice to normalize the inputs to fall within the range -1, 1. This helps SGD not get stuck taking steps that are too large in one dimension, or too small in another. Fans of numerical optimization may note that there's a connection to the idea of using a preconditioner here." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Dws5rIQjKxk-", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def linear_scale(series):\n", + " min_val = series.min()\n", + " max_val = series.max()\n", + " scale = (max_val - min_val) / 2.0\n", + " return series.apply(lambda x:((x - min_val) / scale) - 1.0)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "MVmuHI76N2Sz" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Normalize the Features Using Linear Scaling\n", + "\n", + "**Normalize the inputs to the scale -1, 1.**\n", + "\n", + "**Spend about 5 minutes training and evaluating on the newly normalized data. How well can you do?**\n", + "\n", + "As a rule of thumb, NN's train best when the input features are roughly on the same scale.\n", + "\n", + "Sanity check your normalized data. (What would happen if you forgot to normalize one feature?)\n" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "yD948ZgAM6Cx", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "62c57f8b-4c77-4550-9acd-585edbf4888e" + }, + "cell_type": "code", + "source": [ + "def normalize_linear_scale(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized linearly.\"\"\"\n", + " #\n", + " # Your code here: normalize the inputs.\n", + " #\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + " processed_features[\"total_rooms\"] = linear_scale(examples_dataframe[\"total_rooms\"])\n", + " processed_features[\"total_bedrooms\"] = linear_scale(examples_dataframe[\"total_bedrooms\"])\n", + " processed_features[\"population\"] = linear_scale(examples_dataframe[\"population\"])\n", + " processed_features[\"households\"] = linear_scale(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = linear_scale(examples_dataframe[\"median_income\"])\n", + " processed_features[\"rooms_per_person\"] = linear_scale(examples_dataframe[\"rooms_per_person\"])\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize_linear_scale(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0007),\n", + " steps=5000,\n", + " batch_size=70,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 232.00\n", + " period 01 : 210.72\n", + " period 02 : 166.34\n", + " period 03 : 121.53\n", + " period 04 : 117.07\n", + " period 05 : 113.20\n", + " period 06 : 108.93\n", + " period 07 : 104.03\n", + " period 08 : 98.18\n", + " period 09 : 91.79\n", + "Model training finished.\n", + "Final RMSE (on training data): 91.79\n", + "Final RMSE (on validation data): 91.70\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd0VGXixvHvnZn03hu9SRFCVYog\nndAEBWPFxrpFWF3F1XV/6K6Loujq2sCCqyDoCmIDRVGkiyAhgKF3CAmkF0gv9/cHa9YIhAQymUny\nfM7xHObOzL3PzJvIwzt37muYpmkiIiIiUo9YHB1AREREpKZUYERERKTeUYERERGRekcFRkREROod\nFRgRERGpd1RgREREpN6xOTqAiDO74ooraNasGVarFYCysjJ69erF9OnT8fT0vOT9Ll68mNjY2HO2\nf/LJJzz22GO88cYbDBo0qGJ7YWEhffv2Zfjw4Tz77LOXfNzqOn78ODNnzuTIkSMAeHh4MHXqVIYO\nHWr3Y9fEnDlzOH78+DnvyebNm5k8eTJNmjQ55zlff/11XcW7LCdOnGDIkCG0bNkSANM0CQ4O5v/+\n7//o2LFjjfb1wgsvEBkZyS233FLt53z++ecsWbKEBQsW1OhYInVFBUbkIhYsWEB4eDgAxcXFPPjg\ng7z55ps8+OCDl7S/tLQ03n777fMWGICIiAi++OKLSgVm9erV+Pr6XtLxLsXDDz/MuHHjeOONNwDY\nsWMHd955J1999RURERF1luNyRERE1JuyciFWq7XSa1i+fDlTpkxhxYoVuLq6Vns/06ZNs0c8EYfS\nR0giNeDq6kr//v3Zs2cPAEVFRTzxxBOMGDGCkSNH8uyzz1JWVgbA3r17ufnmm4mJiWHcuHGsX78e\ngJtvvpnk5GRiYmIoLi4+5xjdu3dn8+bNFBQUVGxbvnw5/fr1q7hdXFzMU089xYgRIxg8eHBF0QDY\ntm0bN9xwAzExMYwaNYqNGzcCZ/9Ff8011/Dee+8xduxY+vfvz/Lly8/7Ovfv3090dHTF7ejoaFas\nWFFR5F577TWuvfZaxo8fz1tvvcXgwYMB+Mtf/sKcOXMqnvfL2xfLNXPmTG6//XYAtm7dyoQJExg2\nbBixsbEkJiYCZ2ei/vSnPzFo0CBuv/12Tp06dZERO79PPvmEqVOncuedd/Lcc8+xefNmbr75Zh54\n4IGKv+y/+uorxowZQ0xMDHfccQfHjx8H4NVXX2X69OlMnDiRefPmVdrvAw88wDvvvFNxe8+ePVxz\nzTWUl5fzr3/9ixEjRjBixAjuuOMOUlJSapx71KhRFBYWcvjwYQAWLVpETEwMgwcP5qGHHqKwsBA4\n+74/88wzjB07lq+++qrSOFzo57K8vJx//OMfDBw4kIkTJ7J3796K4/74449cf/31jBo1ipEjR/LV\nV1/VOLtIrTNF5ILatWtnnjx5suJ2dna2edttt5lz5swxTdM033zzTfPee+81S0pKzIKCAnPChAnm\nZ599ZpaVlZkjR440ly1bZpqmaf70009mr169zNOnT5ubNm0yhw4det7jffzxx+ajjz5qPvzwwxXP\nPX36tDlkyBDzo48+Mh999FHTNE3ztddeM++8806zqKjIzMvLM8ePH2+uWrXKNE3THDNmjPnFF1+Y\npmman376acWxEhMTzY4dO5oLFiwwTdM0ly9fbg4bNuy8Of74xz+agwYNMufPn28ePHiw0n379u0z\ne/bsaaamppolJSXmH/7wB3PQoEGmaZrmo48+as6ePbvisb+8XVWuTp06mZ988knF6+3Vq5e5YcMG\n0zRNc9myZeb1119vmqZpLly40LztttvMkpISMzMz0xw0aFDFe/JLVb3HP7/PXbt2NY8cOVLx+M6d\nO5sbN240TdM0k5KSzB49ephHjx41TdM0//3vf5t33nmnaZqm+corr5jXXHONmZGRcc5+v/zyS/O2\n226ruP3yyy+bM2bMMPfv328OHz7cLC4uNk3TNN977z3z008/vWC+n9+XDh06nLO9V69e5qFDh8wt\nW7aYffr0MU+dOmWapmk+/vjj5rPPPmua5tn3fezYsWZhYWHF7dmzZ1f5c7lmzRpz+PDh5pkzZ8yC\nggJz4sSJ5u23326apmnecMMN5ubNm03TNM0jR46YDz30UJXZReqCZmBELmLSpEnExMQwZMgQhgwZ\nQu/evbn33nsBWLNmDbGxsdhsNtzd3Rk7dizff/89J06cID09ndGjRwPQuXNnIiMjSUhIqNYxR48e\nzRdffAHAypUrGTRoEBbL/35dV69eza233oqrqyuenp6MGzeOb775BoDPPvuMkSNHAtCjR4+K2QuA\n0tJSbrjhBgA6depEcnLyeY///PPPc9ttt7Fs2TLGjBnD4MGD+c9//gOcnR3p1asXISEh2Gw2xowZ\nU63XVFWukpIShg0bVrH/sLCwihmnMWPGcPz4cZKTk4mLi2PYsGHYbDYCAgIqfcz2aydPniQmJqbS\nf788V6ZFixa0aNGi4ra7uzt9+vQB4Pvvv+fqq6+mefPmANx4441s3ryZ0tJS4OyMVGBg4DnHHDhw\nILt37yY7OxuAb7/9lpiYGHx9fcnMzGTZsmXk5OQwadIkxo8fX6337WemabJo0SLCwsJo0aIFq1at\nYtSoUYSFhQFwyy23VPwMAPTp0wc3N7dK+6jq53LLli1ce+21eHl54e7uXjFWAEFBQXz22WccOnSI\nFi1a8MILL9Qou4g96BwYkYv4+RyYzMzMio8/bLazvzqZmZn4+flVPNbPz4+MjAwyMzPx8fHBMIyK\n+37+Syw4OPiix+zXrx/Tp08nOzubL7/8kvvuu6/ihFqA06dP88wzz/Diiy8CZz9S6tKlCwDLli3j\nvffeIy8vj/LycsxfLHdmtVorTj62WCyUl5ef9/hubm5MnjyZyZMnk5uby9dff83MmTNp0qQJOTk5\nlc7HCQoKuujrqU4ub29vAHJzc0lMTCQmJqbifldXVzIzM8nJycHHx6diu6+vL3l5eec93sXOgfnl\nuP36dlZWVqXX6OPjg2maZGVlnfe5P/P09KRv376sWbOGHj16kJubS48ePTAMg1dffZV33nmHGTNm\n0KtXL5588smLnk9UVlZW8T6YpkmbNm2YM2cOFouF06dP8+2337Jhw4aK+0tKSi74+oAqfy5zcnII\nDQ2ttP1nM2fO5PXXX+fuu+/G3d2dhx56qNL4iDiCCoxINQUGBjJp0iSef/55Xn/9dQCCg4Mr/rUN\nkJ2dTXBwMEFBQeTk5GCaZsVfFtnZ2dX+y97FxYVBgwbx2WefcezYMbp161apwISGhnLPPfecMwOR\nkpLC9OnT+eijj+jQoQNHjx5lxIgRNXqdmZmZ7Nmzp2IGxNfXl9jYWNavX8/+/fvx8fHh9OnTlR7/\ns1+XopycnBrnCg0NpVWrVnzyySfn3Ofr63vBY9emoKAgtm3bVnE7JycHi8VCQEDARZ87YsQIvv32\nW7KyshgxYkTF+Pfu3ZvevXuTn5/PrFmz+Oc//3nRmYxfn8T7S6GhoVx//fU8+uijNXpdF/q5rOq9\nDQ4O5vHHH+fxxx9nw4YN/PGPf6R///54eXlV+9gitU0fIYnUwN133822bdv48ccfgbMfGSxZsoSy\nsjLy8/P5/PPPufbaa2nSpAnh4eEVJ8nGx8eTnp5Oly5dsNls5OfnV3wccSGjR49m7ty55/3q8pAh\nQ/joo48oKyvDNE3mzJnDunXryMzMxNPTk1atWlFaWsqiRYsALjhLcT6FhYXcf//9FSd3Ahw7dowd\nO3bQs2dPunXrRlxcHJmZmZSWlvLZZ59VPC4kJKTi5M/ExETi4+MBapQrOjqatLQ0duzYUbGfP//5\nz5imSdeuXVm1ahVlZWVkZmaybt26ar+umujXrx9xcXEVH3N9+OGH9OvXr2LmrSqDBg1i27ZtrFy5\nsuJjmA0bNvDkk09SXl6Op6cn7du3rzQLcikGDx7MN998U1E0Vq5cyVtvvVXlc6r6uezWrRsbNmyg\noKCAgoKCiuJUUlLCpEmTSE1NBc5+9Giz2Sp9pCniCJqBEakBb29vfvvb3zJr1iyWLFnCpEmTSExM\nZPTo0RiGQUxMDCNHjsQwDF588UX+9re/8dprr+Hh4cHLL7+Mp6cnV1xxBX5+fvTr149PP/2UyMjI\n8x7rqquuwjAMRo0adc59t956KydOnGD06NGYpsmVV17JnXfeiaenJwMGDGDEiBEEBQXxl7/8hfj4\neCZNmsQrr7xSrdcYGRnJ66+/ziuvvMJTTz2FaZp4e3vz2GOPVXwz6aabbuL6668nICCA4cOHc+DA\nAQBiY2OZOnUqw4cPp2PHjhWzLO3bt692Lnd3d1555RVmzJhBXl4eLi4uPPDAAxiGQWxsLHFxcQwd\nOpTIyEiGDh1aadbgl34+B+bXnnvuuYu+B+Hh4Tz11FPcd999lJSU0KRJE2bMmFGt98/b25tOnTqx\nb98+unbtCkCvXr348ssvGTFiBK6urgQGBjJz5kwAHnnkkYpvEtVEp06d+P3vf8+kSZMoLy8nKCiI\nJ598ssrnVPVzOWjQINasWUNMTAzBwcFce+21xMXF4eLiwsSJE7nrrruAs7Ns06dPx8PDo0Z5RWqb\nYf7yg2gRkRqKi4vjkUceYdWqVY6OIiKNiOYARUREpN5RgREREZF6Rx8hiYiISL2jGRgRERGpd1Rg\nREREpN6pl1+jTks7/9cma0NAgCdZWfl2279cOo2Nc9K4OC+NjfPS2FRPSIjPBe/TDMyv2GxWR0eQ\nC9DYOCeNi/PS2Dgvjc3lU4ERERGRekcFRkREROodFRgRERGpd1RgREREpN5RgREREZF6RwVGRERE\n6h0VGBEREal3VGBEREQamDVrvqvW415++QWSk5MueP9f/vJQbUWqdSowIiIiDcjJk8msXLmiWo99\n4IFpREZGXfD+Z599sbZi1bp6uZSAiIiInN+LL85iz55d9O/fi+HDR3LyZDIvvTSHZ575B2lpqRQU\nFHDPPb+lX7/+TJ36Wx566BFWr/6OvLwzHD9+jKSkE9x//zT69OnH6NFD+PLL75g69bf06nU18fFx\nZGdnM2vWvwgODuYf/3icU6dO0rlzF1atWsmnny6vs9epAiMiImIni1cdZMve1HO2W60GZWXmJe2z\nV/tQYge3ueD9t9wyiU8+WUzLlq05fvwoc+a8TVZWJldd1ZuRI8eQlHSCxx//C/369a/0vNTUFP75\nz1fYtGkjn3/+MX369Kt0v5eXFy+//Dqvv/4q69atIjKyCcXFRbz11jy+/349ixf/55Jez6VSgfmF\n9OwCTmQW0CTQw9FRRERELluHDp0A8PHxZc+eXSxd+gmGYSE3N+ecx3bp0hWA0NBQzpw5c8790dHd\nKu7Pycnh2LEjdO4cDUCfPv2wWut2fScVmF/44odjrNuRzPBeTYkd3AaLYTg6koiI1GOxg9ucd7Yk\nJMSHtLTTdj++i4sLAN9++zW5ubnMnv02ubm5/OY3k8557C8LiGmeOzv06/tN08RiObvNMAyMOv47\nUyfx/sJV3TwIbZnFN1uO8/pnOykuKXN0JBERkRqxWCyUlVX++ys7O5uIiEgsFgtr166ipKTkso8T\nFdWEfft2A/Djj5vOOaa9qcD8wvbsOE6HbCb4yv1s3Z/C8x9uIze/2NGxREREqq1585bs27eXvLz/\nfQw0cOBgNm5czwMP/AEPDw9CQ0N59925l3Wcvn37k5eXxx/+MJkdO7bh6+t3udFrxDDPN0/k5Ow1\n7ZZbfJq3d7/HocxjeJeFk7a9E6E+vjwYG01YoKddjinVV1dTrlIzGhfnpbFxXg1hbHJzc4iPj2Pg\nwCGkpaXywAN/4IMPPq7VY4SE+FzwPs3A/IKvqw9/H/QQXYI7ccZ6iuAe8aTlZ/L0gq0cOJHt6Hgi\nIiJOw9PTi1WrVvLb397FX//6MH/8Y91e9E4zML8SEuJDSmoOnxz4gtUnNuBueJK7sytGoT/3ju1I\nr/ahdju2VK0h/IulIdK4OC+NjfPS2FSPZmBqyGJYmNjuOia2vY4iswDPK7dgC0jl9c928tXmY+c9\nO1tERETqjgpMFQY1vYZ7O9+BYYCl1VZ8miXx0epDLPxmP2Xl5Y6OJyIi0mipwFxEdEgnHuz+e7xd\nvCgNTyDgikOs3naCVz9OoLC41NHxREREGiUVmGpo7tuUh3tOJdwzlEK/AwRF7+anI6nMen8b2WeK\nHB1PRESk0VGBqaZgj0Cm9biPtv6tyHdLJLj7do5lpPP0e3EkpZ17yWURERFnNnHiWPLz81mwYB47\nd/5U6b78/HwmThxb5fPXrPkOgOXLl7F27Wq75bwQFZga8HTxZErX39ArrDt5ljQCe2wlsziDmQvj\n2XMsy9HxREREamzSpLu48souNXrOyZPJrFy5AoBRo8Zy7bWD7BGtSloLqYZcLDbu7HgTwR6BfHV0\nJb7RW8jf25UXF23n7lHt6XtlhKMjiohII3bPPbcxc+YLhIeHc+rUSR57bBohIaEUFBRQWFjIgw/+\nmY4dr6x4/NNP/52BA4fQtWs3/u//HqG4uLhiYUeAb775iiVLFmG1WmjRojWPPvp/vPjiLPbs2cW7\n786lvLwcf39/Jky4iTlzXiYhYQelpWVMmBBLTMxopk79Lb16XU18fBzZ2dnMmvUvwsPDL/t1qsBc\nAsMwGNNqOEEegXywdwmuV8RRfqwLb39hkp5TyNi+Lep8USsREXE+nxz8gm2pCedst1oMysov7ZIc\n3UI7c0ObMRe8f8CAQXz//TomTIhl/fq1DBgwiNat2zJgwEC2bt3C++/P5+mnnz/neStWfEWrVq25\n//5pfPfdNxUzLAUFBbzwwqv4+PgwZcq9HDp0kFtumcQnnyzm7rvv5d//fhOA7dvjOXz4EK+//g4F\nBQXceefNDBgwEAAvLy9efvl1Xn/9VdatW0Vs7K2X9Np/SQXmMvSJ6EmAmx9zExZQ2Hwbvp4d+Gy9\nSXp2IXfEXIHNqk/oRESkbg0YMIjXXnuJCRNi2bBhLVOnPsiHHy7gP/9ZQElJCe7u7ud93tGjh+na\ntQcA3br1qNju6+vLY49NA+DYsSPk5Jz/yvR79+6ma9fuAHh4eNCiRSsSExMBiI7uBkBoaCg5OTm1\n8jpVYC5T+8C2TOtxH3N2vENWyB4CPArZsNMk83Qh943vjKe73mIRkcbqhjZjzjtbYs8r8bZq1ZqM\njDRSUk5x+vRp1q9fQ3BwKI8/PoO9e3fz2msvnfd5pgkWy9lPD8r/OztUUlLCiy8+x7x5HxAUFMwj\nj/zpgsc1DINfXue1tLSkYn9Wq/UXx6mdi8FqiqAWRHqH8+eeU2nqE0Wh9xGCuiaw+3gaz76/lczc\nQkfHExGRRqZPn2t466059O9/LTk52URFNQFg7drVlJae/xpmzZo1Z+/ePQDEx8cBkJ+fh9VqJSgo\nmJSUU+zdu4fS0lIsFgtlZWWVnt++fSe2bdv63+flk5R0giZNmtnrJarA1BY/N1/+1O33XBnUnnyX\nkwT12EpSTjpPvRfH8RStdyEiInXn2msHsXLlCgYOHEJMzGgWLXqfBx+cQqdOV5KRkcGXXy495zkx\nMaPZtSuBBx74A4mJxzAMAz8/f3r1uprf/OYO3n13LrfeOolXXnmR5s1bsm/fXl555YWK50dHd+WK\nK9ozZcq9PPjgFH7/+6l4eHjY7TVqMcdfudxpvbLyMpYcWMq6pB9wN7zISYjGpTSA+8ZfSedWQbWY\ntPHR4mfOSePivDQ2zktjUz1azLEOWS1WYtuN54Y2Yygy8/HqvAXTO4WXP/qJtduTHB1PRESkQVCB\nsQPDMBjSbACTr7wdwzCxtdmKe+QJ5n+9j4/XHqK8/k16iYiIOBV9RcaOuoV2xt/Nlzd+mseZqAT8\nPAr58oez14q5Z1QHXGzqjyIiIpfCrgXmueeeY+vWrZSWlvK73/2Ozp0789hjj1FaWorNZuP5558n\nJCSEpUuXMn/+fCwWC7Gxsdx44432jFWnWvo15+EeU5nz079J5QCBnQvZvLOcrNNFTL2hM94eLo6O\nKCIiUu/YbQpg06ZNHDhwgEWLFvH2228zc+ZMXnrpJWJjY1m4cCHDhg3j3XffJT8/n9mzZzNv3jwW\nLFjA/Pnzyc4+/0Vy6qsQzyCm9ZhCa78WFHgkEthtO/tPpjJzwVZSswscHU9ERKTesVuB6dWrFy+/\n/DJw9ip+BQUF/O1vf2PEiBEABAQEkJ2dzY4dO+jcuTM+Pj64u7vTvXt34uPj7RXLYbxdvPhj13vp\nERpNgS2NwO5xpOSlMfO9OA4n5zo6noiISL1itwJjtVrx9PQEYMmSJQwYMABPT0+sVitlZWV88MEH\njB07lvT0dAIDAyueFxgYSFpamr1iOZSL1YW7Ot3CiOaDKSAX365bOGNN5bkP4tm2v2G+ZhEREXuw\n+0m8K1euZMmSJbzzzjsAlJWV8cgjj9C7d2/69OnDsmXLKj2+OpelCQjwxGazXvRxl6qq753Xhsmh\nN9IiJIK5W/+DZ8c4So904bVPy/nNuCu5rn9rux67vrP32Mil0bg4L42N89LYXB67Fpj169fzxhtv\n8Pbbb+Pjc3agHnvsMZo3b87UqVOBsws7paenVzwnNTWVrl27nnd/P8vKyrdb5rq6uFAX32j+0MWd\nf+9cSFmLbXi5d2DuZyZHT+Rw0+A2FetHyP/owk/OSePivDQ2zktjUz0OuZDd6dOnee6553jzzTfx\n9/cHYOnSpbi4uHD//fdXPC46OpqEhARyc3PJy8sjPj6enj172iuWU+kYdAUP9bgPfzc/ysL34Nd+\nP9/GHWPOZzspKim7+A5EREQaKbvNwCxfvpysrCz+9Kf/rVyZnJyMr68vkyZNAqB169b8/e9/Z9q0\naUyePBnDMJgyZUrFbE1jEOUdwZ97TuX1He9ygiMERBcSn1DO8/8p4v4JXfD1cnV0RBEREaejtZB+\nxVHTeoWlhfx71/vsztiHR1kgmT91IcTLnwdjuxIe6FnneZyRplydk8bFeWlsnJfGpnq0FlI94G5z\n5/ed7+KayKspsGbi320L6UVpPP1eHPsTG9Z1cURERC6XCowTsVqs3HzFDYxvPYoi8vDusoUi91P8\n88Pt/LgnxdHxREREnIYKjJMxDINhzQdyT6fbwCjHtd1WXEITeePzXSzfdKxaXzMXERFp6LSYo5Pq\nERaNv5sfbybMI69pAt4eRSxZc3YhyNuGtcVqUfcUEZHGS38LOrHW/i14uMcUQjyCKAvej3/H3azZ\nnsirHydQWFzq6HgiIiIOowLj5EI9Q3i4x1Ra+TWnyDuRgK7b+OnoSZ59P56s00WOjiciIuIQKjD1\ngLerF/d3/S3dQrtQ6JJGQPetJGan8vSCOE6knXF0PBERkTqnAlNPuFhduKfTrQxrNpBCIwff6B/J\nKkvhmYVb2X0009HxRERE6pQKTD1iMSyMbzOKm6+4nhKK8Oq0hVLvZP61eAffJ5x0dDwREZE6owJT\nD/WP6sPvu9yF1WrF1nobbpHH+PeXu/l8wxF9zVpERBoFFZh66srgDjzU/Q/4ufpiRu7Gp+1+Pt9w\niHeW76G0rNzR8UREROxKBaYea+oTxZ97TiXSK5zSgCP4d07g+10n+NfiHeQX6mvWIiLScKnA1HMB\n7v481OM+2ge0pcjjJP5d49mTfJJnFm4lI6fQ0fFERETsQgWmAfCwuXNf9D30jehFkS0T/65xJOed\n4qkFcaRm5Ts6noiISK1TgWkgrBYrt7afyNhWMRQZZ/DuvIXTlpN8+N1BR0cTERGpdSowDYhhGMS0\nGMxdHW8Bowy3K+L4KWU/+45nOTqaiIhIrVKBaYB6hXfjD9H3gGHi0mwPi1YfoFxfrxYRkQZEBaaB\nah/YlqvCu2PxOk1iyT627El1dCQREZFaowLTgI1tNQKrYcOlyQGWrNtHSamuDyMiIg2DCkwDFuge\nwJBm/TFcC8nx2Meq+BOOjiQiIlIrVGAauOHNB+Jl88Ql8gjLNu8jr7DE0ZFEREQumwpMA+dh82BU\nq2FgLaUkeB9fbDzq6EgiIiKXTQWmEegf2ZsQjyBsoYl8t3MvadkFjo4kIiJyWVRgGgGrxcr1bUaD\nYWKJ2scn6w47OpKIiMhlUYFpJLoEd6KVXwusAalsSdzDkZO5jo4kIiJyyVRgGgnDMLihzRgAXJru\nY9GqA5i6uJ2IiNRTKjCNSEu/ZvQIjcbincOhvD3sOJjh6EgiIiKXRAWmkbmu9UishhWXpvtZvHYf\nZeW6uJ2IiNQ/KjCNTLBHIAOb9MNwKyTdtpf1P510dCQREZEaU4FphGJaDMbD6oEt8hCfbtxHYXGp\noyOJiIjUiApMI+Tp4smolkMwbKUU+u/h683HHR1JRESkRlRgGqn+TfoS6BaALfQ4X2/fQ/aZIkdH\nEhERqTYVmEbKxWJjfJtRYDEhYi+frT/i6EgiIiLVZrPnzp977jm2bt1KaWkpv/vd7+jcuTOPPPII\nZWVlhISE8Pzzz+Pq6srSpUuZP38+FouF2NhYbrzxRnvGkv/qHtqF746v4xiJbNi9i2FpTYgK8XZ0\nLBERkYuy2wzMpk2bOHDgAIsWLeLtt99m5syZvPLKK9x666188MEHNG/enCVLlpCfn8/s2bOZN28e\nCxYsYP78+WRnZ9srlvyCYRhMaDsWAFvTfSxec9DBiURERKrHbgWmV69evPzyywD4+vpSUFDA5s2b\nGTJkCACDBg3ihx9+YMeOHXTu3BkfHx/c3d3p3r078fHx9oolv9LavwXRIVdi9clmV+Zu9hzLcnQk\nERGRi7JbgbFarXh6egKwZMkSBgwYQEFBAa6urgAEBQWRlpZGeno6gYGBFc8LDAwkLS3NXrHkPMa3\nHokFCy5N97No1X7KtcSAiIg4ObueAwOwcuVKlixZwjvvvMPw4cMrtl9oHZ7qrM8TEOCJzWattYy/\nFhLiY7d9O6MQfBieMYCvD6whiV3sSbyCgT2aOjrWeTW2sakvNC7OS2PjvDQ2l8euBWb9+vW88cYb\nvP322/j4+ODp6UlhYSHu7u6kpKQQGhpKaGgo6enpFc9JTU2la9euVe43KyvfbplDQnxISzttt/07\nq0Fh17L60A+YUYd4d/l22kXSZocxAAAgAElEQVT64GLHkngpGuvYODuNi/PS2DgvjU31VFXy7PYR\n0unTp3nuued488038ff3B6Bv376sWLECgG+++Yb+/fsTHR1NQkICubm55OXlER8fT8+ePe0VSy7A\n29WLmJaDMWwl5PrsYeXWE46OJCIickF2m4FZvnw5WVlZ/OlPf6rY9uyzzzJ9+nQWLVpEZGQk48eP\nx8XFhWnTpjF58mQMw2DKlCn4+GhazREGNrmGtYk/kB12jC+27KF/l0i8PVwcHUtEROQchlmdk06c\njD2n3Rr7tN6Pp+KZv/tDStMjGBg4hluGtnV0pAqNfWyclcbFeWlsnJfGpnoc8hGS1E89w7rSxDsK\nW/BJVu/dRaodzzcSERG5VCowUonFsDCh7eizf26yhyVrDzk4kYiIyLlUYOQc7QLacGVQB6y+WcSf\n2sWh5BxHRxIREalEBUbO6/o2ozAwcGm6j0Wr9lfr+jwiIiJ1RQVGzivcK4x+UVdj8cjjSPEuth1I\nv/iTRERE6ogKjFzQ6JbDcLW44hJ1kMVr91JaVu7oSCIiIoAKjFTB19WH4c0HYbgUk+m+i3U7kh0d\nSUREBFCBkYsY0qw/vi4+2CKO8tmm3RQUlTo6koiIiAqMVM3V6sp1rWMwLOUUBe3mq83HHB1JRERE\nBUYu7uqIHkR4hWMLTuabhF1knS5ydCQREWnkVGDkoiyGhQltxoABRO7hk3W6uJ2IiDiWCoxUS4eg\ndnQIaIfVL4NNxxNITD3j6EgiItKIqcBItV3fdjQGBram+1i8er+j44iISCOmAiPVFuUdQe+IHlg8\nz7D3TAK7jmQ6OpKIiDRSKjBSI2NajcDFcMEl6iCL1uylvFxLDIiISN1TgZEa8XfzY2jzazFcizhl\n3ckPu045OpKIiDRCKjBSY0ObXYu3zRtbxBE+3rib4pIyR0cSEZFGRgVGaszd5sbY1sMxrGXk+e3i\n27hER0cSEZFGRgVGLkmfiF6EeoRgCznBl9t2kptf7OhIIiLSiKjAyCWxWqxMaHv24nbl4XtYtuGo\noyOJiEgjogIjl6xTUHva+rfG6p/G2kM7OJWZ7+hIIiLSSKjAyCUzDIMb2o4GwNpkL0vWHHRwIhER\naSxUYOSyNPNpwlVh3bF4nWZHxg4OnMh2dCQREWkEVGDkso1tPQKrYcXW5ACLVu/FNHVxOxERsS8V\nGLlsge4BDGk2AItbIcfLE9i6L83RkUREpIFTgZFaMbz5QDytntgiD7N4/W5Ky8odHUlERBowFRip\nFR42D0a3HoZhLSPHeyertyU5OpKIiDRgKjBSa/pH9ibYPQhbaCJLt+wkv7DE0ZFERKSBUoGRWmO1\nWM9+rdowKQndxZebjjk6koiINFAqMFKrugR3oqVvC6wBqazc8xMZOYWOjiQiIg2QCozUKsMwzi4x\nAFii9vDxukMOTiQiIg2RCozUupZ+zege0gWLdw5bTm7j2KnTjo4kIiINjAqM2MW4NqOwYMXWdD8f\nrt6ni9uJiEitsmuB2b9/P0OHDmXhwoUAbNmyhVtuuYVJkybxu9/9jpycHADefvttJk6cyI033sja\ntWvtGUnqSLBHIIOa9sPiVsihoh0kHM50dCQREWlA7FZg8vPzmTFjBn369KnY9swzz/D000+zYMEC\nunXrxqJFi0hMTGT58uV88MEHvPnmmzzzzDOUlZXZK5bUoZgWg3G3umOLPMSidbsoL9csjIiI1A67\nFRhXV1fmzp1LaGhoxbaAgACys88u9peTk0NAQACbN2+mf//+uLq6EhgYSFRUFAcPalXjhsDTxZPR\nLYdi2EpJd0tgQ8JJR0cSEZEGwm4Fxmaz4e7uXmnbX//6V6ZMmcKIESPYunUr119/Penp6QQGBlY8\nJjAwkLQ0raXTUPRv0pcAtwCsocf5ZFMCRcWaXRMRkctnq8uDzZgxg9dee40ePXowa9YsPvjgg3Me\nU52TPQMCPLHZrPaICEBIiI/d9t0Y3dl9Ai/98DYFgbvYsLszNw+74pL3pbFxThoX56WxcV4am8tT\npwVm37599OjRA4C+ffuybNkyevfuzZEjRyoek5KSUuljp/PJysq3W8aQEB/S0vS139rUxr0tzbyb\ncpxElmz6kZ5tg/Hzcq3xfjQ2zknj4rw0Ns5LY1M9VZW8Ov0adXBwcMX5LQkJCTRv3pzevXuzZs0a\niouLSUlJITU1lTZt2tRlLLEzwzCY2G4sAGbEbj7bcNjBiUREpL6z2wzMzp07mTVrFklJSdhsNlas\nWMGTTz7J9OnTcXFxwc/Pj5kzZ+Lr60tsbCy33347hmHw97//HYtFl6dpaFr7t6BLcCd+YhffH9zG\n8IymRAR5OTqWiIjUU4ZZD68wZs9pN03r2U9qfhr/2PQCZYXutM8fxwMTu9Xo+Rob56RxcV4aG+el\nsakep/kISRq3UM8QBkT1xuKez87T29h3PMvRkUREpJ5SgZE6NarlMFwtbrhEHeLDNbspr38TgCIi\n4gRUYKROebt6MbLlYAxbCUnWn9iyJ9XRkUREpB5SgZE6N7DJNfi5+mELO8ZH3/9ESWm5oyOJiEg9\nowIjdc7V6sL4NiMxLOWc9tvJqvgTjo4kIiL1jAqMOETPsK5EeUViCz7Jsm3bySsscXQkERGpR1Rg\nxCEshoWJ7cYAUBq2i2Ubj1zkGSIiIv+jAiMO0y6gDZ0CO2D1zWL1wXjSswscHUlEROoJFRhxqBva\njsLAwBK1j4/XHXR0HBERqSdUYMShwr3C6Bd5NRaPPOLSt3LkZK6jI4mISD2gAiMON7rVMFwMV1yi\nDrJozR7q4eoWIiJSx1RgxOF8XX0Y0WIQhksxh0u3seNQhqMjiYiIk1OBEacwpFl/vG0+2CKOsmjd\nT5SV6+J2IiJyYSow4hRcra6MbxODYSkn0yuB9T+ddHQkERFxYiow4jSujuhBuEcY1uAkPv1xO4XF\npY6OJCIiTkoFRpzG2YvbjcUwoChkJ19tOuboSCIi4qRUYMSpdAhqxxX+bbH6ZbBibzzZZ4ocHUlE\nRJyQCow4nQntxgAGRuQePl1/yNFxRETECanAiNOJ8o6gd3gPLJ5n+CE5jqS0M46OJCIiTuaSC8zR\no0drMYZIZWNbj8BmuGCLOsCiNfscHUdERJxMlQXm7rvvrnR7zpw5FX9+4okn7JNIBPB382NY8wEY\nrkXsLdjKnmNZjo4kIiJOpMoCU1pa+WusmzZtqvizLvcu9ja02UA8rV7YIo7wn7UJlJfrZ05ERM6q\nssAYhlHp9i9Ly6/vE6lt7jY3xrUZgWEtI8V1O+u2nXB0JBERcRI1OgdGpUXqWp+IXoS4h2ANOcG8\n7zZTUlrm6EgiIuIEbFXdmZOTww8//FBxOzc3l02bNmGaJrm5uXYPJ2K1WJnYbgyv//Qup/1+4rut\nHYi5upmjY4mIiINVWWB8fX0rnbjr4+PD7NmzK/4sUhc6BbWntW8rDnGYL36Ko390BF7uLo6OJSIi\nDlRlgVmwYEFd5RC5IMMwmNhuDLPiXqEsfDdfbOzMTYPbOjqWiIg4UJXnwJw5c4Z58+ZV3P7www8Z\nN24c999/P+np6fbOJlKhmW8T+jbthcUrl1VHfiQjp9DRkURExIGqLDBPPPEEGRkZABw5coQXX3yR\nRx99lL59+/L000/XSUCRn90WPQ4LViyR+/h4/X5HxxEREQeqssAkJiYybdo0AFasWEFMTAx9+/bl\n5ptv1gyM1LkQryAGN70Gi1shcRk/cjzltKMjiYiIg1RZYDw9PSv+/OOPP9K7d++K2/pKtTjCiBaD\ncbd4YIs4zKK1uxwdR0REHKTKAlNWVkZGRgbHjx9n27Zt9OvXD4C8vDwKCgrqJKDIL3m6eDCm9TAM\nWykHS7ey60imoyOJiIgDVFlg7r33XkaNGsXYsWO577778PPzo7CwkFtvvZXx48fXVUaRSvpH9cbf\nJQBr6HE+3LCdci1rISLS6FRZYK699lo2bNjA999/z7333guAu7s7f/7zn7ntttsuuvP9+/czdOhQ\nFi5cCEBJSQnTpk1j4sSJ3HnnneTk5ACwdOlSJkyYwI033shHH310ua9JGjibxcaEK0ZjWEzSPLax\neXeKoyOJiEgdq7LAJCcnk5aWRm5uLsnJyRX/tWrViuTk5Cp3nJ+fz4wZM+jTp0/FtsWLFxMQEMCS\nJUsYNWoUcXFx5OfnM3v2bObNm8eCBQuYP38+2dnZtfPqpMHqFtKZJl5NsAam8NGPW7TEgIhII1Pl\nhewGDx5My5YtCQkJAc5dzPG999674HNdXV2ZO3cuc+fOrdi2evVq7r//fgBuuukmAH744Qc6d+5c\ncWXf7t27Ex8fz+DBgy/xJUljYBgGN7W/jhe2ziE/MIHvtnYh5urmjo4lIiJ1pMoCM2vWLD7//HPy\n8vIYPXo0Y8aMITAwsHo7ttmw2SrvPikpiXXr1vH8888THBzM3/72N9LT0yvtMzAwkLS0tEt4KdLY\ntPJrwZWBndjJLr7YtYn+0ZFaYkBEpJGossCMGzeOcePGcfLkST799FNuu+02oqKiGDduHMOGDcPd\n3b1GBzNNk5YtWzJ16lTmzJnDm2++SceOHc95zMUEBHhis1lrdOyaCAnROk/O6tdjc2/vWP60/EnK\nwvfw3bYTTL6ui4OSNW76nXFeGhvnpbG5PFUWmJ9FRERw3333cd999/HRRx/x1FNP8eSTTxIXF1ej\ngwUHB9OrVy8ArrnmGl599VUGDhxY6aJ4qampdO3atcr9ZGXl1+i4NRES4kNami6Q5ozONzY2PLgm\n8mrWJ//A8n1r6XcwgiC/mhVruTz6nXFeGhvnpbGpnqpKXpUn8f4sNzeXhQsXcsMNN7Bw4UJ+97vf\nsXz58hoHGTBgAOvXrwdg165dtGzZkujoaBISEsjNzSUvL4/4+Hh69uxZ431L4zW61TBcDFcsEQdY\nsn6vo+OIiEgdqHIGZsOGDXz88cfs3LmT4cOH8+yzz9KuXbtq7Xjnzp3MmjWLpKQkbDYbK1as4J//\n/CdPP/00S5YswdPTk1mzZuHu7s60adOYPHkyhmEwZcqUihN6RarDx9WbmBaDWXbka+LTfuB4Smua\nhelnSESkITPMKk46ad++PS1atCA6OhqL5dzJmmeeecau4S7EntNumtZzXlWNTXFZCdM3PMuZkjya\nZ43l0Rv71XG6xku/M85LY+O8NDbVU9VHSFXOwPz8NemsrCwCAgIq3XfixIlaiCZSO1ytLtzQbiQL\n9izmsLmFXUc70KlF9b4xJyIi9U+V58BYLBamTZvG448/zhNPPEFYWBhXXXUV+/fv56WXXqqrjCLV\nclV4d0Ldw7AGJfPBhi1aYkBEpAGrcgbmX//6F/PmzaN169Z89913PPHEE5SXl+Pn56dL/ovTsRgW\nbmp/Ha9un0uG13Y27epC3ysjHB1LRETs4KIzMK1btwZgyJAhJCUlcccdd/Daa68RFhZWJwFFaqJ9\nYFva+LbB6pfBkq2btMSAiEgDVWWBMQyj0u2IiAiGDRtm10Ailyu2/VgwDQqCEli5NdHRcURExA6q\ndR2Yn/260Ig4oyjvCHqGdsfieYYv920gr7DE0ZFERKSWVXkOzLZt2xg4cGDF7YyMDAYOHIhpmhiG\nwZo1a+wcT+TSXN8uhm1pOygN3ceyjQe5eXAHR0cSEZFaVGWB+frrr+sqh0it8nfzY0jTAXyTuIo1\nyRsYltNSSwyIiDQgVRaYqKiousohUutGtBzIuhObKAg7zOL1O/nDGC1RISLSUNToHBiR+sTd5s64\nNiMwrGVsP/MDx1N01UsRkYZCBUYatH5RV+HvEog15AQfrI93dBwREaklKjDSoFktVmLbj8UwTI4a\nP7LraKajI4mISC1QgZEGr0twR5p4NsMakMb7GzdqiQERkQZABUYaPMMwuLXjOACyfLazadcpBycS\nEZHLpQIjjUJz36Z0DuiMxSuXj7avo6S03NGRRETkMqjASKNxY/vRGKaFwqBdfLv1qKPjiIjIZVCB\nkUYjyCOQayL7YnErZPmBtVpiQESkHlOBkUblujZDccGN8tADfL5xn6PjiIjIJVKBkUbF08WTUS2H\nYNhKWZeyjoycQkdHEhGRS6ACI43OoObX4GXxxRJyjEUbtjs6joiIXAIVGGl0XCw2bmw/BsNi8lP+\nRi0xICJSD6nASKPUMyyaUNcIrEGnWLhhs6PjiIhIDanASKNkGAa3djp7cbvjti3sPJLh4EQiIlIT\nKjDSaLUNaEUbn3ZYfbJ4f/M6LTEgIlKPqMBIo3Zrx+vANMj22cGmXcmOjiMiItWkAiONWphXKD1D\nemLxyGfxT6u1xICISD2hAiON3oT2MVhNF4qD9rJi62FHxxERkWpQgZFGz9fVh6HNrsVwKearw6u0\nxICISD2gAiMCxLQaiLvhhRlymE827nJ0HBERuQgVGBHA1erK+DYxGJZyNqav1RIDIiJOTgVG5L/6\nNemFvzUYIyiJDzbEOTqOiIhUQQVG5L8shoVbO12HYcCu4u+1xICIiBNTgRH5hU7B7Wni3gKrXwbv\nbVzv6DgiInIBdi0w+/fvZ+jQoSxcuLDS9vXr13PFFVdU3F66dCkTJkzgxhtv5KOPPrJnJJGLur3z\nODAhySWOhCPpjo4jIiLnYbcCk5+fz4wZM+jTp0+l7UVFRbz11luEhIRUPG727NnMmzePBQsWMH/+\nfLKzs+0VS+SimvpEcaV/FyyeZ3h/yyotMSAi4oTsVmBcXV2ZO3cuoaGhlba/8cYb3Hrrrbi6ugKw\nY8cOOnfujI+PD+7u7nTv3p34+Hh7xRKplps7jcEwreT6JrBx1wlHxxERkV+xW4Gx2Wy4u7tX2nbk\nyBH27t3LyJEjK7alp6cTGBhYcTswMJC0tDR7xRKplgB3f64J74vhWsSSXSu1xICIiJOx1eXBnnnm\nGaZPn17lY8xqTNcHBHhis1lrK9Y5QkJ87LZvuTx1OTaT+13Ppk/iKA7cz9o9x7hlcJc6O3Z9o98Z\n56WxcV4am8tTZwUmJSWFw4cP8/DDDwOQmprK7bffzh//+EfS0/93omRqaipdu3atcl9ZWfl2yxkS\n4kNamr4+64wcMTajWg7l8yPL+HTPcvq0bYKXu0udHr8+0O+M89LYOC+NTfVUVfLq7GvUYWFhrFy5\nksWLF7N48WJCQ0NZuHAh0dHRJCQkkJubS15eHvHx8fTs2bOuYolUaUjzvngZ/phBx/lo4w5HxxER\nkf+y2wzMzp07mTVrFklJSdhsNlasWMGrr76Kv79/pce5u7szbdo0Jk+ejGEYTJkyBR8fTauJc7Ba\nrMS2H8O7exayOXstY3OuJMjP/eJPFBERuzLM6px04mTsOe2maT3n5aixMU2TJ9e/TFppMu0KR/LA\nqEF1nsGZ6XfGeWlsnJfGpnqc4iMkkfrKMAzu6HI9AHtLN2qJARERJ6ACI1INrfyb09qzPRbvHOb9\nsMrRcUREGj0VGJFqmtTlOjAtnHSLJ+FIqqPjiIg0aiowItUU4hlMj6CeWNwKWLj1Wy0xICLiQCow\nIjUQ22kkFtOF0767Wb/zmKPjiIg0WiowIjXg7eLFkCYDMWwlfLLvGy0xICLiICowIjU0us1A3Exv\nSvwP8UXcbkfHERFplFRgRGrIxerC9W1HYVhMViatJL+wxNGRREQaHRUYkUvQr2l3/CwhEJDMf37Y\n4ug4IiKNjgqMyCWwGBZu7zQegLjcdaRnFzg4kYhI46ICI3KJOoa0JdKlJRafTOb/sNbRcUREGhUV\nGJHLcFfX68GEg+WbOZaS6+g4IiKNhgqMyGWI8gmng080Fo883tm8wtFxREQaDRUYkcs0qctYjHIb\naW472H74pKPjiIg0CiowIpfJz92XvmF9MVyKeX/711piQESkDqjAiNSCCR2HYyv3IM9nH2sSDjo6\njohIg6cCI1IL3KyujGwxDMNazucHV2iJARERO1OBEaklw1v3xdMMoMTvOJ9v2e7oOCIiDZoKjEgt\nsRgWbuowFsOA1SnfaYkBERE7UoERqUU9IjoRZIkC3zQW/PC9o+OIiDRYKjAitcgwDO6KvgFM2JG3\ngfScfEdHEhFpkFRgRGpZq4CmtHDvgOGZyzs/rHR0HBGRBkkFRsQO7u42DsotHDXjOHwqy9FxREQa\nHBUYETsI9gykq38vDLdC3t2y3NFxREQaHBUYETu5LXoklnJXMtx3svXQCUfHERFpUFRgROzE08WT\ngREDMaxl/CdhuZYYEBGpRSowInY0rsNAXMt9yPc+xMqEvY6OIyLSYKjAiNiRzWJjXOtRGBaTL458\nrSUGRERqiQqMiJ1d26I7PmYYZT4nWbJli6PjiIg0CCowInZmGAa3XzkOgA3p35FXUOzgRCIi9Z8K\njEgduDKsDeGWVuCVzbxNaxwdR0Sk3lOBEakj93S/HkyDXQUbSc0+4+g4IiL1mgqMSB2J8g2jrUc0\nhns+r2/4ksPJuRSVlDk6lohIvWSz587379/Pfffdx1133cXtt9/OyZMneeyxxygtLcVms/H8888T\nEhLC0qVLmT9/PhaLhdjYWG688UZ7xhJxmHu6X8dfN+wk1XMrz+/YhVngg2d5IKHuoTT3j+KKsCa0\nCPMlwMcNwzAcHVdExGnZrcDk5+czY8YM+vTpU7HtpZdeIjY2llGjRvH+++/z7rvvMnXqVGbPns2S\nJUtwcXFh4sSJDBs2DH9/f3tFE3EYX3dv7u50O8sPriLDTKPELY0i0khkH4nFsP6YBXOvN5YiX/xt\nIUR5hdM2uCltwkOJCvbC1cXq6JcgIuIU7FZgXF1dmTt3LnPnzq3Y9re//Q03NzcAAgIC2LVrFzt2\n7KBz5874+PgA0L17d+Lj4xk8eLC9ook4VI+IjvSI6AjA6eIzJJ0+yf6M4xzOTCKl4BSnPTMxvXLJ\n5gTZwK4sMFPcKC/wxtMMJMQtlBb+UbQPa0KLsAD8vV01WyMijY7dCozNZsNmq7x7T09PAMrKyvjg\ngw+YMmUK6enpBAYGVjwmMDCQtLQ0e8UScSo+rt60D2pL+6C2FdvKystIK0jnSHYS+9OOk3j6JBlm\nKsWuGRSRwQkOcKII1h81MPd6YS32w88aTKRXBG2DmtIuPIyoEC9cbJqtEZGGy67nwJxPWVkZjzzy\nCL1796ZPnz4sW7as0v1mNdaLCQjwxGbH/zmHhPjYbd9yeRrL2ITjT2faVNqWV5zPsewkdiYfYV/K\nMU6cTibHSKfc8wzZJJHNDnZngZnmgpnvg5cRSJhHOG2Cm9GlaQvaNQmx27k1jWVc6iONjfPS2Fye\nOi8wjz32GM2bN2fq1KkAhIaGkp6eXnF/amoqXbt2rXIfWVn5dssXEuJDWtppu+1fLp3GBkKMcAZF\nhTMo6uy5ZeVmORkFWRzJPsG+tOMk5iaTYaZR6JNJgZHJUQ5yNBu+zQLzR08sxX74W4OJ9AqnTVBT\n2odHEhnsjYvt0r+QqHFxXhob56WxqZ6qSl6dFpilS5fi4uLC/fffX7EtOjqa6dOnk5ubi9VqJT4+\nnr/+9a91GUuk3rIYFkI8gwjxDOKqyOiK7UVlxSSdOcX+1GMcyjzByfxT5LhlUO5xkmxOkk0CuzPh\n8zQrZoEPHuUBBLuF0twvig5hzWgdHoyfl6sDX5mISNUMszqf2VyCnTt3MmvWLJKSkrDZbISFhZGR\nkYGbmxve3t4AtG7dmr///e98/fXX/Pvf/z57yfXbb+e6666rct/2bK1qxc5LY3N5TNMkuyiHI1lJ\n7Ek7xvGcZDKKUikwcsCo/L+B8iIPrEW+FefWtA6MokNEU6KCvbFZK8/WaFycl8bGeWlsqqeqGRi7\nFRh7UoFpnDQ29lFSVkJyXgr7Uo9zMCPx7GxNWQZllsJKjzPLLf+brXENpZlfJB3CmtO7U0tKCrW+\nkzPS74zz0thUjwpMDeiHynlpbOpWbvFpDmeeYG/qcY7lJJNelEK+kQ1GeaXHmcVuGMU+eBn+BLkG\nE+kTRpugSFqFhhHi54HFoq94O4p+Z5yXxqZ6nOYcGBGpP3xdfega3oGu4R0qtpWVl3EqL409Kcc4\nmHmC5LyT5NoyKHFNJ4908jjI8ULYlATmMRsUeeFe7o+/SyDhXqG0CIikXWgkkUHeuiifiFwWFRgR\nqTarxUqUTzhRPuEM5Wrg7L+QEk+mk3w6hQNpSRzNPklKfirZlgyKPHMpMnJI4RgpZbAjHcxUA7PI\nE5dSX3ytgYR6hNDUL5y2IU1oHuKPj6dOHhaRi1OBEZHL5m5zo1VAM1oFNKu0/exF+TI4lJ7M4cwk\nkk+nklGcTr5bNmUeJ8niJFnAvlxYmQvlu92xFHvjbQQQ5BZMlE8YrYOjaBUSQrC/BxZdcVhE/ksF\nRkTsxmqxEu4VSrhXKP2a/+/6TqZpklt8mqPZJzmYdoLE3FOkFaZzxiWLUrd0zpDOGQ5wrBA2ngDz\nqA0KvXE3/QlwDSTcK4yWARG0DY0kIlBrRIk0RiowIlLnDMPAz82X6DBfosOuqHRfYWkhSadT2J+W\nxPHsk5zKTyXHkkmRVw5FRjanOMqpUtieBmaKgVnohUuZL37WQEI9Q2jqF0G7kEiahQTg7eHioFco\nIvamAiMiTsXd5k7rgOa0DmheaXtZeRkp+ekcykjiSEYyyWdSySxOJ989mzLLGTJJJhPYmwPf5kD5\nLnes//12VLB7CFE+YbQJjqJlcDBB+jhKpN5TgRGResFqsRLpHUakdxj9m3ev2G6aJjnFuRzJTOZQ\nehKJuaf4//buNDaq897j+HdW22N7PB4z4/F4vIMxZjNbEyCkS5aq7VVos0EptNWVKlWoL1qlC6JJ\naZSqFemiKg1K2zSREFVvaEkXqiYk3ejlNkCamLAYbLN4t2exPd49tscz94WNA0lLgdTMDPw+7/zM\n+PA/+jP2z+ec53m6x7oZtISZTAsxRIghztI8Cn9vg3iTBSJZZMRzyLXmUZCZT6nTyzyXh4I8bYIp\nkioUYEQkpRkMBhxpObsBvmoAABTKSURBVCwryGFZwYLLXhuNjtI+4OdsqJOW/i6Cw0H6jL2MZ/YR\nMYTpopmuKNQGIe43Eo/YsE46yDXPoTDLw9w8H/M9XjzOTK1nI5JkFGBE5KaVYc5gnrOMec6yy8aj\nsejU7ahQBxfCnXRN344aTe8namwnRDuhSXgrCPEuE4xmkxHPJS/NRbHdy3xXEXM9bhxZ1lnZ3VtE\n/j0FGBG55ZiNZgqzPBRmebizbMXM+MXdvc/1tNMYaqN9sIveWIhIZj8RQx8dNNERgcNtED9vxTBm\nJ8uQhzvDTanDy4L8YkrdudjS9aNVZLbpUyYiMu3S3b1XF729u3c0FsU/FORMsHVqPZthP/3mbias\nF6d8N3BhEP48APFTNswTOThMeXgyPVTk+qjyFFI4JxuL2XiFf11EroUCjIjIv2E2mvHZvfjs3svG\nR6MRWvs7qQ+20hTuJBgJMGjtJZbeRS9d9MZPcboX9ncbiY9mkhbLxWmZgy/LQ+WcYuZ58nHl2jQj\nSuQ6KMCIiFynDHM68/PKmZ9XPjN2cZG+873tNATbaB3opHssyIitjwnDIAFaCUThTT/E280QycaG\nE1eam2K7lyp3EeWeOeRkaksFkStRgBER+Q+6uEjf8oJqlhdUz4zH4jFCIz00hFo529NO56CfsDHE\nWGaYUUOYVs7TOgr/1wKxxnRM43ayjU7yM/Ipyy2kKr+IEncO6Vb92BYBBRgRkRvCaDCSn+kiP9PF\nnaVvPzg8PjlB56Cf+mAr53s78I/4GbD0Ek0LMkCQAeo52w+v9BmIH7dhmcjBMT3Nu9zpY4GnEE9e\nJmaTnq+RW4sCjIhIAllNFkodRZQ6ii4bH54YoSncQUOwlZb+ToKRIENpvUxmdNJDJz2xE5zoht8E\nTMQjWWTEHORZXfiyC6h0FTM338WcOVkJOiuR2acAIyKShDItNha557HIPW9mLB6P0zfWz9meNhpC\nbbQPdNETCzFq62PM0E8nLXSOw+sdEG+2YPjfHOwGF77MQqpcpSwqLMSda9PaNXJTMMTj8Xiii7hW\nodDgrB3b5cqe1ePL9VNvkpP6kniTsUn8IyEag62c6+mgc7iLcLSbCePQZe+LRy0YRnPIMbrxZXqp\ncpWxsNCrUJMA+txcHZcr+1++piswIiIpzmQ0zSzM98G3J0SRmWPmcGMdJ/1NNPe10R3zM57dTT/d\n9HOauhDs67RgiDjIMbjxZXmpzi9jgdeL25GhUCNJTQFGROQmZbNmsCR/Pkvy58+MjUyMcLanlVP+\nJpr6W+mJBRjPDtFPiH7qqAtAvN2KYTQHh8mNL6uQBe4yqr0FuBRqJIkowIiI3EJsFhtLPVUs9VTN\njA1PjHC2p4VT/gs09bfTEwswYQ/RR4i+eB2nAhBvs2KIOHCY3BRlFVLtLmNBYQFzctIVaiQhFGBE\nRG5xmRYbNZ4F1Hje3s17aHx4JtQ0D7TTYw4wYQ/SR5C++ClOBiDeloYh4iDX6MaXXchCdxkLCj3k\nKdTIDaAAIyIi75JlzWRZQTXLLlmMb3B8iMaeZur8TTOhJmoPECZAOH6SkwGItaZjjOSQa86nOLuQ\nBa5ShRqZFQowIiJyVbKtWawoWMSKgkUzY/1jg5ztaaYuMBVqei0BomnToSZ2guMzocYxE2oWukuZ\nX5hPnl2hRq6fAoyIiFy3nLRsVnoXs9K7eGasb6yfxu4W6gJNtM6EGj9h/IRjxznuh1hLBsaIA6fJ\nTbHdx8L8UuZ783Ha0xRq5KoowIiIyH+UIy2H9xUu4X2FS4CpBfj6xwdo6G7mdKCJlulQM5k2vWt3\n7DhvdUGsKQPT9JWaEruP6vwy5ntdCjXyTynAiIjIrDIYDDjScritcCm3FS4F3l5VeCrUNNMy2EbY\nGmQy/WKoeYtjXRBrsmGKOHBaPMzLLWVl8Tzmeh1YzKYEn5UkmgKMiIjccAaDgdx0B7f7arjdVwNM\nhZreSN/Ug8KBJtoG2+m1BomlT+//NF7L4QYj8dpccgweKnJKWeGrZEGRi4w0/Tq71ajjIiKSFAwG\nA3kZuaz25bLatwyYCjU9kTCnQxc43tlI63ALI9k9DBp6eCtWx7Hml4iftpM1mU9xdgnLvZUsLinA\nnmlN8NnIbFOAERGRpGUwGJiT4eTOYid3Fq8EplYTPtN9gTc76mkaaGYgM8SIoZ96Gqn3/5HYhSzS\nJ1z4bMUs9cyjpqRI07hvQgowIiKSUmwW22XTuccnxzkXbuaN9gbO9TXRm9HFuK2JCzRxoedvvNiZ\ngXk0D296EQvd81heXILXlYVRgSalKcCIiEhKs5qsVM+ppHpOJTC1O3fLQDtvtNfT0HuBUKyDybR2\n2mmnfeAwB45ZMYw4cVt8zHeWs6p0LqUeOyajMcFnItdiVgNMY2MjW7du5bOf/SybN2+mq6uLr371\nq0xOTuJyufjud7+L1Wpl//797N69G6PRyMMPP8xDDz00m2WJiMhNzGQ0Ue4oodxRAkAsHsM/HKC2\no4G60Dm6Yu1M5PgJ4icYeYP/rTPB606cxgLm5ZaxwldJpc+J1aKZTsls1gLMyMgITzzxBKtXr54Z\ne+qpp9i0aRMf+chH+MEPfsC+ffv4+Mc/zq5du9i3bx8Wi4UHH3yQe+65B4fDMVuliYjILcRoMOLN\nKsA7v4D/mv+B6dlOYd7qauREoJH2kTYi9hBhQrw+cYKj5w3ETziw46HMXspKXyXVRW5s6ZZEn4pc\nYtYCjNVq5dlnn+XZZ5+dGTt69CiPP/44AB/84Ad5/vnnKSsrY/HixWRnZwOwfPlyamtr+dCHPjRb\npYmIyC1saraTk7vKb+eu8tsBGBgf5FTgHG91NdIy2MJQVjdDhjAn42c40foy8Xo7tkk3JZkl1Hgr\nWVriJScrLcFncmubtQBjNpsxmy8//OjoKFbr1NS2vLw8QqEQ3d3dOJ3Omfc4nU5CodBslSUiIvIu\ndms2a4qWsaZoavr2aDRCffcFajsauNDfTJ8tQMQwQAPnaAj8mf9ptpE27qIwo5jF+fNYVlqM25Gh\nmU43UMIe4o3H49c0fqncXBvmWVyF0eXKnrVjy3uj3iQn9SV5qTfXK5viAhf3Lr4NgPHJCRpCF/j7\n+VOcDpwjGO9gIqOFZlpoDh9ifyANc2QOhbZiagqrWFNZSaknB6PxXwca9ea9uaEBxmazEYlESE9P\nJxAI4Ha7cbvddHd3z7wnGAxSU1NzxeOEwyOzVqPLlU0oNDhrx5frp94kJ/Uleak3/1kek5cHKr08\nUHkvk7FJ2ge7eLOjnjPd5wnE2pm0d9BKB62Bw/yuw4JhxInL7KXSWc7KknmUexyYTVMzndSbq3Ol\nkHdDA8yaNWt45ZVXWL9+Pa+++irr1q1j6dKlPProowwMDGAymaitrWX79u03siwREZFrYjKaKMnx\nUZLjA+4mHo8TGAlxrLOBU8FzdMbaGLcHCBEgFDnG/502wRsOHIYCKnJKuXfJMjzZmVjMmrp9vQzx\nq7lncx1OnTrFzp076ejowGw2k5+fz/e+9z22bdvG2NgYXq+X73znO1gsFg4cOMBzzz2HwWBg8+bN\n3HfffVc89mymVqXi5KXeJCf1JXmpN4kVjvRx3H+W412NtI20MGrom3ktHjPAcC5OYyELnPO4rWw+\n5R7HFW853YqudAVm1gLMbFKAuTWpN8lJfUle6k1yGZoY5nTwPLWd9TQPNTMY64bpvBKfNGEYzsNt\nKWKRq5LV5fMoyMu85R8KVoC5BvrAJy/1JjmpL8lLvUleLlc2TZ1+jvsbeaP9NC3DTYwZB2Zej09Y\nMI248KaXUOOZz/vKy8jLyUhgxYmRNM/AiIiIyJQsSyZri5axdnrqdjjSxxsdZzjWVU9HrIVoTift\ndNIePsz+19JJG3NTZCtlVWE1y8uLyMq4tRfW0xWYd9BfLMlLvUlO6kvyUm+S17/rzcWHgl9vPc3J\nUCP+8TZixrGZ12OjmdgmPJTby1nlW8CSUg/p1pvvmoRuIV0DfeCTl3qTnNSX5KXeJK9r7U0sHqO1\nv4Ojbac53XOWnmgncWMUgHgc4iN27HEv83IqWF26gPm+OTNTtlOZbiGJiIikMKPBSKmjiFJHEfBh\norEo53pbONJWR2P4PP02P0OGeo5N1lN79iU4novTUMiCvHmsLquaWlTvJnsgWAFGREQkxZiNZqrm\nVFA1pwKA8clx6kLnONp6mguDFxjO7CZs6OW1yEn+fsqE4agTt6WIxa5KVldU4nGm/gwnBRgREZEU\nZzVZWeapZpmnGoCRiRGOdTXwZscZWoabiNhDBAnx56Fa/vSmBdPIHApnZjhV4LSnJ/gMrp0CjIiI\nyE3GZrGxtngZa4svznDq581LZjhN2Ltoo4u23iPs96dhHcun2FbKysIFrCgvJjM9+Wc46SHed9BD\nb8lLvUlO6kvyUm+SVyJ7E4/HCY72cLSljpPBBvwT75jhFLGROeGhLLuc24qrWVxSQJpl9jZQvhLN\nQroG+sAnL/UmOakvyUu9SV7J1JtYPEbbQBeHW+o403OWnsmOy2Y4MZqNPeZlnqOC20urmV9442Y4\naRaSiIiI/FNGg5GSnEJKlhQCUzttn+tt4UhrHY195+nL8DNoaKA22sCbjS/DWw7yjD6q8uayurSK\nUo8jITOcFGBERERkhsloYv6ccubPKQdgfHKC06HzHG2t4/zABYYzQ/Qawrw2epK/nzLieLOSb//X\nf9/wOhVgRERE5F+ymizUeKqo8VQBMBodpbazgTc6TtM63IwtK5qQuhRgRERE5KplmDNYW1zD2uKa\nhNaR+usMi4iIyC1HAUZERERSjgKMiIiIpBwFGBEREUk5CjAiIiKSchRgREREJOUowIiIiEjKUYAR\nERGRlKMAIyIiIilHAUZERERSjgKMiIiIpBwFGBEREUk5CjAiIiKScgzxeDye6CJEREREroWuwIiI\niEjKUYARERGRlKMAIyIiIilHAUZERERSjgKMiIiIpBwFGBEREUk5CjCX+Pa3v82GDRvYuHEjJ06c\nSHQ5coknn3ySDRs28MADD/Dqq68muhy5RCQS4e677+bXv/51okuRS+zfv5/77ruP+++/n4MHDya6\nHAGGh4f5whe+wJYtW9i4cSOHDh1KdEkpzZzoApLF66+/TktLC3v37uX8+fNs376dvXv3JrosAY4c\nOcLZs2fZu3cv4XCYT3ziE9x7772JLkumPfPMM+Tk5CS6DLlEOBxm165dvPjii4yMjPCjH/2ID3zg\nA4ku65b3m9/8hrKyMh555BECgQCf+cxnOHDgQKLLSlkKMNMOHz7M3XffDUBFRQX9/f0MDQ2RlZWV\n4Mpk1apVLFmyBAC73c7o6CiTk5OYTKYEVybnz5/n3Llz+uWYZA4fPszq1avJysoiKyuLJ554ItEl\nCZCbm0tDQwMAAwMD5ObmJrii1KZbSNO6u7sv+8/kdDoJhUIJrEguMplM2Gw2APbt28edd96p8JIk\ndu7cybZt2xJdhrxDe3s7kUiEz3/+82zatInDhw8nuiQBPvaxj9HZ2ck999zD5s2b+drXvpboklKa\nrsD8C9phIfn86U9/Yt++fTz//POJLkWA3/72t9TU1FBUVJToUuSf6Ovr4+mnn6azs5NPf/rT/PWv\nf8VgMCS6rFva7373O7xeL8899xz19fVs375dz469Bwow09xuN93d3TNfB4NBXC5XAiuSSx06dIgf\n//jH/OxnPyM7OzvR5Qhw8OBB2traOHjwIH6/H6vVisfjYc2aNYku7ZaXl5fHsmXLMJvNFBcXk5mZ\nSW9vL3l5eYku7ZZWW1vLHXfcAUBVVRXBYFC3w98D3UKatnbtWl555RUA6urqcLvdev4lSQwODvLk\nk0/yk5/8BIfDkehyZNoPf/hDXnzxRX75y1/y0EMPsXXrVoWXJHHHHXdw5MgRYrEY4XCYkZERPW+R\nBEpKSjh+/DgAHR0dZGZmKry8B7oCM2358uUsXLiQjRs3YjAY2LFjR6JLkmkvvfQS4XCYL37xizNj\nO3fuxOv1JrAqkeSVn5/Phz/8YR5++GEAHn30UYxG/b2aaBs2bGD79u1s3ryZaDTKN7/5zUSXlNIM\ncT3sISIiIilGkVxERERSjgKMiIiIpBwFGBEREUk5CjAiIiKSchRgREREJOUowIjIrGpvb2fRokVs\n2bJlZhfeRx55hIGBgas+xpYtW5icnLzq93/yk5/k6NGj11OuiKQIBRgRmXVOp5M9e/awZ88eXnjh\nBdxuN88888xVf/+ePXu04JeIXEYL2YnIDbdq1Sr27t1LfX09O3fuJBqNMjExwTe+8Q2qq6vZsmUL\nVVVVnDlzht27d1NdXU1dXR3j4+M89thj+P1+otEo69evZ9OmTYyOjvKlL32JcDhMSUkJY2NjAAQC\nAb785S8DEIlE2LBhAw8++GAiT11E/kMUYETkhpqcnOSPf/wjK1as4Ctf+Qq7du2iuLj4XZvb2Ww2\nfv7zn1/2vXv27MFut/P973+fSCTCRz/6UdatW8drr71Geno6e/fuJRgMctdddwHw8ssvU15ezuOP\nP87Y2Bi/+tWvbvj5isjsUIARkVnX29vLli1bAIjFYqxcuZIHHniAp556iq9//esz7xsaGiIWiwFT\n23u80/Hjx7n//vsBSE9PZ9GiRdTV1dHY2MiKFSuAqY1Zy8vLAVi3bh2/+MUv2LZtG+9///vZsGHD\nrJ6niNw4CjAiMusuPgNzqcHBQSwWy7vGL7JYLO8aMxgMl30dj8cxGAzE4/HL9vq5GIIqKir4wx/+\nwD/+8Q8OHDjA7t27eeGFF97r6YhIEtBDvCKSENnZ2fh8Pv72t78B0NTUxNNPP33F71m6dCmHDh0C\nYGRkhLq6OhYuXEhFRQXHjh0DoKuri6amJgB+//vfc/LkSdasWcOOHTvo6uoiGo3O4lmJyI2iKzAi\nkjA7d+7kW9/6Fj/96U+JRqNs27btiu/fsmULjz32GJ/61KcYHx9n69at+Hw+1q9fz1/+8hc2bdqE\nz+dj8eLFAMydO5cdO3ZgtVqJx+N87nOfw2zWjz2Rm4F2oxYREZGUo1tIIiIiknIUYERERCTlKMCI\niIhIylGAERERkZSjACMiIiIpRwFGREREUo4CjIiIiKQcBRgRERFJOf8PLjp9hlpW0lAAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "jFfc3saSxg6t" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "Ax_IIQVRx4gr" + }, + "cell_type": "markdown", + "source": [ + "Since normalization uses min and max, we have to ensure it's done on the entire dataset at once. \n", + "\n", + "We can do that here because all our data is in a single DataFrame. If we had multiple data sets, a good practice would be to derive the normalization parameters from the training set and apply those identically to the test set." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "D-bJBXrJx-U_", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def normalize_linear_scale(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized linearly.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + " processed_features[\"total_rooms\"] = linear_scale(examples_dataframe[\"total_rooms\"])\n", + " processed_features[\"total_bedrooms\"] = linear_scale(examples_dataframe[\"total_bedrooms\"])\n", + " processed_features[\"population\"] = linear_scale(examples_dataframe[\"population\"])\n", + " processed_features[\"households\"] = linear_scale(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = linear_scale(examples_dataframe[\"median_income\"])\n", + " processed_features[\"rooms_per_person\"] = linear_scale(examples_dataframe[\"rooms_per_person\"])\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize_linear_scale(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.005),\n", + " steps=2000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "MrwtdStNJ6ZQ" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Try a Different Optimizer\n", + "\n", + "** Use the Adagrad and Adam optimizers and compare performance.**\n", + "\n", + "The Adagrad optimizer is one alternative. The key insight of Adagrad is that it modifies the learning rate adaptively for each coefficient in a model, monotonically lowering the effective learning rate. This works great for convex problems, but isn't always ideal for the non-convex problem Neural Net training. You can use Adagrad by specifying `AdagradOptimizer` instead of `GradientDescentOptimizer`. Note that you may need to use a larger learning rate with Adagrad.\n", + "\n", + "For non-convex optimization problems, Adam is sometimes more efficient than Adagrad. To use Adam, invoke the `tf.train.AdamOptimizer` method. This method takes several optional hyperparameters as arguments, but our solution only specifies one of these (`learning_rate`). In a production setting, you should specify and tune the optional hyperparameters carefully." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "61GSlDvF7-7q", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "982a6b04-6f24-4ad5-f578-fcaa168743e1" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Retrain the network using Adagrad and then Adam.\n", + "#\n", + "_, adagrad_training_losses, adagrad_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.5),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 78.24\n", + " period 01 : 77.18\n", + " period 02 : 71.07\n", + " period 03 : 70.80\n", + " period 04 : 70.02\n", + " period 05 : 69.81\n", + " period 06 : 67.92\n", + " period 07 : 68.50\n", + " period 08 : 66.93\n", + " period 09 : 68.41\n", + "Model training finished.\n", + "Final RMSE (on training data): 68.41\n", + "Final RMSE (on validation data): 67.48\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGACAYAAACDX0mmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VPW9//HXLNn3ZCYLhH1LQsIi\nhsWAbAoocF2hVkV/2tpbrUutrba3SFu1Lm21dQFb67VWe+uCVdzABQERlbAKCSTsEAIh+74nc35/\nhIzELIRlMpPk/Xw8eJBzZs6cz+Q7IW++3+/5HpNhGAYiIiIiHsjs7gJERERE2qOgIiIiIh5LQUVE\nREQ8loKKiIiIeCwFFREREfFYCioiIiLisazuLkDEE4wYMYL+/ftjsVgAaGxsJDk5mcWLF+Pv73/W\nr/vmm2+ycOHCVvvffvttfvWrX/HXv/6V6dOnO/fX1NRw0UUXMWvWLB5//PGzPm9nZWVl8eijj3Lo\n0CEA/Pz8uPPOO7nkkktcfu4zsWzZMrKyslp9T1JTU/nBD35AbGxsq2M++uijrirvnGRnZzNz5kwG\nDRoEgGEY2Gw2fv3rX5OQkHBGr/Xkk0/Sp08fvv/973f6mHfffZe33nqLV1999YzOJdJVFFRETnr1\n1VeJjo4GoK6ujnvvvZe//e1v3HvvvWf1evn5+bz44ottBhWAmJgYPvjggxZBZe3atQQHB5/V+c7G\nz3/+c6644gr++te/ArBjxw5uvvlmVq1aRUxMTJfVcS5iYmK6TShpj8ViafEeVq5cyU9+8hM+/vhj\nvL29O/069913nyvKE3ErDf2ItMHb25spU6aQkZEBQG1tLUuWLGH27NlcdtllPP744zQ2NgKQmZnJ\nddddx5w5c7jiiiv44osvALjuuus4fvw4c+bMoa6urtU5LrjgAlJTU6murnbuW7lyJSkpKc7turo6\nHnnkEWbPns2MGTOcgQJg+/btXH311cyZM4fLL7+cr776Cmj6H/rkyZN55ZVXmD9/PlOmTGHlypVt\nvs+9e/cyevRo5/bo0aP5+OOPnYHtueeeY+rUqVx55ZW88MILzJgxA4Bf/vKXLFu2zHncqdunq+vR\nRx/lxhtvBGDr1q1cc801XHrppSxcuJCjR48CTT1LP/3pT5k+fTo33ngjJ06cOE2Lte3tt9/mzjvv\n5Oabb+YPf/gDqampXHfdddxzzz3OX+qrVq1i3rx5zJkzh5tuuomsrCwAnn32WRYvXsy1117Lyy+/\n3OJ177nnHl566SXndkZGBpMnT8bhcPDnP/+Z2bNnM3v2bG666SZyc3PPuO7LL7+cmpoaDh48CMAb\nb7zBnDlzmDFjBj/72c+oqakBmr7vjz32GPPnz2fVqlUt2qG9z6XD4eChhx5i2rRpXHvttWRmZjrP\nu2nTJq666iouv/xyLrvsMlatWnXGtYucd4aIGMOHDzdycnKc2yUlJcYNN9xgLFu2zDAMw/jb3/5m\n3HbbbUZ9fb1RXV1tXHPNNcaKFSuMxsZG47LLLjPef/99wzAMY+fOnUZycrJRXl5ubNy40bjkkkva\nPN9//vMf44EHHjB+/vOfO48tLy83Zs6caSxfvtx44IEHDMMwjOeee864+eabjdraWqOystK48sor\njTVr1hiGYRjz5s0zPvjgA8MwDOOdd95xnuvo0aNGQkKC8eqrrxqGYRgrV640Lr300jbruOuuu4zp\n06cb//znP439+/e3eGzPnj3GhRdeaOTl5Rn19fXG7bffbkyfPt0wDMN44IEHjKVLlzqfe+p2R3WN\nHDnSePvtt53vNzk52diwYYNhGIbx/vvvG1dddZVhGIbxr3/9y7jhhhuM+vp6o6ioyJg+fbrze3Kq\njr7Hzd/nMWPGGIcOHXI+Pykpyfjqq68MwzCMY8eOGePGjTMOHz5sGIZh/O///q9x8803G4ZhGM88\n84wxefJko7CwsNXrfvjhh8YNN9zg3H766aeNhx9+2Ni7d68xa9Yso66uzjAMw3jllVeMd955p936\nmr8v8fHxrfYnJycbBw4cMDZv3mxMmjTJOHHihGEYhvHggw8ajz/+uGEYTd/3+fPnGzU1Nc7tpUuX\ndvi5XLdunTFr1iyjoqLCqK6uNq699lrjxhtvNAzDMK6++mojNTXVMAzDOHTokPGzn/2sw9pFuoJ6\nVEROWrRoEXPmzGHmzJnMnDmTiRMncttttwGwbt06Fi5ciNVqxdfXl/nz5/Pll1+SnZ1NQUEBc+fO\nBSApKYk+ffqQlpbWqXPOnTuXDz74AIDVq1czffp0zOZvfyzXrl3L9ddfj7e3N/7+/lxxxRV88skn\nAKxYsYLLLrsMgHHjxjl7IwAaGhq4+uqrARg5ciTHjx9v8/x//OMfueGGG3j//feZN28eM2bM4LXX\nXgOaejuSk5Ox2+1YrVbmzZvXqffUUV319fVceumlztePiopy9iDNmzePrKwsjh8/zpYtW7j00kux\nWq2EhYW1GB77rpycHObMmdPiz6lzWQYOHMjAgQOd276+vkyaNAmAL7/8kgkTJjBgwAAAFixYQGpq\nKg0NDUBTD1N4eHirc06bNo3du3dTUlICwKeffsqcOXMIDg6mqKiI999/n9LSUhYtWsSVV17Zqe9b\nM8MweOONN4iKimLgwIGsWbOGyy+/nKioKAC+//3vOz8DAJMmTcLHx6fFa3T0udy8eTNTp04lICAA\nX19fZ1sBREREsGLFCg4cOMDAgQN58sknz6h2EVfQHBWRk5rnqBQVFTmHLazWph+RoqIiQkJCnM8N\nCQmhsLCQoqIigoKCMJlMzseaf1nZbLbTnjMlJYXFixdTUlLChx9+yB133OGc2ApQXl7OY489xlNP\nPQU0DQWNGjUKgPfff59XXnmFyspKHA4Hxim37bJYLM5JwGazGYfD0eb5fXx8+MEPfsAPfvADysrK\n+Oijj3j00UeJjY2ltLS0xXyZiIiI076fztQVGBgIQFlZGUePHmXOnDnOx729vSkqKqK0tJSgoCDn\n/uDgYCorK9s83+nmqJzabt/dLi4ubvEeg4KCMAyD4uLiNo9t5u/vz0UXXcS6desYN24cZWVljBs3\nDpPJxLPPPstLL73Eww8/THJyMr/73e9OO9+nsbHR+X0wDIOhQ4eybNkyzGYz5eXlfPrpp2zYsMH5\neH19fbvvD+jwc1laWkpkZGSL/c0effRRnn/+eW655RZ8fX352c9+1qJ9RNxBQUXkO8LDw1m0aBF/\n/OMfef755wGw2WzO/z0DlJSUYLPZiIiIoLS0FMMwnL8USkpKOv1L3cvLi+nTp7NixQqOHDnC2LFj\nWwSVyMhIbr311lY9Crm5uSxevJjly5cTHx/P4cOHmT179hm9z6KiIjIyMpw9GsHBwSxcuJAvvviC\nvXv3EhQURHl5eYvnN/tu+CktLT3juiIjIxk8eDBvv/12q8eCg4PbPff5FBERwfbt253bpaWlmM1m\nwsLCTnvs7Nmz+fTTTykuLmb27NnO9p84cSITJ06kqqqKJ554gj/96U+n7Zn47mTaU0VGRnLVVVfx\nwAMPnNH7au9z2dH31maz8eCDD/Lggw+yYcMG7rrrLqZMmUJAQECnzy1yvmnoR6QNt9xyC9u3b2fT\npk1AU1f/W2+9RWNjI1VVVbz77rtMnTqV2NhYoqOjnZNVt23bRkFBAaNGjcJqtVJVVeUcRmjP3Llz\n+fvf/97mJcEzZ85k+fLlNDY2YhgGy5YtY/369RQVFeHv78/gwYNpaGjgjTfeAGi316EtNTU13H33\n3c5JlgBHjhxhx44dXHjhhYwdO5YtW7ZQVFREQ0MDK1ascD7Pbrc7J2EePXqUbdu2AZxRXaNHjyY/\nP58dO3Y4X+cXv/gFhmEwZswY1qxZQ2NjI0VFRaxfv77T7+tMpKSksGXLFufw1Ouvv05KSoqzJ60j\n06dPZ/v27axevdo5fLJhwwZ+97vf4XA48Pf3Jy4urkWvxtmYMWMGn3zyiTNQrF69mhdeeKHDYzr6\nXI4dO5YNGzZQXV1NdXW1MyDV19ezaNEi8vLygKYhQ6vV2mIoUsQd1KMi0obAwEB+9KMf8cQTT/DW\nW2+xaNEijh49yty5czGZTMyZM4fLLrsMk8nEU089xW9+8xuee+45/Pz8ePrpp/H392fEiBGEhISQ\nkpLCO++8Q58+fdo81/jx4zGZTFx++eWtHrv++uvJzs5m7ty5GIZBYmIiN998M/7+/lx88cXMnj2b\niIgIfvnLX7Jt2zYWLVrEM88806n32KdPH55//nmeeeYZHnnkEQzDIDAwkF/96lfOK4G+973vcdVV\nVxEWFsasWbPYt28fAAsXLuTOO+9k1qxZJCQkOHtN4uLiOl2Xr68vzzzzDA8//DCVlZV4eXlxzz33\nYDKZWLhwIVu2bOGSSy6hT58+XHLJJS16AU7VPEflu/7whz+c9nsQHR3NI488wh133EF9fT2xsbE8\n/PDDnfr+BQYGMnLkSPbs2cOYMWMASE5O5sMPP2T27Nl4e3sTHh7Oo48+CsD999/vvHLnTIwcOZIf\n//jHLFq0CIfDQUREBL/73e86PKajz+X06dNZt24dc+bMwWazMXXqVLZs2YKXlxfXXnst/+///T+g\nqdds8eLF+Pn5nVG9IuebyTh1AFlEpB1btmzh/vvvZ82aNe4uRUR6EfXpiYiIiMdSUBERERGPpaEf\nERER8VjqURERERGPpaAiIiIiHsujL0/Oz2/7csTzJSzMn+LiKpeeQ86c2sVzqW08k9rFc6ltOs9u\nD2pzf6/uUbFaLe4uQdqgdvFcahvPpHbxXGqbc9erg4qIiIh4NgUVERER8VgKKiIiIuKxFFRERETE\nYymoiIiIiMdSUBERERGPpaAiIiIiHktBRUREpBtbt+6zTj3v6aef5PjxY+0+/stf/ux8lXReKaiI\niIh0Uzk5x1m9+uNOPfeee+6jT5++7T7++ONPna+yziuPXkJfRERE2vfUU0+QkbGLKVOSmTXrMnJy\njvOXvyzjscceIj8/j+rqam699UekpEzhzjt/xM9+dj9r135GZWUFWVlHOHYsm7vvvo9Jk1KYO3cm\nH374GXfe+SOSkyewbdsWSkpKeOKJP2Oz2XjooQc5cSKHpKRRrFmzmnfeWdkl71FBRURE5By9uWY/\nmzPzWu23WEw0Nhpn9ZrJcZEsnDG0w+d8//uLePvtNxk0aAhZWYdZtuxFiouLGD9+IpddNo9jx7J5\n8MFfkpIypcVxeXm5/OlPz7Bx41e8++5/mDQppcXjAQEBPP308zz//LOsX7+GPn1iqaur5YUXXubL\nL7/gzTdfO6v3dDZ6ZVBpdDjYtreASb5e7i5FRETkvIiPHwlAUFAwGRm7eO+9tzGZzJSVlbZ67qhR\nYwCIjIykoqKi1eOjR491Pl5aWsqRI4dIShoNwKRJKVgsXXcPo14ZVA4cK+P5Fem8tDKDGWP7MmdC\nf4L8vd1dloiIdFMLZwxts/fDbg8iP7+8S2rw8mr6z/enn35EWVkZS5e+SFlZGT/84aJWzz01aBhG\n6x6f7z5uGAZmc9M+k8mEyWQ63+W3q1dOph0WG8JNs0cQ6OfFqtQs7v/r17y9/gCVNfXuLk1ERKTT\nzGYzjY2NLfaVlJQQE9MHs9nM55+vob7+3H+39e0by549uwHYtGljq3O6Uq8MKiaTiWlj+/LCry7h\n+5cMw8fLwgdfHeH+57/mvQ2HqKppcHeJIiIipzVgwCD27MmksvLb4Ztp02bw1VdfcM89t+Pn50dk\nZCT/+Mffz+k8F100hcrKSm6//Qfs2LGd4OCQcy2900xGW30+58Hy5ct57733nNvp6ek8/vjjvPTS\nS3h5eREVFcVjjz2Gt3f7Qy6u7i5r7pKrrW9k7bZjrNx4hIrqegJ8rcyZ0J+Z42Lx9e6Vo2Nu1ZVd\npXJm1DaeSe3iuXpK25SVlbJt2xamTZtJfn4e99xzO//+93/O6zns9qA297ssqJxq06ZNrFq1itWr\nV7Ny5UqCgoJ48MEHmThxInPnzm33uK4KKs1q6hr4bGs2H6VmUVnTQKCfF5dPHMD0C/ri49V1E4d6\nu57yg90TqW08k9rFc/WUtmloaHBenmwYDm699b9bXSl0rtoLKl3SXbB06VL+9Kc/sWXLFsrKyggK\nCqKsrIywsLCuOH0rJypz+cu2vzEqJo6p0VPoGxgDgK+3lbmTBjJ9bCyrtxzl481ZvLl2Px9vyuLy\nSQOYNqYPXlYFFhER6V2sVisPPfSYW87t8h6VnTt38u9//5vHH3+c1NRU7rrrLoKCgkhISODZZ5/t\n8NiGhkasLggGJTVlPPr5sxwuyQbggj5JXBk3mzj7kBbPq6iq453PD/D+Fweorm0kIsSXhZcM59Lx\nA/Cy9srpPSIiIl3K5UFlyZIlzJ07l+TkZK644gqWLl1Kv379+OlPf8p//dd/MXPmzHaPdWV3mWEY\nZDcc4c2dKzlYehiAISGDmD1wOgnhI1pcelVeVcdHqVl8ti2bunoHEcE+zE8ZxEWJ0VgtCiznW0/p\nKu2J1DaeSe3iudQ2ndfe0I/Lf8umpqYyduxYioqKAOjfvz8mk4lJkyaRnp7u6tO3y2QycUGfJO4b\ndwf3XnA7CREjOFB6iGU7XuLxzU+zNfcbHIYDgCB/bxZMH8oTP76IWcn9KKuq5+VVmfz67xv5Mi2H\nRofDbe9DRESkJ3PpHJXc3FwCAgLw9vYmLCyM0tJSioqKCA8PJy0tjeTkZFeevtOGhg5iaOgPOFp+\nnE+PrGVb3k5e2vVv7Ac/5tL+0xgfMw4vs5WQAG+umzmM2eP78+HXh1m/4zj/+2EGH3x9hCsmD2R8\nXBRmc9ctgiMiItLTubRHJT8/n/DwcKBplbslS5bw4x//mBtvvJHGxsYOr/hxh35Bfbg18QaWTPwF\nKX0mUFxTwr/3/IfffPU4q7M+p6ahBoCwIB9unDWCx340ialj+lBQUs0L7+3mNy9tYktmHg7XX0gl\nIiLSKddeO5+qqipeffVl0tN3tnisqqqKa6+d3+Hx69Z9BsDKle/z+edrXVZne7rk8uSz1dWXJ39X\nSW0pa45+wYZjG6ltrMPf6sfU2BSmxaYQ6B3wbZ0l1bz/5WG+Sj+BwzDoFxnIlZMHMWaYrUuXGe4p\nNKbrudQ2nknt4rk8oW2uvXY+r7zyBv7+/q0eq6qq4qabvsdbb73f5rE5OcdZuvQvPPLIH1xdpnsv\nT+6uQn1CuHroPGYPmMH67K9Ym72BVYdX81nW56T0mcDM/hcT5huKPdSPW+fGM3fSAN778hAbd+Xy\n7NtpDIwO4sopg0kaHK7AIiIi59Wtt97Ao48+SXR0NCdO5PCrX92H3R5JdXU1NTU13HvvL0hISHQ+\n//e//y3Tps1kzJix/PrX91NXV+e8OSHAJ5+s4q233sBiMTNw4BAeeODXPPXUE2Rk7OIf//g7DoeD\n0NBQrrnmeyxb9jRpaTtoaGjkmmsWMmfOXO6880ckJ09g27YtlJSU8MQTfyY6Ovqc36eCSicEePlz\n2aBLmNH/Yr46vonVWZ+zNnsD6499TXL0WGb1n0ZUQCRR4f7cNn8kcycN5N0Nh9icmcdflu9gSN9g\nrpwymIQBYQosIiI90Nv7P2B7Xlqr/RaziUbH2Q1cjI1M4uqh89p9/OKLp/Pll+u55pqFfPHF51x8\n8XSGDBnGxRdPY+vWzfzf//2T3//+j62O+/jjVQwePIS7776Pzz77hNWrPwagurqaJ598lqCgIH7y\nk9s4cGA/3//+It5++01uueU2/vd//wbAN99s4+DBAzz//EtUV1dz883XcfHF0wAICAjg6aef5/nn\nn2X9+jUsXHj9Wb33UymonAEfizfT+01mSt+JbD6xnU+z1rExZwupOVsZbU9k9oDp9A+OpY8tgNuv\nTGR+XgUrNhxi2958nnz9G4b3C+WqKYMY0d89C92JiEjPcfHF03nuub9wzTUL2bDhc+68815ef/1V\nXnvtVerr6/H19W3zuMOHDzJmzDgAxo4d59wfHBzMr351HwBHjhyitLSkzeMzM3czZswFAPj5+TFw\n4GCOHj0KwOjRYwGIjIyktLT0vLxPBZWzYDVbmdQnmQkx49iRv4tPjqzhm/w0vslPIy5sGLMHTmdY\n6BBiIwO58+okjpwoZ8UXB9lxoJAn/r2d+AFhXHXxYIb27bqbOomIiOtcPXRem70frpyjMnjwEAoL\n88nNPUF5eTlffLEOmy2SBx98mMzM3Tz33F/aPM4wcF6h6jjZ21NfX89TT/2Bl1/+NxERNu6//6ft\nntdkMnHq7NaGhnrn61ks3y7Ser6mwGq1snNgNpkZG5nE/RfezV1jbmN42FAyi/fx9PYX+NPWpezI\n34XDcDAgOoh7Fozm1zeNY+SgcDKOFPPoq1t56s1vOJRT5u63ISIi3dSkSZN54YVlTJkyldLSEvr2\njQXg88/X0tDQ0OYx/fsPIDMzA4Bt27YAUFVVicViISLCRm7uCTIzM2hoaMBsNtPY2Nji+Li4kWzf\nvvXkcVUcO5ZNbGx/V71F9aicDyaTibjwYcSFD+NQaRafHlnLjoJdvJD2T2ICori0/zQujBrDkD4h\n3Pe9Mew9WsKKLw6SfrCI9INFjBlq48opg+gf1faMZxERkbZMnTqdH//4Vl5++TVqaqp55JHfsHbt\naq65ZiGrV3/Chx++1+qYOXPm8j//83Puued2Ro0ag8lkIiQklOTkCfzwhzcxdOgwrr9+Ec888xTP\nPvs39uzJ5JlnniQgIBCA0aPHMGJEHD/5yW00NDTw4x/fiZ+fn8veoy5PdtE5jlecYHXW52zO3Y7D\ncBDuG8Yl/acyKSYZb4sXABlHinnni4Psz24axxs3ws4VkwcRaw90SU3dhSdczidtU9t4JrWL51Lb\ndF57lycrqLj4HIXVxXx29HO+Or6JekcDQV6BTO83mYtjJ+Fn9cMwDHYdLuKd9Yc4lFOGCUiOj+SK\nyYOIiQg47ev3RPrB9lxqG8+kdvFcapvOU1BpQ1d+gMrrKlh7dAPrj31FdUMNvhZfpvSdyIz+Uwj2\nDsIwDHYeKGTFF4c4kluOyQSTRkYzP2UgUWGtF+npyfSD7bnUNp5J7eK51Dadp6DSBnd8gKobqvni\n2EbWHP2C8rqKpiuIYpK5pP9UbH7hGIbBtr0FvLvhINn5lZhNJlKSopl/0UBsoa4bA/Qk+sH2XGob\nz6R28Vxqm85TUGmDOz9AdY31bMzZwuqszymsKcJsMjMucjSzBkynT2A0DsNgS2Ye7244RE5hFRaz\niSmj+zBv0gDCg9u+Nr6n0A+251LbeCa1i+dS23SegkobPOED1OhoZGveDj49so7jlScASLLFM2vA\nDAaHDMDhMEjNyOXdDYfIK67GajExdUxf5k4aQGigj1trdxVPaBdpm9rGM6ldPJfapvMUVNrgSR8g\nh+FgV2EmnxxZy8HSIwAMCx3MrAHTiQ8fjsMw+Cr9BO9/eZiC0hq8rGZmXNCXyyYMIDjA283Vn1+e\n1C7SktrGM6ldPJfapvMUVNrgiR8gwzDYX3KIT46sZXfRHgD6Bfbh0gHTGRuZhMMBG9Jy+OCrwxSV\n1eLjZWHmuFgun9gff18vN1d/fnhiu0gTtY1nUrt4LrVN5ymotMHTP0BHy4/xyZG1bM9Lw8Ag0s/G\nJQOmMj56HDjMrN9xnA++PkxpRR2jhkTw0wWj3V3yeeHp7dKbqW08k9rFc6ltOq+9oKKVaT1Yv6C+\n/CDxRvKq8vn0yOekntjKvzP/w8pDq5nRbwopoycwZVQMj//fNtIOFlJaUUtID523IiIivZPu9dMN\nRPrbuSH+Wh666JfM6DeFqoZq3t7/AUu+eoxPj37GuIQQDAO27Ml3d6kiIiLnlXpUupFQnxCuGTaf\n2QNn8Hn2V3x+9EtWHl6Nt9kbS8QINmWEMHNcrLvLFBEROW/Uo9INBXoFMHfQpTx00a+4Zug8MIHf\nwP3syy6hqKzG3eWJiIicNwoq3Ziv1YcZ/S9mjD2RRks1Jv8ytmTmubssERGR80ZBpQdIsiUAYA3L\nY5OCioiI9CAKKj1AfPhwLCYL/pFFHDxeRkFJtbtLEhEROS8UVHoAP6svw0IHU+dVDF41bFavioiI\n9BAKKj1Ekr1p+McrPJ9NGQoqIiLSMyio9BBJEU1BJTimiCO55eQWV7m5IhERkXOnoNJDRPiF0Tcw\nhhrvPDA3qFdFRER6BAWVHiQpIh4HjXiFFbI5I9fd5YiIiJwzBZUepHmeSnhsGdn5lRwvqHRzRSIi\nIudGQaUH6R8US7B3ELW+xwFDV/+IiEi3p6DSg5hNZhIj4qg1qvEKKWNTRi6GYbi7LBERkbOmoNLD\nNK9SGzWgjJzCKo7la/hHRES6LwWVHiYufBheZiuNgScA2JSpSbUiItJ9Kaj0MN4Wb0aEDaOkoRDv\ngBo2ZeRp+EdERLotBZUeKMkWD0DskEryiqvJyq1wc0UiIiJnR0GlB0o8GVQIaRr22aQ1VUREpJtS\nUOmBQn1C6B8US25dNr6+DjZnavhHRES6JwWVHmqULQGH4WDg8BoKSms4mFPm7pJERETOmIJKD5V4\n8jJla3g+AJt17x8REemGFFR6qNjAGMJ8Qjledwg/HzObM/NwaPhHRES6GQWVHspkMpFki6e6oYbh\ncQ6Ky2vZn13q7rJERETOiNVVL7x8+XLee+8953Z6ejrr16/n3nvvpbS0lKioKJ566im8vb1dVUKv\nl2RLYP2xr/GzFwIRbM7IY3i/UHeXJSIi0mku61FZsGABr776Kq+++ip33XUXV155Jc8//zyTJ09m\n+fLlxMXFkZmZ6arTCzAsbAg+Fm+O1R8kwM/Klj15OBwa/hERke6jS4Z+li5dyh133MHatWuZP38+\nAHfeeSejRo3qitP3Wl5mK/HhwymoLmTkCG9KK+vYc7TE3WWJiIh0msuDys6dO4mJicFut1NQUMBr\nr73G9ddfz5IlS6irq3P16Xu95psUBkUXAbBZi7+JiEg3YjJcvBLYkiVLmDt3LhMmTGDUqFH885//\nZOzYsSxevJj4+HhuuOGGdo9taGjEarW4srwer6ymnNvefYDhtsEc/iIRh8Pgld/MxmLRPGoREfF8\nLptM2yw1NZXFixcDEBMTw9iZXrRQAAAgAElEQVSxYwFISUkhNTW1w2OLi6tcWpvdHkR+frlLz+EJ\nBoUMYG/BQcYNm8gX2wpZvzWLxEER7i6rXb2lXbojtY1nUrt4LrVN59ntQW3ud+l/q3NzcwkICHBe\n2TNhwgQ2btwIwK5duxg0aJArTy8nJdniMTAI79u0Ou0mLf4mIiLdhEuDSn5+PuHh4c7tn/70p7zw\nwgtcf/31ZGVlsWDBAleeXk4adXKeSp7jMGFBPmzbk09Do8PNVYmIiJyeS4d+EhMTefHFF53b4eHh\nvPTSS648pbQhyj8Sm18EGUV7GDcimc+2HGfXoSJGD7W5uzQREZEOaUZlL2AymRhlS6C2sY7o/tWA\nhn9ERKR7UFDpJZJs8QAUGIeJCPZl+7586hsa3VyViIhIxxRUeokhIYPws/qRVpDBhXF2auoaSTtY\n5O6yREREOqSg0ktYzBZGRoyguLaEQYOb9m3S4m8iIuLhFFR6kaSIpuGfQuMIkaF+7NhfSG29hn9E\nRMRzKaj0IgkRIzCbzKQVZJAcH0ltfSM7DxS6uywREZF2Kaj0Iv5e/gwNGcSR8qMkDPUHNPwjIiKe\nTUGll0myNy3+VsgRYiL82XmgkOraBjdXJSIi0jYFlV4mKaIpqKQXZpAcF0l9g4Md+wvcXJWIiEjb\nFFR6Gbt/BNEBUWQW7WfsiKbbG2jxNxER8VQKKr1QUkQ89Y56yszHibUHkH6okKqaeneXJSIi0oqC\nSi806uQ8lbSC3STHRdLQaLB9n4Z/RETE8yio9EIDg/sT6BXQdJlynB2AzZka/hEREc+joNILmU1m\nEiPiKasrp9armP5Rgew6VERFtYZ/RETEsyio9FLNNyncWbCb8fFRNDoMtu3Nd3NVIiIiLSmo9FJx\n4cOxmizOeSoAm7X4m4iIeBgFlV7K1+rD8LChHKvIwexTw6CYYDKOlFBWVefu0kRERJwUVHqx5uGf\n9MIMxsdH4jAMtu7R8I+IiHgOBZVeLMnW8jJl0PCPiIh4FgWVXizMN5TYwD7sLT6Anz8MjQ1hT1YJ\nJRW17i5NREQEUFDp9ZJsCTQajWQU7WV8XCQGsEVrqoiIiIdQUOnlnPNUCjK4MC4SE7BJQUVERDyE\ngkov1y+oLyHewaQXZhAc4MWI/qHszy6lqKzG3aWJiIgoqPR2ZpOZRFs8lfVVHCw9QnJ8FKAl9UVE\nxDMoqAijTl79k16QwbgRdswmE5syFFRERMT9FFSE4WFD8TJ7sbNgN8H+3sQPCOVQThn5JdXuLk1E\nRHo5BRXB2+JFfPhwcqvyyKvK1/CPiIh4DAUVAb69+ietIIMLhtuxmE1s0uJvIiLiZgoqAsDIiOag\nsptAPy9GDgonK7eC3KIqN1cmIiK9mYKKABDiE8TA4P4cKD1MVX2Vc0l99aqIiIg7KaiIU5ItHofh\nYFfhHsYOs2O1mLT4m4iIuJWCijidepNCf18rSYMjOJZfybGCSjdXJiIivZWCijj1CYgm3DeM3UV7\naHQ0khyvOyqLiIh7KaiIk8lkIsmWQHVDDftLDjFmqA1vq5lNGXkYhuHu8kREpBdSUJEWvr1MeTe+\n3lZGDYngRFEVR/Mq3FyZiIj0Rgoq0sKw0MH4WnzYWbAbwzAYr8XfRETEjRRUpAWr2Up8xAgKa4rI\nqcwlaUgEPl4WNmXkavhHRES6nIKKtHLqTQp9vCyMGWYjv6SGwyfK3VyZiIj0Ngoq0kpCxAhMmNhZ\nsBuA8XHNV/9o+EdERLqWgoq0EugVwOCQgRwuy6K8roLEwRH4+VjYnKnhHxER6VoKKtKmUfYEDAzS\nCzLwspoZO8xOYVktB46Xubs0ERHpRVwWVJYvX86iRYucf8aOHet87PXXX2fGjBmuOrWcB0nNNyks\nzABgfLzu/SMiIl3P6qoXXrBgAQsWLABg06ZNrFq1CoDCwkI+/fRTV51WzpOogEgi/W1kFO6hvrGe\nhIHhBPha2ZKZx3Uzh2E2mdxdooiI9AJdMvSzdOlS7rjjDgD++Mc/cvfdd3fFaeUcJUUkUOeoZ2/J\nAawWMxcMt1NSUce+oyXuLk1ERHoJl/WoNNu5cycxMTHY7XZSU1Px8fFh9OjRnTo2LMwfq9Xi0vrs\n9iCXvn53NsW4kM+OrmdfxT6mxSVz6cSBfLEzh/QjJUwe19+l51a7eC61jWdSu3gutc25cXlQeeut\nt7jqqquoq6vjmWeeYdmyZZ0+tri4yoWVNX148vO1Nkh7wg07/lY/Nmfv5Ir+84gJ9SHI34svvjnG\nVSkDMZtdM/yjdvFcahvPpHbxXGqbzmsv0Ll86Cc1NZWxY8eSkZFBQUEBt912GwsXLiQvL497773X\n1aeXc2AxWxgZEU9JbSnZFcexmM2MGxFJWWUde7KK3V2eiIj0Ai4NKrm5uQQEBODt7c3o0aP5+OOP\nefPNN3nzzTeJjIzkz3/+sytPL+dB800Kmxd/Sz65+Nsm3ftHRES6gEuDSn5+PuHh4a48hbhYQsRw\nLCYL6SeDyoh+oYQEeLN1Tz4NjQ43VyciIj2dS4NKYmIiL774YpuPrVmzxpWnlvPEz+rHsNDBZJUf\no6S2FLPZxIUjIqmorifziIZ/RETEtbQyrZxW4snhn7SCpsXfkp2Lv2n4R0REXEtBRU4r6eTdlNNO\nDv8MjQ0hLMiHbXs1/CMiIq6loCKnZfMLp09ANHuK91PbWIfZZCI5LpKq2gbSDxW5uzwREenBFFSk\nU5JsCTQ4Gsgs2gt8O/yzWff+ERERF1JQkU5J+s48lcExwdhCfNm+r4D6hkZ3liYiIj2Ygop0yoDg\nfgR5BZJekIHDcGA6OfxTU9fIzgMa/hEREddQUJFOMZvMJNriKa+v4EjZUQDGx0cBsDlTwz8iIuIa\nCirSac1X/zSvUts/KpDIMD++2V9AbZ2Gf0RE5PxTUJFOiwsfhtVsJf3kPBWTycT4+Ejq6h3sOFDg\n5upERKQnUlCRTvOxeBMXNpTjlScoqG6alzI+7uTwjxZ/ExERF1BQkTOS+J3F3/raA4iJ8GfnwUKq\naxvcWZqIiPRACipyRpovU245/BNFfYODb/Zr+EdERM4vBRU5I6E+IfQP6svekgNUN1QDMN65+JuG\nf0RE5PxSUJEzlmhLwGE42F3YtEptTEQAsfZA0g4WUlVT7+bqRESkJ1FQkTM26jvzVKCpV6XRYbBt\nr4Z/RETk/FFQkTMWG9iHUJ8QdhVm0uhoWj+lefhnkxZ/ExGR80hBRc6YyWQiyZZAVUM1B0sPAxAZ\n5s+A6CAyDhdTUa3hHxEROT8UVOSsfPcmhfDt8M/WPZpUKyIi54eCipyV4aFD8LZ4t5inkhx3cvhH\nV/+IiMh5oqAiZ8XL4kV8+HDyqgvIrWwKJrYQP4b0CSYzq5jSyjo3VygiIj2BgoqcteabFKYVfjv8\nkxwfhWGg4R8RETkvFFTkrCVGxGHCxM78lsM/JjT8IyIi54eCipy1IO9ABoX052DpYSrqKwEIC/Jh\nWGwI+46WUFxe6+YKRUSkuzvroHL48OHzWIZ0V0kRCRgY7CrIdO5Ljo/CALZkqldFRETOTYdB5ZZb\nbmmxvWzZMufXS5YscU1F0q0kNl+mfMo8lQvjIjGZtPibiIicuw6DSkNDQ4vtjRs3Or82DMM1FUm3\nEhMQhc03nIzCPTQ4mj4vIQHexPUP48CxMgpLa9xcoYiIdGcdBhWTydRi+9Rw8t3HpHdqXqW2prGW\nfSUHnfuTm++orOEfERE5B2c0R0XhRNqS1MZNCscNt2M2mdis4R8RETkH1o4eLC0t5euvv3Zul5WV\nsXHjRgzDoKyszOXFSfcwNHQQflZf0goyWDDsCkwmE0H+3iQMDCP9UBF5JdVEhvq5u0wREemGOgwq\nwcHBLSbQBgUFsXTpUufXIgAWs4WE8BFszdvB8coT9A2MAZqGf9IPFbE5I5e5kwa6t0gREemWOgwq\nr776alfVId1cki2BrXk7SCvY7QwqFwy388pHe9ickaegIiIiZ6XDOSoVFRW8/PLLzu3XX3+dK664\ngrvvvpuCggJX1ybdyMiIEZhNZnaeMk8lwNeLxEHhZOVVcKKoyo3ViYhId9VhUFmyZAmFhYUAHDp0\niKeeeooHHniAiy66iN///vddUqB0D/5e/gwJGciRsqOU1pY79zdf/bMpQ5NqRUTkzHUYVI4ePcp9\n990HwMcff8ycOXO46KKLuO6669SjIq2MOnn1z65TFn8bO8yO1WJms+79IyIiZ6HDoOLv7+/8etOm\nTUycONG5rUuV5bsSTwaVU4d//HysJA0O51hBJcfyK9xVmoiIdFMdBpXGxkYKCwvJyspi+/btpKSk\nAFBZWUl1dXWXFCjdR6S/jSj/SDKL9lHXWO/cPz4+CtAdlUVE5Mx1GFRuu+02Lr/8cubPn88dd9xB\nSEgINTU1XH/99Vx55ZVdVaN0I6NsCdQ76tlTvM+5b/TQCLytZjZl5unWCyIickY6vDx56tSpbNiw\ngdraWgIDAwHw9fXlF7/4BZMnT+6SAqV7SbTF82nWOtIKMpwr1vp6Wxk11MaWzDyO5lXQP0pr8IiI\nSOd02KNy/Phx8vPzKSsr4/jx484/gwcP5vjx411Vo3Qjg0MGEODlT3rBbhyGw7l/fFzz1T8a/hER\nkc7rsEdlxowZDBo0CLvdDrS+KeErr7zi2uqk2zGbzCRGxJN6YitHy48xILgfAKOGRODjbWFTRi7X\nTB2sydgiItIpHQaVJ554gnfffZfKykrmzp3LvHnzCA8P79QLL1++nPfee8+5nZ6ezmuvvcZDDz2E\n2WwmODiYJ598Ej8/3QOmp0myJZB6YitpBbudQcXby8LYoTY27s7l8IlyBsUEu7lKERHpDiy//e1v\nf9veg3FxcVxxxRVMnjyZnTt38thjj7Fu3TpMJhMDBgzAam0/54wcOZKrr76aq6++mtjYWKxWKytW\nrOCBBx7g9ttvJz09nWPHjjFq1Kh2X6Oqqu6c3tzpBAT4uPwcvVGYTwhrstZT1VDNlL7fXtJuNpvY\nlJGHn4+FxEER7R6vdvFcahvPpHbxXGqbzgsI8Glzf4dzVJrFxMRwxx13sGrVKmbPns0jjzxyRpNp\nly5dyh133MFf//pXZzAJDw+npKSk068h3Yev1ZdhYUPIrjhOUU2xc3/ioAj8fKxszszDoat/RESk\nEzoVVMrKyvjXv/7F1Vdfzb/+9S/++7//m5UrV3bqBDt37iQmJga73e68cqiqqop3332XOXPmnH3l\n4tGar/hJL/h2lVovq5kLhtkoKqvl4LEyd5UmIiLdSIdzVDZs2MB//vMf0tPTmTVrFo8//jjDhw8/\noxO89dZbXHXVVc7tqqoqbr/9dm699VaGDBnS4bFhYf5YrZYzOt+Zstt1qawrTPNP5s29K8gs28s1\n9tnO/ZdMHMiX6SdIO1LMpLGx7R6vdvFcahvPpHbxXGqbc9NhUPnhD3/IwIEDueCCCygqKuIf//hH\ni8cfe+yx054gNTWVxYsXA9DQ0MAdd9zBvHnzuPrqq097bHGxa++4a7cHkZ9ffvonylnwom9gDLty\n93A0Jx9fqy8AfcN8CfC1sn57NldMGoDZ3PrqH7WL51LbeCa1i+dS23Ree4Guw6DSfPlxcXExYWFh\nLR7Lzs4+7Ulzc3MJCAjA29sbgL///e+MHz+eBQsWdKpo6d5G2RJYVZFDZtE+xkQmAWC1mBk3ws76\nHTnsyy5hRP+w07yKiIj0Zh3OUTGbzdx33308+OCDLFmyhKioKMaPH8/evXv5y1/+ctoXz8/Pb3E5\n8//93/+xfv16Fi1axKJFi3juuefO/R2Ix0pq4yaFAMm694+IiHRShz0qf/7zn3n55ZcZMmQIn332\nGUuWLMHhcBASEsLy5ctP++KJiYm8+OKLzu0NGzace8XSbfQL6kuwdxC7CjNxGA7MpqZcHNc/lCB/\nL7bsyeP6S4dhMXdqTreIiPRCp+1RaZ7wOnPmTI4dO8ZNN93Ec889R1RUVJcUKN2X2WQmyRZPRX0l\nh0qznPstZjMXjoikvKqezCxdoi4iIu3rMKh8d5nzmJgYLr30UpcWJD1L8/BP2neGf8bHN937Z3NG\nbpfXJCIi3ccZ9bnr/ixypkaEDcXL7NUqqAyLDSUk0Jute/JpaHS0c7SIiPR2Hc5R2b59O9OmTXNu\nFxYWMm3aNAzDwGQysW7dOheXJ92dt8WbuPChpBVkkFdVQKS/DWhaTj95RCSrt2az+3Axo4a0v6S+\niIj0Xh0GlY8++qir6pAeLMmWQFpBBukFu5nR/2Ln/vHxUazems3mjFwFFRERaVOHQaVv375dVYf0\nYIkR8QCkFWS0CCqD+wYTHuzDtn0F3NTgwMuqq39ERKQl/WYQlwvxCWZAcD/2lx6iqv7b1YbNJhPJ\ncZFU1zaQfqjQjRWKiIinUlCRLpEUkYDDcLC7cE+L/eNPLv62WYu/iYhIGxRUpEuMsp+8TLkwo8X+\ngdFB2EN92b6/gLr6RneUJiIiHkxBRbpEn4BownxC2VWYSaPj20BiMplIjouitq6RnQc0/CMiIi0p\nqEiXMJlMJNkSqG6o4UDpoRaPORd/y9Twj4iItKSgIl1mVDs3KewXGUhUuD87DhRQW6fhHxER+ZaC\ninSZoWGD8bF4k1aQgWEYzv0mk4nxcZHU1TvYcaDAjRWKiIinUVCRLuNltpIQPoKC6kJOVLUc5mke\n/tmkq39EROQUCirSpdq7SWFfeyB9bQHsPFBIVU29O0oTEREPpKAiXWpkRBwmTK2CCkByfCQNjQ5S\nd51wQ2UiIuKJFFSkSwV6BzA4ZACHSrMor6to8Vjz4m+fb8vWHZVFRAQ4zb1+RFwhyZbAgdLDpBdm\nMinmQuf+6HB/+kcGsjUzj//ek0d4kC/2UF9soX7YQ3yxh/o1fR3qR7C/FyaTyY3vQkREuoKCinS5\nJFsCKw6sJL1gd4ugAnDj7BF8vTuX7NxyCkpryMwqgaySVq/h7WXGHtIUWmzOENP0tz3EDx9vS1e9\nHRERcSEFFelyUf52Iv1s7C7aS31jPV4WL+djQ/uGMGlMLPn55QDUNzRSUFpDfkkNBaXV5JdUU1BS\nQ35JNfml1RwrqGzzHMH+Xs7el+Yg09wrExbsg8WsUU8Rke5AQUW6nMlkItEWz5qjX7C35CAjI0a0\n+1wvq4WYiABiIgJaPWYYBpU1DScDTA0FJdUnA0xTkDlyopyDx8taHWcxmwgP9sF2skfGfrInpmnb\nl0A/DSuJiHgKBRVxiyRbAmuOfkF6we4Og0pHTCYTgX5eBPp5MTA6uNXjDodBcXmts/flu70yGUeK\nyThS3Oo4H2/LyWEl35Y9Mie/9vbSsJKISFdRUBG3GBIyEH+rH2kFGSwcfqVLejDMZhMRIb5EhPgS\nR1irx2vrm4eVqk/2xnwbZPJLq8nOr2jjVSEk0NsZZL7bKxMa6IPZrN4YEZHzRUFF3MJitpAQMYIt\nud+QXZFDv6A+XV6Dj5eFvrYA+traHlYqr653zodxBpiT2wePl7H/WGmr4yxmE7YQX+f8mMhQP8YO\nsxEV7t8Vb0lEpMdRUBG3GWVLYEvuN6QV7HJLUOmIyWQi2N+bYH9vBvdpPazU6HBQVFbb1BNzslem\nKdA0fb3rUJHzuW+u3c/Q2BBSEqNJjovC31c/diIinaV/McVtEiJGYDaZSSvI4PJBl7q7nDNiMZud\n81bi23i8pq6BgpIajuSW8/WuE2QcLmZ/din/Xr2PC4bbSUmKJmFAuIaJREROQ0FF3MbP6sew0MHs\nKd5PSW0poT4h7i7pvPH1thIbGUhsZCApSTEUldXwVfoJvkzLIXV3Lqm7cwkL8mHSyGhSkqLbvKpJ\nREQUVMTNkmwJ7CneT3pBBpP7TnR3OS4THuzLvIsGMnfSAA4cL+PLtBw2ZeSxcuMRVm48wuA+waQk\nxTA+PpIAX6/Tv6CISC+hoCJulWSL561975FWsLtHB5VmJpOJoX1DGNo3hO/PHMb2fQV8mZbDrsNF\nHDxexmur9zF2mI2UpGhGDgrXwnQi0uspqIhb2fwiiAmIYk/xfmob6/CxeLu7pC7j7WVhQkIUExKi\nKC6v5etdTUNDmzPz2JyZR0iAN5MSo0lJjKavPdDd5YqIuIWCirhdki2BT46sJbNoH6PtI91djluE\nBflw+cQBXDahP4dyyvkyPYdNu3P5KDWLj1KzGBgdREpSDBMSogj009CQiPQeCirids1BJb1gd68N\nKs1MJhOD+wQzuE8w180Yxo79BWxIyyH9YBGHT+zl9c/2MWaYjZTEGBIHh2O1aGhIRHo2BRVxu4HB\n/QjyCiStMAOH4XB3OR7Dy2rmwrhILoyLpLSilq935fJleg5b9+SzdU8+wf5eTBwZTUpSDP0iNTQk\nIj2Tgoq4ndlkZqQtjo05WzhSlk1UZM+5TPl8CQn0Yc6E/swe34+s3Ao2nLzM+ZPNR/lk81H6n7wM\nesLIKIL9e888HxHp+RRUxCMk2RLYmLOF9ILdjB/au4d/OmIymRgQHcSA6CC+N2MoO/YX8mVaDmkH\nC3nts328uXY/o4ZEkJIUw6ghERoaEpFuT0FFPEJc2DCsZis7C3a7u5Ruw2oxM26EnXEj7JRV1rFx\ndy5fpeWwfV8B2/cVEOjnxcSEKFKSYugfFeiSGz+KiLiagop4BF+rD8PDhrC7cA95lYWY0PDFmQgO\n8GZWcj9mJfcjK7ecL9NOsHH3CVZvzWb11mxi7QFclBjDpJFRhAT6uLtcEZFOU1ARjzHKlsDuwj1s\nPbaTC8MudHc53Vb/qCD6RwWxYPoQ0g4W8lXaCb7ZX8Cba/fz1roDJA0OJyUphtFDbXhZNTQkIp5N\nQUU8RmJEPPAOW47v4ILQCzCb9Ev0XFgtZsYOszN2mJ3yqjo2ZeSxIS2HHQcK2XGgkABfK+MTopic\nFMPA6CANDYmIRzIZhmG4u4j25OeXu/T17fYgl59Dzszjm5/maPkxvMxe2P0iiPS3YfezYfePINLP\nht3fRoh3sH6pnoPs/Aq+SjvBV7tOUFZZB0AfWwApidFMHBlNWFD7Q0P6mfFMahfPpbbpPLs9qM39\nCir6AHmU/SWH2Ji/ieziHPKqC6htrGv1HG+Ld1OIORlcnH/72wjy0qTRzmp0ONh1qIgNaSf4Zl8+\nDY0GJhOMHBTO5KQYxg6z4WW1tDhGPzOeSe3iudQ2nddeUHHZ0M/y5ct57733nNvp6em89tpr/Pa3\nvwVgxIgR/O53v3PV6aWbGho6iEnDRpGfX45hGJTVVZBfXUBeVUGLv/OrCjhWkdPqeF+LT8vwcsrf\nAV7+CjGnsJjNjBpiY9QQGxXV9WzOyGVD2gnSDxaRfrAIPx8rE+IjSUmKYXAf9WKJiHt0SY/Kpk2b\nWLVqFfv37+cXv/gFo0aN4r777uO//uu/mDp1arvHqUeld+pMuxiGQWld2SnBpZC8kwEmv7qAekdD\nq2P8rH4ng0sEdj+bc1gp0r8pxEiT4wWVfJmew9fpJyipaOrRigr3Z3JSNBOS+kJDAyGBPpqI60H0\nb5nnUtt0nluHfm6++WYee+wxbrzxRtasWQPABx98QHp6Or/85S/bPU5BpXc613ZxGA5Ka5tCTHN4\naf67oLqQBqOx1TEBVn/szuAS0WI4yc/qdy5vp9tyOAx2Hy5iw8m1WeobWt7eINDPi9BAH0KDvAkL\n9Dn5tU/T1yf3Bfl7YzarJ8bV9G+Z51LbdF6XD/0027lzJzExMVgsFoKDg537IyIiyM/P7/DYsDB/\nrN8ZIz/f2vvGiHuda7tEEcJw+rXa73A4KKgu5kR5HjnleeRU5HGiIp8T5XkcrTjG4bKsVscE+wQS\nExhJdFAkMUGRRAc2/23Hz8v3nOr0dFFRwUyfMJCK6no2ph0nO6+CwrIaikprKCytobCshuz8inaP\nN5tNhAX5EBHiS3hw05+IEL+mr0N8iQjxJSLYlwA/Lw0tnSP9W+a51DbnxuVB5a233uKqq65qtb8z\nHTnFxVWuKMlJSdczubpdTHgTY4klJjQWQr/d3+hopLi2pM2emH1Fh9lTeLDVawV7B7W6Kqn5bx9L\nz1q0bvSgcC4ZP6BV21TXNlBSUUtJRV3T3+W1FDdvl9dSUlHLwWOl7M0qafe1va3mph6ZQG9Cg072\nzpzaW3Nyn4+Xa//j0l3p3zLPpbbpPLf1qKSmprJ48WJMJhMlJd/+Q5Wbm0tkZKSrTy/SaRazBZtf\nBDa/CBIY0eKxRkcjhTVFJ+fEFLaY3Huw9DAHSg+1er0Q72Ci/O3ERwxnjD2RSH97V72VLuXnY8XP\nx0pMREC7zzEMg4rqemeYKT4ZYJrDTFOwqWVfdikd/RfG38d6MrS0DDCnhprgAG/d40ikB3FpUMnN\nzSUgIABv76b/WQ4ePJgtW7Zw4YUX8sknn7Bo0SJXnl7kvLGYLUT629sMGw2OBgqri07phSl09sbs\nKznI3pIDvHtgFX0CohljT2RMZBJ9AqJ71VCHyWQiyN+bIH9v+kUGtvu8RoeDssr6FmHmu6GmpKKW\n4wWV7Z8LCArwbhFmvg013s65NIF+Xph7URuIdFcuDSr5+fmEh4c7t//nf/6HJUuW4HA4GD16NBdd\ndJErTy/SJaxmK1EBkUQFtO4hrKivJK0ggx35aWQU7WPl4dWsPLwau18EY+xJjIlMZEBQv14VWjpi\nMZsJC/IhLMiHQTHtP6+uvrHFcNOpYab56xOFVWTltj9/JjLUj7uuHUVfW/s9QSLiflrwTWOHHqen\ntktNQw27CjPZnp/OrsJM6k4uZhfqE9LU02JPZEjoII++dUB3ahvDMKiubaD4lLkzTX/XUVBa7byN\nwD0LRjO0b4i7yz0n3aldehu1TedpZdo26APkmXpDu9Q11pNRtJcd+ensLNhNdUM1AIFeAYy2j2SM\nPYnhYUOwmj3rdlw9qW027Mzh5VWZWC0mbr8ykdFDbe4u6az1pHbpadQ2naeg0gZ9gDxTb2uXRkcj\ne4sP8E1+Gjvyd1Fe30VKpqwAACAASURBVDRc4Wf1I8kWzxh7IvHhI/C2eLm50p7XNt/sL+CvK9Jp\naDS45fI4UpI6GG/yYD2tXXoStU3nKai0QR8gz9Sb28VhODhYeoRv8tP4Ji+d4tqmK+W8zV6MjIhj\njD2RkbZ4/KzuWb+lJ7bN/uxSnn5rB5U1DSyYPoTLJgxwd0lnrCe2S0+htuk8BZU26APkmdQuTQzD\nIKs8m2/y0/kmL4286gIArCYLceHDGGNPIsmeQKBX100G7altc6ygkqfe+Ibi8lpmj+/HgulDu9UV\nQT21XXoCtU3nKai0QR8gz6R2ac0wDHIqc5t6WvLTnTdkNJvMDAsdzBh7IqPsIwn1ce2k0J7cNkVl\nNTz5xjfkFFYxaWQUt1we323WY+nJ7dLdqW06T0GlDfoAeSa1y+nlVRWwIz+db/LTncv+mzAxKKQ/\no+2JjLEnYfMLP82rnLme3jYV1fU8vfz/t3ff0VHX+f7HnzOZ1JmUSUglhfSQhA6uKCosCApIFSkK\nlrWvend19+rPLXrX+/P84KxuscK1IV4EpAlSFFSw0aQmIT2BkE6SSZ0kU39/BKJoggFmMt+Q9+Mc\nj4dM+XzC6/udefP9fspxCssbSY8L5LezhuDpofzVcK/2XPoyyabnpFDpghxAyiS5XBpDWz3Ha7I4\nVp1BQX0x9nNru0bpIhgeMoThwemEaUMd0lZ/yKbdZOX1zZlkFNUSG+7H7+YNxddH2dsh9Idc+irJ\npuekUOmCHEDKJLlcviZTMydqsjh2NpPcugKs53aKDvUJYURwOsNC0onSDbzsBeb6SzYWq413t+ew\nL6uSsEAfnpw/jAH+yt1Fu7/k0hdJNj0nhUoX5ABSJsnFMVotredWxc0kqzYXs80MQJCXnmHB6YwI\nGcIgv+hLWmCuP2Vjs9tZ/2UhOw+WoPf15Pd3DCMyuPvl/12pP+XS10g2PSeFShfkAFImycXx2q0m\nsmtzOXo2g8yaHNqsbQD4e/gy9NyquIkBcbipLz4eoz9ms/NACeu+LMDHU8MTtw8lKSrgl1/Uy/pj\nLn2FZNNzUqh0QQ4gZZJcnMtss5BnKOBYdQbHa7JoMRsB0Gp8GDIgleEh6aToE3HvYoG5/prNd5kV\nvLs9B7VaxSMz0xmeqKxVbPtrLn2BZNNzUqh0QQ4gZZJceo/VZqWwofjcWi2ZNJgaAfBy8+xYYC5k\nCKmByXhpPIH+nc2Jwlpe35yBxWLn7luSuWFYhKu71Kk/56J0kk3PSaHSBTmAlElycQ2b3cbpxjOd\nC8zVtNUB4K7WMDgwmeHB6YxNGIa12a3f7vZcWNbAPz/qWMV27k1xTL02RhF/F3LOKJdk03NSqHRB\nDiBlklxcz263U9Zc0VG0nM2goqWq8zGtuw8DteEM9A1noC6Cgbowwn1Cu7xVdDUqr2nh5XXHqGts\n5+bRUcyf6PpVbOWcUS7JpuekUOmCHEDKJLkoT1VLNcdrsqhor6C49gxnW2sveFytUhPqE8xAXfi5\n/yKI1IXj5+GriCsOjlbX2MbL645TXtPCtamh3DfNtavYyjmjXJJNz0mh0gU5gJRJclGu89m0Wdop\nb6mkrLmcsubz/6+g3Wq64Pk6d21n8RKpiyBCF064NgSNWuOi38BxmlvN/Hv9CQrKGkiLDeS3s9Px\n8nDN7yXnjHJJNj0nhUoX5ABSJslFuS6Wjc1uo7bVQFlLBWVNHYVLaXMFtefGupynVqkJ8wnpvG0U\nqYtgoG/H1Ze+pt1s5Y3NmZworCU23Jf/mDcMPxesYivnjHJJNj0nhUoX5ABSJslFuS4nm1ZLG+Xn\nrrqUNldQ3lxBWUslpp9cffH10HWOfYnURTBQF06oT7Dir75YrDZW7szh24xKQgN9eOqOYQwI6N1V\nbOWcUS7Jpue6K1SU/QkghOjzvDVexAcMIj5gUOfPbHYbNa21nbeNSpsrKGuuIMeQT44hv/N5bio3\nwrQh524bhXUWML4eylkhVuOm5r6pg/HTerBjfwn/94PDPHnHcKJClNNHIfoyKVSEEL1OrVIT4hNM\niE8wI0KGdP681dJKWXMlpc3llDVVUNZSce5qTMUFr/f38CVC98OVl/NXX35pZV1nUalUzBufgL+P\nB2u+KOD//e8R/kOhq9gK0ddIoSKEUAxvjTcJAbEkBMR2/sxmt3HWWNN52+j81Zfsujyy6/I6n6dR\nuRGuDe0Y++Ib3nkbSeeu7bX+T74mGl+tB+9sy+bva47x8Mw0RiYF91r7QlyNpFARQiiaWqUmVBtC\nqDaEUaHDOn9uNBs7B+yWnfuvoqWSM83lUPnD6wM8/X80bTqcSF04wd4DnHb1ZWxaGL7e7ry2KZPX\nNmVw9y0p3KigVWyF6GtkMK0MclIcyUW5lJ6N1WblbGvNBcVLWXMF9e0NFzzPXa0hUR/PXSnz8Pf0\nc0pfisob+edHx2luNTP7xjimj3XeKrZKz6U/k2x6Tmb9dEEOIGWSXJSrr2bTbG754bZRUwUlTaWU\nt1QS4OnPw0PvIcp3oFParaht4eW1x6htbGfiyEgW3pzolFVs+2ou/YFk03NSqHRBDiBlklyU62rJ\nxm63s6tkD1sKd+Ku1nBP2kKGBac7pS1DUzsvrztG2dkWrhkcwm+mpeKucewqtldLLlcjyabnuitU\nXLfmsxBCuIhKpWJyzAQeGLIYgBUZ7/PZqS9xxr/b9L6ePHPnSBIj/TmYXc2/1h+ntd3i8HaEuFpJ\noSKE6LeGBafz5KjfovcM4OOiHbyfvRaz1ezwdrRe7jw1fzjDEwZw8pSBZR8epbHF9MsvFEJIoSKE\n6N+ifCP44+jHGeQXzcHKI/zr6AoaTY6/VO/h7sZv56Qzbmg4pyubePGDw5ytb3V4O0JcbaRQEUL0\ne/6evvxuxEOMDh1OceNplh165WeLzDmCm1rNvbemMG1sDNWGVl5cdZiSKhm/IMTFSKEihBCAu5s7\n96Qu5La4KRja63np8Gtk1Jx0eDsqlYq5N8WzcFIiDS0mlq4+Qm6JweHtCHG1kEJFCCHOUalU3DJo\nIvenL8Zmt7P8xEp2nd7jlEG2N4+O4qEZaZjMNl5ae5zDudUOb6OvsNvtlNW08OnBEl7dmMGu789g\nU+6EVNHLZGVaIYT4iREhQwjy1rP8xEo2F26nsqWaBSlzcHfwTs6/Sg1F5+3OqxszeH1zJosnJzN+\nhHPWdFEaY5uZk6cMZBbXklFUh6GpvfOxI3lnyT5l4L5pg9F5u7uwl0IJZB0Vmd+uOJKLcvW3bOrb\nG1h+YiUlTaXE+8fywJDFTtm5ubiikX+s61jFdta4WG67ftAlrWLbF3Kx2e2crmwis6iWjOI6isoa\nO6+a6LzdSR2kZ0hcEDFhvqz5PJ+TpwwE+XnxyKx04iKcs3pwb+gL2fREc6uZnNMGhicOQOPmnJsx\nsuBbF66WA+hqI7koV3/MxmQ1sSp7HUeqTxDkFcjDQ+8hQhfm8HYq64y8vPYYNQ1tTBg5kDsnJaFW\n96xYUWouDc3tZBbXkVVcR2ZxHc2tHVO/VSqIj/AnPTaQ9LggBoX5XvC72mx2tn53ii3fFKNWq5j/\n6wQmjop02hYEzqTUbC5F1qk63v7kJPXNJv5y92hiw51TOEqh0oWr4QC6GkkuytVfs7Hb7Ww/tZvt\nxbvwcvPk3rRFpA8Y7PB2DE3t/GPdMUrPtjA6JYQHpvdsFVul5GKx2igsayCjqI7M4lpKqpo7H9P7\nenYWJqmD9Gi9fvmWTlZxHSu2ZtFkNDM6JYR7b03B27NvjVhQSjaXw2yxsemrInYeLMFNrWLWDbFM\nvda5e1Z1RQqVPnoAXc0kF+Xq79kcrjrGqux1WGxW5iRMY0LUDQ7/0Da2mfn3+hPklTYwOEbPY3OG\n/OKXsytzqalvJaO4jsyiWrJPG2gzWQHQuKlIigogPTaI9LhABg7QXtbflaGpnTc/ziS/tIEQvTeP\nzkonOrTrLzQl6qvnTEVtC8u3ZFFS1UyI3puHZqQ57UrKeVKodKGvHkBXO8lFuSQbON14huUn3qPB\n1MT1EddwR9IsNA4eZGsyW1m+JYuj+TVEh+r4/R3D8dd6dPv83syl3Wwlt6SezKJaMovrqKwzdj4W\nqvcmPS6I9NhAUqL1eHq4OaRNq83Gxq+K2LG/BHeNmjtvTuKGoeF94lZQXztn7HY7e4+Vs+bzfEwW\nG+OGhrNoUiJeHs6/kiWFShf62gHUX0guyiXZdDC01bP8xHucaS4nMSCO+4csRueudWgbVpuNVZ/m\n8dXxckICvHly/jBC9D5dPteZudjtdsprjR2FSVEtuWcasFhtAHi6uzE4Rs+QuEDS4oIICfB2Sh/O\nO1ZQw9ufnKSlzcJ16WEsnpzssGLIWfrSOdNkNPHejhyO5teg9dJw9y0pjE4J6bX2pVDpQl86gPoT\nyUW5JJsftFtNvH9yLcfOZjDAO4hHht5DmDbUoW3Y7XY2f13M1u9O4af14PfzhhET9vMPc0fncrGp\nw1EhOtLjAhkSG0RCpL/TZoB0p6a+lTc+zqS4oomIAVoenZVOxADHFomO1FfOmaziOt765CQNLSZS\nogO4f3oqgX5evdoHKVS60FcOoP5GclEuyeZCNruNbcW72Hnqc7zcvPhN+p2kBiU7vJ3PD5eyelce\nnh5uPD53KINj9Bc8fqW5XGzqsNZLQ1psIEPigkiLDSRA53lFv4sjWKw21n1RwO7DpXi6u7HklmTG\npjl+JpYjKP2cMVtsbNhbyGeHzuCmVjH7xjhuuSa6xzPOHMklhcqWLVt466230Gg0PPHEE2i1Wl5+\n+WU0Gg0+Pj4sW7YMf3//bl8vhUr/JLkol2TTtUOVR/kg5yOsNiu3J87gpsjrHD5+4mB2Ff+z9SQq\nFTx4W9oFl+QvJ5eLTR2Oi/BjSGxQl1OHleT7nGre2Z5Nm8nKTcMjWDQpEXeNsm4FKfmcKatpYcWW\nLM5UNxMa6MNDM1IZFOa6NWt6vVAxGAwsWLCADRs2YDQaeeWVV8jKyuLvf/87cXFxvPnmm6jVah58\n8MFu30MKlf5JclEuyaZ7xQ2nWZ6xkiZTM+MGXssdiTNxUzv2S/PkqTpe2ZiByWTlrslJTBgZCfQs\nl1+aOnz+qklPpw4rRVWdkdc3Z3KmupnoEB2PzE4ntJuxPK6gxHPGbrfz5dEy1n5RgNli48ZhESyc\nmOjy8T7dFSpOG8a7b98+xo4di06nQ6fT8cILL/Cb3/yG+vp6ABoaGoiLi3NW80II0ati/WP4z9GP\n8+aJ9/imbD/VxhruT78LrbvjvjRTBwXyzKKR/GPdMVZ9lkdDi4mZ42K7ff7Z+lYyu5k6nDpIf8VT\nh5UgNNCHPy0exerd+Xx1vJy/vXeIe28d3KuDQPuSRqOJ97bncKygY8Dsg7elMSo52NXduiinXVFZ\nsWIFRUVF1NfX09jYyOOPP05ISAh33XUXfn5++Pv7s3r1ajSa7msluaLSP0kuyiXZ/LI2SzsrT67h\nRE0WId4DeHjYvYT6OPaLoMrQsYrt2fo2xg+P4Hd3jqautvmCqcMZxXVU9cLUYSX5LrOC9z/NxWS2\nMWl0JHdMSOj1wb4/paRzJrOolre2ZdPYYmJwjJ77p6ei93X9mKPzev3Wz4oVKzhy5Aivvvoq5eXl\nLFmyhJiYGJ544glGjRrF0qVLCQ8PZ8mSJd2+h8ViRaOw+41CCPFLbHYbazK2sDn7U7Tu3jx5/YMM\nCU1xaBuGxjae+599FJc3MjwxGFSQVVSL2dIxddjLw41hicGMSA5hZHII4QqeGeNIpysbWfr+Ic5U\nNZMcrec/l4zudlp3f2EyW1m5/SRbvipC46Zi8a2pzLopXrFjj37KaYXKhg0bqKmp4aGHHgJg2rRp\nFBYWkpOTA8DXX3/N1q1bWbZsWbfvIVdU+ifJRbkkm0tzoOIwq3PWY8POvMSZ3Bg51qHvb2yz8MqG\nE+Se6bilfn7qcHpsEIkumDqsFG0mC+9/msv+rCq0Xhrun57KsIQBLumLq8+ZsrPNLN9yktKzzYQF\n+vDQjLQup7grQa+PURk3bhzPPPMMDzzwAA0NDRiNRhITEykoKCAhIYGMjAxiYmKc1bwQQrjcr8JH\nMcA7iBUZK1mbt4lKYxVzE25z2CBbHy8NT84fTq3RjJcaRUwdVgIvDw0PTE8lOSqA/92Vz7/Wn2Dq\ntTHMvjEWN3X/KN7sdjtfHClj3ZcdA2bHD49g/sREPN373l0Kp05PXrNmDevXrwfgkUceQa/Xs2zZ\nMtzd3fH39+fFF1/Ez6/7qVByRaV/klyUS7K5PLWtdbx54j3KWyoZHJjEfWl34uPuuFVcJZfulVQ1\n8fqmTKrrW0mKCuChGWm9Oi7DFdk0tph4Z3s2Jwpr0Xm7c++tKYxIUvaAWZAF37okJ7cySS7KJdlc\nvjZLG+9mfUhmbTahPsE8PPReQnwccztCcrk4Y5uFd3dkczj3LH4+7jw4I43UQYG90nZvZ3OisJZ3\ntp2k0WgmbZCe+6Ypa8DsxXRXqLg9//zzz/duV3rOaDQ59f21Wk+ntyEuneSiXJLN5dOoNYwKHYbJ\nZiKjJptDlUcY5BdFkPeVf2FKLhfnrlEzJiUErbc7x/Jr+C6jEhWQGBng9GnZvZWN2WJlzecFfLg7\nH6vNzrwJCdw5ORmfX9h5W0m02q4Lqv5xs04IIRRArVIzJ2E6d6bMo91q4pVjb/Ft2QFXd6tfUKlU\n3Dw6imfuGkmgnyebvynmH+uO0djS9wu80upm/rbyez4/XEp4kA9/XjKaKddEo+6ja+P8lBQqQgjR\ny66LGMPjwx/AW+PF6twNrM/fgs1uc3W3FMFoNjr17yI+wp/n7r2GofFBZJ0y8Py7B8k7N2uqr7Hb\n7ez6/gx/W/k9ZWdbmDBiIH+9ZwzRocqc1XO5ZIyK3NdVHMlFuSQbx6ppreWNE+9R2VJFalAy96Ut\nwltz6YNs+3IuzaYW8uoLyTMUkmcooMp4ljCfEBamzCUhoPtVd6+UzW5n54ESNu4tAmDu+I7N+Bx9\nK8hZ2TS0mHh720kyi+rQebtz39TBDE90zRRsR5HBtF3oyyf31UxyUS7JxvFaLa28k7mak3W5hGlD\neWToPQzwDrqk9+hLubRaWimoLybXUECeoZCy5orOxzzdPBioi6C44TR27FwfcQ2z4qfi48BtCH4q\nt8TAm1uyaGg2MTxhAPdNG4zO23F7HTkjm+MFNbyzPZsmo5m02EB+M23wVTE1XQqVLvSlk7s/kVyU\nS7JxDqvNyqbCbXx55hu07j48kL6ERH3P90JTci7tVhNF9afIqy8k11BASWMpdjq+dtzVGuL8B5Gk\njydJn0CMbyRuajeKGk7zYc4Gylsq8fXQMS9xBiNDhjlt4Gtji4nlW7LIPm0gyM+LR2enExvumF2E\nHZmNyWxl3ZcFfHGkDI2bitvHJzBpdORVMxZFCpUuKPnk7s8kF+WSbJzrm7L9rM3bjAoVC5PnMDZi\nTI9ep6RczDYLpxpKyDMUkGso5FRjCVZ7x2aIapWaQX7RJJ8rTGL9onF36/rqhdVmZXfJXnac2o3Z\nZiE1KJkFSbMdMkuqKzabnS3fFrP121Oo1SoWTEzk1yMHXnFx5KhszlQ3s3xLFuU1LUQM0PLQjDSi\nQnRX/L49ZTQbKW4sYXBgEmqVc4a3SqHSBSWd3OIHkotySTbOl2co4H8yVmG0tDIx+kZmxU/9xS8G\nV+ZitVkpaSoj39BxxaSw4RRmmxkAFSqifAeSrE8gUR9PvP8gvDSXdoui2ljD2txN5Bjy8VC7My1u\nMhMixzlsdd+fyiquY8XWLJqMZkanhHDvrSl4X8EU3yvNxma3s/v7UtbvKcBitTNxZCTzJsTj0Usr\nzFpsFr4q28eO4t0YLa38YdRjxPpHO6UtKVS6IB+6yiS5KJdk0zuqjWd588R7VBnPkh40mHvTFuKl\n8er2+b2Zi81uo7y5svOKSUF9EW3W9s7HI7RhnbdyEgNiHTK+xG63c6jqKBvyt9JsbiFKF8HClLnE\n+EVd8Xt3xdDUzpsfZ5Jf2kCo3ptHZqVf9kyaK8mmvrmdd7Zlk1lch69Px4DZ3tqzyG63c+xsJpsL\nt1PTWou3xotbBk1kYtSNTrsFJ4VKF+RDV5kkF+WSbHqP0dzK25kfkGPIJ0IbxsND7+n2toczc7Hb\n7VQZz3YWJvn1hbSYjZ2Ph3gPOFeYxJOoj8fPw3lTY5tNLWwq2Mb+yu9RoWJ81PVMj51yyVdpesJi\ntbHpqyJ2HCjBXaPmzpuTuGFo+CV/SV9uNsfyOwbMNreaGRIXxH3TBuOv9bjk97kcxQ0lbCz4hKKG\nU6hVam4cOJZbB01C5+HcHbilUOmCfOgqk+SiXJJN77LarGwo2Mre0u/QuWt5cMjdxAcM+tnzHJ1L\nbWsdueemC+cZCmgw/fDees8AkvTxJOsTSNLHo/cKcFi7PZVbV8Ca3I1Ut9ag9wxgfvIshgxIdUpb\nx/JreHvbSVraLFyXHsbiycl4evT8tsulZtNutrLuiwK+PFqGxk3NvAnxTBoV6fQVdAFqWuvYUriD\nw9XHARgWnM6s+FsJ8emdfYKkUOmCfOgqk+SiXJKNa3xV+h0f5W9BjYpFKbfzq/BRFzx+pbnUtzec\nW8ekozipbTN0PubrrussTBL18QR7B/XKl+YvMVvN7Dz9BbtO78FqtzIieAi3J80gwNPf4W3V1Lfy\nxseZFFc0MXCAlkdmpRMxoGdXFy4lm5KqJpZvyaKi1sjAYC0P3ZZGZC8MmDWaW/n09BfsOfMNFruV\nGN8o5iROd+o6Nl2RQqUL8qGrTJKLckk2rpNTl89bmR/QamllcswEboub0jnI9lJzaTa3kG8o6ryd\nU2Ws7nzMW+NNUkAcSeeumIRrQxVRmHSnvLmSD3M3UNRwGi83L2bG38q4gb9y+MwUi9XG2i8K+Pxw\nKZ7ubtx9SzLXpoX94ut6ko3NbmfXoTNs2FuIxWpn0qhIbh/v/AGzVpuVr8v2s/3ULlrMRvSeAcyM\nv5VRocOcNrPnYqRQ6YJ86CqT5KJcko1rVbVU8+aJ96hurWHYgDSWpC7AS+P5i7m0WtooqC8i79zM\nnB8vsubh5kFCQGzHrZyAeCJ9I1zyJXUlbHYb35Yf5OPC7bRa2ojzj2Fh8lwidL9cSFyqQznVvLs9\nmzaTlfHDI1g4KRF3TfcFxS9lY2hq551tJ8k6ZcDPx537pqUyNP7SFvy7VHa7nRM1WWwu2E51aw1e\nbl5MGTSBCZHjup0u3hukUOmCfOgqk+SiXJKN67WYjbyV+QF5hgIG6sJ5eOg9JEdFX5CLyWqisOFU\n5+2ckqbSzv1zNGoNcX4xJOkTSA6MJ8Y3ymlTfXtbQ3sjH+Vv4Wj1CdQqNTdHj+eWQRPxcPCXb1Wd\nkdc3Z3KmupnoEB2Pzk4nRN/17KaLnTNH887y7o4cmlvNDI0P4r6pg/Fz8oDZ041n2FjwCQX1xahV\nasZFXMvU2En4evTemizdkUKlC/Khq0ySi3JJNspgtVlZl7eZb8oP4Ouh46nrH6ShofXcsvQFFDf8\ndJG1qI7CRB9PrF+MS//V3Bsya7JZk7sJQ3s9wd5BLEieQ0pgokPbMJmtrN6dx1fHK/D2dOO+qYMZ\nlRzys+d1dc60m62s/TyfPcfKcdeouWNCgkMWl7uY2lYDW4t2cqjqKABDBqQyO34qodqf99lVpFDp\ngnzoKpPkolySjXLY7Xb2ln7H+vwtnUvSQ8cia5G+EZ0DYDsWWet+DZarVZulnW3Fn/HlmW+wY+dX\nYaOYkzDd4VNsv82oYNVnuZjMNiaNjuSOCQlo3H64dfbTc+Z0ZceA2co6I5HBHSvMDgx23tWMVksr\nn53ewxdnvsZisxDlO5A5CdNJ0sc7rc3LJYVKF+RDV5kkF+WSbJTnZG0u31btw1+jJ1kfT0JAHFon\nbuLX15Q0lrI6dwNnmsrQuvswN+E2rgkb6dCrF2Vnm3l9cyYVtUbiIvx4ZGY6Qf4dxeH5c8Zmt/PZ\nwY4Bs1abnZtHR3H7+LiLjm+5ElablW/LD7CteBfN5hYCPP2ZEXcLY8JGKHYMkhQqXZAPXWWSXJRL\nslEmyeXirDYre0u/ZWvRp5hsZpL1CSxInu3Q9UHaTBbe/zSX/VlVaL00PHBbKkPjBxAc7EteUQ1v\nfXKS7NMG/LQe/GbaYIbEOWfArN1uJ7M2m00F26kyVuPp5sHkmF/z66gbHD5Wx9GkUOmCnNzKJLko\nl2SjTJJLz9S2GliXt4nM2hw0ag23DprEpOgb0agvfy+fH7Pb7ew9Xs7qXflYrDamXhvD0KQQXll3\nlJY2C8Pig7h32mD8fJwzYLakqZRN+dvIqy9EhYrrB/6KabE3O3W1YEeSQqULcnIrk+SiXJKNMkku\nPWe32zlSfYL1+VtoNDURrg1lUcpc4vwHOayN05VNvLE5k+r6VgDcNWoW/DqB8SOcM2DW0FbPlqKd\nHKw8AkB6UAqzEqYRrg11eFvOJIVKF+TkVibJRbkkG2WSXC6d0dzKx4Xb+ab8ACpUjBt4LTPjb8Fb\n4+2Y92+z8MGuXBqNZhZOTGRgD1eyvRRtlrZzA2W/wmyzMFAXzpyE6Q6f4dRbpFDpgpzcyiS5KJdk\no0ySy+UrqC/mw9yNVLZU4e/hy+1JMxkRPMRhVz6ckY3VZuW7ikNsK/qMJnMzAZ7+3BY3hWvCRip2\noGxPdFeoOObGnBBCCNEHJQTE8n/G/Ae7Tu9l5+nPeTvzA9KDBjM/eRaBXnpXd+8CdrudrNocNhVu\np7KlCg83D6bHTmZi9I14uPXOzsquIIWKEEKIfk2j1nBr7ERGhg5lTc5GMmuzyTtQyG1xUxgfeb0i\nrlKcaSpnU8En5BoKOgbKRlzDtNgp+Hv2jYGyV0IKFSGEEAII9QnmiREPsr/yMJvyP2FD/lYOVR5l\nUcpconwHuqRP9e0NbC38lAOVh7FjJzUwmdkJ05yyj5FSSaEihBBCnKNSqRgbPpr0oBQ2FnzCwcoj\nLPv+FSZEjmNaBwbWXgAACuNJREFU3GQ8e+kWS5ulnd0le/m8ZC8mm5kIbRhzEqYzOCipV9pXEilU\nhBBCiJ/w9dBxd+oCrgkbyZrcTXx+5iuOns1gftIs0gcMdlq7NruNfRWH+KToMxpNTfh5+DIvbibX\nho9WxC0oV5BCRQghhOjG4MAk/nTNk+w4tZvdJXt548S7jAoZxtzEGQ4fH3KyNpdNBdsob6nEQ+3O\n1EGTmBh9E14aT4e209dIoSKEEEJchIebOzPjb2V06HA+zNnA4erjnKzLY1b8rVwXcc0VX+koa65g\nU8E2suvyUKFibPgYpsdNJsDT30G/Qd8mhYoQQgjRAwN14Tw56lG+KdvPx4U7+DB3Iwcrj7AoZS5h\nl7EKbEN7I58Ufca+ikPYsZOiT2RO4nQG6sKd0Pu+SwoVIYQQoofUKjU3Rl7H0OA0Psr7mGNnM3nx\n4D+ZHDOBKTETcO/Bxn/tVhO7S/ayu2QvJquJMG0ocxKmkRqY7JQl9vs6KVSEEEKISxTg6c8DQ5Zw\n4mwWa/M2s+PUbg5XH2Nh8lyS9PFdvsZmt7G/4jCfFO2kwdSEr4eOuQnTGRs+Bje1Wy//Bn2HFCpC\nCCHEZRoanEaSPp6tRZ+yt/Q7/nV0OdeGj2Z2wjR07j/s75NTl8/Ggk8oa67AXe3OLYMmcnP0TXhp\nvFzY+75BChUhhBDiCnhpvJiXNJNrwkbyvznr2V/xPZk12cxNvI2hHom8fXwdJ2tzUaHiV2GjuC1u\nCnqvAFd3u8+QTQllIy/FkVyUS7JRJslFOaw2K1+WfsMnRZ9htpk7f56kT2BOwjSXrXDbF8imhEII\nIYSTuandmBR9E8ODh7A+/2OaLE3cEj2J9KDBMlD2MkmhIoQQQjjYAO9AHh56r1ztcoD+uR6vEEII\nIfoEKVSEEEIIoVhSqAghhBBCsZxaqGzZsoUZM2YwZ84c9uzZg9ls5qmnnuL222/n7rvvpqGhwZnN\nCyGEEKKPc9pgWoPBwGuvvcaGDRswGo288sorlJWVodfreemll1i7di3ff/89EydOdFYXhBBCCNHH\nOa1Q2bdvH2PHjkWn06HT6XjhhRe4//77eeKJJwCYP3++s5oWQgghxFXCaQu+rVixgqKiIurr62ls\nbOTxxx/nb3/7G9OmTePAgQMMGDCA5557joCA7lfns1isaDSy/4EQQgjRXzl1HZX6+npeffVVysvL\nWbJkCZ6ensTGxvLYY4/x+uuvs3z5cp5++uluX28wGJ3ZPZnfrlCSi3JJNsokuSiXZNNz3a1M67TB\ntEFBQYwYMQKNRkN0dDRarRa1Ws2YMWMAGDduHAUFBc5qXgghhBBXAacVKuPGjWP//v3YbDYMBgNG\no5GZM2fy9ddfA5CVlUVsbKyzmhdCCCHEVcBpt35CQ0OZMmUKd9xxBwB//vOfue6663j66adZv349\nPj4+LF261FnNCyGEEOIqILsny71DxZFclEuyUSbJRbkkm57r9TEqQgghhBBXStFXVIQQQgjRv8kV\nFSGEEEIolhQqQgghhFAsKVSEEEIIoVhSqAghhBBCsaRQEUIIIYRiSaEihBBCCMXql4XKiy++yPz5\n81mwYAEnTpxwdXfEjyxbtoz58+czd+5cPvvsM1d3R/xIW1sbkyZNYuPGja7uiviRLVu2MGPGDObM\nmcOePXtc3R1xTktLC4899hiLFy9mwYIFndvHiEvn1N2TlejgwYOcPn2atWvXUlhYyLPPPsvatWtd\n3S0B7N+/n/z8fNauXYvBYGD27NlMnjzZ1d0S57zxxhv4+/u7uhviRwwGA6+99hobNmzAaDTyyiuv\nMH78eFd3SwCbNm0iNjaWp556iqqqKu6++2527tzp6m71Sf2uUNm3bx+TJk0CID4+noaGBpqbm9Hp\ndC7umRgzZgxDhw4FwM/Pj9bWVqxWK25ubi7umSgsLKSgoEC+BBVm3759jB07Fp1Oh06n44UXXnB1\nl8Q5er2e3NxcABobG9Hr9S7uUd/V72791NTUXHDABAYGcvbsWRf2SJzn5uaGj48PAOvXr+fGG2+U\nIkUhli5dyjPPPOPqboifKC0tpa2tjYcffphFixaxb98+V3dJnDNt2jTKy8u5+eabueuuu3j66add\n3aU+q99dUfkp2UFAeXbv3s369et55513XN0VAWzevJnhw4cTFRXl6q6ILtTX1/Pqq69SXl7OkiVL\n+PLLL1GpVK7uVr/38ccfExERwdtvv01OTg7PPvusjO+6TP2uUAkJCaGmpqbzz9XV1QQHB7uwR+LH\nvv76a958803eeustfH273klT9K49e/Zw5swZ9uzZQ2VlJR4eHoSFhXHddde5umv9XlBQECNGjECj\n0RAdHY1Wq6Wuro6goCBXd63fO3LkCOPGjQMgJSWF6upquZV9mfrdrZ/rr7+eTz/9FICsrCxCQkJk\nfIpCNDU1sWzZMpYvX05AQICruyPO+ec//8mGDRtYt24d8+bN49FHH5UiRSHGjRvH/v37sdlsGAwG\njEajjIVQiJiYGI4fPw5AWVkZWq1WipTL1O+uqIwcOZK0tDQWLFiASqXiueeec3WXxDnbt2/HYDDw\nu9/9rvNnS5cuJSIiwoW9EkK5QkNDmTJlCnfccQcAf/7zn1Gr+92/PxVp/vz5PPvss9x1111YLBae\nf/55V3epz1LZZZCGEEIIIRRKSm8hhBBCKJYUKkIIIYRQLClUhBBCCKFYUqgIIYQQQrGkUBFCCCGE\nYkmhIoRwmNLSUtLT01m8eHHnrrFPPfUUjY2NPX6PxYsXY7Vae/z8hQsXcuDAgcvprhCiD5BCRQjh\nUIGBgaxatYpVq1axZs0aQkJCeOONN3r8+lWrVsnCWEKITv1uwTchRO8aM2YMa9euJScnh6VLl2Kx\nWDCbzfz1r38lNTWVxYsXk5KSQnZ2NitXriQ1NZWsrCxMJhN/+ctfqKysxGKxMHPmTBYtWkRrayu/\n//3vMRgMxMTE0N7eDkBVVRV/+MMfAGhra2P+/PncfvvtrvzVhRAOIIWKEMJprFYru3btYtSoUfzx\nj3/ktddeIzo6+mebtPn4+PDBBx9c8NpVq1bh5+fHSy+9RFtbG1OnTuWGG27gu+++w8vLi7Vr11Jd\nXc3EiRMB2LFjB3FxcfzXf/0X7e3tfPTRR73++wohHE8KFSGEQ9XV1bF48WIAbDYbo0ePZu7cufz7\n3//mT3/6U+fzmpubsdlsQMfWFj91/Phx5syZA4CXlxfp6elkZWWRl5fHqFGjgI5NRuPi4gC44YYb\nWL16Nc888ww33XQT8+fPd+rvKYToHVKoCCEc6vwYlR9ramrC3d39Zz8/z93d/Wc/U6lUF/zZbrej\nUqmw2+0X7GdzvtiJj49n27ZtHDp0iJ07d7Jy5UrWrFlzpb+OEMLFZDCtEMLpfH19iYyMZO/evQAU\nFxfz6quvXvQ1w4YN4+uvvwbAaDSSlZVFWloa8fHxHD16FICKigqKi4sB2Lp1KxkZGVx33XU899xz\nVFRUYLFYnPhbCSF6g1xREUL0iqVLl/Lf//3frFixAovFwjPPPHPR5y9evJi//OUv3HnnnZhMJh59\n9FEiIyOZOXMmX3zxBYsWLSIyMpIhQ4YAkJCQwHPPPYeHhwd2u50HHngAjUY+4oTo62T3ZCGEEEIo\nltz6EUIIIYRiSaEihBBCCMWSQkUIIYQQiiWFihBCCCEUSwoVIYQQQiiWFCpCCCGEUCwpVIQQQgih\nWFKoCCGEEEKx/j/x2yYNFlW9FAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "Pc28G5w2hTY2", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "fe8a84ea-8b7b-4252-b721-da42326ad79d" + }, + "cell_type": "code", + "source": [ + "_, adam_training_losses, adam_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdamOptimizer(learning_rate=0.009),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 212.55\n", + " period 01 : 125.23\n", + " period 02 : 116.24\n", + " period 03 : 111.36\n", + " period 04 : 101.71\n", + " period 05 : 87.39\n", + " period 06 : 75.03\n", + " period 07 : 72.42\n", + " period 08 : 71.79\n", + " period 09 : 70.61\n", + "Model training finished.\n", + "Final RMSE (on training data): 70.61\n", + "Final RMSE (on validation data): 69.77\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VPX5/vH3TCaTfd/DkgSQPYQt\nyL7vYBVFqgi11lqrUK3airboT4uKuPXrhlVbN6gtSlFBURABZd8CCMgOSSBk38lCtvP7IzKyxgQy\nmUlyv67L62K2M8/kmcjNOec5H5NhGAYiIiIijYjZ0QWIiIiI1JUCjIiIiDQ6CjAiIiLS6CjAiIiI\nSKOjACMiIiKNjgKMiIiINDoWRxcg4sw6dOhA69atcXFxAaCyspL4+Hhmz56Np6fnFW/3o48+YsqU\nKRfdv2TJEh599FH+8Y9/MGzYMNv9paWl9O/fn9GjR/Pss89e8fvWVnJyMs888wzHjx8HwMPDg5kz\nZzJy5Ei7v3ddzJ8/n+Tk5It+Jlu2bOHOO++kZcuWF73mq6++aqjyrsrJkycZMWIEMTExABiGQXBw\nMH/961/p3Llznbb14osvEhkZya233lrr13z22WcsXryYBQsW1Om9RBqKAozIz1iwYAHh4eEAlJWV\n8cADD/Dmm2/ywAMPXNH2MjMz+ec//3nJAAMQERHB559/fl6AWbNmDb6+vlf0flfiT3/6E9dffz3/\n+Mc/ANi9eze33347X375JREREQ1Wx9WIiIhoNGHlclxcXM77DMuXL2fGjBmsWLECq9Va6+089NBD\n9ihPxKF0CEmkDqxWK4MGDWL//v0AnDlzhscff5wxY8Ywbtw4nn32WSorKwE4cOAAt9xyC2PHjuX6\n669n3bp1ANxyyy2cOnWKsWPHUlZWdtF79OzZky1btlBSUmK7b/ny5QwYMMB2u6ysjKeeeooxY8Yw\nfPhwW9AA2LlzJzfeeCNjx45l/PjxbNy4Eaj+F/3AgQP54IMPuO666xg0aBDLly+/5Oc8dOgQcXFx\ntttxcXGsWLHCFuRee+01hgwZwg033MBbb73F8OHDAXjkkUeYP3++7XXn3v65up555hmmTZsGwI4d\nO7jpppsYNWoUU6ZM4cSJE0D1nqg//vGPDBs2jGnTppGWlvYzHbu0JUuWMHPmTG6//Xaee+45tmzZ\nwi233ML9999v+8v+yy+/ZOLEiYwdO5Zf/epXJCcnA/Dqq68ye/ZsJk+ezHvvvXfedu+//37eeecd\n2+39+/czcOBAqqqq+Pvf/86YMWMYM2YMv/rVr0hPT69z3ePHj6e0tJRjx44BsGjRIsaOHcvw4cN5\n8MEHKS0tBap/7nPnzuW6667jyy+/PK8Pl/teVlVV8be//Y2hQ4cyefJkDhw4YHvfrVu3MmnSJMaP\nH8+4ceP48ssv61y7SL0zROSy2rdvb6Smptpu5+XlGbfddpsxf/58wzAM48033zTuuusuo7y83Cgp\nKTFuuukm49NPPzUqKyuNcePGGcuWLTMMwzC+//57Iz4+3igsLDQ2b95sjBw58pLv97///c+YNWuW\n8ac//cn22sLCQmPEiBHGxx9/bMyaNcswDMN47bXXjNtvv904c+aMUVRUZNxwww3G6tWrDcMwjIkT\nJxqff/65YRiG8cknn9je68SJE0bnzp2NBQsWGIZhGMuXLzdGjRp1yTr+8Ic/GMOGDTPef/9948iR\nI+c9dvDgQaN3795GRkaGUV5ebtxzzz3GsGHDDMMwjFmzZhmvv/667bnn3q6pri5duhhLliyxfd74\n+Hhj/fr1hmEYxrJly4xJkyYZhmEYCxcuNG677TajvLzcyMnJMYYNG2b7mZyrpp/x2Z9z9+7djePH\nj9ueHxsba2zcuNEwDMNISUkxevXqZSQmJhqGYRj/+te/jNtvv90wDMN45ZVXjIEDBxrZ2dkXbfeL\nL74wbrvtNtvtl19+2ZgzZ45x6NAhY/To0UZZWZlhGIbxwQcfGJ988sll6zv7c+nUqdNF98fHxxtH\njx41tm3bZvTr189IS0szDMMwHnvsMePZZ581DKP6537dddcZpaWlttuvv/56jd/LtWvXGqNHjzZO\nnz5tlJSUGJMnTzamTZtmGIZh3HjjjcaWLVsMwzCM48ePGw8++GCNtYs0BO2BEfkZ06dPZ+zYsYwY\nMYIRI0bQt29f7rrrLgDWrl3LlClTsFgsuLu7c91117FhwwZOnjxJVlYWEyZMACA2NpbIyEj27NlT\nq/ecMGECn3/+OQCrVq1i2LBhmM0//bquWbOGqVOnYrVa8fT05Prrr2flypUAfPrpp4wbNw6AXr16\n2fZeAFRUVHDjjTcC0KVLF06dOnXJ93/++ee57bbbWLZsGRMnTmT48OH85z//Aar3jsTHxxMSEoLF\nYmHixIm1+kw11VVeXs6oUaNs2w8LC7PtcZo4cSLJycmcOnWK7du3M2rUKCwWCwEBAecdZrtQamoq\nY8eOPe+/c8+ViY6OJjo62nbb3d2dfv36AbBhwwauvfZaoqKiALj55pvZsmULFRUVQPUeqcDAwIve\nc+jQofzwww/k5eUB8PXXXzN27Fh8fX3Jyclh2bJl5OfnM336dG644YZa/dzOMgyDRYsWERYWRnR0\nNKtXr2b8+PGEhYUBcOutt9q+AwD9+vXDzc3tvG3U9L3ctm0bQ4YMwcvLC3d3d1uvAIKCgvj00085\nevQo0dHRvPjii3WqXcQedA6MyM84ew5MTk6O7fCHxVL9q5OTk4Ofn5/tuX5+fmRnZ5OTk4OPjw8m\nk8n22Nm/xIKDg3/2PQcMGMDs2bPJy8vjiy++4N5777WdUAtQWFjI3Llzeemll4DqQ0rdunUDYNmy\nZXzwwQcUFRVRVVWFcc5yZy4uLraTj81mM1VVVZd8fzc3N+68807uvPNOCgoK+Oqrr3jmmWdo2bIl\n+fn5552PExQU9LOfpzZ1eXt7A1BQUMCJEycYO3as7XGr1UpOTg75+fn4+PjY7vf19aWoqOiS7/dz\n58Cc27cLb+fm5p73GX18fDAMg9zc3Eu+9ixPT0/69+/P2rVr6dWrFwUFBfTq1QuTycSrr77KO++8\nw5w5c4iPj+fJJ5/82fOJKisrbT8HwzBo164d8+fPx2w2U1hYyNdff8369ettj5eXl1/28wE1fi/z\n8/MJDQ097/6znnnmGd544w3uuOMO3N3defDBB8/rj4gjKMCI1FJgYCDTp0/n+eef54033gAgODjY\n9q9tgLy8PIKDgwkKCiI/Px/DMGx/WeTl5dX6L3tXV1eGDRvGp59+SlJSEj169DgvwISGhvKb3/zm\noj0Q6enpzJ49m48//phOnTqRmJjImDFj6vQ5c3Jy2L9/v20PiK+vL1OmTGHdunUcOnQIHx8fCgsL\nz3v+WReGovz8/DrXFRoaSps2bViyZMlFj/n6+l72vetTUFAQO3futN3Oz8/HbDYTEBDws68dM2YM\nX3/9Nbm5uYwZM8bW/759+9K3b1+Ki4uZN28eL7zwws/uybjwJN5zhYaGMmnSJGbNmlWnz3W572VN\nP9vg4GAee+wxHnvsMdavX88f/vAHBg0ahJeXV63fW6S+6RCSSB3ccccd7Ny5k61btwLVhwwWL15M\nZWUlxcXFfPbZZwwZMoSWLVsSHh5uO0k2ISGBrKwsunXrhsViobi42HY44nImTJjA22+/fcnR5REj\nRvDxxx9TWVmJYRjMnz+f7777jpycHDw9PWnTpg0VFRUsWrQI4LJ7KS6ltLSU++67z3ZyJ0BSUhK7\nd++md+/e9OjRg+3bt5OTk0NFRQWffvqp7XkhISG2kz9PnDhBQkICQJ3qiouLIzMzk927d9u28+c/\n/xnDMOjevTurV6+msrKSnJwcvvvuu1p/rroYMGAA27dvtx3m+u9//8uAAQNse95qMmzYMHbu3Mmq\nVatsh2HWr1/Pk08+SVVVFZ6ennTs2PG8vSBXYvjw4axcudIWNFatWsVbb71V42tq+l726NGD9evX\nU1JSQklJiS04lZeXM336dDIyMoDqQ48Wi+W8Q5oijqA9MCJ14O3tze9+9zvmzZvH4sWLmT59OidO\nnGDChAmYTCbGjh3LuHHjMJlMvPTSS/y///f/eO211/Dw8ODll1/G09OTDh064Ofnx4ABA/jkk0+I\njIy85Hv16dMHk8nE+PHjL3ps6tSpnDx5kgkTJmAYBl27duX222/H09OTwYMHM2bMGIKCgnjkkUdI\nSEhg+vTpvPLKK7X6jJGRkbzxxhu88sorPPXUUxiGgbe3N48++qhtMumXv/wlkyZNIiAggNGjR3P4\n8GEApkyZwsyZMxk9ejSdO3e27WXp2LFjretyd3fnlVdeYc6cORQVFeHq6sr999+PyWRiypQpbN++\nnZEjRxIZGcnIkSPP22twrrPnwFzoueee+9mfQXh4OE899RT33nsv5eXltGzZkjlz5tTq5+ft7U2X\nLl04ePAg3bt3ByA+Pp4vvviCMWPGYLVaCQwM5JlnngHg4Ycftk0S1UWXLl34/e9/z/Tp06mqqiIo\nKIgnn3yyxtfU9L0cNmwYa9euZezYsQQHBzNkyBC2b9+Oq6srkydP5te//jVQvZdt9uzZeHh41Kle\nkfpmMs49EC0iUkfbt2/n4YcfZvXq1Y4uRUSaEe0DFBERkUZHAUZEREQaHR1CEhERkUZHe2BERESk\n0VGAERERkUanUY5RZ2ZeemyyPgQEeJKbW2y37cuVU2+ck/rivNQb56Xe1E5IiM9lH9MemAtYLC6O\nLkEuQ71xTuqL81JvnJd6c/UUYERERKTRUYARERGRRkcBRkRERBodBRgRERFpdBRgREREpNFRgBER\nEZFGRwFGREREGh0FGBERkSZm7dpvavW8l19+kVOnUi77+COPPFhfJdU7BRgREZEmJDX1FKtWrajV\nc++//yEiI1tc9vFnn32pvsqqd41yKQERERG5tJdemsf+/fsYNCie0aPHkZp6iv/7v/nMnfs3MjMz\nKCkp4Te/+R0DBgxi5szf8eCDD7NmzTcUFZ0mOTmJlJST3HffQ/TrN4AJE0bwxRffMHPm74iPv5aE\nhO3k5eUxb97fCQ4O5m9/e4y0tFRiY7uxevUqPvlkeYN9TgUYERERO/lo9RG2Hci46H4XFxOVlcYV\nbTO+YyhThre77OO33jqdJUs+IiamLcnJicyf/09yc3Po06cv48ZNJCXlJI899ggDBgw673UZGem8\n8MIrbN68kc8++x/9+g0473EvLy9efvkN3njjVb77bjWRkS0pKzvDW2+9x4YN6/joo/9c0ee5Ugow\n58jKKyGt4Azhvm6OLkVEROSqderUBQAfH1/279/H0qVLMJnMFBTkX/Tcbt26AxAaGsrp06cvejwu\nroft8fz8fJKSjhMbGwdAv34DcHFp2PWdFGDO8cm642zZn84L9/bH31shRkRErs6U4e0uubckJMSH\nzMxCu7+/q6srAF9//RUFBQW8/vo/KSgo4Le/nX7Rc88NIIZx8d6hCx83DAOzufo+k8mEyWSq7/Jr\npJN4z+EelIM57AjfH81ydCkiIiJXxGw2U1lZed59eXl5REREYjab+fbb1ZSXl1/1+7Ro0ZKDB38A\nYOvWzRe9p70pwJyj2CMZ11aH2Z503NGliIiIXJGoqBgOHjxAUdFPh4GGDh3Oxo3ruP/+e/Dw8CA0\nNJR33337qt6nf/9BFBUVcc89d7J79058ff2utvQ6MRmX2k/k5Oy1223TqW0sPPAxnOrEK1Nvx8Ws\nfOdMGmqXq9SN+uK81Bvn1RR6U1CQT0LCdoYOHUFmZgb3338PH374v3p9j5AQn8s+pnNgztE5qCMA\nlV7pHE0poH0rfwdXJCIi4pw8Pb1YvXoVH364AMOo4g9/aNiL3inAnMPPzYdQ9wjSq9LYeTRVAUZE\nROQyLBYLf/vbXIe9v46RXODa1t0wmQ12pR10dCkiIiJyGQowF+jTKhaAHJLJP33GwdWIiIjIpSjA\nXOCawBhcccPsl8WeY9mOLkdEREQuQQHmAmazmWv82mF2K2V70lFHlyMiIiKXoABzCb0iqy+9fKTg\nCJVVVQ6uRkREpP5NnnwdxcXFLFjwHnv3fn/eY8XFxUyefF2Nr1+79hsAli9fxrffrrFbnZejKaRL\n6BzUAYAKr3SOnyqkXcuGvTiPiIhIQ5k+/dd1fk1q6ilWrVrB0KEjGD++5qBjLwowl+Br9SHYNZxM\n73QSjqYqwIiISKPxm9/cxjPPvEh4eDhpaak8+uhDhISEUlJSQmlpKQ888Gc6d+5qe/7TTz/B0KEj\n6N69B3/968OUlZXZFnYEWLnySxYvXoSLi5no6LbMmvVXXnppHvv37+Pdd9+mqqoKf39/brrpl8yf\n/zJ79uymoqKSm26awtixE5g583fEx19LQsJ28vLymDfv74SHh1/151SAuYzuYZ1YdTKNXWkHmEJH\nR5cjIiKN0JIjn7MzY89F97uYTVRWXdmF8HuExnJju4mXfXzw4GFs2PAdN900hXXrvmXw4GG0bXsN\ngwcPZceObfz73+/z9NPPX/S6FSu+pE2bttx330N8881KVq1aAUBJSQkvvvgqPj4+zJhxF0ePHuHW\nW6ezZMlH3HHHXfzrX28CsGtXAseOHeWNN96hpKSE22+/hcGDhwLg5eXFyy+/wRtvvMp3361mypSp\nV/TZz6VzYC6je1hnALKNZPKLyhxcjYiISO1UB5h1AKxf/y0DBw7h22+/4Z577uSNN14lPz//kq9L\nTDxG165xAPTo0ct2v6+vL48++hAzZ/6OpKTj5OfnXfL1Bw78QPfuPQHw8PAgOroNJ06cACAurgcA\noaGhnD59+pKvryvtgbmMKN9WuOKO4Z/JnqNZDOwW6eiSRESkkbmx3cRL7i2x51pIbdq0JTs7k/T0\nNAoLC1m3bi3BwaE89tgcDhz4gdde+79Lvs4wwGw2AVD1496h8vJyXnrpOd5770OCgoJ5+OE/XvZ9\nTSYT566uWFFRbtuei4vLOe9TP0swag/MZZhN1ePUJusZtmmcWkREGpF+/Qby1lvzGTRoCPn5ebRo\n0RKAb79dQ0VFxSVf07p1FAcO7AcgIWE7AMXFRbi4uBAUFEx6ehoHDuynoqICs9lMZWXlea/v2LEL\nO3fu+PF1xaSknKRly9b2+ogKMDXp/eM49dGCw7Y0KiIi4uyGDBlmmxIaO3YCixb9mwcemEGXLl3J\nzs7miy+WXvSasWMnsG/fHu6//x5OnEjCZDLh5+dPfPy1/Pa3v+Ldd99m6tTpvPLKS0RFxXDw4AFe\neeVF2+vj4rrToUNHZsy4iwcemMHvfz8TDw8Pu31Gk1Ff+3IakD2XID93t15h2WkeWfc3KgsD+FP8\nvbRroWkkR2oKy883ReqL81JvnJd6UzshIT6XfUx7YGrgY/Um2BqB2SePnUdOObocERER+ZECzM/o\nEd4Jk8lgV/oBR5ciIiIiP1KA+Rlnx6mzjGQKijVOLSIi4gwUYH5Ga5+WWHHHxS+LvUe1OrWIiIgz\nsOt1YJ577jl27NhBRUUFd999N7GxsTz88MNUVlYSEhLC888/j9VqZenSpbz//vuYzWamTJnCzTff\nbM+y6qR6nPoa9uXvYVvSEfrHRji6JBERkWbPbgFm8+bNHD58mEWLFpGbm8ukSZPo168fU6dOZdy4\ncbz00kssXryYG264gddff53Fixfj6urK5MmTGTVqFP7+/vYqrc56t+jCvvw9HC44TFXVQNuFeURE\nRMQx7HYIKT4+npdffhmovgxxSUkJW7ZsYcSIEQAMGzaMTZs2sXv3bmJjY/Hx8cHd3Z2ePXuSkJBg\nr7KuSOfADmD8uDp1WoGjyxEREWn27LYHxsXFBU9PTwAWL17M4MGDWb9+PVarFYCgoCAyMzPJysoi\nMDDQ9rrAwEAyMzNr3HZAgCcWi0uNz7kaF86dh+BDuGcLUjnFgVPZ9I1rabf3lprVdE0AcRz1xXmp\nN85Lvbk6dl8LadWqVSxevJh33nmH0aNH2+6/3PXzanNdvdzc4nqr70KXu7hQt+COpJ1IYeOx3UzI\nbGO395fL04WfnJP64rzUG+el3tSOwy5kt27dOv7xj3/w9ttv4+Pjg6enJ6WlpQCkp6cTGhpKaGgo\nWVlZttdkZGQQGhpqz7KuiMapRUREnIfdAkxhYSHPPfccb775pu2E3P79+7NixQoAVq5cyaBBg4iL\ni2PPnj0UFBRQVFREQkICvXv3tldZV6yVTwuseFSPUx/TOLWIiIgj2e0Q0vLly8nNzeWPf/xp6e1n\nn32W2bNns2jRIiIjI7nhhhtwdXXloYce4s4778RkMjFjxgx8fJzvuKDZZKa93zXszf+erUmH6d9V\n49QiIiKOosUcL1DTccltaTt574f/YErrwCu3/gazSePUDUnHjJ2T+uK81Bvnpd7UjhZzrCedgzqA\nYaLCK53EVH3xREREHEUBpg68XD0JtUZg9s4j4WiKo8sRERFpthRg6qhHeGdMJtiVtt/RpYiIiDRb\nCjB11D38p3Hq0yXlDq5GRESkeVKAqaOW3pFY8cDsl8WeY1k//wIRERGpdwowdVQ9Tt0ek2sZWxMP\nO7ocERGRZkkB5gr0adkFgCMFh6lqfFPoIiIijZ4CzBXoFNj+x3HqNJLSNE4tIiLS0BRgroCnqyeh\n1khMXvns0Di1iIhIg1OAuUI9I6rHqXdqnFpERKTBKcBcoe5h1efBZFdpnFpERKShKcBcoZbeEbjh\nidkvU6tTi4iINDAFmCtkMplo798ek2s5W5IOOrocERGRZkUB5irEtzg7Tn1E49QiIiINSAHmKtjG\nqT3TOJF+2tHliIiINBsKMFfB09WDMGsLTF75bD960tHliIiINBsKMFeph22c+gdHlyIiItJsKMBc\npZ7h1efBZFUlU1SqcWoREZGGoABzlSK9wnHDC7OvVqcWERFpKAowV6l6nPoaTK7lbE3UOLWIiEhD\nUICpB31axgJwWOPUIiIiDUIBph50Crzmx3HqdI1Ti4iINAAFmHrgYXEnzK0FZu98th894ehyRERE\nmjwFmHpydhpJq1OLiIjYnwJMPTl3nLpY49QiIiJ2pQBTTyK8wqrHqf2y2HNcq1OLiIjYkwJMPTGZ\nTHTwb4/JUs6WxAOOLkdERKRJU4CpR2fHqY8UHMHQOLWIiIjdKMDUo06B7TAZZso90ziRoXFqERER\ne1GAqUfuZ8epvQo0Ti0iImJHCjD1TOPUIiIi9qcAU896RlQHmMyqJIpLKxxcjYiISNNk1wBz6NAh\nRo4cycKFCwHYtm0bt956K9OnT+fuu+8mPz8fgH/+859MnjyZm2++mW+//daeJdlduGco7nhj9s1i\n73GtTi0iImIPdgswxcXFzJkzh379+tnumzt3Lk8//TQLFiygR48eLFq0iBMnTrB8+XI+/PBD3nzz\nTebOnUtlZaW9yrK76tWp22OyVLBZ49QiIiJ2YbcAY7VaefvttwkNDbXdFxAQQF5eHgD5+fkEBASw\nZcsWBg0ahNVqJTAwkBYtWnDkyBF7ldUg+p4dpy48rHFqERERO7BbgLFYLLi7u59331/+8hdmzJjB\nmDFj2LFjB5MmTSIrK4vAwEDbcwIDA8nMzLRXWQ2iw9lxao90TmYWObocERGRJsfSkG82Z84cXnvt\nNXr16sW8efP48MMPL3pObfZYBAR4YrG42KNEAEJCfK5yCz608GzNSVMi+06l0bNLj3qpS+qjN2IP\n6ovzUm+cl3pzdRo0wBw8eJBevXoB0L9/f5YtW0bfvn05fvy47Tnp6ennHXa6lNzcYrvVGBLiQ2Zm\n4VVvp1toJ04mJbLh2C7GZrarh8qkvnoj9Ut9cV7qjfNSb2qnppDXoGPUwcHBtvNb9uzZQ1RUFH37\n9mXt2rWUlZWRnp5ORkYG7do1/r/we52zOnXJGY1Ti4iI1Ce77YHZu3cv8+bNIyUlBYvFwooVK3jy\nySeZPXs2rq6u+Pn58cwzz+Dr68uUKVOYNm0aJpOJJ554ArO58V+eJswzBHd8KPlxnDq+Y7ijSxIR\nEWkyTEYjHJOx5263+tyt91bCInbn7aBj2Xj+MHZovWyzOdMuV+ekvjgv9cZ5qTe14zSHkJqbs+PU\nhws0Ti0iIlKfFGDsqEPQ2XHqNFKyNE4tIiJSXxRg7MjNxUqYtRVmr0K2HklydDkiIiJNhgKMnfWK\nOLs69Q8OrkRERKTpUICxs16RGqcWERGpbwowdhbqEYwHvph8stmXqNWpRURE6oMCjJ2ZTCY6/Lg6\n9abE/Y4uR0REpElQgGkAfVv9uDq1xqlFRETqhQJMA+gQ2BaTYabMI41TGqcWERG5agowDcDqYiXc\n2hqz52mNU4uIiNQDBZgG0iuiMwA70zVOLSIicrUUYBpIr8iuAGRWJlNapnFqERGRq6EA00BCPX8c\np/bNYq/GqUVERK6KAkwD6uDfHpNLpcapRURErpICTAOyjVPna5xaRETkaijANKAOge0wGS6UeaSR\nml3s6HJEREQaLQWYBmR1cSXc2gqz52m2HEl0dDkiIiKNlgJMAzu7uKNWpxYREblyCjANLP7sOHVV\nksapRURErpACTAML9gjCEz+tTi0iInIVFGAcoL3GqUVERK6KAowD9PtxnPpwwSGNU4uIiFwBBRgH\nqF6dunqcOi1H49QiIiJ1pQDjAK4urkRYW2P2KNI4tYiIyBVQgHEQjVOLiIhcOQUYB+n94zh1RmUS\nZ8orHVyNiIhI46IA4yDBHoF44o/JJ5u9iZmOLkdERKRRUYBxoJ9Wp9ZhJBERkbpQgHGgfq1/XJ26\nQKtTi4iI1IUCjAO1D2yLybBwxj2N9NwSR5cjIiLSaCjAOJCr2WIbp958+JijyxEREWk0FGAcrFeE\nxqlFRETqyq4B5tChQ4wcOZKFCxcCUF5ezkMPPcTkyZO5/fbbyc/PB2Dp0qXcdNNN3HzzzXz88cf2\nLMnpxLf4cZy6SuPUIiIitWW3AFNcXMycOXPo16+f7b6PPvqIgIAAFi9ezPjx49m+fTvFxcW8/vrr\nvPfeeyxYsID333+fvLw8e5XldII8AvAkAJN3NvuSNE4tIiJSG3YLMFarlbfffpvQ0FDbfWvWrOEX\nv/gFAL/85S8ZMWIEu3fvJjZi0gc+AAAgAElEQVQ2Fh8fH9zd3enZsycJCQn2KsspdfBrj8mlio3H\ndRhJRESkNuwWYCwWC+7u7ufdl5KSwnfffcf06dN54IEHyMvLIysri8DAQNtzAgMDycxsXnsi+kf9\nNE4tIiIiP8/SkG9mGAYxMTHMnDmT+fPn8+abb9K5c+eLnvNzAgI8sVhc7FUmISE+dtv2pQwIjOON\n3RbOeKRSbjIRGezdoO/fmDR0b6R21Bfnpd44L/Xm6jRogAkODiY+Ph6AgQMH8uqrrzJ06FCysrJs\nz8nIyKB79+41bic3t9huNYaE+JCZWWi37V9OuDWKU6ajfLHle27oE9vg798YOKo3UjP1xXmpN85L\nvamdmkJeg45RDx48mHXr1gGwb98+YmJiiIuLY8+ePRQUFFBUVERCQgK9e/duyLKcQm/b6tT7HVyJ\niIiI87PbHpi9e/cyb948UlJSsFgsrFixghdeeIGnn36axYsX4+npybx583B3d+ehhx7izjvvxGQy\nMWPGDHx8mt9utT4turI0aSkZlUmUlVdidbXfITIREZHGzmQ0wkV47LnbzZG79R5ePZfTVfncFf1H\nerQLd0gNzky7XJ2T+uK81Bvnpd7UjtMcQpKatfdrj8lcxcbj+xxdioiIiFNTgHEiA6K7AXC4UOPU\nIiIiNVGAcSLtA9pgNlw5455Kek6Ro8sRERFxWgowTsTF7FK9OrV7CZuOaHVqERGRy1GAcTK9zo5T\np2tZARERkctRgHEy17asvohdZkUS5RVanVpERORSFGCcjL+bH15GIPjksDexea0JJSIiUlsKME6o\nvf+P49SJGqcWERG5FAUYJzQwqnqcWqtTi4iIXJoCjBO6JjAGc5UrpR6pZNhx4UoREZHGSgHGCbmY\nXYhwi8LsVsLGI0ccXY6IiIjTUYBxUr0jqsepd6VpnFpERORCCjBOqk+rrgBkVCZrnFpEROQCCjBO\nqnqcOgi8s9mXpHFqERGRcynAOLEO/u0xmQ02JO51dCkiIiJORQHGiQ2MjgM0Ti0iInIhBRgn1i4g\nCnOVlVL3VDI1Ti0iImKjAOPEXMwuRLpFYXYrZeMR7YURERE5SwHGyf20OvV+B1ciIiLiPBRgnNzZ\n1akzKpMor6hycDUiIiLO4YoDTGJiYj2WIZfj5+ZTPU7tlcO+5HRHlyMiIuIUagwwd9xxx3m358+f\nb/vz448/bp+K5CIapxYRETlfjQGmoqLivNubN2+2/dkwDPtUJBcZZBun1rpIIiIi8DMBxmQynXf7\n3NBy4WNiP+0Co6vHqd1SycorcXQ5IiIiDlenc2AUWhzDbDIT6RaN2a2UDUcOObocERERh7PU9GB+\nfj6bNm2y3S4oKGDz5s0YhkFBQYHdi5Of9I7ozMnkQ+xM+4HriXN0OSIiIg5VY4Dx9fU978RdHx8f\nXn/9ddufpeH0bd2NT5M/JaMymYrKKiwumoAXEZHmq8YAs2DBgoaqQ36Gj9UbbyOYQq9s9iWlE9cm\nwtEliYiIOEyN/4w/ffo07733nu32f//7X66//nruu+8+srKy7F2bXEDj1CIiItVqDDCPP/442dnZ\nABw/fpyXXnqJWbNm0b9/f55++ukGKVB+otWpRUREqtUYYE6cOMFDDz0EwIoVKxg7diz9+/fnlltu\n0R4YB2gXGIW5yo1S91Sy8zVOLSIizVeNAcbT09P2561bt9K3b1/bbY1UNzyzyUykNQqT9QzrDh90\ndDkiIiIOU2OAqaysJDs7m+TkZHbu3MmAAQMAKCoqoqREewAcofePq1PvStPq1CIi0nzVGGDuuusu\nxo8fz3XXXce9996Ln58fpaWlTJ06lRtuuOFnN37o0CFGjhzJwoULz7t/3bp1dOjQwXZ76dKl3HTT\nTdx88818/PHHV/hRmoe+rWPBgIyqJCoqtTq1iIg0TzWOUQ8ZMoT169dz5swZvL29AXB3d+fPf/4z\nAwcOrHHDxcXFzJkzh379+p13/5kzZ3jrrbcICQmxPe/1119n8eLFuLq6MnnyZEaNGoW/v//VfK4m\ny8fqjTchFHplaZxaRESarRr3wJw6dYrMzEwKCgo4deqU7b82bdpw6tSpGjdstVp5++23CQ0NPe/+\nf/zjH0ydOhWr1QrA7t27iY2NxcfHB3d3d3r27ElCQsJVfqymrYP/NZhMBhsS9zi6FBEREYeocQ/M\n8OHDiYmJse0tuXAxxw8++ODyG7ZYsFjO3/zx48c5cOAA999/P88//zwAWVlZBAYG2p4TGBhIZmZm\njUUHBHhisbjU+JyrERLi3FcZnti9Hzu+3cjR00edvtb61tw+b2Ohvjgv9cZ5qTdXp8YAM2/ePD77\n7DOKioqYMGECEydOPC9s1NXcuXOZPXt2jc85NyRdTm5u8RXX8HNCQnzIzCy02/brQ7A5BHOVGyXW\nUxw4kkGQn4ejS2oQjaE3zZH64rzUG+el3tROTSGvxkNI119/Pe+88w7/93//x+nTp7ntttv47W9/\ny7JlyygtLa1TEenp6Rw7dow//elPTJkyhYyMDKZNm0ZoaOh515TJyMi46LCTnK96nDoak/UM67U6\ntYiINEO1WhEwIiKCe++9ly+//JIxY8bw1FNP/exJvBcKCwtj1apVfPTRR3z00UeEhoaycOFC4uLi\n2LNnDwUFBRQVFZGQkEDv3r2v6MM0J71bnB2n3ufgSkRERBpejYeQziooKGDp0qUsWbKEyspK7r77\nbiZOnFjja/bu3cu8efNISUnBYrGwYsUKXn311Yumi9zd3XnooYe48847MZlMzJgxQytd10LfVl35\nNHGJVqcWEZFmyWTUcNLJ+vXr+d///sfevXsZPXo0119/Pe3bt2/I+i7JnscNG9NxyVnfPE8hWfy+\nzR/pFtP0x6kbU2+aE/XFeak3zku9qZ2azoGpcQ/Mb3/7W6Kjo+nZsyc5OTm8++675z0+d+7c+qlQ\nrkgH//bsyM9kXeKeZhFgREREzqoxwJwdk87NzSUgIOC8x06ePGm/qqRWBkd3Z8fuDRwtOAyMdnQ5\nIiIiDabGAGM2m3nggQc4c+YMgYGBvPnmm0RFRbFw4ULeeustbrzxxoaqUy6hTWArXKrcKHVLI7ug\nhCDf5jFOLSIiUmOA+fvf/857771H27Zt+eabb3j88cepqqrCz89PaxY5gbPj1CfMB9lw+CC/6NXd\n0SWJiIg0iBpHV8xmM23btgVgxIgRpKSk8Ktf/YrXXnuNsLCwBilQatY7sisAO9N/cHAlIiIiDafG\nAGMymc67HRERwahRo+xakNRN39Zdq1enrkyiskqrU4uISPNQp4uHXBhoxPG8rV54G6EYnrnsS053\ndDkiIiINosZzYHbu3MnQoUNtt7Ozsxk6dCiGYWAymVi7dq2dy5Pa6ODfnh0FGaw//j3dojVOLSIi\nTV+NAearr75qqDrkKgxp050du9ZzpPAIMMbR5YiIiNhdjQGmRYsWDVWHXIWYgJa4VLpT6pZKTmEJ\ngT4apxYRkaZNC+g0AWaTmUi3aEyuZaw7fMDR5YiIiNidAkwTYRunTtvv4EpERETsTwGmiejXugsY\nJjI1Ti0iIs2AAkwT4WX1wufHceq9yWmOLkdERMSuFGCakA7+7TGZYP3xPY4uRURExK4UYJqQQTFx\nABwtPOzgSkREROxLAaYJaRvYCpdKD0rd0sgtLHF0OSIiInajANOEmEwmjVOLiEizoADTxPSO7AJo\ndWoREWnaFGCamP5RXcEwkVGhcWoREWm6FGCaGE9XT3yMMAzPPPZpnFpERJooBZgmyDZOnfi9o0sR\nERGxCwWYJmhwm+px6urVqUVERJoeBZgmqE1Ay+pxamuqxqlFRKRJUoBpgkwmEy3cYjC5lvPY5x/y\nr5U7OZKSj2EYji5NRESkXlgcXYDYx6Sug3ll5wGMsIPsMA6ybWsQXiVR9G/Vg4FdWxEW4OnoEkVE\nRK6YAkwT1T6wDc8M+ivb03axLnk7GX6plPpl882ZXaxcFUoIbRnapjt9O0fi7eHq6HJFRETqxGQ0\nwuMKmZmFdtt2SIiPXbfvKBnFWWw+lcCmlB0UVOYCYFS4UpUbTrRbR0Z06Eb3a4Jxtbg4uNLLa6q9\naezUF+el3jgv9aZ2QkJ8LvuYAswFmvqXyjAMThSmsP7EdrZn7OKMUQxA1Rl3zPkt6OLflRGdO3NN\nK3/MJpODqz1fU+9NY6W+OC/1xnmpN7WjAFMHzelLVWVUcSj3KGsTt/FD3j4qKa++v9gbt9Ot6R3e\nnRGx1xAR5OXgSqs1p940JuqL81JvnJd6Uzs1BRidA9OMmU1mOgZeQ8fAayivLGdP1n7WHN/KceMI\n5Z4/sKnqB9avD8C/PIZBrXsysEs0fl5WR5ctIiKiACPVXF1c6RnWjZ5h3SguL2Zb2vd8m7SNdO8T\nFJpy+aJgJ8tWBBNpbs/wa3oS3z4SN1fnPV9GRESaNrsGmEOHDnHvvffy61//mmnTppGamsqjjz5K\nRUUFFouF559/npCQEJYuXcr777+P2WxmypQp3HzzzfYsS36Gp6snQ1r1ZUirvuSW5rHhZAIbT24n\n3z+TdDL58NRmPtwfTjvPTozq1JMuUUGYzc51voyIiDRtdjsHpri4mLvvvpvo6Gg6dOjAtGnTmDVr\nFkOGDGH8+PH8+9//JiUlhZkzZzJp0iQWL16Mq6srkydPZuHChfj7+1922zoHxjFSi9JZc3wrOzJ2\nUUr1z8got2IpaEG3oDhGd4mlddjlj1deLfXGOakvzku9cV7qTe3UdA6MyxNPPPGEPd7UZDIxceJE\nDh48iIeHB926dWPAgAF06NABs9nMyZMnOXToEH5+fmRnZ3PddddhsVg4cOAAbm5uxMTEXHbbxcVl\n9igZAC8vN7tuvzHzsXoTG9qB0dGD6RjYnqLiKnLKsqj0zCKNA6w7sZ213x8nP99EpH8AHm71u4NP\nvXFO6ovzUm+cl3pTO15ebpd9zG6HkCwWCxbL+Zv39Ky++mtlZSUffvghM2bMICsri8DAQNtzAgMD\nyczMrHHbAQGeWOx4vZKaEp9UCw2Npe81sVRUVZKQso9le9dxyDhAift+1pbsZ/VaX8JM1zCmYz9G\n9miPp3v9XCxPvXFO6ovzUm+cl3pzdRr8JN7Kykoefvhh+vbtS79+/Vi2bNl5j9fmiFZubrG9ytNu\nvSsQ4x7Dfb1jOFNZxtaU71mbuJU0zyQyTTtYkLSDBXuDaGXtwMhr+tCzbTgu5itbgku9cU7qi/NS\nb5yXelM7TjVG/eijjxIVFcXMmTMBCA0NJSsry/Z4RkYG3bt3b+iypB64uVgZ1Lo3g1r3prDsNN8l\nbmdjSgJ5vmmcZCPvJm3m/b1hdPDpwrjOvWkbEYDJyS6WJyIijUODBpilS5fi6urKfffdZ7svLi6O\n2bNnU1BQgIuLCwkJCfzlL39pyLLEDnys3kxoP5QJ7YeSWZzN10e2kJC5ixK/VA6Qyv69a3Hb2oLu\nQd0ZF9udUH/nuFieiIg0DnabQtq7dy/z5s0jJSUFi8VCWFgY2dnZuLm54e3tDUDbtm154okn+Oqr\nr/jXv/6FyWRi2rRp/OIXv6hx25pCapwMwyCpIIUVhzbxQ/4+KszVhwKNMjd8y6Lp16IXIzt3xsvj\n0hfLU2+ck/rivNQb56Xe1I6WEqgDfakaRpVRxb6MI6w8spnEkoNUmauXMTBKvAkztWNYdDz9O7TF\n4vLT+TLqjXNSX5yXeuO81JvacapzYESgehmD2LD2xIa1p7yqgi0n9rDm+FbS3I6TYd7ForRdLDoa\nQLR7R8a0v5bY1hGOLllERJyI9sBcQKnYsYrLi1l9dAebUhLIIwVMYBgmLEWhtPW9htY+kcS1aEvr\nEL/z9s6I4+h3xnmpN85LvakdHUKqA32pnEdOSR5fHtjMzqzdlLhk2+43DBOUeONZFUSoezhtA6Po\nFhlNdGgArhaFmoam3xnnpd44L/WmdhRg6kBfKueUUpDOwdwkdp84TFppKqfJBnOl7XHDMGGUeONZ\nGUSoewRt/FtXh5pwfy06aWf6nXFe6o3zUm9qR+fASKPXwjeM7m3bMTyqD1B9EnBKYTrfnzrK4Zxk\nUotPcdo9m1JzIckkkly0iTUHTRi7fPCoDCTELYI2Aa2IjYgmJty/3pc5EBGRhqX/i0ujZDaZaeUb\nQSvfn07urayq5NTpdPakHeNQVhJpJakUemZzxlTASRI5WbyJbw+bML73wa0ikFC3cNr4t6ZrRBQx\nEf541dNyByIiYn8KMNJkuJhdaOUbSSvfSMa3Hwj8FGr2ph3jUHYSqSWnKPTMptxUQAqJpJRu5ruj\nJow9PlgrAgmxhhPj38oWanw9L31NGhERcSwFGGnSzg014zg31KSxL+M4h7KSOFV8ikKvbCpMBaSS\nSGrZZjYcN2Ps88G1PIBg13Da+Leic0RrYsL98fe2agkEEREHU4CRZqc61LSglW8LxrarDjUVVRWc\nOp3GgcxEDmYlkVJUHWoqTfmkk0h6xWY2Jpkx9vtgORNAsDWcGP+WdAqLIibClyBfd4UaEZEGpAAj\nAljMFlr7tqS1b0tGt60ONeVVFaSeTuNAViIHsxJtoabKO58MEsmohM0nzFQd9MXljD/B1jCifVvR\nKbwVMRF+hPh7YFaoERGxCwUYkctwPTfUtPkx1FSWc6oojUPZSRzMrA41Bd7Z4JNHFolksYVtKS5U\nHfbBpdSfQNcwov1a0TGsJTHhfoQHemI2K9SIiFwtBRiROnB1cSXKtxVRvq0YFfNTqEkpSuVIdhIH\ns5I4WZRCgXcO+OSRQyI5bGFHqgtVR30xlfgRZAmjfWAMI7p1oEWwVuEWEbkSCjAiV8nVxZVo39ZE\n+7ZmZMwgAMoqy0k5fYqjucnVoeb02VCTSy6JbGELG9cHEFRxDSPaxdO/cwvcrfp1FBGpLV2J9wK6\nOqLzauy9Kass4+TpVI7lJrHp5G7Syk4AYFRYIC+Szj5xjImNpV0Lv0Z1QnBj70tTpt44L/WmdnQl\nXhEnYHWx0sYvijZ+UYyMHkxmcTarEzexJW0HZ4KT2U8y+3atxWtjG4ZE9WZIbIyuQyMichnaA3MB\npWLn1VR7U2VUsS/7ICuPbOBY0WEwGRhVJqrywolx68y4zr3oGhPktCf/NtW+NAXqjfNSb2pHe2BE\nnJjZZCY2uBOxwZ0oLDvNuhPb+O7EZgoDU0kmlTcObcC6PYq+4b0ZFdeeYH8PR5csIuJwCjAiTsTH\n6s34tsMY12Yox/KT+ProRvbl7aUi5CDrKg7y7ZogwunI6Pa9ie8QjqtFK22LSPOkACPihEwmE239\no2nbK5rSilK2nNrF6sRNZPmlkskGFp7cyr/3tqR7YA/GxnWlVai3o0sWEWlQCjAiTs7d4s6Q1n0Z\n0rovaUXpfH1sIzsyd1IecpxdHCdh8zf4lbVlRJs+DOjcGk93/VqLSNOnk3gvoBOrnJd685OKqgp2\nZ/zAymMbOVlyvPrE30ozRl4EHbxiGde1B+1b+TfIOLb64rzUG+el3tSOTuIVaWIsZgu9wrvRK7wb\nuaV5rE3awoZT2ygJSuEwKRzc+x0em2MY2CqeEbFt8fN2c3TJIiL1SntgLqBU7LzUm5pVGVUcyj3G\nyiMbOFR4AMNUiWGYqMoLobVrJ8Z2jCeuXTAuZnO9vq/64rzUG+el3tSO9sCINANmk5mOge3o2Kcd\nxeUlbDy5nTXJm8kLyCCFDP55bDMuu1rRJ7QXo+M6ERbg6eiSRUSumAKMSBPk6erByJhBjIwZxInC\nU6w8soHdObupDD7C5qojbPg2gJCq9oy+pg/XdozE6qpxbBFpXHQI6QLaree81JurU15Zzo607/n6\n+CbSypIBMCpdMOW1oKtfd8bFdiM6wrfO21VfnJd647zUm9rRISQRwdXFlb4tetG3RS+ySnL45vjG\n6nWYgpLZSzLf71iNT2lbhkb1YUhsNF7uro4uWUTksrQH5gJKxc5Lval/VUYV+7IOsuLIBo4XHwFT\nFUaVCSMvjLYeXRnXuSedooMw1zCOrb44L/XGeak3taM9MCJySWaTmdiQTsSGVK/D9F1y9TpMpwPT\nOE4arx1Yj9v2KPpFxDM6rgMBPhrHFhHnoAAjIkD1OkwT2g1jfNuhHM9P4qsjG9mfv5fyoIN8e+Yg\na1YF0cLckdEd4ul1TTgWl/odxxYRqQsFGBE5j8lkoo1/NPf2jqa04syP6zBtJMsvlTQ28H7yVhbu\naUmPoJ6Mi+ta4y5eERF70TkwF9BxSeel3jhWWlEGK49uICFzF+WmEgCqinwJruzAL+OG0DUm1MEV\nyoX0O+O81JvaqekfSHbdB3zo0CFGjhzJwoULAUhNTWX69OlMnTqV+++/n7KyMgCWLl3KTTfdxM03\n38zHH39sz5JE5AqFe4Xyq26TeHHY4/ym83RaurXB7FlIju82Xt8/n7lLvyQ9t9jRZYpIM2G3AFNc\nXMycOXPo16+f7b5XXnmFqVOn8uGHHxIVFcXixYspLi7m9ddf57333mPBggW8//775OXl2assEblK\nLmYXeoXH8uiA3/P0wL/QP6I/ZrcSTnqv4Ym1r/PBmh2UnKlwdJki0sTZLcBYrVbefvttQkN/2q28\nZcsWRowYAcCwYcPYtGkTu3fvJjY2Fh8fH9zd3enZsycJCQn2KktE6pG/mx9/HDydv177AOHW1pj9\nMtlc+REPf/YOa3YlUdX4jlCLSCNhtwBjsVhwd3c/776SkhKsVisAQUFBZGZmkpWVRWBgoO05gYGB\nZGZm2qssEbGDSO9wZg+Ywa873YaH2Zuq4CN8nPZP/vrx/zh8QntURaT+OWwK6XLnDtfmnOKAAE8s\nFvut3aKpCuel3jins30ZHzqQEZ378J9dy/nyyCoKgrfyYsIhYn8YwowJQwgJ8HBwpc2Pfmecl3pz\ndRo0wHh6elJaWoq7uzvp6emEhoYSGhpKVlaW7TkZGRl07969xu3k2vFEQZ0Z7rzUG+d0qb5MiBpB\n39CefLDnE45wgH3GZ9zz7wSGR47gF3074KbFIxuEfmecl3pTOw6bQrpQ//79WbFiBQArV65k0KBB\nxMXFsWfPHgoKCigqKiIhIYHevXs3ZFkiYgdBHgE80Oc3zIy7Cz9LIOaQE6wpWcisxR+yaV9qrfa2\niohcjt2uA7N3717mzZtHSkoKFouFsLAwXnjhBR555BHOnDlDZGQkc+fOxdXVla+++op//etfmEwm\npk2bxi9+8Ysat63rwDRP6o1zqk1fKqsq+SZpPV8c/5oKyqgq9ia0OJ47Bg8gOrzuK2BL7eh3xnmp\nN7VT0x4YXcjuAvpSOS/1xjnVpS+FZadZtP9zdmYlgAkqs8Pp7jWIWwd3w89b6yzVN/3OOC/1pnac\n5hCSiDRvPlZvfht3Cw/H/4Ewt0hcgtL43vV/PPLZApZtOkp5RZWjSxSRRkIBRkQaXJRvK2b3v4/b\nOt6Mu8Udc8Qhlud+wCP/WcKOgxk6P0ZEfpYWcxQRhzCbzPSPjKdHaCxLj6xkXcoGSlts5e0fjtJq\nd19uH9qLlqHeji5TRJyU9sCIiEN5WNz5ZcdfMLvvQ7TxbouLXzYpgcuZs+oD3l25h8LiMkeXKCJO\nSAFGRJxCuFcoD8b/jt/F3o6v1RdLeCLbqhbxyEcfs3JrMhWVOj9GRH6iACMiTsNkMhEX0oU5Ax5m\nfPQoLNYqaL2bT9IW8Nd/f8WeY9mOLlFEnIQCjIg4HVcXVya0GcWT/R+mW1AsZu98Trdcy2vbFvLC\n4i2kZhc5ukQRcTAFGBFxWgHu/twdN50/9ribELdQLCEpHPP9jCeWLeLDbw5SXFru6BJFxEEUYETE\n6V0T0JbH+j3Azddcj5urC5bWB1hXsohZC5exdmcKVVUauxZpbhRgRKRRcDG7MLTVAOYMeIT+EX0w\ne56mqs1m/nv0vzy+cC0HknIdXaKINCAFGBFpVLytXtzWaTKz4u+jtXdrXALTyYlcwUvffcSrn+wk\nM6/E0SWKSANQgBGRRqm1T0sejp/B7Z1vwdvqiWuLo/zg/gmzP/6UxWuPUFpW4egSRcSOFGBEpNEy\nmUz0Ce/J3/o/zKjWQ7G4lWFpu5NVuf9j1vsr2bAnlSotSyDSJCnAiEij525x54Z245nd9yE6BrTH\nxS+b8jbf8sGeJcxZsIkjKfmOLlFE6pkCjIg0GWGeIfyhx2+5p9sdBLkHYAlPIj1sOfO+/Iw3l+0l\np6DU0SWKSD3RYo4i0uR0De5Eh8BrWJO8juXHV2Fqs5ddp5PZ+e8ujO/WnbF9WmN1dXF0mSJyFRRg\nRKRJcjVbGB09jD4RPfnkyBdsZxd02MQXJ5P4bm8sUwZ3Jb5jKCaTydGlisgV0CEkEWnS/N38uKPL\nVB7oeQ+RXhFYQk5R3GYV/9zyOc/+extJaYWOLlFEroACjIg0C+38Y3i0z/3c0mESnlYrrq0Pkhzw\nJU8t+ZJ3l+8nv6jM0SWKSB0owIhIs2E2mRnUoh9P9p/F4Bb9cPEoxtpxO1tKvuDRd7/hyy1JlFdU\nObpMEakFnQMjIs2Ol6snv+wwiQGR1/LRoc84ynHwy+KTQ8msSujIxGvbMrBbJK4W/RtPxFkpwIhI\ns9XSJ5IHev6eHRm7WXL4c/JbHKWk/AQf7j7Kss3tmNi3DYMUZESckgKMiDRrJpOJ3mHdiQ3uzNdJ\na1mdvA5T1AFKy47zn91t+HxzWyZc24bBcRG4WjR6LeIsFGBERAA3FysT24xmaKsBfJP8HWtPbMAU\ntZ/SsuP8d3cbPt8cw4Rr2zCke6SCjIgTUIARETmHt6sX17cdx/BWg1iV/C3fntyIKfoHzpQdZ9Hu\nxB+DTAxDukfqYngiDqQAIyJyCT5Wbya1m8CI1oP5Omkt353chClmH2VnjvHR7rZ8sTma8ddGM6RH\nC9wUZEQanMkwGt9SrZmZ9rvwVEiIj123L1dOvXFOzaUv+WcKWJm0hnUpm6k0KjHOeFJ+si2epdGM\nvzaKoU4YZJpLbxoj9fqwn4UAABGKSURBVKZ2QkJ8LvuYAswF9KVyXuqNc2pufcktzWNl0ho2nNpa\nHWRKvX4MMq0Zd200w3q0wM3qHEGmufWmMVFvakcBpg70pXJe6o1zaq59yS7JZUXSajalbqPKqIJS\nb86caIfnmZaMuzaK4T1aOjzINNfeNAbqTe0owNSBvlTOS71xTs29L1klOXyV+A1bUndQRRWU+HDm\nZDs8SltUB5meLXC3OuZ0w+beG2em3tSOAkwd6EvlvNQb56S+VMsozuTLxG/YlrYTAwOKfauDzJlI\nxvZpzfCeLfFwa9ggo944L/WmdhRg6kBfKuel3jgn9eV86UUZLE9cxY703T8GGT/OnGiH+5lwxvaJ\nYkSvhgsy6o3zUm9qx2kCTFFREbNmzSI/P5/y8nJmzJhBSEgITzzxBPD/27v72DjqO4/j75nZp3jX\nTzF2wHlqYlSC80Se6DUkPJQE2qKD8tA6TWO404keopwABWjqFlLUqlKQkKoCCiBAQqkqDAQIEAhO\nDpLmDoenPPVcQkpwQ2wndpysn7273pm5P3btbJ4Nib275POKRjM7OzP+jn6W95Pf/HYGLrroIh5+\n+OHTHkcB5tyktslMapcT29/dzFv169nasjOxorsgEWRio7h2zjgWzB475EFGbZO51DaDc6oAM6z9\nma+++ioTJkxg6dKlNDc3c9ttt1FcXExVVRXTpk1j6dKlbNq0iSuuuGI4yxIROesuCI7iP6Ys4ftd\n+3mrfj3b+T/8kz7G7R7Jmu0t1Hy0j4VzxrJg1lhyAroll8hXNaxPKCssLKStrQ2Ajo4OCgoKaGxs\nZNq0aQBcddVV1NbWDmdJIiJDanToAm6feivL5tzN1PPKIXgY/8Uf4Uys5fXtn/DAyvdZ8z/19ET6\n0l2qSFYZ1gBz3XXX0dTUxMKFC1myZAkPPPAAeXl5A+8XFRVx8ODB4SxJRGRYjM0dzR3T/o0HZv8X\nk4smQegQ/os/xJ24hTe2b+X+lbW8tvkLBRmRQRrWfss1a9ZQWlrKs88+y65du/jFL35Bbu6R61uD\nHY5TWJiDZwgfpnaqa26SXmqbzKR2Gbzi4nJml5Wzu/ULXqp7kx18ir+8FaOzhDe2t7Lhkwb+df5E\nfnR5GaEc31n4eWqbTKW2OTPDGmC2bt3KvHnzAJg0aRLRaJR4PD7wfnNzMyUlJac9TjjcM2Q1amBV\n5lLbZCa1y9dTSDE/L/93Pi+tZ239enbzOYHJLdAxihf/9xCv/3UPV88ayzVzxhIa4f1aP0Ntk7nU\nNoNzqpA3rJeQxo8fz44dOwBobGwkGAxSVlbGxx9/DEBNTQ3z588fzpJERNLqwoIJ3D3j59w94z8p\ny5+Am9dMYEotxoSPWbt9Jw+sfJ/Vm/bQ1atLSyKphv1r1FVVVRw6dIh4PM7dd99NcXExDz30EI7j\nMH36dH71q1+d9jj6GvW5SW2TmdQuZ4/runwW/pw3v6ihvmMvAEb7BfR+ORGfXcCCWWO4Zs5Ycgd5\naUltk7nUNoOTMfeBOVsUYM5NapvMpHY5+1zX5dPDu3mzvoa9HfsAMNtL6dk7EZ+dz/dmjebaS8eR\nd5ogo7bJXGqbwcmY+8CIiMjpGYZBedFFXDzy29Qd2sWb9TXso5HAtCbMttGs297Bu580ctXM0Xz/\n0nHkBc98sK9ItlGAERHJUIZhMOW8i5lcNImdrX9nbX0NjTQSKGjCbBvDO9s7eXdrA9+bMYbvf0dB\nRs4tCjAiIhnOMAymF09m6nkXs+NgHWvra9jPPkYUNGC2jeWd7V28u7WBK2eM5gffGUd+yJ/ukkWG\nnAKMiEiWMA2TGSVTmV48mW0tO1lbv4FmvmTEJQ2Y4XGs39HNxm2NA0FG9xmRbzIFGBGRLGMaJrNG\nXcKMkml83Lydt+s30MI/ySnchxEeR832Ht7b1sjcqaWEAhaFuX4KQ34Kcv0UhPzkB32YppHu0xA5\nIwowIiJZyjRMLj1/JrNKpvNR8zbert9Aa2E9wcIvMQ+P569/78SNjuDYW36ZhkF+yEdByE9hrp+C\nkC85T7zuXx7qp2WLnAn9doqIZDnLtPiXC2YzZ9QMPjjwCW//8785PPILAiO/wMBghBnERxCPnYMb\nC9AX8RPt9tLQYfHPQ37cmJ8T3dfU77MoDPmPCjcDYSfZq5Mf8mGZw3pPVBFAAUZE5BvDMi3mll7K\npefP5IP9n7C3dy8H2ltpi7bTFm3FNmzwk5jywVOa+BAwMMixggQIYTk5GH0jsKN+ot0+OjstDjR5\noc/HiUKOAeQFfQOBJjXcFOT6BtaN8HswDF22krNHAUZE5BvGY3q4bPR3+FHxgoGbpTmuQ2esm7Zo\nG+FoO+FIG22p82g74WgLjuskPhk8QBAogRGAgUnQE2SEEcLrBjHiI3AifmI9Pnq7vDS1W+w94CUR\naY7n85qJUHNMyOnv3SnITVzS8ljqzZHBUYARETkHmIZJvj+XfH8u4xl7wm0SIadrINgkQk0bbZFE\nwGmLtnMo2pwIOQCB5DQy8WHiwyTkDTHCDOFzg5h2Dm40QF+vj94uD13tMZr39XCykAOQl+MdGGyc\nOvg4P+jD5zGxLBOvx8QyjcTcMvFaJpZl4LVMPJaBZZmY6u35xlOAERERoD/k5JHvz2N83qlDTmqw\nOWo50sbB2IEjIccD5CanCyCISa43lxwrF3//uJy+APHkuJyudjhwOM6XzV1ndC6WaeBJBhpPSrBJ\nDTuJ1ydbn3ydGpbMZHiyDDymicfTP08c/7h9T3JMS98AOysUYEREZNBSQw55J97GcR06Yp3Jnpz2\nYy5VtRGOtNMcbToScuBIb04ReA2TIm8eIU8uASOEx8nBiPtxHRPXMXBdsB0D1wHHAdcxsO3EsuOA\nY4PtkFhnQzy5LmZDtw3xqIttJ97HNXBdAzDAPWYiZX4WGSQGSPu8FgGfRcBr4fclpv7lgM9DwGfh\n9558fSC5T/8251qvkwKMiIicVaZhUuDPp8Cfz7dOE3IGAs5AL07bQPBp6m08OuQc9UM40ZjiwdWX\nnLxfaR8TwzAxMDAxIblkJP+BiTEQekyODUSuC7hmcm6A68GOWXTHLTpiFvGYiRvx4NoesI+de8FJ\nHvMUjg07/cuBgWXPCYKSlRKIPAOBqH+fTA5FCjAiIjLsUkPOyaSGnI5YJ7Zr47oOtuvguA6O6+K4\n9lHLtuvgum5yGxsHF8d1kvu6KfsePyX2dY7bxnYdXI5ff+p9U2pL1nCcEYmZwenDlIGB1/Bj4cVy\nvZiuD8PxgONNBJ24B7vPwo5b9MZMOmMmsQ4TJ54IQP2BKBGuBs/nNY8EIq/nSOBJCUHl3xrJzG8X\nf6Xjng0KMCIikpEGE3Kyheu6A2HGdmxyC300NLcSiUfojUeI2NEjy/EovXYvkXhynR0h0r8+HiFi\n99AdD+NaLlicNP2c6NGelmHhNfz4DB+W4cPj+jDxYjjeRCBK9vrYfRZOn4d4X6J3KBYz6eo1iYQN\n3LhFavfX7n3tCjAiIiLfRIZhYBlWIm+YHgoCufTlfP3LM47rELNjROxkqDlhEOoPP0e2Sd2+224j\nZsdSiuTIV+hP8jzQQHLuM334rEQQmnpe+dc+jzOhACMiIpJlTMMk4AkQ8ATOqIfKdmyidpTeeJSI\nfST4JMJPNGX52CB0pLeoI95+Fs9s8BRgREREzlGWaZFj5pDjzUl3KV+ZbnkoIiIiWUcBRkRERLKO\nAoyIiIhkHQUYERERyToKMCIiIpJ1FGBEREQk6yjAiIiISNZRgBEREZGsowAjIiIiWUcBRkRERLKO\nAoyIiIhkHQUYERERyToKMCIiIpJ1DNd13XQXISIiIvJVqAdGREREso4CjIiIiGQdBRgRERHJOgow\nIiIiknUUYERERCTrKMCIiIhI1lGASfGHP/yBiooKFi1axM6dO9NdjqR45JFHqKio4Oabb6ampibd\n5UiKSCTCggULeOWVV9JdiqR4/fXXuf7667npppvYuHFjussRoLu7m7vuuovKykoWLVrE5s2b011S\nVvOku4BM8eGHH7J3716qq6vZs2cPVVVVVFdXp7ssAbZs2cI//vEPqqurCYfD3HjjjVxzzTXpLkuS\nVq5cSX5+frrLkBThcJgnnniC1atX09PTw2OPPcaVV16Z7rLOea+++ioTJkxg6dKlNDc3c9ttt7Fu\n3bp0l5W1FGCSamtrWbBgAQBlZWW0t7fT1dVFKBRKc2UyZ84cpk2bBkBeXh69vb3Yto1lWWmuTPbs\n2cPnn3+uD8cMU1tby3e/+11CoRChUIjf/e536S5JgMLCQj777DMAOjo6KCwsTHNF2U2XkJJaW1uP\n+mUaOXIkBw8eTGNF0s+yLHJycgB4+eWXufzyyxVeMsSKFStYtmxZusuQYzQ0NBCJRLjjjjtYvHgx\ntbW16S5JgOuuu46mpiYWLlzIkiVL+OUvf5nukrKaemBOQk9YyDwbNmzg5Zdf5rnnnkt3KQK89tpr\nXHLJJYwdOzbdpcgJtLW18fjjj9PU1MStt97Ke++9h2EY6S7rnLZmzRpKS0t59tln2bVrF1VVVRo7\ndgYUYJJKSkpobW0deN3S0kJxcXEaK5JUmzdv5sknn+SZZ54hNzc33eUIsHHjRvbt28fGjRs5cOAA\nPp+P888/n7lz56a7tHNeUVERM2bMwOPxMG7cOILBIIcPH6aoqCjdpZ3Ttm7dyrx58wCYNGkSLS0t\nuhx+BnQJKemyyy7jnXfeAaCuro6SkhKNf8kQnZ2dPPLIIzz11FMUFBSkuxxJ+uMf/8jq1at58cUX\n+fGPf8ydd96p8JIh5s2bx5YtW3Ach3A4TE9Pj8ZbZIDx48ezY8cOABobGwkGgwovZ0A9MEkzZ85k\n8uTJLFq0CMMwWL58ebpLkqS33nqLcDjMPffcM7BuxYoVlJaWprEqkcw1atQorr32Wn7yk58A8Jvf\n/AbT1P9X062iooKqqiqWLFlCPB7nt7/9bbpLymqGq8EeIiIikmUUyUVERCTrKMCIiIhI1lGAERER\nkayjACMiIiJZRwFGREREso4CjIgMqYaGBqZMmUJlZeXAU3iXLl1KR0fHoI9RWVmJbduD3v6nP/0p\nH3zwwdcpV0SyhAKMiAy5kSNHsmrVKlatWsULL7xASUkJK1euHPT+q1at0g2/ROQoupGdiAy7OXPm\nUF1dza5du1ixYgXxeJy+vj4eeughysvLqaysZNKkSXz66ac8//zzlJeXU1dXRywW48EHH+TAgQPE\n43FuuOEGFi9eTG9vL/feey/hcJjx48cTjUYBaG5u5r777gMgEolQUVHBLbfcks5TF5GzRAFGRIaV\nbdusX7+eWbNmcf/99/PEE08wbty44x5ul5OTw5///Oej9l21ahV5eXk8+uijRCIRfvjDHzJ//nze\nf/99AoEA1dXVtLS0cPXVVwPw9ttvM3HiRB5++GGi0SgvvfTSsJ+viAwNBRgRGXKHDx+msrISAMdx\nmD17NjfffDN/+tOf+PWvfz2wXVdXF47jAInHexxrx44d3HTTTQAEAgGmTJlCXV0du3fvZtasWUDi\nwawTJ04EYP78+fzlL39h2bJlXHHFFVRUVAzpeYrI8FGAEZEh1z8GJlVnZyder/e49f28Xu9x6wzD\nOOq167oYhoHrukc966c/BJWVlbF27Vo++ugj1q1bx/PPP88LL7xwpqcjIhlAg3hFJC1yc3MZM2YM\nmzZtAqC+vp7HH3/8lPtMnz6dzZs3A9DT00NdXR2TJ0+mrKyMbdu2AbB//37q6+sBeOONN/jb3/7G\n3LlzWb58Ofv37ycejw/hWYnIcFEPjIikzYoVK/j973/P008/TTweZ9myZafcvrKykgcffJCf/exn\nxGIx7rzzTsaMGcMNN9zAu+++y+LFixkzZgxTp04F4MILL2T58uX4fD5c1+X222/H49GfPZFvAj2N\nWkRERLKOLiGJiIhI1lGAERERkayjACMiIiJZRwFGREREso4CjIiIiGQdBRgRERHJOgowIiIiknUU\nYERERCTr/D9j0Ga+13iEMwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "QrVsugsFijuV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 376 + }, + "outputId": "5ae9b8a3-5e84-4635-a6b8-db5722e1ec5e" + }, + "cell_type": "code", + "source": [ + "plt.ylabel(\"RMSE\")\n", + "plt.xlabel(\"Periods\")\n", + "plt.title(\"Root Mean Squared Error vs. Periods\")\n", + "plt.plot(adagrad_training_losses, label='Adagrad training')\n", + "plt.plot(adagrad_validation_losses, label='Adagrad validation')\n", + "plt.plot(adam_training_losses, label='Adam training')\n", + "plt.plot(adam_validation_losses, label='Adam validation')\n", + "_ = plt.legend()" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFnCAYAAABdOssgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXax/HvmZlMJjG9F0gjdELP\n0kvodQEpKkVcsayCupZVcUFFRJrL2kAQRBBeFI2ugqIoIgoiCISS0EJJSEhCMiGV9HLeP6KzhBIS\nzMyk3J/r8rqYM2fO+c1D5M55TrkVVVVVhBBCCFEvaawdQAghhBC3Twq5EEIIUY9JIRdCCCHqMSnk\nQgghRD0mhVwIIYSox6SQCyGEEPWYztoBhLiVli1bEhAQgFarBaCsrIzw8HDmzJmDvb39bW/3k08+\nYdKkSdct//zzz5k9ezYrV64kIiLCtLywsJCePXsyZMgQFi1adNv7ra6EhARee+014uLiALCzs2PW\nrFkMGjTI7PuuiRUrVpCQkHDdmOzfv58ZM2bQpEmT6z7z7bffWiren3Lx4kUGDhxIcHAwAKqq4uHh\nwb/+9S/atGlTo239+9//xs/Pj3vuuafan/nyyy+JjIxkw4YNNdqXaFykkIt6YcOGDfj4+ABQXFzM\nk08+yapVq3jyySdva3tGo5E1a9bcsJAD+Pr68tVXX1Uq5D/++CNOTk63tb/b8cwzzzBmzBhWrlwJ\nwNGjR5k+fTrffPMNvr6+FsvxZ/j6+tabon0zWq220nfYtm0bM2fOZPv27ej1+mpv5+mnnzZHPCFk\nal3UP3q9nj59+nDy5EkAioqKePHFFxk6dCjDhw9n0aJFlJWVAXDq1Cnuvvtuhg0bxpgxY9i9ezcA\nd999N8nJyQwbNozi4uLr9tG5c2f2799PQUGBadm2bdvo1auX6XVxcTGvvvoqQ4cOZcCAAaaCC3D4\n8GHuvPNOhg0bxogRI9i7dy9QcYTXu3dvPvzwQ0aPHk2fPn3Ytm3bDb9nbGwsHTp0ML3u0KED27dv\nN/1C884779CvXz/Gjh3Le++9x4ABAwB4/vnnWbFihelzV7++Va7XXnuNqVOnAnDo0CHGjx/P4MGD\nmTRpEomJiUDFzMQ//vEPIiIimDp1KpcuXbrF39iNff7558yaNYvp06ezZMkS9u/fz913380TTzxh\nKnrffPMNo0aNYtiwYdx7770kJCQA8PbbbzNnzhwmTJjAunXrKm33iSeeYO3atabXJ0+epHfv3pSX\nl/Of//yHoUOHMnToUO69915SU1NrnHvEiBEUFhZy/vx5ADZv3sywYcMYMGAATz31FIWFhUDFuC9c\nuJDRo0fzzTffVPp7uNnPZXl5Oa+88gr9+/dnwoQJnDp1yrTf3377jXHjxjFixAiGDx/ON998U+Ps\nooFShajjWrRooaakpJheZ2VlqVOmTFFXrFihqqqqrlq1Sn3wwQfVkpIStaCgQB0/frz6xRdfqGVl\nZerw4cPVrVu3qqqqqseOHVPDw8PV3Nxcdd++feqgQYNuuL/PPvtMfe6559RnnnnG9Nnc3Fx14MCB\n6qeffqo+99xzqqqq6jvvvKNOnz5dLSoqUvPy8tSxY8eqO3fuVFVVVUeNGqV+9dVXqqqq6n//+1/T\nvhITE9U2bdqoGzZsUFVVVbdt26YOHjz4hjkee+wxNSIiQl2/fr169uzZSu+dPn1a7dq1q5qWlqaW\nlJSojzzyiBoREaGqqqo+99xz6vLly03rXv26qlxt27ZVP//8c9P3DQ8PV/fs2aOqqqpu3bpVHTdu\nnKqqqrpx40Z1ypQpaklJiZqRkaFGRESYxuRqVY3xH+PcsWNHNS4uzrR+WFiYunfvXlVVVTUpKUnt\n0qWLGh8fr6qqqr7//vvq9OnTVVVV1bfeekvt3bu3evny5eu2+/XXX6tTpkwxvX7zzTfV+fPnq7Gx\nseqQIUPU4uJiVVVV9cMPP1T/+9//3jTfH+PSunXr65aHh4er586dUw8cOKD26NFDvXTpkqqqqjp3\n7lx10aJFqqpWjPvo0aPVwsJC0+vly5dX+XO5a9cudciQIeqVK1fUgoICdcKECerUqVNVVVXVO++8\nU92/f7+qqqoaFxenPvXUU1VmF42HHJGLemHatGkMGzaMgQMHMnDgQLp3786DDz4IwK5du5g0aRI6\nnQ6DwcDo0aP55ZdfuHjxIunp6YwcORKAsLAw/Pz8iI6OrtY+R44cyVdffQXAjh07iIiIQKP53/8y\nP/74I5MnT0av12Nvb8+YMWP47rvvAPjiiy8YPnw4AF26dDEdzQKUlpZy5513AtC2bVuSk5NvuP+l\nS5cyZcoUtm7dyqhRoxgwYAAfffQRUHG0HB4ejqenJzqdjlGjRlXrO1WVq6SkhMGDB5u27+3tbZqB\nGDVqFAkJCSQnJ3Pw4EEGDx6MTqfD1dW10umHa6WkpDBs2LBK/119Lj0oKIigoCDTa4PBQI8ePQD4\n5Zdf6NatG4GBgQBMnDiR/fv3U1paClTMULi5uV23z/79+3PixAmysrIA+P777xk2bBhOTk5kZGSw\ndetWsrOzmTZtGmPHjq3WuP1BVVU2b96Mt7c3QUFB7Ny5kxEjRuDt7Q3APffcY/oZAOjRowe2traV\ntlHVz+WBAwfo168fd9xxBwaDwfR3BeDu7s4XX3zBuXPnCAoK4t///neNsouGS86Ri3rhj3PkGRkZ\npmlhna7ixzcjIwNnZ2fTus7Ozly+fJmMjAwcHR1RFMX03h//mHt4eNxyn7169WLOnDlkZWXx9ddf\n8+ijj5ouPAPIzc1l4cKFLFu2DKiYam/fvj0AW7du5cMPPyQvL4/y8nLUq1oaaLVa00V6Go2G8vLy\nG+7f1taWGTNmMGPGDHJycvj222957bXXaNKkCdnZ2ZXO17u7u9/y+1Qnl4ODAwA5OTkkJiYybNgw\n0/t6vZ6MjAyys7NxdHQ0LXdyciIvL++G+7vVOfKr/96ufZ2ZmVnpOzo6OqKqKpmZmTf87B/s7e3p\n2bMnu3btokuXLuTk5NClSxcUReHtt99m7dq1zJ8/n/DwcObNm3fL6w3KyspM46CqKqGhoaxYsQKN\nRkNubi7ff/89e/bsMb1fUlJy0+8HVPlzmZ2djZeXV6Xlf3jttdd49913+dvf/obBYOCpp56q9Pcj\nGi8p5KJecXNzY9q0aSxdupR3330XAA8PD9PRF0BWVhYeHh64u7uTnZ2NqqqmfzSzsrKqXfRsbGyI\niIjgiy++4MKFC3Tq1KlSIffy8uL++++/7og0NTWVOXPm8Omnn9K6dWvi4+MZOnRojb5nRkYGJ0+e\nNB0ROzk5MWnSJHbv3k1sbCyOjo7k5uZWWv8P1/5ykJ2dXeNcXl5ehISE8Pnnn1/3npOT0033XZvc\n3d05fPiw6XV2djYajQZXV9dbfnbo0KF8//33ZGZmMnToUNPff/fu3enevTv5+fksXryY119//ZZH\nttde7HY1Ly8vxo0bx3PPPVej73Wzn8uqxtbDw4O5c+cyd+5c9uzZw2OPPUafPn244447qr1v0TDJ\n1Lqod/72t79x+PBhfvvtN6BiKjUyMpKysjLy8/P58ssv6devH02aNMHHx8d0MVlUVBTp6em0b98e\nnU5Hfn6+aZr2ZkaOHMnq1atveMvXwIED+fTTTykrK0NVVVasWMHPP/9MRkYG9vb2hISEUFpayubN\nmwFuetR6I4WFhTz++OOmi6AALly4wNGjR+natSudOnXi4MGDZGRkUFpayhdffGFaz9PT03SRVGJi\nIlFRUQA1ytWhQweMRiNHjx41beef//wnqqrSsWNHdu7cSVlZGRkZGfz888/V/l410atXLw4ePGia\n/v/444/p1auXaSamKhERERw+fJgdO3aYpqf37NnDvHnzKC8vx97enlatWlU6Kr4dAwYM4LvvvjMV\n3B07dvDee+9V+Zmqfi47derEnj17KCgooKCgwPQLRElJCdOmTSMtLQ2oOCWj0+kqneoRjZcckYt6\nx8HBgYceeojFixcTGRnJtGnTSExMZOTIkSiKwrBhwxg+fDiKorBs2TJeeukl3nnnHezs7HjzzTex\nt7enZcuWODs706tXL/773//i5+d3w3395S9/QVEURowYcd17kydP5uLFi4wcORJVVWnXrh3Tp0/H\n3t6evn37MnToUNzd3Xn++eeJiopi2rRpvPXWW9X6jn5+frz77ru89dZbvPrqq6iqioODA7NnzzZd\nyX7XXXcxbtw4XF1dGTJkCGfOnAFg0qRJzJo1iyFDhtCmTRvTUXerVq2qnctgMPDWW28xf/588vLy\nsLGx4YknnkBRFCZNmsTBgwcZNGgQfn5+DBo0qNJR5NX+OEd+rSVLltxyDHx8fHj11Vd59NFHKSkp\noUmTJsyfP79a4+fg4EDbtm05ffo0HTt2BCA8PJyvv/6aoUOHotfrcXNz47XXXgPg2WefNV15XhNt\n27bl73//O9OmTaO8vBx3d3fmzZtX5Weq+rmMiIhg165dDBs2DA8PD/r168fBgwexsbFhwoQJ3Hff\nfUDFrMucOXOws7OrUV7RMCmqKv3IhajvDh48yLPPPsvOnTutHUUIYWEyLyOEEELUY2adWl+yZAmH\nDh2itLSUhx9+mLCwMGbPnk1paSk6nY6lS5fi6enJli1bWL9+PRqNhkmTJjFx4kRzxhJCCCEaDLNN\nre/bt4/333+f1atXk5mZybhx4+jWrRv9+vVjxIgR/N///R9JSUnMmjWLcePGERkZaToPtHHjRlxc\nXMwRSwghhGhQzHZEHh4ebrqn1snJiYKCAl566SXTwxFcXV05fvw4R48eJSwszHRfaufOnYmKiqrx\nRSdCCCFEY2S2c+RXP/QiMjKSvn37Ym9vj1arpaysjE2bNjF69GjS09MrPZ3Jzc0No9ForlhCCCFE\ng2L2i9127NhBZGQkL774IlDxlKRnn32W7t27mx7FeLXqzPSXlpbVek4hhBCiPjLrxW67d+9m5cqV\nrFmzxjR1Pnv2bAIDA5k1axZQ8WSk9PR002fS0tJM933eTGZmfq3m9PR0xGi88X2wonbJWFuGjLNl\nyDhbhoxzxRjcjNmOyHNzc1myZAmrVq0yXbi2ZcsWbGxsePzxx03rdejQgejoaHJycsjLyyMqKoqu\nXbuaK5YQQgjRoJjtiHzbtm1kZmbyj3/8w7QsOTkZJycnpk2bBkCzZs14+eWXefrpp5kxYwaKojBz\n5sxKDRmEEEIIcXP18slutT3FItM2liNjbRkyzpYh42wZMs5WmloXQgghhPlJIRdCCCHqMSnkQggh\nRD0mhVwIIYSox6SQCyGE+FO+//5b+vXrRlZW1g3f/+yzzbz//iqzZjh//iyzZj103fIff9xR7W1s\n2LCOmJhjN33/pZdmU1RUeFv5zEkKuRBCiD/l+++34+/fhF27ql80LaGkpITNmzdVe/1p0+6jXbv2\nN31/3ryF2NoaaiNarTLrk92EEEI0bDk52Zw8eZzZs19k06YPGTt2AgAHD/7GW2/9Gzc3d9zdPfDz\n86e0tJQFC17GaEyjoKCA++9/iF69+nDgwP7f1/UgICAQFxcXOnXqwscfbyQ/P5+5c//Fzp272bXr\nB8rLy+nRoxf33/8QaWmpzJ37PDY2NoSGtrgu21tvLePcubO8/voi2rRpy759e0lPNzJv3mt8/PFG\nTpw4TnFxMWPHjmf06LEsWPAy/fsPJDs7i2PHjpCVlUlCwgUmT57GqFFjmTBhNB9+uJn//GcJHh6e\nnD59ktTUS7z44qu0bNmKN95YSnT0MYKDQ0hIuMC8ea/h6+tn9r+DRl/Iy65cIe14FLTphKIo1o4j\nhBC35ZOdZzlwKq1WtxneyotJA0KrXGfnzh307Nmbbt16sHjxqxiNaXh6erFq1TvMnTuf5s1b8Mwz\nj+Pn509ubg5/+Ut3hg8fRVLSRebOfZ5evfrw7rtvM3fuKzRr1pyZMx8kPLwbAOfOneWjjz7H39+d\nnTt3s2LFGjQaDZMmjeGuuyYTGfkxAwcOYdKke9i4cR1nz8ZWyjZ58jROnIjhmWeeZ9u2raSmXmLl\nyrUUFxfj4+PHY489RVFRIZMmjWX06LGVPnvu3FlWrlzLxYuJvPTSC4waVfn94uJili17hy++iOTb\nb79Gp9Nx7NgR1qzZQFzcee6/f0ot/A1UT6Mv5Dm//oJx80f4Pf4kDu07WDuOEELUKzt2bGf69Blo\ntVoiIgbyww/fcffdU0lJSaF584qj5I4dO1NUVISjoxMnTx5ny5bPURQNOTnZAKSmptCiRSsAunfv\nSVlZRWOs0NDm6PV6AAwGA7NmPYRWqyUrK4ucnBzi4+OIiBgEQKdOXdm3b2+VWVu3boOiKNja2pKT\nk83f/34/Op2OrKzM69Zt1649Wq0WT08v8vKuXPd+hw6dAPD09ObEiePEx8fRpk0YGo2GZs1C8fHx\nvZ3hvC2NvpBn2vty0H8EvY/GSCEXQtRbkwaE3vLoubalpaVy4kQM77zzBoqiUFhYiKOjA3ffPRWN\n5n+XYP3xANHvv/+WnJwcli9fQ05ODg88MO26bV49M2pjYwNAUlISmzf/H2vX/h/29vZMmzbJtF1F\n0fz+5/Jb5tXpKrZ3+PAhoqIO8s4776HT6Rg8uM9162q12uvyV/2+ikbzv+yWnOFt9Be7Fdi5kW3n\nRdy5G19tKYQQ4sZ27NjOuHETWb/+I9at28RHH31GTk4OSUkX8fDwJCEhHlVVOXz4EABZWVn4+vqh\n0Wj46aedlJSUAODm5s6FC/GUlZVx4MD+6/aTmZmJq6sr9vb2nD59ikuXLlFSUkJAQCCnTp0AICrq\n4HWfUxSN6ej+atnZWXh5eaPT6diz5yfKyspNWW6Xv38TTp8+haqqxMfHcelSyp/aXk00+kLeNMQd\ngLRSR0qMRiunEUKI+mPHju2MHDna9FpRFIYPH8WOHdt56KFHmTPnOZ577km8vLwB6N9/AHv37uaJ\nJx7Bzs4OLy8vPvhgNQ8++Cj/+tc/ef75pwgMDKp0tAvQunVr7OzseeSR+/nhh+8YM+ZO/v3vxUyc\neA9ff72Fp56aRW7u9c9i9/DwoLS0hDlznqu0vGvXbly8mMCsWQ+RlHSRnj178/rrC//UWLRq1Yam\nTQN46KHpfPLJJoKCQirNSpiTNE0BNr21iytXShjfXYv7gAG1um1RmTQ/sAwZZ8uQca4dv/22j6ZN\nA/D19WPJkgV07NiFIUOGmd6vD+NcXFzMDz98x/DhoygoKGDKlAl88smX6HS1cwa7qqYpjf4cOUBo\nKy8ORaVx8dhZKeRCCGFhqqrywgvPYG9/B66ubkREDLR2pBrT6/WcOnWCyMjNaDQKDzzw91or4rci\nhRxo0TmIQ1FpJKcV0760FMVCgy+EEAK6detBt249rB3jT3vyyWetst9Gf44cIKiZOxpU0m19KDh/\nztpxhBBCiGqTQg7Y6HV4u9twxdaNy0dirB1HCCGEqDYp5L8LausPQEJs7T4ZSQghhDAnKeS/C2jh\nBUBqgYHS3BwrpxFCCCGqRwr571zd7bGzKSfD3pcrx2V6XQghqqsutzGtrlmzHuL8+bNs27aVn376\n8br3R46s+kr6P9ql7tu3l//+N/K2c9wOKeS/UxSFpgFOlGgNJB85a+04QghRb9TVNqa3Y8SI0fTr\nF1Gjz1zdLrV7956MGzfBHNFuSu6zukpgu6bEnjvJxYtXaF1ejmKhp/IIIUR9VZfbmM6e/Qx33TX5\n96YthUyZMpFNmz5j4cJXrsvwh/ffX4WLiwtjxoxn3rw5pKWl0rp1G9P7Bw7sZ82aldjY2ODo6Mgr\nryy6rl3q+fPnmDXrH3zyyUf88MN3APTp04+pU+9jwYKXb9gC9c+QQn6VpsFuKKika90pupiIISDQ\n2pGEEKJaPj/7FYfTomt1m528wrgzdFSV69TlNqb9+kXwyy+76dixMwcO7Cc8vDt5eVdumOFaBw7s\no7S0lFWrPuD48RgiIzcDkJuby0svvYqfnz/z57/I/v2/XtcuFSA5OYlvvtnK6tUfAvDQQ9NNndqu\nbYEqhbwW2Rps8HDWYFQ9yToag48UciGEqFJdbmPaq1dfNm36kJkzn2D37p8YOHDITTNcKy4ujrCw\n9gC0bdsOW1tbAFxcXFi8+FXKyspITk6iS5fwG37+zJnTtG0bZnq6W1hYB9MvGte2QP2zpJBfI6Cl\nD8bfUrhwMhmf0bdeXwgh6oI7Q0fd8ui5ttX1NqaOjo54eHiRkBBPTMwx/vnPF6qV4ffUpm1f/R0W\nLpzP0qVvEBQUzLJli6sYHaVS+9OSkhLT9m7VIrWm5CTwNYJaVzSDv5QN5YWFVk4jhBB1V11vYwrQ\nt29/1q9fazo6vlmGa1297ejooxQXFwOQl3cFb28fcnNziYo6ZCrQ17ZLbdGiJTEx0ZSWllJaWsqJ\nE8dp0aLlbYzyrUkhv4aHtyN6TTmX7fzIO3XS2nGEEKLOquttTKGikP/ww3emRiw3y3Ct7t17UVxc\nxKxZD/HDD9/h6VnxrJE775zII4/MYMmSBUyZci8bN65DUbiuXaqvrx9//es4HnvsIWbOfJDRo8fg\n4+P75wb8JqSNKde3yPt24z7iLhYy2CeF0PvuqdV9NXb1oR1hQyDjbBkyzrWjIbQxNTertTFdsmQJ\nhw4dorS0lIcffpiwsDCeffZZysrK8PT0ZOnSpej1erZs2cL69et/vxpxEhMnTjRnrFsKCmtK3MUz\nJMRnEWrVJEII0fA1hDam1mS2Qr5v3z7OnDnD5s2byczMZNy4cfTo0YPJkyczfPhwli1bRmRkJGPH\njmX58uVERkZiY2PDhAkTGDx4MC4uLuaKdksBzTyAMxjLnSk2pqH/fUpFCCFE7WsobUytxWznyMPD\nw3nzzTcBcHJyoqCggP379zNwYMVvWhEREfz6668cPXqUsLAwHB0dMRgMdO7cmaioKHPFqhZ7B1tc\n7FUy7bzJOSqPaxVCCFF3ma2Qa7Va7O3tAYiMjKRv374UFBSY7gl0d3fHaDSSnp6Om5ub6XNubm4Y\njUZzxaq2gFAPVEVLQky8taMIIYQQN2X2+8h37NhBZGQka9euZciQIablN7vGrjrX3rm62qPTaW+5\nXk1ceyFBx14tOHbsV1LSS3F3tUOjk1vua0tVF22I2iPjbBkyzpYh43xzZq1Ou3fvZuXKlaxZswZH\nR0fs7e0pLCzEYDCQmpqKl5cXXl5epKenmz6TlpZGx44dq9xuZmZ+rea80RWRBgcbdEo56XpvEvcf\nwd5M9/81NnL1qWXIOFuGjLNlyDhX/YuM2abWc3NzWbJkCatWrTJduNazZ0+2b98OwHfffUefPn3o\n0KED0dHR5OTkkJeXR1RUFF27djVXrGrTajX4eOrJ1ztjPPznH6EnhBANlSXbmJ49e4aEhAvVWvfy\n5XSWLFlw0/et0XLUHMx2RL5t2zYyMzP5xz/+YVq2aNEi5syZw+bNm/Hz82Ps2LHY2Njw9NNPM2PG\nDBRFYebMmTg61o0plKC2TbiYFs+Fs+nIU9eFEOLGrm5j+kf3M3P56aedtGrVhoBq9MJwd/fg2Wf/\nddP3u3fvWZvRrMZshfyuu+7irrvuum75Bx98cN2yYcOGMWzYsOuWW1tgS2/2/BhPaoGB0pwcdE5O\n1o4khBB1Sm20MZ016yE6d+7KgQP70Wg0DB8+km3bvkKj0fDmm++a9nXu3Fm+/PJzfvppJ66urrzy\nyly6d++Fq6srPXv2Ydmyxeh0OjQaDfPnLyIvL485c57j/fc3cNddYxkz5k5++WU3xcXFvPnmCnbt\n2sn58+cYP34SCxa8jJ+fP2fPnqFFi5Y8//xczp49w4IFL+Hg4EirVm3IysrkX/962UojfXNyBVcV\nnFzscNCXk2nvS25MNK49e1k7khBC3JDx04/JPXigVrfp2DUcz4l3V7lObbQxhYqj53fffZ9HHrmf\nnJwcVqxYw6OPPsD582fx8ak43dqsWSjduvWgf/+BtGnTjtLSUrp370n37j05cGAfTz75T1q0aMWa\nNSv57rtv6NWrrylnWVkZAQFBTJ58Ly+9NJuD14zV6dMnmTfvNVxd3Rg3bgS5ubl88MF73Hffg/Tr\nF8Hcuc9jMBhqdXxrizxr/RaaBrlQprHh4tHz1o4ihBB1zo4d2xk0aGilNqbAdW1MAVML0UceuZ8F\nC16u1EK0TZu2QEVBb9684uJiNzc3rly5UuX+//icq6s7q1atYNash9ixYzvZ2de3J726fWheXuXt\n+vs3xd3dA41Gg4eHJ3l5V7hwIZ727TsA0Lt33+u2V1fIEfktBLUP4GRsDEnJ+bQrL0fRyO8+Qoi6\nx3Pi3bc8eq5ttdnG9OpGKTVp86nTVbQ6ffPN15kyZTrdu/dk06YNFBRcf3dTVdu9tlGLqqqV2qRe\n3V61rpGqdAv+Aa5oKMeo86DoYqK14wghRJ1RW21Ma0JRlOtahgJkZ2fh79+E4uJi9u37hdLS0j/9\n/fz9m5hame7bt/dPb89cpJDfgo1ei5erliu27lw+IrehCSHEH2qrjWlNdOjQiTfeWMrBg79VWj5+\n/F3Mnv0Mc+c+x/jxd/HNN1/dclr+Vu69dwbLl7/BU0/NwtXVtdIsQ10ibUy59cMGon4+w/69SXTU\nnKPHszNqdd+NjTzYwTJknC1DxtkyrDXOMTHRGAwGQkObs2HDB6iqyr333m/xHGDFNqYNRWBrX/bv\nTSIlR0N5YSGaOnrlohBCiNqj19uwaNF8bG1tsbU18PLLr1o70g1JIa8GN487sNOVkWHny5VTJ3Hq\n2MnakYQQQphZxa1sH1o7xi3VzQn/OkZRFPz9HSjRGkiKirV2HCGEEMJECnk1BbeveBxgUsL19yYK\nIYQQ1iKFvJqaNnMHVNJUZ4qNadaOI4QQQgBSyKvN1mCDhwPkGDzJOhJj7ThCCCEEIIW8RgJaeKEq\nGi4cT7B2FCGEqDMs2ca0uqKiDjJnzrMAPP/8UzXOdHW71Jdemk1RUaF5gtYCKeQ1ENSuKQAp6WWo\ntfDUICGEaAiubmNaFy1atKzGn/npp50kJlYctM2btxBb27p727HcflYDnj6O6DVlpNt6k3/uLHe0\nbGXtSEIIYVWWbGN65kwsb7/MEQ8aAAAgAElEQVS9jLfeWgnA2rXv4ejoRFBQMGvWrMTGxgZHR0de\neWVRpYwjRw7k669/qHYmHx/fSu1SX3xxNh9+uJkrV3JZuPAVSkpK0Gg0PP/8XBRFuWELVEuSQl4D\nGo2Cr7eBCylaUqNOEiKFXAhRR+zdeY7zp2r3QtyQVl70HNCsynUs2ca0efMWpKcbyc3NxdHRkT17\nfmbx4mVERx/jpZdexc/Pn/nzX2T//l+xt7e/Lmt1M61du7FSu9Q/rFmzklGjxjBw4BB+/HEHa9e+\nx4wZD9+wBaqj482fxFbbpJDXUHC7plxIOc+Fc5cJsXYYIYSwsh07tjN9+oxKbUzvvnvqdW1Mi4qK\nTG1Mt2z5HEXR3FYb0169+rJ//17ateuAra0eT08vXFxcWLz4VcrKykhOTqJLl/AbFvKaZrrW6dMn\n+fvfZwHQuXNX1q1bA/yvBSpgaoEqhbwOC2jpDd+fJ63YjtKcHHROTtaOJIQQ9BzQ7JZHz7XNGm1M\n+/WL4LPPPiE7O4t+/QYAsHDhfJYufYOgoGCWLVt807w1zXQ9xfS5kpJSU4vTG7VAtSS52K2G7nCw\nxdlQRpbBh5zoaGvHEUIIq7FGG9O2bcOIjz/P3r2/0L//IADy8q7g7e1Dbm4uUVGHbrrdmmS6UbvU\n1q3bEBV1EIAjRw7RqlXrGuc3BynktyEgxI1yjZaEY3HWjiKEEFZjjTamiqLQrl0H8vKu4OPjA8Cd\nd07kkUdmsGTJAqZMuZeNG9dx+XL6dZ+tSaYbtUt94IG/8+2323j88b+zbdtXzJjxcI3HzBykjSk1\nb5F3MT6DrR8fIyD/LCNevh+ljvaorYuk7aNlyDhbhoyzZcg4V93GVCrQbfBt6oKWctJ1nhRdTLR2\nHCGEEI2YFPLboNVq8HHXka93xnj4uLXjCCGEaMSkkN+mwLb+AFw4nWrlJEIIIRozKeS3Kai1HwCX\ncrWUF9bdZ/AKIYRo2KSQ3yZnVzscbMrIsPPhyokT1o4jhBCikZJC/if4N3WkTKMn8fBZa0cRQgjR\nSEkh/xNCOgQBcPFijnWDCCGEaLTMWshjY2MZNGgQGzduBODAgQPcc889TJs2jYcffpjs7Ipn2q5Z\ns4YJEyYwceJEfvrpJ3NGqlX+wW4olGNUXSg21m6zAiGEEKI6zFbI8/PzmT9/Pj169DAtW7hwIQsW\nLGDDhg106tSJzZs3k5iYyLZt29i0aROrVq1i4cKF1z0Wr66y0evwclLINXhw+XCMteMIIYRohMxW\nyPV6PatXr8bLy8u0zNXVlaysLACys7NxdXVl//799OnTB71ej5ubG/7+/pw9W3/OOQe2rHhE4IXj\n8mAYIYQQlme2Qq7T6TAYDJWWvfDCC8ycOZOhQ4dy6NAhxo0bR3p6Om5ubqZ13NzcMBqN5opV64LC\nmgKQkqGilpZaOY0QQojGxqJtTOfPn88777xDly5dWLx4MZs2bbpuneo8+t3V1R6dTnvL9WqiqufY\nVsXDwwE7bRmXDT7o05NwCWt36w81crc71qJmZJwtQ8bZMmScb86ihfz06dN06dIFgJ49e7J161a6\nd+9OXNz/uoilpqZWmo6/kczM/FrN9WcfyO/nY8e5JC0ndkbR3CewFpM1PNL8wDJknC1DxtkyZJzr\nUNMUDw8P0/nv6OhoAgMD6d69O7t27aK4uJjU1FTS0tIIDQ21ZKw/Lah9AAAJ5zOtnEQIIURjY7Yj\n8piYGBYvXkxSUhI6nY7t27czb9485syZg42NDc7Ozrz22ms4OTkxadIkpk6diqIovPzyy2jqWVvQ\ngBbe8M0Z0krsKc3JQefkZO1IQgghGgnpR07tTNtsfusHMvMUJvSxxaN3r1pK1vDIFJllyDhbhoyz\nZcg416Gp9YYsoJk7qqLhwrEL1o4ihBCiEZFCXkuCOwQDkJxahFpebuU0QgghGgsp5LXEy88JG6WM\ndJ0nhYkJ1o4jhBCikZBCXks0GgVfTxsKbRxIPXTc2nGEEEI0ElLIa1FQ2yYAXDhTf55MJ4QQon6T\nQl6LAtv4A3Apz4bywkIrpxFCCNEYSCGvRQ6OtjjrS8kyeJNz/IS14wghhGgEpJDXsiaBzpRrdCQc\nPmftKEIIIRoBKeS1LLhjxW1oF5OuWDmJEEKIxkAKeS3zC3RDSzlGxZViY5q14wghhGjgpJDXMq1O\ng7eLQr7eBeOhGGvHEUII0cBJITeDwNa+AMSfTLJyEiGEEA2dFHIzCAqraGuakglqaamV0wghhGjI\npJCbgbOrHXfoSsmw9SbvzBlrxxFCCNGASSE3A0VR8Pezp0yr52LUaWvHEUII0YBJITeT4A5BACTE\nZ1k3iBBCiAZNCrmZNAn1QqGctBIHSnNyrB1HCCFEAyWF3Ez0tjo871DJNXiQcSTa2nGEEEI0UFLI\nzSiguScA8dHSn1wIIYR5SCE3o6BOFY9rTU4rRi0vt3IaIYQQDZEUcjPy8HLAVlNKuo0XhYlyVC6E\nEKL2SSE3I0VR8PfSU6KzI+mAtDUVQghR+6SQm1lQ+4qnvCWeS7dyEiGEEA2RFHIzC2ztD6rKpXxb\nygsLrR1HCCFEAyOF3MwMdja42ZWSbfAkK0am14UQQtQuKeQW0CTIFVXRcOHweWtHEUII0cBIIbeA\nkE4hACSl5Fs5iRBCiIZGCrkFeDd1wYZSjIorRamp1o4jhBCiATFrIY+NjWXQoEFs3LgRgJKSEp5+\n+mkmTJjA9OnTyc7OBmDLli2MHz+eiRMn8umnn5ozklVoNBp83LQU2jiSeijG2nGEEEI0IGYr5Pn5\n+cyfP58ePXqYln3yySe4uroSGRnJiBEjOHjwIPn5+Sxfvpx169axYcMG1q9fT1ZWw+sYFtTGH4AL\npy5ZOYkQQoiGxGyFXK/Xs3r1ary8vEzLfvzxR/76178CcNdddzFw4ECOHj1KWFgYjo6OGAwGOnfu\nTFRUlLliWc0f95OnZCuopaVWTiOEEKKhMFsh1+l0GAyGSsuSkpL4+eefmTZtGk8++SRZWVmkp6fj\n5uZmWsfNzQ2j0WiuWFbj4GTAyaaETFsvcmPPWDuOEEKIBkJnyZ2pqkpwcDCzZs1ixYoVrFq1ijZt\n2ly3zq24utqj02lrNZunp2Otbu9GQpq5cORUHqkx52nW7y9m319dZYmxFjLOliLjbBkyzjdn0ULu\n4eFBeHg4AL179+btt9+mf//+pKf/7/GlaWlpdOzYscrtZGbW7m1cnp6OGI25tbrNG/FvE8CRUyc5\nd+YyzS2wv7rIUmPd2Mk4W4aMs2XIOFf9i4xFbz/r27cvu3fvBuD48eMEBwfToUMHoqOjycnJIS8v\nj6ioKLp27WrJWBbjF+KBhjLSSh0pzcmxdhwhhBANgNmOyGNiYli8eDFJSUnodDq2b9/O66+/zoIF\nC4iMjMTe3p7FixdjMBh4+umnmTFjBoqiMHPmTBwdG+YUik6nxdsRUnDFeCga34he1o4khBCinlPU\n6pyUrmNqe4rFktM2Ud9Hs//QZTo6XKLHrLstss+6RKbILEPG2TJknC1DxrkOTa0LCO5c8bjW5PQy\n1PJyK6cRQghR30khtzAXN3vsNSVk2HhSkJBg7ThCCCHqOSnkFqYoCv4+tpRq9SQekLamQggh/hwp\n5FYQ1CEIgMTzGdYNIoQQot6TQm4FAa38UNRyUgsNlBcWWjuOEEKIekwKuRXobXV42JeRo3cn49hx\na8cRQghRj0kht5KmIW6gKMQfibN2FCGEEPWYFHIrCencDICkSzK1LoQQ4vZJIbcSDz9nbJUS0jXu\nFKWmWjuOEEKIekoKuZUoioKvu45inR3JB2KsHUcIIUQ9JYXcioLaNQHgQmyalZMIIYSor6SQW1FQ\n+0BQVVJytKilpdaOI4QQoh6SQm5FdvZ6XG1LyLb1IOdUrLXjCCGEqIekkFtZkwBHVEVDfNRZa0cR\nQghRD0kht7LgzqEAXExs3C36hBBC3B4p5FbmG+SOjlLSyp0oycqydhwhhBD1jBRyK9NoNPg4Q6GN\nI6mH5HGtQgghakYKeR0Q2MoHgPgTF62cRAghRH0jhbwOCPr9ca0pGSpqebmV0wghhKhPpJDXAU7O\ndjhqi8iw8SDvwgVrxxFCCFGP3HYhj4+Pr8UYwt/XnnKNjoTfTlk7ihBCiHqkykL+t7/9rdLrFStW\nmP784osvmidRIxXSKQSAxPhMKycRQghRn1RZyEuveWzovn37TH9WVdU8iRop/xY+aNQyUovsKC8s\nsHYcIYQQ9USVhVxRlEqvry7e174n/hydjRYvhzLy9K4Yj5ywdhwhhBD1RI3OkUvxNq+mzTwAiD8a\nb90gQggh6g1dVW9mZ2fz66+/ml7n5OSwb98+VFUlJyfH7OEam5AuoRw4FkVyarG1owghhKgnqizk\nTk5OlS5wc3R0ZPny5aY/i9rl6uWInVJMutaNwkupGHy8rR1JCCFEHVdlId+wYYOlcggqTl34edpw\nLk3h4m8xhP5VCrkQQoiqVXmO/MqVK6xbt870+uOPP2bMmDE8/vjjpKenmztboxTcPgCAC2eMVk4i\nhBCiPqiykL/44otcvnwZgLi4OJYtW8Zzzz1Hz549WbBgwS03Hhsby6BBg9i4cWOl5bt376Zly5am\n11u2bGH8+PFMnDiRTz/99Ha+R4MR0C4QRS3n0hUb1Gtu/xNCCCGuVWUhT0xM5OmnnwZg+/btDBs2\njJ49e3L33Xff8og8Pz+f+fPn06NHj0rLi4qKeO+99/D09DStt3z5ctatW8eGDRtYv349WY24naet\nQYe7oYQcvRuZJ05bO44QQog6rspCbm9vb/rzb7/9Rvfu3U2vb3Urml6vZ/Xq1Xh5eVVavnLlSiZP\nnoxerwfg6NGjhIWF4ejoiMFgoHPnzkRFRdX4izQkTQKdQVGIjzpn7ShCCCHquCovdisrK+Py5cvk\n5eVx+PBh/vOf/wCQl5dHQUHVTx/T6XTodJU3HxcXx6lTp3jiiSdYunQpAOnp6bi5uZnWcXNzw2is\n+vywq6s9Op22ynVqytOz7lyF33lQB47E7ic5JZ+hdShXbalLY92QyThbhoyzZcg431yVhfzBBx9k\nxIgRFBYWMmvWLJydnSksLGTy5MlMmjSpxjtbuHAhc+bMqXKd6jz6NTMzv8b7roqnpyNGY26tbvPP\n0Dsa0FNCapkTyWcSsXFxsXakWlPXxrqhknG2DBlny5BxrvoXmSoLeb9+/dizZw9FRUU4ODgAYDAY\n+Oc//0nv3r1rFCI1NZXz58/zzDPPAJCWlsbUqVN57LHHKp1vT0tLo2PHjjXadkOjKAq+rgoXMu1J\nPhBD4OCajbUQQojGo8pCnpycbPrz1U9yCwkJITk5GT8/v2rvyNvbmx07dpheDxgwgI0bN1JYWMic\nOXPIyclBq9USFRXFCy+8UJPv0CAFtvblwl4jF06mEDjY2mmEEELUVVUW8gEDBhAcHGy6wvzapikf\nfvjhTT8bExPD4sWLSUpKQqfTsX37dt5++21crpkmNhgMPP3008yYMQNFUZg5c6Y8NQ4I7hzKz3uN\nJGepqOXlKJrbbh0vhBCiAVPUKk5Kf/nll3z55Zfk5eUxcuRIRo0aVenCNGup7XMldfX8y0evf0t2\niQ1TJoXg2CzY2nFqRV0d64ZGxtkyZJwtQ8a56nPkVR7mjRkzhrVr1/LGG29w5coVpkyZwgMPPMDW\nrVspLCys9aCiMn//O1AVLfEHTlk7ihBCiDqqWvO1vr6+PProo3zzzTcMHTqUV199tcYXu4maC+nc\nDIDE+GwrJxFCCFFXVXmO/A85OTls2bKFzz//nLKyMh5++GFGjRpl7myNnm+oDzr1BGmld1BeWIDG\nYGftSEIIIeqYKgv5nj17+Oyzz4iJiWHIkCEsWrSIFi1aWCpbo6fVavB2LCPpiiOXDh3Hr1dXa0cS\nQghRx1RZyB944AGCgoLo3LkzGRkZfPDBB5XeX7hwoVnDCQho7kXS4WzioxOkkAshhLhOlYX8j9vL\nMjMzcXV1rfTexYsXzZdKmIR0bc6vhw+SbCyxdhQhhBB1UJWFXKPR8OSTT1JUVISbmxurVq0iMDCQ\njRs38t5773HnnXdaKmej5eTugIOmkMtaNwpSLmHn62PtSEIIIeqQKgv5f/7zH9atW0ezZs344Ycf\nePHFFykvL8fZ2bnR9w23JH9vW06nKFzYf5xWY6WQCyGE+J8qbz/TaDQ0a1ZxC9TAgQNJSkri3nvv\n5Z133sHb29siAQUEtQ8EIOFc1T3ghRBCND5VFvJre477+voyeLA8+NvSAtoFolHLSM2zRS0ttXYc\nIYQQdUiNHuB9bWEXlqGz0eJhV8IVvQvp0fKUNyGEEP9T5Tnyw4cP079/f9Pry5cv079/f1RVRVEU\ndu3aZeZ44g9Ng11IO1lI/OHzeHZqZ+04Qggh6ogqC/m3335rqRziFpqFt+TQyaMkpRQQbu0wQggh\n6owqC7m/v7+lcohbcPN1wUARRlwozsxC7+py6w8JIYRo8KTJdT2hKAp+7lpKtbZc/C3G2nGEEELU\nEVLI65GgNhUzJPGnLlk5iRBCiLpCCnk9Etg5FEUt51K2glpebu04Qggh6gAp5PWIwc4GN30R2Tau\nZJ+Ns3YcIYQQdYAU8nrGv4kjKBriD56xdhQhhBB1gBTyeqZZ11AALibkWDmJEEKIukAKeT3jHeKN\nXi0mrdSBsoJ8a8cRQghhZVLI6xlFUfBxVinS2bN7yXpSt35FSWamtWMJIYSwkiofCCPqpnYDwkj4\n4jQnbVtzOroUj31fEORaQrOebXHq0hWNra21IwohhLAQKeT1UGArP6b83ZXTRy5y+shF0jTBpJXC\n4Z05+Hy9jmZB9gT0Dce+eQsUjUy6CCFEQyaFvJ5ycrEjvH9zuvYLJS0ll1O/nefsmXISdS1JvAz2\nm0/hX7aLFmE++PTrid7Ty9qRhRBCmIEU8npOURS8/ZzwHtuR3mXlJJy7zMl9Z0lMduIMLpw5Cy7H\nfiDAPo+W3UJx7fYXtPb21o4thBCilkghb0C0Wg3BLTwJbuFJUWEJZ6OTOXkgDiO+ZAExv5biufMT\ngr21hPbtgEO7djL1LoQQ9ZwU8gbK1mBD2/BA2oYHkpNVwKkDccRGp5CqCSL1ChzakoTvZwcIbe5K\nYMRfMPg3sXZkIYQQt8GshTw2NpZHH32U++67j6lTp5KSksLs2bMpLS1Fp9OxdOlSPD092bJlC+vX\nr0ej0TBp0iQmTpxozliNjpOLHX8Z3IbwQa1JTc7h5K+xnD9fRoKuGQkXwf79gzTRfk/Lzk3x7dMd\nrYODtSMLIYSoJrMV8vz8fObPn0+PHj1My9544w0mTZrEiBEj+L//+z8++OADZs2axfLly4mMjMTG\nxoYJEyYwePBgXFyk33ZtUxQFH39nfCaE07esnAtn0ji59wwX05yIxYXYo+Cy7yuCXEpp2as1rp07\noOhk0kYIIeoys/0rrdfrWb16NatXrzYte+mll7D9/R5nV1dXjh8/ztGjRwkLC8PR0RGAzp07ExUV\nxYABA8wVTVBxPj2klQ8hrXwoKizhzOEETh2Kx4gPR4rg2I5MPL/+iGYBdjSP6IJdcBCKolg7thBC\niGuYrZDrdDp01xzN2f9+tXRZWRmbNm1i5syZpKen4+bmZlrHzc0No9FY5bZdXe3R6bS1mtfT07FW\nt1ffNGnqRsRfO5J5OY+oH2KIPpxMqqYpqUY4sOkUTZQ9hHXyo/Wovti6u916g1Vo7GNtKTLOliHj\nbBkyzjdn8XnTsrIynn32Wbp3706PHj3YunVrpfdVVb3lNjIza/cZ456ejhiNubW6zfqsfUQbwvq3\nJu1iFsd3nyQusZQ4tSlxx2DHwa8rbmULD8GnRxc0en2Nti1jbRkyzpYh42wZMs5V/yJj8UI+e/Zs\nAgMDmTVrFgBeXl6kp6eb3k9LS6Njx46WjiWuoSgK3k1d8Z7ck7Kyci6cSObEr7EkXXbiVKkLp34t\nwnXXFwR7KbTq1x6n1i1k6l0IIazAooV8y5Yt2NjY8Pjjj5uWdejQgTlz5pCTk4NWqyUqKooXXnjB\nkrHELWi1GkLCmhAS1oSiwhJO7z/L6SOJpONFZjYc+SIRr8+iCG3mRItB4dh6yVPkhBDCUhS1OnPZ\ntyEmJobFixeTlJSETqfD29uby5cvY2tri8Pvtzc1a9aMl19+mW+//Zb3338fRVGYOnUqf/3rX6vc\ndm1Psci0ze3JzsznxK4Yzp7J5Ep5xUWMNqUF+OuyaNnBn8D+XdHaVX6KnIy1Zcg4W4aMs2XIOFc9\ntW62Qm5OUsjrFlVVuRSfzomfjxOfUkIxNgDYl2QT6FxM654t8epc8RQ5GWvLkHG2DBlny5BxrmPn\nyEXDoygKvsGe+Ab3p6ysnLgjcZzaf46kbAdO5ms5uSMD128+J8TflrY9WmDbxA+do1yBKoQQtUEK\nuahVWq2G0C7NCO3SjMLCEk7/HENs9CXS8eBQGhz6MgVdWRzO5Tm4OYCXjyO+zf1wa9VMnignhBC3\nQabWkWkbS8g25nB6z3Eup14hLbuMfNVQ6X19aT4uag5ujgpevs74tmqCc2gw2jvusFLi+k1+pi1D\nxtkyZJxlal3UAc6eTvxlXA/T/5AF+cVcOpNMSmwyxku5ZOTpSMOHtEI4FQfEpWMoicNFzcXdSYuX\nvzO+LZvgEBqM1l6KuxBC/EEKubAKO3s9wR2CCO4QZFp2JaeQS2eTSTmTgjE1j4x8Oy7hyKVCOH4O\nOGvEvuQsLlzBw1mLV1NXfFoGYB8cJD3WhRCNlhRyUWc4OBkI7RxCaOcQoOJq+JysAi7FJpNyPhVj\nWh6ZBY4k40JyARALyulLOBSdxFmTh4eLDV5NXfFuGYBdcDBaOzvrfiEhhLAAKeSizlIUBWdXe5y7\nhdKyWygA5eUqWZfzSDmTTOr5NIzGArIUV3Jx52I+cBo0J5NxLIrGRVuAh5se7wB3PFoGYhcYiMYg\nxV0I0bBIIRf1ikaj4ObpgJtnC9r2bAFAWVk5GcYrpMSmkBqXhvFyCTkaL7JRuHAFOAG66AQciw7j\nqivA3c0WnyAPXJsHYhcYhMZgqHqnQghRh0khF/WeVqvB08cJTx8n6NsSgNKSMoyXcrl0NoVL8UYu\nZ2jI1PqSCZy/AsSAzZE4nIoO4mpThIeHLT7BXriEBmEbEIjm93a7QghR10khFw2SzkaLb1MXfJu6\nAK0BKCosxZiSw6WzKaQmXCY9U89lXRMuA2dzgKNgezAWp6JfcdUX4elpj3eIN25dO2Pj7m7NryOE\nEDclhVw0GrYGHU2C3WgS/L9+6gX5xaQl/17cEzNJz7LDaBOIEYjNBg6D6y/bCXEupGX/Djh17Iii\n1VrtOwghxLWkkItGzc5eT2CoB4GhHkDFlfJ5uUUVxf3cJZLiM0jHj0MlcOxbI35frqV1Ow+aDOiN\njYenldMLIYQUciEqURQFBycDDk4GQlpVtGPNvJxPzJ7TxJ4u44K2ORfOg8vxHwh2zKdV3zCcO3dC\n0cn/SkII65B/fYS4BVd3e/qM6UTP0nLOnUjh+N6zXMKHw6UQ/f1l/L76gFat3Gk6qDd66cUuhLAw\nKeRCVJNWp6FFe39atPcnOzOfmD1nOH0ynQRtcxISwHn5jwQ75NGqb1tcunSRo3QhhEXIvzRC3AZn\nV3t6je5A9xHlxJ1OJWZ3LCl4caRMIWZHNr5fr6dlSxcCB/VC7+1j7bhCiAZMCrkQf4JWqyG0jS+h\nbXzJySrg+N4znDpuJFHbjMREcHp3N0H2ubTq3RrX8K5obGysHVkI0cBIIReilji52NFjRHu6DSsn\n/nQa0XtiSb7swbFyT47vysXn2w9pFepE0OBe6H39rB1XCNFASCEXopZpNBpCWvsQ0tqHKzmFxOw9\ny6mYVJI0zUhKBsdVewmyy6Z1r1a4dgtHY6O3dmQhRD2mqKqqWjtETdV2g3lpWm85jXWsy8tVEs4a\nid59miRjKSoK2vISvAsSaRnqQNDAnhiaNKm1/TXWcbY0GWfLkHGuGIObkSNyISxAo1EIauFFUAsv\n8nKLOP7rWU4eu0SyJoTkFHB4/zcCbbfTpmdL3LqFy7PehRDVJoVcCAu7w9GWvwxpS/jgNiSeSyf6\n51MkprlwHDdO7inE+/tNtAixJ2RQDwxNA6wdVwhRx0khF8JKFEUhINSTgFBP8vOKObHvHCePJJOi\nCSYlFQ6uPUSgzfe07tEcj57d5ChdCHFDUsiFqAPs79DTdWBrugxoRVLcZaJ/PkXCJWdO4MqpX0vw\n+vFjmgcaaDaoG3aBQdaOK4SoQ6SQC1GHKIpCkxAPmoT0piC/mJP7z3PicBKXNIFcMsKh9UcJ0P5A\nm+7N8OzVHY3BYO3IQggrk0IuRB1lZ6+nc0QrOvVvSUpCJsd+OsmFZEdO4czp38rw+ukTmjfVEzqo\nG3bBwdaOK4SwEinkQtRxiqLgF+iG3729KCwo4eSBOE4eSiRVCSD1MhzaGE2AspPWfwnGq08PtHZ2\n1o4shLAgKeRC1CMGOxs69W1Bxz7NuXQxm+ifThB/0YHTOBF7qByPPZ/S3N+GHtOHg8HF2nGFEBag\nMefGY2NjGTRoEBs3bgQgJSWFadOmMXnyZJ544gmKi4sB2LJlC+PHj2fixIl8+umn5owkRIOgKAq+\nTV0YMrUn0//Rl169/XG2UzHaB7A305f3Fv/A6Q8/o6ygwNpRhRBmZrZCnp+fz/z58+nRo4dp2Vtv\nvcXkyZPZtGkTgYGBREZGkp+fz/Lly1m3bh0bNmxg/fr1ZGVlmSuWEA2OrUFH+97NufuJAdw5rRNB\nPjpybd3ZmeTG14s+xvjTHtTycmvHFEKYidkKuV6vZ/Xq1Xh5eZmW7d+/n4EDBwIQERHBr7/+ytGj\nRwkLC8PR0RGDwUDnzp2JiooyVywhGixFUfD2d2b4fb2Z9mBXnAzlJNkF88WeK/yy+H0K4uOsHVEI\nYQZmK+Q6nQ7DNbfGFPUzPcUAACAASURBVBQUoNdXNIhwd3fHaDSSnp6Om5ubaR03NzeMRqO5YgnR\nKAS38uXuxyPo1t0HVWtDtNKcz9cd5NSaTZTlNu5nVgvR0FjtYreb9WqpTg8XV1d7dDptreap6oH0\nonbJWFuGj48zPhPD6TkkjK8//IXYeE9+NKqcXfoJ/Ye1JGjUEBRt7f5/1BjJz7NlyDjfnEULub29\nPYWFhRgMBlJTU/Hy8sLLy4v09HTTOmlpaXTs2LHK7WRm5tdqrv9v786jqyrvf4+/nz2cKXNCwhQS\nIWgiowoOUBCtVqu24tQyVNq71l2912rHZX+V0tZh2VtLh/XrtVptr/a3vPRaaLVWWyecoFgRBxQx\nTIqAzFMmcuY93D/2yclAIBGTc3KS72uts/Z4Ds952Mnn2c/e2Y+MrJM5UteZ0bWeL5l/HrUfHWH1\nU++xW9Ww/JVW6l76FWd/+bPk1dZlsaS5TY7nzJB6PnlDpl/vWu9q5syZPP/88wCsXLmS2bNnM3Xq\nVDZu3EhLSwvhcJj169czffr0TBZLiCGhctww5n/rIs6fMQrH8LHRnMDf//wemx/4L6ymxmwXTwhx\nivptPPL333+fpUuXsnfvXgzDYPjw4fzqV79i8eLFxONxRo0axT333INpmjz33HM8/PDDKKW48cYb\nufrqq0/62TIeee6Sus6Mnuq5tSXGmqc2sHNPFFyHytYPOXdGJcM/fxnKkMdL9JYcz5kh9XzyM/J+\nC/L+JEGeu6SuM6O39bz7o6Os/sdGjkXBtKLUJT/grBvmkD95agZKmfvkeM4MqecB1LUuhBhYxowr\nY8E3L+S8mZU4pp+NwSk89dgWNv3v35M4fCjbxRNC9IIEuRBDnK5rTLtwPAtumslpY/JoDg5ndeR0\nVv7n39j/+BM48Xi2iyiEOAkJciEEAAVFAa74yrlc9aXJFIR0dhfW8czmAK/d/Tta3nyjV38aKoTI\nPAlyIUQnVTVlLLhlNufOHINtBtiYfzZP//MjNv3qt8T37c128YQQXUiQCyGOoxsa0y+sYf7/vIDq\nqnyagiNYY03ihXufZO+jf8aO9O2zHIQQp06CXAhxQoXFQa5cOJ0rbphEfp7B7uIJPPdREWvvvo+m\nV/8lg7EIMQBIkAshenTa+GHMv/kzTJ85BtsMsrHoPJ5duZdNP/9PYjIYixBZJU9+EEL0imHonHth\nDbVTRrHmmU18/DGscYez88GnmVKbx8gbrscoKMx2MYUYcuSMXAjxiRQWB7lq4TSuuH4SeXkmHxdP\n4oW9Fbx+9/00vPQirm1nu4hCDCkS5EKIU3La6cNY8I2ZTJsxhqQZYmPpDFauPkT93UuJbNua7eIJ\nMWRIkAshTplh6pw3p4b5/+N8xlQV0hgaxav+81n18Ep2//5Bkg0N2S6iEIOeBLkQ4lMrKglx1YKz\n+fx1kwjl+dhVMpkXDo1h3c9+x9Gn/4mTTGa7iEIMWhLkQog+oZRi7Bled/s5M8aQ9OWxcdgsXlzX\nzKa7fkbrexuyXUQhBiW5a10I0adMU+f8OTXUTh7Jmue2sOdjeNUdwe4/rWLC6FWMXLAAX0VFtosp\nxKAhZ+RCiH5RXBriCwvO5vJrJxLK87OzdCovt9Tw5s8f4PDjj8lgLEL0EQlyIUS/UUoxrracBTfN\n4OwLxpDw5fNexRxeeTdG/e0/5ZgMxiLEpyZd60KIfmf6dC64qIbaySNY8/w29n4M/w6NZM9fX+PM\nVasZuXAB/tGV2S6mEDlJzsiFEBlTUpbHFxecxWXXTCCY52dn6Vm8EqvjrV/+gYPLHpE/VxPiFEiQ\nCyEySilFTV0FC2+6gLPOH0PcV8B7Iz7Lqg8MNty5lEN//n9YTU3ZLqYQOUO61oUQWWH6DGZc7HW3\n//uFD9izCxpCo9lZv4ua1/8XlZ+ZRskVV8rz24XogQS5ECKrSod53e17dzWybvVHHNxXzeG8KkZs\n+Ihx/76LURdeQOnlV6Dn52e7qEIMSBLkQogBYXR1CdcuOoePtzewbvVHHFA1HMwfy8i3PqDmX7cz\n4uJZlFx2OXooL9tFFWJAkSAXQgwYSimqx5dRVVPK9i2HefNfO9inajlQOJ7Rr29h3Cs/YvilF1N8\n6WXowWC2iyvEgCBBLoQYcJRSjD+zgnG1w9j2/kHefHUnu9VE9hXWMmZNPae99EOGX3YpxZ+9FC0Q\nyHZxhcgqCXIhxIClaRp1U0Zy+oThbN6wn7f/vZOd2lT2OGdS/cpGql94kfLPX07xRZ9F8/uzXVwh\nskKCXAgx4OmGxqRpo6mdMoL31+/lnbW72K5NY7c9keqVG6h6/nnKr7ySojkXoZm+bBdXiIySIBdC\n5AzT1Dn7/ComTB3Fe2/uZsMbu/mg/Hw+tiKMfeZNKp97lvKrvkDhrAvRTDPbxRUiIyTIhRA5xx8w\nOHf2WCZNG82763az8a09bKn4DLuSxxj35KuMfvYZyr7wRYpmzkIZ8mtODG4ZPcLD4TC33XYbzc3N\nJJNJbrnlFsrLy7nzzjsBqK2t5a677spkkYQQOSwY8jHj4hqmTK/k7bW72PzufupHzGFnoomax19m\n5DNPU/bFqym8YCZK17NdXCH6RUaD/IknnmDs2LHceuutHDx4kK997WuUl5ezZMkSpkyZwq233srq\n1auZM2dOJoslhMhxeQV+LrzsDM46bwxvvbqTbfXw3sjPsjN+hHHLn2H4M/9k2BfnUnDeBShNnkwt\nBpeMHtElJSU0pZ6h3NLSQnFxMXv37mXKlCkAXHzxxaxduzaTRRJCDCKFxUE++4Uzmfffz6WmrpwW\n/zDeHX0564yz2fKnv7Prjh97Q6c6TraLKkSfyWiQX3XVVezbt4/Pfe5z3HjjjfzgBz+gsLD9Ocpl\nZWUcPnw4k0USQgxCJcPyuOyaidzw36ZRXVNKU3AEb1deyRtqAtv+azm77rqdY+vflrHQxaCQ0a71\nJ598klGjRvHwww+zZcsWbrnlFgoKCtLbe/tDVVISwjD69npXeXlBzzuJPiF1nRlSz14dTJg8it07\nGnj52S3s2g5HqyqpaN3JuP/zf6kY80+qFs6nZPo0lFKn/G+I/if1fGIZDfL169cza9YsAOrq6ojH\n41iWld5+8OBBKioqevycxsZIn5arvLyAw4eP9elniu5JXWeG1HNngXyTK26YlBqYZQeH9p/Gofxq\nRrZs58jPf0vJmArK5l5LaOKkTxToUs+ZIfV88oZMRoO8urqaDRs2cPnll7N3717y8vIYPXo0b731\nFtOnT2flypUsWrQok0Wi/uODLH/ib7i2i0/34dNN/LqPgOHDb/gIGn5CPj8B00/I9BPwG/hNDb+p\n4/fp3tTU8aWmhq5OuWUvhOg/SikqTytldHUJOz84yhtrdrCf8RwoHMeo5m2M/e3vKDptNMOuuY5g\n3ZnycyxyhnIzeJEoHA6zZMkSjh49imVZfOc736G8vJzbb78dx3GYOnUqP/zhD3v8nL5sma1490X+\n1bCy1/u7tg6OhuvokHp569pfOga6MtAxMTUTQzPxaSY+zYepmwQMP37DmwZNP0HTR8gMkOfzEzB9\nBP1GqnHQucFg6Ll/t620rDND6rlnruvy4eZDvLlmJ82NUTQcKhs3Ud24kaLxp1F2zXWEzqg96WdI\nPWeG1PPJz8gzGuR9pS//QxN2gt3JXRw42kDUihNNJogkYsSsBHErQcxKkLATJJwECTtJ0kliud7L\ndi1sLBxl9fwP9ZLr4jUIbL1zY8HRUY6OhoGGgan8VAbHMG3UmUwZO5KSgtx4zrT8QGaG1HPv2bbD\n1vcP8Pa/d9HaEsfAZkzDRqqa6imsPYOya64lWDO+2/dKPWeG1LMEeY8+7UHiui5JJ0nCTqYCP5Ga\nTxK3veVoMk4kESOSiBOzEkSteOeGQuq9lpvEcixvShIHG4ckrur+z2VcV+G0FhOMj2R84XjOqayh\nrrp0wAa7/EBmhtTzJ2dZNpve3c/613YRjSQxsag+8i6VzZspmDiRYXOvITB2XKf3SD1nhtSzBHmP\ncuEgcVwn1TPgNRiaYs2s213PpoatNNkHIXU5z034sFuGUWCNpq70dCZXjaSuqpii/IER7LlQ14OB\n1POpSyZsNr69h3de300ibuEnQfXh9Yxu3kbBWVMpu/oaAlXVgNRzpkg9S5D3KNcPktZkmE1HtvLm\nvno+bP6QBFHA66Z3w0XYTeWUUMmE4WM5s6qU2qoSivKyM0JUrtd1rpB6/vTisSTvvrGb997cg5V0\nCBLjtINvMeLYdgrPOYeyuddSedaZUs8ZIMezBHmPBtNB4rgOe1r3UX9kK+8c2MS+6B5cvP9iN2li\ntwzDaRpGuVHFmaNHcGZVCWdUFVMYykywD6a6HsiknvtOJJzgndc/pn79XmzbJc+NMPbgG1SEd5E/\nbhwUFmEUl2CWlGCUlGCUlGIUe/MyRnrfkONZgrxHg/kgiSSjbG38kPePbOb9I1tptdq/pxMuxG4e\nhtNUzojgKM4cU0ZtVTG1VcUU9FOwD+a6Hkiknvtea0uMt1/bxZb3DuA4LoVuKyMat+CPtxCwwvit\nMD47Rsc/WtNCoVSwF3vTtrAvLsFMLWt5efKnbj2Q41mCvEdD5SBxXZd94QNsOrqV+qNb2d60Awfv\nJjrXMnBayrCbyrGbh1FZXEZdVQm1VSXUVhWTH+ybsZ2HSl1nm9Rz/2lujKYGZjl43DZNQdCwCaqE\nF+7xFnytDfiijQSsMAErjOEkO71HmWb6DL7rGX16ubBwSI/eJsezBHmPhupBErNibGvczqaGbdQf\n3UJDrDG9zY0WYDV53fBuawmV5YXUVZVQV1XMGVXF5AVOLdiHal1nmtRz/2tujJCI2uzb00RrS5xj\nLTHCx+K0tsSJhBMnfJ+hQ8iwCagEASvihX24AV/rEQJJ78xed+3Ob1LKO6svbj+j987wizt35fuy\nc+9Lf5PjWYK8R3KQeGfrhyKHqW/YyqajW/mg8SMs1/v7eOUY2C2l6WAnEWLM8PxUsJdwxpgiQr0M\ndqnrzJB6zowT1bNtOYRbvVBvbYnReizOsZY44ZaYt+5YnHjsxM+f8JsQMhwv7O22sG/E13IIX7wF\nvxVB4/hf3VpeXqeQN9tCvrQ9/LVQKOe68uV4liDvkRwkx0vYCT5o+ohNR71gPxQ9kt5mWAXEj5Zh\nNZXhtJSi0KkaXkBdVTF1VSWcXllMKND903+lrjND6jkzPk09JxNWOtTTgZ9e9sLfSnb//AilIOhT\nBE0n1Y0fwZ84hi/cgNlyGF/46HHX6zu93zBSLxNlGig9tWwaoBtopgm63nm7aXR+n2F08zJRhn78\ndtNE6Xpq2v5vtX9uav8TjBUvx7MEeY/kIOnZ4chRNjd419a3NX5IInWdT8PAFyun9VAxVuMw3LjX\n2j9tRAG1qTP20yuLCPq9YJe6zgyp58zoz3p2XZd4zDo+4Fvi6eXwsTiO0/2vcE1ThAKKkOkQJEHA\nieKPt2AkIuBYKNsG2wLbQllWaj6JspLeOsdB4aBct8PURblOl2n7PLgnbDz0iqZ12zgwg34cw4cW\nCKD5/WiBAMof6LAcRAv4U8uB1PbU+rb9fb6c64noSIK8B/JL75NJOhbbm3Z4Z+sNW9kfbr/pJ0gh\nWriCpn1FWM0l4BhoSnHayAJOryyivDSPaDSBprzBZTRNoSlSU29Z0b6sNLz16X0VmuYNgOGt9/ZV\nXbanP191/KzUcqd9FUp1/Dfo9Fm5So7pzMh2PTuOSzSc6Cbk28M/0nri6/X9QQFKuWiqfV6BF/q0\nzTvepYGOjYP0y0W5Nsp1wHVQjoPmJNGTcQw7juEkMJxkeqp3XLa9eY1uejKU6hDw7YHfqSHgD6A6\nNBbS+6QbDl0aCxm8AVGCvAfZ/mHMdQ2xRjYf3UZ9w1a2NnxAzI4DoKFTxAjs5mEc3V2AFcmDT9de\nzzhNKQxDYeoaPlPH1DVMQ8MwvKmpa/ja5tPr9M7LHfb15vVu13f9HEPXPtUY2XJM979cqGfbdtI3\n4bUei5OIW7iOi+O4OK6L67jHLTsOvdgnNe1muW3edei07Dgubmo5vc9xy5/+O2vKxVQOhrIxsTHc\npBf6dhzDiqMnY+jJKHoymg7/rg0EzbV6/G2lDAMtEESlGgFtoa/5/QROG0vplV/49F8mRYK8B7nw\nw5grbMfmo+ZdbErdNLendV96W56eT8gM4digSA336io0pZFaA65CoXnzbevS6xWgody2dQBah2nH\n9Qoc73qb66bWuanbg1yVWuetb5t3XXCd1DS1j+uCYyksW2FbYFkKKwlWUpFIuriO5v07rvcd+prR\nXcjrHQNf73Z9fp6faCzRqWei47StF+K4danejfbtXac9vTf179D5s9p6ULr73LYekIBPJz9o5tQo\nf/K7o++5bnu4tzUqioqC7N/XTCJudXjZx88n2ufjqW3JuI1ldX+vwckoBaYOpuZgai4GNgaWF/Zu\n0msAWDF0K4aeiKLFI+jxMIYVw3CSBPN8jP/lr0943f+TGjDjkYvBT9d0Ti8Zx+kl45hbcwXN8RY2\nNWxj89GtfNi0g4jTiu04ODi4roPtOt4Pbjd34J6ytjztx14vDQh0Xac0DGWgKx1dGWjoaErzpugo\ndJSrpae47Y0A12l7KVxHw7EVrq3hOArLUji2ImlBzFLYtiIZA9tue7/XaHE7fJ73UuRaDwhA0O8F\nen7QR0HITM2nXiGTgvS8j4KgSV7QQO+jX5Yi+1T6slv7uoLCALF48sRv6oFtOycO/7ZXon053mW/\ncNwimbCBLn/ep6VW+YD8zpvyC/3UpE4/+psEuehXRf5CZoyczoyR04ETn8G4rovjOjikpq4X9I7r\n4uCk1zmp/dwu+7Ztc2nfp+PLTe/r4rh2+z64HRoUnf8913WxXQfbsbBc2xuVLvVKOjaWa2E5SSyn\ny7ZO+8a97a633C2F1+j4BA0PM/XqDQ0NTWmo46YKDQ2lNNqWVGpZpbd6PQ1t07beEq9B4i23rW/r\nTQGV6jXpOK8g9R6vp0R16EHxXlZSJxHViEYgErbZfSiGZZ/wa3WSFzDSQZ8faAt8n7ccTIV/23zI\nR8hvoGm518gRp0bXNYIhH8HQqX+G47gkE8c3BuJxK70+3qFhUFQczNgxJkEuBgSllHcmm+2C9COv\nYdAW8u3hnm4YOMlO25LpxkDqPR32P36d3eGzLHRTEYsn0g0Zu0Ojxpu3O8xbWB3XO+3794sTnTyb\nQAgo8xZ9KIqMAAE9iE8FMFUA3fGhHB9YJo5lYsV1kjGdWFQnGlEcOaSwkwY99UQoBXmB7s7yUw2A\nbtYH/Uaf3QDpNVxdLNvFsh0s28W2nfS8ZTvYjkvScrz1Tmpdaluyw7xlu9iO0+GzOn6ei+W0Lydt\nB0PTCAUM7+U3yAuY6eW8gEnI3z7vM0/9Po3BRtMU/oCJP2Bi2Q6RuIUWt3BiFlbcwo55AR6NW0Ri\nFsHirn12/UeCXIgMUUphKAND6/8fu764dtt2yaO9EWB3bhA4Di5dGwl2p+3dru+mUWG7DjErRtiK\nEElGCScjhJMRIpY3bU40Y3d92pmOF/wdzrJ8eP0DAT2AXwvgUwF0/GiOD2X7cJImdsIgGdeIR3Va\noxqHjiicpAm2yckaAJpS5AcN8kO+9Fl+KOQjHEn0KkDtLqGdmZuTXFAuKKd9igLbSN3XcXK6ptKB\nHwqY5LU1ANrm/e3LXvi37ztQez1c1yWR9II4EreIxiwi8WSHeevk83GLxAn+vr+joN9gxsQRGakD\nCXIhRLeUSnWeq+xff3Zdl4STJJwME05GiSQjhFMh33k+1QiwvPVHk4c6NwCM1CsElHirOo5PFtCC\n+DQ/JgE01wt/LBMnaZJM6CSiBs1RjQMNCtcyvTBsC0nNmxq6i2a46BroposWcNF0MHUXpblououm\nefNK6zCvHNC84G2fdwAHVzmgvIaT2zYlda8JdvvlJ+wOjS47PZZCdwxlYGo+DHzomOiuiXJNsA1c\nW8dOGthJDSuhE04oGmIKO6zj2kZqH2+Ko3OiBlDQrxPyt4d8sIcegGBqv7yAgWl03z/nOG46UCOx\n1LTLfNu2E+3n9HSPt3JAs1C6DZqNbtr4/S6+YpcSn4vpczFMB8200XTb20+3QVk4KolNkpH5FWSq\nM0OCXAgx4Cml8Os+/LqP0kBJr9/nui5xO5E6s48SToaJWNH2BkA69L1tYctrJDQlD7c3ANrCPwgU\neat6MzipC5z4Iay9/QJdpimG0tE13bsclZr6lYmuBdGVhtFhm6EMNK3tRkwNx3WI2XFiVpyYHSNm\nxYjYERJO6u/NtdSry00YbdXQHQMfBl5DQHNNXNvAtXQcyyCR1AgnNPYndNyo7jUCnM6NgXSjoEMv\ngaFr6R4An6nTEk4QjVvEEl2fQ985dNHb5tunhs/BDDkYpkuJaaPpDprhbXM1G1clcZSF5Sax3ES3\nDSAHiKVe3W7s8BZDM8iz/Li4GbndTYJcCDFoKaUIGH4Chr/PGgAdGwG+gI4Vd9A1LyTbgtObN1Kh\nmvpLhrYwTYWsoeloSu8Uyp0DuJv1yvtLiP64bu24DvFUwEetGDE7TtyKE7Vj6dDvtJzap71B0DY9\nhq3ZnRoCit7dnKlcDa1Dz4Bt6zQlvTN+rczGNGx8mu2Fr2bhkPR6K3rBTr26MpSO3/AT0P349RB+\n3Y9f9xHQ/fh0P37Dl2pEtu3jS+/j171jq+M6n+7LyOWzTt8ho/+aEELkgN42AAbT35FrSiNoBAka\nQXrf5Ole0rG8oD8u5DtO493s07GBECVuJyDodUc4gKb0VLj68ev5nQLV3yV028K40z5G53XZCN3+\nkPvfQAghxIBiagamL58CX37PO5+E4zok7AQlpSGONSUGRej2h+zfxSKEEEJ0Q1MaASNAvj9PQvwk\nJMiFEEKIHCZBLoQQQuQwCXIhhBAih0mQCyGEEDlMglwIIYTIYRm/DfCpp57ioYcewjAMvv3tb1Nb\nW8sPfvADbNumvLycX/7yl/h8vp4/SAghhBCZPSNvbGzk/vvv59FHH+XBBx/kpZde4t5772XhwoU8\n+uijVFdX89hjj2WySEIIIUROy2iQr127lhkzZpCfn09FRQV3330369at45JLLgHg4osvZu3atZks\nkhBCCJHTMtq1vmfPHmKxGDfddBMtLS1861vfIhqNprvSy8rKOHz4cCaLJIQQQuS0jF8jb2pq4r77\n7mPfvn189atfxe0wnJzb09ByKSUlIYwTDHF3qsrLC/r088SJSV1nhtRzZkg9Z4bU84llNMjLyso4\n++yzMQyDqqoq8vLy0HWdWCxGIBDg4MGDVFRU9Pg5jY2RPi3XYBr4YKCTus4MqefMkHrODKnnkzdk\nMhrks2bNYvHixXz961+nubmZSCTCrFmzeP7555k7dy4rV65k9uzZPX5Of7TMpLWXOVLXmSH1nBlS\nz5kh9Xxiyu1tf3YfWb58efrO9G984xtMnjyZ2267jXg8zqhRo7jnnnswzd6MXCuEEEKIjAe5EEII\nIfqOPNlNCCGEyGES5EIIIUQOkyAXQgghcpgEuRBCCJHDhnyQ/+xnP2PevHnMnz+f9957L9vFGbR+\n8YtfMG/ePK6//npWrlyZ7eIMarFYjEsvvZS//e1v2S7KoPbUU09x9dVXc91117Fq1apsF2dQCofD\nfPOb32TRokXMnz+fNWvWZLtIA1LGn+w2kLzxxhvs2rWLFStWsH37dpYsWcKKFSuyXaxB5/XXX+eD\nDz5gxYoVNDY2cu2113LZZZdlu1iD1gMPPEBRUVG2izGotQ0A9fjjjxOJRPjtb3/LRRddlO1iDTpP\nPPEEY8eO5dZbb+XgwYN87Wtf47nnnst2sQacIR3ka9eu5dJLLwWgpqaG5uZmWltbyc/Pz3LJBpdz\nzz2XKVOmAFBYWEg0GsW2bXS9bx+zK2D79u18+OGHEir9rOMAUPn5+dx9993ZLtKgVFJSwtatWwFo\naWmhpKQkyyUamIZ01/qRI0c6HRilpaUyaEs/0HWdUCgEwGOPPcaFF14oId5Pli5dyuLFi7NdjEGv\n4wBQCxculFEb+8lVV13Fvn37+NznPseNN97Ibbfdlu0iDUhD+oy8K3k2Tv968cUXeeyxx/jjH/+Y\n7aIMSn//+98566yzGDNmTLaLMiR0HQDqlVdeQSmV7WINKk8++SSjRo3i4YcfZsuWLSxZskTu/ejG\nkA7yiooKjhw5kl4+dOgQ5eXlWSzR4LVmzRoefPBBHnroIQoK5JnJ/WHVqlXs3r2bVatWceDAAXw+\nHyNGjGDmzJnZLtqg090AUA0NDZSVlWW7aIPK+vXrmTVrFgB1dXUcOnRILst1Y0h3rX/mM5/h+eef\nB6C+vp6Kigq5Pt4Pjh07xi9+8Qt+//vfU1xcnO3iDFq/+c1vePzxx/nLX/7Cl770JW6++WYJ8X4y\na9YsXn/9dRzHobGxkUgkItdv+0F1dTUbNmwAYO/evekRM0VnQ/qM/JxzzmHixInMnz8fpRR33HFH\ntos0KD3zzDM0Njby3e9+N71u6dKljBo1KoulEuLUDR8+nMsvv5wvf/nLAPz4xz9G04b0eVG/mDdv\nHkuWLOHGG2/EsizuvPPObBdpQJJBU4QQQogcJk1IIYQQIodJkAshhBA5TIJcCCGEyGES5EIIIUQO\nkyAXQgghcpgEuRBDwJ49e5g0aRKLFi1KjyR166230tLS0uvPWLRoEbZt93r/BQsWsG7dulMprhDi\nE5AgF2KIKC0tZdmyZSxbtozly5dTUVHBAw880Ov3L1u2TB7GIcQANKQfCCPEUHbuueeyYsUKtmzZ\nwtKlS7Esi2Qyye23386ECRNYtGgRdXV1bN68mUceeYQJEyZQX19PIpHgJz/5CQcOHMCyLObOncvC\nhQuJRqN873vfo7GxkerqauLxOAAHDx7k+9//PuCNlT5v3jxuuOGGbH51IQYVCXIhhiDbtnnhhReY\nNm0a//Ef/8H91GRb8AAAAf5JREFU999PVVXVcQNThEIh/vSnP3V677JlyygsLOTXv/41sViMK6+8\nktmzZ/Paa68RCARYsWIFhw4d4pJLLgHg2WefZdy4cdx1113E43H++te/Zvz7CjGYSZALMUQ0NDSw\naNEiABzHYfr06Vx//fXce++9/OhHP0rv19raiuM4gPcY4642bNjAddddB0AgEGDSpEnU19ezbds2\npk2bBngDEo0bNw6A2bNn8+ijj7J48WLmzJnDvHnz+vV7CjHUSJALMUS0XSPv6NixY5imedz6NqZp\nHreu61CdruuilMJ13U7PG29rDNTU1PD000/z5ptv8txzz/HII4+wfPnyT/t1hBApcrObEENYQUEB\nlZWVrF69GoAdO3Zw3333nfQ9U6dOZc2aNQBEIhHq6+uZOHEiNTU1vPPOOwDs37+fHTt2APCPf/yD\njRs3MnPmTO644w7279+PZVn9+K2EGFrkjFyIIW7p0qX89Kc/5Q9/+AOWZbF48eKT7r9o0SJ+8pOf\n8JWvfIVEIsHNN99MZWUlc+fO5eWXX2bhwoVUVlYyefJkAMaPH88dd9yBz+fDdV2+/vWvYxjyq0eI\nviKjnwkhhBA5TLrWhRBCiBwmQS6EEELkMAlyIYQQIodJkAshhBA5TIJcCCGEyGES5EIIIUQOkyAX\nQgghcpgEuRBCCJHD/j/HzTOpdF6NvAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "FSPZIiYgyh93" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for the solution" + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "X1QcIeiKyni4" + }, + "cell_type": "markdown", + "source": [ + "First, let's try Adagrad." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "Ntn4jJxnypGZ", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_, adagrad_training_losses, adagrad_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.5),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "5JUsCdRRyso3" + }, + "cell_type": "markdown", + "source": [ + "Now let's try Adam." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "lZB8k0upyuY8", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_, adam_training_losses, adam_validation_losses = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdamOptimizer(learning_rate=0.009),\n", + " steps=500,\n", + " batch_size=100,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "twYgC8FGyxm6" + }, + "cell_type": "markdown", + "source": [ + "Let's print a graph of loss metrics side by side." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "8RHIUEfqyzW0", + "colab": {} + }, + "cell_type": "code", + "source": [ + "plt.ylabel(\"RMSE\")\n", + "plt.xlabel(\"Periods\")\n", + "plt.title(\"Root Mean Squared Error vs. Periods\")\n", + "plt.plot(adagrad_training_losses, label='Adagrad training')\n", + "plt.plot(adagrad_validation_losses, label='Adagrad validation')\n", + "plt.plot(adam_training_losses, label='Adam training')\n", + "plt.plot(adam_validation_losses, label='Adam validation')\n", + "_ = plt.legend()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "UySPl7CAQ28C" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Explore Alternate Normalization Methods\n", + "\n", + "**Try alternate normalizations for various features to further improve performance.**\n", + "\n", + "If you look closely at summary stats for your transformed data, you may notice that linear scaling some features leaves them clumped close to `-1`.\n", + "\n", + "For example, many features have a median of `-0.8` or so, rather than `0.0`." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "QWmm_6CGKxlH", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 715 + }, + "outputId": "8f298e20-c528-422f-87fc-69cf950a9b9f" + }, + "cell_type": "code", + "source": [ + "_ = normalized_training_examples.hist(bins=20, figsize=(18, 12), xlabelsize=10)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB8AAAK6CAYAAABxOfTPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XtclGX+//H3zMAsoZCijLuWWZmp\n5SnXMvBQUCTSicwTrB2MrUy0LFKJNG1tg1R6eIiyVVFWV2MlKzIDM3HLRDajdbVtK9tvu54dFEUF\nYsT5/eHD+UkcZMYZhsPr+Zdzzdz357ruGz5z++G6r9tgt9vtAgAAAAAA8BCjtzsAAAAAAACaN4oP\nAAAAAADAoyg+AAAAAAAAj6L4AAAAAAAAPIriAwAAAAAA8CiKDwAAAAAAwKMoPsCj9u3bpxtuuMFr\n8RctWqQXX3zRqW0KCgoUERFR43svvviiFi1a5I6uAUCdGiJ//vOf/1RcXJxHY7jTDTfcoH379umT\nTz7RCy+84O3uAECjVdf17Hk7d+7Uv//9b0nSqlWrNH/+/GrtzoiIiFBBQYHznUWL4ePtDgAAAO/o\n3bu3li1b5u1uOC0iIuKiF9UAgLq9++67+u1vf6vu3btr7NixNbYD7kTxAQ0iKytLGRkZKikp0ZQp\nUxQVFaUFCxYoNzdXktS3b1+99NJL8vf3V3h4uObMmaP+/ftLkuN13759NXPmTO3YsUNnz55Vt27d\nlJKSotatW2vTpk1asGCBSktL1blzZ82bN09BQUGSpIqKCj333HP6xz/+ofbt22vRokXq0KGDDhw4\noBkzZmjfvn3y9fXV73//e0VHR1fpd3FxsRISEvTTTz/puuuuk5+fn379619LOlch/stf/iK73a7W\nrVsrOTlZXbt2bcCjCqAl8GT+/OabbzR9+nR98sknWrRokYqLi3X48GH9+9//Vtu2bfXmm2/KYrHo\nm2++0bPPPitJuu+++5Sbm6vp06drwIABtfZ70aJFKioq0qFDh/TNN98oJCREUVFRWrRokY4cOaLZ\ns2crLCxMFRUVmjNnjj7//HPZbDaNGjVK48ePlyT97W9/0yuvvCIfHx89+OCDjn2vW7dO2dnZWrFi\nhYqKijRt2jTt379fFRUVeuihhzRu3DjH+J944gllZWXp0KFDuueee5SYmFjn8S4rK9MLL7ygb7/9\nVjabTUOHDtW0adMkqc7jUNf3EAB4S205bc2aNfrggw+0efNmHTt2TKdOndKhQ4fUs2fPGtv/+Mc/\nSjqX28+/3r17t6ZNm6YzZ87otttuqxKXnIiacNsFPO7s2bOy2Wz68MMP9cILL2j+/Pn6+OOP9dln\nn2ndunX66KOPVFJSohUrVtS5n61bt2rfvn3KycnRxo0bdd111+nrr7/W3r17NXXqVKWmpurTTz/V\ngAEDNGvWLMd2+fn5SkhI0ObNmxUUFKSsrCxJ0owZM3TLLbcoNzdXb7/9tl555RXt27evSswlS5ao\nbdu22rx5s1566SVt3bpVknTq1CktWLBAa9euVU5OjuLi4rRlyxZ3HjYA8Hj+/KWcnBwlJSVp06ZN\nateund59911J5/Llo48+qo0bN6p169b66aef6tX/LVu26NVXX9WHH36onJwcR7/Hjx+vJUuWSDqX\nZ/fs2aMPP/xQ69evV25urvLy8lRZWakXX3xRM2fO1Mcffyyj0ajKyspqMd566y1deeWVysnJUUZG\nhlJTU3Xw4EHH+19++aUyMzP17rvvatWqVTp06FCdfV6zZo1Onz6tnJwcvffee1q3bp127NhR53G4\n2PcQAHhLbTktJiZGvXv31pQpUxwFW0m1ttdk1qxZevjhh5Wbm6ubbrrJcR1NTkRtKD7A4+x2u2NG\nwQ033KBDhw5py5Ytio6Olr+/v0wmk4YPH64vvviizv0EBQXpxx9/1CeffKKysjJNnjxZgwcP1mef\nfaZbbrlF119/vSRpzJgx2rx5s+Mi9be//a2uuOIKSVL37t11+PBh2Ww2bdu2TbGxsZKkK664QgMG\nDND27durxNyxY4eGDRsmSbryyit1yy23SJJ+9atfyWAwKCsrS0VFRRo2bJgef/xxNx0xADjH0/nz\nl/r3768rrrhCBoNBPXr00MGDB1VeXq5vvvlG99xzjyTpd7/7nex2e736f9NNN6ldu3Zq27atgoOD\nNWTIEEnS9ddfryNHjkiS8vLyFBsbK7PZLH9/f91///3auHGjfvrpJ1VUVGjQoEGSpAceeKDGGNOn\nT9eMGTMkSZ06dVJwcHCVQvK9994rk8mkDh06qF27dlUKEzV57LHH9Oabb8pgMOjyyy9X165dtW/f\nvjqPw8W+hwDAW2rLaZfq559/1q5duxQVFSVJioyM1GWXXSaJnIjacdsFPM5kMjmSkdFo1NmzZ3Xs\n2DFdfvnljs9cfvnlOnr0aJ376d27t6ZPn66VK1dq2rRpCg8P18yZM3Xy5Ent2LFDkZGRjs+2bt1a\nx48fd/z7wr5UVlbq+PHjstvtCggIcLwXGBioY8eOqVOnTo62EydOVPuMJPn6+mrFihVavHixFi1a\npG7dumnmzJnq1q2bK4cIAGrk6fz5Sxfmu/P58sSJEzIYDFXyX7t27erV/1atWlXZn7+/f5WxSNLJ\nkyeVnJys119/XdK5W+V69+6tEydOVMnfF475Qrt27XLMdjAajbJarY59SzV/B9Tlp59+UkpKiv7z\nn//IaDTq0KFDGj58eJ3Hoa7vofoeKwDwhNpy2qX65XX2hfmRnIjaUHyAV7Rv396RtKRzCax9+/aS\nql6USucKAOdFRkYqMjJSx48fV1JSkpYtW6bOnTsrNDRUCxcurHf8tm3bymg06sSJE44L2poSYmBg\noE6ePOl4fWFx4oYbbtDChQtVUVGhpUuXaubMmXrnnXecOAoA4Dx35s/Q0NCLxmvdurXsdrvKysp0\n2WWX6cyZMzp27JjbxmOxWPTYY48pLCysSvuPP/6oU6dOOV7XFnPKlCl65JFHFBMTI4PBUOOMDmf8\n4Q9/0I033qi0tDSZTCaNGTNGUt3HwWKxOP09BAANobacVl+1fa+cv34+deqUAgICdPbsWcd75ETU\nhtsu4BW33367srOzVVZWpjNnzigrK8uxUE1wcLDj8T4bNmzQzz//LOncyrtpaWmSpDZt2ujaa6+V\nJA0aNEg7duzQ3r17JZ17dNwrr7xSZ3wfHx8NGjRImZmZkqT//e9/2rFjR7UL8b59+2rTpk2Oz3z1\n1VeSpO+++05PP/20KioqZDab1bNnTxkMhks+LgBwMe7Mn/XRqlUrdenSRR9//LEkKTMz06357o47\n7tDatWtVWVkpu92uN998U5999pmuuuoqmUwmx2Pb1q1bV2Pco0ePOnLwe++9p7KyMpWWlrrcn6NH\nj6pHjx4ymUz64osv9N///lelpaV1HgdXvocAoCHUltOkc9fDF/6R7bwL2y0Wi77//nvHzLvPPvtM\nkuTn56fu3bvrk08+kSR99NFHju8cciJqw8wHeEVkZKS+++47DR8+XHa7XQMGDNDDDz8sSZowYYJm\nzpypv/71rxo6dKiuu+46SecuUJOSknTXXXfJZDKpc+fOSklJUZs2bTR79mzFx8fLZrOpVatWSkpK\numgfXn75ZU2fPl3r1q2Tr6+vXnnlFf3mN7/R//73P8dnnnzyST377LMKDw9Xly5ddNddd0k6d7/y\nlVdeqXvuuUe+vr5q1aqVXnrpJQ8cKQCoyp3587vvvqtXzJkzZ2rGjBlatmyZoqOj1aFDB7cVIGJj\nY7Vv3z7dfffdstvt6tmzpx555BH5+vpq9uzZSkpKktls1vDhwx23bVzomWeeUXx8vNq0aaMxY8Zo\n9OjRmjFjhlavXu1Sf5566iklJyfrzTff1B133KGJEydq4cKF6tGjR63HwWKxuPQ9BACeVldOu/PO\nOzV37lzt3bu3yi1qF7ZPnDhR2dnZuvPOO3XttdcqMjLScavfrFmzlJSUpLfffltDhgxRly5dJImc\niFoZ7PVdNQoAALRYdrvdUXC49dZbtWLFihb5DHiOAwAAruG2CwAAUKenn37a8WjM/Px82e12XX31\n1d7tlBdwHAAAcB0zHwAAQJ1+/PFHvfDCCzpx4oR8fX01ZcoUXXnllYqPj6/x8126dHGsMdHY/Pjj\njy73u6bjcH69DQAAUDeKDwAAAAAAwKO47QIAAAAAAHhUk3nahdVa/TEwF9O2rb+Ki11/3Nal8mb8\nljz2lh6/JY/dlfjBwQEe7E3L09RydVP7eSV+84jd0uO7Eptc7V7O5uqW/PNKfOITv/7xL5arm/XM\nBx8fU4uN35LH3tLjt+SxN4b4cB6/L8RvabFbenxvjx3O8/Y5Iz7xid884jfr4gMAAAAAAPA+ig8A\nAAAAAMCjKD4AAAAAAACPovgAAAAAAAA8iuIDAAAAAADwKIoPAAAAAADAoyg+AAAAAAAAj/Lxdgca\nm8dSNjv1+fTEcA/1BAAAXCpnv9clvtuBpoLfb6BpYeYDAAAAAADwKIoPAAAAAADAoyg+AAAAAAAA\nj2LNBwAAAMBLysrKlJiYqKNHj+rnn3/WhAkT1L17d02dOlWVlZUKDg7W3LlzZTablZ2drYyMDBmN\nRo0aNUojR46UzWZTYmKiDhw4IJPJpOTkZHXq1MnbwwKAapj5AAAAAHhJXl6eevbsqVWrVmn+/PlK\nSUnRwoULFRsbq9WrV6tz587KyspSaWmp0tLStGLFCq1cuVIZGRk6fvy41q9fr8DAQK1Zs0bjx49X\namqqt4cEADWi+AAAAAB4SVRUlB5//HFJ0sGDB9WhQwcVFBTojjvukCSFhYUpPz9fO3fuVK9evRQQ\nECA/Pz/169dPhYWFys/PV0REhCQpNDRUhYWFXhsLANSF2y4AAAAALxszZowOHTqkxYsXa9y4cTKb\nzZKkdu3ayWq1qqioSEFBQY7PBwUFVWs3Go0yGAyqqKhwbF+Ttm395eNjcqp/wcEBLozKfdwV39X9\nNJfxE5/43oxP8QEAAADwsnfeeUfffvutpkyZIrvd7mi/8N8Xcrb9QsXFpU71LTg4QFbrSae2cSd3\nxndlP81p/MQnvifjX6xIwW0XAAAAgJfs3r1bBw8elCT16NFDlZWVatWqlcrLyyVJhw8flsVikcVi\nUVFRkWO7I0eOONqtVqskyWazyW631znrAQC8heIDADRj33//ve68806tWrVK0rn7iR966CHFxsbq\nmWeeUUVFhSQpOztbDz74oEaOHKm1a9dKOncRm5CQoJiYGI0dO1Z79+712jgAoLnasWOH0tPTJUlF\nRUUqLS1VaGiocnNzJUkbN27U4MGD1adPH+3atUslJSU6ffq0CgsL1b9/fw0cOFA5OTmSzi1eOWDA\nAK+NBQDqQvEBAJqp0tJSzZ49WyEhIY42VlAHgMZlzJgxOnbsmGJjY/XEE0/opZde0qRJk/T+++8r\nNjZWx48fV3R0tPz8/JSQkKC4uDiNGzdO8fHxCggIUFRUlM6ePauYmBj95S9/UUJCgreHBAA1cmnN\nh4KCAj3zzDPq2rWrJOn666/X73//e55HDACNiNls1pIlS7RkyRJHW0FBgV5++WVJ51ZQT09P1zXX\nXONYQV1SlRXUo6OjJZ1bQT0pKanhBwF4wWMpm536fHpiuId6gpbAz8+vxuLu8uXLq7VFRkYqMjKy\nStv5a2kAaOxcXnDylltu0cKFCx2vX3jhBcXGxmrYsGF6/fXXlZWVpejoaKWlpSkrK0u+vr4aMWKE\nIiIilJeXp8DAQKWmpmrr1q1KTU3V/Pnz3TIgAMA5Pj4+8vGpmubLysoa3QrqkndXcW4uK0gT33tY\nPb9pxQYAeIfbnnbBX9MAoGlpDCuoS95dxbkprSBN/MaL1fM9H5tiBQA0fS4XH/bs2aPx48frxIkT\nmjhxYov9a9rF9t+S/6pAfM59S43fmPn7+6u8vFx+fn51rqDet29fxwrq3bt3ZwV1AAAAXBKXig9X\nX321Jk6cqGHDhmnv3r16+OGHVVlZ6Xi/Jf01ra79N7W/KhC/ecRvyWN3JX5LK1ScX0H9/vvvr7KC\n+vTp01VSUiKTyaTCwkIlJSXp1KlTysnJ0eDBg1lBHQAAAJfEpeJDhw4dFBUVJUm66qqr1L59e+3a\ntYu/pgFAI7J792699tpr2r9/v3x8fJSbm6t58+YpMTFRmZmZ6tixo6Kjo+Xr6+tYQd1gMFRZQX3b\ntm2KiYmR2WxWSkqKt4fU7Nyb8IHT27C4IQAAaIpcKj5kZ2fLarUqLi5OVqtVR48e1fDhw/lrGgA0\nIj179tTKlSurtbOCOgAAABqaS8WH8PBwPf/88/r0009ls9k0a9Ys9ejRQ9OmTeOvaQAAAAAAoAqX\nig+tW7fW4sWLq7Xz1zQAAAAAAPBLbnvUJgAAaLkeS9ns9DYfpt7vgZ4AAIDGyOjtDgAAAAAAgOaN\n4gMAAAAAAPAoig8AAAAAAMCjKD4AAAAAAACPovgAAAAAAAA8iuIDAAAAAADwKIoPAAAAAADAoyg+\nAAAAAAAAj6L4AAAAAAAAPMrH2x0AAAAAWrI5c+boq6++0pkzZ/Tkk09q8+bN+uabb9SmTRtJUlxc\nnG6//XZlZ2crIyNDRqNRo0aN0siRI2Wz2ZSYmKgDBw7IZDIpOTlZnTp18vKIAKA6ig8AAACAl2zf\nvl0//PCDMjMzVVxcrAceeEC33nqrnnvuOYWFhTk+V1paqrS0NGVlZcnX11cjRoxQRESE8vLyFBgY\nqNTUVG3dulWpqamaP3++F0cEADXjtgsAAADAS26++WYtWLBAkhQYGKiysjJVVlZW+9zOnTvVq1cv\nBQQEyM/PT/369VNhYaHy8/MVEREhSQoNDVVhYWGD9h8A6ouZDwAAAICXmEwm+fv7S5KysrI0ZMgQ\nmUwmrVq1SsuXL1e7du00Y8YMFRUVKSgoyLFdUFCQrFZrlXaj0SiDwaCKigqZzeZaY7Zt6y8fH5NT\n/QwODnBhdO7jrviu7qe5jJ/4xPdmfIoPAAAAgJdt2rRJWVlZSk9P1+7du9WmTRv16NFDf/rTn/TG\nG2/opptuqvJ5u91e435qa79QcXGpU30LDg6Q1XrSqW3cyZ3xXdlPcxo/8YnvyfgXK1JQfAAAAIDL\nHkvZ7NTnP0y930M9abo+//xzLV68WEuXLlVAQIBCQkIc74WHh2vWrFkaOnSoioqKHO1HjhxR3759\nZbFYZLVa1b17d9lsNtnt9jpnPQCAt7DmAwAAAOAlJ0+e1Jw5c/T22287nm4xadIk7d27V5JUUFCg\nrl27qk+fPtq1a5dKSkp0+vRpFRYWqn///ho4cKBycnIkSXl5eRowYIDXxgIAdWHmAwAAAOAlGzZs\nUHFxsSZPnuxoGz58uCZPnqzLLrtM/v7+Sk5Olp+fnxISEhQXFyeDwaD4+HgFBAQoKipK27ZtU0xM\njMxms1JSUrw4GgCoHcUHAAAAwEtGjx6t0aNHV2t/4IEHqrVFRkYqMjKySpvJZFJycrLH+gcA7kLx\nAQAAeMW9CR849fn0xHAP9QQAAHgaaz4AAAAAAACPYuYDALQwp0+f1rRp03TixAnZbDbFx8crODhY\ns2bNkiR169ZNL7/8siRp6dKlysnJkcFg0MSJE3Xbbbd5secAAABoqi6p+FBeXq577rlHEyZMUEhI\niKZOnarKykoFBwdr7ty5MpvNys7OVkZGhoxGo0aNGqWRI0fKZrMpMTFRBw4ccNyn1qlTJ3eNCQBQ\nh/fee0/XXHONEhISdPjwYT3yyCMKDg5WUlKSevfurYSEBP3tb3/Ttddeqw0bNuidd97RqVOnFBsb\nq0GDBslkMnl7CHCCs49BlLi9AQAAuN8l3Xbx1ltv6fLLL5ckLVy4ULGxsVq9erU6d+6srKwslZaW\nKi0tTStWrNDKlSuVkZGh48ePa/369QoMDNSaNWs0fvx4paamumUwAICLa9u2rY4fPy5JKikpUZs2\nbbR//3717t1bkhQWFqb8/HwVFBRo8ODBMpvNCgoK0hVXXKE9e/Z4s+sAAABoolye+fDjjz9qz549\nuv322yWdewbx+Wm6YWFhSk9P1zXXXKNevXopICBAktSvXz8VFhYqPz9f0dHRkqTQ0FAlJSVd4jAA\nAPV19913a926dYqIiFBJSYneeust/eEPf3C8365dO1mtVrVp00ZBQUGO9qCgIFmtVnXr1q3Wfbdt\n6y8fH+dnRgQHBzi9jbt4M7YrGqK/jfWYNLd+eXs8/N4BABqSy8WH1157TTNmzND7778vSSorK5PZ\nbJb0/y9ci4qKarxwvbDdaDTKYDCooqLCsX1NGusF7cX235K/2InPuW+p8Ru7Dz74QB07dtSyZcv0\n73//2/Gs+PPsdnuN29XWfqHi4lKn+xMcHCCr9aTT27mDN2O7qiH621iPSXPql7d/9rwd39nY5HUA\naPpcKj68//776tu3b63rNDh74dqUL2jr2n9LvqAmPue+qcRviRe0hYWFGjRokCSpe/fu+vnnn3Xm\nzBnH+4cPH5bFYpHFYtH//d//VWsHAAAAnOXSmg9btmzRp59+qlGjRmnt2rV688035e/vr/LycklV\nL1yLiooc2x05csTRbrVaJUk2m012u73OWQ8AAPfp3Lmzdu7cKUnav3+/WrVqpS5dumjHjh2SpI0b\nN2rw4MG69dZbtWXLFlVUVOjw4cM6cuSIrrvuOm92HQAAAE2USzMf5s+f7/j3okWLdMUVV+jrr79W\nbm6u7r//fseFa58+fTR9+nSVlJTIZDKpsLBQSUlJOnXqlHJycjR48GDl5eVpwIABbhsQAKBuo0eP\nVlJSksaOHaszZ85o1qxZCg4O1ksvvaSzZ8+qT58+Cg0NlSSNGjVKY8eOlcFg0KxZs2Q0XtI6xQAA\nAGihLulRmxeaNGmSpk2bpszMTHXs2FHR0dHy9fVVQkKC4uLiZDAYHPcVR0VFadu2bYqJiZHZbFZK\nSoq7ugEAuIhWrVppwYIF1dpXr15dre2hhx7SQw891BDdAgAAQDN2ycWHSZMmOf69fPnyau9HRkYq\nMjKySpvJZFJycvKlhgYAAAAAAE0A82cBAAAAAIBHue22CwAA4HmPpWz2dhcAAACcRvEBAADgErhS\nEPow9X4P9AQAgMaL2y4AAAAAAIBHUXwAAAAAAAAexW0XAAAAALyONW2A5o2ZDwAAAAAAwKOY+QAA\nAAB40Zw5c/TVV1/pzJkzevLJJ9WrVy9NnTpVlZWVCg4O1ty5c2U2m5Wdna2MjAwZjUaNGjVKI0eO\nlM1mU2Jiog4cOCCTyaTk5GR16tTJ20MCgGqadfHh3oQPvN0FAAAAoFbbt2/XDz/8oMzMTBUXF+uB\nBx5QSEiIYmNjNWzYML3++uvKyspSdHS00tLSlJWVJV9fX40YMUIRERHKy8tTYGCgUlNTtXXrVqWm\npmr+/PneHhYAVMNtFwAAAICX3HzzzVqwYIEkKTAwUGVlZSooKNAdd9whSQoLC1N+fr527typXr16\nKSAgQH5+furXr58KCwuVn5+viIgISVJoaKgKCwu9NhYAqEuznvkAAAAANGYmk0n+/v6SpKysLA0Z\nMkRbt26V2WyWJLVr105Wq1VFRUUKCgpybBcUFFSt3Wg0ymAwqKKiwrF9Tdq29ZePj8mpfgYHBzg7\ntEbJ1XF4e/zEJ35ziE/xAQAAAPCyTZs2KSsrS+np6brrrrsc7Xa7vcbPO9t+oeLiUqf6FhwcIKv1\npFPbNFaujMPb4yc+8ZtK/IsVKbjtAgAAAPCizz//XIsXL9aSJUsUEBAgf39/lZeXS5IOHz4si8Ui\ni8WioqIixzZHjhxxtFutVkmSzWaT3W6vc9YDAHgLxQcAAADAS06ePKk5c+bo7bffVps2bSSdW7sh\nNzdXkrRx40YNHjxYffr00a5du1RSUqLTp0+rsLBQ/fv318CBA5WTkyNJysvL04ABA7w2FgCoC7dd\nAAAAAF6yYcMGFRcXa/LkyY62lJQUTZ8+XZmZmerYsaOio6Pl6+urhIQExcXFyWAwKD4+XgEBAYqK\nitK2bdsUExMjs9mslJQUL44GAGpH8QEAAADwktGjR2v06NHV2pcvX16tLTIyUpGRkVXaTCaTkpOT\nPdY/AHAXbrsAAAAAAAAeRfEBAAAAAAB4FMUHAAAAAADgURQfAAAAAACAR1F8AAAAAAAAHkXxAQAA\nAAAAeBSP2gSAFig7O1tLly6Vj4+Pnn76aXXr1k1Tp05VZWWlgoODNXfuXJnNZmVnZysjI0NGo1Gj\nRo3SyJEjvd11oMV6LGWzU59PTwz3UE8AAHCeS8WHsrIyJSYm6ujRo/r55581YcIEde/evd4Xrjab\nTYmJiTpw4IDj2cSdOnVy99gAADUoLi5WWlqa3n33XZWWlmrRokXKzc1VbGyshg0bptdff11ZWVmK\njo5WWlqasrKy5OvrqxEjRigiIkJt2rTx9hAAAADQxLh020VeXp569uypVatWaf78+UpJSdHChQsV\nGxur1atXq3PnzsrKylJpaanS0tK0YsUKrVy5UhkZGTp+/LjWr1+vwMBArVmzRuPHj1dqaqq7xwUA\nqEV+fr5CQkLUunVrWSwWzZ49WwUFBbrjjjskSWFhYcrPz9fOnTvVq1cvBQQEyM/PT/369VNhYaGX\new8AAICmyKWZD1FRUY5/Hzx4UB06dFBBQYFefvllSecuXNPT03XNNdc4LlwlOS5c8/PzFR0dLUkK\nDQ1VUlLSpY4DAFBP+/btU3l5ucaPH6+SkhJNmjRJZWVlMpvNkqR27drJarWqqKhIQUFBju2CgoJk\ntVrr3Hfbtv7y8TE53afg4ACnt3EXb8ZurBrrMWms/XKVp8dzsf3zewcAaEiXtObDmDFjdOjQIS1e\nvFjjxo2r94Xrhe1Go1EGg0EVFRWO7Wvi6gWtp/HFTvzGGL8lj70xxG8Kjh8/rjfeeEMHDhzQww8/\nLLvd7njvwn9fqLb2CxUXlzrdl+DgAFmtJ53ezh28Gbsxa6zHpLH2y1WeHk9d+/f2z76zscnrAND0\nXVLx4Z133tG3336rKVOmXNKFq6cuaBtCY/1i9/ZFBfE5900lfku8oG3Xrp1uuukm+fj46KqrrlKr\nVq1kMplUXl4uPz8/HT58WBYj2z4aAAAgAElEQVSLRRaLRUVFRY7tjhw5or59+3qx5wAAAGiqXFrz\nYffu3Tp48KAkqUePHqqsrFSrVq1UXl4uSXVeuJ5vPz9112azyW631znrAQDgPoMGDdL27dt19uxZ\nFRcXq7S0VKGhocrNzZUkbdy4UYMHD1afPn20a9culZSU6PTp0yosLFT//v293HsAAAA0RS4VH3bs\n2KH09HRJUlFRkdMXrgMHDlROTo6kc4tXDhgwwE3DAQBcTIcOHTR06FCNGjVKjz/+uKZPn65Jkybp\n/fffV2xsrI4fP67o6Gj5+fkpISFBcXFxGjdunOLj4x1r+AAAAADOcOm2izFjxujFF19UbGysysvL\n9dJLL6lnz56aNm2aMjMz1bFjR0VHR8vX19dx4WowGBwXrlFRUdq2bZtiYmJkNpuVkpLi7nEBAOow\nZswYjRkzpkrb8uXLq30uMjJSkZGRDdUtAAAANFMuFR/8/PxqfDxmfS9cTSaTkpOTXQkNAAAAAGik\nHkvZ7PQ26YnhHugJGhuXbrsAAAAAAACoL4oPAAAAAADAoyg+AAAAAF70/fff684779SqVaskSYmJ\nibr33nv10EMP6aGHHtKWLVskSdnZ2XrwwQc1cuRIrV27VtK5J8clJCQoJiZGY8eO1d69e701DACo\nk0trPgAAAAC4dKWlpZo9e7ZCQkKqtD/33HMKCwur8rm0tDRlZWXJ19dXI0aMUEREhPLy8hQYGKjU\n1FRt3bpVqampmj9/fkMPAwAuiuIDAABoElxZxAxo7Mxms5YsWaIlS5bU+bmdO3eqV69ejkce9+vX\nT4WFhcrPz1d0dLQkKTQ0VElJSR7vMwC4gtsuAAAAAC/x8fGRn59ftfZVq1bp4Ycf1rPPPqtjx46p\nqKhIQUFBjveDgoJktVqrtBuNRhkMBlVUVDRY/wGgvpj5AAAAADQi999/v9q0aaMePXroT3/6k954\n4w3ddNNNVT5jt9tr3La29gu1besvHx+TU30KDg5w6vONlavj8Pb4m3v8i+2/uY+/pcSn+AAAAAA0\nIheu/xAeHq5Zs2Zp6NChKioqcrQfOXJEffv2lcVikdVqVffu3WWz2WS322U2m+vcf3FxqVP9CQ4O\nkNV60rlBNFKujMPb428J8evaf0sYf3OJf7EiBbddAAAAAI3IpEmTHE+tKCgoUNeuXdWnTx/t2rVL\nJSUlOn36tAoLC9W/f38NHDhQOTk5kqS8vDwNGDDAm10HgFox8wEAAFTBwo5Aw9m9e7dee+017d+/\nXz4+PsrNzdXYsWM1efJkXXbZZfL391dycrL8/PyUkJCguLg4GQwGxcfHKyAgQFFRUdq2bZtiYmJk\nNpuVkpLi7SEBQI0oPgAAAABe0rNnT61cubJa+9ChQ6u1RUZGKjIyskqbyWRScnKyx/oHAO7CbRcA\nAAAAAMCjKD4AAAAAAACPovgAAAAAAAA8iuIDAAAAAADwKIoPAAAAAADAoyg+AAAAAAAAj6L4AAAA\nAAAAPIriAwAAAAAA8Cgfb3cAAIDG6LGUzU59Pj0x3EM9AQAAaPqY+QAAAAAAADyK4gMAAAAAAPAo\nl2+7mDNnjr766iudOXNGTz75pHr16qWpU6eqsrJSwcHBmjt3rsxms7Kzs5WRkSGj0ahRo0Zp5MiR\nstlsSkxM1IEDB2QymZScnKxOnTq5c1wAgDqUl5frnnvu0YQJExQSElLv/A0AAAC4wqWZD9u3b9cP\nP/ygzMxMLV26VK+++qoWLlyo2NhYrV69Wp07d1ZWVpZKS0uVlpamFStWaOXKlcrIyNDx48e1fv16\nBQYGas2aNRo/frxSU1PdPS4AQB3eeustXX755ZLkVP4GAAAAXOHSzIebb75ZvXv3liQFBgaqrKxM\nBQUFevnllyVJYWFhSk9P1zXXXKNevXopICBAktSvXz8VFhYqPz9f0dHRkqTQ0FAlJSW5YywAgHr4\n8ccftWfPHt1+++2S5FT+Dg9nUUUAAFoKZxdfBuriUvHBZDLJ399fkpSVlaUhQ4Zo69atMpvNkqR2\n7drJarWqqKhIQUFBju2CgoKqtRuNRhkMBlVUVDi2BwB4zmuvvaYZM2bo/ffflySVlZXVO39fTNu2\n/vLxMTndp+DgAKe3cRd3xfbmGNA0efpn5mL7bw6/dwCApuOSHrW5adMmZWVlKT09XXfddZej3W63\n1/h5Z9sv5OoFrafxxU78xhi/JY+9McRvzN5//3317du31nV2LiVPS1JxcanTfQoODpDVetLp7dzB\nnbG9NQY0XZ7+malr/978vZOcHzt5HQCaPpeLD59//rkWL16spUuXKiAgQP7+/iovL5efn58OHz4s\ni8Uii8WioqIixzZHjhxR3759ZbFYZLVa1b17d9lsNtnt9ovOenDlgrYhNNYvdm9fVBCfc99U4re0\nC9otW7Zo79692rJliw4dOiSz2exU/gYAAABc4dKCkydPntScOXP09ttvq02bNpLOrd2Qm5srSdq4\ncaMGDx6sPn36aNeuXSopKdHp06dVWFio/v37a+DAgcrJyZEk5eXlacCAAW4aDgCgLvPnz9e7776r\nv/71rxo5cqQmTJjgVP4GAAAAXOHSzIcNGzaouLhYkydPdrSlpKRo+vTpyszMVMeOHRUdHS1fX18l\nJCQoLi5OBoNB8fHxCggIUFRUlLZt26aYmBiZzWalpKS4bUAAAOdMmjRJ06ZNq1f+BgAAAFzhUvFh\n9OjRGj16dLX25cuXV2uLjIxUZGRklTaTyaTk5GRXQgMA3GTSpEmOf9c3fwMA3O/777/XhAkT9Oij\nj2rs2LE6ePCgpk6dqsrKSgUHB2vu3Lkym83Kzs5WRkaGjEajRo0apZEjR8pmsykxMVEHDhxwXGPX\ntq4PAHiTS7ddAAAAALh0paWlmj17tkJCQhxtCxcuVGxsrFavXq3OnTsrKytLpaWlSktL04oVK7Ry\n5UplZGTo+PHjWr9+vQIDA7VmzRqNHz9eqampXhwNANTukp52AdeefZueGO6BngAAAKCpMZvNWrJk\niZYsWeJoKygo0MsvvyxJCgsLU3p6uq655hr16tXLcQtcv379VFhYqPz8fEVHR0s6twZbUlJSww8C\nAOqB4gMAAADgJT4+PvLxqXpJXlZW5ngSXLt27WS1WlVUVKSgoCDHZ4KCgqq1G41GGQwGVVRU1Pkk\nOVceYd9cng7l6ji8PX5vx/e0i43P2+MnvnviU3wAADQpzDgD0JLY7Xa3tF/I2UfYe/sx2u7kyji8\nPX5vx28IdY3P2+Mnfv3jX6xIQfEBAACggd2b8IG3u4BGzN/fX+Xl5fLz89Phw4dlsVhksVhUVFTk\n+MyRI0fUt29fWSwWWa1Wde/eXTabTXa7vc5ZDwDgLSw4CQAAADQioaGhys3NlSRt3LhRgwcPVp8+\nfbRr1y6VlJTo9OnTKiwsVP/+/TVw4EDl5ORIkvLy8jRgwABvdh0AasXMBwAAAMBLdu/erddee037\n9++Xj4+PcnNzNW/ePCUmJiozM1MdO3ZUdHS0fH19lZCQoLi4OBkMBsXHxysgIEBRUVHatm2bYmJi\nZDablZKS4u0hAUCNKD4AAAAAXtKzZ0+tXLmyWvvy5curtUVGRioyMrJKm8lkUnJyssf6BwDuQvEB\nAAA3cGUhTMCTWJwVANCYsOYDAAAAAADwKIoPAAAAAADAo7jtAgAAAJK4fQgA4DnMfAAAAAAAAB5F\n8QEAAAAAAHgUxQcAAAAAAOBRrPkAAAAAoFb3Jnzg9DY8thXALzHzAQAAAAAAeBTFBwAAAAAA4FEU\nHwAAAAAAgEdRfAAAAAAAAB5F8QEAAAAAAHgUxQcAAAAAAOBRPGoTANDsPZay2dtdAAAAaNEuqfjw\n/fffa8KECXr00Uc1duxYHTx4UFOnTlVlZaWCg4M1d+5cmc1mZWdnKyMjQ0ajUaNGjdLIkSNls9mU\nmJioAwcOyGQyKTk5WZ06dXLXuAAAdZgzZ46++uornTlzRk8++aR69epV7/wNAADgTs7+kSA9MdxD\nPYEnuXzbRWlpqWbPnq2QkBBH28KFCxUbG6vVq1erc+fOysrKUmlpqdLS0rRixQqtXLlSGRkZOn78\nuNavX6/AwECtWbNG48ePV2pqqlsGBACo2/bt2/XDDz8oMzNTS5cu1auvvupU/gYAAACc5XLxwWw2\na8mSJbJYLI62goIC3XHHHZKksLAw5efna+fOnerVq5cCAgLk5+enfv36qbCwUPn5+YqIiJAkhYaG\nqrCw8BKHAgCoj5tvvlkLFiyQJAUGBqqsrMyp/A0AAAA4y+XbLnx8fOTjU3XzsrIymc1mSVK7du1k\ntVpVVFSkoKAgx2eCgoKqtRuNRhkMBlVUVDi2/6W2bf3l42NytbuNSnBwQLOKQ/zGF78lj70xxG/s\nTCaT/P39JUlZWVkaMmSItm7dWu/8XRdXczXnDGhZ+J0HgJbHYwtO2u12t7SfV1xcesl9aiys1pMe\njxEcHNAgcYjf+OK35LG7Er8lXwBv2rRJWVlZSk9P11133eVodzVPS67lam//zABoeM7+zre0XF1Q\nUKBnnnlGXbt2lSRdf/31+v3vf8/aPACaNLc+atPf31/l5eWSpMOHD8tischisaioqMjxmSNHjjja\nz/8FzWazyW631zrrAQDgXp9//rkWL16sJUuWKCAgwKn8DQDwvFtuuUUrV67UypUrNWPGDNbmAdDk\nubX4EBoaqtzcXEnSxo0bNXjwYPXp00e7du1SSUmJTp8+rcLCQvXv318DBw5UTk6OJCkvL08DBgxw\nZ1cAALU4efKk5syZo7fffltt2rSR5Fz+BgA0PNbmAdDUuXzbxe7du/Xaa69p//798vHxUW5urubN\nm6fExERlZmaqY8eOio6Olq+vrxISEhQXFyeDwaD4+HgFBAQoKipK27ZtU0xMjMxms1JSUtw5LgBA\nLTZs2KDi4mJNnjzZ0ZaSkqLp06fXK38DADxvz549Gj9+vE6cOKGJEyc6tbbaxTTEWmqN9VYZV/vl\n7fF4O35j09DHw9vHv7nEd7n40LNnT61cubJa+/Lly6u1RUZGKjIyskqbyWRScnKyq+EBAC4aPXq0\nRo8eXa29vvkbAOBZV199tSZOnKhhw4Zp7969evjhh1VZWel4/1LW5pEaZi21xrqWjyv98vbaRN6O\n3xg15PHw9vFvSvEvVqRw620XAAAAAC5Nhw4dFBUVJYPBoKuuukrt27fXiRMnWJsHQJNG8QEAAABo\nRLKzs7Vs2TJJktVq1dGjRzV8+HDW5gHQpHnsUZsAAAAAnBceHq7nn39en376qWw2m2bNmqUePXpo\n2rRprM0DoMmi+AAAAAA0Iq1bt9bixYurtbM2D4CmjOIDAAAAALQAj6Vs9nYX0IKx5gMAAAAAAPAo\nZj54gSsVx/TEcA/0BAAAAACaFv4/1TRRfAAAAACAJoZbKNDUcNsFAAAAAADwKIoPAAAAAADAo7jt\nAgAAAECL4MqtCh+m3u+BngAtD8UHAAAAAG7FegQAfonbLgAAAAAAgEcx8wEAAAAA0KzxeE7vY+YD\nAAAAAADwKIoPAAAAAADAo7jtAgAAAADchOn9QM0oPjQRziYxHgkEoKm4N+EDb3cBAIBa8T0FuAfF\nBwAAAAAAvKAlzZRhzQcAAAAAAOBRzHwAAAAAAC9y5a/fQFND8QEAAAAAgF9wtijUVG+HaCheLT68\n+uqr2rlzpwwGg5KSktS7d29vdqdZcWVhHH5ZANSEXA0AjRt5GkBT4LXiw9///nf997//VWZmpn78\n8UclJSUpMzPTW90BANSAXA0AjRt5Gmg8uH2mbl4rPuTn5+vOO++UJHXp0kUnTpzQqVOn1Lp1a291\nqcVrSSutAqgfcjUANG7kaaDlaYgihyf+n+e14kNRUZFuvPFGx+ugoCBZrVYSZRPTnKp7FFKA6sjV\nANC4kacBNBWNZsFJu91e5/vBwQFO7/PD1Ptd7Q5wyVz5mW0OsYnfvJGrAbgDedpzLpanJeePP3ka\naNnclbONbtmLCywWi4qKihyvjxw5ouDgYG91BwBQA3I1ADRu5GkATYXXig8DBw5Ubm6uJOmbb76R\nxWJhehgANDLkagBo3MjTAJoKr9120a9fP914440aM2aMDAaDZs6c6a2uAABqQa4GgMaNPA2gqTDY\n63NjGAAAAAAAgIu8dtsFAAAAAABoGSg+AAAAAAAAj2o0j9q8FH//+9/1zDPP6NVXX1VYWFi197Oz\ns5WRkSGj0ahRo0Zp5MiRstlsSkxM1IEDB2QymZScnKxOnTo5Hfti+9m9e7dee+01x+s9e/YoLS1N\nX3zxhT788EN16NBBknTfffdp5MiRbo0tSTfeeKP69evneL1ixQqdPXu2QcYuSRs2bFB6erqMRqNC\nQkL07LPPat26dVqwYIGuuuoqSVJoaKieeuqpesd99dVXtXPnThkMBiUlJal3796O97Zt26bXX39d\nJpNJQ4YMUXx8/EW3cVZd+9q+fbtef/11GY1GXXPNNfrjH/+oL7/8Us8884y6du0qSbr++us1Y8YM\nj8QPDw/Xr3/9a5lMJknSvHnz1KFDhwYZ/+HDh/X88887Prd3714lJCTIZrNd0vn+pe+//14TJkzQ\no48+qrFjx1Z5ryHOP1zTUvN0feJL5OrmlqvJ0+Tppopc3fJytdSy8/XF4pOz3Xz+7U3cf//7X/v4\n8ePtEyZMsG/evLna+6dPn7bfdddd9pKSEntZWZn97rvvthcXF9vXrVtnnzVrlt1ut9s///xz+zPP\nPONSfGf2c+LECfvvfvc7e2VlpX3hwoX2lStXuhTTmdi33HLLJfX5UuKXlpbaw8LC7CdPnrSfPXvW\nPmLECPsPP/xgf/fdd+0pKSkuxSwoKLA/8cQTdrvdbt+zZ4991KhRVd4fNmyY/cCBA/bKykp7TEyM\n/YcffrjoNu6MHxERYT948KDdbrfbJ02aZN+yZYt9+/bt9kmTJrkc05n4YWFh9lOnTjm1jTvjn2ez\n2exjxoyxnzp16pLO9y+dPn3aPnbsWPv06dNr/P3x9PmHa1pynq5vfHJ188nV5GnydFNFrm55udpu\nb9n5uj7xydnuPf9N/raL4OBgvfHGGwoICKjx/Z07d6pXr14KCAiQn5+f+vXrp8LCQuXn5ysiIkLS\nuWpRYWGhS/Gd2c+yZcv0yCOPyGh0z2F3dQwNNfbLLrtM2dnZat26tQwGg9q0aaPjx4+7FOvCmHfe\neackqUuXLjpx4oROnTol6Vw18PLLL9dvfvMbGY1G3XbbbcrPz69zG3fGl6R169bp17/+tSQpKChI\nxcXFLo/Vlfju2uZS9/Xee+9p6NChatWqlUtxamM2m7VkyRJZLJZq7zXE+YdrWnKedja+O7Zzdj/k\navfmavI0ebqpIle3vFx9Pm5Lzdf1ie+ubS51X80lZzf54sNll13mmAZTk6KiIgUFBTleBwUFyWq1\nVmk3Go0yGAyqqKhwOn5991NeXq6tW7fqjjvucLTl5ORo3LhxevLJJ7V3716PxK6oqFBCQoLGjBmj\n5cuXO9Vnd8Q//5zp7777Tvv371efPn0knZvWFxcXp0ceeUT/+te/nIrZtm1bx+vz51OSrFZrree6\ntm2cdbF9nR/vkSNH9MUXX+i2226TdG5q4Pjx4xUTE6MvvvjCpdj1iS9JM2fOVExMjObNmye73d6g\n4z9v7dq1GjFihOO1q+f7l3x8fOTn51fjew1x/uGalpyn6xufXN18cjV5mjzdVJGrW16uPh+3pebr\n+sSXyNm/7NuljL9Jrfmwdu1arV27tkrbpEmTNHjw4Hrvw17Lk0Vra79Y/J07d9ZrP5s2bdLtt9/u\nqNDedtttuvXWW3XzzTfro48+0iuvvKK3337b7bGnTp2q++67TwaDQWPHjlX//v2rfcbTY//pp5/0\n/PPPKzU1Vb6+vurTp4+CgoJ0++236+uvv9a0adP04YcfXrQPNalP392xjTP7Onr0qMaPH6+ZM2eq\nbdu2uvrqqzVx4kQNGzZMe/fu1cMPP6yNGzfKbDa7Pf7TTz+twYMH6/LLL1d8fLxyc3Pr1Wd3xZek\nr7/+Wtdee63jy8Kd59sd3Dl+VNeS8/SlxCdXu2cbZ/bVULmaPO088rTnkavJ1bVpyfm6pvjk7Itz\nZvxNqvgwcuRIpxeQsVgsKioqcrw+cuSI+vbtK4vFIqvVqu7du8tms8lut1/0B7am+ImJifXaT15e\nnmJiYhyvf7mQybx58zwS+8KYt956q77//vsGHfuhQ4cUHx+vOXPmqEePHpLOTc/p0qWLJOmmm27S\nsWPHVFlZWWe1/byazmdwcHCN7x0+fFgWi0W+vr61buOsuuJL0qlTp/T4449r8uTJGjRokCSpQ4cO\nioqKkiRdddVVat++vQ4fPuzSYkQXix8dHe3495AhQxznu6HGL0lbtmxRSEiI4/WlnO9L6Zsnzj8u\nriXn6UuJT65uPrmaPF3/vpGnvYdcTa4+ryXn6/rEJ2e79/w3+dsuLqZPnz7atWuXSkpKdPr0aRUW\nFqp///4aOHCgcnJyJJ1LYgMGDHBp//Xdz+7du9W9e3fH61deeUU7duyQdG7azPnVWt0Z+z//+Y8S\nEhJkt9t15swZFRYWqmvXrg069hdffFGzZs3SjTfe6GhbsmSJ1q9fL+nc6qpBQUH1/mUZOHCgo+L4\nzTffyGKxOKqAV155pU6dOqV9+/bpzJkzysvL08CBA+vcxpUx17WvlJQUPfLIIxoyZIijLTs7W8uW\nLZN0bvrS0aNHHSsyuzP+yZMnFRcX55ii9+WXXzrOd0ONX5J27dpV5Wf9Us63Mxri/MMzmnOerk98\ncnXzytXk6dqRp5s2cnXzy9Xn47bUfH2x+ORs959/g72Jz23bsmWLli1bpv/85z8KCgpScHCw0tPT\n9ac//Uk333yzbrrpJuXk5GjZsmWOKVL33XefKisrNX36dP30008ym81KSUnRb37zG6fj17afC+NL\nUkhIiPLz8x3bfffdd5o5c6Z8fHxkMBj0yiuvqHPnzm6PPXfuXG3fvl1Go1Hh4eF66qmnGmzsbdq0\nUXR0dJWK9KOPPqobb7xRU6ZMcSRvZx9PM2/ePO3YsUMGg0EzZ87Uv/71LwUEBCgiIkJffvmlo+J9\n1113KS4ursZtLvwFdlZt8QcNGlTlnEvSPffco7vvvlvPP/+8SkpKZLPZNHHiRMf9au6MHxERoYyM\nDL3//vv61a9+pRtuuEEzZsyQwWBokPGfXyTp3nvv1fLly9W+fXtJ56r0l3K+L3T+MVv79++Xj4+P\nOnTooPDwcF155ZUNdv7hvJacp+sbn1zdvHI1eZo83RSRq1tmrpZadr6+2PjJ2e49/02++AAAAAAA\nABq3Zn/bBQAAAAAA8C6KDwAAAAAAwKMoPgAAAAAAAI+i+AAAAAAAADyK4gMAAAAAAPAoig8AAAAA\nAMCjKD4AAAAAAACPovgAAAAAAAA8iuIDAAAAAADwKIoPAAAAAADAoyg+AAAAAAAAj6L4AAAAAAAA\nPIriAwAAAAAA8CiKDwAAAAAAwKMoPgAAAAAAAI+i+AAAAAAAADyK4gMAAAAAAPAoig8AAAAAAMCj\nKD4AAAAAAACPovgAAAAAAAA8iuIDAAAAAADwKIoPAAAAAADAoyg+AAAAAAAAj6L4AAAAAAAAPIri\nA7yioKBAERERbt9vamqq1qxZI0n6/PPPdeDAAaf3ccMNN2jfvn3u7hoAAADQZDz00EP64IMPLvq5\nv/71r45/R0ZGqqioyJPdQhNG8QHNSkJCgmJiYiRJK1ascKn4AACo6sUXX9SiRYskee7C8p///Kfi\n4uLcvl8AgOdYrVYtXbrU8TonJ0ft27f3Yo/QmFF8gFf9/PPPeumllzR06FANGzZMKSkpqqyslCSF\nh4frnXfe0YgRIzRo0CClpKQ4tlu8eLFCQkL04IMP6i9/+YvCw8MlSYmJiXrzzTc1f/58bd++XVOm\nTNGGDRsc7edd+Ppvf/ubIiIiNGzYsCrJU5IyMzMVGRmp8PBwPffccyovL/f0IQGARs1TF5a9e/fW\nsmXL3L5fAGhuCgoKdO+99yolJUVDhw5VeHi4/vGPf9R5Xd2tWzf9+c9/1v3336+QkBDHTOF169bp\n0Ucfdez7l6/P+/TTT3Xvvfdq6NChGj58uL799ltJ0pgxY3TgwAFFRkaqoqJC3bp106FDhyRJf/7z\nnxUVFaXIyEg99dRTOnbsmKRz1+ELFy7UuHHjFBYWpnHjxqmsrMyDRwyNBcUHeFVGRoYOHTqkjz76\nSO+995527Nih9evXO97/8ssvlZmZqXfffVerVq3SoUOH9MMPP2jp0qX64IMPtHr1auXk5FTb7+TJ\nk9WhQwfNnTtXUVFRtcavrKzUiy++qJkzZ+rjjz+W0Wh0JOkdO3ZowYIFysjI0ObNm9W6dWstWLDA\n/QcBANxs3759GjRokJYsWaKhQ4dq6NCh+sc//qEnnnhCgwcP1gsvvCBJ2rRpk+79f+zdfVhUdf7/\n8dcwMEvooEKMrWWttZlu3qeSKN6gyE25Yt5iaiW7aalpYcq6uupmgRZllqWZd6vV+pWsqG3BTGw1\nlTJaV9vdbn8V3iSgICAqiOf3h5ezEqLMyHi4eT6uq+tiPjNn3u/PGXh7es/nnDNokPr376/x48c7\nDwzz8/M1fvx4hYWF6cEHH1RRUZHzvS88sFy6dKkiIiI0YMAATZgwQYWFhZKkF154QX/+8581adIk\n9e/fX8OGDVNOTs4lc77wdLxLbZ+dna17771X4eHhGjp0qL744gtJ0qFDhxQXF6eIiAjdfffdevvt\nt13aF5faHwBQ23z77bfq0KGD0tPT9dBDD2nevHmXPa7+4Ycf9M477+i1117TU089pfz8/GrFOnPm\njBISEvTEE08oPT1dYWFhWrhwoSTpqaee0i9/+UulpaXJZrM5t/nnP/+plStXat26dUpLS1OLFi2U\nnJzsfD4tLU3PPfecPgz8el8AACAASURBVPjgAx07dkwffPBBDe0Z1GY0H2Cqbdu2acSIEfL29pav\nr68GDRqkjz/+2Pn8oEGDZLVa1bx5cwUGBurw4cP69NNP1b17dzkcDv3iF7/Q0KFD3Y7//fffq7S0\nVL169ZIkDRkyxPnc1q1bFR0drebNm0uSYmNjtXnzZrdjAcDVlJ+fr6CgIKWnp+u2227To48+qqSk\nJKWmpuq9997Tjz/+qBkzZig5OVkffvihgoODNW/ePEnSihUr1KxZM23dulV/+tOftGPHjkrvv3//\nfr322mt68803tXnzZpWWlmr9+vXO59PS0jRr1ixt2bJFgYGBevPNN13Kv6rt58yZo7vuuksffPCB\nHnroIc2YMcM53r17d6Wnp2v58uVasGCB8/o91dkX2dnZVe4PAKht/Pz8FBUVJUkaOHCg/vOf/yg9\nPf2Sx9Xnj5lvvvlmtWrVSv/617+qFcvb21s7d+5Up06dJEldu3ZVdnb2JbfZtm2bIiIiFBgYKEka\nPnx4hVz69Omjpk2bytvbW61bt9bhw4erP3nUWd5mJ4CG7dixY2rSpInzcZMmTXT06FHn48aNGzt/\ntlqtKi8vV2FhYYVtzjcH3HH8+PEKMS5836KiIn3wwQfOg27DMFRWVuZ2LAC4ms6cOaPIyEhJUuvW\nrSVJAQEBkqSgoCClpqaqe/fuzudGjRqlnj17qry8XHv27NGDDz4oSbrhhhvUvXv3Su/frl07bdu2\nzflNV+fOnSscjHbt2lXXX3+9JKlt27YuH1hebPvTp08rMzNTS5YskST1799fPXr0UFlZmXbu3KnF\nixdLkq6//noFBwdr9+7duvPOOy+7L3JycvTll19WuT+sVqtLuQOAp/n7+8tisTh/lqTi4uJLHlf/\n/Lnzq9WqY926dXrrrbdUWlqq0tJSZ+yqHDt2TA6Ho0K+F+Zit9udP58/xkf9R/MBprr22mtVUFDg\nfFxQUHDZc4kbN26skpIS5+PLLeWVJC8vL509e9b5+Pjx45LOFd7i4mLn+IVLbB0Oh4YMGaKZM2de\nfiIAUMtYrVb5+vpKOlcD/fz8Kjzn7e2tPXv2OP+nXDpXXwsKCnT8+PEKB4bnD2wvdPLkSSUmJioz\nM1PSubrat29f5/NXemB5se0LCgp09uxZ53MWi0WNGjVSbm6uDMOolPP5mn65fVFeXq6ioqIq98f5\nb+4AoLa48Pj5/HGtv7//JY+r8/PznU3dgoICNWnSRMeOHatQny/WkMjKytKKFSu0ceNG3XDDDfr4\n4481Z86cS+bnzjE+6j9Ou4Cp+vbtq5SUFJWXl6ukpETvvPOO+vTpc8ltOnTooMzMTB07dkylpaXO\n83p/ztvb23meclBQkP773/9KOne+cFZWliTpxhtvlNVqdR48b9q0ydnJDQsL0+bNm50Hr1u2bNEr\nr7xy5ZMGgFrA4XAoJCREaWlpzv92796twMBA+fv7V7jOw8WufbB27Vp9//332rRpk9LT0zVy5EiP\n59ysWTNZLBbnecqGYeiHH35Q06ZN5eXl5TwAl+Ry0+BS+wMAaptTp05py5YtkqT09HS1a9dOERER\nlzyu/tvf/ibp3PUifvjhB3Xs2FEOh0P/7//9P50+fVonT5686LXUjh07psDAQLVo0UInT57UW2+9\npZKSEhmGIW9vb5WUlOjMmTMVtunbt68++OADZ73+61//etljfNR/NB9gqrFjx+q6667TXXfdpaFD\nh6pv377O89eq0qFDBw0ZMkRDhgzRuHHj1K9fv4u+LiIiQo899phWr16tESNG6ODBgxo4cKCSk5MV\nEREhSfLx8dETTzyhWbNmKSoqShaLxfmN2O23366JEydq7NixioqK0po1a9S/f/+a3QEAYBKbzaY9\ne/Y4T5X417/+pQULFkiSOnXq5Dyo/fHHH/XZZ59V2v7o0aO6+eab1ahRIx08eFAfffRRhVVpnsq5\nZ8+eeuuttyRJ27dv14MPPigfHx/16tVLGzZscOa8Z88ehYSEVPu9e/XqVeX+AIDa5vrrr9dnn32m\niIgILV++XHPnzr3scXVAQIAGDx6se++9V7Nnz1aTJk0UHBysjh07KiIiQr///e8veqwbGhoqh8Oh\nAQMGaPz48brvvvtkt9v1yCOP6LbbblOTJk3Us2fPCre479Chgx588EHde++9ioyMVFFRkR599NGr\nsm9Qe1kMwzDMTgJwlWEYzhUK27Zt0+LFi6tcAQEADc2BAwc0cOBA/fvf/5YkvfTSS/rxxx+dtywO\nDw/XggULVFxcrOeff15lZWVq1KiRZs2apS5duigvL0+PPvqoDh48qFtuuUUBAQG64YYbNGXKFN12\n22366KOPdOLECT3yyCM6c+aMbrvtNo0ePVpTpkzRpEmTVFRUpJ9++klPPvmkpHN3r7jw8cVkZmZq\n9uzZ+uCDDyq9/sLHP/30k6ZPn67Dhw+rSZMmmj9/vtq3b6/Dhw9r9uzZOnjwoHx8fDR58mRFRERU\ne18EBwfrww8/vOj+AIDa5MJ6WV3na/d1113nwcyAS6P5gDrn2LFjioqK0qZNm9SiRQslJCTommuu\n4arkAAAAqPdoPqCu4oKTqHMCAgI0bdo03X///bJYLLr55pudt1oDAAAAANQ+rHwAAABXxaRJk/Tt\nt99e9LmlS5fqlltuucoZAQCAq4XmAwAAAAAA8Kg6c9pFbm7R5V/0M82a+Sk/37NX3q7tOZgdvzbk\nYHb82pCD2fFrQw5VxQ8KspuQTf1V12p1bf29JH79jt3Q47sTm1pds1yt1Q3597Whx2/Iczc7fl2c\n++Vqdb2+1aa3t9XsFEzPwez4tSEHs+PXhhzMjl8bcjA7Pqpm5mdj9u8F8fnsG2J8s+cO15n9mRG/\n4f69NuT49XHu9br5AAAAAAAAzEfzAQAAAAAAeBTNBwAAAAAA4FE0HwAAAAAAgEfRfAAAAAAAAB7l\n1q02T548qYSEBB09elSnT5/Www8/rDZt2mjGjBkqLy9XUFCQnn76adlsNqWmpmrt2rXy8vLSiBEj\nNHz4cJWVlSkhIUGHDh2S1WpVYmKiWrZsWdNzAwAAAAAAtYBbKx8yMjLUrl07rV+/XosXL1ZSUpKW\nLFmi0aNH6/XXX9dNN92klJQUlZSUaOnSpVqzZo3WrVuntWvXqqCgQO+99578/f31xhtvaOLEiUpO\nTq7peQEAAAAAgFrCrZUP0dHRzp8PHz6s5s2bKzMzU/Pnz5ck9evXT6tWrVKrVq3Uvn172e12SVKX\nLl2UlZWlXbt2KSYmRpIUEhKiWbNmXek8gKtufNJWl7dZlRDmgUwAeIKrf+P8fQOorwbFv+PyNtRE\nAD/nVvPhvFGjRumnn37SsmXL9MADD8hms0mSAgMDlZubq7y8PAUEBDhfHxAQUGncy8tLFotFpaWl\nzu0vplkzP3l7W13OMSjI7vI2Nc3sHMyOXxtyMDv+eWbmURv2gdk5mB0fAAAAaKiuqPnw17/+Vf/5\nz3/0+OOPyzAM5/iFP1/I1fEL5eeXuJxfUJBdublFLm9Xk8zOwez4tSEHs+NfyKw8asM+MDuHquLT\nkAAAAAA8z61rPuzfv1+HDx+WJLVt21bl5eVq1KiRTp06JUk6cuSIHA6HHA6H8vLynNvl5OQ4x3Nz\ncyVJZWVlMgzjkqseAAAAAABA3eVW82HPnj1atWqVJCkvL08lJSUKCQlRenq6JGnz5s0KDQ1Vx44d\ntW/fPhUWFurEiRPKyspS165d1bNnT6WlpUk6d/HK4ODgGpoOAAAAAACobdw67WLUqFH64x//qNGj\nR+vUqVP605/+pHbt2mnmzJnasGGDWrRooZiYGPn4+Cg+Pl5xcXGyWCyaNGmS7Ha7oqOjtXPnTsXG\nxspmsykpKamm5wUAAAAAAGoJt5oPvr6+F7095urVqyuNRUZGKjIyssKY1WpVYmKiO6EBAAAAAEAd\n49ZpFwAAAAAAANVF8wEAAAAAAHgUzQcAAAAAAOBRbl3zAQCAumR80lazUwAAAGjQWPkAAAAAAAA8\niuYDAAAAAADwKJoPAAAAAADAo2g+AAAAAAAAj+KCkwBQjy1atEifffaZzpw5owkTJqh9+/aaMWOG\nysvLFRQUpKefflo2m02pqalau3atvLy8NGLECA0fPlxlZWVKSEjQoUOHZLValZiYqJYtW5o9pVrL\nnYtavps82AOZAAAA1D40HwCgntq9e7e+/vprbdiwQfn5+RoyZIh69Oih0aNHKyoqSs8++6xSUlIU\nExOjpUuXKiUlRT4+Pho2bJjCw8OVkZEhf39/JScna8eOHUpOTtbixYvNnhYAAADqIE67AIB6qlu3\nbnr++eclSf7+/jp58qQyMzPVv39/SVK/fv20a9cu7d27V+3bt5fdbpevr6+6dOmirKws7dq1S+Hh\n4ZKkkJAQZWVlmTYXAAAA1G2sfACAespqtcrPz0+SlJKSot69e2vHjh2y2WySpMDAQOXm5iovL08B\nAQHO7QICAiqNe3l5yWKxqLS01Ln9xTRr5idvb6vLuQYF2V3epr4we+4NOX5DnrvZ8c2eOwDg6qP5\nAAD13JYtW5SSkqJVq1Zp4MCBznHDMC76elfHL5SfX+JyfkFBduXmFrm8XX1h5tzN3vdmxm/Iczc7\nvjux63Oz4sSJE5o5c6aOHz+usrIyTZo0SUFBQZo3b54k6bbbbtP8+fMlSa+++qrS0tJksVg0efJk\n9enTR0VFRYqPj1dRUZH8/PyUnJyspk2bmjgjALg4TrsAgHps+/btWrZsmVasWCG73S4/Pz+dOnVK\nknTkyBE5HA45HA7l5eU5t8nJyXGO5+bmSpLKyspkGMYlVz0AAFz31ltvqVWrVlq3bp2ef/55Pfnk\nk3ryySc1a9Ys/fWvf1VxcbE++ugjZWdn6/3339frr7+u5cuXKzExUeXl5Vq7dq26d++uN954QwMH\nDtSKFSvMnhIAXBTNBwCop4qKirRo0SItX77c+S1YSEiI0tPTJUmbN29WaGioOnbsqH379qmwsFAn\nTpxQVlaWunbtqp49eyotLU2SlJGRoeDgYNPmAgD1VbNmzVRQUCBJKiwsVNOmTXXw4EF16NBB0v+u\nz5OZmanQ0FDZbDYFBATo+uuv1zfffFPh+jznXwsAtRGnXQBAPfX+++8rPz9f06ZNc44lJSVp9uzZ\n2rBhg1q0aKGYmBj5+PgoPj5ecXFxslgsmjRpkux2u6Kjo7Vz507FxsbKZrMpKSnJxNkAQP101113\nadOmTQoPD1dhYaFefvll/fnPf3Y+f/76PE2bNr3s9XkCAwOVk5Nz2ZjuXp/HFTV9qozZp9405PgN\nee5mx69vc6f5AAD11MiRIzVy5MhK46tXr640FhkZqcjIyApjVqtViYmJHssPACC98847atGihVau\nXKn//ve/zgbwea5ch6c61+aR3Ls+j6tq8poiDfkaKWbHb8hzNzt+XZz75ZoVnHYBAAAAmCQrK0u9\nevWSJLVp00anT59Wfn6+8/mqrs9z4fj56/OcHwOA2ojmAwAAAGCSm266SXv37pUkHTx4UI0aNdIt\nt9yiPXv2SPrf9XnuvPNObdu2TaWlpTpy5IhycnL061//usL1ec6/FgBqI7dPu1i0aJE+++wznTlz\nRhMmTNDWrVv1xRdfOC9qFhcXp759+yo1NVVr166Vl5eXRowYoeHDh6usrEwJCQk6dOiQc1lvy5Yt\na2xSAAAAQF0wcuRIzZo1S2PGjNGZM2c0b948BQUF6U9/+pPOnj2rjh07KiQkRJI0YsQIjRkzRhaL\nRfPmzZOXl5fGjh2rxx9/XKNHj5a/v7+efvppk2cEABfnVvNh9+7d+vrrr7Vhwwbl5+dryJAhuvPO\nO/XYY4+pX79+zteVlJRo6dKlSklJkY+Pj4YNG6bw8HBlZGTI399fycnJ2rFjh5KTk7V48eIamxQA\nAABQFzRq1EjPP/98pfHXX3+90tjYsWM1duzYStu/9NJLHssPAGqKW6dddOvWzVkk/f39dfLkSZWX\nl1d63d69e9W+fXvZ7Xb5+vqqS5cuysrKqnBLoJCQEGVlZV3BFAAAAAAAQG3mVvPBarXKz89PkpSS\nkqLevXvLarVq/fr1GjdunB599FEdO3aswq1/pIvfEsjLy0sWi0WlpaU1MB0AAAAAAFDbXNGtNrds\n2aKUlBStWrVK+/fvV9OmTdW2bVu98sorevHFF9W5c+cKr3flVkE/5+79iM2+N2ptyMHs+LUhB7Pj\nn9eQ7xNcG3IwOz4AAADQULndfNi+fbuWLVumV199VXa7XT169HA+FxYWpnnz5ikiIqLCLYFycnLU\nqVMn5y2B2rRpo7KyMhmGIZvNdsl47tyP2Ox7o9aGHMyOXxtyMDv+hRrqfYJrQw5VxachAQAAAHie\nW6ddFBUVadGiRVq+fLnz7hZTpkxRdna2JCkzM1O33nqrOnbsqH379qmwsFAnTpxQVlaWunbtWuGW\nQBkZGQoODq6h6QAAAAAAgNrGrZUP77//vvLz8zVt2jTn2D333KNp06bpmmuukZ+fnxITE+Xr66v4\n+HjFxcXJYrFo0qRJstvtio6O1s6dOxUbGyubzaakpKQamxAAAAAAAKhd3Go+jBw5UiNHjqw0PmTI\nkEpjkZGRioyMrDBmtVqVmJjoTmgAAAAAAFDHuHXaBQAAAAAAQHXRfAAAAAAAAB5F8wEAAAAAAHgU\nzQcAAAAAAOBRNB8AAAAAAIBH0XwAAAAAAAAeRfMBAAAAAAB4FM0HAAAAAADgUTQfAAAAAACAR9F8\nAAAAAAAAHkXzAQAAAAAAeBTNBwAAAAAA4FE0HwAAAAAAgEfRfAAAAAAAAB5F8wEAAAAAAHgUzQcA\nAAAAAOBRNB8AAAAAAIBH0XwAAAAAAAAe5W12AgAAz/nqq6/08MMP6/7779eYMWOUkJCgL774Qk2b\nNpUkxcXFqW/fvkpNTdXatWvl5eWlESNGaPjw4SorK1NCQoIOHTokq9WqxMREtWzZ0uQZ1S+D4t9x\neZtVCWEeyAQAAMCzaD4AQD1VUlKiJ554Qj169Kgw/thjj6lfv34VXrd06VKlpKTIx8dHw4YNU3h4\nuDIyMuTv76/k5GTt2LFDycnJWrx48dWeBgAAAOoBt0+7WLRokUaOHKmhQ4dq8+bNOnz4sMaOHavR\no0dr6tSpKi0tlSSlpqZq6NChGj58uDZu3ChJKisrU3x8vGJjYzVmzBhlZ2fXzGwAAE42m00rVqyQ\nw+G45Ov27t2r9u3by263y9fXV126dFFWVpZ27dql8PBwSVJISIiysrKuRtoAAACoh9xa+bB79259\n/fXX2rBhg/Lz8zVkyBD16NFDo0ePVlRUlJ599lmlpKQoJiaGb9MAwCTe3t7y9q5c5tevX6/Vq1cr\nMDBQc+bMUV5engICApzPBwQEKDc3t8K4l5eXLBaLSktLZbPZqozZrJmfvL2tLucaFGR3eZuGqqb3\nldn73sz4DXnuZsc3e+4AgKvPreZDt27d1KFDB0mSv7+/Tp48qczMTM2fP1+S1K9fP61atUqtWrVy\nfpsmqcK3aTExMZLOfZs2a9asmpgLAOAyBg8erKZNm6pt27Z65ZVX9OKLL6pz584VXmMYxkW3rWr8\nQvn5JS7nFBRkV25ukcvbNVQ1ua/M3vdmxm/Iczc7vjux63uzIjU1Va+++qq8vb31yCOP6LbbbtOM\nGTNUXl6uoKAgPf3007LZbFyfB0Cd5lbzwWq1ys/PT5KUkpKi3r17a8eOHc5vwwIDAyt9ayY13G/T\nzM7B7Pi1IQez45/X0L9lMjsHs+PXBhde/yEsLEzz5s1TRESE8vLynOM5OTnq1KmTHA6HcnNz1aZN\nG5WVlckwjEvWaQCA6/Lz87V06VK9+eabKikp0QsvvKD09HRWFAOod67ogpNbtmxRSkqKVq1apYED\nBzrHXf3WrD5/m2Z2DmbHrw05mB3/QnXpW6b6lkNV8RtaQ2LKlCmaMWOGWrZsqczMTN16663q2LGj\nZs+ercLCQlmtVmVlZWnWrFkqLi5WWlqaQkNDlZGRoeDgYLPTB4B6Z9euXerRo4caN26sxo0b64kn\nnlBYWBgrigHUO243H7Zv365ly5bp1Vdfld1ul5+fn06dOiVfX18dOXJEDodDDoeDb9MAwCT79+/X\nwoULdfDgQXl7eys9PV1jxozRtGnTdM0118jPz0+JiYny9fVVfHy84uLiZLFYNGnSJNntdkVHR2vn\nzp2KjY2VzWZTUlKS2VMCgHrnwIEDOnXqlCZOnKjCwkJNmTJFJ0+erJUril3B9WnqT/yGPHez49e3\nubvVfCgqKtKiRYu0Zs0a573iQ0JClJ6ersGDB2vz5s0KDQ3l2zQAMFG7du20bt26SuMRERGVxiIj\nIxUZGVlh7Py5wwAAzyooKNCLL76oQ4cOady4cRVWBdeWFcWu4vo09SN+Q5672fHr4twv16xwq/nw\n/vvvKz8/X9OmTXOOJSUlafbs2dqwYYNatGihmJgY+fj48G0aAAAAUIXAwEB17txZ3t7euvHGG9Wo\nUSNZrVZWFAOod9xqPowcOVIjR46sNL569epKY3ybBgAAAFxcr169lJCQoN///vc6fvy4SkpK1KtX\nL1YUA6h3ruiCkwAAAADc17x5c0VERGjEiBGSpNmzZ6t9+/aaOXMmK4oB1Cs0HwAAAAATjRo1SqNG\njaowxopiAPWNl9kJAAAAAACA+o3mAwAAAAAA8CiaDwAAAAAAwKNoPgAAAAAAAI+i+QAAAAAAADyK\n5gMAAAAAAPAobrVZR4xP2urS61clhHkoEwAAAAAAXMPKBwAAAAAA4FE0HwAAAAAAgEfRfAAAAAAA\nAB5F8wEAAAAAAHgUzQcAAAAAAOBRNB8AAAAAAIBH0XwAAAAAAAAeRfMBAAAAAAB4FM0HAAAAAADg\nUTQfAAAAAACAR11R8+Grr77SgAEDtH79eklSQkKCBg0apLFjx2rs2LHatm2bJCk1NVVDhw7V8OHD\ntXHjRklSWVmZ4uPjFRsbqzFjxig7O/vKZgIAAAAAAGolb3c3LCkp0RNPPKEePXpUGH/sscfUr1+/\nCq9bunSpUlJS5OPjo2HDhik8PFwZGRny9/dXcnKyduzYoeTkZC1evNj9mQAAAAAAgFrJ7ZUPNptN\nK1askMPhuOTr9u7dq/bt28tut8vX11ddunRRVlaWdu3apfDwcElSSEiIsrKy3E0FAAAAAADUYm43\nH7y9veXr61tpfP369Ro3bpweffRRHTt2THl5eQoICHA+HxAQoNzc3ArjXl5eslgsKi0tdTcdAAAA\nAABQS7l92sXFDB48WE2bNlXbtm31yiuv6MUXX1Tnzp0rvMYwjItuW9X4ec2a+cnb2+pyTkFBdpe3\nqWlm5HBhzIa6D2pT/PPMzKM27AOzczA7PgAAANBQ1Wjz4cLrP4SFhWnevHmKiIhQXl6eczwnJ0ed\nOnWSw+FQbm6u2rRpo7KyMhmGIZvNVuV75+eXuJxPUJBdublFLm9Xk8zK4XzMhrwPakv8C5mVR23Y\nB2bnUFV8GhIAAACA59Vo82HKlCmaMWOGWrZsqczMTN16663q2LGjZs+ercLCQlmtVmVlZWnWrFkq\nLi5WWlqaQkNDlZGRoeDg4JpMBQCAeml80laXXr8qIcxDmQAAAFSf282H/fv3a+HChTp48KC8vb2V\nnp6uMWPGaNq0abrmmmvk5+enxMRE+fr6Kj4+XnFxcbJYLJo0aZLsdruio6O1c+dOxcbGymazKSkp\nqSbnBQCop1z9n28AAACYz+3mQ7t27bRu3bpK4xEREZXGIiMjFRkZWWHMarUqMTHR3fAAAAAAAKCO\ncPtuFwCA2u+rr77SgAEDtH79eknS4cOHNXbsWI0ePVpTp0513mUoNTVVQ4cO1fDhw7Vx40ZJUllZ\nmeLj4xUbG6sxY8YoOzvbtHkAAACgbqP5AAD1VElJiZ544okKFwNesmSJRo8erddff1033XSTUlJS\nVFJSoqVLl2rNmjVat26d1q5dq4KCAr333nvy9/fXG2+8oYkTJyo5OdnE2QAAAKAuo/kAAPWUzWbT\nihUr5HA4nGOZmZnq37+/JKlfv37atWuX9u7dq/bt28tut8vX11ddunRRVlaWdu3apfDwcElSSEiI\nsrKyTJkHANR3p06d0oABA7Rp0yZWqAGot2r0bhcAgNrD29tb3t4Vy/zJkyedtzUODAxUbm6u8vLy\nFBAQ4HxNQEBApXEvLy9ZLBaVlpZe8rbIzZr5ydvb6nKu3PLUcy63b83e92bGb8hzNzu+2XOvbV5+\n+WU1adJE0v9WqEVFRenZZ59VSkqKYmJitHTpUqWkpMjHx0fDhg1TeHi4MjIy5O/vr+TkZO3YsUPJ\nyclavHixybMBgIuj+QAADZRhGDUyfqH8/BKX8wgKsis3t8jl7VA9l9q3Zu97M+M35LmbHd+d2PW5\nWfHtt9/qm2++Ud++fSWdW6E2f/58SedWqK1atUqtWrVyrlCTVGGFWkxMjKRzK9RmzZplyhwAoDpo\nPgBAA+Ln56dTp07J19dXR44ckcPhkMPhUF5envM1OTk56tSpkxwOh3Jzc9WmTRuVlZXJMIxLrnoA\nALhu4cKFmjNnjt5++21Jnl+hJrm/Ss0VNd0wMrsB1ZDjN+S5mx2/vs2d5gMANCAhISFKT0/X4MGD\ntXnzZoWGhqpjx46aPXu2CgsLZbValZWVpVmzZqm4uFhpaWkKDQ1VRkaGgoODzU4fAOqVt99+W506\ndVLLli0v+rwnVqhJ7q1Sc1VNrqxpyCuFzI7fkOdudvy6OPfLNStoPgBAPbV//34tXLhQBw8elLe3\nt9LT0/XMM88oISFBGzZsUIsWLRQTEyMfHx/Fx8crLi5OFotFkyZNkt1uV3R0tHbu3KnY2FjZbDYl\nJSWZPSUAqFe2bdum7Oxsbdu2TT/99JNsNhsr1ADUWzQfgFpufNJWl16/KiHMQ5mgrmnXrp3WrVtX\naXz16tWVxiIje9+jmAAAIABJREFUIxUZGVlhzGq1KjEx0WP5AUBDd+HFIV944QVdf/31+vzzz1mh\nBqBeovkAXEWuNhIAAEDDMmXKFM2cOZMVagDqHZoPAAAAgMmmTJni/JkVagDqIy+zEwAAAAAAAPUb\nzQcAAAAAAOBRNB8AAAAAAIBH0XwAAAAAAAAeRfMBAAAAAAB4FM0HAAAAAADgUTQfAAAAAACAR9F8\nAAAAAAAAHkXzAQAAAAAAeNQVNR+++uorDRgwQOvXr5ckHT58WGPHjtXo0aM1depUlZaWSpJSU1M1\ndOhQDR8+XBs3bpQklZWVKT4+XrGxsRozZoyys7OvcCoAAAAAAKA2crv5UFJSoieeeEI9evRwji1Z\nskSjR4/W66+/rptuukkpKSkqKSnR0qVLtWbNGq1bt05r165VQUGB3nvvPfn7++uNN97QxIkTlZyc\nXCMTAgAAAAAAtYvbzQebzaYVK1bI4XA4xzIzM9W/f39JUr9+/bRr1y7t3btX7du3l91ul6+vr7p0\n6aKsrCzt2rVL4eHhkqSQkBBlZWVd4VQAAAAAAEBt5O32ht7e8vauuPnJkydls9kkSYGBgcrNzVVe\nXp4CAgKcrwkICKg07uXlJYvFotLSUuf2P9esmZ+8va0u5xkUZHd5m5pmRg4Xxmyo+6A2xb+aqppr\nbdgHZudgdnwAAACgoXK7+XA5hmHUyPh5+fklLucQFGRXbm6Ry9vVJLNyOB+zIe+D2hL/arvYXGvD\nPjA7h6ri05AAAAAAPK9G73bh5+enU6dOSZKOHDkih8Mhh8OhvLw852tycnKc47m5uZLOXXzSMIwq\nVz0AAAAAAIC6q0abDyEhIUpPT5ckbd68WaGhoerYsaP27dunwsJCnThxQllZWeratat69uyptLQ0\nSVJGRoaCg4NrMhUAAAAAAFBLuH3axf79+7Vw4UIdPHhQ3t7eSk9P1zPPPKOEhARt2LBBLVq0UExM\njHx8fBQfH6+4uDhZLBZNmjRJdrtd0dHR2rlzp2JjY2Wz2ZSUlFST8wIAAAAAALWE282Hdu3aad26\ndZXGV69eXWksMjJSkZGRFcasVqsSExPdDQ8AAAAAAOqIGj3tAgAAAAAA4OdoPgAAAAAAAI+i+QAA\nAAAAADzK7Ws+oHYbn7TV5W1WJYR5IBMAgJn49wAAANQGrHwAAAAAAAAeRfMBAAAAAAB4FM0HAAAA\nAADgUTQfAAAAAACAR3HBSThxUTIAAADUBI4rAfwczQcAaGAyMzM1depU3XrrrZKk1q1b63e/+51m\nzJih8vJyBQUF6emnn5bNZlNqaqrWrl0rLy8vjRgxQsOHDzc5ewAAANRFNB8AoAHq3r27lixZ4nz8\nhz/8QaNHj1ZUVJSeffZZpaSkKCYmRkuXLlVKSop8fHw0bNgwhYeHq2nTpiZmDgAAgLqI5oMJ3FmG\nBgCelJmZqfnz50uS+vXrp1WrVqlVq1Zq37697Ha7JKlLly7KyspSWBjLYgGgJi1atEifffaZzpw5\nowkTJqh9+/bVXo1WVlamhIQEHTp0SFarVYmJiWrZsqXZUwKASmg+AEAD9M0332jixIk6fvy4Jk+e\nrJMnT8pms0mSAgMDlZubq7y8PAUEBDi3CQgIUG5urlkpA0C9tHv3bn399dfasGGD8vPzNWTIEPXo\n0aPaq9EyMjLk7++v5ORk7dixQ8nJyVq8eLHZ0wKASmg+AEAD86tf/UqTJ09WVFSUsrOzNW7cOJWX\nlzufNwzjottVNX6hZs385O1tdTmnoCC7y9vAc67m52HmZ2/2711Djm/23GuTbt26qUOHDpIkf39/\nnTx50qXVaLt27VJMTIwkKSQkRLNmzTJnIgBwGTQfAKCBad68uaKjoyVJN954o6699lrt27dPp06d\nkq+vr44cOSKHwyGHw6G8vDzndjk5OerUqdMl3zs/v8TlfIKC7MrNLXJ5O3jO1fo8zPzszf69a8jx\n3Yldn5sVVqtVfn5+kqSUlBT17t1bO3bsqPZqtAvHvby8ZLFYVFpa6tz+YtxtFHvapT5ns38HGnL8\nhjx3s+PXt7nTfACABiY1NVW5ubmKi4tTbm6ujh49qnvuuUfp6ekaPHiwNm/erNDQUHXs2FGzZ89W\nYWGhrFarsrKy+EYNADxky5YtSklJ0apVqzRw4EDnuKur0aqzSs2dRvHVUFVTqiE368yO35Dnbnb8\nujj3yzUraD4AQAMTFham6dOn68MPP1RZWZnmzZuntm3baubMmdqwYYNatGihmJgY+fj4KD4+XnFx\ncbJYLJo0aZJzuS8AoOZs375dy5Yt06uvviq73S4/P79qr0ZzOBzKzc1VmzZtVFZWJsMwLrnqAQDM\nQvMBABqYxo0ba9myZZXGV69eXWksMjJSkZGRVyMtAGiQioqKtGjRIq1Zs8Z5K+OQkJBqr0YrLi5W\nWlqaQkNDlZGRoeDgYJNnBAAXR/MBAAAAMMn777+v/Px8TZs2zTmWlJSk2bNnV2s1WnR0tHbu3KnY\n2FjZbDYlJSWZOBsAqFqNNh8yMzM1depU3XrrrZKk1q1b63e/+12171MMAAAANCQjR47UyJEjK41X\ndzWa1WpVYmKix/IDgJpS4ysfunfvriVLljgf/+EPf6j2fYrPLzUDAAAAAAD1h8dPu3DlPsVhYWGe\nTgcAAFzG+KStLm+zKoF/wwEAQNVqvPnwzTffaOLEiTp+/LgmT56skydPVvs+xQAAAAAAoP6p0ebD\nr371K02ePFlRUVHKzs7WuHHjVF5e7nz+Su5H3KyZn7y9rS7ndLl7jV4NtSEHT6nu3MzeB2bHv5qq\nmmtt2Adm52B2fAAAAKChqtHmQ/PmzRUdHS1JuvHGG3Xttddq37591b5P8aXk55e4nE9QkF25uUUu\nb1eTakMOnlSduZm9D8yOf7VdbK61YR+YnUNV8WlIAAAAAJ7nVZNvlpqaqpUrV0qScnNzdfToUd1z\nzz1KT0+XpAr3Kd63b58KCwt14sQJZWVlqWvXrjWZCgAAAAAAqCVqdOVDWFiYpk+frg8//FBlZWWa\nN2+e2rZtq5kzZ1brPsXAxVytC5+5EwcAAAAAcHk12nxo3Lixli1bVmm8uvcpBgAAAAAA9Y/Hb7UJ\nmIFVDAAAAABQe9ToNR8AAAAAAAB+juYDAAAAAADwKJoPAAAAAADAo2g+AAAAAAAAj+KCkwAA4Iq5\nc6Hfd5MHeyATAABQG9F8wBVx9WBzVUKYhzIBAAAAANRWnHYBAAAAAAA8ipUPAABTDYp/x+wUAAAA\n4GE0HwAAgClcbTxx6h4AAHUXp10AAAAAAACPYuUDrip3roYO17izj/k2EQAAAIAnsfIBAAAAAAB4\nFM0HAAAAAADgUTQfAAAAAACAR9F8AAAAAAAAHkXzAQAAAAAAeBR3uwAAAABgOlfv2MXduoC6heYD\nAACoE7iVMAAAdVe9bj4Min/H5W1cPUhx50AIqG04oAdQX12Nf6ephwAAXJ6pzYennnpKe/fulcVi\n0axZs9ShQwcz0wEAXAS1Grg0dxoc7yYP9kAmaKio0wDqAtOaD5988ol++OEHbdiwQd9++61mzZql\nDRs2mJWOEysZgOpx9W+FA+26qbbWagC1B/8emIs6DaCuMK35sGvXLg0YMECSdMstt+j48eMqLi5W\n48aNzUoJgAe5cxqUO1j+XLOo1YBnXK2a6CpqaN3TkOs0p40CdYtpzYe8vDzdfvvtzscBAQHKzc2t\nslAGBdldjkFnHcCF3KkjDR21GsDluPM3TD2uOa7Wacn1/U+dNv931sz4DXnuZsevb3P3qtF3uwKG\nYZidAgDgMqjVAFC7UacB1FamNR8cDofy8vKcj3NychQUFGRWOgCAi6BWA0DtRp0GUFeY1nzo2bOn\n0tPTJUlffPGFHA5Hgzg3DQDqEmo1ANRu1GkAdYVp13zo0qWLbr/9do0aNUoWi0Vz5841KxUAQBWo\n1QBQu1GnAdQVFoMTwwAAAAAAgAfVmgtOAgAAAACA+onmAwAAAAAA8CjTrvlQkz755BNNnTpVTz31\nlPr161fp+dTUVK1du1ZeXl4aMWKEhg8frrKyMiUkJOjQoUOyWq1KTExUy5YtXY59uffZv3+/Fi5c\n6Hz8zTffaOnSpfr444/17rvvqnnz5pKk3/72txo+fLgbs798DpJ0++23q0uXLs7Ha9as0dmzZ6/K\nPpCk999/X6tWrZKXl5d69OihRx99VJs2bdLzzz+vG2+8UZIUEhKihx56yOX4Tz31lPbu3SuLxaJZ\ns2apQ4cOzud27typZ599VlarVb1799akSZMuu01Nxt+9e7eeffZZeXl5qVWrVnryySf16aefaurU\nqbr11lslSa1bt9acOXPcjn+5HMLCwnTdddfJarVKkp555hk1b978quyDI0eOaPr06c7XZWdnKz4+\nXmVlZTXy2V/oq6++0sMPP6z7779fY8aMqfDc1fg9wKU15DrdUGt0Q67NDb0mU4/rLmq1ObXazGNp\nM2u12cfQ1GoTarVRx/3www/GxIkTjYcfftjYunVrpedPnDhhDBw40CgsLDROnjxp3HXXXUZ+fr6x\nadMmY968eYZhGMb27duNqVOnuhXflfc5fvy4ce+99xrl5eXGkiVLjHXr1rkV050cunfvfkW5X0n8\nkpISo1+/fkZRUZFx9uxZY9iwYcbXX39tvPnmm0ZSUpJbMc/LzMw0HnzwQcMwDOObb74xRowYUeH5\nqKgo49ChQ0Z5ebkRGxtrfP3115fdpibjh4eHG4cPHzYMwzCmTJlibNu2zdi9e7cxZcoUt2O6mkO/\nfv2M4uJil7apyfjnlZWVGaNGjTKKi4tr5LO/0IkTJ4wxY8YYs2fPvujflad/D3BpDb1ON8Qa3ZBr\nc0OvydTjuotabV6tNutY2sxabfYxNLXanFpd50+7CAoK0osvvii73X7R5/fu3av27dvLbrfL19dX\nXbp0UVZWlnbt2qXw8HBJ57pGWVlZbsV35X1Wrlyp++67T15eNbvb3Z3L1doH11xzjVJTU9W4cWNZ\nLBY1bdpUBQUFbsW6WOwBAwZIkm655RYdP35cxcXFks51CZs0aaJf/vKX8vLyUp8+fbRr165LblOT\n8SVp06ZNuu666yRJAQEBys/Pd3uu7uZQU9tc6Xu99dZbioiIUKNGjdyKcyk2m00rVqyQw+Go9NzV\n+D3ApTX0Ot0Qa3RDrs0NvSZTj+suarV5tdqsY2kza7XZx9DUanNqdZ1vPlxzzTXO5TAXk5eXp4CA\nAOfjgIAA5ebmVhj38vKSxWJRaWmpy/Gr+z6nTp3Sjh071L9/f+dYWlqaHnjgAU2YMEHZ2dkux3Yl\nh9LSUsXHx2vUqFFavXq1S7nXRPzz95v+8ssvdfDgQXXs2FHSueV9cXFxuu+++/Tvf//brdjNmjVz\nPj7/+UpSbm5ulZ99VdvUZHzpf/POycnRxx9/rD59+kg6t1Rw4sSJio2N1ccff+xW7OrmIElz585V\nbGysnnnmGRmGcVX3wXkbN27UsGHDnI+v9LO/kLe3t3x9fS/63NX4PcClNfQ63RBrdEOuzQ29JlOP\n6y5qtXm12qxjaTNrtdnH0NRqc2p1nbrmw8aNG7Vx48YKY1OmTFFoaGi138Oo4s6iVY1fLv7evXur\n9T5btmxR3759nR3aPn366M4771S3bt30t7/9TQsWLNDy5cs9lsOMGTP029/+VhaLRWPGjFHXrl0r\nvcbT++D777/X9OnTlZycLB8fH3Xs2FEBAQHq27evPv/8c82cOVPvvvvuZXO4lOrMoSa2ceW9jh49\nqokTJ2ru3Llq1qyZfvWrX2ny5MmKiopSdna2xo0bp82bN8tms3kkh0ceeUShoaFq0qSJJk2apPT0\n9GrlXVPxJenzzz/XzTff7PyHxBOf/ZWqyX3QkDX0Ok2NvriGXJupya6jHnsetdq8Wl1b63R1cq+p\nbar7PlfzGJpa7Tp35l+nmg/Dhw93+QIyDodDeXl5zsc5OTnq1KmTHA6HcnNz1aZNG5WVlckwjMv+\n4l4sfkJCQrXeJyMjQ7Gxsc7HP7+gyTPPPFOt+bibw4Wx77zzTn311VdXdR/89NNPmjRpkhYtWqS2\nbdtKOrdc55ZbbpEkde7cWceOHVN5efklu+4/d7HPNygo6KLPHTlyRA6HQz4+PlVu46pLxZek4uJi\n/f73v9e0adPUq1cvSVLz5s0VHR0tSbrxxht17bXX6siRI25dnKk6OcTExDh/7t27t/Ozv1r7QJK2\nbdumHj16OB/XxGfvbn6e+D3A/zT0Ok2NPqch12ZqcvVzox6bh1ptXq2uLXVaMrdWm30MTa2ufm41\n+dnX+dMuLqdjx47at2+fCgsLdeLECWVlZalr167q2bOn0tLSJJ0rYsHBwW69f3XfZ//+/WrTpo3z\n8YIFC7Rnzx5J55bPnL9qqydy+O677xQfHy/DMHTmzBllZWXp1ltvvar74I9//KPmzZun22+/3Tm2\nYsUKvffee5LOXW01ICDA5T+enj17OjuRX3zxhRwOh7M7eMMNN6i4uFgHDhzQmTNnlJGRoZ49e15y\nG1dd7r2SkpJ03333qXfv3s6x1NRUrVy5UtK5ZU1Hjx51XqG5pnMoKipSXFycc+nep59+6vzsr9Y+\nkKR9+/ZV+P2vic++uq7G7wGuTH2v0w2xRjfk2kxNrhr1uG6jVnuuVpt1LG1mrTb7GJpaXTVPfvYW\no46vbdu2bZtWrlyp7777TgEBAQoKCtKqVav0yiuvqFu3burcubPS0tK0cuVK5xKp3/72tyovL9fs\n2bP1/fffy2azKSkpSb/85S9djl/V+1wYX5J69OihXbt2Obf78ssvNXfuXHl7e8tisWjBggW66aab\n3NoH1cnh6aef1u7du+Xl5aWwsDA99NBDV20fNG3aVDExMRU60/fff79uv/12Pf74484i7u7tap55\n5hnt2bNHFotFc+fO1b///W/Z7XaFh4fr008/dXbABw4cqLi4uItuc+Efdk3F79WrV4XfAUm6++67\nddddd2n69OkqLCxUWVmZJk+e7DyPraZzCA8P19q1a/X222/rF7/4hX7zm99ozpw5slgsV2UfnL94\n0qBBg7R69Wpde+21ks5172visz/v/O23Dh48KG9vbzVv3lxhYWG64YYbrtrvAarW0Ot0Q63RDbk2\nN+SaTD2uu6jV5tVqM4+lzazVZh9DU6uvfq2u880HAAAAAABQu9X70y4AAAAAAIC5aD4AAAAAAACP\novkAAAAAAAA8iuYDAAAAAADwKJoPAAAAAADAo2g+AAAAAAAAj6L5AAAAAAAAPIrmAwAAAAAA8Cia\nDwAAAAAAwKNoPgAAAAAAAI+i+QAAAAAAADyK5gMAAAAAAPAomg8AAAAAAMCjaD4AAAAAAACPovkA\nAAAAAAA8iuYDAAAAAADwKJoPAAAAAADAo2g+AAAAAAAAj6L5AAAAAAAAPIrmAwAAAAAA8CiaDwAA\nAAAAwKNoPgAAAAAAAI+i+QAAAAAAADyK5gMAAAAAAPAomg8AANRD//d//1cjrzlw4IB+85vfXPZ1\nYWFh2rNnT7Vyq8of//hHvfDCC1f0HgBQH13tmg54As0HVHDgwAH16tVLTz31lMaMGaPMzEwNGTJE\nkZGRGj58uPbt2ydJOnv2rJ577jlFRkYqMjJSCQkJKikpkSSNHTtWr7zyikaOHKk777xTr732ml56\n6SVFRkYqOjpa2dnZkqS///3vuvvuuxUVFaVBgwYpMzPzkrllZmZq0KBBSkpKUkREhMLCwvTPf/5T\nklRaWqoFCxY4x5ctW+bcLiwsTC+++KIiIiJ06NAhj79/VfM6dOiQ4uLiFBERobvvvltvv/12hX3+\nl7/8RYMGDVJoaKjef/99lz43ALhQeXm5Fi1adMWvAQCYj5qO+oLmAyopKChQ27ZttXz5ck2dOlWz\nZ89WWlqafve732n69Ok6e/as/v73v+sf//iHNm3apL/97W8qLCzUmjVrnO/x6aef6rXXXlNiYqKe\nfvppXXfddUpLS9Ovf/1rvfnmm5Kk+fPna/ny5fr73/+uuXPnauvWrZfN7dtvv1WHDh2Unp6uhx56\nSPPmzZMkrVixQt98843effddvffee0pPT1dGRoZzuyNHjig9PV0tWrTw+PtXNa85c+aoe/fuSk9P\n1/Lly7VgwQIdOHBAkpSfny8vLy+9++67mjVrlhYvXnzZfQEAVXnggQdUVFSkyMhIffLJJxdtfF74\nmuzsbH333XeKjY1VVFSUwsPD9d5777kcd/fu3YqJiVGfPn303HPPOce3bNmiQYMGqX///ho/fryO\nHTsm6VztGz9+vMLCwvTggw+qqKjIuc3PG7tVNXCl/zWzIyMjNW7cOP3444+SpBdeeEFz587VhAkT\n1KtXLz3++OPKyMjQPffco169ejnr+FdffaWRI0fqrrvu0sCBA7V+/XrXdzoAeIgZNX3s2LF67rnn\nFBUVpaysLBUUFGjq1KmKiIhQdHS0XnnlFedrq/qyctOmTXrkkUcUHx+vvn376oEHHtCePXs0atQo\nhYSEaMOGDZLOHUffd999io6O1oABAyr8+4F6xgAukJ2dbbRu3dooKioydu7caQwePLjC8926dTN+\n/PFHY/r06caaNWuc4x988IExevRowzAMY8yYMcZrr71mGIZhHDhwwGjdurVRXFxsGIZhvPDCC8Yf\n/vAHwzAMIzo62njmmWeMAwcOVCu33bt3G3fccYdx9uxZwzAMo6CgwGjdurVRUlJiDB061EhPT3e+\ndvXq1UZCQoJhGIbRr18/Y8uWLVft/S82r9LSUqNNmzZGYWGhc+zhhx82Nm7c6NznJ06cMAzDMH74\n4Qfj9ttvr9Y+AYCLyc7ONtq2bWsYhmGMHz/eWLZsmWEY52ryHXfcYWRnZ1d4jWEYxoQJE4zly5cb\nhmEYn3zyidGhQwejtLS00uuq0q9fP2PixInGmTNnjLy8PKNbt27Gf/7zH+PHH380OnfubHz55ZeG\nYRjGsmXLjClTphiGYRgLFy40HnvsMWfOnTt3NpYsWeJ8v9mzZzvfv6p5HDx40LjjjjuM77//3jAM\nw1i5cqVx3333GYZhGEuWLDF69+5t5OXlGceOHTPatWtnzJs3zzAMw1i3bp0RGxtrGIZhTJkyxdi0\naZNhGIZx9OhR46GHHjJOnz7t0j4HAE8xo6aPGTPGGD9+vFFeXm4YhmHMmTPHmDNnjmEYhpGfn2/0\n7dvX+PTTT43i4mIjODjY2LNnj2EYhpGWlmYMHDjQKC8vN958802jU6dOxnfffWecPn3aCA0NNSZM\nmGCcOXPG2Lp1q9G7d2/DMAwjKSnJeOGFFwzDMIySkhLj0UcfNY4cOVITuw61DCsfUInValXjxo11\n7Ngx+fv7V3jObrfr6NGjOnbsmJo0aeIcb9KkiY4ePep83KhRI+d7XfjYy8tLZ8+elSS9/PLLysvL\n0z333KOYmBh98sknl83N399fFovF+bMkFRYWqqioSImJic7TQP7yl7/o5MmTFfKrjpp4/4vNq6Cg\nQIZhyG63V4h1/ts/q9UqPz+/SvsIAK5EWVmZdu7cqdGjR0uSrr/+egUHB2v37t2VXvvSSy8pLi5O\nknTHHXfo9OnTys3NdSneoEGDZLVaFRgYqG7duunzzz/XP/7xD3Xv3l2tW7eWJI0aNUpbt25VeXm5\n9uzZo6ioKEnSDTfcoO7du1d4v759+152Hh9//LGCg4N10003SZKGDx+uzMxMnTlzRpLUuXNnBQYG\nqlmzZgoKClLv3r0lSa1bt1ZOTo4kKTAwUOnp6friiy/UrFkzvfTSS7LZbC7NHQA87WrX9D59+sjL\n69z/Ln700UfOuE2bNlV4eLg+/vhj/etf/9J1112nO+64Q5IUERGh/Px8HTx4UJL061//Wq1atZLN\nZtNNN92kXr16yWq1VqrBO3bs0J49e2Sz2fTss8/K4XC4sYdQ23mbnQBqr8DAQBUUFDgfG4ah48eP\nKzAwUNdee22F5woKCnTttde69P433nijEhMTdfbsWb399tuKj4/X9u3bL7nNhTGPHz8u6VwBdDgc\nGj9+vPr16+dSDp54/4vNKyMjQ15eXjp+/LizUVFQUKDAwMAryhcALuVyjc8Lbd++XS+//LLy8/Nl\nsVhkGIbLjdCAgADnz3a7XYWFhTIMQ3v27FFkZKTzucaNG6ugoEDHjx+vlNuFLqyXl5rHhdvZ7XYZ\nhqH8/HxJ/2t+S1U3eqdPn67ly5dr2rRpOn36tCZMmKB7773XpbkDgKdd7Zp+4ZdrP/9S0t/fXzk5\nOZf8slKqugZbrVZnPvfff7/Onj2r+fPnKycnR/fee6+mTJni/EIQ9QcrH1ClDh06KC8vT5////bu\nPTqq+tz/+GdymaZAIgxmEAQpUi2WS5CFIoFwjwa0EuWaFEQPbY0EijYKnDTcDijhEhaiqXCQSxYW\nZZFSGtGT4CX0CIQojisHaiuXnraU6wQDISRpBpjfH/yYQySQmcnsTDLzfq3lWmRP9n6erxueyfpk\n7z1ffSVJ+uCDD3TXXXepY8eOGjJkiPLy8lRVVaXLly8rNzdXgwcPdvvY3377rZ577jlVVFQoJCRE\nMTExbg2Y6upqffzxx5KkgoIC9ejRQ9/73vc0fPhwbdu2TVeuXJHT6dRvfvMb/fd//7fHa27o8W+1\nrrCwMA0cONB1b9s//vEPHThwQLGxsR73CADuatOmjSv4vK6u4NPhcOjFF1/UCy+8oIKCAuXl5Xn1\nQ9+Nda6HrVarVbGxscrPz3f9t3//frVt21ZRUVG1nvNQ1w/Q9a3ju0H5hQsXFBISojZt2rjdd8uW\nLfWrX/1KH330kd58802tXr1a//u//+vJ0gHAcI090290q1883u6Xle4KCwvTL37xC73//vt67733\nlJeXp3379jWoXzRNhA+4pRYtWmjVqlVatGiREhIStGXLFq1cuVImk0kJCQkaNGiQnn76aT3xxBO6\n66679MzoDPDpAAAgAElEQVQzz7h9bIvFori4OI0ZM0ajRo3Sr371K7366qv17nf33Xfryy+/1GOP\nPaa1a9dq/vz5kqTk5GR16NBBjz/+uBISEnTs2DHX5V+eaOjxb7euhQsXqri4WAkJCUpNTdXixYvV\nvn17j3sEgPqEh4fr6tWrqq6uvmXwef17KioqVFVVpcrKSvXo0UOSlJOTo/DwcNenGLnrgw8+0NWr\nV3Xu3Dl9+eWX6tu3rwYOHKgDBw64Punof/7nf7R48WJJUu/evV2B7z/+8Q99+eWXdR73dgHugAED\nah3/vffe04ABAxQW5v7FnSkpKTpy5Iika7djtGrVit+4AWgy/DXTbzRkyBBX3W+//VYfffSRhgwZ\ncttfVrpr3rx52rt3r6RrVxDfeeedzOAAZXI6nU5/NwG4o7i4WBkZGfroo4+a5fEBoLFcvXpVkydP\n1uHDh5Wdna21a9fqxIkTCg8P1/Tp0/XYY4/V+p61a9fqk08+UV5entq2basXXnhB+fn5Kikp0dq1\nazV69Gh9/fXXt605bNgwJSUl6b/+67/07bffaty4cUpNTZUkffLJJ3r99dflcDjUsmVLpaenq0+f\nPiotLdVLL72kEydOqGvXrrJYLOrYsaNmzJihYcOGadmyZerbt68k6dSpU8rIyLhpHdK1K9XefPNN\nORwOdezYUYsWLVL79u31xhtv6PTp064QOD4+XosXL1a/fv104MABzZo1S59++qn27NmjZcuWyeFw\nSJLGjh3rulcaAPzNHzN98uTJGjt2rEaPHi3p2lVlCxYs0J///GeFhITopz/9qev2tM8//1yZmZmq\nrKyUxWLRggULdP/992v79u3Ky8tzfSLes88+qyeffFJPP/20Tp8+rcGDB+ubb77R119/rXnz5qmi\nokJOp1PDhg3TrFmzCCACEOEDmg3CBwAAAABonnjgJJqU1NRUHTt2rM7XpkyZ0uSPDwAAAAC4GVc+\nAACAeu3YsUNr1qyp87WnnnpKzz//fCN3BADwFjMd/kD4AAAAAAAADMWnXQAAAAAAAEM1m2c+2O0X\n6/+m72jTpoXKyrz/SJmG8mf9YF57sNcP5rV7Uz86OtLAboJPc5vVze3vK/UDo3aw1/emNrPatzyd\n1f7++1oXenIPPbmHnurnTj/1zeqAvvIhLCw0aOsH89qDvX4wr70p1Ifn+PdC/WCrHez1/b12eK4p\nnjN6cg89uYee6ueLfgI6fAAAAAAAAP5H+AAAAAAAAAxF+AAAAAAAAAxF+AAAAAAAAAxF+AAAAAAA\nAAxF+AAAAAAAAAwV5u8GjPSTtD94vM+GOcMM6AQA4Cv/lvmpx/sw2wGgcTGrAXwXVz4AAAAAAABD\nET4AAAAAAABDET4AAAAAAABDET4AAAAAAABDET4AAAAAAABDET4AAAAAAABDET4AAAAAAABDhfm7\nAQCAMYqLizVz5kzdd999kqT7779fP/vZzzRr1ixduXJF0dHRWr58ucxms/Ly8pSTk6OQkBCNHz9e\n48aNk8Ph0Jw5c3Ty5EmFhoZqyZIl6tSpk59XBQAAgOaI8AEAAtjDDz+s1atXu77+93//dyUnJ2vk\nyJFauXKlcnNzlZiYqOzsbOXm5io8PFxjx45VfHy8CgsLFRUVpaysLO3Zs0dZWVlatWqVH1cDAIGH\noBhAsOC2CwAIIsXFxRo+fLgkaejQoSoqKlJJSYl69uypyMhIRUREqE+fPrLZbCoqKlJ8fLwkKTY2\nVjabzZ+tA0DAevjhh7V582Zt3rxZc+fO1erVq5WcnKwtW7aoc+fOys3NVWVlpbKzs7Vp0yZt3rxZ\nOTk5On/+vHbu3KmoqCi9++67SklJUVZWlr+XAwB1InwAgAB29OhRpaSkKCkpSXv37lVVVZXMZrMk\nqW3btrLb7SotLZXFYnHtY7FYbtoeEhIik8mkmpoav6wDAIIJQTGAQMRtFwAQoH7wgx9o+vTpGjly\npI4fP65nnnlGV65ccb3udDrr3M/T7Tdq06aFwsJCPe41OjrS4318dXyja9eH+v6rH8xr93d9f6+9\nqbkeFF+4cEHTp0/3SVB8fX8AaCoIHwAgQLVr106jRo2SJN1zzz268847dfDgQVVXVysiIkJnzpyR\n1WqV1WpVaWmpa7+zZ8+qd+/eslqtstvt6tatmxwOh5xOZ70/zJaVVXrcZ3R0pOz2ix7v54lbHb8x\nat8O9f1XP5jX7u/63tQO5LCiuQTFjXEOPK3RFP9e0JN76Mk9Ta2nhvZD+AAAASovL092u11Tp06V\n3W7XuXPn9PTTT6ugoECjR4/Wrl27FBcXp5iYGGVkZKi8vFyhoaGy2WxKT09XRUWF8vPzFRcXp8LC\nQvXr18/fSwKAgNMcguLGCqs8qeHvAK8u9OQeenJPU+vJnX7qCyfceubD4cOHNWLECL3zzjuSpFOn\nTmny5MlKTk7WzJkzXfcA5+XlacyYMRo3bpy2bdsmSXI4HEpLS1NSUpImTZqk48ePS5L+8pe/aOLE\niZo4caLmz5/vThsAAA8MGzZMX3zxhZKTkzVt2jQtWLBAL730knbs2KHk5GSdP39eiYmJioiIUFpa\nmqZOnarnnntOqampioyM1KhRo3T16lUlJSXpt7/9rdLS0vy9JAAIOHl5eVq/fr0k3RQUS6oVFB88\neFDl5eW6dOmSbDab+vbtqwEDBig/P1+SCIoBNGn1XvlQWVmpRYsWqX///q5t15/A25CPanv11VeV\nnp6uXr16KS0tTX/84x81ePBgQxcLAMGkVatWWrNmzU3bN27ceNO2hIQEJSQk1Np2/SPbAADGGTZs\nmF5++WV98skncjgcWrBggR544AHNnj1bW7duVYcOHZSYmKjw8HBXUGwymWoFxfv27VNSUpLMZrMy\nMzP9vSQAqFO94YPZbNa6deu0bt0617bi4mItXLhQ0rUn8G7YsEFdunRxPYFXUq0n8CYmJkq69gTe\n9PR01dTU6MSJE+rVq5frGEVFRYQPAAAACCoExQCCRb3hQ1hYmMLCan9bQ5/AW1paqqioKNf3Xj/G\n7Xj7BHVP+fqhHsH8JGnqc+6DtT4AAACA2hr8wElfPIHXnafyevMEdW/48qEeze1J0tQPjPrBvHZv\n6hNUAAAAAMZz64GT39WiRQtVV1dL0m2fwHt9+/WrGq4/gTc6Olrnz593fe/1YwAAAAAAgMDjVfgQ\nGxvboCfwhoeH695779WBAwdqHQMAAAAAAASeem+7OHTokJYuXaoTJ04oLCxMBQUFWrFihebMmdOg\nJ/Cmp6dr3rx5unr1qmJiYhQbG2v4YgEAAAAAQOOrN3zo0aOHNm/efNP2hj6B94c//KG2bNniSa8A\nAAAAAKAZ8uq2CwAAAAAAAHcRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAA\nAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAA\nAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEMRPgBAgKuurtaI\nESO0fft2nTp1SpMnT1ZycrJmzpypmpoaSVJeXp7GjBmjcePGadu2bZIkh8OhtLQ0JSUladKkSTp+\n/Lg/lwEAAYs5DSAYED4AQIB76623dMcdd0iSVq9ereTkZG3ZskWdO3dWbm6uKisrlZ2drU2bNmnz\n5s3KycnR+fPntXPnTkVFRendd99VSkqKsrKy/LwSAAhMzGkAwYDwAQAC2LFjx3T06FENGTJEklRc\nXKzhw4dLkoYOHaqioiKVlJSoZ8+eioyMVEREhPr06SObzaaioiLFx8dLkmJjY2Wz2fy1DAAIWMxp\nAMEizN8NAACMs3TpUs2dO1c7duyQJFVVVclsNkuS2rZtK7vdrtLSUlksFtc+Fovlpu0hISEymUyq\nqalx7V+XNm1aKCws1OM+o6MjPd7HV8c3unZ9qO+/+sG8dn/X9/fam5LGntMA4C+EDwAQoHbs2KHe\nvXurU6dOdb7udDp9sv1GZWWV7jf4/0VHR8puv+jxfp641fEbo/btUN9/9YN57f6u703tQA0r/DGn\nJe+C4sY4B57WaIp/L+jJPfTknqbWU0P78Sp8uHTpkmbPnq0LFy7I4XAoNTVV0dHRWrBggSTpRz/6\nkRYuXChJevvtt5Wfny+TyaTp06dr8ODBunjxotLS0nTx4kW1aNFCWVlZat26dYMWAgCobffu3Tp+\n/Lh2796t06dPy2w2q0WLFqqurlZERITOnDkjq9Uqq9Wq0tJS135nz55V7969ZbVaZbfb1a1bNzkc\nDjmdTn6bBgA+5K857WlQ3FhhlSc1/B3g1YWe3ENP7mlqPbnTT33hhFfhw+9//3t16dJFaWlpOnPm\njKZMmaLo6Gilp6erV69eSktL0x//+Efde++9+vDDD/Xee++poqJCycnJGjhwoHJycvTwww/rZz/7\nmbZu3ap169bplVde8aYVAMAtrFq1yvXnN954Q3fffbe++uorFRQUaPTo0dq1a5fi4uIUExOjjIwM\nlZeXKzQ0VDabTenp6aqoqFB+fr7i4uJUWFiofv36+XE1ABB4mNMAgolX4UObNm30zTffSJLKy8vV\nunVrnThxQr169ZL0fw/HsdvtiouLk9lslsVi0d13362jR4+qqKhIr732mut7U1JSfLQcAMDtzJgx\nQ7Nnz9bWrVvVoUMHJSYmKjw8XGlpaZo6dapMJpNSU1MVGRmpUaNGad++fUpKSpLZbFZmZqa/2weA\ngMecBhCovAofHn/8cW3fvl3x8fEqLy/XW2+9pf/4j/9wvX794TitW7eu9+E4bdu21dmzZ+ut6e1D\nzDzl6/tqgvlhTtTn3Adr/aZoxowZrj9v3LjxptcTEhKUkJBQa1toaKiWLFlieG8AgKY9p3+S9gfD\nawAIfF6FD3/4wx/UoUMHrV+/Xn/5y19c6et1njwEx90H43jzEDNv+PK+mub2MCfqB0b9YF67N/UJ\nKgAAAADjhXizk81m08CBAyVJ3bp107/+9S+VlZW5Xr/Vw3Fu3G6322ttAwAAAAAAgcmr8KFz584q\nKSmRJJ04cUItW7ZU165ddeDAAUlyPRznkUce0e7du1VTU6MzZ87o7Nmz+uEPf6gBAwYoPz+/1vcC\nAAAAAIDA5NVtFxMmTFB6eromTZqky5cva8GCBYqOjta8efN09epVxcTEKDY2VpI0fvx4TZo0SSaT\nSQsWLFBISIgmT56sV155RcnJyYqKitLy5ct9uigAAAAAANB0eBU+tGzZUq+//vpN27ds2XLTtsmT\nJ2vy5Mk37f+b3/zGm9IAAAAAAKCZ8eq2CwAAAAAAAHd5deUDAAC+wke4AQAABD6ufAAAAAAAAIYi\nfAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAA\nAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAA\nAIYifAAAAAAAAIYifAAAAAAAAIYK83cDAABjVFVVac6cOTp37pz+9a9/adq0aerWrZtmzZqlK1eu\nKDo6WsuXL5fZbFZeXp5ycnIUEhKi8ePHa9y4cXI4HJozZ45Onjyp0NBQLVmyRJ06dfL3sgAgoDCr\nAQQLrnwAgABVWFioHj166J133tGqVauUmZmp1atXKzk5WVu2bFHnzp2Vm5uryspKZWdna9OmTdq8\nebNycnJ0/vx57dy5U1FRUXr33XeVkpKirKwsfy8JAAIOsxpAsCB8AIAANWrUKP385z+XJJ06dUrt\n2rVTcXGxhg8fLkkaOnSoioqKVFJSop49eyoyMlIRERHq06ePbDabioqKFB8fL0mKjY2VzWbz21oA\nIFAxqwEEC267AIAAN3HiRJ0+fVpr1qzRc889J7PZLElq27at7Ha7SktLZbFYXN9vsVhu2h4SEiKT\nyaSamhrX/nVp06aFwsJCjV2QF6KjI716rTFQ33/1g3nt/q7v77U3RY05qwHAH7wOH/Ly8vT2228r\nLCxMv/zlL/WjH/2Ie9MAoAl677339Oc//1mvvPKKnE6na/uNf76Rp9tvVFZW6V2TBrPbL9a5PTo6\n8pavNQbq+69+MK/d3/W9qR0MYUVjzurmGBT74vsbAz25h57c09R6amg/XoUPZWVlys7O1u9+9ztV\nVlbqjTfeUEFBgZKTkzVy5EitXLlSubm5SkxMVHZ2tnJzcxUeHq6xY8cqPj5ehYWFioqKUlZWlvbs\n2aOsrCytWrWqQQsBANR26NAhtW3bVu3bt9cDDzygK1euqGXLlqqurlZERITOnDkjq9Uqq9Wq0tJS\n135nz55V7969ZbVaZbfb1a1bNzkcDjmdTn6TBgA+5o9Z3dyC4rr4O8CrCz25h57c09R6cqef+sIJ\nr575UFRUpP79+6tVq1ayWq1atGgR96YBQBNz4MABbdiwQZJUWlqqyspKxcbGqqCgQJK0a9cuxcXF\nKSYmRgcPHlR5ebkuXbokm82mvn37asCAAcrPz5d07YFo/fr189taACBQMasBBAuvrnz45z//qerq\naqWkpKi8vFwzZsxQVVVVQNxH7OtLW4L5fkrqc+6DtX5TMXHiRP36179WcnKyqqurNW/ePPXo0UOz\nZ8/W1q1b1aFDByUmJio8PFxpaWmaOnWqTCaTUlNTFRkZqVGjRmnfvn1KSkqS2WxWZmamv5cEAAGH\nWQ0gWHj9zIfz58/rzTff1MmTJ/XMM88EzH3Evry0pbndT0n9wKgfzGv3pn4gBxURERF1fuTaxo0b\nb9qWkJCghISEWtuuP5MHAGAcZjWAYOHVbRdt27bVgw8+qLCwMN1zzz1q2bKl6940Sbe9N+36drvd\nLkncRwwAAAAAQIDzKnwYOHCg9u/fr6tXr6qsrIx70wAAAAAAwC15ddtFu3bt9Nhjj2n8+PGSpIyM\nDPXs2ZN70wAAAAAAwE28fubDxIkTNXHixFrbuDcNAAAAAAB8l1e3XQAAAAAAALiL8AEAAAAAABiK\n8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEA\nAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAA\nABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABiK8AEAAAAAABgqzN8NAACMs2zZMn355Ze6fPmy\nnn/+efXs2VOzZs3SlStXFB0dreXLl8tsNisvL085OTkKCQnR+PHjNW7cODkcDs2ZM0cnT55UaGio\nlixZok6dOvl7SQAQcJjVAIIB4QMABKj9+/fryJEj2rp1q8rKyvTUU0+pf//+Sk5O1siRI7Vy5Url\n5uYqMTFR2dnZys3NVXh4uMaOHav4+HgVFhYqKipKWVlZ2rNnj7KysrRq1Sp/LwsAAgqzGkCw4LYL\nAAhQDz30kF5//XVJUlRUlKqqqlRcXKzhw4dLkoYOHaqioiKVlJSoZ8+eioyMVEREhPr06SObzaai\noiLFx8dLkmJjY2Wz2fy2FgAIVMxqAMGiQVc+VFdX64knntC0adPUv39/Lg8DgCYkNDRULVq0kCTl\n5uZq0KBB2rNnj8xmsySpbdu2stvtKi0tlcVice1nsVhu2h4SEiKTyaSamhrX/nVp06aFwsJCDVyV\nd6KjI716rTFQ33/1g3nt/q7v77U3Jf6Y1QDgDw0KH9566y3dcccdkqTVq1dzeRgANEEff/yxcnNz\ntWHDBj366KOu7U6ns87v93T7jcrKKr1r0mB2+8U6t0dHR97ytcZAff/VD+a1+7u+N7WDIaxozFnd\nHINiX3x/Y6An99CTe5paTw3tx+vw4dixYzp69KiGDBkiSSouLtbChQslXbs8bMOGDerSpYvr8jBJ\ntS4PS0xMlHTt8rD09PQGLQIAULfPPvtMa9as0dtvv63IyEi1aNFC1dXVioiI0JkzZ2S1WmW1WlVa\nWura5+zZs+rdu7esVqvsdru6desmh8Mhp9PJb9IAwACNPaubW1BcF38HeHWhJ/fQk3uaWk/u9FNf\nOOF1+LB06VLNnTtXO3bskCRVVVUFxKW8vk6XgvmSRupz7oO1flNx8eJFLVu2TJs2bVLr1q0lXQt8\nCwoKNHr0aO3atUtxcXGKiYlRRkaGysvLFRoaKpvNpvT0dFVUVCg/P19xcXEqLCxUv379/LwiAAg8\nzGoAwcKr8GHHjh3q3bv3LZ/T0Jwv5fVlutTcLmmkfmDUD+a1e1M/kIOKDz/8UGVlZXrxxRdd2zIz\nM5WRkaGtW7eqQ4cOSkxMVHh4uNLS0jR16lSZTCalpqYqMjJSo0aN0r59+5SUlCSz2azMzEw/rgYA\nAhOzGkCw8Cp82L17t44fP67du3fr9OnTMpvNXMoLAE3MhAkTNGHChJu2b9y48aZtCQkJSkhIqLXt\n+gOBAQDGYVYDCBZehQ83PhzyjTfe0N13362vvvqKy8MAAE3Sv2V+6vE+G+YMM6ATAACA4NSgT7u4\n0YwZMzR79mwuDwMAAAAAALU0OHyYMWOG689cHgYAAAAAAL4rxN8NAAAAAACAwEb4AAAAAAAADOWz\nZz4AAAAAgLc8fTgwDwYGmheufAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAA\nAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAA\nAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYifAAAAAAAAIYi\nfACAAHb48GGNGDFC77zzjiTp1KlTmjx5spKTkzVz5kzV1NRIkvLy8jRmzBiNGzdO27ZtkyQ5HA6l\npaUpKSlJkyZN0vHjx/22DgAIZMxqAMGA8AEAAlRlZaUWLVqk/v37u7atXr1aycnJ2rJlizp37qzc\n3FxVVlYqOztbmzZt0ubNm5WTk6Pz589r586dioqK0rvvvquUlBRlZWX5cTUAEJiY1QCChdfhw7Jl\nyzRhwgSNGTNGu3btIqEFgCbGbDZr3bp1slqtrm3FxcUaPny4JGno0KEqKipSSUmJevbsqcjISEVE\nRKhPnz6y2WwqKipSfHy8JCk2NlY2m80v6wCAQMasBhAswrzZaf/+/Tpy5Ii2bt2qsrIyPfXUU+rf\nv7+Sk5M1cuRIrVy5Urm5uUpMTFR2drZyc3MVHh6usWPHKj4+XoWFhYqKilJWVpb27NmjrKwsrVq1\nytdrA4CgFhYWprCw2mO+qqpKZrNZktS2bVvZ7XaVlpbKYrG4vsdisdy0PSQkRCaTSTU1Na79AQAN\nx6wGECy8Ch8eeugh9erVS5IUFRWlqqoqFRcXa+HChZKuJbQbNmxQly5dXAmtpFoJbWJioqRrCW16\nerov1gIA8IDT6fTJ9hu1adNCYWGhDeqrqYiOjgyoOtRvWrWDvb6/196cMKtvrSn+PaIn99CTe5pa\nTw3tx6vwITQ0VC1atJAk5ebmatCgQdqzZ4+hCW1jDUlfn+BgfmOnPuc+WOs3ZS1atFB1dbUiIiJ0\n5swZWa1WWa1WlZaWur7n7Nmz6t27t6xWq+x2u7p16yaHwyGn01nvb9LKyiqNXkKjsdsvGl4jOjqy\nUepQv2nVDvb63tQOtrnOrHaPP/8N1cXf/67rQk/uoaf6udNPfbPaq/Dhuo8//li5ubnasGGDHn30\nUdd2IxLaxhqSvjzBze2NnfqBUT+Y1+5N/WD7gTY2NlYFBQUaPXq0du3apbi4OMXExCgjI0Pl5eUK\nDQ2VzWZTenq6KioqlJ+fr7i4OBUWFqpfv37+bh8AggKzGkAg8jp8+Oyzz7RmzRq9/fbbioyMNDyh\nBQB45tChQ1q6dKlOnDihsLAwFRQUaMWKFZozZ462bt2qDh06KDExUeHh4UpLS9PUqVNlMpmUmpqq\nyMhIjRo1Svv27VNSUpLMZrMyMzP9vSQACDjMagDBwqvw4eLFi1q2bJk2bdqk1q1bSyKhBYCmpkeP\nHtq8efNN2zdu3HjTtoSEBCUkJNTaFhoaqiVLlhjWHwCAWQ0geHgVPnz44YcqKyvTiy++6NqWmZmp\njIwMEloAAAAAAFCLV+HDhAkTNGHChJu2k9ACAAAAAIDvCvF3AwAAAAAAILARPgAAAAAAAEMRPgAA\nAAAAAEMRPgAAAAAAAEMRPgAAAAAAAEN59WkXAAAEun/L/NSj798wZ5hBnQAAADR/XPkAAAAAAAAM\nxZUPAAAAAJodT69Qk7hKDfAnrnwAAAAAAACGInwAAAAAAACGInwAAAAAAACGInwAAAAAAACGInwA\nAAAAAACG4tMuvoPPdQcAAAAAwLe48gEAAAAAABiK8AEAAAAAABiK2y4AAPABT2/bk6T3s0Yb0AkA\nAEDTQ/gAAAAAICh4ExTzjDfAN7jtAgAAAAAAGIrwAQAAAAAAGIrwAQAAAAAAGIpnPgAA4Cc/SfuD\nx/tw7zEANC5PnxPBnAbq5tfw4bXXXlNJSYlMJpPS09PVq1cvf7YDAKgDsxoAmjbmNIDmwG/hw+ef\nf66///3v2rp1q44dO6b09HRt3brVX+0AAOrArG56vHlSu6f4rR3QfDCnmx4+UQOom9/Ch6KiIo0Y\nMUKS1LVrV124cEEVFRVq1aqVv1ryCsMFQCALlFkNzzRGwOEN3j+BmzGnA0NTnbveYFbjVvwWPpSW\nlqp79+6ury0Wi+x2+y0HZXR0pMc13s8a7XV/gcCb/2fUD4z6wbz2plA/kDCrEcj8PSuCub6/1x5I\nPJ3Tkuf//5nT8LWmOAPoqX4N7afJfNqF0+n0dwsAgHowqwGgaWNOA2iq/BY+WK1WlZaWur4+e/as\nonVE5sYAAAq9SURBVKOj/dUOAKAOzGoAaNqY0wCaC7+FDwMGDFBBQYEk6U9/+pOsViv3pgFAE8Os\nBoCmjTkNoLnw2zMf+vTpo+7du2vixIkymUyaP3++v1oBANwCsxoAmjbmNIDmwuTkxjAAAAAAAGCg\nJvPASQAAAAAAEJgIHwAAAAAAgKH89swHX/r88881c+ZMvfbaaxo6dOhNr+fl5SknJ0chISEaP368\nxo0bJ4fDoTlz5ujkyZMKDQ3VkiVL1KlTJ49r13ecQ4cOaenSpa6vjx49quzsbO3du1fvv/++2rVr\nJ0l68sknNW7cOJ/WlqTu3burT58+rq83bdqkq1evNsraJenDDz/Uhg0bFBISov79++ull17S9u3b\n9frrr+uee+6RJMXGxuqFF15wu+5rr72mkpISmUwmpaenq1evXq7X9u3bp5UrVyo0NFSDBg1Sampq\nvft46nbH2r9/v1auXKmQkBB16dJFr776qr744gvNnDlT9913nyTp/vvv19y5cw2pP2zYMN11110K\nDQ2VJK1YsULt2rVrlPWfOXNGL7/8suv7jh8/rrS0NDkcjgad7+86fPiwpk2bpmeffVaTJk2q9Vpj\nnH94J1jntDv1JWZ1oM1q5jRzurny56yui7/ntzc9ScbOdG97MmLO18Xfs9/TnhrjZ3dPe2qM9wlP\nevLpe4ezmfv73//uTElJcU6bNs356aef3vT6pUuXnI8++qizvLzcWVVV5Xz88cedZWVlzu3btzsX\nLFjgdDqdzs8++8w5c+ZMr+p7cpwLFy44f/rTnzqvXLniXL16tXPz5s1e1fSk9sMPP9ygnhtSv7Ky\n0jl06FDnxYsXnVevXnWOHTvWeeTIEefvfvc7Z2Zmplc1i4uLnb/4xS+cTqfTefToUef48eNrvT5y\n5EjnyZMnnVeuXHEmJSU5jxw5Uu8+vqwfHx/vPHXqlNPpdDpnzJjh3L17t3P//v3OGTNmeF3Tk/pD\nhw51VlRUeLSPL+tf53A4nBMnTnRWVFQ06Hx/16VLl5yTJk1yZmRk1Pnvx+jzD+8E85x2tz6zOnBm\nNXOaOd1c+XtW18Xf89vbnoyc6d70ZMScr4u/Z783PRn9s7s3PRn9PuFNT9c19L2j2d92ER0drTff\nfFORkZF1vl5SUqKePXsqMjJSERER6tOnj2w2m4qKihQfHy/pWkpjs9m8qu/JcdavX68pU6YoJMQ3\n/9u9XUNjrf373/++8vLy1KpVK5lMJrVu3Vrnz5/3qtaNNUeMGCFJ6tq1qy5cuKCKigpJ11K4O+64\nQ+3bt1dISIgGDx6soqKi2+7jy/qStH37dt11112SJIvForKyMq/X6k19X+3T0GP9/ve/12OPPaaW\nLVt6VedWzGaz1q1bJ6vVetNrjXH+4Z1gntOe1vfFfp4eh1nt21nNnGZON1f+ntV18ff8bmhPvtjP\nF8c2Ys7fqg9/zn5Pe5KM/9ndm558tY8RPTX0vaPZhw/f//73XZek1KW0tFQWi8X1tcVikd1ur7U9\nJCREJpNJNTU1Htd39zjV1dXas2ePhg8f7tqWn5+v5557Ts8//7yOHz9uSO2amhqlpaVp4sSJ2rhx\no0c9+6L+9c+Z/uabb3TixAnFxMRIunZZ39SpUzVlyhR9/fXXHtVs06aN6+vr51OS7Hb7Lc/1rfbx\nVH3Hur7es2fPau/evRo8eLCka5cBpqSkKCkpSXv37vWqtjv1JWn+/PlKSkrSihUr5HQ6G3X9123b\ntk1jx451fe3t+f6usLAwRURE1PlaY5x/eCeY57S79ZnVgTOrmdPM6ebK37O6vpr+mN/e9mTkTPe2\nJ1/P+Vv14c/Z72lPkvE/u3vTk2Ts+4S3PUkNf+9oVs982LZtm7Zt21Zr24wZMxQXF+f2MZy3+GTR\nW22vr35JSYlbx/n44481ZMgQVxo7ePBgPfLII3rooYf0wQcfaPHixVq7dq3Pa8+aNUtPPvmkTCaT\nJk2apL59+970PUav/W9/+5tefvllZWVlKTw8XDExMbJYLBoyZIi++uorzZ49W++//369PdTFnd59\nsY8nxzp37pxSUlI0f/58tWnTRj/4wQ80ffp0jRw5UsePH9czzzyjXbt2yWw2+7z+L3/5S8XFxemO\nO+5QamqqCgoK3OrZV/Ul6auvvtK9997rGua+PN++4Mv142bBPKcbUp9Z7Zt9PDlWY81q5rTnmNPG\n8/esdrenxpzfvuzJVzPdlz1Jxs75uvh79rt7/Mb82d2dnhr7fcKdniTfvHc0q/Bh3LhxHj8sxmq1\nqrS01PX12bNn1bt3b1mtVtntdnXr1k0Oh0NOp7Pev1B11Z8zZ45bxyksLFRSUpLr6+8+VGTFihWG\n1L6x5iOPPKLDhw836tpPnz6t1NRULVu2TA888ICka5fydO3aVZL04IMP6ttvv9WVK1dum7ZfV9f5\njI6OrvO1M2fOyGq1Kjw8/Jb7eOp29SWpoqJCP//5z/Xiiy9q4MCBkqR27dpp1KhRkqR77rlHd955\np86cOePVQ4bqq5+YmOj686BBg1znu7HWL0m7d+9W//79XV835Hw3pDcjzj/qF8xzuiH1mdWBM6uZ\n0+73xpz2H3/Pand7asz57cuefDXTfdmTr+d8Xfw9+z3tSTL+Z3dvejL6fcKbniTfvHc0+9su6hMT\nE6ODBw+qvLxcly5dks1mU9++fTVgwADl5+dLujaw+vXr59Xx3T3OoUOH1K1bN9fXixcv1oEDByRd\nu1zl+tNUfVn7r3/9q9LS0uR0OnX58mXZbDbdd999jbr2X//611qwYIG6d+/u2rZu3Trt3LlT0rUn\nYlssFreH3IABA1zp35/+9CdZrVZX+taxY0dVVFTon//8py5fvqzCwkINGDDgtvt4s+bbHSszM1NT\npkzRoEGDXNvy8vK0fv16SdcuOTt37pzr6cu+rH/x4kVNnTrVdZndF1984TrfjbV+STp48GCtv+sN\nOd+eaIzzD2ME8px2pz6zOrBmNXP61pjTzZvRs7ou/p7f3vRk9Ez3pifJ93P+Vn34c/Z72pNk/M/u\nnvbUGO8TnvZ0nS/eO0zOZn5t2+7du7V+/Xr99a9/lcViUXR0tDZs2KD//M//1EMPPaQHH3xQ+fn5\nWr9+vevSpyeffFJXrlxRRkaG/va3v8lsNiszM1Pt27f3uP6tjnNjfUnq37+/ioqKXPt98803mj9/\nvsLCwmQymbR48WJ17tzZ57WXL1+u/fv3KyQkRMOGDdMLL7zQaGtv3bq1EhMTa6XPzz77rLp3765X\nXnnFNZQ9/aiYFStW6MCBAzKZTJo/f76+/vprRUZGKj4+Xl988YUr3X700Uc1derUOve58R+Op25V\nf+DAgbXOuSQ98cQTevzxx/Xyyy+rvLxcDodD06dPd91P5sv68fHxysnJ0Y4dO/S9731PP/7xjzV3\n7lyZTKZGWf/1Bx395Cc/0caNG3XnnXdKupa0N+R83+j6R2qdOHFCYWFhateunYYNG6aOHTs22vmH\n54J5Trtbn1kdWLOaOc2cbo78Pavr4u/57W1PRs50b3oyas7Xxd+z35OeGutnd096aqz3CU97knzz\n3tHswwcAAAAAANC0BfxtFwAAAAAAwL8IHwAAAAAAgKEIHwAAAAAAgKEIHwAAAAAAgKEIHwAAAAAA\ngKEIHwAAAAAAgKEIHwAAAAAAgKH+H7ulFP7vdqJEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "Xx9jgEMHKxlJ" + }, + "cell_type": "markdown", + "source": [ + "We might be able to do better by choosing additional ways to transform these features.\n", + "\n", + "For example, a log scaling might help some features. Or clipping extreme values may make the remainder of the scale more informative." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "baKZa6MEKxlK", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def log_normalize(series):\n", + " return series.apply(lambda x:math.log(x+1.0))\n", + "\n", + "def clip(series, clip_to_min, clip_to_max):\n", + " return series.apply(lambda x:(\n", + " min(max(x, clip_to_min), clip_to_max)))\n", + "\n", + "def z_score_normalize(series):\n", + " mean = series.mean()\n", + " std_dv = series.std()\n", + " return series.apply(lambda x:(x - mean) / std_dv)\n", + "\n", + "def binary_threshold(series, threshold):\n", + " return series.apply(lambda x:(1 if x > threshold else 0))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "-wCCq_ClKxlO" + }, + "cell_type": "markdown", + "source": [ + "The block above contains a few additional possible normalization functions. Try some of these, or add your own.\n", + "\n", + "Note that if you normalize the target, you'll need to un-normalize the predictions for loss metrics to be comparable." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "8ToG-mLfMO9P", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "1b1e10df-c595-424b-83b8-ccc1a4bbfb43" + }, + "cell_type": "code", + "source": [ + "def normalize(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized.\"\"\"\n", + " #\n", + " # YOUR CODE HERE: Normalize the inputs.\n", + " #\n", + " processed_features = pd.DataFrame()\n", + "\n", + " processed_features[\"households\"] = log_normalize(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = log_normalize(examples_dataframe[\"median_income\"])\n", + " processed_features[\"total_bedrooms\"] = log_normalize(examples_dataframe[\"total_bedrooms\"])\n", + " \n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + "\n", + " processed_features[\"population\"] = linear_scale(clip(examples_dataframe[\"population\"], 0, 5000))\n", + " processed_features[\"rooms_per_person\"] = linear_scale(clip(examples_dataframe[\"rooms_per_person\"], 0, 5))\n", + " processed_features[\"total_rooms\"] = linear_scale(clip(examples_dataframe[\"total_rooms\"], 0, 10000))\n", + "\n", + " return processed_features\n", + "\n", + "\n", + "normalized_dataframe = normalize(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0007),\n", + " steps=5000,\n", + " batch_size=70,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 185.22\n", + " period 01 : 116.40\n", + " period 02 : 114.85\n", + " period 03 : 113.27\n", + " period 04 : 111.47\n", + " period 05 : 109.28\n", + " period 06 : 106.43\n", + " period 07 : 102.74\n", + " period 08 : 98.26\n", + " period 09 : 93.05\n", + "Model training finished.\n", + "Final RMSE (on training data): 93.05\n", + "Final RMSE (on validation data): 92.80\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VPW9//HXObPv2dkCZMEVFZfS\niriBC7hd24rUBaqtbe+tot4Wq22v2kWr0sW6otXeVou/3lqtWm21VKuo2OtC4VKtQEAgZN8zk32Z\nOb8/JhmJQAjLZDLJ+/l45EFm5sw5n8kB8/b7/ZzzNSzLshARERFJI2aqCxARERHZVwowIiIiknYU\nYERERCTtKMCIiIhI2lGAERERkbSjACMiIiJpx57qAkRGssMOO4wpU6Zgs9kAiEajzJw5k5tvvhmv\n17vf+/3973/PwoULd3n+mWee4Tvf+Q4PP/wwc+bMSTzf2dnJSSedxNlnn81dd92138cdqh07dnDH\nHXewbds2ADweD0uWLOHMM89M+rH3xfLly9mxY8cuP5N33nmHq666ivz8/F3e85e//GW4yjsg5eXl\nnHHGGRQWFgJgWRY5OTn813/9F0ceeeQ+7etnP/sZEydO5NJLLx3ye/74xz/y9NNPs2LFin06lshw\nUYAR2YsVK1Ywfvx4ALq7u/nGN77BL37xC77xjW/s1/7q6ur45S9/udsAAzBhwgT+9Kc/DQgwr732\nGsFgcL+Otz9uuOEGLrzwQh5++GEA1q9fzxVXXMFLL73EhAkThq2OAzFhwoS0CSt7YrPZBnyGF198\nkWuuuYaVK1fidDqHvJ+lS5cmozyRlNIUksg+cDqdnHLKKWzYsAGArq4ubr31VubNm8c555zDXXfd\nRTQaBWDjxo1ccsklzJ8/nwsvvJA333wTgEsuuYTKykrmz59Pd3f3Lsc4/vjjeeedd+jo6Eg89+KL\nLzJ79uzE4+7ubm6//XbmzZvH3LlzE0EDYN26dXz+859n/vz5nHvuufz9738H4v9Hf/LJJ/Ob3/yG\nCy64gFNOOYUXX3xxt5+zpKSEGTNmJB7PmDGDlStXJoLcAw88wGmnncZnP/tZHnnkEebOnQvAt7/9\nbZYvX554386P91bXHXfcwaJFiwD4xz/+wUUXXcRZZ53FwoULKSsrA+IjUf/5n//JnDlzWLRoEdXV\n1Xs5Y7v3zDPPsGTJEq644gp+/OMf884773DJJZdw/fXXJ37Zv/TSS5x//vnMnz+fL37xi+zYsQOA\n+++/n5tvvpkFCxbw2GOPDdjv9ddfz69+9avE4w0bNnDyyScTi8X4+c9/zrx585g3bx5f/OIXqamp\n2ee6zz33XDo7O9m6dSsATz75JPPnz2fu3Ll885vfpLOzE4j/3O+8804uuOACXnrppQHnYU9/L2Ox\nGD/84Q85/fTTWbBgARs3bkwc99133+Vzn/sc5557Lueccw4vvfTSPtcuctBZIrJHhx56qFVVVZV4\n3NzcbF1++eXW8uXLLcuyrF/84hfWV7/6Vaunp8fq6OiwLrroIuu5556zotGodc4551gvvPCCZVmW\n9c9//tOaOXOm1dLSYr399tvWmWeeudvj/eEPf7Buuukm64Ybbki8t6WlxTrjjDOsp556yrrpppss\ny7KsBx54wLriiiusrq4uq62tzfrsZz9rvfrqq5ZlWdb5559v/elPf7Isy7KeffbZxLHKysqsI488\n0lqxYoVlWZb14osvWmedddZu67j22mutOXPmWI8//ri1ZcuWAa9t2rTJ+tSnPmXV1tZaPT091te/\n/nVrzpw5lmVZ1k033WQ9+OCDiW13fjxYXdOnT7eeeeaZxOedOXOmtXr1asuyLOuFF16wPve5z1mW\nZVlPPPGEdfnll1s9PT1WY2OjNWfOnMTPZGeD/Yz7f87HHnustW3btsT2Rx99tPX3v//dsizLqqio\nsE444QRr+/btlmVZ1n//939bV1xxhWVZlnXfffdZJ598stXQ0LDLfv/85z9bl19+eeLxvffea912\n221WSUmJdfbZZ1vd3d2WZVnWb37zG+vZZ5/dY339P5cjjjhil+dnzpxpffTRR9Z7771nzZo1y6qu\nrrYsy7JuueUW66677rIsK/5zv+CCC6zOzs7E4wcffHDQv5erVq2yzj77bKu1tdXq6OiwFixYYC1a\ntMiyLMv6/Oc/b73zzjuWZVnWtm3brG9+85uD1i4yHDQCI7IXixcvZv78+ZxxxhmcccYZnHjiiXz1\nq18FYNWqVSxcuBC73Y7b7eaCCy7grbfeory8nPr6es477zwAjj76aCZOnMj7778/pGOed955/OlP\nfwLglVdeYc6cOZjmx/9cX3vtNS677DKcTider5cLL7yQv/71rwA899xznHPOOQCccMIJidELgN7e\nXj7/+c8DMH36dCorK3d7/J/85CdcfvnlvPDCC5x//vnMnTuX//mf/wHioyMzZ84kNzcXu93O+eef\nP6TPNFhdPT09nHXWWYn9jxs3LjHidP7557Njxw4qKytZs2YNZ511Fna7nczMzAHTbJ9UVVXF/Pnz\nB3zt3CtTUFBAQUFB4rHb7WbWrFkAvPXWW3zmM59h6tSpAFx88cW888479Pb2AvERqaysrF2Oefrp\np/Phhx/S3NwMwMsvv8z8+fMJBoM0NjbywgsvEA6HWbx4MZ/97GeH9HPrZ1kWTz75JOPGjaOgoIBX\nX32Vc889l3HjxgFw6aWXJv4OAMyaNQuXyzVgH4P9vXzvvfc47bTT8Pl8uN3uxLkCyM7O5rnnnuOj\njz6ioKCAn/3sZ/tUu0gyqAdGZC/6e2AaGxsT0x92e/yfTmNjI6FQKLFtKBSioaGBxsZGAoEAhmEk\nXuv/JZaTk7PXY86ePZubb76Z5uZm/vznP3P11VcnGmoBWlpauPPOO7n77ruB+JTSMcccA8ALL7zA\nb37zG9ra2ojFYlg7LXdms9kSzcemaRKLxXZ7fJfLxVVXXcVVV11FJBLhL3/5C3fccQf5+fmEw+EB\n/TjZ2dl7/TxDqcvv9wMQiUQoKytj/vz5idedTieNjY2Ew2ECgUDi+WAwSFtb226Pt7cemJ3P2ycf\nNzU1DfiMgUAAy7Joamra7Xv7eb1eTjrpJFatWsUJJ5xAJBLhhBNOwDAM7r//fn71q19x2223MXPm\nTH7wgx/stZ8oGo0mfg6WZTFt2jSWL1+OaZq0tLTw8ssvs3r16sTrPT09e/x8wKB/L8PhMHl5eQOe\n73fHHXfw0EMP8aUvfQm32803v/nNAedHJBUUYESGKCsri8WLF/OTn/yEhx56CICcnJzE/20DNDc3\nk5OTQ3Z2NuFwGMuyEr8smpubh/zL3uFwMGfOHJ577jlKS0s57rjjBgSYvLw8vvzlL+8yAlFTU8PN\nN9/MU089xRFHHMH27duZN2/ePn3OxsZGNmzYkBgBCQaDLFy4kDfffJOSkhICgQAtLS0Dtu/3yVAU\nDof3ua68vDyKiop45plndnktGAzu8dgHU3Z2NuvWrUs8DofDmKZJZmbmXt87b948Xn75ZZqampg3\nb17i/J944omceOKJtLe3s2zZMn7605/udSTjk028O8vLy+Nzn/scN9100z59rj39vRzsZ5uTk8Mt\nt9zCLbfcwurVq7n22ms55ZRT8Pl8Qz62yMGmKSSRffClL32JdevW8e677wLxKYOnn36aaDRKe3s7\nf/zjHznttNPIz89n/PjxiSbZtWvXUl9fzzHHHIPdbqe9vT0xHbEn5513Ho8++uhuL10+44wzeOqp\np4hGo1iWxfLly3njjTdobGzE6/VSVFREb28vTz75JMAeRyl2p7Ozk+uuuy7R3AlQWlrK+vXr+dSn\nPsVxxx3HmjVraGxspLe3l+eeey6xXW5ubqL5s6ysjLVr1wLsU10zZsygrq6O9evXJ/bzrW99C8uy\nOPbYY3n11VeJRqM0NjbyxhtvDPlz7YvZs2ezZs2axDTX7373O2bPnp0YeRvMnDlzWLduHa+88kpi\nGmb16tX84Ac/IBaL4fV6OfzwwweMguyPuXPn8te//jURNF555RUeeeSRQd8z2N/L4447jtWrV9PR\n0UFHR0ciOPX09LB48WJqa2uB+NSj3W4fMKUpkgoagRHZB36/n6997WssW7aMp59+msWLF1NWVsZ5\n552HYRjMnz+fc845B8MwuPvuu/ne977HAw88gMfj4d5778Xr9XLYYYcRCoWYPXs2zz77LBMnTtzt\nsT796U9jGAbnnnvuLq9ddtlllJeXc95552FZFkcddRRXXHEFXq+XU089lXnz5pGdnc23v/1t1q5d\ny+LFi7nvvvuG9BknTpzIQw89xH333cftt9+OZVn4/X6+853vJK5M+sIXvsDnPvc5MjMzOfvss9m8\neTMACxcuZMmSJZx99tkceeSRiVGWww8/fMh1ud1u7rvvPm677Tba2tpwOBxcf/31GIbBwoULWbNm\nDWeeeSYTJ07kzDPPHDBqsLP+HphP+vGPf7zXn8H48eO5/fbbufrqq+np6SE/P5/bbrttSD8/v9/P\n9OnT2bRpE8ceeywAM2fO5M9//jPz5s3D6XSSlZXFHXfcAcCNN96YuJJoX0yfPp3/+I//YPHixcRi\nMbKzs/nBD34w6HsG+3s5Z84cVq1axfz588nJyeG0005jzZo1OBwOFixYwJVXXgnER9luvvlmPB7P\nPtUrcrAZ1s4T0SIi+2jNmjXceOONvPrqq6kuRUTGEI0BioiISNpRgBEREZG0oykkERERSTsagRER\nEZG0owAjIiIiaSctL6Ouq9v9ZZMHQ2aml6am9qTtX/afzs3IpPMycuncjFw6N0OTmxvY42sagfkE\nu92W6hJkD3RuRiadl5FL52bk0rk5cAowIiIiknYUYERERCTtKMCIiIhI2lGAERERkbSjACMiIiJp\nRwFGRERE0o4CjIiIiKQdBRgREZFRZtWqvw1pu3vv/RmVlRV7fP3b3/7mwSrpoFOAERERGUWqqip5\n5ZWVQ9r2+uuXMnHipD2+ftdddx+ssg66tFxKQERERHbv7ruXsWHDvzjllJmcffY5VFVVcs89y7nz\nzh9SV1dLR0cHX/7y15g9+xSWLPka3/zmjbz22t9oa2tlx45SKirKue66pcyaNZvzzjuDP//5byxZ\n8jVmzvwMa9euobm5mWXLfk5OTg4//OEtVFdXcfTRx/Dqq6/w7LMvDtvnVIARERFJkt+/uoX3Ntbu\n8rzNZhCNWvu1z5mH57Fw7rQ9vn7ppYt55pnfU1hYzI4d21m+/Jc0NTXy6U+fyDnnnE9FRTm33PJt\nZs8+ZcD7amtr+OlP7+Ptt//OH//4B2bNmj3gdZ/Px733PsRDD93PG2+8ysSJ+XR3d/HII4/x1ltv\n8vvf/89+fZ79pQCzk/rmDqrDXYwPuVJdioiIyAE74ojpAAQCQTZs+BfPP/8MhmESiYR32faYY44F\nIC8vj9bW1l1enzHjuMTr4XCY0tJtHH30DABmzZqNzTa86zspwOzk2Te38s6GWu6+ZjZBnzPV5YiI\nSJpbOHfabkdLcnMD1NW1JP34DocDgJdf/guRSIQHH/wlkUiEr3xl8S7b7hxALGvX0aFPvm5ZFqYZ\nf84wDAzDONjlD0pNvDsZl+UlFrPYUrFrMhUREUkHpmkSjUYHPNfc3MyECRMxTZPXX3+Vnp6eAz7O\npEn5bNr0IQDvvvv2LsdMNgWYnUybFAIsNpc3p7oUERGR/TJ1aiGbNm2kre3jaaDTT5/L3//+Jtdf\n/3U8Hg95eXn8+tePHtBxTjrpFNra2vj6169i/fp1BIOhAy19nxjW7saJRrhkDbv9oeTP/O2jd5lQ\ndy63fPEzSTmG7L/hGnKVfaPzMnLp3Ixco+HcRCJh1q5dw+mnn0FdXS3XX/91fvvbPxzUY+TmBvb4\nmnpgdhKlF8PVQVlrBV09UVyO4W1IEhERSRder49XX32F3/52BZYV49prh/emdwowOykOFfB6+Vvg\na2RbZYTDp2amuiQREZERyW6388Mf3pmy46sHZifFGQUAmP4m9cGIiIiMYAowO8lwhcjxZmMGmilR\ngBERERmxFGA+4ci8aRj2Hj5qqCAWS7v+ZhERkTFBAeYTDs+J33Cox1VPed2udyIUERGR1FOA+YQj\ncuMBxgw0sblcN7QTEZHRacGCC2hvb2fFisf44IN/Dnitvb2dBQsuGPT9q1b9DYAXX3yB119/LWl1\n7okCzCdMDIzDY/P0BRj1wYiIyOi2ePGVHHXUMfv0nqqqSl55ZSUA5557AaedNicZpQ1Kl1F/gmEY\nHJJZyD+jH1KyoxrLmj7s6zuIiIjsry9/+XLuuONnjB8/nurqKr7znaXk5ubR0dFBZ2cn3/jGtzjy\nyKMS2//oR9/n9NPP4Nhjj+O//utGuru7Ews7Avz1ry/x9NNPYrOZFBQUc9NN/8Xddy9jw4Z/8etf\nP0osFiMjI4OLLvoCy5ffy/vvr6e3N8pFFy1k/vzzWLLka8yc+RnWrl1Dc3Mzy5b9nPHjxx/w51SA\n2Y3ijEL+Wf8hLUY1DZFOckKeVJckIiJp6Jktf2Jd7fu7PG8zDaL7eaHIcXlH8/lp5+/x9VNPncNb\nb73BRRct5M03X+fUU+dQXHwIp556Ov/4x3v8v//3OD/60U92ed/KlS9RVFTMddct5W9/+2tihKWj\no4Of/ex+AoEA11zzVT76aAuXXrqYZ575PV/60lf57//+BQD/939r2br1Ix566Fd0dHRwxRWXcOqp\npwPg8/m4996HeOih+3njjVdZuPCy/frsO0vqFFJJSQlnnnkmTzzxBADvvfcel156KYsXL+bf//3f\nCYfjPSa//OUvWbBgARdffDGvv/56MksakuJQAQBmoFl9MCIiklbiAeZNAFavfp2TTz6N11//G1//\n+lU89ND9id+9n7R9+1aOOmoGAMcdd0Li+WAwyHe+s5QlS75Gaek2wuHdt1ds3Pghxx57PAAej4eC\ngiLKysoAmDHjOADy8vJobT04F8gkbQSmvb2d2267jVmzZiWeu/POO/npT39KUVERDz/8ME8++STn\nnHMOL774Ir/73e9obW3lsssu4+STTx6wbPdwmxyYhN2wE+tr5J01/cCHukREZOz5/LTzdztaksy1\nkIqKimloqKOmppqWlhbefHMVOTl53HLLbWzc+CEPPHDPbt9nWWCa8ZaJ/tuI9PT0cPfdP+axx35L\ndnYON974n3s8rmEY7Ly6Ym9vT2J/O/9OP1hLMCZtBMbpdPLoo4+Sl5eXeC4zM5Pm5nhyC4fDZGZm\n8s4773DKKafgdDrJyspi0qRJbNmyJVllDYndtFMQnILhaWFTZW1KaxEREdlXs2adzCOPLOeUU04j\nHG5m0qR8AF5//TV6e3t3+54pU6ayceMGANauXQNAe3sbNpuN7Owcamqq2bhxA729vZimSTQaHfD+\nww+fzrp1/+h7XzsVFeXk509J1kdM3giM3W7Hbh+4++9+97ssWrSIYDBIKBRi6dKl/PKXvyQrKyux\nTVZWFnV1dRx22GF73Hdmphe7PXkjNLm5AY6ZdBhbwlup6azE43Ph9zqTdjwZusFWJpXU0XkZuXRu\nRq5knpsLLzyPSy65hOeff5729nZuuukm3nprFZdffjmvvfYyb7zxV2w2k5wcP263g1DIw9y5X+Ca\na67hhhuWcMIJJ2CzmUybNplTTjmZ//iPKzn88MP52te+yvLl97BixQp+9KMSHn003hvj97s588xT\neP/9Nfznf/4Hvb293Hjjt5gyJQ+n005mpo/c3Ph2PT2ug/LZDetgjeXswf33309mZiaLFi3iyiuv\n5Nprr+WEE05g2bJlTJgwgfb2djweD1dccQUAN9xwA5/97Gc5+eST97jPZC5B3j+s92HDJh5c/9/0\nVBaxZNYCjinOSdoxZWhGw/Lzo5HOy8ilczNy6dwMzWBBZ1jvA7Np0yZOOCHeGHTSSSfxwQcfkJeX\nR319fWKbmpqaAdNOqVIYmoqB0bewoxp5RURERpJhDTA5OTmJ/pb333+fqVOncuKJJ7Jq1Sq6u7up\nqamhtraWadOmDWdZu+Wxu5nom4DpD1NS1pDqckRERGQnSeuB+eCDD1i2bBkVFRXY7XZWrlzJD37w\nA26++WYcDgehUIg77riDYDDIwoULWbRoEYZh8P3vfx/THBk3CJ6WWUhFWyXbIxX09MZw2EdGXSIi\nImNd0ntgkmE4emAA/lGznl/96//Rs+NQbjzzYqblh5J2XNk7zRmPTDovI5fOzcilczM0I6YHJt0U\nZxQAaF0kERGREUYBZhAZrhCZzkzMQDMlCjAiIiIjhgLMXhyaVYRh72FzXTmx9JttExERGZUUYPai\nf12kLmcd1Q3tqS1GREREAAWYvfq4D6ZZfTAiIiIjhALMXozz5uGxeTADjbqhnYiIyAihALMXhmEw\nLbMQ09XJpurKVJcjIiIiKMAMybSMQgCaYzU0tXSluBoRERFRgBmC/kZeM9DElgpNI4mIiKSaAswQ\nTA5MwmbY4ws7lqmRV0REJNUUYIbAbtopCE7G8LawqaIu1eWIiIiMeQowQ3RIZhGGAZWd5XR09aa6\nHBERkTFNAWaI+vtgDH8TW6siqS1GRERkjFOAGaLC0FQMDPXBiIiIjAAKMEPksbuZ4B2P6Q9TUt6Y\n6nJERETGNAWYfXBIViGGGWNbuIzeaCzV5YiIiIxZCjD7oDgUv6Fd1N1AWW1riqsREREZuxRg9sHH\nCzs2aV0kERGRFFKA2QcZrhAZzkzMQDMl5U2pLkdERGTMUoDZR4dmFmLYe9hcV45lWakuR0REZExS\ngNlH/dNI7bZa6po7UluMiIjIGKUAs4/6V6Y2A83qgxEREUkRBZh9NM6bh8fm6Wvk1Q3tREREUkEB\nZh8ZhkFxRgGmq4NNVVWpLkdERGRMUoDZD/3TSPW9VUTau1NcjYiIyNijALMfihN9ME18pD4YERGR\nYacAsx+mBCZhM+zxhR0VYERERIadAsx+sJt2CgKTMbwtbKqoTXU5IiIiY44CzH46JLMQw4CytnK6\ne6KpLkdERGRMUYDZT0V9fTD4G9lWFUltMSIiImOMAsx+KgpNAVAfjIiISAoowOwnj93DBO8ETH+Y\nkvLGVJcjIiIypijAHIBDswoxzBgfNZURi2lhRxERkeGiAHMAikMFAPS46qmob0ttMSIiImOIAswB\n+PiGdo1aF0lERGQYKcAcgAxXiAxnBmagmRIFGBERkWGjAHOADs0swrD3UFJblupSRERExgwFmANU\nnFEAQItRS0O4M7XFiIiIjBEKMAdo54UdN1doGklERGQ4KMAcoHHeXNymJx5gdEM7ERGRYaEAc4BM\nw2RaZgGmq4ONlVWpLkdERGRMUIA5CKb1TSPVdlfQ3tmT4mpERERGPwWYg2DnPpgtFVrYUUREJNkU\nYA6CyYFJ2Ax738KOauQVERFJNgWYg8Bh2pkayMfwtrCpoi7V5YiIiIx6CjAHyaGZRRgG7Ggtozca\nS3U5IiIio5oCzEFS1NcHE/M0UFrdkuJqRERERjcFmIOkKDQFQPeDERERGQYKMAeJx+5hvGc8pj/M\npvKGVJcjIiIyqinAHESHZhVhmDG2NO7AsqxUlyMiIjJqKcAcRNP6FnbsctRT3die2mJERERGMQWY\ng6goVACoD0ZERCTZFGAOokx3BiFHBqa/iZKyplSXIyIiMmopwBxkh2YVYjh62FRbnupSRERERq2k\nBpiSkhLOPPNMnnjiCQB6enpYunQpCxYs4IorriAcjk+zPP/881x00UVcfPHFPPXUU8ksKen610Vq\ntqoJt3aluBoREZHRKWkBpr29ndtuu41Zs2Ylnvv9739PZmYmTz/9NOeeey5r1qyhvb2dBx98kMce\ne4wVK1bw+OOP09ycvusJTdtpYUf1wYiIiCRH0gKM0+nk0UcfJS8vL/Hca6+9xr/9278B8IUvfIEz\nzjiD9evXc/TRRxMIBHC73Rx//PGsXbs2WWUl3ThvLm7T07ewowKMiIhIMiQtwNjtdtxu94DnKioq\neOONN1i8eDHf+MY3aG5upr6+nqysrMQ2WVlZ1NWl74KIpmFSnFGA6e5gY1VVqssREREZlezDeTDL\nsigsLGTJkiUsX76cX/ziFxx55JG7bLM3mZle7HZbssokNzdwQO8/Nv9w/tW4garOcvxBDx7XsP6Y\nR7UDPTeSHDovI5fOzcilc3NghvU3a05ODjNnzgTg5JNP5v777+f000+nvr4+sU1tbS3HHnvsoPtp\nakreTeJycwPU1R3YYozjHRMAMPyNvPvPCo4syNrLO2QoDsa5kYNP52Xk0rkZuXRuhmawkDesl1Gf\neuqpvPnmmwD861//orCwkBkzZvD+++8TiURoa2tj7dq1fOpTnxrOsg66yYF8bIZdfTAiIiJJkrQR\nmA8++IBly5ZRUVGB3W5n5cqV/PSnP+VHP/oRTz/9NF6vl2XLluF2u1m6dClXXXUVhmFwzTXXEAik\n97Caw7QzxZ/P1th2NlXUAoWpLklERGRUMaw0XHUwmcNuB2tY7/mP/sLK0leJffRpHrjq89hM3TPw\nQGnIdWTSeRm5dG5GLp2boRkxU0hjSXHfwo5Rdz3ltW2pLUZERGSUUYBJkqLQVCB+Q7uS8vS9MZ+I\niMhIpACTJB67h3Ge8Zj+MJvKG1NdjoiIyKiiAJNEh2UVYpgxNjeUDun+NiIiIjI0CjBJ1L+wY4et\njrpwZ4qrERERGT0UYJKoOFQA9C3sWKY+GBERkYNFASaJMt0ZhBwhTL8aeUVERA4mBZgkOySrCMPR\nw6aaslSXIiIiMmoowCTZtL4+mIZoFa0dPSmuRkREZHRQgEmynftgtmhdJBERkYNCASbJxvvycJnu\nvoUd1QcjIiJyMCjAJJlpmBRnFGC6O9hYWZXqckREREYFBZhhcGhmEQDl7WV090RTXI2IiEj6U4AZ\nBv0LO+JrZHu1Vh8VERE5UAoww2ByIB8btvgN7dQHIyIicsAUYIaBw7QzOZCP4W1hY0VdqssRERFJ\newoww+SwrGIMA7Y2lxLTwo4iIiIHRAFmmPT3wfS4Gqisb0ttMSIiImlOAWaYFAanAn0LO+qGdiIi\nIgdEAWaYeB0e8tzjMP3NbCrg98eyAAAgAElEQVRvSHU5IiIiaU0BZhgdll2EYcYoqduR6lJERETS\nmgLMMOpf2LHVrKEx0pniakRERNKXAsww2nlhR/XBiIiI7D8FmGGU6c4gaA9h+psoKW9KdTkiIiJp\nSwFmmB2SVYjh6GFjTXmqSxEREUlbCjDD7JC+hR3ruito7+xNcTUiIiLpSQFmmPX3wRiBJrZWqg9G\nRERkfyjADLPxvjxcpruvD0YBRkREZH8owAwz0zApCk3FdHewsbIq1eWIiIikJQWYFDg0K94HU9a6\ng95oLMXViIiIpB8FmBTov6FdzNtAaU1LiqsRERFJPwowKTA5kI+JDTPQzOYy9cGIiIjsKwWYFHCY\ndib78zG8ETaW16a6HBERkbSjAJMih2UXYRjwUbgUy7JSXY6IiEhaUYBJkf77wXQ56qlp6khtMSIi\nImlGASZFinZe2LGsObXFiIiIpBkFmBTxOjzkusdh+prZVN6Y6nJERETSigJMCh2eVYRhi7GprjTV\npYiIiKQVBZgUmpZRAECYasJt3aktRkREJI0owKRQcd8N7cxAE1vK1QcjIiIyVAowKZTpziBgD/Ut\n7KgAIyIiMlQKMCl2SGYhhqOHjdVlqS5FREQkbSjApNihWfFppOquCrq6oymuRkREJD0owKRYcSge\nYPA3srUqktpiRERE0oQCTIqN9+XhMtyY/iY2qw9GRERkSBRgUsw0TApDUzHdHWyorEp1OSIiImlB\nAWYEOCy7CIDtkR1EY7EUVyMiIjLyKcCMAP19MDFPA+W1bSmuRkREZOTb7wCzffv2g1jG2DYlmI+J\nLb6wo/pgRERE9mrQAPOlL31pwOPly5cnvr/11luTU9EY5DDt5PsmYXgjbCyvS3U5IiIiI96gAaa3\nt3fA47fffjvxvWVZyalojDo8uxjDgC1N2/WzFRER2YtBA4xhGAMe7/yL9ZOvyYEp7lvYsd1eR0O4\nM7XFiIiIjHD71AOj0JI8RaGpAH19MOEUVyMiIjKy2Qd7MRwO87//+7+Jx5FIhLfffhvLsohEdNfY\ng8nr8JLjyqPOV8+m8gZmHTU+1SWJiIiMWIMGmGAwOKBxNxAI8OCDDya+l4Pr8Owi6rtq2VS9A5ie\n6nJERERGrEEDzIoVKw5o5yUlJVx99dVceeWVLFq0KPH8m2++yVe+8hU2bdoEwPPPP8/jjz+OaZos\nXLiQiy+++ICOm64OyShkdeXbNEQrae3owe9xpLokERGREWnQHpjW1lYee+yxxOPf/e53XHjhhVx3\n3XXU19cPuuP29nZuu+02Zs2aNeD5rq4uHnnkEXJzcxPbPfjggzz22GOsWLGCxx9/nObmsXkvlOKM\n+A3tTH8TWyrUByMiIrIngwaYW2+9lYaGBgC2bdvG3XffzU033cRJJ53Ej370o0F37HQ6efTRR8nL\nyxvw/MMPP8xll12G0+kEYP369Rx99NEEAgHcbjfHH388a9euPZDPlLYy3Rn4bUHMQBMlZU2pLkdE\nRGTEGjTAlJWVsXTpUgBWrlzJ/PnzOemkk7jkkkv2OgJjt9txu90Dntu2bRsbN27knHPOSTxXX19P\nVlZW4nFWVhZ1dWP3Zm6HZBZiOHrYWFOe6lJERERGrEF7YLxeb+L7d999lwULFiQe788l1XfeeSc3\n33zzoNsM5SZumZle7HbbPh9/qHJzU9egfMLUI1lXv56K9nJCGV6cjuR9znSUynMje6bzMnLp3Ixc\nOjcHZtAAE41GaWhooK2tjXXr1vHzn/8cgLa2Njo6OvbpQDU1NWzdupUbbrgBgNraWhYtWsS11147\nYDSntraWY489dtB9NTW179Ox90VuboC6upak7X9vxtkmxL/xNbDmg0oOyc9IWS0jTarPjeyezsvI\npXMzcuncDM1gIW/QAPPVr36Vc889l87OTpYsWUIoFKKzs5PLLruMhQsX7lMR48aN45VXXkk8njt3\nLk888QSdnZ3cfPPNRCIRbDYba9eu5bvf/e4+7Xs0Ge/Lw2m4iAWa2VweVoARERHZjUEDzGmnncbq\n1avp6urC7/cD4Ha7+da3vsXJJ5886I4/+OADli1bRkVFBXa7nZUrV3L//feTkTHwF7Lb7Wbp0qVc\nddVVGIbBNddcM6bvMWMaJoXBqWyySthQXsW5TE11SSIiIiOOYQ3SdFJZWTnomydOnHjQCxqKZA67\njYRhvb9uf40/bn0Jo/R47rvyC5hawgEYGedGdqXzMnLp3IxcOjdDs99TSHPnzqWwsDBxz5ZPLub4\nm9/85iCVKDvrvx9Mj6uBqvo2JuX6U1yRiIjIyDJogFm2bBl//OMfaWtr47zzzuP8888fcMmzJMeU\nYD4mtsTCjgowIiIiAw16H5gLL7yQX/3qV9xzzz20trZy+eWX85WvfIUXXniBzs7O4apxzHGYdiZ6\nJ2F4I2wsH7v3xBEREdmTQQNMvwkTJnD11Vfz0ksvMW/ePG6//fa9NvHKgTkipwjDgM2N21NdioiI\nyIgz6BRSv0gkwvPPP88zzzxDNBrl3//93zn//POTXduYNi2jkJd3rKLFrKGppYvMgCvVJYmIiIwY\ngwaY1atX84c//IEPPviAs88+m7vuuotDDz10uGob04pC8cun430wzXz6iHEprkhERGTkGDTAfOUr\nX6GgoIDjjz+exsZGfv3rXw94/c4770xqcWOZ1+Elx5lHna+eTeVNCjAiIiI7GTTA9F8m3dTURGZm\n5oDXysu12GCyHZZdRH1VLRurtgOHp7gaERGRkWPQJl7TNFm6dCm33HILt956K+PGjePTn/40JSUl\n3HPPPcNV45h1SGb8fjB1PRV0dPWmuBoREZGRY9ARmJ///Oc89thjFBcX87e//Y1bb72VWCxGKBTi\nqaeeGq4ax6xpfTe0M/1NfFQZ5qjC7BRXJCIiMjLsdQSmuLgYgDPOOIOKigq++MUv8sADDzBunHoy\nki3TnYHfFsQMNFGyoznV5YiIiIwYgwYY4xNr8EyYMIGzzjorqQXJQNMyCzEcPWysUc+RiIhIvyHd\nyK7fJwONJN9hWUUAlLXtoDcaS3E1IiIiI8OgPTDr1q3j9NNPTzxuaGjg9NNPx7IsDMNg1apVSS5P\nijMKAIh5GyirbaVwQjC1BYmIiIwAgwaYv/zlL8NVh+zBBN84nIaLWKCZzWXNCjAiIiLsJcBMmjRp\nuOqQPTANk4LgVEqsEj6sqOJspqS6JBERkZTbpx4YSY3Ds+N9MFvD27EsK8XViIiIpJ4CTBoo7rsf\nTJezntqmjhRXIyIiknoKMGlgaiAfEzN+P5hy3Q9GREREASYNOGwOJnonYXgjbCyvT3U5IiIiKacA\nkyaOyCnGMKCkYVuqSxEREUk5BZg00b8uUphqIu3dKa5GREQktRRg0kRRaCoQX9hxS3k4xdWIiIik\nlgJMmvA6vGQ7czH9YTaVN6a6HBERkZRSgEkjh2UXYdiibKjZnupSREREUkoBJo0cmhm/oV1NdwVd\nPdEUVyMiIpI6CjBppH9hR8PXxLbKSGqLERERSSEFmDSS5c7EZwvEb2hX1pTqckRERFJGASbNTMso\nxHB082FNeapLERERSRkFmDRzeHYxAGWtpcRiWthRRETGJgWYNNPfB9PrbqS8rjW1xYiIiKSIAkya\nmeAbh8NwYgaa2Kwb2omIyBilAJNmTMNkamAqprudDyuqUl2OiIhISijApKEjc+J9MB81b8ey1Acj\nIiJjjwJMGiruW9ixw15LQ6QzxdWIiIgMPwWYNDQ1kI+JqT4YEREZsxRg0pDD5mCCZyKGN8LG8rpU\nlyMiIjLsFGDS1OE5xRgGbKrflupSREREhp0CTJrqX9ixKVZFW2dPiqsREREZXgowaaooNBUAw9/E\nRxXqgxERkbFFASZNeR1eshw5mP4wm8oaU12OiIjIsFKASWOHZRdh2KJ8WLM91aWIiIgMKwWYNHZo\nVrwPpqqznJ7eWIqrERERGT4KMGlsWt8N7fA1UVrdktpiREREhpECTBrLcmfiMwOYgSZKyppSXY6I\niMiwUYBJc8UZBRiObj6sKk91KSIiIsNGASbNHdG3sOP21lJiWthRRETGCAWYNNe/sGOPq57qhvYU\nVyMiIjI8FGDS3ATfOByGs29hx+ZUlyMiIjIsFGDSnGmYTPFPwXS382F5VarLERERGRYKMKPAkbnT\nANjSrIUdRURkbFCAGQX67wfTatbS1NKV4mpERESSTwFmFJgayMfExAw0sUULO4qIyBigADMKOGwO\nxrsnYngjbCirTXU5IiIiSacAM0ockVuMYcCm+u2pLkVERCTpkhpgSkpKOPPMM3niiScAqKqq4sor\nr2TRokVceeWV1NXVAfD8889z0UUXcfHFF/PUU08ls6RR65DMeB9MfW8FHV29Ka5GREQkuZIWYNrb\n27ntttuYNWtW4rl77rmHhQsX8sQTT3DWWWfx61//mvb2dh588EEee+wxVqxYweOPP05zs+5nsq+K\nQgUAGP5mtlZFUluMiIhIkiUtwDidTh599FHy8vISz33ve99j3rx5AGRmZtLc3Mz69es5+uijCQQC\nuN1ujj/+eNauXZusskYtn8NLpiMH09/Mph0NqS5HREQkqexJ27Hdjt0+cPderxeAaDTKb3/7W665\n5hrq6+vJyspKbJOVlZWYWtqTzEwvdrvt4BfdJzc3kLR9J9OMiYexqvQtNjeWkZt7fKrLSYp0PTej\nnc7LyKVzM3Lp3ByYpAWYPYlGo9x4442ceOKJzJo1ixdeeGHA69YQFiRsakremj+5uQHq6lqStv9k\nmuqbDMD2SClV1WHsttHVo53O52Y003kZuXRuRi6dm6EZLOQN+2+473znO0ydOpUlS5YAkJeXR319\nfeL12traAdNOMnTFoXgjr+VtpKy2NcXViIiIJM+wBpjnn38eh8PBddddl3huxowZvP/++0QiEdra\n2li7di2f+tSnhrOsUSPLnYHX9GMGmigpUyO0iIiMXkmbQvrggw9YtmwZFRUV2O12Vq5cSUNDAy6X\ni8WLFwNQXFzM97//fZYuXcpVV12FYRhcc801BAKaF9wfhmFQHCrk/ab3+bCqjHlMSXVJIiIiSZG0\nAHPUUUexYsWKIW07f/585s+fn6xSxpQjcot5v+l9tkVKsayTMAwj1SWJiIgcdKOry1MSCzt2Oeuo\na+5IcTUiIiLJoQAzykzwjcOBEzPQxOZyLewoIiKjkwLMKGMaJpP9UzDd7XxYXpnqckRERJJCAWYU\nOjK3GICSpu2pLURERCRJFGBGoUMyiwCIUE2kvTvF1YiIiBx8w34nXkm+qYF8DExMfxPffvh/Cfld\nZPichPxOQj5X359OMvwuQn3P+zwOTF2xJCIiaUIBZhRy2Bzk+yZRZpWTlWEn0tpDTePgyy/YTIOg\nz0nGJ0JOaKeQk+FzEfQ5cdg1cCciIqmlADNKHZ5dTFlbGf6j/0GBJwu/w48LL2bMjdHrJtrloKfD\nSUe7Sbi1h0hbN82t3ZTVtrEtOvj6HD63PRFs9hR4MvxOPC677kMjIiJJoQAzSh0/7hjW1PwfZS0V\n7Ggp3+N2hsPAP85H0BlgqjNA0BnAY/PhiHkwo25iPU56O510ddhpbbOItPYQbusm3NpFZX3boDU4\n7GZi9GZPU1chn4ugz4HN1KiOiIgMnQLMKDUlkM/ts79LNBaltaeNSHdL/Ksr/md4p8ct3S00dDRS\n0Vo16D4dATvB7AAZzgBTXEH8dj9OPNgsN/S4iXU56O500NFmp7UtSnNrF+G2brZXtRCNRfa4XwMI\neB0Efa74iM4eAo8/6DnIPyUREUlXCjCjnM20EXIFCbmCe922K9pNS1+wCfcFnZ1DT/9XaUs5sUhs\nzztygdfnITg5yBRngKDTj9uMj+oYURdWj4veLifd7Q7a2iDS2kNzWzcNkQ7K6wZfRdvltJHRH2r8\nO/3ZH3j88RDk1fSViMiopgAjCS6bE5cnmxxP9qDbxawY7T0dA0LNJ4NOuLuFlq4Wqttq9rwjE8yg\nSTAnQIbTzxRnAJ/dj9PwYovGe3Vi3fHpq842O909JrWN7YRbu6ht6sAapMb+6atdA87HIzoZARd+\nXX0lIpKWFGBkn5mGid/pw+/0MZHxg27bE+ultbt10CmsSHcLVW017Gip2POOPOAOuAiOC/SN6gRw\nG17sVl+vTreL3k4Hne122lpNwq3dhNu62VoZIWbtOep88uqrjL5RnP7QkxFQn46IyEikACNJ5TDt\nZLozyHRnDLqdZVl0Rrt2CjURIv3Bp6uFcHeE9lg7je3N1IUbsPY0/uIEM9skMN5PritAsTOAx/Th\nsDyYMQ90u+jtdtDd7qCj1UakLUq4tZuy2tZBr74ygIDP2Xc/nf7pq/7QM7B3R5eZi4gknwKMjAiG\nYeCxu/HY3Yzz5u52m9zcAHV1LYnG5HB3ZOC0VeL7+PPVbbWU7WlUxw5kgCfHTdAZYKIzgNfmx4UH\nm+WBHhexbhfdHQ462my0tkC4rYeapg521A7ep+Nz2xNTV/2jOrv07PhduBy2A/ypiYiMXQowknYG\nNCYH9rxdYlSnK7LLtNUnw09Ne93ud2ICAbAFbQScfgqdQXx2H27Thz3mxkhMXznpbLfR3mIj3NpL\nU0sXFXu5zNzntpMZcJMVdJEVdJMZcJEViH+fFXCRGXDhVMgREdktBRgZtQaM6vjyBt22N9ZLy069\nOuGdQk9L18fhp6K1kl4ruvudeONf3kkexrmCBBx+3IYPJ/E+nf6rr7ra7bS32GiOxKhrHvzKK7/H\nkQg1mQFXPOwEPv4+M+DWlJWIjEkKMCKAfR96dTp6O+KBpn8kZ7fNyZE9X4Hljn85xzuZ4AoRcATx\nGH7sMW/8LsmdLrraHbRF7IQjUN3UPui0VcDrGBBqPjmak+FXX46IjD4KMCL7wDAMvA4vXoeXCb5x\ng27bE+vdaZoqMqBPJ9wVprkrQnNXePfTV30hxz7OxjhXiIDz45Bj9nqIdjnpbnfS1mIn3GxQ1dBG\nac2em5CDPmdiWioxRdU3mpMVcJERcGG3KeSISPpQgBFJEodpJ9uTSbYnc9DteqI9fWGmORFqmrrC\nNHeFae4M09zVzPZI6a5XXvWFHDPPJNsZIOgI4jH9OCwvZo+HaJeLrnYnHa02ws0G5XVtbK/efcgx\ngKA/HnI+Hs1x901TxZ/LCDh1KbmIjBgKMCIp5rA5yPVmk+vd8w0Eo7Eoke6WnYJN88ff943mlLdV\nELM+cYdkT99XLmQ5/YmQ47R88RsFdrnpbnfQ3uIgEo7FLyev2kPIMSDkc+7UZBwPOAX5GbhMyMvw\n4HU7Dt4PRkRkEAowImnAZtr22qMTs2K0dLf1jeT0jeJ0hnca3QlT21FLT6xy4Bv7Q04ehOxegs4g\n3v6RnF4PsW4XPe1O2lvsRMJRSqtb2Fq5+7WtfG47uRke8jI98T93+j4j4NJdj0XkoFGAERklTMMk\n5AoQcgWYyuTdbmNZFm297X3B5uOvj8NOmOauJqqj1QPfuFPICdicBB0hvLb4SI7L9NMZcdLZ4iTS\nBOV1rbudqrLbTHIz3Ilgk5vhITez/3s3DrsuGReRoVOAERlDDMPA7/Dhd/jID0zc43YdvZ2EPxFs\nBk5Zhanr3Kn52ARC8S9vkZ0MZyY+M4gzFsDq8tLd5qYt7KChvoOqhvZd6wIyAq5dgk3/6I3fo6kp\nERlIAUZEdtF//5zxg1xp1R3tobkrjOXuYkt1OfUdjdR3NFDf0UBdRyN1vTsFnL575BgTDMY7gwTs\nIdxWALPHR2+Hh/aIk3BDNyVlnWwqa97lWF6XfbfBJjfDTVbAjWlqakpkrFGAEZH94rQ5yPPmkJsb\nYJw5aZfX23vaqdsp0DR0NPQ9bqSivezjq6ocQHb8K8PmJsOZgdcIYY/6iXV46Gx1EWmGyvqW3V4q\nbrcZZIf6gk1fyMnNcCdGc3Q3Y5HRSQFGRJLC6/Ay1eFlanDXfpyeWC+NHY3xQNM5cOSmoaOe6lhf\nD44JBONfzqkm45wZ+G0Z8ampbi89bW5aww6a6juo2brr1BRAht+5a89N359+jwNDjcUiaUkBRkSG\nncO0M86Xt9slHmJWjEh3yyempBpo6As8DV1bP964v7l4POQ6/ITsGbgJYvb4iHb2TU01wuaKLkrK\nw7scy+OykRsaGGwmZvvIz/XpknCREU4BRkRGFNMwyXCFyHCFmJZRuMvrHb2d1A+YkmpIhJ2qzkpi\nVnl8QzuQFf8Kms7E1JQj5ifW6aWr1UVLs53qhuhul2rICrrIz/UzKdfH5Fw/+bl+xmd7dcdikRFC\nAUZE0orH7mZyYCKTd3MVVTQWpbGzmfrOXUdu6jsaqI3Wxjc0iK9kHgD7ZIMcZwi/LYTTCmB1+ukI\ne2ioifHPjzr550cNif3bTIMJ2d6Pg01ePNhkBlyaihIZZgowIjJq2EzbHu9qbFkWrT1tiWCz88hN\nfUcDZR2lH2/cd0l4tt1Dhj0HVzSDWHuA1iYXddVRyuvaBuzb67KTn+tjUl+gmdwXcDwu/SdWJFn0\nr0tExgTDMAg4/QScfgpDU3d5vTvaTX1HI1VtNVS1VVPZVkNVazVVHeVYlMWvlsoDMw/yHEFCZhb2\n3hA9rX7C9U42V+3aZ5MddDM5Lx5m8nP95Of5GZ/l0ZpSIgeBAoyICOC0OZnoH89E/3hgRuL57mg3\n1W21VLZVU9lWTVVrDZVt1ZR3bY9v4AEmg2eyQciZiZ9MjK4gXREvTXVd/N9H7fzflo8Di91mMCG7\nP9D0/ZnrJ8Pv1DSUyD5QgBERGYTT5mRKMJ8pwfwBz7f3dMQDTVs1la19ozat1ZT3fhTvsembhvIb\nNjIcWXhimcQ6ArQ3u6mp7aCstgX+9XFg8bntiTDTH2wm5fpwO/WfaZHd0b8MEZH94HV4mJZROOBK\nKcuyiHS39I3UxKeh+r9viNXFp6FywZYLIdNJyJaNMxqit81PS4OLkuo2NpU1EU9AcbkZ7r4w4+9r\nGvaRl6lpKBEFGBGRg8QwDEKuICFXkCOyDk08H7NiNHY2UdkXavpHa2raa4laVfFpqHxw54PH5iFg\nZGPrCdLd4qO53sm6rS2s2/zxfWnsNpNJOfH71ewcbII+TUPJ2KEAIyKSZKZhkuPJJseTzTG50xPP\n98Z6qW2vH9A0XNFWTV1HBZZRnrgLsQfw2QL4yILOAB1hD5V1YUr/5QXr46US/B7HgKbhGYePw+8w\nNFojo5ICjIhIithNe6Jx+ISdnu+KdlPdVpMINZV9Iza13aXxaagcsOeAA4OALQNXLINYu5+2Jjcb\na1xsKPUCJry0EZfDRtHEINMmhTgkP0TRxBBet/7TL+lPf4tFREYYl83J1ODkXdaRautpp6qthsrW\nePNwRd+fEWtbYlkF90SwGTYCZibOaBatdT42VjezodQPGBjApFw/0/JDHDIpxLT8EDkht6aeJO0o\nwIiIpAmfw7vbxuFwdyRxeXf/aE1VWw3N1EMuuHPBYTjxW3lEW0LUVnsp/2eQVevifTUhvzMeZiaF\nmJafwZRxfi2ZICOeAoyISBozDCOxdtQR2QMbh7tdbfxj24dsjZSyLVxKTXs5BMqxBeIDNgEzC3tn\nFpE6P/8oDbBmkxcwcNpNCicEmZbfH2pC+LS4pYwwCjAiIqOQaZhMDk3EPSnA7EmfAaC1p43t4R1s\nDZeyNbyd0kgZLc5GmATuSeAy3HiiuXQ3h9hc42VTRQhi8SbhiTm+RB/NtEkh8jI9mnaSlFKAEREZ\nI/wOH0flHMFROUcA8cUvK9qq2BqOj9BsC5fS0FkGWWW4suIdM35yoD2ThlovVRtCvLHeDRgEvQ6K\nJ4U4JD+DaZNCTB0fwGHXtJMMHwUYEZExymbamBLIZ0ogn9PzZwPQ3BVmW3gHW8Pb2RbeQVlLOb3e\nOswCcANuw4ezO4f2Rj//Vxlg3ZYgWCZ2m0nBhECiMbh4Uoig15nSzyejmwKMiIgkZLhCHJd3NMfl\nHQ1AT7SHstaKxCjN1nApEasUxoF7HJjY8FnZ9EYy2FbrY8vaDHjHBcC4LG8i0BySH2J8llfTTnLQ\nKMCIiMgeOWwOikIFFIUKgPhVT42dTX19NKVsi5RS0VpFLFSLMxR/j4cAts5swnU+3vooxOr3/YCJ\nz21PNAUfkp9BwfgATodtj8cWGYwCjIiIDJlhGGR7ssj2ZDFz/HEAdPZ2saOljK3hHWzrm3pqdW/H\nmAzuyWDDgSeaTVdzkPfrA6zfHoKoE5tpUDA+0NdLE7+EO+TTtJMMjQKMiIgcELfdxaGZ0zg0cxoQ\nv4S7tr0+MeW0NVJKdVs1ZFfjyo6/x2NlYLVlUFrnZ+v7Gfz1PR9gkJfh2SnQhJiY48PUtJPshgKM\niIgcVKZhMt6Xx3hfHrMmzgSgvaedbZEytoW3szVcyvbIDrr8zTj88dUR7LhwdmfT0hDgnR1B/ndD\nCGJ2vC47xX3TTtMLsigYH8A0FWhEAUZERIaB1+FlevZhTM8+DIiP0lS2Vif6aLaGS6mnEiaAawKA\ngSeWSW8kxIcNAT4oz+DZN7z43HamF2YxvTCLowqzyQy4Uvq5JHUUYEREZNiZhkl+YCL5gYmcyiwA\nIt0tbAvv6Jt62k5pSzm9GY04M+Lvccb8RMPZrKnO5N2SbIg6mJTr46jCLI4qyubQ/BAOu5qCxwoF\nGBERGRGCzgAzcqczI3c6AL2xXspbK9kaLmVL8zZKmrbQnVmKK7MUMHD1ZFFfn8nLG7JY+V4GTpud\nw6Zk9gWaLF22PcopwIiIyIhkN+0UBKdQEJzC3MmnEI1F2dFSzsbGzWxoLGFbZAfmhAZcE8C07Nja\nc/iwPoMP3srB+puP7KCb6YXZHFWYxZEFmXi1ntOoogAjIiJpwWbaKAxNpTA0lXMKz6Sjt5PNTR+x\nsWkzGxs3U2NU4/RVA2CPeWlvzuatsize+Fc2ZtRF0aRgfHSmMFvNwKOAAoyIiKQlj93NMbnTOaZv\nyqmxs4mNjfEws7FpM8rnyJAAAA9NSURBVL1ZZTizygBwdGdQ2pDJ1vU5PLc6A5/LpWbgNJfUAFNS\nUsLVV1/NlVdeyaJFi6iqquLGG28kGo2Sm5vLT37yE5xOJ88//zyPP/44pmmycOFCLr744mSWJSIi\no1CWO5OTJn6ak/5/e/caFGX993H8vewuEi6nXdgFQgxR4e8hFfCeNE0rrX92j5ZamEk9aqZxelBj\nTY5p5tjU4FTTWI6V6Yxj018KO06ldrLxP6nVoAiIoCQqorDIchIBd9n7AcStHRwP4bVXfl7P2NN8\ndr6ufLiu316/5P+hO9hNTWst5Y2VHGw8xK/N1diSmrAlHSEsaIUzLooa4/i5Op7glw5uTHBoMbDJ\n9FuBaW9vZ+XKlUyYMKHvttWrVzN//nzuueceXnvtNQoLC7nvvvtYs2YNhYWF2O125s6dy/Tp04mN\nje2vaCIi8g8XZgkjNTqF1OgU7r7pDjoDXRxu+rXvCE2t5RR2Rz12KrAGImhocvJNlYtte12EByO1\nGNgE+q3AhIeHs27dOtatW9d32549e1ixYgUAt99+Oxs2bCAtLY3Ro0cTFRUFQFZWFkVFRdxxxx39\nFU1ERK4zA6zhjHRlMtKVCfTsul3ReLjnCI3vEK3WWsJdtQCEdUVTftpJ2S8u/vO9E5cjUouBQ1C/\nFRibzYbNduHLnz17lvDwnn0uXC4XXq+XhoYGnE5n32OcTider/eirx0XF4mtHw/vJSRE9dtry9XR\nbEKT5hK6NJs/l0AUw1JS+F+mEgwGOdZ8guJT5ZTUlXPAexh7UjUkVWMJhtF+xsmP9U52HnJh6Ygh\nI9VJVqabrAw36SmxWK9wMbBmc3UMW8QbDAYv6/bz+Xztf3ecPgkJUXi9rf32+nLlNJvQpLmELs3m\n0kUSwwTXLUxw3cK5wDmqmqv7vq5dY6nF7mjAPgjCAgOoaoqj8pd43v/ORWRY1BUtBtZsLs3FSt41\nLTCRkZF0dHQQERFBXV0dbrcbt9tNQ0ND32Pq6+sZO3bstYwlIiLSx261k+kcRqZzGPcxg9auNioa\nD1He++2mJusprK6er2sHOx3s9Tn55cd4urc6udEVo8XA18g1LTATJ05k27ZtzJo1i+3btzN58mTG\njBnD0qVLaWlpwWq1UlRUxJIlS65lLBERkb8UFe4gJ3EcOYnjCAaDnGqv710MXEll068EBxzDlngM\nghZOt8XybY2L7WXx2DvjyEh1ajFwP7EEL+WczRUoLS0lPz+fEydOYLPZ8Hg8vPLKKyxevJjOzk6S\nk5N5+eWXsdvtbN26lfXr12OxWFiwYAEzZ8686Gv352E3HdYLXZpNaNJcQpdm0//83X6ONB/tPd10\niGOtNQTp+bVqCdjxNzsJNLvobonHOSCubzHwlPGpnGntMDh96LvYKaR+KzD9SQXm+qTZhCbNJXRp\nNtfemXPtVPgOc7CxkvLGQzR2+P7/zs5I/E0uAi0uwtoSGJnqJjvDzdhh8Thu0Deb/owKzGXQBz50\naTahSXMJXZqNsYLBIN6zDX3XnqnwHaYj0Nl7ZxiBZheBRg+0eMhM7ikz44YnEDMw3NjgIUQF5jLo\nAx+6NJvQpLmELs0mtAS6AxxtPc6B05Uc8JVztPlEzx1BCLQ6CTR66PZ5GJaYSHZGAtnDE3BGRxgb\n2mAqMJdBH/jQpdmEJs0ldGk2oSshIYqyo0co9pZS7C3lSMuxvvu622II+DwEGj2kuZJ6ykyGG3fs\nDQYmNkbIfI1aREREergj45k+eCrTB0+lqbOZYm8Zxd5SDvErYY5m7IMqOdHu4Filh8LdHlKiksjJ\n6DnVlBw/0Oj4hlOBERERMVjsgBimpExkSspE2s6doaShnGJvCeWnD+GPrMJ+YxXejhv4vNrDp3s9\nuAck95SZ4W5SPY7r8uvZKjAiIiIhxGEfyISkHCYk5dDh76DsdAXF3lJKG8rpjKiGpGqaugaw7YSb\nL0s9OMOSyRnes24mLTmasOukzKjAiIiIhKgIWwTZnjFke8ZwLnCOCt9h9nlL2e8t40z4cWye47T5\n7XzrTWB7ZSLR3clkD0skJyOBYSmxhF3hPk1moAIjIiJiAnarnVHx/2JU/L8IZMymqvkI+7yl7Ksv\npdlWiy2hls5AMTub49mx1UNkVzJZQ5PJzkggMzUOmzXM6Lfwt1KBERERMRlrmJXhcUMZHjeUucNm\ncrSlhmJvKXu9JTRY67A66/B3l7KrxcV/v/Uw4GwS49JuJDvDzci0uH/EHk0qMCIiIiYWZgkjLSaV\ntJhUZqXfw8kzdezzlrCvvpQTYSexxnoJBkv5udXJ7v+6sW1NZkxqCtkZbkYPcRIRbs4qYM7UIiIi\n8gcWi4VkRyLJjkRmpE3H236a4oZS9tWXcMRyDGt0I3CQ4rYYivZ4sHydyKjkVHIy3IwZGk9khHlq\ngXmSioiIyGVJiHQxLXUK01Kn0NTZzH7vAfZ5S6ikijBHM1DJgXYHJXs98L2HTM9N5GS4GTcsnqjI\n0N7SQFfi/R1duTJ0aTahSXMJXZpN6DJ6NmfOtVPScIB93lIOnK4gEAwA0N15A4FGD8GmRIY5e8pM\n1vAEYh0DDMmpK/GKiIhIn4H2SG5JyuGWpBw6/J0caOy51sx+7wG6kqohqZrqrr1UVbj5z24PN0Wn\nMX64h6yMBOJjQmNLAxUYERGR61iEbQBZ7pvJct/MuW4/FY2HKPaWss9bRnv4cfAc54R/H8eq3XxQ\n5CHlhpsYPzyJ7Aw3ic5Iw3LrFNLvGH1YT/6aZhOaNJfQpdmELjPMJtAdoKq5uvdaMyU0d7UAEAxY\n6W6OJ+Dz4LbexIzx6dw6OqlfMugUkoiIiFyWnmvNpDM8Lp0Hhs3kWGsN+7ylFNXt77vWjK+7hI+r\nhnLr6MeueT4VGBEREbkoi8XC4OhBDI4exMwh/+bkmbqe00z1pSR4jFkTowIjIiIil+z8a83ckzbN\nsBz/rI0RRERE5LqgAiMiIiKmowIjIiIipqMCIyIiIqajAiMiIiKmowIjIiIipqMCIyIiIqajAiMi\nIiKmowIjIiIipqMCIyIiIqajAiMiIiKmowIjIiIipqMCIyIiIqZjCQaDQaNDiIiIiFwOHYERERER\n01GBEREREdNRgRERERHTUYERERER01GBEREREdNRgRERERHTUYE5z0svvURubi7z5s1j//79RseR\n86xatYrc3FzmzJnD9u3bjY4j5+no6GDatGl89NFHRkeR83z22WfMnDmT2bNns2PHDqPjCHDmzBme\neOIJ8vLymDdvHjt37jQ6kqnZjA4QKn766SeOHj1KQUEBVVVVLFmyhIKCAqNjCbB7924OHTpEQUEB\nPp+P+++/n7vuusvoWNJr7dq1xMTEGB1DzuPz+VizZg1btmyhvb2dN954g6lTpxod67r38ccfk5aW\nxqJFi6irq+PRRx9l69atRscyLRWYXrt27WLatGkApKen09zcTFtbGw6Hw+BkMn78eG6++WYAoqOj\nOXv2LIFAAKvVanAyqaqq4vDhw/rlGGJ27drFhAkTcDgcOBwOVq5caXQkAeLi4qioqACgpaWFuLg4\ngxOZm04h9WpoaLjgH5PT6cTr9RqYSH5jtVqJjIwEoLCwkNtuu03lJUTk5+ezePFio2PI79TU1NDR\n0cHjjz/O/Pnz2bVrl9GRBLj33nupra1l+vTpLFiwgGeffdboSKamIzB/QTsshJ5vvvmGwsJCNmzY\nYHQUAT755BPGjh3LoEGDjI4if6KpqYk333yT2tpaHnnkEb7//nssFovRsa5rn376KcnJyaxfv56D\nBw+yZMkSrR27CiowvdxuNw0NDX0/19fXk5CQYGAiOd/OnTt56623ePfdd4mKijI6jgA7duzg+PHj\n7Nixg1OnThEeHk5iYiITJ040Otp1z+VyMW7cOGw2G6mpqQwcOJDGxkZcLpfR0a5rRUVFTJo0CYDM\nzEzq6+t1Ovwq6BRSr1tvvZVt27YBUFZWhtvt1vqXENHa2sqqVat4++23iY2NNTqO9Hr99dfZsmUL\nH3zwAQ888AALFy5UeQkRkyZNYvfu3XR3d+Pz+Whvb9d6ixAwePBgiouLAThx4gQDBw5UebkKOgLT\nKysri5EjRzJv3jwsFgvLly83OpL0+vLLL/H5fDz55JN9t+Xn55OcnGxgKpHQ5fF4uPvuu3nwwQcB\nWLp0KWFh+nvVaLm5uSxZsoQFCxbg9/t54YUXjI5kapagFnuIiIiIyaiSi4iIiOmowIiIiIjpqMCI\niIiI6ajAiIiIiOmowIiIiIjpqMCISL+qqalh1KhR5OXl9e3Cu2jRIlpaWi75NfLy8ggEApf8+Ice\neog9e/ZcSVwRMQkVGBHpd06nk02bNrFp0yY2b96M2+1m7dq1l/z8TZs26YJfInIBXchORK658ePH\nU1BQwMGDB8nPz8fv93Pu3Dmef/55RowYQV5eHpmZmZSXl7Nx40ZGjBhBWVkZXV1dLFu2jFOnTuH3\n+5k1axbz58/n7NmzPPXUU/h8PgYPHkxnZycAdXV1PP300wB0dHSQm5vL3LlzjXzrIvI3UYERkWsq\nEAjw9ddfk52dzTPPPMOaNWtITU39w+Z2kZGRvPfeexc8d9OmTURHR/Pqq6/S0dHBjBkzmDx5Mj/+\n+CMREREUFBRQX1/PnXfeCcBXX33FkCFDWLFiBZ2dnXz44YfX/P2KSP9QgRGRftfY2EheXh4A3d3d\n5OTkMGfOHFavXs1zzz3X97i2tja6u7uBnu09fq+4uJjZs2cDEBERwahRoygrK6OyspLs7GygZ2PW\nIUOGADB58mTef/99Fi9ezJQpU8jNze3X9yki144KjIj0u9/WwJyvtbUVu93+h9t/Y7fb/3CbxWK5\n4OdgMIjFYiEYDF6w189vJSg9PZ0vvviCn3/+ma1bt7Jx40Y2b958tW9HREKAFvGKiCGioqJISUnh\nhx9+AODIkSO8+eabF33OmDFj2LlzJwDt7e2UlZUxcuRI0tPT2bt3LwAnT57kyJEjAHz++eeUlJQw\nceJEli9fzsmTJ/H7/f34rkTkWtERGBExTH5+Pi+++CLvvPMOfr+fxYsXX/TxeXl5LFu2jIcffpiu\nri4WLlxISkoKs2bN4rvvvmP+/PmkpKQwevRoAIYOHcry5csJDw8nGAzy2GOPYbPpvz2RfwLtRi0i\nIiKmo1NIIiIiYjoqMCIiImI6KjAiIiJiOiowIiIiYjoqMCIiImI6KjAiIiJiOiowIiIiYjoqMCIi\nImI6/wf4v+W4ZxAZ4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "GhFtWjQRzD2l" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "OMoIsUMmzK9b" + }, + "cell_type": "markdown", + "source": [ + "These are only a few ways in which we could think about the data. Other transformations may work even better!\n", + "\n", + "`households`, `median_income` and `total_bedrooms` all appear normally-distributed in a log space.\n", + "\n", + "`latitude`, `longitude` and `housing_median_age` would probably be better off just scaled linearly, as before.\n", + "\n", + "`population`, `totalRooms` and `rooms_per_person` have a few extreme outliers. They seem too extreme for log normalization to help. So let's clip them instead." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "XDEYkPquzYCH", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def normalize(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that has all its features normalized.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + "\n", + " processed_features[\"households\"] = log_normalize(examples_dataframe[\"households\"])\n", + " processed_features[\"median_income\"] = log_normalize(examples_dataframe[\"median_income\"])\n", + " processed_features[\"total_bedrooms\"] = log_normalize(examples_dataframe[\"total_bedrooms\"])\n", + " \n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " processed_features[\"housing_median_age\"] = linear_scale(examples_dataframe[\"housing_median_age\"])\n", + "\n", + " processed_features[\"population\"] = linear_scale(clip(examples_dataframe[\"population\"], 0, 5000))\n", + " processed_features[\"rooms_per_person\"] = linear_scale(clip(examples_dataframe[\"rooms_per_person\"], 0, 5))\n", + " processed_features[\"total_rooms\"] = linear_scale(clip(examples_dataframe[\"total_rooms\"], 0, 10000))\n", + "\n", + " return processed_features\n", + "\n", + "normalized_dataframe = normalize(preprocess_features(california_housing_dataframe))\n", + "normalized_training_examples = normalized_dataframe.head(12000)\n", + "normalized_validation_examples = normalized_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.15),\n", + " steps=1000,\n", + " batch_size=50,\n", + " hidden_units=[10, 10],\n", + " training_examples=normalized_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=normalized_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "b7atJTbzU9Ca" + }, + "cell_type": "markdown", + "source": [ + "## Optional Challenge: Use only Latitude and Longitude Features\n", + "\n", + "**Train a NN model that uses only latitude and longitude as features.**\n", + "\n", + "Real estate people are fond of saying that location is the only important feature in housing price.\n", + "Let's see if we can confirm this by training a model that uses only latitude and longitude as features.\n", + "\n", + "This will only work well if our NN can learn complex nonlinearities from latitude and longitude.\n", + "\n", + "**NOTE:** We may need a network structure that has more layers than were useful earlier in the exercise." + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "T5McjahpamOc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "outputId": "129857c0-a2cd-4f95-9eb0-b6402e6075c5" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Train the network using only latitude and longitude\n", + "#\n", + "def location_location_location(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that keeps only the latitude and longitude.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " return processed_features\n", + "\n", + "lll_dataframe = location_location_location(preprocess_features(california_housing_dataframe))\n", + "lll_training_examples = lll_dataframe.head(12000)\n", + "lll_validation_examples = lll_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.05),\n", + " steps=500,\n", + " batch_size=50,\n", + " hidden_units=[10, 10, 5, 5, 5],\n", + " training_examples=lll_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=lll_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "RMSE (on training data):\n", + " period 00 : 108.04\n", + " period 01 : 105.47\n", + " period 02 : 103.84\n", + " period 03 : 102.98\n", + " period 04 : 102.45\n", + " period 05 : 101.54\n", + " period 06 : 101.88\n", + " period 07 : 100.93\n", + " period 08 : 100.90\n", + " period 09 : 100.43\n", + "Model training finished.\n", + "Final RMSE (on training data): 100.43\n", + "Final RMSE (on validation data): 99.62\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGACAYAAACz01iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXa+PHvlEx6QnohkJDQA4QO\nIQQINTQpYkQU6+JrQVlxX8tv1dVl17KrqCiwyuralSJFpPdO6L2EhJBeSe/JzPn9wZoXJAkzkJlM\nwv25Lq+LmXnOOffMfY7cPOc8z6NSFEVBCCGEEKIZUTd1AEIIIYQQppICRgghhBDNjhQwQgghhGh2\npIARQgghRLMjBYwQQgghmh0pYIQQQgjR7GibOgAhrFmnTp1o27YtGo0GAL1eT79+/XjttddwcHC4\n7f0uW7aMmJiYm95fuXIlr776Kv/617+Iioqqfb+iooJBgwYxevRo3n333ds+rrGSk5N5++23SUxM\nBMDe3p7Zs2czcuRIsx/bFIsWLSI5Ofmm3yQ2NpYnnniCgICAm7bZuHGjpcK7I6mpqYwYMYJ27doB\noCgKnp6e/PnPf6Zr164m7euDDz7A39+fBx54wOht1qxZw4oVK/j2229NOpYQliIFjBC38O233+Lr\n6wtAVVUVL7zwAp999hkvvPDCbe0vJyeHf//733UWMAB+fn78+uuvNxQwO3bswMXF5baOdzv+9Kc/\nMWnSJP71r38BcPLkSR555BE2bNiAn5+fxeK4E35+fs2mWKmPRqO54TusX7+eZ599lk2bNqHT6Yze\nz4svvmiO8IRoUnILSQgT6HQ6IiMjOX/+PACVlZW88cYbjBkzhrFjx/Luu++i1+sBuHDhAtOnTyc6\nOppJkyaxZ88eAKZPn056ejrR0dFUVVXddIzevXsTGxtLeXl57Xvr168nIiKi9nVVVRV/+9vfGDNm\nDMOHD68tNACOHz/O1KlTiY6OZty4cezfvx+49i/6wYMH88033zBx4kQiIyNZv359nd8zLi6OsLCw\n2tdhYWFs2rSptpD79NNPGTp0KJMnT+bzzz9n+PDhALzyyissWrSodrvrX98qrrfffpuHHnoIgKNH\nj3LvvfcyatQoYmJiSElJAa71RP3xj38kKiqKhx56iMzMzFtkrG4rV65k9uzZPPLII/zjH/8gNjaW\n6dOnM2fOnNq/7Dds2MCECROIjo7m4YcfJjk5GYBPPvmE1157jWnTpvHVV1/dsN85c+bw5Zdf1r4+\nf/48gwcPxmAw8OGHHzJmzBjGjBnDww8/TFZWlslxjxs3joqKCi5fvgzA0qVLiY6OZvjw4cydO5eK\nigrg2u/+zjvvMHHiRDZs2HBDHuo7Lw0GA3/9618ZNmwY06ZN48KFC7XHPXToEFOmTGHcuHGMHTuW\nDRs2mBy7EI1OEULUq2PHjkpGRkbt64KCAuXBBx9UFi1apCiKonz22WfKrFmzlOrqaqW8vFy59957\nldWrVyt6vV4ZO3assnbtWkVRFOXUqVNKv379lOLiYuXgwYPKyJEj6zzezz//rLz88svKn/70p9pt\ni4uLlREjRijLly9XXn75ZUVRFOXTTz9VHnnkEaWyslIpLS1VJk+erGzfvl1RFEWZMGGC8uuvvyqK\noiirVq2qPVZKSorStWtX5dtvv1UURVHWr1+vjBo1qs44nnvuOSUqKkr5+uuvlfj4+Bs+u3jxotK3\nb18lOztbqa6uVp5++mklKipKURRFefnll5WFCxfWtr3+dUNxhYaGKitXrqz9vv369VP27t2rKIqi\nrF27VpkyZYqiKIry3XffKQ8++KBSXV2t5OXlKVFRUbW/yfUa+o1/+5179uypJCYm1rbv3r27sn//\nfkVRFCUtLU3p06ePcuXKFUVRFOWLL75QHnnkEUVRFGXBggXK4MGDlatXr96033Xr1ikPPvhg7euP\nP/5YmTdvnhIXF6eMHj1aqaqqUhRFUb755htl1apV9cb32+/SpUuXm97v16+fkpCQoBw+fFgJDw9X\nMjMzFUVRlNdff1159913FUW59rtPnDhRqaioqH29cOHCBs/LnTt3KqNHj1ZKSkqU8vJyZdq0acpD\nDz2kKIqiTJ06VYmNjVUURVESExOVuXPnNhi7EJYgPTBC3MLMmTOJjo5mxIgRjBgxgoEDBzJr1iwA\ndu7cSUxMDFqtFjs7OyZOnMi+fftITU0lNzeX8ePHA9C9e3f8/f05ffq0UcccP348v/76KwBbt24l\nKioKtfr/LtcdO3YwY8YMdDodDg4OTJo0ic2bNwOwevVqxo4dC0CfPn1qey8AampqmDp1KgChoaGk\np6fXefx//vOfPPjgg6xdu5YJEyYwfPhwfvzxR+Ba70i/fv3w8vJCq9UyYcIEo75TQ3FVV1czatSo\n2v37+PjU9jhNmDCB5ORk0tPTOXLkCKNGjUKr1eLm5nbDbbbfy8jIIDo6+ob/rn9WJigoiKCgoNrX\ndnZ2hIeHA7Bv3z4GDBhAYGAgAPfddx+xsbHU1NQA13qk3N3dbzrmsGHDOHfuHAUFBQBs2bKF6Oho\nXFxcyMvLY+3atRQWFjJz5kwmT55s1O/2G0VRWLp0KT4+PgQFBbF9+3bGjRuHj48PAA888EDtOQAQ\nHh6Ora3tDfto6Lw8fPgwQ4cOxdHRETs7u9pcAXh4eLB69WoSEhIICgrigw8+MCl2IcxBnoER4hZ+\newYmLy+v9vaHVnvt0snLy8PV1bW2raurK1evXiUvLw9nZ2dUKlXtZ7/9Jebp6XnLY0ZERPDaa69R\nUFDAunXreOaZZ2ofqAUoLi7mnXfeYf78+cC1W0o9evQAYO3atXzzzTeUlpZiMBhQrlvuTKPR1D58\nrFarMRgMdR7f1taWJ554gieeeIKioiI2btzI22+/TUBAAIWFhTc8j+Ph4XHL72NMXE5OTgAUFRWR\nkpJCdHR07ec6nY68vDwKCwtxdnaufd/FxYXS0tI6j3erZ2Cuz9vvX+fn59/wHZ2dnVEUhfz8/Dq3\n/Y2DgwODBg1i586d9OnTh6KiIvr06YNKpeKTTz7hyy+/ZN68efTr14+33nrrls8T6fX62t9BURTa\nt2/PokWLUKvVFBcXs2XLFvbu3Vv7eXV1db3fD2jwvCwsLMTb2/uG93/z9ttvs3jxYh577DHs7OyY\nO3fuDfkRoilIASOEkdzd3Zk5cyb//Oc/Wbx4MQCenp61/9oGKCgowNPTEw8PDwoLC1EUpfYvi4KC\nAqP/srexsSEqKorVq1eTlJREr169bihgvL29efzxx2/qgcjKyuK1115j+fLldOnShStXrjBmzBiT\nvmdeXh7nz5+v7QFxcXEhJiaGPXv2EBcXh7OzM8XFxTe0/83vi6LCwkKT4/L29iY4OJiVK1fe9JmL\ni0u9x25MHh4eHD9+vPZ1YWEharUaNze3W247ZswYtmzZQn5+PmPGjKnN/8CBAxk4cCBlZWW89957\nvP/++7fsyfj9Q7zX8/b2ZsqUKbz88ssmfa/6zsuGfltPT09ef/11Xn/9dfbu3ctzzz1HZGQkjo6O\nRh9biMYmt5CEMMFjjz3G8ePHOXToEHDtlsGKFSvQ6/WUlZWxZs0ahg4dSkBAAL6+vrUPyR47dozc\n3Fx69OiBVqulrKys9nZEfcaPH8+SJUvqHLo8YsQIli9fjl6vR1EUFi1axO7du8nLy8PBwYHg4GBq\nampYunQpQL29FHWpqKjg+eefr324EyApKYmTJ0/St29fevXqxZEjR8jLy6OmpobVq1fXtvPy8qp9\n+DMlJYVjx44BmBRXWFgYOTk5nDx5snY///u//4uiKPTs2ZPt27ej1+vJy8tj9+7dRn8vU0RERHDk\nyJHa21w//fQTERERtT1vDYmKiuL48eNs3bq19jbM3r17eeuttzAYDDg4ONC5c+cbekFux/Dhw9m8\neXNtobF161Y+//zzBrdp6Lzs1asXe/fupby8nPLy8trCqbq6mpkzZ5KdnQ1cu/Wo1WpvuKUpRFOQ\nHhghTODk5MSTTz7Je++9x4oVK5g5cyYpKSmMHz8elUpFdHQ0Y8eORaVSMX/+fP7yl7/w6aefYm9v\nz8cff4yDgwOdOnXC1dWViIgIVq1ahb+/f53H6t+/PyqVinHjxt302YwZM0hNTWX8+PEoikK3bt14\n5JFHcHBwYMiQIYwZMwYPDw9eeeUVjh07xsyZM1mwYIFR39Hf35/FixezYMEC/va3v6EoCk5OTrz6\n6qu1I5Puv/9+pkyZgpubG6NHj+bSpUsAxMTEMHv2bEaPHk3Xrl1re1k6d+5sdFx2dnYsWLCAefPm\nUVpaio2NDXPmzEGlUhETE8ORI0cYOXIk/v7+jBw58oZeg+v99gzM7/3jH/+45W/g6+vL3/72N555\n5hmqq6sJCAhg3rx5Rv1+Tk5OhIaGcvHiRXr27AlAv379WLduHWPGjEGn0+Hu7s7bb78NwEsvvVQ7\nksgUoaGhPPXUU8ycORODwYCHhwdvvfVWg9s0dF5GRUWxc+dOoqOj8fT0ZOjQoRw5cgQbGxumTZvG\no48+ClzrZXvttdewt7c3KV4hGptKuf5GtBBCmOjIkSO89NJLbN++valDEULcRaQPUAghhBDNjhQw\nQgghhGh25BaSEEIIIZod6YERQgghRLMjBYwQQgghmp1mOYw6J6fuYZONwc3Ngfz8MrPtX9w+yY11\nkrxYL8mN9ZLcGMfLy7nez6QH5ne0Wk1ThyDqIbmxTpIX6yW5sV6SmzsnBYwQQgghmh0pYIQQQgjR\n7EgBI4QQQohmRwoYIYQQQjQ7UsAIIYQQotmRAkYIIYQQzY4UMEIIIYRodqSAEUIIIVqYnTu3GdXu\n448/ID09rd7PX3llbmOF1OikgBFCCCFakIyMdLZu3WRU2zlzXsTfv3W9n7/77vzGCqvRNculBIQQ\nQghRt/nz3+P8+bNERvZj9OixZGSk89FHi3jnnb+Sk5NNeXk5jz/+JBERkcye/SRz577Ejh3bKC0t\nITk5ibS0VJ5//kXCwyMYP34E69ZtY/bsJ+nXbwDHjh2hoKCA9977EE9PT/7619fJzMyge/cebN++\nlVWr1lvse5q1gImLi+OZZ57h0Ucf5aGHHiIjI4OXXnoJvV6Pl5cX//znP9HpdHz44YfExsaiKAoj\nR45k1qxZ5gxLCCGEsIhl2+M5fCH7pvc1GhV6vXJb++zX2ZuY4e3r/fyBB2aycuUy2rULITn5CosW\n/Zv8/Dz69x/I2LETSEtL5fXXXyEiIvKG7bKzs3j//QUcPLifNWt+Jjw84obPHR0d+fjjxSxe/Am7\nd2/H3z+AqqpKPv/8K/bt28OyZT/e1ve5XWYrYMrKypg3bx7h4eG17y1YsIAZM2YwduxY5s+fz4oV\nK+jbty+xsbH89NNPGAwGxo8fz+TJk/Hy8jJXaPXKLSgns7ASX1dbix9bCCGEaGxduoQC4Ozswvnz\nZ/nll5WoVGqKigpvatujR08AvL29KSkpuenzsLBetZ8XFhaSlJRI9+5hAISHR6DRWHZ9J7MVMDqd\njiVLlrBkyZLa92JjY3nrrbcAiIqK4ssvvyQqKorKykqqqqrQ6/Wo1Wrs7e3NFVaDftl3hb2nM3jt\n4b4E+7s0SQxCCCFajpjh7evsLfHyciYnp9jsx7exsQFgy5aNFBUVsXDhvykqKuIPf5h5U9vrCxBF\nubl36PefK4qCWn3tPZVKhUqlauzwG2S2h3i1Wi12dnY3vFdeXo5OpwPAw8ODnJwc/Pz8iI6OJioq\niqioKKZPn46Tk5O5wmpQRHdfAH7adqnO5AkhhBDWTq1Wo9frb3ivoKAAPz9/1Go1u3Ztp7q6+o6P\n07p1ABcvngPg0KGDNx3T3JrsId7fCoSUlBS2bNnC1q1bqampYfr06YwbNw4PD496t3VzczDLUuRe\nXs7sOZPJ/lMZXEwrJrJX/U9mi6bh5eXc1CGIOkherJfkxnqZKzd9+nTn73+PIzg4CCcnO7y8nJk6\ndSJPP/00ly6d595778Xf34+lS79Gp9Pi5uaIo6Ntbdv8fEd0Oi1eXs6oVCq8vJxr23l5OePkZEd1\ntS2TJo1jy5b1PP/8k/Tv359WrVpZ9HxTKWbuavjkk09wc3PjoYceYsSIEaxbtw47OzsOHTrEd999\nR3R0NEePHuX1118HYO7cudx33303PDvze+bsdtOr1Tz93jZcHXX8fdZAdDaWvacn6mepLldhGsmL\n9ZLcWK+WkJuiokKOHTvCsGEjyMnJZs6cp/nhh58b9RgNFUQWnQdm0KBBbNp0bWz65s2biYyMpG3b\ntpw5cwaDwUB1dTVxcXG0adPGkmHdwNfDkVH92nC1qJJNh1OaLA4hhBDCmjk4OLJ9+1aefPJR/t//\n+xPPPWfZSe/MdgvpzJkzvPfee6SlpaHVatm0aRPvv/8+r7zyCkuXLsXf35/JkydjY2NDREQEM2bM\nAGDatGkEBASYKyyjTAgPYt+pDNYfSGJwdz/cnGVUkhBCCHE9rVbLX//6TpMd3+y3kMzBnN1uv3Xr\n7TqRxtcbLzK4ux+Pj+9ituMJ47WELteWSPJivSQ31ktyYxyruYXUnET28CfAy4l9pzO4klnU1OEI\nIYQQ4jpSwNRDrVbxwMgOKMBPW2VYtRBCCGFNpIBpQJdAN3p18CQutZCjF3OaOhwhhBBC/JcUMLcQ\nM7w9GrWKZTviqa6x7CQ9QgghhLlMmzaRsrIyvv32K86cOXXDZ2VlZUybNrHB7Xfu3AbA+vVr2bVr\nh9nirI8UMLfg4+bAyL4B5BZWsFmGVQshhGhhZs58lG7depi0TUZGOlu3XpsWZdy4iQwdGmWO0BrU\nZDPxNicTBwWx73Qm6/47rNrVSYZVCyGEsE6PP/4gb7/9Ab6+vmRmZvDqqy/i5eVNeXk5FRUVvPDC\n/9K1a7fa9n//+5sMGzaCnj178ec/v0RVVVXtwo4AmzdvYMWKpWg0aoKCQnj55T8zf/57nD9/lv/8\nZwkGg4FWrVpx7733s2jRx5w+fZKaGj333htDdPR4Zs9+kn79BnDs2BEKCgp4770P8fX1vePvKQWM\nERzsbJgyJJhvN11k1Z7LPDpWhlULIYS4tZXxv3I8+/RN72vUKvSG2xsc0su7O1PbT6j38yFDoti3\nbzf33hvDnj27GDIkipCQDgwZMoyjRw/z/fdf8/e///Om7TZt2kBwcAjPP/8i27Ztru1hKS8v54MP\nPsHZ2Zlnn51FQkI8Dzwwk5Url/HYY7P44ovPADhx4hiXLyewePGXlJeX88gj0xkyZBgAjo6OfPzx\nYhYv/oTdu7cTEzPjtr779eQWkpGGhPnR2suRPSczSM6SsftCCCGs07UCZg8Ae/fuYvDgoezatY2n\nn36CxYs/obCwsM7trly5TLduYQD06tWn9n0XFxdeffVFZs9+kqSkRAoLC+rc/sKFc/Ts2RsAe3t7\ngoKCSUm59uhFWFgvALy9vSkpKWmU7yk9MNfZeGU7Z46dZXaPWdhpb1xJW6NWM314Bz5YeoIft17i\npRm9LL50uBBCiOZlavsJdfaWmHMiu+DgEK5ezSErK5Pi4mL27NmJp6c3r78+jwsXzvHppx/VuZ2i\nXJtCBMDw396h6upq5s//B1999QMeHp689NIf6z2uSqXi+hlHamqqa/en0fzfuoKNNS2J9MD8TmJB\nCluTd9f5WWg7d8JCPLiYUsCxuFwLRyaEEEIYJzx8MJ9/vojIyKEUFhbQuvW1JXp27dpBTU1Nndu0\nbRvIhQvnATh27AgAZWWlaDQaPDw8ycrK5MKF89TU1KBWq9HrbxyZ27lzKMePH/3vdmWkpaUSENDW\nXF9RCpjrDQuIoJWdC9uSd1FQWXcX22/DqpfviKe6xmDhCIUQQohbGzo0iq1bNzFs2Aiio8ezdOn3\nvPDCs4SGduPq1ausW/fLTdtER4/n7NnTzJnzNCkpSahUKlxdW9Gv3wD+8IeH+c9/ljBjxkwWLJhP\nYGA7Ll68wIIFH9RuHxbWk06dOvPss7N44YVneeqp2djb25vtO8paSL9zsugEnx/5gQj//szoPK3O\nNj9uvcSWIynERLUneoD5qktxI1k7xDpJXqyX5MZ6SW6MI2shmSCq3SB8HbzZn36Y9JLMOtvcMzgI\nRzsta/cnUlRaZeEIhRBCCCEFzO9o1Bomtx+HgsKahPV1tnG0s2FyZDDllXpW77ls4QiFEEIIIQVM\nHbp5dKFDq2DOXL1AXH58nW2G9fLHz8OBXSfTSc1unCFhQgghhDCOFDB1UKlUTGk/HoBV8eswKDc/\nrKtRq5k+ogOKAj9uk9WqhRBCCEuSAqYegS5t6OMdRnJxGkezTtbZpnuwB92DPTiflM/J+KsWjlAI\nIYS4e0kB04B7QsaiVWn45fJGqvXVdba5f3h71CoVS7dfokYvw6qFEEIIS5ACpgGe9u4MCRhEXkU+\nu9L219nG39ORqN6tycovZ/vRVAtHKIQQQtydpIC5heigEdhr7dl4ZTul1WV1tpk0uB2OdlrW7LtC\ncZkMqxZCCCHMTQqYW3C0cSA6aDjlNeVsvLKtzjZO9jbcE9GO8soa1uxNtHCEQgghxN1HChgjDG09\nCHc7N3an7ie3PK/ONlG9W+Pr7sDO4+mk5ciwaiGEEMKcpIAxgo3GhnuCo6lR9Ky9vLHONlqNmvuH\nt8egKPy0PV6GVQshhBBmJAWMkfr4hNHGuTVHsk6QVJRSZ5seIR6EtnPnbGIepy/LsGohhBDCXKSA\nMZJapWbqdZPb1dXDolKpuH94e1Qq+GlbvAyrFkIIIcxEChgTdHRrTzePzlwquMyZq+frbBPg5cSw\nnq3JzCtj5/E0C0cohBBC3B2kgDHRpJBxqFCxOn49eoO+7jaR7bC31bJmbyIl5XVPgCeEEEKI2ycF\njIn8nXwJ9+tHZlk2BzIO19nGxUHHPRFBlFbU8IsMqxZCCCEanRQwt2FC8Gh0ahvWJW6hoqayzjYj\n+gTg7WbP9mNppOeWWjhCIYQQomWTAuY2uNq6MKLtUIqqitmWsrvONlqNmvujrg2rXrYj3sIRCiGE\nEC2bFDC3aWTbITjbOLE1eReFlcV1tunZwZMugW6cSrjKGRlWLYQQQjQaKWBuk53WjvHBo6jSV7E+\ncXOdbVQqFdNHdLg2rHp7PHqDDKsWQgghGoMUMHdgkF9/fBy82J9xmMzSrDrbtPF2YkiYP+m5pew6\nkW7hCIUQQoiWSQqYO6BRa5gUMg6DYmB1wvp6202JDMZOp2H1nkRKK2RYtRBCCHGnpIC5Qz08uxLi\n2o7Tuee5lJ9QZxsXRx0TBwVRUl7N2n1XLBugEEII0QJJAXOHVCoVUztcW2JgZfw6DErdz7mM7NsG\nr1Z2bDuaSmZemSVDFEIIIVocKWAaQZBLW3p79yC5OJVj2afqbGOjVRMT1R69QWHZdhlWLYQQQtwJ\nKWAayaSQsWhUGn5J2EC1oabONr07etGpTStOxOdy9kqehSMUQgghWg4pYBqJp70HQwLCuVqRz57U\n/XW2qR1WDfy07ZIMqxZCCCFukxQwjSg6aAT2Wjs2XNlGWXXdz7kE+joT0cOPtJxS9pzMsHCEQggh\nRMsgBUwjcrJxZEzgcMpqytmYtL3edlOHBGOr07Bqz2XKKuq+3SSEEEKI+kkB08iGBUTgZtuKXSn7\nuFpe93MurZxsmRAeSHFZNb8euGLR+IQQQoiWQAqYRmajseGekGhqFD1rL2+qt93ofm3wcLFjy+EU\nsvJlWLUQQghhCilgzKCvT0/aOPlzOOs4yUWpdbax0WqIGX5tWPXyHXVPgCeEEEKIukkBYwZqlZrJ\n7a9Nbrcqfh2KotTZrm8nLzoEuHIsLofzSfmWDFEIIYRo1qSAMZPO7h3o6tGJuIIEzl69UGeb34ZV\nw7Vh1QZD3YWOEEIIIW4kBYwZTQ4ZhwoVqxPWozfo62zTzs+FiG6+pGSXsPe0DKsWQgghjCEFjBm1\ndvJjoF9fMkqzOJh5pN52U4eGoLNRs3L3ZcorZVi1EEIIcStSwJjZhODR2KhtWHd5M5X6qjrbuDnb\nMn5gIEWlVaw7kGThCIUQQojmRwoYM2tl68qItkMorCpme/LuetuN6d8WdxdbNh9OJqeg3IIRCiGE\nEM2PFDAWMLLtUJxsHNmSvJOiquI62+hsNEwbFkKNXmH5DlmtWgghhGiIFDAWYK+1Y3y7UVTqq1if\nuLXedgO6+BDi78KRiznEpRRYMEIhhBCieZECxkIi/Afg7eDJvvRYMkuz62yjUqmYPvLasOoft17C\nUM/8MUIIIcTdTgoYC9GoNUwKGYdBMbAmYUO97UL8XQkP9SEpq5j9pzMtGKEQQgjRfEgBY0FhnqEE\nuwZxKvcs8QWJ9ba7d2gIOq2an3clUFElw6qFEEKI35MCxoJUKhVT/7vEwMr4X+tdYsDdxY7oAW0p\nLK1i/UEZVi2EEEL8nhQwFtbONZBe3j1IKkrhWPapetuNHRCIm7Mtmw6lkFsow6qFEEKI60kB0wTu\nCY5Go9LwS8IGqg113yKy1WmYNjSE6hoDK3bKatVCCCHE9aSAaQLeDp5Eth5IbkUee9MO1ttuQKgP\n7fxcOHQ+m/jUQgtGKIQQQlg3KWCayNigkdhp7NiQuJWy6rpvEalVKh7472rVP26Lk2HVQgghxH9J\nAdNEnHSOjAmMorSmjM1JO+pt1z7Alf5dvEnMKObgWRlWLYQQQoCZC5i4uDhGjhzJd999B0BGRgYz\nZ85kxowZzJkzh6qqa4sbXrhwgalTpzJ16lQWLlxozpCsyrA2g3GzbcWO1L3kVeTX227asBBstGp+\n3nWZyiq9BSMUQgghrJPZCpiysjLmzZtHeHh47XsLFixgxowZ/PDDDwQGBrJixQoAXn/9debNm8eK\nFStISEigvPzuGHWj09gwMXgMNYYa1l7eVG87T1d7xvRvS35xJRtiZVi1EEIIYbYCRqfTsWTJEry9\nvWvfi42NZcSIEQBERUVx4MABcnNzKSsrIzQ0FLVazfz587G3tzdXWFann28vWjv5cTjzOCnFafW2\nGzewLa5OOjbGJpNXVGHBCIUQQgjrY7YCRqvVYmdnd8N75eXl6HQ6ADw8PMjJySEtLQ1XV1deeeUV\npk+fzldffWWukKySWqVmSvu6gT9uAAAgAElEQVTxKCisil9X7+R2djot9w4JoarGwIpdMqxaCCHE\n3U3bVAf+7S9qRVFITU1l4cKF2NnZcf/99xMREUGHDh3q3dbNzQGtVmO22Ly8nM2277qP14c9mfs5\nmXmOdH0KPf1C62w3KcqJXafSOXg2i3tHdKRzoLtF47QGls6NMI7kxXpJbqyX5ObOWLSAcXBwoKKi\nAjs7O7KysvD29sbDw4MOHTrg5uYGQJ8+fbh06VKDBUx+fpnZYvTyciYnp9hs+6/P+LZjOJV5nq+O\nruDV/gGoVXV3jt03NIR3vz/Gv1ac5P/N7INKpbJwpE2nqXIjGiZ5sV6SG+sluTFOQ0WeRYdRDxo0\niE2brj2sunnzZiIjI2nTpg2lpaUUFBRgMBg4f/48wcHBlgzLKrR28mOAbx/SSzM5mHG03nYd27Si\nb2dvEtKLiD2fZcEIhRBCCOthth6YM2fO8N5775GWloZWq2XTpk28//77vPLKKyxduhR/f38mT54M\nwKuvvsqsWbNQqVRERkbSuXNnc4Vl1SYEj+Zo9kl+vbyJvj5h6DS6OtvdNyyEE5dyWbEzgV4dvLC1\nMd/tNCGEEMIaqZT6nhq1Yubsdmvqbr1fEjayKWk7E4PHEB00ot52K3YmsP5gEpMj23FPRDsLRth0\nmjo3om6SF+slubFekhvjWM0tJHFrowKH4mTjyJaknRRXldTbbnx4IC6OOtYfTCK/uNKCEQohhBBN\nTwoYK2OvtWdsu5FU6CtZn7il/na2WqYOCaaq2sDPMqxaCCHEXUYKGCsU6T8Qb3tP9qbHklWaXW+7\nwd39aOvtxP4zmSRmFFkwQiGEEKJpSQFjhTRqDfeEjMWgGFhzeWO97dRqFdNrV6u+VO8keEIIIURL\nIwWMlerp1Y1g10BO5pwhviCx3nadA93o3dGL+NRCDl+ov7dGCCGEaEmkgLFSKpWKKe3HA7C6gSUG\nAGKiQtCoVSzfkUBVtaxWLYQQouWTAsaKBbsG0dOrO4lFyRzPOV1vO283B0b1a8PVogo2H06xYIRC\nCCFE05ACxspNColGrVKzJmEDNYaaettNCA/C2cGGdQeTKCiRYdVCCCFaNilgrJy3gxeRrQeSW36V\nvWmx9bZzsNMyZUgwlVV6Vu6+bMEIhRBCCMuTAqYZGBs0EjuNLeuvbKG8przedkN6+BPg5ci+Uxkk\nZcoMj0IIIVouKWCaAWedE6MCoyitLmNz0s562/02rFpBhlULIYRo2aSAaSaGtxlMK1tXdqTsIb+i\noN52XYPc6dnek7iUAo5ezLFghEIIIYTlSAHTTOg0OiYEj6HaUMPay5sabHv/8PZo1CqW7YinusZg\noQiFEEIIy5ECphkZ4Nsbf0dfDmUeI7U4vd52Pu4OjOgTQG5hBd9uuii3koQQQrQ4UsA0I2qVmint\nx6OgsCp+XYNtJ0e2I9DXmb2nM2RUkhBCiBZHCphmpqtHJzq7deBC/iXOX42rt52dTssL94Xh7WbP\nugNJbD0iE9wJIYRoOaSAaYYmtx+PChWrEtZhUOp/xsXFUcfc+3vi4qjjx62XOHQ+y4JRCiGEEOYj\nBUwz1MbZn/6+vUkrySA281iDbb1b2fPCfWHY6jQsWXuOc1fyLBSlEEIIYT5SwDRTE4PHYKPW8uvl\nTVTpqxtsG+jrzHNTu6NSwacrT8skd0IIIZo9KWCaKTe7VkS1iaSgspAdKXtu2b5LkDuzJoZSWaXn\nw+Unyc4vs0CUQgghhHlIAdOMjQ4chqONA5uTdlBcVXLL9v06ezNjVEeKSquYv/QkhaVVFohSCCGE\naHxSwDRj9lp7xgaNpEJfyYYrW43aZkSfACYMCiS7oJyPlp2kvLL+Fa6FEEIIayUFTDMX2XognvYe\n7Ek7SHaZcUsHTIkMJrKHH0lZxSxcdZoavczWK4QQonmRAqaZ06q1TAoZi0ExsCZho1HbqFQqHo7u\nRM/2npy7ks+/fz2HQWbrFUII0YxIAdMC9PLqTjuXtpzIOc3lwitGbaNRq/mfSaG0D3Dl0PlsfpLV\nq4UQQjQjUsC0ACqViintJwCwKn6d0YWIrY2G5+/tgb+nI1uPpLIhNtmcYQohhBCNRgqYFiKkVRBh\nXt24XJjEyZwzRm/nZG/D3Jgw3F1sWbEzgb2nMswYpRBCCNE4pIBpQSYFR6NWqVmTsAG9QW/0du4u\ndsyN6YmjnZavNlzgZHyuGaMUQggh7pwUMC2Ij6M3g/0HkF2ey970WJO29fd0ZM59YWg1KhavPkN8\nWqGZohRCCCHunBQwLcy4dqOw1ehYn7iF8poKk7Zt39qVpyZ3o0av8PHyk6TnlpopSiGEEOLOSAHT\nwjjrnBjVNoqS6lK2JO00efue7T15ZGwnSitqmL/sBHlFphVBQgghhCVIAdMCjWgbiavOhe0pu7la\nnm/y9pE9/Ll3aDB5RZV8uOwkpRUNLxYphBBCWJoUMC2QTqPjnpBoqg01/OvUfyirLjd5H+MGBjKy\nTwBpuaUsWHGKqmrjHwoWQgghzE0KmBZqgG8fhrQOJ700k89Pf0213rReFJVKxfSRHejfxZtLqYX8\na81Z9AZZckAIIYR1kAKmhVKpVNzXcRI9vbpxqeAyX59fikExrQBRq1Q8Mb4rXQLdOBGfy7ebLsps\nvUIIIayCFDAtmFql5tGuD9C+VTuOZ59ixaW1JhcgNlo1s6d2p62PE7tPZrB6T6KZohVCCCGMJwVM\nC2ejseF/uj+Kv6Mvu1L3sSV5p8n7sLfV8kJMT7xb2bN2/xW2H0tt/ECFEEIIE0gBcxdwsLHnmbDH\naWXrypqEDRzMOGLyPlwddcy9PwwXBxu+3xzHkQvZZohUCCGEMI4UMHcJN7tWzO75Bxy09nx/YQVn\nr140eR/ebg68ENMTnU7D52vPcj7J9CHaQgghRGOQAuYu4ufow1M9HkOjUvPvM9+SVJRi8j4CfZ2Z\nPbU7igKfrjxFclaxGSIVQgghGiYFzF0mpFUQj4XOoFpfzaKTX5JdlmPyPkKD3Jk1sSsVlXo+XHaS\nnALT55kRQggh7oQUMHehMK9u3N9pCiXVpXx64gsKK03vRenfxYfpIztQWFrFB0tPUFRaZYZIhRBC\niLpJAXOXimw9kLFBI7lakcfik19QYeLCjwCj+rZhfHgg2fnlfLT8JBVVNWaIVAghhLiZFDB3sfHt\nRjHIrz8pJeksOf0tNQbTC5CpQ4IZ3N2PK5nFLFx1hhq9zNYrhBDC/KSAuYupVCqmd5pCd88uXMi/\nxHfnl5s8W69KpeKRsZ0IC/HgbGIeX647j0Fm6xVCCGFmUsDc5TRqDY+HPkg7l0AOZx1ndcL629iH\nmqcmdyOktQsHz2WxbHu8LDkghBDCrKSAEeg0Op4KexQfB2+2Je9mW/Juk/dha6NhzrQw/Dwc2Hw4\nhY2Hks0QqRBCCHGNFDACACcbR54NewJXnTMr43/lSOZx0/dhb8OL9/fEzdmW5TsS2Hc6wwyRCiGE\nEFLAiOt42LvxbM8/YKex45vzy7iQd8nkfbi72DE3JgwHWy3/WX+BUwlXzRCpEEKIu50UMOIGrZ38\n+J8ej6AClpz+hpTiNNP34eXEnPt6oNGoWLT6NAnphY0fqBBCiLuaFDDiJh3dQngk9AEq9VUsPPkF\nueV5Ju+jQ0ArnpoUSnWNgY+XnyLjaqkZIhVCCHG3kgJG1Km3dw+mdbiH4qoSFp74N8VVJSbvo1cH\nLx6J7kxJeTXzl54gv7jSDJEKIYS4G0kBI+o1rE0EowOjyC7PZfGp/1CpN325gCFh/kwZEszVokrm\nLztBWUW1GSIVQghxt5ECRjTonuBoBvj2IakohS/OfIfeoDd5HxPCAxneuzVpOaUsWHGKqmrT9yGE\nEEJcTwoY0SCVSsWDnafR1b0TZ69e4IcLP5s8SZ1KpWLGyI707exNXGohn689h8EgE90JIYS4fVLA\niFvSqDU80e0h2joHcDDzCGsvbzJ5H2q1ilkTutK5bSuOxeXw7eaLMluvEEKI2yYFjDCKndaWZ8Ie\nx8veg01J29mVut/kfdho1cye2oO23k7sOpHOmr2JZohUCCHE3eC2C5grV640YhiiOXDWOTG75x9w\ntnFiedwajmWfMnkfDnZaXogJw9PVjl/2XWHHcdPnmRFCCCEaLGAee+yxG14vWrSo9s9vvPGGeSIS\nVs3T3oNnej6OTmPD12d/5FJ+gsn7cHWy5cXpPXF2sOG7TRc5ejHbDJEKIYRoyRosYGpqam54ffDg\nwdo/y/MLd6+2zgHM6v4wBhQ+O/01aSWmr3nk4+bACzFh6HQaPvvlHBeT880QqRBCiJaqwQJGpVLd\n8Pr6ouX3n4m7Sxf3jszsEkN5TQWLTn5JXoXpBUiQrwuzp3RHURQW/HyKlGzTJ8sTQghxdzLpGRhT\ni5a4uDhGjhzJd999B0BGRgYzZ85kxowZzJkzh6qqGydGmzt3Lq+88opJxxBNp79vb6a0H09BZSEL\nT3xBaXWZyfsIbefOExO6UF6pZ/6yE+QWlJshUiGEEC1NgwVMYWEhBw4cqP2vqKiIgwcP1v65IWVl\nZcybN4/w8PDa9xYsWMCMGTP44YcfCAwMZMWKFbWf7du3j+Tk5Dv8OsLSRrYdyvA2kWSWZfOvU/+h\nSm/6TLsDu/oyfUQHCkuq+GDZSYrLTJ/xVwghxN2lwQLGxcWFRYsW1f7n7OzMwoULa//cEJ1Ox5Il\nS/D29q59LzY2lhEjRgAQFRXFgQMHAKiqqmLx4sU8/fTTd/p9RBOY0n48fX16crkwif+c/eG2Zusd\n3a8NYwe2JSuvjI+Wn6KySmbrFUIIUT9tQx9+++23t79jrRat9sbdl5eXo9PpAPDw8CAnJweAzz77\njAceeAAnJ6fbPp5oOmqVmoe6xFBcVcKp3LMsjVvNA52mmnzLcdrQEIpKqth3JpOFq0/z/L090Gpk\nqiIhhBA3a7CAKSkpYcWKFTz66KMA/PTTT/z4448EBgbyxhtv4OnpedsH/u2B4CtXrnDmzBmee+45\nYmNjjdrWzc0BrVZz28e+FS+vhnuXRN1ejXqGN7fPZ196LK3dvZgWOt7kffzp4X5U/ucQR85n8eP2\neP44vTdq9f8VQpIb6yR5sV6SG+slubkzDRYwb7zxBq1btwYgMTGR+fPn89FHH5GcnMzf//53Pvzw\nQ5MO5uDgQEVFBXZ2dmRlZeHt7c3OnTtJT08nJiaGkpIS8vLyWLJkCbNmzap3P/n5pj8saiwvL2dy\ncorNtv+W7snQx/jg6EKWnfkVbbUtEa0HmLyPJ8Z2Jq+wnB1HU7HVqomJag9IbqyV5MV6SW6sl+TG\nOA0VeQ32z6ekpPDiiy8CsGnTJqKjoxk0aBDTp08nNzfX5EAGDRrEpk3X1tHZvHkzkZGRPProo6xd\nu5Zly5bxl7/8hWHDhjVYvAjr5mrrzLM9n8DJxpEfL67kVM5Zk/dhq9Pwx/vC8PNwYGNsMpsOycPd\nQgghbtRgAePg4FD750OHDjFw4MDa17d6vuHMmTPMnDmTVatW8c033zBz5kxmz57N6tWrmTFjBgUF\nBUyePPkOwxfWyMfBi6d6PIaNWsuXZ7/ncuEVk/fhZG/D3JietHLSsXR7PAfOZjZ+oEIIIZotldLA\nlLoPPfQQH3/8MaWlpUyaNImdO3fi6upKaWkpjz76KMuXL7dkrLXM2e0m3XqN50zueT47/TX2Gjvm\n9nkaX0cfk/eRmlPCu98do7Jaz58e6kMnfxczRCruhFwz1ktyY70kN8a57VtIs2bNYty4cUycOJFn\nnnkGV1dXKioqmDFjhvSeiFvq5tmFGZ2nUVpTxqcnvqCgstDkfQR4OfH8tB6o1Sre++YIHy0/SVae\n+Z6BEkII0Tw02AMDUF1dTWVl5Q1DnPfu3cvgwYPNHlx9pAemedl0ZTu/XN6Iv6MvL/R+Ggcbe5P3\nkZZbyopdCZy8lItGrWJ0/zZMHBSEna7B59CFBcg1Y70kN9ZLcmOchnpgGixg0tPTG9yxv7//7Ud1\nB6SAaV4URWFZ3Bp2p+2nQ6tgng17AhuNjcn78fR0YuPeyyzdfomrRZW0ctIRE9WeAV19ZG2uJiTX\njPWS3FgvyY1xGipgGvzn6/Dhw2nXrh1eXl7AzYs5fvPNN40UomjJVCoV93W8h6KqYk7knObrcz/x\neLcHUatMm6ROpVLRt7M33UM82HAwifUHk/l87Tl2Hk9jxqiOtPWRORWEEOJu0WAPzJo1a1izZg2l\npaWMHz+eCRMm4O7ubsn46iQ9MM1Ttb6aT0/+m/iCRIYGDOK+DpNM6jn5fW5yCspZuj2eY3E5qFQw\nrGdrpgwJxsne9N4dcfvkmrFekhvrJbkxzm3fQvpNRkYGq1atYu3atbRu3ZpJkyYxatQo7OzsGjVQ\nY0kB03yVVZfz4bHFpJdmMil4LKODoozetr7cnE3M44etcWRcLcPRTsvUoSEMDfO/YQZfYT5yzVgv\nyY31ktwY544LmOstX76c999/H71ez5EjR+44uNshBUzzVlBZyPtHFpJfWcDMLjEM9Otr1HYN5aZG\nb2DrkVR+2ZdIRZWetj5OPDiqIx0CWjVm6KIOcs1YL8mN9ZLcGOeOC5iioiJ++eUXVq5ciV6vZ9Kk\nSUyYMOGGlaYtSQqY5i+jNIv5RxdRoa/kqR6PEurR+ZbbGJObwpJKVuxMYN+ZaxPfhYf6MG1Ye9yc\nbRslbnEzuWasl+TGeklujHPbBczevXv5+eefOXPmDKNHj2bSpEl07NjRLEGaQgqYliGh4AqfnPgc\nFSrm9P4fglzaNtjelNzEpxXy/ZY4kjKLsdVpuGdQEKP6tZHVrc1ArhnrJbmxXpIb49x2AdO5c2eC\ngoIICwtDrb75f/zvvPNO40RoIilgWo6TOWdZcvobHG0ceLHPM3g7eNXb1tTcGAwKe06l8/Ouy5SU\nV+Pj7sCMkR3oHuzRGKGL/5JrxnpJbqyX5MY4t13AHDp0CID8/Hzc3Nxu+Cw1NZWpU6c2UoimkQKm\nZdmbdpAfL67Ew86dF/s8i6tt3Sfs7eamtKKa1bsT2X48FUWBnu09mT6yA96tTJ9QT9xMrhnrJbmx\nXpIb49z2UgJqtZoXX3yR119/nTfeeAMfHx/69+9PXFwcH330UaMHKu5Og1sPZFzQSK5W5LH45BdU\n1FQ06v4d7Wx4cHRH3nysP53atOJEfC6vLYll5e7LVFbpG/VYQgghLKPBiew+/PBDvvrqK0JCQti2\nbRtvvPEGBoMBV1fXJlvIUbRM49qNorCqiH3ph1hy+lueDnsMrbpxlwlo4+3ESzN6cfhCNku3x/Pr\n/ivsP5NBTFR7+nX2ltl8hRCiGbllD0xISAgAI0aMIC0tjYcffphPP/0UHx/TVxYWoj4qlYr7O06h\nu2dXLuRf4tvzyzAoBrMcp38XH96eNZDx4YEUlVbxrzVn+eePx0nNKWn04wkhhDCPBguY3/+L1M/P\nj1GjRpk1IHH30qg1PB46g3YugRzJOsHq+PVmO5atTsO9Q0OY94cBhIV4cCG5gDe/PMz3W+Ioq6g2\n23GFEEI0DpPGlEoXuzA3nUbHU2GP4uPgzbaU3WxL3m3W4/m4OTDnvjD+eF8PvFrZse1oKq98dpDd\nJ9MxmDbHoxBCCAtqcBRS9+7d8fD4vyGnV69excPDA0VRUKlU7Ny50xIx3kRGIbV8V8vz+eDoQgqr\ninis6wP09e1l9txU1xjYciSFtfuuUFmtJ8jXmQdHdyTE39Vsx2wJ5JqxXpIb6yW5Mc5tD6NOS0tr\ncMetW7e+/ajugBQwd4e0kgw+PLaYKn01z4Q9TmSn3hbJTX5xJct3xHPwXBYAEd19mTasPa6OOrMf\nuzmSa8Z6SW6sl+TGOI26FpI1kALm7nEpP4FPT/wbjVrDX6JewNVguUno4lIK+H5LHCnZJdjbargn\noh0j+gTIbL6/I9eM9ZLcWC/JjXEaKmA0b7755puWC6VxlJVVmW3fjo62Zt2/MI2HvTs+jt4cyTrB\njsT9VNRU0M41sNGHWNd5bFc7hob54+qo40JyAccv5XLkYja+Hg4yCd515JqxXpIb6yW5MY6jY/3r\n2EkB8ztyUlkfP0cfglzaklSczOnc8xzKPIaHnRs+Duafu0WlUtHOz4UhYf6UV+k5ezmP/WcySc0u\nIdjPBQc7G7MevzmQa8Z6SW6sl+TGOA0VMHIL6XekW896ubrZ8v3RX9iStJMaRU+oR2diOk7C095y\nt5WSMov5fmsc8amF2GjVjBsYyNgBbdHZaCwWg7WRa8Z6SW6sl+TGOHILyQRSFVsvF2cHAmzb0Nu7\nB5ll2ZzPi2NfeiwAgS5t0ajM/2xKKydbBnf3w8fdgbjUAk7GX+XA2Sw8XGzx83C4K6cakGvGeklu\nrJfkxjjSA2MCqYqt1/W5URSFo1kn+Dn+V4qqivFx8OL+jlPo5N7eYvGUV9bw6/4rbD6cgt6g0DXI\njRkjO+Lv6WixGKyBXDPWS3JjvSQ3xpEeGBNIVWy9rs+NSqXC38mPCP/+VOqrOHc1jtjMo2SX5RDs\nGoSdtv6qvbHYaNWEtnOnX2dvsgvKOZuYz64T6ZRV1BDS2hUb7d0xWkmuGeslubFekhvjSA+MCaQq\ntl4N5Sa5KJUfL64kuTgVe60dE4OjiWw9ELUFbivBtR6hE/G5/LTtEjkFFbg46pg2NIRB3X1Rt/Db\nSnLNWC/JjfWS3BhH5oExgZxU1utWuTEoBvamxfLL5Q2U11TQ1rk10ztNJdCljcVirK7Rs/FQCuv2\nX6GqxkCIvwszRnWknZ+LxWKwNLlmrJfkxnpJbowjt5BMIN161utWuVGpVAS6tGGgX1+KKks4nxfH\n/vTDFFeVEOwahI3G/EOeNWo1ndq0YlA3X/KLKzmTmMeek+nkF1cQ3NoV2xY4WkmuGeslubFekhvj\nyC0kE0hVbL1MzU1cfjw/XVxNVlk2zjZOTO0wgX4+vSw6Uuh8Uj4/bI0jLacUe1stkyPbMbx3azTq\nlvN8jFwz1ktyY70kN8aRHhgTSFVsvUzNjYe9OxH+/dGpbbiQf4lj2aeIL0gkyKUtTjrLjBTyamXP\n0J7+ONvbcPG/s/kei8vBu5U9nq3sW8Swa7lmrJfkxnpJbowjPTAmkKrYet1JbnLL81get4YzV8+j\nUWkY2XYo0UHD0Wkst0BjUVkVK3clsOdkBgrg7mLLwK6+hIf60NrLyWJxNDa5ZqyX5MZ6SW6MIw/x\nmkBOKut1p7lRFIVTuWdZHvcL+ZUFeNi5EdNxMt08uzRilLd2JbOI7cfSOHoxm/JKPQBtvZ0YGOrL\ngK4+uDmbfwh4Y5JrxnpJbqyX5MY4UsCYQE4q69VYuanUV7EhcSvbUnZjUAyEeXXjvg734GbXqhGi\nNF5VtZ6TCVc5cCaT05evojcoqIAuQW6Eh/rSu6MX9rbmX7TyTsk1Y70kN9ZLcmMcKWBMICeV9Wrs\n3KSXZPLTxVUkFCai0+gYFzSS4W0i0agtP1KouKyKIxeyOXA2i/i0QgB0WjU9O3gyMNSXbu3c0Wqs\n88FfuWasl+TGeklujCMFjAnkpLJe5siNoijEZh5lVfw6SqpL8Xf05f5OU2jfql2jHscU2QXlxJ7N\nZP/ZLLLyygBwsrehfxdvwkN9CfZ3saqHf+WasV6SG+sluTGOFDAmkJPKepkzN6XVZaxJ2FC7OORA\nv75MDhmHs67pHq5VFIUrmcUcOJvJoXNZFJVVA+Ddyp6BoT6Eh/ri4+7QZPH9Rq4Z6yW5sV6SG+NI\nAWMCOamslyVyk1iYxI8XV5JWkoGj1oFJIWMJ9+9nsSUJ6qM3GDh3JZ8DZzM5FpdDVbUBgGB/F8JD\nfenXxRsXB8uNqLqeXDPWS3JjvSQ3xpECxgRyUlkvS+VGb9CzK20/v17eRKW+inYugUzvNIUAZ3+z\nH9sYFVU1HI/L5cDZTM5eyUNRQK1S0S3YnfBQX3p28LTojL9yzVgvyY31ktwYRwoYE8hJZb0snZuC\nykJWXFrL8exTqFVqhgVEML7dKOy0dhaL4VYKSyqJPZ/NgbOZJGVe+21sdRr6dvRiYDdfurR1Q602\n7/Mycs1YL8mN9ZLcGEcKGBPISWW9mio3565eZGncanLLr+Kqc2Fax3vo5dXdqh6kBUjPLeXguUwO\nnMnialEFAK5OOgZ2vfa8TBtvJ7PELNeM9ZLcWC/JjXGkgDGBnFTWqylzU62vZnPSDjYn7aBG0dPF\nvSP3d5yCl4NHk8TTEIOiEJ9ayMGzmRy+kE1pRQ0ArT0dGRjqw8Cuvni4Nl4vklwz1ktyY70kN8aR\nAsYEclJZL2vITXZZDksvruZC/iW0ai1jAqMYFRiFjdo6J5yrrjFw+vJVDpzN5GR8LjX6a5d7x/+u\nmN23kxcOdne2Src15EXUTXJjvSQ3xpECxgRyUlkva8mNoigcyz7Fz5d+obCqGG97T+7vNIXO7h2a\nOrQGlVVUc+RiDgfOZHIxpQAArUZFWMi1yfJ6hHhgozV9tJW15EXcTHJjvSQ3xpECxgRyUlkva8tN\neU0F6y5vZmfqPhQU+niHMbXDBFrZujZ1aLd0tbDi2vMyZ7NIzy0FwMFWS7//TpbXPsAVtZHPy1hb\nXsT/kdxYL8mNcaSAMYGcVNbLWnOTUpzGTxdXcaUoGTuNLROCxzCkdXiTLElgKkVRSMku4cDZTA6e\ny6KwpAoADxe72sny/D0dG9yHteZFSG6smeTGOFLAmEBOKutlzbkxKAb2px9idcIGymvKaePkz/TO\nUwlyadvUoRnNYFA4n5zPwTOZHInLobLq2krZgT7OhIf60L+rD62cbl4p25rzcreT3FgvyY1xpIAx\ngZxU1qs55Ka4qoRV8euIzTyKChUR/v2ZFDIWB5umn/LfFJXVek5cyuXg2UzOJOZdWylbBV2D3AkP\n9aF3Ry/sdNceXG4OeblbSW6sl+TGOFLAmEBOKuvVnHJzKf8yP8WtIrM0CycbR6a2n0B/395WN3eM\nMYrKqjh8PpuDZzNJSJ3CABAAACAASURBVC8CQGejpncHLwaG+jKsX1vy8kqbOEpRl+Z0zdxtJDfG\nkQLGBHJSWa/mlpsaQw3bU/awIXErVYZqOrQK5v5OU/Bz9Gnq0G5bVl4ZB89lceBsJtn55QC0crZl\nUkQQkWH+Rj/4KyyjuV0zdxPJjXGkgDGBnFTWq7nm5mp5Pisu/cKp3LOoVWpGth3K2KAR6DRNs/hi\nY1AUhcsZRRw8k8X+s5mUV9bQPsCVh8d0IsCr6VbwFjdqrtfM3UByYxwpYEwgJ5X1au65OZ17jmVx\na8iryMdV50yE/wAiWg9oFsOuG6LWaflk6XGOXsxBo1Yxpn9bJkYEWXRBSVG35n7NtGSSG+M0VMBo\n3nzzzTctF0rjKCurMtu+HR1tzbp/cfuae258HLyI8B8AQEJhEufz49iZuo+0knQcbRxwt3Nrls/I\neLo7Etq2FUG+zsSlFHIq4Sqx57LwcXfAx715Pbzc0jT3a6Ylk9wYx9Hx5pGPv5EemN+Rqth6taTc\nVNRUcjTrBLvTDpBakg6At70nka0HMtCvb7MatXR9Xiqr9PyyL5FNh1IwKAp9O3vzwIgOuDnX/z8h\nYT4t6ZppaSQ3xpFbSCaQk8p6tcTcKIrClaJk9qQd5Gj2SWoMNdiotfTx7smQgHACXdo0dYi3VFde\nUrJL+GbjBRLSi7C31TB1SAhRvVqjVje/HqbmrCVeMy2F5MY4UsCYQE6q/9/evUdHWd/7Hn/PNZNk\ncmdyD0nIhXCHIMhdUEHRKgoiimDtOmefdrl71u4+urupW7f22LVduGtXl7seu2vVWtSCgFasCmoV\npBjAEiQQyJVwyf0yuSczycw854+EQBAwA5nMb8j3tZZLmExmfuHz/B4+PPN7nkdd13s2Hb2d7K/5\nO3ur9tPY3QTA2LAkFibN5Ya46cou+r1cLh5N48tvqtm2u5wup4v0hDC+f3sOY+Muv0MSw+t6nzOB\nTLIZGikwXpCNSl2jJRuP5qHYXsaXVXkcbTyOhkawMZg58TNZkDSH+NBYfw9xkO/KpbWzhy1/LWX/\n8Tr0Oh233pDMPQvTBy6EJ3xntMyZQCTZDI0UGC/IRqWu0ZhNs6OFfdUH2Fd9kLaevp89OzKDhclz\nmTZmkhL3WxpqLscqmnhzVwn1Ld1Ehwfx0K3ZzMi2jcAIR6/ROGcChWQzNFJgvCAblbpGczZuj5sj\njYXsrcyjpKUcgAhzGPMSZzM/8UaiLJF+G5s3ufT0uvlL3mk+3n8at0djRtYYHlqaTXS4xcejHJ1G\n85xRnWQzNFJgvCAblbokmz61nXXsrdrPgdpDdLsc6HV6psRMYGHSXMZHZ6LX6Ud0PFeTS3VjJ3/c\nVUzJ2RaCTAbuXZjOLTckY9CP7NivdzJn1CXZDI0UGC/IRqUuyWYwp7tn4FTss+1VANiCY1jQfyq2\n1RQ6IuO42lw0TeNvR2vY+kU5Hd29jI218vDtOYxLDPfBKEcnmTPqkmyGRgqMF2SjUpdkc2mapnG6\n/Sx7K/dzqP4bej0ujHojM2OnsTBpDmnhY316gbxrzaW9q4d3vihj39FadMCS3CRWLsogxCKLfK+V\nzBl1STZD47cr8ZaUlLBmzRr0ej1Tp06lpqaGRx99lG3btvHll19yyy23YDAY+Oijj/jZz37Gtm3b\nqKysZO7cuVd8XbkS7+gk2VyaTqcjMiiCabZJLEyaS5jZSkNXIyUt5XxV8zVHG4+jQ0dcaCxGHyz6\nvdZcgkwGcrNtjE+JpLy6jaMn7ew7VkNMuIXEmJCAvDqxKmTOqEuyGRq/XIm3q6uLH/7wh6SlpTF+\n/HjWrVvHz372MxYtWsTy5cv51a9+RXx8PPfeey933nknO3bsIDQ0lPvvv5/nnnuOzMzMy762HIEZ\nnSSbofNoHoqby9hbtZ+jjcfxaB4sBgs3JsxkUdIc4ofxjtjDmUuvy8PHB07zl69O43J7mDIuhnXL\nsrFFBg/L6482MmfUJdkMzZWOwPhsxZzZbOaVV14hNvb8NSsOHDjALbfcAsCSJUvIy8sjODiYHTt2\nYLVa+/4lGRlJS0uLr4YlxKig1+mZEJ3N/5ryMM/O+xl3pN1KkMHEnsp9PHvgBX6d/1sO1fVd+Vcl\nJqOeu+en8+z/mM3EtCiOnmziqd8f4MO8U7jcHn8PTwihEJ99yGw0GjEaB798d3c3ZnPf1URjYmJo\naGgAwGq1AlBcXExVVRXTpk3z1bCEGHUigyK4c9wybk+7hYLG4+ytyqO4uYzSlpOEma3MT5jN/KQb\nibZE+XuoA+KiQ3hszXQOHK9j819L2b7nJPsL63j49vFkJfvvlHEhhDr8tkru4k+uTp06xeOPP84L\nL7yAyWS64vdGRYVgNPruAl5XOmQl/EuyuTbxcfNYNmke1W21fFK+lz0Veew8/Tm7znzBzIQpLMtc\nxNT4CV6fiu2rXO6KDWfJ7FT+8OFxdu0/zXNv5nPbnFS+f+dEwkLUvLWCamTOqEuyuTYjWmBCQkJw\nOBxYLBbq6uoGPl6qra3lH//xH3n++eeZMGHCd75Oc3OXz8Yon0uqS7IZPiZCuTP5dpYm3MyhuiN8\nWZXH36sL+Ht1AWMs0SxImsPchFlYzd99KvZI5LJmcQYzM8fwxq4idu0/zVcF1TxwcxZzJsXJIt8r\nkDmjLslmaPx2FhLAwYMHCQ4OZurUqZSVldHd3U1OTg6vv/46ubm5TJo0iX/6p3/i8ccfZ/r06UN6\nTTkLaXSSbIafQW8gJSyJBUk3MjkmB4+mUdF2muP2YnZX7qOus4HwICuRQRGXLQojlUt0uIVF0xKx\nmA0UVtj5uqie0spWMpMisAZf+ajtaCVzRl2SzdD45SykY8eOsXHjRqqqqjAajcTFxfHLX/6SDRs2\n4HQ6SUxM5LnnnqOyspJ77rmHqVOnDnzvI488MrDY91LkLKTRSbIZGV29XeyvPcTeqjzquxoBSLIm\nsDBpLrPiZmAxDt6h+COXhpZu3vq0hILyJowGPd+bm8ryOamYjKP7Sr7dThcna9ooq2ylrKqViLAg\n7pqbSlxUiL+HJi4i+7OhkQvZeUE2KnVJNiNL0zRKmsv5siqPgsbC/lOxg5gdP5OFSXNItMYD/stF\n0zQOFTfw1mcltHb0EB8dwsO3jScnVZ3FyL5mb3NQVtVKaWUrpZUtnK3v4OI9usmo596F41g6S27V\noBLZnw2NFBgvyEalLsnGf1qcreyrPsi+qgO09rQBkBGRzqLkuSydMJdme7ffxtblcPHelyf5PL8S\nDZg/OZ77b8687hb5ejwalQ0dA4WlrLKFpjbnwNeNBh1pCeFkJUWQmRxBZlIEVXYHL797hPauXtLi\nw/jBHRNIibX68acQ58j+bGikwHhBNip1STb+5/a4Odp0gr2VeRQ1lwIQYQnnrrTbmJNwg18X1FbU\ntPHGziLO1HUQajFy/5JMFkxNCNhFvs4eNyerWyntLywnq1vpdroHvm4NNpGZFEFWcgRZyZGkxod9\n6yM0my2MijN2/vRZKXmFtRj0Ou6Yk8r35qWN+o/b/E32Z0MjBcYLslGpS7JRS31XA3ur9rOv5iBO\nl5PsqEweHL+S2JAxfhuT2+Phr4eqeG/vSZw9brJTInn4tvEkjhmZG1tei+Z2Z9/RlbMtlFa1crau\nA88Fu+e46BCy+gtLZnIE8dHffZuFC+dMQXkTf9xVhL3NSUJMCD9YPoHM5Aif/kzi8mR/NjRSYLwg\nG5W6JBs16UJ6+X95mzjWVIRJb+SO9KXckrIIgw/uuzRU9jYHb31awuHSRgx6HcvnjOV7c9Mwm/w3\npgt5NI3qhk5KK/vKSlllK42tjoGvGw06UuPDyEqOJCspgozkCMKv4iOxi+dMt9PF9j3lfJ5fhQ64\nZWYyK28ah8UsN84cabI/GxopMF6QjUpdko2abLYw6uvbyK8/wtaSHbT3dpBkTeChnPtIDU/x69gO\nlzbw1qcl2NucxEYGs+62bCanx4z4OJy9biqq2wYKS3lVG93O87dxCLUYyUqOHFi7kp4QhmkYLtZ5\nuTlTcraF1z8uos7eRUy4he8vH++XP5fRTPZnQyMFxguyUalLslHThbl09nbxXtmH5NV8jQ4dS1IW\n8L1xtxFk8N+CWkePi/f/VsGnX1fi0TRunBjHAzdnEmG9/PUlrlVLh5Oyyv7FtlUtnKnrwO254OOg\nqGAy+9euZCZFEB8Tgt4Ha3WuNGd6XW527DvFx/vP4NE05k+JZ83NWXJNnREi+7OhkQLjBdmo1CXZ\nqOlSuRTby3i7eDuN3U3EWKJ4YPxKJsaM99MI+5ypa+eNncVU1LQRHGTkvsUZ3DQ98ZqLg0fTqGns\n7D+Vua+wNLSc/zjIoNeRFh/Wf3Sl7yhLROjIFLqhzJkzde289tEJztR1EB5qZt3SbG7Iib3i94hr\nJ/uzoZEC4wXZqNQl2ajpcrn0uHv5+NRnfHZmDx7Nw6y4GazKuosws/9O4/V4NHZ/U8X2PeV0O91k\nJIbz8O05Xp1a3NPrpqKmrb+s9K1f6bro46CMc4ttkyJITwj329qboc4Zt8fDroNn+fPeClxuD7nZ\nNtYtyybSh0epRjvZnw2NFBgvyEalLslGTd+VS2V7NW8Xbed0+1lCTSGsyryL2fG5fj29uaXDyea/\nlnLwRD16nY5ls1NYMT+dIPO3i0ZrZw9llS0DheV0bfugj4NiI/s+Djr3kVCCjz4Ouhrezplaexd/\n+OgEJZWthAQZWXNzYJ+KrjLZnw2NFBgvyEalLslGTUPJxaN52F25jw/Kd9Lj6SUnKosHc1YyJti/\nC0ePnmxi065iGlsdxIRbeGhZNrbIYMoqW/rWsFS1Ut98/iJ9Br2OsXFh/dde6TvC4su1NNfqauaM\nR9PY8001W78ow9HjZkJqFN9fnkNsZLCPRjk6yf5saKTAeEE2KnVJNmryJpembjubi9/juL0Yk97E\n98YtY0nyAr+ecu3sdfOXr06x88CZQUdWAIKDjBdcLC6CtIRwghQ5FXsormXO2Nsc/HFXMQXlTZhN\nelYuHMetN6Sg18vRmOEg+7OhkQLjBdmo1CXZqMnbXDRN4+9137CtdAcdvZ2khCWxNmcVY8OSfTjK\n71bV0MGOfacwGnQDpzQnjglV5uOgq3Gtc0bTNA4cr+Ptz0rp6O5lXGI4jyzPIdkmtyO4VrI/Gxop\nMF6QjUpdko2arjaXjt5O3i39CwdqD6HX6ftOuU5fhtmPp1xfb4ZrzrR19bD5s1L2H6/DoNfxvXlp\n3Dk3FaNBbkdwtWR/NjRSYLwgG5W6JBs1XWsuJ+wlbC56l0aHnRhLNA/mrGRCdPYwjnD0Gu45801Z\nI5t2FdPc7iTJFsoPlk9gXGL4sL3+aCL7s6G5UoExPPPMM8+M3FCGR1dXj89eOzQ0yKevL66eZKOm\na83FFhzD/MTZuDU3J+wlHKg9RFO3nYzIdDkac42Ge87ER4ewaFoiXU4XR8ub2FtQTbfTRVZypByN\n8ZLsz4YmNPTyi+TlCMxFpBWrS7JR03Dmcra9ireKtnG2vQqrKZRVWXcxK26GnMZ7lXw5Z4rPNPOH\nj4uoa+5mTISFR5bnMDEt2ifvdT2S/dnQyBEYL0grVpdko6bhzCUiKJy5CbOwGC2csJeQX1/Aqbaz\nZESkEWKS03i95cs5MyYimEXTEnFrGsdO2tl3rBZ7m4PxKZHDch+n653sz4bmSkdgpMBcRDYqdUk2\nahruXPQ6PeMi0rghbjq1nfWcaC5hX/UBzHoTqeEpcjTGC76eMwaDnklp0UzNjOFkdRtH+4tMbGQw\nCTGhPnvf64Hsz4ZGCowXZKNSl2SjJl/lEmIKYXZ8LmOCYyhuKeNIYyGFTUWkhacQHnT5w8rivJGa\nM5HWIBZOTcBk1HPspJ39x+uoauwkOyUSyyWubixkfzZUUmC8IBuVuiQbNfkyF51OR3JYInMSbqDV\n2c4JezFf1Ryk19PLuIg0v14ALxCM5JzR63Vkp0RyQ46NM/UdHDtp528F1USEmkmJtcqRs4vI/mxo\npMB4QTYqdUk2ahqJXIIMZqbHTiY9fCzlLRUcazpBfv0REkLjGRMsC0cvxx9zJizEzPwpCYSFmDl2\nys7XRfWUV7eRnRxBiMU0omNRmezPhkYKjBdko1KXZKOmkczFFjKGeYk30uvp5XhTMQdqD2F3NJMZ\nmY7ZIH85Xsxfc0an0zEuMZw5E+OosXdRWGHnyyM1WMwG0uLD5WgMsj8bKikwXpCNSl2SjZpGOhej\n3sDEmPFMisnhdFslx+3F7K/5O5GWCBJC4+Qvxwv4e86EWEzMmRhHbFQwx0/ZyS9ppPCUncykCMJC\nRvc1fvydTaCQAuMF2ajUJdmoyV+5RAZFMC9hFkGGIE7YizlUf4Qz7ZVkRKYRbJRTrkGNOaPT6UiJ\nDWPBlATs7Q6OnbTz5ZFqADKSIkbtzSFVyCYQyIXsvCAXF1KXZKMmFXKp72rkT8XvUtJcRpDBzF3j\nbuem5HnodaPr6rCapmF3tFDVUU1VRy3x0VFMDZum1GLnwyUNbPqkmJaOHpJtVn5wRw7pCaPvdgQq\nzJtAIPdC8oJsVOqSbNSkSi6aprG/9hDvln5Al6ubtPCxrM1ZRZI1wd9D84kedy81nbVUddRQ2VEz\nUFq6Xd2DnpdsTWTdhNWkhCX5aaTf1uXo5Z0vyvnySDU6Hdw2eywrFqQTZFKnaPmaKvNGdVJgvCAb\nlbokGzWplkt7TwfbSnfw97pv0Ov0LBu7mNvTbsEUoIt8NU2jtaeNqo4aqtprqOyopqqjhrquBjTO\n77516LCFxJBkTSTZmkCSNYGS9hI+r/gKvU7P0rGLWa7Yn8OJU3b+sLOIhhYHsZHBPLI8h5zUKH8P\na0SoNm9UJQXGC7JRqUuyUZOquRxrPMHm4vdodrYQGzKGteNXkRWV4e9hXZHL46K2s77/qEpfUanq\nqKGjt3PQ8yyGIBKtCQNFJcmaSKI1nqCLbn5ps4XxZfEh3i7ajt3RTHxILOsmrCY9InUkf6wrcva6\neX9vBbu+PoOmwU3TE1m9OJMQi9HfQ/MpVeeNaqTAeEE2KnVJNmpSOReHy8lfTu5id+U+NDTmJczm\n3sw7CDGF+HtotPd0fKuo1HbW49bcg54XY4k+X1TC+o6uRFuihrS+51w2DpeTHSc/Zk/lV+jQsSRl\nAXeNu02pu31X1LTx+kcnqGzoJNJq5uHbcpieNcbfw/IZleeNSqTAeEE2KnVJNmoKhFwqWs/wdtE2\nqjtrCTeHsTp7BTNsU0bklGu3x01dV8NASTlXWNp6Bv+ZmfUmEgeOqJz/L9houer3vjibspYK3jqx\nlfruRsZYonlown1kR2Ve9esPN5fbw0f7T/PBvlO4PRqzJ8Sy9tZswkPVKVrDJRDmjQqkwHhBNip1\nSTZqCpRc3B43n57Zw8enPsPlcTFlzETWZN9DlCVy2N6jq7erf0Ht+aJS01mHy+Ma9LyooEiSzn0E\nFJZIkjUBW3DMsJ81dalsety9fFjxCX898yUaGguS5nBPxh3XVJSGW1VjJ3/46ATl1W1Yg008eGsW\ncyZeX9f4CZR5429SYLwgG5W6JBs1BVoudV0N/KloO6UtJ7EYgrg7YzkLk+Z4VR48moeG7qb+hbXV\nA6Wl2dky6HlGvZGE0Lj+spI4cFQldIQ+wrpSNqfbzrLpxDvUdNYRFRTJgzkrmRSTMyLjGgqPR+Ov\n+ZVs31NOT6+HnLGRJI2xYjDoMBh0GPX6vv8b9Bj1OgyGvt8b9P2PGfT9v+772sBzBr5+/rmGC5/b\n/7p6H5elQJs3/iIFxguyUalLslFTIOaiaRp5NV/zbtmHdLu6SQ9PZW3OKhKt8d96rsPloKqjlqqO\n80WluqOGHk/voOeFm8O+VVTiQmx+vQbLd2XT63Gx69Tn7Dr9OR7Nw43xM1mVddeIFayhaGzp5o2d\nRRSeah7R9zXo+wrOheXGeEEBMvSXHeMlSpPh4ucO+h4dJqOeqdlxJEQGYTSMrmsVeUsKjBcCcWc8\nWkg2agrkXFqd7WwtfZ/D9QUYdAaWpS4mJSxpoKhUtVfT6LAP+h69Tk98SGzf6cphCQOlJcxs9dNP\ncXlDzaayvZo3i7Zytr2KMLOVB8avZLpt8giMcGg0TaOh1UFPjxuXx4PbreFye3B7NFxuDffArz19\nv/ec+3/f1y587rlfu90eXANf1wa+333h6/a/zqDvufC5Hg2Xy8PV/iUaHGRkWmYMuVk2poyLIcg8\neq6DM1RSYLwQyDvj651ko6brIZejjcfZXPweLc7WQY9bTaEDR1OSrYkkWhOID43FpA+MU3y9ycbt\ncfPXM1/y4alPcXlczIidyprse5QsZqrxeL5ddq5UsJw9bk7Vd7DvSBVNbU4ATEY9k9Kiyc22MT1r\nDNZgda7X409SYLxwPeyMr1eSjZqul1y6XQ72VuYBkNR/ZCXCHNh3Tr6abGo763mraCsnW08Tagph\nddYKboibHtB/Diqy2cKor2/jdF07+SUN5Jc0Ut3Yd70fvU5HdkoEudk2crNtRIers8B6pEmB8cL1\nsjO+Hkk2apJc1HW12Xg0D3sqv2JH+cf0eHqZHDOBB3NWEhkU4YNRjk6XyqbW3tVfZho4Wd028Hha\nfNhAmUkcEzrSQ/UrKTBekJ2xuiQbNUku6rrWbBq7m3iraDslzWVYDBZWZt3JvITZcjRmGHxXNs3t\nTg6X9pWZ4jMtuD19f1UnxIQMlJm0+LDrPgspMF6QnbG6JBs1SS7qGo5sNE3jq+qDvFv2FxxuJzlR\nWTyYs4oxwdHDNMrRyZtsOh29HClr5FBxA4UVdnpcHgCiwoLIzbKRmz2G7LGRGPTX3xlNUmC8IDtj\ndUk2apJc1DWc2TQ7WvhT8bsUNhVhNphZMW45i5LnDvvF90aLq83G2evm2Ek7+SUNHClrpMvZd5HE\nUIuR6ZljyM22MSk9GvN1cmdvKTBekJ2xuiQbNUku6hrubDRN4+u6w2wr2UGnq4uMiDQemrCauBDb\nsL3HaDEc2bjcHorPtpBf0sDhkgZaOnoAMJv0TEmPITfbxrTMGEIsgXtGkxQYL8jOWF2SjZokF3X5\nKpu2nnbeKf4zhxuOYtQb+V76Mm5OWejXi/YFmuHOxqNpVNS0DZzRVGfvAvouyJeTGkVuto0ZWWOI\ntAYN23uOBCkwXpCdsbokGzVJLurydTb59QW8U/xn2ns7GBuWzLoJq0myJvjs/a4nvsxG0zSqm86f\n0XS6tu99dMC4pPCBRcBxUepccflypMB4QXbG6pJs1CS5qGsksuno7WRbyQd8XZePQWfgtrSbuS11\nCcYAudifv4zkvGls7eZwSSP5JQ2UVLZw7m/9JFto/yJgG2PjrEqe0SQFxguyM1aXZKMmyUVdI5nN\nscYT/Kn4XVqcrSSGxrNuwmpSw1NG5L0Dkb/mTVtXD0dK+8pM4almXO6+M5rGRFiYkWVj5ngbmUkR\n6PVqlBkpMF6QnbG6JBs1SS7qGulsul3dvFf2IfuqD6JDx61jb+KO9KWYDYG7iNRXVJg33U4Xxyr6\nzmgqKG+k2+kGICzExIysvjOaJqRGYzL670wzKTBeUGGjEpcm2ahJclGXv7IpspfydtF2mhx24kJs\nPJSzmozItBEfh8pUmze9Lg9FZ5r7zmgqbaSts++MJovZwNSMvjOapoyLIThoZD8alALjBdU2KnGe\nZKMmyUVd/szG6e7hg/Kd7K7cB8BNyfO4O2M5QQazX8ajGpXnjcejUV7dSn5JA4eKG2hsdQBgNOiY\neO6Gk5ljCA/1fZZSYLyg8kY12kk2apJc1KVCNuUtp3iraCt1XQ3EWKJZm7OKnOgsv45JBSpkMxSa\npnG2vmPg9OzKhg4AdDrISuq74eSNE+OI8NHp2VJgvBAoG9VoJNmoSXJRlyrZ9Lp7+ejUZ3x2Zg8e\nzcP8xNncm3knwcZgfw/Nb1TJxlv1Ld3kFzeQX9pAeWUrGpBsC+X//o8bffJ+Vyowcp6bEEIInzIZ\nTKzIWM4M2xTeLNrKvuqDFDYV8+D4lUweM8HfwxNeiI0M5vYbx3L7jWNp7XBypLyJiBH4KOlS5CYW\nQgghRsTY8GR+esP/5s70pbT3dPBywev8oXAzHb2d/h6auAoR1iAWTUtkWuYYv7y/HIERQggxYox6\nI3ekL2W6bQpvntjK13X5FNlLuH/8PeTGTvX38EQAkSMwQgghRlyiNZ7HZj7KPRl34HA7ePXYm7xy\ndBOtzsBbFyL8Q47ACCGE8AuD3sDS1MVMtU3irRNb+abhKCXNZdyXdTez43OVvLS9UIccgRFCCOFX\ncSE2fpL7I1Znr8ClufnjiS28XPA6zY4Wfw9NKEwKjBBCCL/T6/QsTp7Pk7P/DzlRWRQ2FfGLAy/w\nt6r9BODVPsQIkAIjhBBCGTHB0fx4+v/koZz70Ol0/Kn4XV48/Dsau5v8PTShGFkDI4QQQik6nY55\nibOZGDOezcXvcrTxBM/kPU+w0YLZYMasN2EymDDrzZgNpr7/9ObBj+lNmA2XfsxsMGG6+DG9CaPe\nKOtuAogUGCGEEEqKDIrgh1Me4e9137C3Ko9ul4MeTy9Ot5P23g563L24NfewvZ8OXX/hOV9qBpWd\nCx77VmEa+NpFBeqix0x6Ewa9YdjGPJpJgRFCCKEsnU7HrPgZzIqfccmvuz1uejy99Lh76fX00OPu\npefc/9099Hh66R30WN+vBz3m6X/uoNfopaO3kx5n3/drDN86HKPeSFZMGpOjJjHDNoWIoPBhe+3R\nxKcFpqSkhEcffZRHHnmEdevWUVNTw09/+lPcbjc2m43//M//xGw2s2PHDt544w30ej33338/q1ev\n9uWwhBBCXCcMegPBegPBRovP3kPTNFwe1/mic3FhuuCxvl/3DC5KF5Wl7t4uihrKOdFQxraSHWRE\npjEjdqqUGS/5rMB0dXXx7LPPMnfu3IHHXnzxRdauXcvy5cv51a9+xbZt27jnnnt46aWX2LZtGyaT\nifvuu4+lS5cSzTtc6AAACzFJREFUGRnpq6EJIYQQQ6bT9X20ZDKYCDWFDMtrGq0ePivKI7+ugPKW\nU5S1VAyUmdzYaUy3TSEi6PI3MhQ+LDBms5lXXnmFV155ZeCxAwcO8POf/xyAJUuW8Nprr5Gens6U\nKVMIC+sLKjc3l/z8fG6++WZfDU0IIYTwq6jgCBYnz2dx8nxanK18U3+M/PrzZWZryftkRqaTGzuV\naVJmLslnBcZoNGI0Dn757u5uzOa+u1bGxMTQ0NBAY2Mj0dHRA8+Jjo6moaHBV8MSQgghlBIZFMHi\nlPksTukrM4frj3K4voDSlpOUtpzknQvKzPTYKYSbpcyAHxfxXu7CREO5YFFUVAhGo+9WcdtssnGo\nSrJRk+SiLslGXZfKxkYYWcnJ3M9y7F0t7K/MJ+9sPsWN5X1lpvR9JtqymJuSy+zkGURaRu+amREt\nMCEhITgcDiwWC3V1dcTGxhIbG0tjY+PAc+rr65k+ffoVX6e5uctnY7TZwmhokJuJqUiyUZPkoi7J\nRl1Dy8bArKhZzIqaRbOjhW8ajpFff4TC+hIK60t49dAWsiLHkRs3lem2KYSZrSMy9pF0pQI+ogVm\n3rx57Nq1ixUrVvDJJ5+wcOFCpk2bxpNPPklbWxsGg4H8/HyeeOKJkRyWEEIIobQoSyRLUhawJGUB\nzY4WDjf0fcxU0lJOSUs5W4r/TFZURt/HTLbJ12WZuZhO89FNJo4dO8bGjRupqqrCaDQSFxfHL3/5\nSzZs2IDT6SQxMZHnnnsOk8nEzp07efXVV9HpdKxbt4677777iq/ty39RyL9Y1CXZqElyUZdko67h\nyqbZ0cLh+gLy649S0XYa6LsgX3ZUBjOugzJzpSMwPiswviQFZnSSbNQkuahLslGXL7I5X2YKqGg7\nA/TdJDMrclz/2UyBV2akwHhBJry6JBs1SS7qkmzU5ets7I5mDtcfJb++gFMXlJnsyIyBMmM1h/rs\n/YeLFBgvyIRXl2SjJslFXZKNukYym6buZg439B2ZOd12FrigzMT1lxmTmmVGCowXZMKrS7JRk+Si\nLslGXf7KpqnbzuGGo98qM+OjMpkRO0W5MiMFxgsy4dUl2ahJclGXZKMuFbIZKDN1BZxuH1xmcmOn\nMtU2ye9lRgqMF1TYqMSlSTZqklzUJdmoS7VsGrvtAwuAz7RXAheWmWlMs00atvtAeUMKjBdU26jE\neZKNmiQXdUk26lI5m8bupv4FwEc4014F9JWZnKis/gXAkwgZoTIjBcYLKm9Uo51koybJRV2SjboC\nJZvG7iby6ws4XF8wuMxEZ5Fr832ZkQLjhUDZqEYjyUZNkou6JBt1BWI2DV1NA2czne0vMwadgZuS\n57Eq6y6fvKcytxIQQgghRGCyhcSwLHUJy1KX9JWZ+gIONxTQ6mzzy3ikwAghhBDCK7aQGJalLWFZ\n2hK/jUHvt3cWQgghhLhKUmCEEEIIEXCkwAghhBAi4EiBEUIIIUTAkQIjhBBCiIAjBUYIIYQQAUcK\njBBCCCECjhQYIYQQQgQcKTBCCCGECDhSYIQQQggRcKTACCGEECLgSIERQgghRMCRAiOEEEKIgKPT\nNE3z9yCEEEIIIbwhR2CEEEIIEXCkwAghhBAi4EiBEUIIIUTAkQIjhBBCiIAjBUYIIYQQAUcKjBBC\nCCECjhSYC/zHf/wHa9as4YEHHqCgoMDfwxEXeP7551mzZg2rVq3ik08+8fdwxAUcDge33nor7777\nrr+HIi6wY8cO7r77blauXMnu3bv9PRwBdHZ28uMf/5j169fzwAMPsHfvXn8PKaAZ/T0AVRw8eJDT\np0+zZcsWysvLeeKJJ9iyZYu/hyWA/fv3U1paypYtW2hububee+9l2bJl/h6W6Pfyyy8TERHh72GI\nCzQ3N/PSSy+xfft2urq6+K//+i8WL17s72GNeu+99x7p6ek89thj1NXV8f3vf5+dO3f6e1gBSwpM\nv7y8PG699VYAMjIyaG1tpaOjA6vV6ueRiVmzZjF16lQAwsPD6e7uxu12YzAY/DwyUV5eTllZmfzl\nqJi8vDzmzp2L1WrFarXy7LPP+ntIAoiKiqK4uBiAtrY2oqKi/DyiwCYfIfVrbGwctDFFR0fT0NDg\nxxGJcwwGAyEhIQBs27aNRYsWSXlRxMaNG9mwYYO/hyEuUllZicPh4Ec/+hFr164lLy/P30MSwJ13\n3kl1dTVLly5l3bp1/Ou//qu/hxTQ5AjMZcgdFtTz2WefsW3bNl577TV/D0UAf/7zn5k+fTopKSn+\nHoq4hJaWFn7zm99QXV3Nww8/zBdffIFOp/P3sEa1999/n8TERF599VWKiop44oknZO3YNZAC0y82\nNpbGxsaB39fX12Oz2fw4InGhvXv38tvf/pbf//73hIWF+Xs4Ati9ezdnz55l9+7d1NbWYjabiY+P\nZ968ef4e2qgXExPDjBkzMBqNjB07ltDQUOx2OzExMf4e2qiWn5/PggULAMjJyaG+vl4+Dr8G8hFS\nv/nz57Nr1y4ACgsLiY2NlfUvimhvb+f555/nv//7v4mMjPT3cES/X//612zfvp133nmH1atX8+ij\nj0p5UcSCBQvYv38/Ho+H5uZmurq6ZL2FAlJTUzly5AgAVVVVhIaGSnm5BnIEpl9ubi6TJk3igQce\nQKfT8fTTT/t7SKLfRx99RHNzMz/5yU8GHtu4cSOJiYl+HJUQ6oqLi+O2227j/vvvB+DJJ59Er5d/\nr/rbmjVreOKJJ1i3bh0ul4tnnnnG30MKaDpNFnsIIYQQIsBIJRdCCCFEwJECI4QQQoiAIwVGCCGE\nEAFHCowQQgghAo4UGCGEEEIEHCkwQgifqqysZPLkyaxfv37gLryPPfYYbW1tQ36N9evX43a7h/z8\nBx98kAMHDlzNcIUQAUIKjBDC56Kjo9m0aRObNm1i8+bNxMbG8vLLLw/5+zdt2iQX/BJCDCIXshNC\njLhZs2axZcsWioqK2LhxIy6Xi97eXv793/+diRMnsn79enJycjhx4gRvvPEGEydOpLCwkJ6eHp56\n6ilqa2txuVysWLGCtWvX0t3dzT//8z/T3NxMamoqTqcTgLq6Oh5//HEAHA4Ha9as4b777vPnjy6E\nGCZSYIQQI8rtdvPpp58yc+ZM/uVf/oWXXnqJsWPHfuvmdiEhIbz55puDvnfTpk2Eh4fzwgsv4HA4\nuOOOO1i4cCFfffUVFouFLVu2UF9fzy233ALAxx9/zLhx4/j5z3+O0+lk69atI/7zCiF8QwqMEMLn\n7HY769evB8Dj8XDDDTewatUqXnzxRf7t3/5t4HkdHR14PB6g7/YeFzty5AgrV64EwGKxMHnyZAoL\nCykpKWHmzJlA341Zx40bB8DChQt5++232bBhAzfddBNr1qzx6c8phBg5UmCEED53bg3Mhdrb2zGZ\nTN96/ByTyfStx3Q63aDfa5qGTqdD07RB9/o5V4IyMjL48MMP+frrr9m5cydvvPEGmzdvvtYfRwih\nAFnEK4Twi7CwMJKTk9mzZw8AFRUV/OY3v7ni90ybNo29e/cC0NXVRWFhIZMmTSIjI4PDhw8DUFNT\nQ0VFBQAffPABR48eZd68eTz99NPU1NTgcrl8+FMJIUaKHIERQvjNxo0b+cUvfsHvfvc7XC4XGzZs\nuOLz169fz1NPPcVDDz1ET08Pjz76KMnJyaxYsYLPP/+ctWvXkpyczJQpUwDIzMzk6aefxmw2o2ka\n//AP/4DRKLs9Ia4HcjdqIYQQQgQc+QhJCCGEEAFHCowQQgghAo4UGCGEEEIEHCkwQgghhAg4UmCE\nEEIIEXCkwAghhBAi4EiBEUIIIUTAkQIjhBBCiIDz/wG+dMe8adC1rwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "P8BLQ7T71JWd" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "colab_type": "text", + "id": "1hwaFCE71OPZ" + }, + "cell_type": "markdown", + "source": [ + "It's a good idea to keep latitude and longitude normalized:" + ] + }, + { + "metadata": { + "colab_type": "code", + "id": "djKtt4mz1ZEc", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def location_location_location(examples_dataframe):\n", + " \"\"\"Returns a version of the input `DataFrame` that keeps only the latitude and longitude.\"\"\"\n", + " processed_features = pd.DataFrame()\n", + " processed_features[\"latitude\"] = linear_scale(examples_dataframe[\"latitude\"])\n", + " processed_features[\"longitude\"] = linear_scale(examples_dataframe[\"longitude\"])\n", + " return processed_features\n", + "\n", + "lll_dataframe = location_location_location(preprocess_features(california_housing_dataframe))\n", + "lll_training_examples = lll_dataframe.head(12000)\n", + "lll_validation_examples = lll_dataframe.tail(5000)\n", + "\n", + "_ = train_nn_regression_model(\n", + " my_optimizer=tf.train.AdagradOptimizer(learning_rate=0.05),\n", + " steps=500,\n", + " batch_size=50,\n", + " hidden_units=[10, 10, 5, 5, 5],\n", + " training_examples=lll_training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=lll_validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "colab_type": "text", + "id": "Dw2Mr9JZ1cRi" + }, + "cell_type": "markdown", + "source": [ + "This isn't too bad for just two features. Of course, property values can still vary significantly within short distances." + ] + } + ] +} \ No newline at end of file From f357caa75ac8449fd0ac1214ec1bd9d369e7fcf2 Mon Sep 17 00:00:00 2001 From: Amartya Bhattacharya <36528245+amartyabhattacharya@users.noreply.github.com> Date: Sun, 17 Feb 2019 16:41:26 +0530 Subject: [PATCH 11/11] Created using Colaboratory --- ...classification_of_handwritten_digits.ipynb | 2456 +++++++++++++++++ 1 file changed, 2456 insertions(+) create mode 100644 multi_class_classification_of_handwritten_digits.ipynb diff --git a/multi_class_classification_of_handwritten_digits.ipynb b/multi_class_classification_of_handwritten_digits.ipynb new file mode 100644 index 0000000..b67ef0d --- /dev/null +++ b/multi_class_classification_of_handwritten_digits.ipynb @@ -0,0 +1,2456 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "multi-class_classification_of_handwritten_digits.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [ + "JndnmDMp66FL", + "266KQvZoMxMv", + "6sfw3LH0Oycm" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python2", + "display_name": "Python 2" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "metadata": { + "id": "JndnmDMp66FL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Copyright 2017 Google LLC." + ] + }, + { + "metadata": { + "id": "hMqWDc_m6rUC", + "colab_type": "code", + "cellView": "both", + "colab": {} + }, + "cell_type": "code", + "source": [ + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mPa95uXvcpcn", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Classifying Handwritten Digits with Neural Networks" + ] + }, + { + "metadata": { + "id": "Fdpn8b90u8Tp", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png)" + ] + }, + { + "metadata": { + "id": "c7HLCm66Cs2p", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Learning Objectives:**\n", + " * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set\n", + " * Compare the performance of the linear and neural network classification models\n", + " * Visualize the weights of a neural-network hidden layer" + ] + }, + { + "metadata": { + "id": "HSEh-gNdu8T0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class." + ] + }, + { + "metadata": { + "id": "2NMdE1b-7UIH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "\n", + "First, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random." + ] + }, + { + "metadata": { + "id": "4LJ4SD8BWHeh", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 233 + }, + "outputId": "3bdde4c0-cfb2-4ab9-8145-91cd414b7832" + }, + "cell_type": "code", + "source": [ + "from __future__ import print_function\n", + "\n", + "import glob\n", + "import math\n", + "import os\n", + "\n", + "from IPython import display\n", + "from matplotlib import cm\n", + "from matplotlib import gridspec\n", + "from matplotlib import pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from sklearn import metrics\n", + "import tensorflow as tf\n", + "from tensorflow.python.data import Dataset\n", + "\n", + "tf.logging.set_verbosity(tf.logging.ERROR)\n", + "pd.options.display.max_rows = 10\n", + "pd.options.display.float_format = '{:.1f}'.format\n", + "\n", + "mnist_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "# Use just the first 10,000 records for training/validation.\n", + "mnist_dataframe = mnist_dataframe.head(10000)\n", + "\n", + "mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index))\n", + "mnist_dataframe.head()" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...775776777778779780781782783784
14545000000000...0000000000
57306000000000...0000000000
70388000000000...0000000000
59039000000000...0000000000
16932000000000...0000000000
\n", + "

5 rows × 785 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 ... 775 776 777 \\\n", + "1454 5 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "5730 6 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "7038 8 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "5903 9 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "1693 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 \n", + "\n", + " 778 779 780 781 782 783 784 \n", + "1454 0 0 0 0 0 0 0 \n", + "5730 0 0 0 0 0 0 0 \n", + "7038 0 0 0 0 0 0 0 \n", + "5903 0 0 0 0 0 0 0 \n", + "1693 0 0 0 0 0 0 0 \n", + "\n", + "[5 rows x 785 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "metadata": { + "id": "kg0-25p2mOi0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes." + ] + }, + { + "metadata": { + "id": "PQ7vuOwRCsZ1", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png)" + ] + }, + { + "metadata": { + "id": "dghlqJPIu8UM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72." + ] + }, + { + "metadata": { + "id": "2ZkrL5MCqiJI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "outputId": "e0b29b0c-9df3-46d5-c462-df4fb5328985" + }, + "cell_type": "code", + "source": [ + "mnist_dataframe.loc[:, 72:72]" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
72
14540
573058
70380
59030
16930
......
48380
31410
23090
19710
33390
\n", + "

10000 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " 72\n", + "1454 0\n", + "5730 58\n", + "7038 0\n", + "5903 0\n", + "1693 0\n", + "... ..\n", + "4838 0\n", + "3141 0\n", + "2309 0\n", + "1971 0\n", + "3339 0\n", + "\n", + "[10000 rows x 1 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "id": "vLNg2VxqhUZ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set." + ] + }, + { + "metadata": { + "id": "JfFWWvMWDFrR", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def parse_labels_and_features(dataset):\n", + " \"\"\"Extracts labels and features.\n", + " \n", + " This is a good place to scale or transform the features if needed.\n", + " \n", + " Args:\n", + " dataset: A Pandas `Dataframe`, containing the label on the first column and\n", + " monochrome pixel values on the remaining columns, in row major order.\n", + " Returns:\n", + " A `tuple` `(labels, features)`:\n", + " labels: A Pandas `Series`.\n", + " features: A Pandas `DataFrame`.\n", + " \"\"\"\n", + " labels = dataset[0]\n", + "\n", + " # DataFrame.loc index ranges are inclusive at both ends.\n", + " features = dataset.loc[:,1:784]\n", + " # Scale the data to [0, 1] by dividing out the max value, 255.\n", + " features = features / 255\n", + "\n", + " return labels, features" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mFY_-7vZu8UU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 346 + }, + "outputId": "8ea482ad-b1b9-41d7-8056-6da8eec33996" + }, + "cell_type": "code", + "source": [ + "training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500])\n", + "training_examples.describe()" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0...7500.07500.07500.07500.07500.07500.07500.07500.07500.07500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.30.21.00.20.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 7500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 1.0 1.0 0.3 0.2 1.0 0.2 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 7500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "metadata": { + "id": "4-Vgg-1zu8Ud", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 346 + }, + "outputId": "73cf4428-0c57-47bd-8919-e8913768c6a8" + }, + "cell_type": "code", + "source": [ + "validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000])\n", + "validation_examples.describe()" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0...2500.02500.02500.02500.02500.02500.02500.02500.02500.02500.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.80.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 10 \\\n", + "count 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... 775 776 777 778 779 780 781 782 783 \\\n", + "count ... 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 2500.0 \n", + "mean ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max ... 1.0 1.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 784 \n", + "count 2500.0 \n", + "mean 0.0 \n", + "std 0.0 \n", + "min 0.0 \n", + "25% 0.0 \n", + "50% 0.0 \n", + "75% 0.0 \n", + "max 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "metadata": { + "id": "wrnAI1v6u8Uh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Show a random example and its corresponding label." + ] + }, + { + "metadata": { + "id": "s-euVJVtu8Ui", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 360 + }, + "outputId": "e4c65fa7-8d5b-42f5-b63b-cab61d5e1819" + }, + "cell_type": "code", + "source": [ + "rand_example = np.random.choice(training_examples.index)\n", + "_, ax = plt.subplots()\n", + "ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28))\n", + "ax.set_title(\"Label: %i\" % training_targets.loc[rand_example])\n", + "ax.grid(False)" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFXCAYAAAAro2x+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFBtJREFUeJzt3XlsVPX6x/HPOKXCsBVa2qQalkir\nDWLUULTsbQlaDGGJidBQNJqIC4SySCoBJGIsLVuoXNLSiAk24CT1D0lYWlFJEKGmSNRitOCChUAp\nUDYpWKC/P8yd/LgU+8ww0zMd3q/kJjI8nvkeJ/edM51+z7haWlpaBAD4V/c5vQAA6AiIJQAYEEsA\nMCCWAGBALAHAgFgCgAGxRLt5+OGHderUKb/+nYyMDFVXV/v17+Tl5WnDhg3/OrNr1y49++yzt/zv\n4Ycf1uXLl/16Ltw7opxeAOCE/wbyv3bs2KGdO3eqW7duDq4K4YwrSziuqalJubm5euaZZ5SRkaGC\ngoJb/v7AgQOaNGmSRo8erbVr1/oe3717tyZMmKDMzEy9/PLLOnfu3G3HXr16tbZu3fqvz3/t2jWt\nW7dOb731VnBOCBGJK0s4buvWrfrrr7+0a9cuXbx4UePGjVNmZqaGDBkiSTp8+LA+/fRTnT9/XllZ\nWcrKylLXrl21cOFCffLJJ0pOTlZJSYmWLVumoqKiW449f/78Np+/vLxcTz75pPr27RuS80NkIJZw\n3Msvv6ycnBy5XC717NlTSUlJOn78uC+WEyZMkNvtVmxsrFJTU3Xo0CHdvHlTQ4cOVXJysiRp6tSp\nGj58uG7cuOHXc9+8eVObNm1ScXFx0M8LkYVYwnF//PGHVqxYod9++0333XefTp06pSlTpvj+vnfv\n3r5/7t69uy5evKiWlhZVV1ff8nPHbt266fz5834996FDh+TxeJSUlHT3J4KIRizhuHfffVeDBg3S\nf/7zH7ndbk2dOvWWv79w4cIt/9yzZ09FR0dr2LBht73t9teePXs0evTouzoG7g18wAPHnT17Vikp\nKXK73dq3b5+OHTumK1eu+P5++/btunnzps6ePauDBw9qyJAhGjFihKqrq1VXVydJ+uGHH/Tee+/5\n/dw///yzHnrooaCdCyIXV5ZoVzk5OXK73b4/v/fee3r99deVn5+vDRs2KDMzU7NmzVJRUZFSUlIk\nSYMHD9bzzz+vc+fO6cUXX9TAgQMlScuXL9ebb76p5uZmde3aVYsWLbrt+VavXq3ExERNmzat1fWc\nOnVKcXFxIThTRBoX97MEgLbxNhwADIglABgQSwAwcOQDnvfff1/ff/+9XC6XFi1apMcee8yJZQRV\nVVWV5syZ4/t9veTkZC1ZssThVQWutrZWb7zxhl566SVNnz5dJ0+e1MKFC3Xjxg316dNHK1euVHR0\ntNPL9Mv/nlNeXp4OHz6smJgYSdIrr7yiMWPGOLtIPxUWFurgwYO6fv26Zs6cqcGDB3f410m6/by+\n/PJLx1+rdo/lt99+q2PHjsnr9erXX3/VokWL5PV623sZITF06NC7/r2/cHDlyhUtX75caWlpvseK\nioqUnZ2trKwsrVmzRuXl5crOznZwlf5p7Zwkad68eUpPT3doVXfnwIEDOnLkiLxerxobGzV58mSl\npaV16NdJav28nn76acdfq3Z/G75//36NHTtWkvTQQw/pwoUL3BYrzERHR6u0tFTx8fG+x6qqqpSZ\nmSlJSk9P1/79+51aXkBaO6eOLjU1VevWrZMk9ejRQ01NTR3+dZJaPy9/t7GGQrvH8syZM+rVq5fv\nz71791ZDQ0N7LyMkjh49qtdee03Tpk3Tvn37nF5OwKKiotS5c+dbHmtqavK9nYuNje1wr1lr5yRJ\nZWVlmjFjhubOndvqXYvCmdvtlsfjkfTPzUBGjRrV4V8nqfXzcrvdjr9Wjv9SeqT8mmf//v01a9Ys\nZWVlqa6uTjNmzFBlZWWH/HlRWyLlNZs4caJiYmKUkpKijRs3av369Vq6dKnTy/Lb7t27VV5erk2b\nNmncuHG+xzv66/T/z6umpsbx16rdryzj4+N15swZ359Pnz6tPn36tPcygi4hIUHjx4+Xy+VS3759\nFRcXp/r6eqeXFTQej0dXr16VJNXX10fE29m0tDTfLqGMjAzV1tY6vCL/7d27V8XFxSotLVX37t0j\n5nX63/MKh9eq3WM5fPhwVVRUSPrnPoXx8fERcXfqbdu26cMPP5QkNTQ06OzZs0pISHB4VcEzbNgw\n3+tWWVmpkSNHOryiuzd79mzf3vKqqqoOd+ehS5cuqbCwUCUlJb5PiSPhdWrtvMLhtXJku+OqVatU\nXV0tl8uld955R4888kh7LyHoLl++rAULFujixYtqbm7WrFmzOuzdbGpqalRQUKATJ04oKipKCQkJ\nWrVqlfLy8nTt2jUlJiYqPz9fnTp1cnqpZq2d0/Tp07Vx40Z16dJFHo9H+fn5io2NdXqpZl6vVx98\n8IEGDBjge2zFihVavHhxh32dpNbPa8qUKSorK3P0tWJvOAAYsIMHAAyIJQAYEEsAMCCWAGBALAHA\ngFgCgAGxBAADYgkABsQSAAwCvutQJN7tHADuJKBYRvLdzgGgNQG9Dedu5wDuNQHFMpLvdg4ArQnK\nBzzcuAhApAsolpF6t3MAuJOAYhmpdzsHgDsJ6NPwJ598UoMGDdLUqVN9dzsHgEjGndIBwIAdPABg\nQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUA\nGBBLADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJ\nAAbEEgAMiCUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAglgBgQCwBwIBY\nAoBBlNMLQHj5888/TXNPPPGE+ZiNjY2BLueOBgwYYJ5ds2aNefaZZ54xzd1///3mY7pcLvMswhdX\nlgBgENCVZVVVlebMmaOkpCRJUnJyspYsWRLUhQFAOAn4bfjQoUNVVFQUzLUAQNjibTgAGAQcy6NH\nj+q1117TtGnTtG/fvmCuCQDCTkBvw/v3769Zs2YpKytLdXV1mjFjhiorKxUdHR3s9QFAWAjoyjIh\nIUHjx4+Xy+VS3759FRcXp/r6+mCvDQDCRkCx3LZtmz788ENJUkNDg86ePauEhISgLgwAwklAb8Mz\nMjK0YMECffHFF2pubtayZct4Cw4gogUUy27duqm4uDjYawGAsMV2x3tAS0uLebakpMQ0d/78efMx\n4+PjzbO9evUyzf3yyy/mY06ZMsU8a5WXl2ee9WfDRufOnQNZDtoBv2cJAAbEEgAMiCUAGBBLADAg\nlgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMXC3+7IVDh/T777+bZwcOHGiae/DBB83H/OGHH8yzPXv2\nNM3t2LHDfMwVK1aYZ0NxI2t/voly8eLF5tmXXnopgNUgUFxZAoABsQQAA2IJAAbEEgAMiCUAGBBL\nADAglgBgQCwBwIBYAoABO3juAQUFBebZRYsWmeYKCwvNx5w/f755NhSuXbtmnv36669Nc2vXrjUf\nc+fOneZZf75S+s8//zTN9enTx3xM3BlXlgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADAg\nlgBgQCwBwIDtjh3U5cuXzbOxsbHm2SFDhpjmKisrzcfs2rWrebaj8Oe/f2Jionk2OTnZPFtdXW2e\nxd3jyhIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABhEOb0ABObHH380z/79\n99/m2UuXLpnmInELoz+OHj1qnvXn2yU7deoUyHLQDkxXlrW1tRo7dqzKysokSSdPnlROTo6ys7M1\nZ84cv/7PCAAdUZuxvHLlipYvX660tDTfY0VFRcrOztaWLVvUr18/lZeXh3SRAOC0NmMZHR2t0tJS\nxcfH+x6rqqpSZmamJCk9PV379+8P3QoBIAy0+TPLqKgoRUXdOtbU1KTo6GhJ/9z+q6GhITSrA4Aw\ncdefhnM7TAD3goBi6fF4dPXqVUlSfX39LW/RASASBRTLYcOGqaKiQtI/d8weOXJkUBcFAOGmzZ9Z\n1tTUqKCgQCdOnFBUVJQqKiq0atUq5eXlyev1KjExUZMmTWqPtQKAY9qM5aOPPqqPP/74tsc/+uij\nkCwIAMIRO3g6qFdffdU863a7zbObN28OZDn3nHXr1plnr1+/bp595513AlkO2gF7wwHAgFgCgAGx\nBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAHbHTuoHj16mGdnzpxpnn388ccDWU7EOHbs\nmGnO6/Waj/nEE0+YZ8eMGWOeRfviyhIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIA\nDIglABiw3bGD2rNnj3m2U6dOoVtIhNm+fbtp7tq1a+ZjLl261DzbuXNn8yzaF1eWAGBALAHAgFgC\ngAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGDADp4Oil05HUdqaqrTS0AQcGUJAAbEEgAMiCUAGBBL\nADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAM2O6IiHf16lXz7LZt20xzDzzwgPmYcXFx5lmEL64s\nAcDAFMva2lqNHTtWZWVlkqS8vDxNmDBBOTk5ysnJ8etrWQGgI2rzbfiVK1e0fPlypaWl3fL4vHnz\nlJ6eHrKFAUA4afPKMjo6WqWlpYqPj2+P9QBAWGozllFRUercufNtj5eVlWnGjBmaO3euzp07F5LF\nAUC4COgDnokTJ2rBggXavHmzUlJStH79+mCvCwDCSkCxTEtLU0pKiiQpIyNDtbW1QV0UAISbgGI5\ne/Zs1dXVSZKqqqqUlJQU1EUBQLhp89PwmpoaFRQU6MSJE4qKilJFRYWmT5+u3NxcdenSRR6PR/n5\n+e2xVgBwjKulpaXF6UUAoeTPDp5JkyaZ5n766SfzMX/99VfzLF9EF77Y7oiI99lnn5lnP//8c9Pc\nkiVLzMfkeiQysN0RAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYsDccAWlu\nbjbPnj592jxr3XN95MgR8zG/+eYb8+zWrVvNs1YDBgwwz/br1888++6775rmhg8fbj4m7owrSwAw\nIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwYAdPO/j777/Nsxs2bDDNbdq0yXxMf17i\n7Oxs09ynn35qPuahQ4fMs1b+nJPL5Qr687/99tvm2aamJvPsli1bzLPWb638448/zMfs2bOnefZe\nw5UlABgQSwAwIJYAYEAsAcCAWAKAAbEEAANiCQAGxBIADIglABgQSwAwYLtjOzhx4oR5tm/fvkF/\nfqe3BiYkJJhnn3vuOdNcXFyc+ZiFhYXm2alTp5rmysrKzMf057+pP1/u9vvvv5vmnnrqKfMxcWdc\nWQKAAbEEAANiCQAGxBIADIglABgQSwAwIJYAYEAsAcCAWAKAAbEEAIMopxdwL3jggQfMs1999ZVp\n7rvvvjMfc8yYMebZgQMHmua6detmPmYofPHFF+bZgoIC8+yIESNMc6HYFipJ8fHxIZnF3TPFsrCw\nUAcPHtT169c1c+ZMDR48WAsXLtSNGzfUp08frVy5UtHR0aFeKwA4ps1YHjhwQEeOHJHX61VjY6Mm\nT56stLQ0ZWdnKysrS2vWrFF5ebn5+6YBoCNq82eWqampWrdunSSpR48eampqUlVVlTIzMyVJ6enp\n2r9/f2hXCQAOazOWbrdbHo9HklReXq5Ro0apqanJ97Y7NjZWDQ0NoV0lADjM/Gn47t27VV5erqVL\nl97yOLfDBHAvMMVy7969Ki4uVmlpqbp37y6Px6OrV69Kkurr6/lUDkDEazOWly5dUmFhoUpKShQT\nEyNJGjZsmCoqKiRJlZWVGjlyZGhXCQAOa/PT8B07dqixsVG5ubm+x1asWKHFixfL6/UqMTFRkyZN\nCukiAcBpbcbyhRde0AsvvHDb4x999FFIFgQA4YgdPGFm1KhRQZ2LVJ9//rl51p/dNv7sdsK9hb3h\nAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAwNXCDSnRAcXGxppnz58/b56t\nq6szzSUmJpqPicjAlSUAGBBLADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAMiCUAGBBLADDg2x0R\nVk6ePGmaa2xsNB8zPj7ePBsTE2Oexb2FK0sAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAY\nEEsAMGAHD8LK8ePHg37MIUOGmGc9Hk/Qnx+RgStLADAglgBgQCwBwIBYAoABsQQAA2IJAAbEEgAM\niCUAGBBLADAglgBg4GppaWlxehEAEO5Me8MLCwt18OBBXb9+XTNnztSXX36pw4cP+74J75VXXtGY\nMWNCuU4AcFSbsTxw4ICOHDkir9erxsZGTZ48WU8//bTmzZun9PT09lgjADiuzVimpqbqsccekyT1\n6NFDTU1NunHjRsgXBgDhxK+fWXq9XlVXV8vtdquhoUHNzc2KjY3VkiVL1Lt371CuEwAcZY7l7t27\nVVJSok2bNqmmpkYxMTFKSUnRxo0bderUKS1dujTUawUAx5h+dWjv3r0qLi5WaWmpunfvrrS0NKWk\npEiSMjIyVFtbG9JFAoDT2ozlpUuXVFhYqJKSEt+n37Nnz1ZdXZ0kqaqqSklJSaFdJQA4rM0PeHbs\n2KHGxkbl5ub6HpsyZYpyc3PVpUsXeTwe5efnh3SRAOA0fikdAAzY7ggABsQSAAyIJQAYEEsAMCCW\nAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyI\nJQAYEEsAMCCWAGBALAHAgFgCgAGxBAADYgkABsQSAAyIJQAYEEsAMCCWAGDwf4ITa6FTEsJFAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "ScmYX7xdZMXE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 1: Build a Linear Model for MNIST\n", + "\n", + "First, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.\n", + "\n", + "You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?\n", + "\n", + "Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training." + ] + }, + { + "metadata": { + "id": "cpoVC4TSdw5Z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def construct_feature_columns():\n", + " \"\"\"Construct the TensorFlow Feature Columns.\n", + "\n", + " Returns:\n", + " A set of feature columns\n", + " \"\"\" \n", + " \n", + " # There are 784 pixels in each image.\n", + " return set([tf.feature_column.numeric_column('pixels', shape=784)])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "kMmL89yGeTfz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls." + ] + }, + { + "metadata": { + "id": "OeS47Bmn5Ms2", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True):\n", + " \"\"\"A custom input_fn for sending MNIST data to the estimator for training.\n", + "\n", + " Args:\n", + " features: The training features.\n", + " labels: The training labels.\n", + " batch_size: Batch size to use during training.\n", + "\n", + " Returns:\n", + " A function that returns batches of training features and labels during\n", + " training.\n", + " \"\"\"\n", + " def _input_fn(num_epochs=None, shuffle=True):\n", + " # Input pipelines are reset with each call to .train(). To ensure model\n", + " # gets a good sampling of data, even when number of steps is small, we \n", + " # shuffle all the data before creating the Dataset object\n", + " idx = np.random.permutation(features.index)\n", + " raw_features = {\"pixels\":features.reindex(idx)}\n", + " raw_targets = np.array(labels[idx])\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size).repeat(num_epochs)\n", + " \n", + " if shuffle:\n", + " ds = ds.shuffle(10000)\n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "8zoGWAoohrwS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def create_predict_input_fn(features, labels, batch_size):\n", + " \"\"\"A custom input_fn for sending mnist data to the estimator for predictions.\n", + "\n", + " Args:\n", + " features: The features to base predictions on.\n", + " labels: The labels of the prediction examples.\n", + "\n", + " Returns:\n", + " A function that returns features and labels for predictions.\n", + " \"\"\"\n", + " def _input_fn():\n", + " raw_features = {\"pixels\": features.values}\n", + " raw_targets = np.array(labels)\n", + " \n", + " ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit\n", + " ds = ds.batch(batch_size)\n", + " \n", + " \n", + " # Return the next batch of data.\n", + " feature_batch, label_batch = ds.make_one_shot_iterator().get_next()\n", + " return feature_batch, label_batch\n", + "\n", + " return _input_fn" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "G6DjSLZMu8Um", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_linear_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a linear classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, and a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `LinearClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + "\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create a LinearClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.LinearClassifier(\n", + " feature_columns=construct_feature_columns(),\n", + " n_classes=10,\n", + " optimizer=my_optimizer,\n", + " config=tf.estimator.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ItHIUyv2u8Ur", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "**Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**\n", + "\n", + "Stop if you get anything above about 0.9 accuracy." + ] + }, + { + "metadata": { + "id": "yaiIhIQqu8Uv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1113 + }, + "outputId": "30bed5af-c827-45af-da11-cbc8e8501af9" + }, + "cell_type": "code", + "source": [ + "_ = train_linear_classification_model(\n", + " learning_rate=0.03,\n", + " steps=1000,\n", + " batch_size=30,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\n", + "WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.\n", + "For more information, please see:\n", + " * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n", + " * https://github.com/tensorflow/addons\n", + "If you depend on functionality not listed there, please file an issue.\n", + "\n", + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 4.63\n", + " period 01 : 4.14\n", + " period 02 : 3.83\n", + " period 03 : 3.69\n", + " period 04 : 3.54\n", + " period 05 : 3.55\n", + " period 06 : 3.41\n", + " period 07 : 3.58\n", + " period 08 : 3.40\n", + " period 09 : 3.38\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.90\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAFnCAYAAAC/5tBZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VFX6wPHvnUkmvZNGOqGX0Gsg\ngVBCKCKCgCi7ltW1s7YVdVXWXVldXRur7trLz4L0TqSGXgKhhRIIBNJ771N+f6BZEAgpU1Lez/Pw\nSO7MPfed10Peuffce45iMBgMCCGEEKLVU1k6ACGEEEIYhxR1IYQQoo2Qoi6EEEK0EVLUhRBCiDZC\niroQQgjRRkhRF0IIIdoIKepCmEG3bt3IysoySltpaWn07NnTKG1Zwrx58xg5ciQTJ04kOjqaSZMm\n8fXXXze6nePHj/PAAw80er+ePXuSlpbW6P2EaA2sLB2AEKL9ee6555g2bRoAubm5zJ49m5CQECIi\nIhrcRlhYGJ9//rmpQhSiVZIzdSEsqLq6mldeeYXo6GhiYmJ444030Ol0AOzatYvIyEhiYmJYsmQJ\nAwYMuOUZZlFREfPnz687A/7kk0/qXnv33XeJjo4mOjqa3/3ud2RnZ9e7/VdxcXFMnTr1mm3Tpk1j\n586dHDx4kOnTpzNp0iRiYmLYuHFjo3Pg6enJxIkT2bNnDwDnz5/nnnvuITo6mqlTp3LixAkADhw4\nwJw5c5g/fz7PPPMMBw4cYPz48bfMY1xcHOPHjycmJobPPvus7rjl5eU89thjxMTEMHbsWP7yl79Q\nW1vb6PiFaEmkqAthQV9//TVZWVmsX7+elStXEh8fz7p169DpdCxYsIDXXnuNjRs3kpKSQmVl5S3b\ne+edd3BxcSE2Npbvv/+eH374gfj4eM6dO8emTZtYt24dsbGxjB8/nn379t10+9WGDx9OVlYWqamp\nAKSmppKVlcWIESN48803eeGFF9iwYQMff/wxW7ZsaVIetFotGo0GvV7PY489xrRp04iNjWXhwoU8\n+uijaLVaAE6dOsWcOXP417/+1eA8vvTSS7z66qts3LgRlUpVV+xXrVqFs7MzGzduJDY2FrVazfnz\n55sUvxAthRR1ISxox44dzJo1CysrK2xtbZk6dSp79uwhJSWFmpoaIiMjgSvj0Hq9/pbtxcXFMXfu\nXABcXV0ZP348e/bswdnZmYKCAtauXUtxcTHz5s3j9ttvv+n2q2k0GsaMGcO2bdsA2LJlC+PGjcPK\nygoPDw9WrVpFcnIywcHB1xXbhkhNTWXTpk2MHz+eCxcukJ+fz8yZMwEYOHAg7u7uJCQkAGBra8vw\n4cMbnceRI0cCMH369Lp9fm139+7d6PV6/vrXv9KjR49Gxy9ESyJFXQgLKigowMXFpe5nFxcX8vPz\nKS4uxtnZuW67l5dXg9u7ej9nZ2fy8/Px9vZm8eLFbNq0idGjR/PQQw+RmZl50+2/FR0dfU1RnzRp\nEgCLFi3Czs6O++67jwkTJrBp06YGxfnWW2/V3Sj39NNPs2DBAsLCwigpKaGqqoqYmBgmTpzIxIkT\nyc/Pp6ioqC4/N/vcN8ujo6PjNdt/FRMTw7333sv777/P8OHD+etf/0pNTU2D4heipZKiLoQFdejQ\noa5gwZUx8Q4dOuDo6EhFRUXd9ry8vGa1BzBs2DA++eQT9uzZg6+vL2+//Xa92682atQozpw5Q0pK\nCikpKQwbNqzueC+//DI7d+7klVde4YUXXqC8vPyWcT733HNs2rSJ2NhYli5dWvclwcvLCwcHBzZt\n2lT3Z/fu3XVj54393C4uLpSVldVtLygouGa/OXPmsHTpUjZs2EBiYiKrVq26ZexCtGRS1IWwoNGj\nR7Ns2TJ0Oh0VFRWsXr2ayMhIgoOD0Wq1HDhwAIAffvgBRVEa1N6SJUuAKwVs8+bNjB49mt27d/PX\nv/4VvV6Pvb093bt3R1GUm27/LY1Gw8iRI3nrrbcYO3YsarWa2tpa5s2bR05ODgC9evXCysoKlarp\nv1b8/Pzw8fGpO+MvKCjg6aefvuYLzs0+943yGBgYiFqtrsvjihUr6j7fhx9+yLJlywDw9vbG39+/\nQTkWoiWTR9qEMJN58+ahVqvrfv773//OvHnzSE1NZfLkySiKwsSJE4mJiUFRFBYuXMgLL7yAk5MT\n9913HyqVCkVRMBgM6HQ6Jk6ceE37n376KX/6059YuHAhEydORKVS8dBDDxEWFkZ1dTXr168nOjoa\njUaDu7s7ixYtwsvL64bbbyQ6OponnniCr776CgBra2tmzpzJvffeC4BKpeIvf/kLdnZ2bN68mW3b\ntvGPf/yjUTlSFIV33nmHhQsX8t5776FSqbjvvvuwt7e/ZW5vlse//e1vvPjii2g0Gu644466tqZN\nm8YLL7zAp59+iqIo9O3bt+4xOyFaK0XWUxei5auoqKB///7Ex8fj5ORk6XCEEC2UXH4XooWaMWMG\nGzZsAGDDhg2EhoZKQRdC1EvO1IVooeLj43nttdeorq7GwcGBhQsXEhYWZumwhBAtmBR1IYQQoo2Q\ny+9CCCFEGyFFXQghhGgjWv0jbbm5pUZtz83NnsLC+p+JFc0neTYPybP5SK7NQ/IMnp43v2FWztR/\nw8pKfes3iWaTPJuH5Nl8JNfmIXmunxR1IYQQoo2Qoi6EEEK0EVLUhRBCiDZCiroQQgjRRkhRF0II\nIdoIKepCCCFEGyFFXQghhGgjpKgLIYRoF3bs2Nqg973//r/IyEi/6esLFjxtrJCMToq6EEKINi8z\nM4MtW2Ib9N7585+hY0e/m77+xhvvGCsso2v108QKIYQQt/LOO29y+nQio0YNZsKEGDIzM3jvvY/4\nxz9eIzc3h8rKSu6//yHCw0fx+OMP8fTTf2b79q2Ul5dx+fIl0tPTePLJZxg+PJzJk8eyfv1WHn/8\nIQYPHsqRI/EUFRXx5pvv0qFDB1577WWysjLp0yeMbdu2sHLlBrN9TinqV8koyyJTl4av2t/SoQgh\nRJv107bzHDqT06R91WoFne76FcMHd/diVlTnm+53113zWLHiJ0JCQrl8OYWPPvqMwsIChgwZRkzM\nFNLT03j55QWEh4+6Zr+cnGzefvsD9u/fy+rVyxk+PPya1x0cHHj//Y/5+OPF7Ny5jY4d/ampqeaT\nT75iz55d/PTTD036nE0lRf0qGy5u5mjuSZ4e+CidXIIsHY4QQggT6NGjFwBOTs6cPp3ImjUrUBQV\nJSXF1703LKwfAF5eXpSVlV33et++/eteLy4u5tKli/Tp0xeA4cPDUavNO1e9FPWrjA4YSULuCb47\ns4wXBs/HSiXpEUIIY5sV1bnes+r6eHo6NXt1TmtrawA2b95ESUkJH374GSUlJfzhD/Oue+/VRdlg\nuP4KwW9fNxgMqFRXtimKgqIozYq1seRGuat0dg1hQmgEWeXZ/Hxpu6XDEUIIYSQqlQqdTnfNtqKi\nInx9O6JSqYiL20ZtbW2zj+Pn58/Zs6cAOHhw/3XHNDUp6r8xN+x2XG1c2JSyjczybEuHI4QQwgiC\ngkI4e/YM5eX/u4Q+enQUe/fuYv78R7Czs8PLy4svv/y0WccZMWIU5eXlPPLIAxw7loCzs0tzQ28U\nxXCj6wmtSHMvw/yWp6cTW0/t578nvibEOYinBz6CSpHvPsZmjEto4tYkz+YjuTaPlp7nkpJijhyJ\nZ/ToseTm5jB//iN8//1yox7D09Pppq/JoPENhHn2YoBXGEdyjrMrfT+R/iMsHZIQQohWwN7egW3b\ntvD9999iMOh54gnzTlQjRf0m7uw6jTMF51idvIGwDj1xs3W1dEhCCCFaOCsrK1577R8WO75cV74J\nZ40Td3SeQrWuhh/PrrzhXY9CCCFESyJFvR7DfAfR1a0zJ/NPczjnmKXDEUIIIeolRb0eiqIwt9sM\nrFXWLE1aTVltuaVDEkIIIW5KivoteNp7MKXTBMpqy1lxbp2lwxFCCCFuSop6A4zxH0mAkx8Hsg5z\nuiDJ0uEIIYQwkZkzp1JRUcG3337FyZPHr3mtoqKCmTOn1rv/r8u7btiwlrg4809iJkW9AdQqNXd3\nn4lKUfHDmeVU62osHZIQQggTmjfvXnr3DmvUPlcv7zpp0lQiI8eYIrR6ySNtDRTg5MfYgAg2X97B\nuguxzOhS/7c1IYQQLcf999/NokX/wsfHh6ysTF544Rk8Pb2orKykqqqKp556jp49e9e9//XXFzJ6\n9Fj69evPSy/9mZqamrrFXQB+/nkjy5YtQa1WERwcyvPPv1S3vOuXX36KXq/H1dWVGTNm89FH73Pi\nxDG0Wh0zZsxi4sTJN1y21cfHp9mfU4p6I0wKGc/R3BNsT93NIO9+BDkHWDokIYRodVacX0dCzokm\n7atWKej01z9i3N+rD3d0nnLT/SIixrBnz05mzJjFrl1xRESMITS0CxERozl8+BDfffc1r7/+1nX7\nxcZupFOnUJ588hm2bv257ky8srKSf/1rMU5OTjz22IMkJ5+vW971vvse5PPP/wvA0aNHuHAhmY8/\n/oLKykp+//s5RESMBq5ftnXWrLlNysnVTHr5vaqqinHjxrFixYprtkdFRTF37lzmzZvHvHnzyM6+\nMsf6okWLmD17NnPmzOH48eM3atKiNGpr5nafgQED351Zhk5v3on6hRBCNM2Vor4LgN274xg5MpK4\nuK088sgDfPzxYoqLr192FSAl5QK9e19ZSrV//4F1252dnXnhhWd4/PGHuHTpIsXFRTfc/8yZU/Tr\nNwAAOzs7goM7kZqaCly7bOuNlnVtCpOeqX/88ce4uNx4MvtPP/0UBweHup8PHjzIpUuXWLJkCcnJ\nybz44ossWbLElOE1SVe3zozwHcLezINsuRxHdHCUpUMSQohW5Y7OU+o9q65PU+d+79QplPz8XLKz\nsygtLWXXrh106ODFyy//jTNnTvHvf793w/0MBlCpriyfqv/lCkFtbS3vvPNPvvrqezw8OvDnP//p\npsdVFIWr5y7Tamvr2rvVsq5NYbIz9eTkZM6fP8/o0aMb9P59+/Yxbtw4AEJDQykuLjbaNxdjm955\nEs4aJzakbCG7PMfS4QghhGiA4cNH8sknHzFqVCTFxUX4+fkDEBe3Ha1We8N9AgODOHPmNABHjsQD\nUFFRjlqtxsOjA9nZWZw5cxqtVnvD5V27d+9FQsLhX/arID09DX//QFN9RNMV9TfffJMFCxbc9PVX\nX32Vu+66i7fffhuDwUBeXh5ubm51r7u7u5Obm2uq8JrF3tqeWV1vR6vX8v3Z5egNekuHJIQQ4hYi\nI8ewZUsso0ePZeLEySxZ8h1PPfUYvXr1Jj8/n/Xr11y3z8SJk0lMPMH8+Y+QmnoJRVFwcXFl8OCh\n/OEPv+PLLz9l7tx5fPDBO3XLu37wwb/q9u/btx/dunXnscce5KmnHuPhhx/Hzs7OZJ/RJEuvrlq1\nioyMDB599FEWL16Mn58fd9xxxzWvjxo1ChcXFx577DGmT5/Onj17iIyMrDtbv+uuu1i0aBEhISH1\nHkur1WFlpa73Paby9u7/cjD9KA8Nmsu40FEWiUEIIYT4lUnG1Hfs2EFqaio7duwgKysLjUaDj48P\nI0ZcWcL09ttvr3tvREQESUlJeHl5kZeXV7c9JycHT0/PWx6rsLDCqLE3ZrxmWvBkjmed4ZuEFQTZ\nhOBqc+P7B8T1WvqayG2F5Nl8JNfmIXmufz11k1x+f++991i+fDk//fQTd955J48++mhdQS8tLeWB\nBx6gpubKBC6HDh2iS5cuhIeHExt75VGBxMREvLy8cHR0NEV4RuNq48L0zpOo0lXx09lVspKbEEII\nizLbc+orVqzAycmJ8ePHExERwezZs7GxsaFnz55MnDgRRVHo1asXc+bMQVEUXn31VXOF1iwjOg7h\nUHYCx/ISOZp7kv5efSwdkhBCiHbKJGPq5mTsyzBNubSTXZHLooPvYm9lx8tDn8He2t6oMbVFcgnN\nPCTP5iO5Ng/JswUuv7c33vaeTAoeR0lNKSvPb7B0OEIIIdopKepGMi4wEj9HX/ZmHiSp8LylwxFC\nCNEOSVG/yuGzufy0JalJN7z9upKbgsL3Z5ZTo6s1QYRCCCHEzUlRv8qRpBy+3XiaUymFTdo/yDmA\nMQEjya3MZ8PFzUaOTgghhKifFPWrTBh8Zeq+5XHJTX48bUqnaDxs3dmaupPU0nRjhieEEELUS4r6\nVYJ8nAjv25GUrFKOJDVtilobtYa7ut+B3qCXldyEEEKYlRT137hnYndUisKKnRfqVuRprB7uXRnq\nM5DU0nS2p+02coRCCCHEjUlR/w1/LyfC+/iQmV/B3pNZTW7nji5TcLR2YN2Fn8mtyDdihEIIIcSN\nSVG/gWkjQ7BSK6zefZFabdNWYHO0duDOrtOo1dfy/dnlMoWsEEIIk5OifgPuzraM6e9PfkkVcUeb\nfrPbQK++9PboQVLhefZnxhsxQiGEEOJ6UtRvYvKIIGw0atbtTaGqRtukNhRFYU636dioNaw4v47i\n6vY9taEQQgjTkqJ+E872GqIHB1BSUcuW+LQmt+Nm68q00ElUaCtZem61ESMUQgghriVFvR4TBgfi\nYGvFxgOXKats+gxxo/yGEeIcRELOcY7lJhoxQiGEEOJ/pKjXw97WisnDg6ms1rLxwKUmt6NSVNzd\nYyZWipolZ1dSqa00YpRCCCHEFVLUbyFqgB9uTjZsjU+jqKy6ye34OngTHRxFcU0Jq5M3GTFCIYQQ\n4gop6regsVYzNTyYGq2etXtTmtXWhKAx+Dp4syt9H+eLLhonQCGEEOIXUtQbYGQfX7zc7Nh5NIOc\noqZfOrdSWTG3biW3ZdTKSm5CCCGMSIp6A1ipVdw+KgSd3sDqXRea1VYnlyAi/EeQXZHLpkvbjBSh\nEEIIIUW9wYb08CbAy5H9idmk5ZY1q63bOkXjZuPKz5e2k16WaaQIhRBCtHdS1BtIpSjcEdEJA7By\nZ/PO1m2tbK9ZyU1vaNpUtEIIIcTVpKg3QlioB539XEg4l0dyenGz2url0Z1B3v24VJJKXNpeI0Uo\nhBCiPZOi3giKojAjshMAy+OSm71Iy8wut+Fgbc+a5I3kVxYYI0QhhBDtmBT1RuoW6EbvTu6cuVzE\nqUuFzWrLSePIjM5TqdHX8sPZFbKSmxBCiGaRot4EMyJCAVhhhLP1IT4D6OHeldMFSRzKTjBGeEII\nIdopKepNEOTjxKDuXlzMLOVIUm6z2lIUhbu63YFGZc2yc2sorWnenfVCCCHaLynqTTR9VAgqRWHF\nzgvo9c07W/ewc2dq6ETKaytYdm6NkSIUQgjR3khRbyJfDwfC+/iQmV/BvsSsZrc32j+cIKcA4rOP\ncjLvtBEiFEII0d5IUW+G28JDsFIrrNp1kVpt8541/3UlN5Wi4sezK6nSVhkpSiGEEO2FSYt6VVUV\n48aNY8WKFdds379/P7NmzWLOnDm88MIL6PV6Dhw4wLBhw5g3bx7z5s3jb3/7mylDMwoPF1vG9Pcn\nv6SKuKPpzW7Pz9GXCUFjKKwuYu2FWCNEKIQQoj2xMmXjH3/8MS4uLtdtf+WVV/jmm2/w8fHhySef\nZNeuXdja2jJkyBA++OADU4ZkdJNHBLHzeAbr9qYwKqwjNhp1s9qbGBRFQs5x4tL2Msi7HyEuQUaK\nVAghRFtnsjP15ORkzp8/z+jRo697bcWKFfj4+ADg7u5OYWHznve2JGd7DRMGBVBSUcvm+NRmt2et\ntmZu95kYMPDdmWVo9VojRCmEEKI9MNmZ+ptvvsnLL7/MqlWrrnvN0dERgJycHPbs2cP8+fNJSkri\n/PnzPPzwwxQXF/P4448THh5+y+O4udljZdW8s+Pf8vR0atT7757Ukx1H04k9eJmZ47vhZK9p5vHD\nOFk8is3Ju9iTt5eZvSY3q72WqrF5Fk0jeTYfybV5SJ5vziRFfdWqVfTr14+AgICbvic/P5+HH36Y\nV199FTc3N4KDg3n88ceJiYkhNTWV3/3ud/z8889oNPUXyMLCCqPG7unpRG5uaaP3ixkaxE/bz/N/\n608xc3Ros+OI9hvHwdRjLE/cSFeHbvg6eDe7zZakqXkWjSN5Nh/JtXlInuv/UmOSy+87duxg69at\nzJo1i6VLl/LRRx+xd+//Fi0pKyvjwQcf5E9/+hMjR44EwNvbm0mTJqEoCoGBgXTo0IHs7GxThGcS\nUQP8cHXUsCU+laKy6ma3Z2dlx5xu09EZdHwvK7kJIYRoAJOcqb/33nt1f1+8eDF+fn6MGDGibtsb\nb7zB73//eyIiIuq2rVmzhtzcXB544AFyc3PJz8/H27v1nJ1qrNXcFh7CN7FnWbs3hXkTujW7zTDP\nXvT3CiMh5zi70/cT4T/i1jsJIYRot0x69/vVVqxYgZOTEyNHjmTVqlVcunSJZcuWATBlyhQmT57M\ns88+y9atW6mtrWXhwoW3vPTe0owM82XTwcvsPJpB9JBAvFztmt3mnV2mcabgHKuSN9CnQ0/cbF2N\nEKkQQoi2SDG08qXBjD220tzxmv2nsvhkzSmG9/Lhwak9jRLT3oxDfHdmKb09evBw2L0oimKUdi1J\nxsXMQ/JsPpJr85A8W2BMvT0b0sMbf09H9idmkZZrnMVZhvsOoqtbZ07mn+ZIzjGjtCmEEKLtkaJu\nZCpF4Y7IThiAlTsvGKVNRVGY220G1iorfkpaTVltuVHaFUII0bZIUTeBvqEedPZzIeFcHskZxUZp\n09Peg8khEyirLWfFuXVGaVMIIUTbIkXdBBRFYUZkJwBWxBnnbB0gKmAUAY4dOZB1mNMFSUZrVwgh\nRNsgRd1EugW60TvEndOXCklMKTBKm2qVmrt73IlKUfHDmRVU62qM0q4QQoi2QYq6Cc2IvDKz3Iq4\nZIz1kEGAkx9jAyLIrypg/YWfjdKmEEKItkGKugkF+TgxqLsXFzNLOZKUZ7R2J4WMp4OdB9tSd3Gp\npPmLyAghhGgbpKib2PRRISgKrNx1Ab3eOGfrGrU1d3efUbeSm06vM0q7QgghWjcp6ibm6+FAeB9f\nMvLK2ZeYZbR2u7p1ZoTvYNLLMtlyOc5o7QohhGi9pKibwbTwEKzUCqt2XaRWa7yFWaZ3noyzxokN\nFzdzpuCc0doVQgjROklRNwMPF1vG9Pcnv6SKnccyjNauvbU9v+85BxSF/xz/inOFyUZrWwghROsj\nRd1MJg8PwsZazdq9KVTXGG8MvLt7Fx7sPQ+9Qc9Hx78kuSjFaG0LIYRoXaSom4mzg4YJgwMoKa9h\ny2Hj3rHeu0MPHuh9D1q9lo+Ofc7F4stGbV8IIUTrIEXdjKKHBOJga8XG/Zcpr6o1att9PXtxf6+7\nqdHX8uGxz7hckmbU9oUQQrR8UtTNyN7WisnDg6mo1rJxv/HPpvt79eH3PWZTpa1m8dFPSSs13vi9\nEEKIlk+KuplFDfDD1VHDlvhUisqqjd7+IJ/+zOsxi0ptFYuPfkpGmfEeoxNCCNGySVE3M421mtvC\nQ6jR6lm3N8UkxxjqO5C53WdQVlvOBwmfkFWeY5LjCCGEaFmkqFvAyDBfvNzsiDuaQW5RpUmOMaLj\nEGZ3nU5pbRkfJPyXnIpckxxHCCFEyyFF3QKs1CpuHxWCTm9g1a6LJjtOhP9wZna5jeKaUt5P+IS8\nynyTHUsIIYTlSVG3kCE9vPH3dGR/YhbpuWUmO86YgJFM7zyZoupi3k/4hPzKQpMdSwghhGVJUbcQ\nlaJwR2QnDMCKnRdMeqxxgZFM7TSRgqpCPkj4L4VVRSY9nhBCCMuQom5BfUM96OznQsK5PJIzik16\nrInBUUwKHkdeVQEfHP2E4uoSkx5PCCGE+UlRtyBFUZgR2QmAFXGmPVuHK+uwTwgaQ05FHh8kfEJp\njeku+wshhDA/KeoW1i3Qjd4h7py+VMiplAKTHktRFG7rNJGxARFkVeTwQcInlNWUm/SYQgghzEeK\negswIzIUgOVxFzAYDCY9lqIoTO88mUj/cDLKs1h89FPKaytMekwhhBDmIUW9BQjycWJQdy8uZpZw\nJCnP5MdTFIU7u9zGyI5DSSvL4N9HP6NSa5rn5YUQQpiPFPUWYvqoEBQFVu66gF5v2rN1uFLYZ3eb\nzjDfQVwuTePDo59Tpa0y+XGFEEKYjkmLelVVFePGjWPFihXXbN+7dy8zZ85k9uzZfPjhh3XbFy1a\nxOzZs5kzZw7Hjx83ZWgtjq+HA+F9fMnIK2dfonnma1cpKu7uPpPB3gO4WHKZj459QbWuxizHFkII\nYXwmLeoff/wxLi4u123/+9//zuLFi/nhhx/Ys2cP58+f5+DBg1y6dIklS5bw+uuv8/rrr5sytBZp\nWngIVmqF1bsvotXpzXJMlaJiXo87GejVl+TiFP5z7EtqpLALIUSrZLKinpyczPnz5xk9evQ121NT\nU3FxccHX1xeVSkVkZCT79u1j3759jBs3DoDQ0FCKi4spK2tfj1x5uNgyur8fecVVxB0137KpapWa\n3/ecQz/P3iQVJfPf419TqzPueu9CCCFMz2RF/c0332TBggXXbc/NzcXd3b3uZ3d3d3Jzc8nLy8PN\nze267e3NlOHB2FirWbs3heoandmOq1apua/XXPp06MGZwnN8evJbavVasx1fCCFE81mZotFVq1bR\nr18/AgICmtxGQx/tcnOzx8pK3eTj3Iinp5NR22vcseH20aEs2ZzEvjM53Dm2q1mPv6DDI7y1+z8c\nzTrF/51bwtMjHsRKZdz8/sqSeW5PJM/mI7k2D8nzzZmkqO/YsYPU1FR27NhBVlYWGo0GHx8fRowY\ngZeXF3l5/3tsKzs7Gy8vL6ytra/ZnpOTg6en5y2PVVho3GesPT2dyM0tNWqbjTWqlw/rdl1g2dZz\nDO7aAQdba7Me//fd7qaq+ivi04/x1o7/cl+vuaiNXNhbQp7bA8mz+UiuzUPyXP+XGpNcfn/vvfdY\nvnw5P/30E3feeSePPvooI0aMAMDf35+ysjLS0tLQarVs376d8PBwwsPDiY2NBSAxMREvLy8cHR1N\nEV6LZ29rxaThQVRUa9l04LLZj69RW/PHsN/TxbUTCbkn+Ob0EvQG89y4J4QQoulMcqZ+IytWrMDJ\nyYnx48ezcOFCnnnmGQAmTZpSHW3RAAAgAElEQVRESEgIISEh9OrVizlz5qAoCq+++qq5QmuRxg7w\nZ/OhVDbHpzJuoD8ujjZmPb5GreHhsPv48NjnxGcfRa2ouafHnagUmdpACCFaKsVg6nlJTczYl2Fa\n0qWdHQnpfBN7lqgBftwzoZtFYqjUVvHvo5+RUnKZEb5DuKv7HUYp7C0pz22Z5Nl8JNfmIXm2wOV3\nYRwjw3zxcrUj7mgGuUWWmcbVzsqWx/o+QICTH3szD/JT0mqTz08vhBCiaaSot2BWahW3jwpBpzew\nevdFi8Vhb23HE/0exM/Rl13p+1h+bq0UdiGEaIGkqLdwQ3p64+/pyL6TWaTnWm4yHgdre57o9yC+\nDt5sT9vNyuT1UtiFEKKFkaLewqkUhTsiO2EAVuy8YNFYnDSOPNn/Ibztvdh6eSdrL8RKYRdCiBZE\ninor0DfUg1A/ZxLO5XEho8SisThrnHiy/4N42nkQe2kbG1O2WDQeIYQQ/yNFvRVQFIWZkaEALI9L\ntnA04Grjwvz+f8TD1p31FzcTm7LN0iEJIYRAinqr0S3Qjd4h7py+VMiplAJLh4ObrSvz+z+Em40r\nay5sYsvlOEuHJIQQ7Z4U9VbkjshOACyPu9AixrI97NyZ3/+PuGicWXl+PTtS91g6JCGEaNekqLci\nwT7ODOrmycXMEhLO5d16BzPwtPdgfv+HcNY4sfTcanal77d0SEII0W5JUW9lpkd0QlGu3Amv11v+\nbB3A28GLJ/s/hKO1Az+eXcHejEOWDkkIIdolKeqtjK+HA+F9fMnIK2dfYpalw6nj6+DNk/0fwsHa\nnu/PLONg1hFLhySEEO2OFPVWaFp4CFZqhdW7L6LVtZzV0/wcfXmi34PYWtnyzaklHM4+aumQhBCi\nXZGi3gp5uNgyur8fecVVxB3NsHQ41whw8uOJfn/ARm3DV6d+5GjOCUuHJIQQ7YYU9VZqyvBgbKzV\nrN2bQnWNztLhXCPIOYDH+t2PtcqKzxO/40TeKUuHJIQQ7YIU9VbK2UHDhMEBlJTXsOVwqqXDuU4n\nl2AeCbsfK0XNZye+JTH/jKVDEkKINk+KeisWPSQQB1srNuy/TFZBhaXDuU4Xt048HHYfiqLwyYlv\nOFNwztIhCSFEmyZFvRWzt7ViVlRnKqu1vP1jAnnFlllzvT7d3Dvzxz73gsHAf45/RVKh5ae5FUKI\ntkqKeis3KqwjM0eHUlBSzds/HKWorNrSIV2nh0dXHuzzO/QGPR8f/5LzRZZbG14IIdoyKeptwKRh\nQUwZEUROUSX/+vEopRU1lg7pOr079OCB3veg1Wv5+NgXnMuXwi6EEMYmRb2NmD6qE+MG+pOeV847\nPx2jslpr6ZCu09ezF/f1mkuNvpa/7XifVec3UFhVZOmwhBCizZCi3kYoisKccV0Y2ceXS1mlvL/0\nGNW1LetRN4ABXmHc12suGrU1my/v4JV9b/BV4o9cLk2zdGhCCNHqqRcuXLiwIW8sKytDo9GQl5fH\nqVOn8PHxQVEUE4d3axVGvtTs4GBj9DbNRVEU+nbuQGZ+BScuFJCSVcrg7l6oVZb//3Q1XwdvZvSL\nxk7vQE5lHkmF59mTcYBzhck4WNvjaefRIvpWW9Ca+3NrI7k2D8nzlRzcTIOK+t/+9jeKiorw8/Nj\n1qxZZGZmsn//fsaMGWPMOJtEivq1FEWhf5cOXMou5eSFAjLyyhnYzRNVCyuSzo52eKg9ifAbTrBL\nEKU1ZSQVJROffZTD2UdRKSp8HLyxUqktHWqr1tr7c2siuTYPyXP9Rb1Bl99PnTrFnXfeycaNG5k+\nfTrvv/8+ly5dMlqAwris1Coevb033QNdOZKUyxfrT6NvAeuv34iiKPTy6MYT/R/kxSFPMcx3EAVV\nhSxJWsnLexaxJnkTRdXFlg5TCCFahQYVdcMvBWHHjh1ERUUBUFPTvr8ptXQaazVPzgwjtKMz+xKz\n+b+fk+r+P7ZUfo6+zOsxi9dGvEhM8FgURSH20jZe2fsG35xaQmppy5rnXgghWhqrhrwpJCSESZMm\n4e7uTo8ePVi1ahUuLi6mjk00k63Gij/N6ss/v09gR0I6ttZq7hwT2uLHq11snJjSKZoJQVEczDrM\nttTdHMg6zIGsw3R168zYgFH09OiGSpH7PIUQ4mqKoQGnbzqdjqSkJEJDQ9FoNCQmJhIQEICzs7M5\nYqxXbm6pUdvz9HQyepuWVlJewxvfHSGroILbR4VwW3iIpUNqVJ71Bj2n8s+yLXUXZwvPA+Bt78mY\ngFEM9RmARq0xZaitWlvszy2V5No8JM9XcnAzDSrqJ0+eJDc3lzFjxvDuu+9y9OhRnnjiCQYNGnTT\nfSorK1mwYAH5+flUV1fz6KOP1t1Yl52dzbPPPlv33tTUVJ555hlqa2t5//33CQwMBGDEiBE88sgj\n9cYmRb1hCkqqeOO7I+QVVzFnbBcmDA6waDxNzXNaaQbbUncRn30UnUGHg7U9o/yGE+E3Ahebm3f0\n9qqt9ueWSHJtHpJnIxT1OXPm8MYbb5CXl8dHH33Eiy++yGuvvcY333xz0302bNhAeno6Dz74IOnp\n6dx///3ExsZe9z6tVsu8efP47LPPiI2N5dy5czz//PMN/GhS1Bsjp7CCf3x3hOKyGu6N6U5E344W\ni6W5eS6uLmFn2l52pe+nXFuBlaJmkHd/ogJH4efoa8RIW7e23J9bGsm1eUie6y/qDRpTt7GxITg4\nmCVLljBr1iw6d+6MSlX/eOakSZPq/p6ZmYm3t/cN37dy5Uqio6NxcHBoSCiiGbzc7Hl2Tn/e/O4I\nX288g8ZaxbCePpYOq0lcbJyZGjqR6OAoDmQdZlvqLvZnxbM/K57ubl2IChxFD/euMu4uhGhXGlTU\nKysr2bhxI1u2bOGxxx6jqKiIkpKSBh1gzpw5ZGVl8Z///OeGry9dupQvvvii7ueDBw/ywAMPoNVq\nef755+nZs2eDjiMaxq+DA8/M7sc/fzjCZ2tPY2Otpn8XT0uH1WQatYZRfsMJ7ziUxPwzbLu8izOF\n5zhTeA4fey+iAkcx2HsAGrW1pUMVQgiTa9Dl9/379/PNN98wdepUYmJiWLx4MUFBQdx2220NOsjp\n06f585//zJo1a6658zohIYElS5bwxhtvAJCcnExqaiqjR48mISGBV155hbVr19bbtlarw8pKJihp\nrNMXC3j5k73odAZe/cNQ+nX1snRIRnOxMJX1Z7ey5/IhdAY9zjaOTOgcyYTOEbjaWv7mTiGEMJUG\nFXWAiooKLl68iKIohISEYGdnV+/7T548iYeHB76+V8Y3J02axLfffouHh0fde9599106derEtGnT\nbthGeHg4O3fuRK2+edGWMfWmS0wp4P2lx1CpFJ6d3Z/O/uZ7TNEceS6qLiYubS+70/dToa3ESmXF\nEO/+jAkYRUfH1jns0FjtqT9bmuTaPCTP9Y+pN2jAccuWLUyYMIFXX32Vv/zlL0RHRxMXF1fvPvHx\n8XWX1fPy8qioqMDNze2a95w4cYLu3bvX/fzpp5+ybt06AJKSknB3d6+3oIvm6RXsziPTeqPVGnh3\n6TEuZbWtfyiuNi5MC43h7+EvMbvr7bjZuLA38xCvH3yHfx/9jNP5LX9CHiGEaIwG3/3+0Ucf4e7u\nDlx5JG3+/Pn8+OOPN92nqqqKl156iczMTKqqqnj88ccpKirCycmJ8ePHAzB16lS+/PJLOnToAEBW\nVhbPPfccBoMBrVbLiy++SFhYWL2xyZl68+0/lcWna07hYGfN83cPwK+D6W9atESe9QY9J/NOsy11\nF+eKLgBXFpeJCohgsHc/rNvguHt77M+WIrk2D8mzER5pmzdvHt9+++0tt1mCFHXjiDuaztebzuLq\nqGHBPQPxcq1/eKW5LJ3nyyVpbEvdxeGcY+gNepysHYnwH84ov+E4aRwtFpexWTrP7Ynk2jwkz/UX\n9Qat0vbzzz+Tk5ODnZ0deXl5rFq1iry8PKZMmWLMOJtEVmkzjmAfZ+w0auLP5nL0XB4Du3liZ9Og\nhyOaxNJ5drFxpp9XH4b7DkKtqEkpTeVUwVl2pO2hsKoQTzsPHNtAcbd0ntsTybV5SJ7rX6WtQWfq\n+fn5vP/++xw/fhxFUejXrx9PPPFE3eV4S5IzdeNas/siq3ZfxMfdngV3D8DZwTRTsLa0PFdpq9mf\nFc/2y7vIqyoAoKdHN8YGRNDNrXOLny//ZlpantsyybV5SJ6NcPn9RpKTkwkNDW1yUMYiRd24DAYD\nS7cns+ngZQK8HPnz3P442Bp/rLml5llv0HM87xTbLu8kuTgFgI4OPkQFRjDIux/WKtNdvTCFlprn\ntkhybR6SZyNcfr+RP/3pT0yfPr2pMRmNXH43LkVR6BnsRklFLceT80m6XMSQHl5YqY07M1tLzbOi\nKPg4eDG842B6e3SnWlfDuaILHMs9yd6MgwD4OXbEStU6nspoqXluiyTX5iF5rv/ye5N/U8ujQG2X\noijcM6Erw3p5k5xRwuLlJ6jV6iwdltkFOQdwX6+5/HX484wLjKRGV8PK8+t5Ze8/iE3ZRqW2ytIh\nCiHENZpc1FvrGKNoGJWi8MDkHvTv0oHTlwr5aOVJtDq9pcOyCHdbN6Z3nszfRrzApOBx6Ax61lzY\nxCt7/8GGi5upqK20dIhCCAHcYu73ZcuW3fS13NxcowcjWha1SsXD03rzwfLjHEvO57N1p3hoai9U\nqvb5hc7e2p7JnSYQFTiKuLS9bLu8i/UXN7P18i5GB4QzJmAkjtayMJEQwnLqLeqHDx++6Wv9+vUz\nejCi5bG2UvH4HX14Z8lRDp7OQWOt5t6Y7qja8ZUaOys7JgaPZbT/SHal72Pr5Z1sStnK9tRdRPiN\nYGxgRJt61l0I0Xo0+e73lkLufjePiiotb/2YwKWsUsYN9OeucV2aNQTTlvJco6thd8YBtlzaQXFN\nKdYqa0b5DWNcYCQuNpZdQKYt5bmlk1ybh+TZCI+0zZ0797pf4Gq1mpCQEB599NGbrpVuDlLUzaes\nspY3vztCel45U0YEc0dEpya31RbzXKurZW/mIX6+tJ2i6mKsVFaEdxzK+MBI3GxdLRJTW8xzSyW5\nNg/JsxEeacvMzESr1TJjxgwGDBhAfn4+Xbt2xcfHhy+++OKmq6yZgzzSZj4aazUDunqSkJRHwrk8\nNFYquvg3rVi1xTyrVWqCnQOI8B+Bm40L6WUZnC5IYmfaXoqqi+no4IO9tWmn3/2ttpjnlkpybR6S\n5/ofaWvQTBqHDx/myy+/rPt53LhxPPTQQ3zyySds3bq1+RGKVsPV0YZn7+rHP/7vCEt3JGOjURM1\nwN/SYbUo1iorRvoNY7jvYA5mHSH20jZ2Zxxgb+YhhvoMJDooCk97j1s3JIQQjdSgR9ry8/MpKCio\n+7m0tJSMjAxKSkooLW3fl0Haow4udjx3V3+c7a35v5+T2HMi09IhtUhqlZrhHQfz8tBn+X3POXja\ndWBf5iFeO/AWX5/6kezyHEuHKIRoYxo0pr5s2TLeeust/Pz8UBSFtLQ0/vjHP+Lh4UFFRQV33XWX\nOWK9IRlTt5zUnDL++f0RKqq1PDKtN4O6ezV43/aYZ71BT0LOCTalbCWjPAsFhQFeYUwMHktHRx+T\nHLM95tlSJNfmIXk20tzvZWVlpKSkoNfrCQwMxNXVMjf+/JYUdcu6kFHCWz8moNXqeWJGGGGhDbus\n3J7z/Ov88hsvbiGtLAOAfp59mBg8lgCnjkY9VnvOs7lJrs1D8myEG+XKy8v5+uuvWbduHfHx8eTn\n59O7d2+srCy/uIXcKGdZbk42dPFzYf+pbA6dyaGrvwsdXG59M1h7zvOv88uP7DiUQGd/civyOVt4\njt0Z+0ktTcPTrgOuNi5GOVZ7zrO5Sa7NQ/JshKVXn376aby9vRk6dCgGg4G9e/dSWFjI22+/bdRA\nm0LO1FuG48n5LF5+HGsrFc/d1Z8Q3/qfz5Y8/4/BYOB0QRIbU7Zy4ZeV4Xq6dyMmZBydXIKa1bbk\n2Xwk1+Yhea7/TL1Bp9p5eXm88847dT+PGTOGefPmNT8y0WaEhXrwx9t68fHqk7yz5CjPzx2Av5fM\nqtYQiqLQ06MbPdy7cq4omQ0Xt3Cq4CynCs7Sza0zMcFj6eJm+WWOhRAtX4OKemVlJZWVldjZXbms\nWlFRQXV1tUkDE63PoO5e3F/bg8/Xn+btJUdZcPcAfNztLR1Wq6EoCl3dOtPVrTPniy6y8eIWzhSe\n42zheTq7hhATPI5ubp1lMSUhxE01qKjPnj2bmJgYevfuDUBiYiLz5883aWCidQrv40tVjY7vNifx\n9o8JLLh7QIPG2MW1OruG8ET/B7lYfImNKVtJzD/D4qOfEuIcREzIWHq6d5PiLprEYDBwqiCJrZfj\nCHTyJzo4CjsrW0uHJYykwXe/Z2ZmkpiYiKIo9O7dm2+//ZZnn33W1PHdkoypt0zr96WwPO4CXm52\nLLh7AK6O197YIXlunMslaWxM2crxvEQAAp38iQkeS58OPest7pJn82kNub5YfJnVyRs4V3Shbpuz\nxonbQmMY6jMAldLk1bjNpjXk2dSM8kjbb/3ud7/jm2++aXJQxiJFveVaHpfM+n2X8PN04Pm5A3C0\ns657TfLcNOllmWxM2crRnBMYMODv2JGJwWPp69nrhr+QJc/m05JznVWew5oLmziWexKAXh7dmRQy\njtP5ScRe2k6tvpZAJ3/u7Dqt2TdnmlpLzrO5NPtGuRtp5Yu7CTO4I6IT1TU6thxO450lR3nurv7Y\n2Vj+McjWzM/Rlz/0vofM8mw2pWzlcPYxPjv5Lb4O3kwMHssAr7BWcbYlzKOwqogNFzezLzMeAwZC\nnIOYFhpDF7crizEFOwcyzHcQq5I3EJ99lH8d/pDB3gO4vXOM0R6rFOYlZ+q/Id8CjUtvMPDVhjPs\nPpFJV38XnprdDxtrteTZSLIrcolN2cah7AT0Bj3e9p5EB0UxyLsfapV586w36KnW1VCtq6ZGV/PL\n36/8qfnlT7Wu+ppt1foaqrU11OhrqNZWU6OvQWfQE9ahJyP9huFo7WCW2I2hJfXp8toKfr60nbi0\nPdTqtfg4eHNbp4mE1TNcc77oIsvOrSG1NB2Nypro4CjGBkRgrba+4fstpSXl2VKafPk9MjLyhh3A\nYDBQWFjI8ePHjRNhM0hRb/n0egP/WZNI/Jkceoe488SMMDr6ukiejSivMp/YlO3sz4pHb9DTwc6D\n6KAxTO4dSWFBZd37DAYDWr322mL6myJ8bUGuvqogX72t9pc2qn9powatXtvsz/HrVQa9QY+1ypqh\nvgOJ8h+Jt0PDpyC2lJbwu6NGV8P21N1svryDSm0VbjauTA4Zz1DfgQ26gqM36NmfGc+a5E2U1pbh\nYevG9M5T6OfZu8XcmNkS8mxpTS7q6enp9Tbs5+fX9KiMRIp666DV6fn3ihMcT85nQFdPXvnDMAoK\nyi0dVpuTX1nI5ss72JdxEK1Bh4utMzaK5pcz5FqqddUYaP7QmbXKCo1ag43a5pf/arBRaf7396te\nu3abpm4/m6te+3WblaKmWlfNvsx4tqfuIr+qEIDeHj0YGziKLq6hLaa4/JYlf3fo9Dr2Zh5i48XN\nFNeU4mBlT3RwFBF+w5t0pl2prWRjylZ2pO5BZ9DR1TWUmV1vw8/R1wTRN478jjbRjXIthRT11qOm\nVsd7S49x5nIRowf6c8/YLqhULfMXdGtXVF3M5ks7SMg9jsHALYrp1QXZ5rrie+W/1tcUcHOM2+sN\neo7lJrItdScXii8B4O/YkaiAUQz07ouVqmXdn2GJ3x0Gg4GE3BOsTd5ETmUeGpU1UQGjGBcUiZ1V\n8x8lza7IZcW5tZzMP4OCwki/YUwJmYCjxnLDIvI7Wop6o0iHMa3Kai3/WnKUCxklDOjqyUNTe6Kx\nVls6rDarrfTni8WX2Ja6i4Rf7vp30TgR6R/OSL9hOFi3jAmOzJ3rMwXnWJ28gcul6agUFeEdhxIT\nPBYXm/qnaG6KxPwzLD+3luyKXOys7JgcMp4Iv+GoVeb/t9tW+nRzWKSoV1ZWsmDBAvLz86murubR\nRx9lzJgxda9HRUXh4+ODWn2lU7z99tt4e3uzaNEijh07hqIovPjii4SFhdV7HCnqrU9FlZZP1p3i\n+Pk8Ovu58OTMsGsedxPG09b6c35lATvS9rA34yBVumo0KmuG+Q5iTMBIvOw9LRqbuXJ9uSSN1ckb\nOVN4DoCBXn2Z0ikaL/sOJj2uTq8jLn0vGy5uplJbhY+DNzO7TKWHe1eTHve32lqfbgqLFPUNGzaQ\nnp7Ogw8+SHp6Ovfffz+xsbF1r0dFRbF27VocHP53GefgwYN8/vnn/Pe//yU5OZkXX3yRJUuW1Hsc\nKeqtk6ubPW9+fYgDp7Lx9bDnqVl9ZeY5E2ir/blSW8W+jINsT9tDQVUhCgq9O/RgbMAoOrt2ssi4\nu6lznVORy9oLsRzJuXKDcg/3rtwWOpFAJ3+THfNGSmvKWHshlr0ZBzFgoE+HntzReYrJv1T8qq32\n6cYwyXPqtzJp0qS6v2dmZuLt7X3Lffbt28e4ceMACA0Npbi4mLKyMhwdZWGQtsbaSs2DU3vi6qgh\n9mAqr397mKfu7Eug9807qxC/srOyJSowgkj/cI7lJbL18k5O5J3iRN4pApz8roy7e/W1yOVhYyuu\nLmHDxc3szTyE3qAnyCmAaaExdHPvbJF4nDSOzO0+g1F+w1l2bjUn8k5xOv8sYwJGMTE4CluZctai\nTD6mPmfOHLKysvjPf/5D9+7d67ZHRUUxYMAA0tPTGThwIM888wyvvPIKkZGRdYV97ty5vP7664SE\nhNy0fa1Wh5VV6/+H256t3pnM52tOYqux4qV7h9C3q2Uvo4rWKSnvAuvObuVAegIGgwF3O1cmdhnN\nuNCRFr2xq6nKaypYfeZnNiRto0ZXi6+TF3f1mcZQ//4t5gkAg8HA/rQjfHt0BXkVBbjaOjM37HYi\ngofKJEgWYpYb5U6fPs2f//xn1qxZU9cZV61axahRo3BxceGxxx5j+vTp7Nmz55qiftddd7Fo0aJ6\ni7pcfm+dfpvng6ez+WzdKQwGeGByD4b18rFgdG1He+zPeZUF7Ejbzd6Mg1TratCoNQz3HcRo/5Em\nvURsrFzX6GrZmb6X2JRtVGgrcdE4MzlkPMN8B7XYKw81uhq2XI7j50s7TD7lbHvs079lkTH1kydP\n4uHhga/vlecaJ02axLfffouHh8d17/3uu+/Iz89HURQ8PT2ZM2cOAGPHjmX16tX1Xn6Xot463SjP\nZy4VsnjFCSqrtdw5JpSJQwJbzBlJa9We+3OltpI9GQfZkbqHwuoiFBTCOvQkKjCCUJdgo/et5uZa\np9dxIOsw6y9upqi6GDsrOyYEjWa0fzgatcaIkZpOYVVR3ZSzgEmmnG3PffpX9RV1k10fiY+P54sv\nvgAgLy+PiooK3NzcACgtLeWBBx6gpqYGgEOHDtGlSxfCw8PrbqZLTEzEy8tLxtPbke5BbrxwzwDc\nnGxYuj2ZH7aeQ9+6n7gUFmRnZce4wEj+Ovx57u81l0Anf47lJfLukY/5Z/xi4rMS0Ol1lg4Tg8HA\n0dyTLDr4Lt+dWUZ5bTnjA0fz2vDnmRA0ptUUdAA3W1fu6zWXpwY8QoBjRw5lH+Gv+/7JppSt1Opq\nLR1eu2CyM/WqqipeeuklMjMzqaqq4vHHH6eoqAgnJyfGjx/P119/zapVq7CxsaFnz568/PLLKIrC\n22+/TXx8PIqi8Oqrr14zDn8jcqbeOtWX54KSKt796RjpeeUM6u7Fg1N6YC33TTSJ9Of/MRgMJBen\nsC11F8dzEzFgwNXGhdH+4YR3HIq9dfOevmhKrs8VJrM6eSMXSy6jUlQM9x1ETPA43GxdmxVLS3Cj\nKWfv6DyFvs2cclb6tEw+0yjSYczjVnkur6pl8fITJKUW0TXAlSdm9MHBVp5lbyzpzzeWW5HP9rTd\n7Ms8RM0v4+4jfAczJmAkHeyuHyJsiMbkOrU0gzXJGzlVcBaAfp59mNopGp9WMMd9Y1VqK9l4cSvb\n03ajN+ibPeWs9Gkp6o0iHcY8GpLnWq2OT9edJv5MDn4dHHhqVl/cneVxmcaQ/ly/itqKK+PuaXso\nqi5GQaGvZy+iAiLo5BLUqDPKhuQ6rzKftRdi68acu7qGMq1zDMHOgc36HK1BdnkOK86va/aUs9Kn\npag3inQY82honvUGAz9uOceWw2m4Odnw1J198feS+ywaSvpzw+j0Oo7kHGdr6k5SS68sZBXsHEhU\nwCj6efZu0F3n9eW6pKaUTSlb2Z1+AJ1BR4BjR6aFTqK7e5d2dzNoc6eclT4tRb1RpMOYR2PybDAY\niD2Yyk/bz2NnY8UTd/She5CbiSNsG6Q/N47BYOB80UW2pe7iRN4pDBhws3FlTMBIRnQcXO8iKTfK\ndaW2iq2X49iauosaXQ0d7DyY2imaAV5h7fo5bp1eR1zaHjakbGn0lLPSp6WoN4p0GPNoSp73J2bx\n+frTKAr8YUpPhvS49SyF7Z3056bLqchle+oe9mceokZfi63ahuEdBzPafyQd7Nyve//Vua7Va9mV\nvo/YlG2U1ZbjpHFkUvA4RnQc0uJWl7Okpkw5K31ainqjSIcxj6bm+VRKAf9ecYLqGh2zx3ZhwuAA\nE0TXdkh/br7y2gr2pB9gR9oeimtKUFDo59mbqMCIayZX8fR0IjunmENZCay7+DMFVYXYqm0ZHxTJ\naP+R2FrZWPBTtGyppeksTVpDcvFFrBR1vVPOSp+Wot4o0mHMozl5vpxdyrtLj1FcVkP0kADuHNMZ\nVTsbl2wo6c/Go9Vrr4y7X95JWlkGACHOgUQFRtC3Qy/StJf5v4SVZJRnYaWoifAfQXRQVKucotYS\nDAYDR3KOs/L8egqri3DWOHFbaAxDfQZcM1QhfVqKeqNIhzGP5uY5r7iSd386RmZ+BUN7enP/pB5Y\nW7XfMcqbkf5sfAaDgcz/wM8AACAASURBVHNFF9iWupMTeacBsFXbUqWrQkFhqM9AJncaj7ut3PfR\nFL+dcjbIKYCZXW+ruyoifVqKeqNIhzEPY+S5rLKWD5Yf53xaMT2C3Hhseh/sbWW88mrSn00ruzyH\n7Wl7SMg5TnfPUKL9x9HRUdYtMIaCqkJWnd/A4ZxjwP+mnO3i79/u+7QU9UaQX4LmYbTFL2p1fLL2\nFEeScvH3dOSpWX1xc5Kxy19JfzYfybVpnC+6yLKk1aSWZaBRWdPbpzuKVoWN2gYbtQaNWnPVf22w\nUVtf9fdrX9OoNVgp6lb/GKEU9UaQf5jmYcw86/UGvtuSxPYj6Xg42/CnWf3w6yDjmCD92Zwk16aj\nN+jZl3mItRdiKa0pa1ZbKkV1pdCrNNhYabBRXVv0r/0ioLnJF4Rf3v9LGxqVBo3a2myPKUpRbwT5\nh2kexs6zwWBgw/5LLI+7gL2NFU/ODKNrQOufP7u5pD+bj+Ta9PQGPY6u1mTkFFCtraZaX0ONrpZq\nXTXVuhqqdTXU/PLnxtt+/VN95Wf9/143Bo3q2qsEv34BGOY7iCE+A4xyDKi/qMsApGgTFEVh8vBg\nXB1t+GrjGd7+8Sh/vK0nA7u1vbm0hWivVIoKB409rjY6MOIom96gp1avvarwV1/zJaDmRtv0NVRr\nf/1iUH3dF4fC6mJqdDXoDDrcbd2MWtTrI0VdtCnhfXxxcdTw4cqTfLTyJHPHd2XsQH9LhyWEaMF+\nvSRvo9Zw83PgptHpdQ2eAtcY5Bkg0eb0DvFgwdwBODlo+G5zEst2JNPKR5mEEK2UOQs6SFEXbVSQ\njxMvzhuIt5sdG/Zf4rN1p9Hq9JYOSwghTEqKumizvFzteHHeQDp1dGZfYtb/t3fn0VHX9/7HnzPZ\nJ/tMtgkhkIQlQEiEgBRI4gKigLi3IJdoq+VXS72trVq4UKW9VX+Fa+1t1VOty+9aei1U0AoWAVHQ\nyCIEkLBvYcm+ThKykknm90cwGlEWzcwkk9fjHM4h3/nmm/e8zzd5zffzXT788Y29NLXY3V2WiIjT\nKNTFowWbfHn07lFcNSiCA6dsLHl9N7X1Le4uS0TEKRTq4vH8fLz4yR0pZKXFcqasnieX7aKkqsHd\nZYmIdDuFuvQJXkYj9940lNsyE6isbeb//m03x4tq3V2WiEi3UqhLn2EwGLhlYgI/mJpMY7Od//r7\nHvYcq3B3WSIi3UahLn1OZlosP71rJAYDPPfmPjbvKXJ3SSIi3UKhLn1SalIE82ePJijAh7+uP8Kb\nH+XrXnYR6fUU6tJnJVhDWJidTlRYAO9sPcX/W3tY97KLSK+mUJc+LTrcxMLsdAbGBPPxvhKeXbWP\n5nO6l11EeieFuvR5IYG+/HL2KEYmWtiXX8XS1/dQ19A9szaJiLiSQl0E8Pf15t/vHElGqpVTpWd5\natkuymyN7i5LROSKKNRFzvP2MvKDqcnMmDCQ8pomnlq2i/ziOneXJSJy2Zw29WpTUxMLFiygqqqK\nlpYW5s2bx3XXXdf5+vbt23nmmWcwGo0kJCTw5JNPsnPnTn72s58xePBgAIYMGcJjjz3mrBJFLmAw\nGLg9K5HwED+WrT/C0r/v5se3ppA2KMLdpYmIXJLTQn3Tpk2kpKQwd+5cioqKuO+++7qE+uOPP85f\n//pXYmJi+OlPf0pOTg7+/v5cffXV/OlPf3JWWSKX5dqr+hEa6MuLbx/g2VX7uOemoWSlxbq7LBGR\ni3JaqE+bNq3z/yUlJURHR3d5/c033yQoKAgAs9mMzWbDarU6qxyRKzZqcCSP3j2KP67M43/ePUx1\nXTMzJg7Ey6izViLSMzn9r9OsWbN45JFHWLhwYZflnwV6eXk5W7Zs4ZprrgHg+PHjPPDAA9x9991s\n2bLF2eWJXFRSv1D+Y85oIkL9Wb3lFPNf2Mba7aepb2p1d2kiIhcwOFzwGK1Dhw7xy1/+ktWrV2Mw\nGDqXV1VVMXfuXH7xi1+QkZFBWVkZu3btYurUqRQUFHDPPfewYcMGfH19v3bbdnsb3t5ezn4L0sfZ\nzjazfMMRPsgtoPlcG77eRq5N78+MzEQGWkPcXZ6ICODEUN+/fz8Wi6VzSH3atGksW7YMi8UCQH19\nPffccw8PPfQQWVlZX7mNu+66iz/84Q/079//a39ORcXZbq07MjK427cpF+qtfW5sbuXjvBLe311I\nRU0zAMnxYUwe05+rBkVgNBousQXX6q197o3Ua9dQnzt68HWcdk49NzeXoqIiFi1aRGVlJY2NjYSH\nh3e+/rvf/Y577723S6CvXr2aiooK7r//fioqKqiqqrrgXLyIO5n8fZhydTyTx/Qn70QVG3cVcPCU\njcNnaogI9ef60XFkplkJ9Pdxd6ki0gc57Ui9ubmZRYsWUVJSQnNzMw8++CA1NTUEBweTkZHB2LFj\nGTVqVOf6N998M9OnT+eRRx6hrq6O1tZWHnzwwc5z7V9HR+q9kyf1uaiinvd3FbJ1fynn7O34+hiZ\nkGJlUnoc/SIC3VqbJ/W5p1OvXUN9vviRukvOqTuTQr138sQ+1zedH5rfVUhVXcfQ/PCB4UxO709q\nksUtQ/Oe2OeeSr12DfXZTcPvIn1NUIAPN42LZ8rY/uw5Vsn754fmD56yERnmz6T0/mSMtGLy16+d\niDiH/rqIdDOj0UD60EjSh0ZSUF7P+7sK2HagjOXvH+Otj/KZODKGSelxWC3uHZoXEc+j4fcv0dCO\na/S1Pp9tPMdHe4v5YHcRtrMtAKQkmpmc3p+URDNGg3OG5vtan91JvXYN9VnD7yJuF2zyZfr4gdw0\nLp49RyvZmFvA/vxq9udXEx0ewKT0OCaOtBLgp19JEfnm9BdExIW8jEbGJEcxJjmK06Vn2birgE8O\nlvH6xmO8+VE+GakdV81Hh5vcXaqI9EIafv8SDe24hvr8ubqGc3y4t5hNuwupqT+HARiZZGHymDhG\nDDR3eQrjlVKfXUe9dg31WcPvIj1aSKAvMyYMZOq4eHYdqWDjrgLyTlSRd6IKq8XE5PQ4xqfE4O+r\nX1cRuTj9lRDpIby9jIwbHs244dGcLKljY24BOw6Vs2zDUVZ+mE9mqpXr0+OICgtwd6ki0kNp+P1L\nNLTjGurz5amtb2Hzp8Vs2lNEXUPH0HzaoAhuGBNH8oDwSw7Nq8+uo167hvqs4XeRXis0yI9bMxKY\nPn4AOw+XszG3gE+PV/Lp8Ur6RQQyaUwc40fE4OejmQpFRKEu0it4exkZPyKG7wyPJr+4jo27Csk9\nXM5f1x1h1eYTZKXFct3ofkSEamhepC9TqIv0IgaDgaR+oST1C+V71w1i854iNn9axLufnGHdjjOM\nHhzJ5DFxDOkf9q2umheR3kmhLtJLhQf7cXtWIjdPGMCOQ+W8l1vArqMV7DpaQVxkEJPHxHHzNYPc\nXaaIuJAulPsSXYThGupz93M4HBwvquW93EJ2H6mg3eEgMMCHAdFBxFoCsUYEEmsxERsRSLDJ193l\nehzt066hPutCOZE+wWAwMDgujMFxYVTXNbNpTxE7D5d3zhT3RcEmH2ItgcRGBGI9H/SxEYGEBvpq\n2F6kF1Ooi3ggc4g/d16TxAN3XcWZQhul1Y0UVzZQXNlASVXH/48W1HCkoKbL95n8vC8I+lhLIOYQ\nP4W9SC+gUBfxcAF+3iRYQ0iwhnRZfq617fOwr2qgpLKR4qoG8ovrOF5U22VdP18vrOauQR8bYSIi\nNACjUWEv0lMo1EX6KF8fL+Kjg4mP7np+zt7WTll1I8Xnj+hLqjqO8Asr6jlV2vVcpo+3kZjPwv4L\nR/eRYQF4exld+XZEBIW6iHyJt5eRfpFB9IsM6rK8rb2diprmLkFfXNlISVUDBeX1Xdb1MhqINpu6\nBH2sJZBoswkfb4W9iLMo1EXksngZO47KY8wmILJzebvDQVVtc5fz9cWdod8ARyo61zUYICosoEvQ\nWyNMWM2B+PnqqXgi35ZCXUS+FaPBQGRYAJFhAaR94bZ4h8OB7WxLl/P1nwX9nmOV7DlW2WU7EaH+\nnWE/caSVfhGBLn4nIr2fQl1EnMJgMGAO8ccc4k9KgqVzucPhoK6xlZIvHdEXVzV2Tjm7fscZxo+I\n4ZaMBM1KJ3IFFOoi4lIGg4HQQF9CA31JHhDe5bX6plYOn7axestJtu4v5ZODZWSmWpkxMYHwYD83\nVSzSeyjURaTHCArwYUxyFKOHRrLjUBlv55xk86fFfLyvlOtH92Pa+AGE6Gl4Il9LoS4iPY7RYOA7\nw2MYmxzFln2lrN5ykg07C/hwbzE3jOnPTVf3x+Tv4+4yRXochbqI9FheRiNZabGMHxHDh58W8c62\n07yz9RQf7Cpk6nfimZQeh7+v/oyJfEY3jIpIj+fjbWTymP4s+dF47ro2CYMBVn2Yz4IXtvHezgJa\n7W3uLrFXqa1vISevmMKK+kuvLL2K0z7iNjU1sWDBAqqqqmhpaWHevHlcd911na9v3bqVZ555Bi8v\nL7KysvjJT34CwFNPPcXevXsxGAwsXLiQ1NRUZ5UoIr2Mn68X074zgGuv6seGnWdYv7OAv79/jHU7\nznDLxIFMHGnVk+y+Rlt7O3knqsjZW0LeiSraHQ68jAZuy0xg6rgBetyvh3BaqG/atImUlBTmzp1L\nUVER9913X5dQf+KJJ3jllVeIjo5mzpw53HjjjVRXV3P69GlWrFjBiRMnWLhwIStWrHBWiSLSS5n8\nvbktM5FJ6XG8u/0M7+8u5LV1R3h3+xluzUxg3LBohdR5pdWN5OQVs3VfKbUN5wCIjw5i9OBINn1a\nxKoP88k7UcUPbx5OpG4f7PWcFurTpk3r/H9JSQnR0dGdXxcUFBAaGorVagXgmmuuYdu2bVRXVzN5\n8mQAkpKSqK2tpb6+nqCgro+rFBEBCDb58r3rB3HD2P68s+0UH31azEtrDrJ222luy0xk9JCIPjm7\nXMu5NnYeLicnr5hjhR2T85j8vJk0Oo6MVCsDYjqe9399ehyvrTvMriMVLH51B7MnD2HiyJg+2TNP\n4fQrTGbNmkVpaSkvvPBC57KKigrMZnPn12azmYKCAmw2GyNGjOiyvKKiQqEuIhcVHuxH9pShTL06\nnrfP3+P+/Fv7GBgTzB1ZiYxIMHt8UDkcDvJL6sjZW8KOQ2U0n+u4zmDYgHAy06ykD4nEx7vro3iD\nAnyYd1sKW/eX8r/vHeXVtYfYe7ySe24aSrBuHeyVnB7qy5cv59ChQzz66KOsXr36in6xHA7HJdcJ\nDzfh7d29z4yOjAy+9EryranPrtGX+hwZGcywwVEUlJ3l9fWH+XhvMc/8Yy8jEi1kTx3GiETLpTfy\nLX++q9XWt7BpVwHv7TjDmfOz6EWEBXDbNfFMvjqeaLPpktu47foQxl8Vxx/+vptdRyvIL6njpzNH\nMWZY9CW/1x360j59pZwW6vv378disWC1Whk2bBhtbW1UV1djsViIioqisvLz5z6XlZURFRWFj49P\nl+Xl5eVERkZ+1eY72WyN3Vp3ZGQwFRVnL72ifCvqs2v01T77G+G+qclMHt2Ptz7KZ++JKhY8/zEp\nCWZuz0q8YG757uDKXre3O9h/spqcvGI+PVZJW3vHRW9jkqPISrUyfKC545qCtrbLrskI/PyuVNbv\nOMObH+Xzm5e3c93ofnzvukH4+fScyXb66j79RRf7UOO0UM/NzaWoqIhFixZRWVlJY2Mj4eEdj4SM\ni4ujvr6ewsJCYmJi2LRpE08//TQ2m41nn32WWbNmceDAAaKiojT0LiLfWHx0MD/7bhrHi2p566N8\n9p+sZv/JakYPieT2zIQLppft6cprmvg4r5gt+0qxnW0BoF9kIJmpsYwfEf2th8yNRgNTvzOAEQlm\nXlpzkE27izh4ysb/mTHcKR+EpPsZHJczxv0NNDc3s2jRIkpKSmhububBBx+kpqaG4OBgbrjhBnbu\n3MnTTz8NwJQpU7j//vsBePrpp8nNzcVgMLB48WKSk5Mv+nO6+xObPgW6hvrsGupzV4dOVfPmR/mc\nKK7DAIwbEc2tGQlEh196iPpSnNXrc61t7DpaQc7eYg6fqQEgwM+LccOiyUyLZWBMsFOuF2i1t7Hq\nw3w27CzAaDBwS8ZApo8fgJfRvbcMap+++JG600LdVRTqvZP67Brq84UcDgd7T1Tx1kf5FJTXYzQY\nyEi1csvEgZhD/L/xdruz1w6Hg9NlZ8nZW8L2g2U0tdgBGNI/jMxUK2OSo1w2JH7wVDWv/OsQtrMt\nJMWG8MMZw7vlQ9A3pX1aoX5FtMO4hvrsGurz12t3OMg9XM4/c05SWt2It5eRa0fFMn38QEIDr3wY\nuzt6Xd/UyvYDpeTklVBQ3vG0t9AgXzJGWskYab2si96coaG5lb9tOMonB8vw8/Fi1qRBZKXFuuWO\nAu3TCvUroh3GNdRn11CfL62tvZ1t+8t4++OTVNU14+tj7Jg0Zlw8gVcwacw37XW7w8GhUzZy8orZ\nfbQCe1vHRW9pgyLISLUyMtHs9iHvz2w/WMrf1h+lscXOVYMiuHdq8jf6APRtaJ9WqF8R7TCuoT67\nhvp8+ext7Xy0t5g1W09RW3+OAD9vbrq6P5PH9CfA79LXFF9pr6tqm/l4Xwkf55VQVdcMgNVi6rjo\nLSXG5WF5uarrmnnlX4c4dNpGsMmH709NZtTgi9+l1J20TyvUr4h2GNdQn11Dfb5yLa1tbNpdxNrt\np6lvaiUowIfp4wdw3ah++F7kPPbl9LrV3s6eYxXk5JVw8GQ1DsDPx4uxw6LISo0lqV9Ir3hITrvD\nwcbcQlZuPoG9rZ2sNCuzJg12yYx52qcV6ldEO4xrqM+uoT5/c00tdt7bWcD6nWdoamkjPNiPGRMG\nkpH61ZPGXKzXBeX15OwtZtuBUhqaOy56G9QvtPOit8sZCeiJCivqeWnNQQrK64kKC+CHM4YzqF+o\nU3+m9mmF+hXRDuMa6rNrqM/fXn1TK+9+cpr3cws5Z28nMsyfWzMS+M7wmC6Txny5143NrXxysIyP\n8ko4ff5JbyEmHyakWMlItRIbEejy9+IMrfZ2/vlxPuu2nwEDTB8/kFsmDnTabHnapxXqV0Q7jGuo\nz66hPnef2voW3tl2mg8/LcLe5sBqMXF7ZiKjh0ZiNBiIjAymvLyOI2dqyMkrJvdIBa32dgwGSE20\nkJkWS2qSxWOnhj1yxsbL7xyiqq6ZgTHBzJ0xHKul+z+4aJ9WqF8R7TCuoT67hvrc/Sprm1iz5RRb\n9pXS7nAQHx3EzeMHUtdiZ8O205TXNAEQFR5AZqqVCSlWwoP93Fy1azQ22/n7xqNs2V+Kr7eR7143\niOtH9+vW6wS0TyvUr4h2GNdQn11DfXae0upG3v74JJ8cLOtc5uttZExyFJmpVob0D+sVF705Q+7h\ncl5bd5iGZjspCWZ+MG1Yt32w0T6tUL8i2mFcQ312DfXZ+QrK68nJK2bIQAvD40Ix+ffOi966W019\nC6+uPcT+/GoC/b2596ZkxiRHfevtap9WqF8R7TCuoT67hvrsOur1hRwOBx/sLuKNTcc5Z29nQkoM\nsycP+VYffNRnN83SJiIifZvBYGBSehzDB4bz0pqDbN1fypEzNcydMZwh/cPcXZ5H8szLMEVEpMew\nWgJZmJ3OjAkDqT7bzJL/3c0bm4/Tam93d2keR6EuIiJO5+1l5PasRP5jTjqRYQG8u/0MT/w1l6KK\neneX5lEU6iIi4jKD+oXy6/vGkpUWS0F5Pb/5n1w27CygvXdf3tVjKNRFRMSl/H29+f7UZP79zpEE\n+Hmx/P1j/H75p1Sfn9hGvjmFuoiIuMWowZH89v5xXDUogkOnbTz+yg62Hyx1d1m9mkJdRETcJiTQ\nl3+/cyTfn5pMW7uDv6w+yIurD9DQ3Oru0nol3dImIiJuZTAYyEqLZWh8GC+vOcgnB8s4WlDDD6cP\nY9hAs7vL61V0pC4iIj1CdLiJBXNGc1tmArX15/iv5Z+y/P1jtNrb3F1ar6FQFxGRHsPLaOSWiQks\nuiedGLOJDTsL+M//yeVMWd9+itzlUqiLiEiPk2ANYfEPxnL96H4UVTbw29dyeXf7adradevbxeic\nuoiI9Eh+Pl7MmTKUtEERvPqvQ7yx+QRrPzmD1WzCajERGxHY8c8SiDnEr8/OivdFCnUREenRRiZa\n+M/7r2bVh/nkl9SRX1zH8aLaLuv4+XphNXcN+tgIExGhARiNfSfsFeoiItLjBZt8+f7UZCIjgykp\nraWsupGSqkaKKxsormqguLKBwop6TpV2Pffu420k5rOw/8LRfWRYAN5enncGWqEuIiK9ireXkX6R\nQfSLDOqyvK29ncqa5i5BX1zZSEl1AwXlXZ8x72U0EG02dQl6qyWQGHMAPt5ernw73UqhLiIiHsHL\naCTabCLabGIUkZ3L2x0Oqmubzwd9x9F9SdXnwc+Ris51DQaICgv4QtB3hL7VHIifb88Pe4W6iIh4\nNKPBQERYABFhAaQmfb7c4XBQU3/u/BF9R8iXVDZQVNnAnmOV7DlW2WU7EaH+nefrO8PeEojJv+dE\nqVMrWbp0Kbt27cJut/OjH/2IKVOmAFBWVsYjjzzSuV5BQQEPP/wwra2t/PGPfyQ+Ph6ACRMm8OMf\n/9iZJYqISB9lMBgID/YjPNiPEQmfP7nO4XBwtrH1C0Hf2HlUn3eiirwTVV22Ex7sR6zFhNUS+PmF\nehGBBAX4uPotOS/Ut2/fzrFjx1ixYgU2m43bb7+9M9Sjo6NZtmwZAHa7nezsbK6//nrWr1/PtGnT\nmD9/vrPKEhERuSiDwUBIoC8hgb4kDwjv8lp9UyslVQ2fX6R3PvgPnLJx4JSty7ohJh+slkCuT49j\nbHKUS2p3WqiPHTuW1NRUAEJCQmhqaqKtrQ0vr67nJN566y1uvPFGAgMDnVWKiIhItwgK8GFwXBiD\n48K6LG9qsVNa/YWgPx/2RwtqCA/26/2h7uXlhclkAmDlypVkZWVdEOgAb7zxBq+++mrn1zt27OD+\n++/Hbrczf/58hg8fftGfEx5uwrubr1SMjAzu1u3JV1OfXUN9dh312jV6ap/j48IvWNZqb8Pby+iy\nB+M4/ez+xo0bWblyZZfg/syePXtITEwkKKjjtoS0tDTMZjPXXnste/bsYf78+axZs+ai27fZGru1\n3sjIYCoq9IxhZ1OfXUN9dh312jXU54t/qHFqqOfk5PDCCy/w8ssvExx8YRGbN29m/PjxnV8nJSWR\nlNRxaeKoUaOorq7+yiF7ERERuZDTHqdz9uxZli5dyosvvkhYWNhXrrNv3z6Sk5M7v37ppZd45513\nADh69Chms1mBLiIicpmcdqS+du1abDYbDz30UOeycePGMXToUG644QYAKioqsFgsna/PmDGDRx99\nlOXLl2O323nyySedVZ6IiIjHMTgcjl49j113n1vR+RrXUJ9dQ312HfXaNdTni59T97yn2YuIiPRR\nCnUREREPoVAXERHxEAp1ERERD6FQFxER8RAKdREREQ+hUBcREfEQvf4+dREREemgI3UREREPoVAX\nERHxEAp1ERERD6FQFxER8RAKdREREQ+hUBcREfEQCvUveOqpp5g5cyazZs0iLy/P3eV4rKVLlzJz\n5kzuvPNONmzY4O5yPFpzczOTJ0/mzTffdHcpHmv16tXccsst3HHHHWzevNnd5XikhoYGHnzwQbKz\ns5k1axY5OTnuLqnH8nZ3AT3Fjh07OH36NCtWrODEiRMsXLiQFStWuLssj7N9+3aOHTvGihUrsNls\n3H777UyZMsXdZXmsP//5z4SGhrq7DI9ls9l4/vnnWbVqFY2NjTz77LNce+217i7L47z11lskJCTw\n8MMPU1ZWxr333su6devcXVaPpFA/b9u2bUyePBmApKQkamtrqa+vJygoyM2VeZaxY8eSmpoKQEhI\nCE1NTbS1teHl5eXmyjzPiRMnOH78uELGibZt28b48eMJCgoiKCiI3/72t+4uySOFh4dz5MgRAOrq\n6ggPD3dzRT2Xht/Pq6ys7LKjmM1mKioq3FiRZ/Ly8sJkMgGwcuVKsrKyFOhOsmTJEhYsWODuMjxa\nYWEhzc3NPPDAA8yePZtt27a5uySPNH36dIqLi7nhhhuYM2cO8+fPd3dJPZaO1L+Gnp7rXBs3bmTl\nypW8+uqr7i7FI/3zn//kqquuon///u4uxePV1NTw3HPPUVxczD333MOmTZswGAzuLsujvP3228TG\nxvLKK69w+PBhFi5cqOtEvoZC/byoqCgqKys7vy4vLycyMtKNFXmunJwcXnjhBV5++WWCg4PdXY5H\n2rx5MwUFBWzevJnS0lJ8fX2JiYlhwoQJ7i7No1gsFkaNGoW3tzfx8fEEBgZSXV2NxWJxd2keZffu\n3WRkZACQnJxMeXm5Ttt9DQ2/nzdx4kTWr18PwIEDB4iKitL5dCc4e/YsS5cu5cUXXyQsLMzd5Xis\n//7v/2bVqlX84x//4Lvf/S7z5s1ToDtBRkYG27dvp729HZvNRmNjo873OsGAAQPYu3cvAEVFRQQG\nBirQv4aO1M8bPXo0I0aMYNasWRgMBhYvXuzukjzS2rVrsdlsPPTQQ53LlixZQmxsrBurEvlmoqOj\nufHGG/ne974HwK9+9SuMRh0rdbeZM2eycOFC5syZg91u59e//rW7S+qxNPWqiIiIh9BHShEREQ+h\nUBcREfEQCnUREREPoVAXERHxEAp1ERERD6FQF+ljCgsLSUlJITs7u3PWq4cffpi6urrL3kZ2djZt\nbW2Xvf7dd9/NJ5988k3KFZEroFAX6YPMZjPLli1j2bJlLF++nKioKP785z9f9vcvW7ZMD/8Q6YH0\n8BkRYezYsaxYsYLDhw+zZMkS7HY7ra2tPP744wwfPpzs7GySk5M5dOgQr732GsOHD+fAgQOcO3eO\nxx57jNLSUux2O7feeiuzZ8+mqamJn//859hsNgYMGEBLSwsAZWVlPPLII0DHXO8zZ87krrvucudb\nF/EoCnWRPq6tSPtNrgAAAgVJREFUrY333nuP9PR0Hn30UZ5//nni4+MvmDjDZDLxt7/9rcv3Llu2\njJCQEH7/+9/T3NzMtGnTyMzMZOvWrfj7+7NixQrKy8uZNGkSAO+++y6JiYn85je/oaWlhTfeeMPl\n71fEkynURfqg6upqsrOzAWhvb2fMmDHceeed/OlPf2LRokWd69XX19Pe3g50PEr5y/bu3csdd9wB\ngL+/PykpKRw4cICjR4+Snp4OdEyWlJiYCEBmZiavv/46CxYs4JprrmHmzJlOfZ8ifY1CXaQP+uyc\n+hedPXsWHx+fC5Z/xsfH54JlX55i1OFwYDAYcDgcXZ6B/tkHg6SkJP71r3+xc+dO1q1bx2uvvcby\n5cu/7dsRkfN0oZyIABAcHExcXBwffvghACdPnuS555676PekpaWRk5MDQGNjIwcOHGDEiBEkJSWx\nZ88eAEpKSjh58iQAa9asYd++fUyYMIHFixdTUlKC3W534rsS6Vt0pC4inZYsWcITTzzBX/7yF+x2\nOwsWLLjo+tnZ2Tz22GP827/9G+fOnWPevHnExcVx66238sEHHzB79mzi4uIYOXIkAIMGDWLx4sX4\n+vricDiYO3cu3t76MyTSXTRLm4iIiIfQ8LuIiIiHUKiLiIh4CIW6iIiIh1Coi4iIeAiFuoiIiIdQ\nqIuIiHgIhbqIiIiHUKiLiIh4iP8PmzErLMRu2f0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcVOX+B/DPYXUBWR0QFS28qJEU\naJmholwQtSyvmVKGWXQTl2tamooEaILS5i3D0rIsskSR0nKvm101xH2jtKQi0WQXZJXl/P7wOj9R\nGZDDmXPOzOfta14vZoZ5vg+L8+E5zznPI4iiKIKIiKiFLJTuABERaRuDhIiIJGGQEBGRJAwSIiKS\nhEFCRESSMEiIiEgSBglJIooiPv74Yzz88MMIDQ1FcHAw4uLicPnyZUntzp49G4GBgdizZ89tv/bE\niROIiIiQVL+1bd26FWVlZbd87s0338QXX3xh5B4RtR6B15GQFK+//joOHDiAd999F25ubqioqEB8\nfDx+//13rF27FoIgtKjd3r17Y8eOHfD09GzlHitj+PDhWLNmDdzd3ZXuClGr44iEWuzSpUtITk7G\n0qVL4ebmBgBo164dYmJi8Nxzz0EURVRXVyMmJgahoaEYMWIEli5dirq6OgBAUFAQ1q1bh7Fjx2Lg\nwIFYunQpACA8PBz19fWIiIjADz/8gKCgIBw6dEhf99r92tpaLFiwAKGhoQgJCcH06dNRVlaGjIwM\nhISEAECL6t8oPDwcq1atwvjx4/HAAw9g7dq1WLFiBYYPH46RI0fi3LlzAIDffvsNTzzxBEaMGIGQ\nkBB88803AID58+fj999/R3h4OA4dOoR58+ZhyZIlGDVqFLZt24Z58+ZhxYoVOHHiBIYMGYLy8nIA\nwPvvv48ZM2a09o+NqNUxSKjFjh8/Dnd3d3h5eTV43NbWFkFBQbCwsMAnn3yCixcvYsuWLfjyyy9x\n6NAh/RssABw8eBApKSnYuHEjPvvsM1y8eBHJyckAgOTkZAQGBjZaf+/evcjJycH27duxc+dO9OjR\nA0ePHm3wOS2pfysHDx7E2rVrsWTJErz++utwd3fH9u3b0aNHD2zcuBEA8Nprr2Ho0KHYtm0bEhIS\nsGDBAtTU1GDJkiX6r6dfv34AgPT0dKSmpmLEiBH6Gr6+vggODsbKlSuRm5uLzz//HNHR0U3+HIiU\nxiChFrt06RJcXFwMfs7u3bsxbtw4WFlZoU2bNhg1ahT27dunf37UqFGwtLSEm5sbXFxc8NdffzW7\nvrOzM7KysrBr1y5UVlZi5syZGDRokCz1hw4dCisrK3h7e6OyshKhoaEAAG9vb+Tl5QEAVqxYoZ+b\n6du3L6qrq5Gfn3/L9gYMGABbW9ubHp81axa2b9+O+fPnY+rUqdDpdM3+fhAphUFCLebk5ITc3FyD\nn1NUVAQHBwf9fQcHBxQWFurv29nZ6T+2tLTUH3ZqDl9fX0RHRyM5ORkBAQF46aWXUFpaKkv99u3b\n6z/n+vsWFhaor68HAOzZswcTJkxAaGgoRo4cCVEU9c/d6Po+3VhnxIgROHz4MEaNGmXw6ydSCwYJ\ntdi9996LwsJCZGZmNni8pqYGy5YtQ2VlJVxdXXHp0iX9c5cuXYKrq+tt1bn+zRoASkpK9B8PHz4c\nycnJ+P7771FZWYnVq1c3eG1r1G+OmpoazJw5E1OmTMGOHTuwefPmFp1okJubi6+//hoPPfQQ3n33\n3VbvJ5EcGCTUYh06dMBzzz2HuXPnIjs7GwBQWVmJmJgY/PTTT2jbti2GDBmC1NRU1NXVoaKiAps2\nbTI473ErHTt2xOnTpwFcPY22uroaALBx40YkJSUBABwdHXHnnXfe9NrWqN8clZWVqKiowN133w3g\n6tyMtbU1KioqAABWVlY3jZZuJT4+Hs899xyioqKwbds2/Pzzz63eV6LWxiAhSf71r39h3LhxmDJl\nCkJDQzFmzBi4uLjo/5oODw+Hu7s7HnroITz22GMYMmRIgwnm5pg6dSrWrFmDhx9+GFlZWejRowcA\n4O9//zsyMzMxbNgwjBgxAmfPnsUzzzzT4LWtUb85roXq6NGjMXr0aHh6eiI4OBiRkZGoqKjA8OHD\nERYWhq1btzbaxu7du5GTk4OwsDDY2dlh1qxZiI6Ovq3DfURK4HUkREQkCUckREQkCYOEiIgkYZAQ\nEZEkDBIiIpKEQUJERJJYKd2Bxlhb37x8hDHU1FQbvaZSJ861dGVerapr5CpzuSn187X631X4xlar\n0OnKlhbK/F0s5/+jlrZt7N851QYJEZG508ofezy0RUREknBEQkSkUloZkTBIiIhUShC0cdCIQUJE\npFockRARkQQ8tEVERJIwSIiISBKtzJFoo5dERKRaHJEQEakUD20REZEkDBIA5eXlKCgoAHB13+12\n7drJWY6IyKSYdZCcPHkS8fHxKC0thZOTE0RRRF5eHtzc3BATE4OePXvKUZaIyKSYdZAkJCQgPj4e\nXl5eDR7PzMzEokWLsHbtWjnKEhGZGG2cDyVLL0VRvClEAMDHxwd1Ci0xTURE8pBlRHLPPfcgMjIS\nwcHBcHZ2BgAUFBRgx44duP/+++UoSURkcrRyaEsQZdoB5eDBg0hPT9dPtut0OgQEBMDPz69Zr+fG\nVvLTyi9pa+HGVsbBja1aj729c4ted/lyUSv3xDDZgkQqBon8GCTGwSAxDlMMkg4dXFr0utLSwlbu\niWG8joSISKW08sceg4SISKW0stYWg4SISKW0MiLRRtwREZFqcURCRKRSWhmRMEiIiFSLQUJERBJw\nsp2IiCThoS0iIpKEQUJERJJoJUi0cQCOiIhUS7UjEiXWvAIASwXWJ7pSU2P0mgBgqZG/drROqTWv\nlGJuX6+ctDIiUW2QEBGZO561RUREknBEQkREEjFIiIhIAo5IiIhIEq3MkWijl0REpFockRARqRQP\nbRERkSQMEiIikoRBQkREkjBIiIhIEp611YjS0lJjlyQi0iShhf+MzehBMn36dGOXJCIiGclyaGvt\n2rWNPpebmytHSSIi02POcyRr1qzBgAEDoNPpbnqutrZWjpJERCbHrCfbk5KSsHjxYkRHR8PGxqbB\ncxkZGXKUJCIyOVoJEkEURVGOhisrK2FrawsLi4bTMJmZmfDx8ZGjZKswq42tLLRxRkhrqauvV6Su\nuX2fqfX06OHfotedPXuklXtimGyn/7Zt2/aWj6s5RIiI1EQrIxJeR0JEpFJaCRKOuYmISBKOSIiI\nVEorIxIGCRGRSgkyHjRKSEjA8ePHIQgCoqKi4Ovrq39u7dq12Lx5MywsLHD33XdjwYIFBttikBAR\nqZVMI5IDBw4gOzsbKSkpyMrKQlRUFFJSUgAAZWVlWL16NXbu3AkrKys8++yzOHbsGO69995G2+Mc\nCRGRSgmC0KJbU9LT0xEcHAwA8PLyQklJCcrKygAA1tbWsLa2RkVFBWpra1FZWQkHBweD7XFEQkSk\nUnLNkRQUFDS4FMPZ2Rn5+fmws7ODra0tpk2bhuDgYNja2uKhhx7CHXfcYbA9jkiIiFRKrhHJja6/\nLr2srAwrV67E9u3b8d133+H48eM4ffq0wdczSIiIzIxOp0NBQYH+fl5eHjp27AgAyMrKQteuXeHs\n7AwbGxv069cPp06dMtgeg4SISKUEwaJFt6YEBARgx44dAK4uW6XT6WBnZwcA6Ny5M7KyslBVVQUA\nOHXqFLp3726wPc6REBGplFxzJP7+/vDx8UFYWBgEQUBsbCzS0tJgb2+PkJAQREREYOLEibC0tISf\nnx/69etnuJ9yLdqoVbV1dUav+Tevxk+rk1PmL4cVqavUr1wba2tF6tYo8DsFANYKLEAKKPf1KvXz\nlZOvb2CLXnfixA+t3BPDOCIhIlItXtlOREQSNGe+Qw0YJEREKqWVtba0EXdERKRaHJEQEamUVkYk\nDBIiIpVikBARkSQMEiIikoRnbRERkSQckRARkSSCRi5I1Ma4iYiIVEvWILnVmkoXL16UsyQRkekQ\nhJbdjEyWINm1axeGDh2KAQMGYO7cufotHAHg5ZdflqMkEZHJMdbGVlLJEiSrVq3Cl19+iR9//BH+\n/v6IiIjA5cuXASi38isRkdbItR9Ja5Nlst3S0hKOjo4AgPHjx8PFxQURERF4//33NXMWAhGR0rTy\nfilLkPj7+2Py5Ml4++230aZNG/0m8pMmTcKlS5fkKElEZHLMOkhefvllZGRkwNbWVv/YoEGD4Ofn\nh61bt8pRkojI5Jh1kABA//79b3rMzs4O48aNk6skEREpgBckEhGpFJdIISIiicz80BYREUlj9nMk\nREQkDYOEiIgkYZAQEZEkWpls10YviYhItTgiISJSKR7aIiIiSRgkREQkCYOEiIgk0sY0NoPkBlaW\nlkav+UvWUaPXBIAuHl6K1M3NzVakbklFhSJ1Hdq1U6SuUnv/WFko8+ZXXVurSF1bK/neRjkiISIi\nSbQSJNoYNxERkWpxREJEpFJaGZEwSIiIVIpBQkREkmhliRQGCRGRSnFEQkREkjBIiIhIIm0EiTYO\nwBERkWpxREJEpFJaObRltBFJUVGRsUoREZkEQbBo0c3YZKm4e/duhIaGYtKkSfjll1/wyCOPIDw8\nHEFBQfjhhx/kKElEZHIEQWjRzdhkObT13nvv4eOPP8aFCxcQGRmJFStWoFevXigoKEBkZCQCAwPl\nKEtEZFK0cmhLliCxsbGBh4cHPDw8oNPp0KtXLwCAq6srbG1t5ShJRGRytBIkshzacnFxwerVqwEA\n69atAwBcvHgRCQkJcHd3l6MkEZHJMes5kqVLl6JTp04NHissLISHhwcSEhLkKElERAqR5dBWmzZt\nMHLkyAaP+fj4wMfHR45yREQmSSuHtngdCRGRajFIiIhIAo5IiIhIEsGCQUJERBJwREJERJIwSIiI\nSLUSEhJw/PhxCIKAqKgo+Pr66p/766+/8OKLL6KmpgZ33XUXFi1aZLAtLiNPRKRScq21deDAAWRn\nZyMlJQXx8fGIj49v8PzSpUvx7LPPIjU1FZaWlrhw4YLB9hgkREQqJVeQpKenIzg4GADg5eWFkpIS\nlJWVAQDq6+tx+PBhBAUFAQBiY2Ph4eFhsD0GCRGRSgkWLbs1paCgAE5OTvr7zs7OyM/PB3B1y4/2\n7dtjyZIleOKJJ/Dmm2822R6DhIhIrQShZbfbJIpig49zc3MxceJEfPbZZ/jpp5+we/dug69nkBAR\nqZRch7Z0Oh0KCgr09/Py8tCxY0cAgJOTEzw8PODp6QlLS0sMGDAAv/76q8H2GCRERColV5AEBARg\nx44dAIDMzEzodDrY2dkBAKysrNC1a1f88ccf+ufvuOMOg+3x9N8bXD/EM5a6euPXBIDc3GxF6rq6\ndlGkbn7+OUXqKqWuvl6Rukpd+1BeVaVIXVsr7b2N+vv7w8fHB2FhYRAEAbGxsUhLS4O9vT1CQkIQ\nFRWFefPmQRRFeHt76yfeG6O97wARkZmQM5Rnz57d4P61DQgBoFu3bvjiiy+a3RaDhIhIpbjWFhER\nScIlUoiISBIGCRERSaKRHGk8SFJTUw2+cOzYsa3eGSIiuo5GkqTRIDl8+LDBFzJIiIgIMBAkS5Ys\n0X9cX1+PwsJC/ZWPREQkP62ctdXkle3XVokMDw8HcHUN+6bWXSEiIunkurK9tTUZJMuWLcP69ev1\no5HIyEisWLFC9o4REZk7kwmSdu3awdXVVX/f2dkZ1tbWt1UkPT399ntGRGTmtBIkTZ7+26ZNGxw4\ncAAAUFJSgi1btsDW1rbRz//qq68a3BdFEe+99x6mTp0KABg9erSU/hIRmQ2TuY4kNjYWcXFxOHny\nJEJCQtC3b1+D+/cmJSXB0dERgYGB+seqq6uRk5PTOj0mIjITWplsbzJIOnXqhJUrVza7wW+++QYr\nVqzAmTNnMG/ePHTu3Bl79uzB9OnTJXWUiIjUqckgOXjwIJYuXYqsrCwIggBvb2+8/PLL6Nu37y0/\n39bWFrNmzcJvv/2GRYsWwc/PD/UKLWdNRKRlGjmy1fRk+6JFizB79mxkZGQgPT0dM2bMwMKFC5ts\n+M4778TKlSvh7u6OLl2U2X+CiEjLTGay3cXFBQMGDNDfDwgIgIeHR7MLjB49mhPsREQtoZEhSaNB\ncu7c1d3k+vTpg48++ggPPvggLCwskJ6ejrvuustoHSQiMleaP2vr6aefhiAI+q1nP/vsM/1zgiBg\nxowZ8veOiMiMaf6srf/85z+NvujIkSOydIaIiP6f5kck15SVlWHTpk0oLi4GANTU1GDjxo3Yu3ev\n7J0jIiL1a/KsrZkzZ+LMmTNIS0tDeXk5vv/+e8TFxRmha0RE5k0rZ201GSTV1dVYtGgROnfujLlz\n5+LTTz/Ftm3bjNE3IiKzppUgafLQVk1NDSoqKlBfX4/i4mI4OTnpz+giIiL5aGSKpOkgefTRR7F+\n/Xo8/vjjGDlyJJydneHp6WmMvhERmTetn7V1zRNPPKH/eMCAASgsLOR1JERERqD5s7befvvtRl+0\na9cuvPDCC7J0iIiIrtJ8kFhaWhqzH0REpFGNBgmXfSciUpbmRyRKK62sVKRuewO7P8rF1kqZH8OF\n/11kamwFBcpscnbvvX9XpO7e/VsUqavE7zIAXK6qUqSuUl+vnBgkREQkiVbW2mrygkQAKC4uxsmT\nJwGAm1QRERmJVi5IbDJIvvnmG4wfPx7z588HALz66qvYsGGD7B0jIjJ3gtCym7E1GSQff/wxNm3a\nBCcnJwDA3LlzsX79etk7RkRk9jSSJE0Gib29Pdq2bau/36ZNG1hbW8vaKSIi0o4mJ9udnJzw5Zdf\norq6GpmZmdi6dSucnZ2N0TciIrOmlbO2mhyRLFy4ECdPnkR5eTmio6NRXV2NxYsXG6NvRERmTbAQ\nWnQztiZHJB06dEBMTIwx+kJERNfRyoikySAJDAy85Reze/duOfpDRET/YzJB8vnnn+s/rqmpQXp6\nOqqrq2XtFBERmVCQdO7cucH97t27IyIiApMmTWp2kdraWuTm5sLNzQ1WCi0HQkSkNSYTJOnp6Q3u\nX7x4EX/++afB1yxevBjR0dEAgB9//BELFiyAq6srCgsLsXDhQgwaNEhCl4mISE2aDJIVK1boPxYE\nAXZ2dli4cKHB15w5c0b/cVJSEj799FN07doV+fn5mD59OoOEiKgZhGYtYqW8JoNk3rx58PHxua1G\nrx+OOTg4oGvXrgCAjh078tAWEVFzaeTQVpN5l5iYeNuN/vrrr3jhhRcwY8YMZGdnY9u2bQCAjz76\nCPb29rffSyIiM6SVRRubHB54eHggPDwc99xzT4OlUQxttXvjNr3dunUDcHVE8uabb7a0r0REZsVk\nJtu7dOmCLl263Faj999//y0fHzVq1G21Q0RkzjQfJJs3b8YjjzzCLXeJiBSi+Y2tUlNTjdkPIiLS\nKJ5CRUSkUpo/tHX06FEMGTLkpsdFUYQgCFxri4hIZpoPkrvuugtvvfWWMftCRETX0UiONB4kNjY2\nN62zRURExiPnZHtCQgKOHz8OQRAQFRUFX1/fmz7nzTffxLFjx5CcnGywrUaD5FaNEhGREck0JDlw\n4ACys7ORkpKCrKwsREVFISUlpcHnnD17FgcPHmzW1uqNnrU1Z84c6b0lIiLVSU9PR3BwMADAy8sL\nJSUlKCsra/A5S5cuxaxZs5rVnkaWBCMiMj9yLZFSUFAAJycn/X1nZ2fk5+fr76elpeH+++9v9vQG\ng4SISKWMtdaWKIr6jy9duoS0tDQ888wzzX49ryMhIlIpuU7/1el0KCgo0N/Py8tDx44dAQD79+9H\nUVERJkyYgCtXruDPP/9EQkICoqKiGm2PIxIiIpUSLIQW3ZoSEBCAHTt2AAAyMzOh0+lgZ2cHABg+\nfDi2bt2K9evX491334WPj4/BEAFUPCLp0Lat0l0wmuuHlcbkcd0xUnNw9Oi3itS1sFDm7zWlfq/a\n29oqUtdSoe+znOQakfj7+8PHxwdhYWEQBAGxsbFIS0uDvb09QkJCbrs9QVTqt430lPoRaOWq2dai\n1PfZ3IKkrr5ekbqmGCSJq9e16HVzI8JauSeGmd53noiIjEq1h7aIiMydVo4aMEiIiNSKQUJERFJo\nZWMrBgkRkUrx0BYREUnCICEiIkm0EiQ8/ZeIiCThiISISKU4IrlBUVGRsUoREZkEwaJlN2OTpeQP\nP/yAmJgYAFc3UBk6dCgmTpyIoKAg7N69W46SREQmx1jLyEsly6Gtd955BytXrgQAJCUl4dNPP0XX\nrl1RXFyMyZMnY8iQIXKUJSIyLRo5tCVLkNTW1qJ9+/YAAHt7e3Tp0gUA4OjoqNhCckREWqOVORJZ\ngiQiIgKjR49GQEAAHB0dMXXqVPj5+SEjIwOPP/64HCWJiEyOWQfJI488gsGDB+PHH3/E+fPnIYoi\nXF1dkZCQADc3NzlKEhGRQmQ7/dfR0REjR46Uq3kiIpPHtbaIiEgSsz60RURE0jFIiIhIEo3kCIOE\niEi1NJIkDBIiIpXSymQ7V/8lIiJJOCIhIlIpTrYTEZEkDBIiIpKEQUJERJIwSIiISBKtnLXFICEi\nUimNDEjUGyTmtG9JvUJfq6VCv6W1dXWK1LWytFSkrlK/y3Z2TorULSsrVqRuTV2tInWtLVX7Nmo0\n/A4QEamVRoYkDBIiIpXiZDsREUnCICEiIkl41hYREUnCEQkREUmilSDh6r9ERCQJRyRERCqllREJ\ng4SISKU0kiMMEiIi1eJZW0REJIVWDm3JMtnu7++PV199FYWFhXI0T0RkFgRBaNHN2GQZkfj4+GD4\n8OF46aWX0KlTJ4wZMwZ+fn6wsuIAiIioubQyIpHlnV0QBNx3331Ys2YNTp48iQ0bNuCVV15B+/bt\n4eLiglWrVslRloiIFCBLkFy/bHafPn3Qp08fAEBeXh7y8/PlKElEZHIszHlE8uijj97ycZ1OB51O\nJ0dJIiKTY9aHtsaOHStHs0REZsWsRyRERCSdRnKEQUJEpFYCtJEkDBIiIpXSyqEtrv5LRESScERC\nRKRSZn3WFhERSccgISIiSeScI0lISMDx48chCAKioqLg6+urf27//v146623YGFhgTvuuAPx8fGw\nsGh8JoRzJEREKiXXoo0HDhxAdnY2UlJSEB8fj/j4+AbPx8TE4J133sG6detQXl6OPXv2GGyPIxIi\nIpWSa0SSnp6O4OBgAICXlxdKSkpQVlYGOzs7AEBaWpr+Y2dnZxQXFxvupyy9JCIiyQShZbemFBQU\nwMnJSX/f2dm5wTqI10IkLy8P+/btQ2BgoMH2GCRERGbu+oV2ryksLERkZCRiY2MbhM6t8NAWEZFK\nyXVlu06nQ0FBgf5+Xl4eOnbsqL9fVlaGf/7zn5g5cyYGDhzYZHuqDZLa+jpF6tbV35zMcrMycDaE\nnKpraxWpa2NpqUjdsqoqReq2t7VVpG5JqTI7lHbp0lORutl//qxIXTnJNUcSEBCA5cuXIywsDJmZ\nmdDpdPrDWQCwdOlSPP300xg8eHCz2lNtkBARmTu5riPx9/eHj48PwsLCIAgCYmNjkZaWBnt7ewwc\nOBBfffUVsrOzkZqaCgB4+OGHMX78+EbbY5AQEamUnBckzp49u8H9Xr166T8+derUbbXFICEiUimt\nLNrIICEiUimtLJHC03+JiEgSjkiIiFRKKyMSBgkRkUpZaCNHGCRERGrFrXaJiEgSnrVFRESScI7k\nBqIoauabQkSkBlp5z5Tl9N+9e/dixIgRmDBhAk6cOIHHHnsMgwcPxvDhw3HgwAE5ShIRkUJkGZEk\nJSXhk08+QUlJCcLDw7FmzRr06tUL58+fx5w5c/D555/LUZaIyKSY9RyJtbU1dDoddDodOnTooF/D\npXPnzrBUaOVXIiKt0cqhLVmCxMHBAcuWLUNxcTE8PT0RExODQYMG4dixY3BxcZGjJBGRydFKkMgy\nR5KYmAidTocHHngAH374Ifr164d9+/bB1dUVCQkJcpQkIjI5FkLLbsYmiLfaY1EFauqU2XTJnDa2\nqlPoR6/Uxlbl1dWK1FVqY6t6hX6+3Tx7K1JXqY2tLGX8/3ssO7tFr7u3W7dW7olhvI6EiEiltDLZ\nztV/iYhIEo5IiIhUSiuT7QwSIiKVYpAQEZEkWpkjYZAQEakURyRERCQJg4SIiCTRyg6JPP2XiIgk\n4YiEiEiluNUuERFJwjkSiSwEZY66WVlp4wfXGmprlVnPrOLKFUXqKrXmlVJvBjUK/XyVWvOqk3t3\nRerm5f0pW9s8/ZeIiCThiISIiCThiISIiCTRyoiEp/8SEZEkHJEQEamUVkYkDBIiIpXSypXtDBIi\nIpXiBYlERCQJD20REZEkPP2XiIgk0cqIhKf/EhGRJLKOSERRRHFxMURRhIuLi5yliIhMjlZGJLIE\nye+//47ExEScP38eOTk58PLyQklJCXx8fDB//ny4ubnJUZaIyKRoZY5ElkNbsbGxWLBgAb7++mts\n3LgRffr0wa5duzBmzBjMnj1bjpJERCZHEIQW3YxNliC5cuUKunbtCgDo3r07zpw5AwAYPHgwqqqq\n5ChJRGRyLISW3YxNlkNb3t7eePHFF+Hr64s9e/agf//+AICoqCj06NFDjpJERCZHKxckCqIoiq3d\nqCiK+O677/DHH3/A29sbgwcPBgCcPn0aPXv2bNbQq66+vrW71SxaOSbZGqoV2vhIqZ9tOxsbReoq\nNWFaVVOjSF1rS0tF6prixlallZUtel2Htm1buSeGyRIkrYFBIj8GiXEwSIyDQfL/jB0kvCCRiEil\ntPKHLYOEiEilzPo6EiIiko5BQkREkvDQFhERScIRCRERSaKVHRK5+i8REUnCEQkRkUrJeWV7QkIC\njh8/DkEQEBUVBV9fX/1zP/74I9566y1YWlpi8ODBmDZtmsG2OCIhIlIpuRZtPHDgALKzs5GSkoL4\n+HjEx8c3eH7x4sVYvnw5vvjiC+zbtw9nz5412B6DhIhIpSwEoUW3pqSnpyM4OBgA9Nt8lJWVAQDO\nnTsHBwcHdOrUCRYWFggMDER6errhfkr/UomISA5yjUgKCgrg5OSkv+/s7Iz8/HwAQH5+PpydnW/5\nXGNUO0diacGMk1sba2ulu0CWjXExAAAKV0lEQVQyMrefr5xrXpk6qUsu8t2aiMjM6HQ6FBQU6O/n\n5eWhY8eOt3wuNzcXOp3OYHsMEiIiMxMQEIAdO3YAADIzM6HT6WBnZwcA6NKlC8rKypCTk4Pa2lp8\n//33CAgIMNieapeRJyIi+bzxxhs4dOgQBEFAbGwsfvrpJ9jb2yMkJAQHDx7EG2+8AQAYNmwYIiIi\nDLbFICEiIkl4aIuIiCRhkBARkSSqPf23pQxd9i+nX375BVOnTsWkSZPw1FNPGaUmALz22ms4fPgw\namtrMXnyZAwbNkzWepWVlZg3bx4KCwtRXV2NqVOnYujQobLWvF5VVRUefvhhTJ06FWPGjJG9XkZG\nBl544QX87W9/AwB4e3vjlVdekb0uAGzevBkffvghrKysMGPGDAwZMkT2mhs2bMDmzZv190+dOoWj\nR4/KXre8vBxz585FSUkJampqMG3aNAwaNEj2uvX19YiNjcWvv/4Ka2trxMXFwcvLS/a6Jkc0IRkZ\nGeLzzz8viqIonj17Vhw3bpxR6paXl4tPPfWUGB0dLSYnJxulpiiKYnp6uvjcc8+JoiiKRUVFYmBg\noOw1t2zZIq5atUoURVHMyckRhw0bJnvN67311lvimDFjxI0bNxql3v79+8V//etfRql1vaKiInHY\nsGHi5cuXxdzcXDE6OtrofcjIyBDj4uKMUis5OVl84403RFEUxYsXL4qhoaFGqbtz507xhRdeEEVR\nFLOzs/XvH3R7TGpE0thl/9dOa5OLjY0NPvjgA3zwwQey1rnRfffdpx9xdejQAZWVlairq4OlpaVs\nNUeOHKn/+K+//oKbm5tstW6UlZWFs2fPGuUvc6Wlp6djwIABsLOzg52dHV599VWj9yEpKUl/5o7c\nnJyccObMGQBAaWlpg6uu5fTHH3/o/w95enriwoULsv8fMkUmNUdi6LJ/OVlZWaFNmzay17mRpaUl\n2rVrBwBITU3F4MGDjfYfICwsDLNnz0ZUVJRR6gFAYmIi5s2bZ7R615w9exaRkZF44oknsG/fPqPU\nzMnJQVVVFSIjI/Hkk082udZRaztx4gQ6deqkv0hNbg899BAuXLiAkJAQPPXUU5g7d65R6np7e2Pv\n3r2oq6vDb7/9hnPnzqG4uNgotU2JSY1IbiSayZnN3377LVJTU/HRRx8Zrea6devw888/Y86cOdi8\nebPsO7l99dVXuPfee9G1a1dZ69yoe/fumD59OkaMGIFz585h4sSJ2LlzJ2xsbGSvfenSJbz77ru4\ncOECJk6ciO+//95oO+alpqbiH//4h1FqAcCmTZvg4eGB1atX4/Tp04iKikJaWprsdQMDA3HkyBFM\nmDABPXv2xJ133mk27xutyaSCxNBl/6Zqz549eP/99/Hhhx/C3t5e9nqnTp2Ci4sLOnXqhN69e6Ou\nrg5FRUVwcXGRte7u3btx7tw57N69GxcvXoSNjQ3c3d3x4IMPylrXzc1NfzjP09MTrq6uyM3NlT3Q\nXFxc4OfnBysrK3h6eqJ9+/ZG+T5fk5GRgejoaKPUAoAjR45g4MCBAIBevXohLy/PaIeYZs2apf84\nODjYaN9jU2JSh7YMXfZvii5fvozXXnsNK1euhKOjo1FqHjp0SD/yKSgoQEVFhVGOZ//73//Gxo0b\nsX79ejz++OOYOnWq7CECXD1zavXq1QCuropaWFholHmhgQMHYv/+/aivr0dxcbHRvs/A1bWV2rdv\nb5RR1zXdunXD8ePHAQDnz59H+/btjRIip0+fxvz58wEA//3vf3HXXXfBggvG3jaTGpH4+/vDx8cH\nYWFh+sv+jeHUqVNITEzE+fPnYWVlhR07dmD58uWyv7lv3boVxcXFmDlzpv6xxMREeHh4yFYzLCwM\nCxYswJNPPomqqirExMSY9H+8oKAgzJ49G9999x1qamoQFxdnlDdYNzc3hIaGYty4cQCA6Ohoo32f\nb1xG3BjGjx+PqKgoPPXUU6itrUVcXJxR6np7e0MURYwdOxa2trZGO7nA1HCJFCIiksR0/5QkIiKj\nYJAQEZEkDBIiIpKEQUJERJIwSIiISBIGCckmJycHd999N8LDwxEeHo6wsDC89NJLKC0tbXGbGzZs\n0C+TMmvWLOTm5jb6uUeOHMG5c+ea3XZtbS169ux50+PLly/HsmXLDL42KCgI2dnZza41b948bNiw\nodmfT6RmDBKSlbOzM5KTk5GcnIx169ZBp9Phvffea5W2ly1bZvDiwLS0tNsKEiJqGZO6IJHU7777\n7kNKSgqAq3/FX1vD6p133sHWrVvx2WefQRRFODs7Y/HixXBycsLatWvxxRdfwN3dHTqdTt9WUFAQ\nPv74Y3Tt2hWLFy/GqVOnAADPPPMMrKyssH37dpw4cQLz589Ht27dsHDhQlRWVqKiogIvvvgiHnzw\nQfz222+YM2cO2rZti/79+zfZ/88//xybNm2CtbU1bG1tsWzZMnTo0AHA1dHSyZMnUVhYiFdeeQX9\n+/fHhQsXblmXyJQwSMho6urqsGvXLvTt21f/WPfu3TFnzhz89ddfeP/995GamgobGxt88sknWLly\nJaZNm4Z33nkH27dvh5OTE6ZMmQIHB4cG7W7evBkFBQVYv349SktLMXv2bLz33nvo3bs3pkyZggED\nBuD555/Hs88+iwceeAD5+fkYP348du7ciaSkJDz22GN48sknsXPnzia/hurqaqxevRp2dnaIiYnB\n5s2b9RuZOTo64pNPPkF6ejoSExORlpaGuLi4W9YlMiUMEpJVUVERwsPDAVzdja5fv36YNGmS/nk/\nPz8AwNGjR5Gfn4+IiAgAwJUrV9ClSxdkZ2ejc+fO+nWm+vfvj9OnTzeoceLECf1ookOHDli1atVN\n/cjIyEB5eTmSkpIAXF36v7CwEL/88guef/55AMADDzzQ5Nfj6OiI559/HhYWFjh//nyDRUEDAgL0\nX9PZs2cN1iUyJQwSktW1OZLGWFtbA7i6OZivry9WrlzZ4PmTJ082WDq9vr7+pjYEQbjl49ezsbHB\n8uXLb1pDShRF/RpWdXV1Btu4ePEiEhMTsWXLFri4uCAxMfGmftzYZmN1iUwJJ9tJFfr06YMTJ07o\nNyLbtm0bvv32W3h6eiInJwelpaUQRfGWGzz5+flhz549AICysjI8/vjjuHLlCgRBQE1NDQCgb9++\n2LZtG4Cro6T4+HgAV3fSPHbsGAA0uXlUYWEhnJyc4OLigkuXLmHv3r24cuWK/vn9+/cDuHq22LU9\n3hurS2RKOCIhVXBzc8OCBQswefJktG3bFm3atEFiYiIcHBwQGRmJCRMmoHPnzujcuTOqqqoavHbE\niBE4cuQIwsLCUFdXh2eeeQY2NjYICAhAbGwsoqKisGDBAsTExGDLli24cuUKpkyZAgCYNm0a5s6d\ni+3bt+v3/2hM79690a1bN4wdOxaenp6YMWMG4uLiEBgYCODqRlSTJ0/GhQsX9CtPN1aXyJRw9V8i\nIpKEh7aIiEgSBgkREUnCICEiIkkYJEREJAmDhIiIJGGQEBGRJAwSIiKShEFCRESS/B8FFB+feC5j\nkAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "266KQvZoMxMv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for one possible solution." + ] + }, + { + "metadata": { + "id": "lRWcn24DM3qa", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Here is a set of parameters that should attain roughly 0.9 accuracy." + ] + }, + { + "metadata": { + "id": "TGlBMrUoM1K_", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "_ = train_linear_classification_model(\n", + " learning_rate=0.03,\n", + " steps=1000,\n", + " batch_size=30,\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "mk095OfpPdOx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 2: Replace the Linear Classifier with a Neural Network\n", + "\n", + "**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**\n", + "\n", + "You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class." + ] + }, + { + "metadata": { + "id": "TOfmiSvqu8U9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below.\n" + ] + }, + { + "metadata": { + "id": "rm8P_Ttwu8U4", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 987 + }, + "outputId": "cda97595-4cc2-4bf3-e5ec-9d5e5a7204d4" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Replace the linear classifier with a neural network.\n", + "#\n", + "def train_nn_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + "\n", + " periods = 10\n", + " # Caution: input pipelines are reset with each call to train. \n", + " # If the number of steps is small, your model may never see most of the data. \n", + " # So with multiple `.train` calls like this you may want to control the length \n", + " # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, \n", + " # or since it's in-memory data, shuffle all the data in the `input_fn`.\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)]\n", + "\n", + " # Create a DNNClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.DNNClassifier(\n", + " feature_columns=feature_columns,\n", + " n_classes=10,\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier\n", + "\n", + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=1000,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Training model...\n", + "LogLoss error (on validation data):\n", + " period 00 : 5.46\n", + " period 01 : 3.70\n", + " period 02 : 3.67\n", + " period 03 : 2.40\n", + " period 04 : 2.09\n", + " period 05 : 2.02\n", + " period 06 : 2.50\n", + " period 07 : 1.71\n", + " period 08 : 1.63\n", + " period 09 : 1.60\n", + "Model training finished.\n", + "Final accuracy (on validation data): 0.95\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFnCAYAAACcvYGMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8leX9//HXfVZ2TvZOIJCwCXvv\nGQKlCFJAW6x+W23rqLb9tpVa+0VttUvrqLXu+mur4sTF3kMZCSGEmQEhe++dM35/BCKYQUjOysnn\n+XjwkJz7Ptf9yeVN3rnuc9/XpZjNZjNCCCGEcBgqexcghBBCiOtJOAshhBAORsJZCCGEcDASzkII\nIYSDkXAWQgghHIyEsxBCCOFgJJyFuAlDhw6lsLDQIm3l5uYyYsQIi7RlD+vXr2fmzJksWbKE+Ph4\nli5dyltvvXXT7Zw6dYof/OAHN/2+ESNGkJube9PvE6Iv0Ni7ACFE3/XLX/6SFStWAFBSUsLatWuJ\njo5m9uzZ3W4jLi6O119/3VolCtEnychZCAtoamrid7/7HfHx8SQkJPDHP/4Ro9EIwMGDB5kzZw4J\nCQls2rSJ8ePH33DEV1lZyYMPPtg2In3llVfatv3tb38jPj6e+Ph47rjjDoqKirp8/ar9+/ezfPny\n615bsWIFBw4c4NixY6xcuZKlS5eSkJDA1q1bb7oPAgMDWbJkCYcPHwYgIyOD733ve8THx7N8+XJS\nU1MBOHr0KOvWrePBBx/kF7/4BUePHmXRokU37Mf9+/ezaNEiEhISeO2119qOW1dXx3333UdCQgIL\nFizgt7/9LS0tLTddvxCORMJZCAt46623KCws5IsvvuDjjz8mMTGRzz//HKPRyMMPP8zjjz/O1q1b\nycrKoqGh4YbtPfPMM+j1erZv387bb7/NO++8Q2JiIunp6Wzbto3PP/+c7du3s2jRIr766qtOX7/W\ntGnTKCwsJCcnB4CcnBwKCwuZPn06f/rTn9iwYQNbtmzhpZdeYteuXT3qB4PBgE6nw2Qycd9997Fi\nxQq2b9/Oxo0buffeezEYDACcPXuWdevW8fTTT3e7Hx955BH+7//+j61bt6JSqdpCe/PmzXh7e7N1\n61a2b9+OWq0mIyOjR/UL4SgknIWwgH379rFmzRo0Gg2urq4sX76cw4cPk5WVRXNzM3PmzAFaP6c1\nmUw3bG///v3cfvvtAPj4+LBo0SIOHz6Mt7c35eXlfPbZZ1RVVbF+/XpuueWWTl+/lk6nY968eezZ\nsweAXbt2sXDhQjQaDf7+/mzevJnMzEwGDhzYLjS7Iycnh23btrFo0SIuXrxIWVkZq1evBmDChAn4\n+fmRnJwMgKurK9OmTbvpfpw5cyYAK1eubHvP1XYPHTqEyWTiscceY/jw4TddvxCORMJZCAsoLy9H\nr9e3fa3X6ykrK6Oqqgpvb++214OCgrrd3rXv8/b2pqysjODgYF544QW2bdvG3LlzueeeeygoKOj0\n9W+Kj4+/LpyXLl0KwJNPPombmxt33XUXixcvZtu2bd2q8y9/+UvbDWE///nPefjhh4mLi6O6uprG\nxkYSEhJYsmQJS5YsoaysjMrKyrb+6ez77qwfPT09r3v9qoSEBO68806ee+45pk2bxmOPPUZzc3O3\n6hfCUUk4C2EBAQEBbcEDrZ8ZBwQE4OnpSX19fdvrpaWlvWoPYOrUqbzyyiscPnyY0NBQ/vrXv3b5\n+rVmzZrF+fPnycrKIisri6lTp7Yd79FHH+XAgQP87ne/Y8OGDdTV1d2wzl/+8pds27aN7du38/77\n77eFfVBQEB4eHmzbtq3tz6FDh9o+W77Z71uv11NbW9v2enl5+XXvW7duHe+//z5btmzhzJkzbN68\n+Ya1C+HIJJyFsIC5c+fywQcfYDQaqa+v55NPPmHOnDkMHDgQg8HA0aNHAXjnnXdQFKVb7W3atAlo\nDaKdO3cyd+5cDh06xGOPPYbJZMLd3Z1hw4ahKEqnr3+TTqdj5syZ/OUvf2HBggWo1WpaWlpYv349\nxcXFAIwcORKNRoNK1fMfD+Hh4YSEhLSNwMvLy/n5z39+3S8qnX3fHfVjVFQUarW6rR8/+uijtu/v\nxRdf5IMPPgAgODiYiIiIbvWxEI5MHqUS4iatX78etVrd9vXvf/971q9fT05ODsuWLUNRFJYsWUJC\nQgKKorBx40Y2bNiAl5cXd911FyqVCkVRMJvNGI1GlixZcl37r776Kg899BAbN25kyZIlqFQq7rnn\nHuLi4mhqauKLL74gPj4enU6Hn58fTz75JEFBQR2+3pH4+HgeeOAB/vWvfwGg1WpZvXo1d955JwAq\nlYrf/va3uLm5sXPnTvbs2cNTTz11U32kKArPPPMMGzdu5Nlnn0WlUnHXXXfh7u5+w77trB+feOIJ\nfvOb36DT6Vi1alVbWytWrGDDhg28+uqrKIrCmDFj2h7vEqKvUmQ9ZyFsp76+nnHjxpGYmIiXl5e9\nyxFCOCi5rC2Eld16661s2bIFgC1btjB48GAJZiFEl2TkLISVJSYm8vjjj9PU1ISHhwcbN24kLi7O\n3mUJIRyYhLMQQgjhYOSythBCCOFgJJyFEEIIB+Mwj1KVlNRYtD1fX3cqKrp+plL0nvSzbUg/2470\ntW1IP0NgYOc3hjrtyFmjUd94J9Fr0s+2If1sO9LXtiH93DWnDWchhBCir5JwFkIIIRyMhLMQQgjh\nYCSchRBCCAcj4SyEEEI4GAlnIYQQwsFIOAshhBAORsJZCCFEn7Jv3+5u7ffcc0+Tn5/X6faHH/65\npUqyOAlnIYQQfUZBQT67dm3v1r4PPvgLwsLCO93+xz8+Y6myLM5hpu8UQgghbuSZZ/7EuXNnmDVr\nEosXJ1BQkM+zz/6Dp556nJKSYhoaGvif/7mHGTNmcf/99/Dzn/+KvXt3U1dXS3b2ZfLycvnpT3/B\ntGkzWLZsAV98sZv777+HSZOmcOJEIpWVlfzpT38jICCAxx9/lMLCAkaPjmPPnl18/PEWm32fThnO\n+bWFFJryCFF1/huTEEKI3nlvTwbHzxf36L1qtYLR2H7F4knDglgzP6bT991223o++ug9oqMHk52d\nxT/+8RoVFeVMnjyVhIRvkZeXy6OPPsyMGbOue19xcRF//evzHDnyJZ988iHTps24bruHhwfPPfcS\nL730AgcO7CEsLILm5iZeeeVfHD58kPfee6dH32dPOWU4f3FpBymlZ/i/Kb8i0N3f3uUIIYSwguHD\nRwLg5eXNuXNn+PTTj1AUFdXVVe32jYsbC0BQUBC1tbXtto8ZM65te1VVFZcvX2L06DEATJs2A7Xa\ntnOBO2U4jw0czcmS0+zNPciaIbfYuxwhhHBKa+bHdDnK7UpgoFevVyPUarUA7Ny5jerqal588TWq\nq6v54Q/Xt9v32nA1m9uP2L+53Ww2o1K1vqYoCoqi9KrWm+WUN4SND4ojwN2Pr/KPU9tSZ+9yhBBC\nWIhKpcJoNF73WmVlJaGhYahUKvbv30NLS0uvjxMeHsGFC2cBOHbsSLtjWptThrNapWbpkPk0m1o4\nmHvE3uUIIYSwkAEDorlw4Tx1dV9fmp47dz5ffnmQBx/8CW5ubgQFBfHmm6/26jjTp8+irq6On/zk\nB6SkJOPtre9t6TdFMXc0vreD3l7e+CZPHy0//nQDGkXDE9M3oFVrLdq+aGWJS1PixqSfbUf62jYc\nvZ+rq6s4cSKRuXMXUFJSzIMP/oS33/7QoscIDPTqdJtTfuYM4KZ1ZWbYVHZm7+NoYRIzw6fauyQh\nhBB9hLu7B3v27OLtt/+N2WzigQdsO2GJ04YzwNzIGezJOcjunANMD5uMSnHKq/hCCCEsTKPR8Pjj\nT9nt+E6dVj4ueiYFj6O4vpTU0nP2LkcIIYToFqcOZ4AFUbMB2J29386VCCGEEN3j9OEc5hnCSP9h\nZFZlcanqsr3LEUIIIW7I6cMZYOGV0fMuGT0LIYToA/pFOMf6DCbKK5yUkjMU15fauxwhhBBWtnr1\ncurr6/n3v//F6dOnrttWX1/P6tXLu3z/1WUpt2z5jP3791qtzs70i3BWFIUFUXMwY2ZPzkF7lyOE\nEMJG1q+/k1Gj4m7qPdcuS7l06XLmzJlnjdK65NSPUl1rXOBoPnX15UjBcZZFL8JL52nvkoQQQtyk\n//mf7/Lkk08TEhJCYWEBGzb8gsDAIBoaGmhsbORnP/slI0aMatv/D3/YyNy5Cxg7dhyPPPIrmpub\n2xbBANixYysffLAJtVrFwIGD+fWvH2lblvLNN1/FZDLh4+PDrbeu5R//eI7U1BQMBiO33rqGJUuW\ndbjcZEhISK+/z34TzmqVmnmRs/gg/VMO5H3FsuhF9i5JCCH6tI8yPie5OLVH71WrFIym9hNUjgsa\nzaqYb3X6vtmz53H48AFuvXUNBw/uZ/bseQweHMvs2XNJSjrOf//7Fn/4w1/avW/79q0MGjSYn/70\nF+zevaNtZNzQ0MDTT7+Al5cX9913N5mZGW3LUt511928/vrLAJw8eYKLFzN56aU3aGho4PvfX8fs\n2XOB9stNrllze4/65Fr94rL2VdNCJ+GuceNA7pc0G3s/MboQQgjbag3n1o8nDx3az8yZc9i/fzc/\n+ckPeOmlF6iqar9cJEBW1kVGjWpdAnLcuAltr3t7e7Nhwy+4//57uHz5ElVVlR2+//z5s4wdOx4A\nNzc3Bg4cRE5ODnD9cpMdLUfZE/1m5AzgqnFhVvg0tl/ew9HCRGaFT7N3SUII0WetivlWl6PcrvR0\nbu1BgwZTVlZCUVEhNTU1HDy4j4CAIB599AnOnz/L3//+bIfvM5tBpWpd9tF0ZcTe0tLCM8/8mX/9\n6238/QP41a8e6vS4iqJw7UoUBkNLW3s3Wo6yJ5xy5Fzb0EJxRX2H2+ZETEejqNmdfQCT2WTjyoQQ\nQvTWtGkzeeWVfzBr1hyqqioJD48AYP/+vRgMhg7fExU1gPPnW2eKPHEiEYD6+jrUajX+/gEUFRVy\n/vw5DAZDh8tSDhs2kuTkpCvvqycvL5eIiChrfYvOGc7/3n6BB/66l9qG9peu9S7eTA4ZT0lDGadK\nz9qhOiGEEL0xZ848du3azty5C1iyZBmbNv2Xn/3sPkaOHEVZWRlffPFpu/csWbKMM2dSefDBn5CT\ncxlFUdDrfZg0aQo//OEdvPnmq9x++3qef/6ZtmUpn3/+6bb3jxkzlqFDh3HffXfzs5/dx49/fD9u\nbm5W+x6dcsnIHceyeXdPBitnD2L59IHtthfWFfHE0aeJ9h7A/068z2LH7Y8cfdk3ZyH9bDvS17Yh\n/dz1kpFOOXKeNSYMd1cNe5JyaTG0v3Qd4hHMKP/hXKq+zMWqLNsXKIQQQnTBKcPZzUVD/NSBVNU1\nc+RsYYf7LIyaA8CuyzKlpxBCCMfilOEMsHzmINQqhR3Hczq8ey7GJ5oBXpGcKj1LUX2JHSoUQggh\nOma1cD569ChTp05l/fr1rF+/nieeeMJah+pQoK8bk4YFkVdSx5lL5e22K4rCwgFXpvTMPmDT2oQQ\nQoiuWPU558mTJ/P8889b8xBdip8cxZGzRWw/ls2oQf7tto8NHIW/qx9HCpP41qB4mdJTCCGEQ3Da\ny9oAA0K8GBblw5msCnKK28/aolJUzI+ahcFkYH/ul3aoUAghhGjPao9SHT16lMcee4yoqCiqqqq4\n//77mTFjRqf7GwxGNBp1p9t76tjZQp54/SjzJ0bys9vGt9veaGji3s8eQQH+sfxJXDQ6i9cghBBC\n3AyrXdYeOHAg999/PwkJCeTk5HDHHXewY8cOdLqOw6+ikxm9eurqM3QDAtwJ8XNn/4lclk2JwtfL\npd2+M8Omsi1rN5+l7mVOxHSL1uHs5FlF25B+th3pa9uQfrbTc87BwcEsXboURVGIiooiICCAoqIi\nax2uUypFYfHkSIwmM7uTcjvcZ07EdDQqDXtkSk8hhBAOwGrh/Omnn/L6668DUFJSQllZGcHBwdY6\nXJemjwzBy13LvuQ8Gpvbz7vqrfNiSsgEShvLOVly2g4VCiGEEF+zWjjPnz+f48ePc/vtt3Pvvfey\ncePGTi9pW5tOq2b++AjqmwwcOlXQ4T4LImehoLAre7/FVhURQgghesJqnzl7enryz3/+01rN37R5\n48PZcuQyOxNzmD8+om2pr6uCPYIYHTCCU6VnyKzKIsYn2k6VCiGE6O+c+lGqa3m765g+KoSSykZO\npHU8I9iCqNkA7MqWKT2FEELYT78JZ4DFkyIB2H48u8Ptg/UDifaOIrX0LIV1xbYsTQghhGjTr8I5\n1N+DMYP9ycyrJiOvqt12RVHaFsTYLVN6CiGEsJN+Fc7QOqUnwPZjHY+e4wJHEujmz7HCJKqa+vcz\neEIIIeyj34Xz0CgfBgR7cSKthOLKhnbbVYqK+ZGzMZiNHMg9bIcKhRBC9Hf9LpwVRSF+ciRmM+w8\nntPhPlNDJ+Cp9eBA3lc0GZttXKEQQoj+rt+FM8DEYUH4erlw6FQBdY0t7bbr1Dpmh0+j3tDAV/nH\n7VChEEKI/qxfhrNGrWLRxEiaWozsS87rcJ/ZEdPRqjTsyTmA0WS0cYVCCCH6s34ZzgCzx4ThqlOz\nKykXg7H9fNpeOk+mhE6krLFCpvQUQghhU/02nN1dNcweE0ZVbTNHz3a8IIdM6SmEEMIe+m04Ayya\nGIlKUdh+LLvD8A1yDyQucCTZNblkVF60Q4VCCCH6o34dzv56VyYOCyS3pI6zWRUd7nN1UhKZ0lMI\nIYSt9OtwhhtPSjJIP4BB+oGcLjtPQZ3t16MWQgjR//T7cI4O9WZIpA+nL5WTW1Lb4T4LryyIIVN6\nCiGEsIV+H84A8ZNbF8TYcazjSUlGB4wgyC2A44UnqGqqtmVpQggh+iEJZ2BMTADBfu4cOVtIVW1T\nu+0qRcX8qNYpPffJlJ5CCCGsTMIZUCkKiydFYjCa2X0it8N9poS0Tul5MO8IjYZGG1cohBCiP5Fw\nvmL6qBA83bTsPZFHU3P7GcF0ai1zI2bQYGjgywKZ0lMIIYT1SDhf4aJVM29cOHWNBg6fLuhwn1nh\n09CqtOzJPihTegohhLAaCedrzJ8QgUatYsexHEym9pOSeOo8mBY6iYqmSpKLT9mhQiGEEP2BhPM1\n9B46po8KpriygeT00g73mX91Ss+cAzKlpxBCCKuQcP6GxZOuTEpyvONJSQLd/RkbOIqcmjzSKjJt\nWZoQQoh+QsL5G8ICPIgb7E9GbhWZ+VUd7rPg6pSeOTKlpxBCCMuTcO5A/KTWSUm2dzIpSbQ+isH6\naM6WXSC/ttCWpQkhhOgHJJw7MGyAL1FBniRdKKaksqHDfRYNkAUxhBBCWIeEcwcURSF+chRmM+xM\n7Hj0PNJ/GMHuQSQWnaSyqePL30IIIURPSDh3YtLwIHy9XDh4qoD6xpZ221WKigVRszCajezLkSk9\nhRBCWI6Ecyc0ahULJ0TQ1Gxk/8n8DveZHDweL50nB/OO0CBTegohhLAQCecuzBkbhotOza6kXAxG\nU7vt2itTejYaG/ky/5gdKhRCCOGMJJy74O6qZVZcKBU1TRw/V9zhPrPCp6FTadmbc0im9BRCCGER\nEs43sHhiJIoC249ldzgjmIfWnWlhk6loqiSpOMUOFQohhHA2Es43EODjxsShQWQX13LuckWH+7RN\n6Zm9X6b0FEII0WsSzt0QP/nKlJ6dTEoS4ObHuKDR5NUWcKEiw5alCSGEcEISzt0wKMyb2Ag9qRfL\nyCut63CfhVEyKYkQQgjLkHDupquj5x3HOl4QY4B3JLE+gzhXnkZuTcePXgkhhBDdIeHcTWNjAgjy\ndeOrM4VU1TV3uM/V0fPunAO2LE0IIYSTkXDuJpVKYfGkSAxGM3uScjvcZ4T/UEI8gkksOklFY6WN\nKxRCCOEsJJxvwozRoXi4atibnEdTS/tnmlWKigWRszGZTezNPWSHCoUQQjgDCeeb4KJVM298OLUN\nLXx5uuOlIieFjEOv8+Jw3lEaDB2vaCWEEEJ0RcL5Ji0YH4FGrbDjeA6mDp5p1qo0zI2YSaOxicMy\npacQQogekHC+SXpPF6aODKGovJ6UjNIO95kZPgWdWsfenEMYTAYbVyiEEKKvk3DugfhJkUDnk5K4\na92ZETaZyqYqkopkSk8hhBA3R8K5B8IDPRk1yI+0nEouFVR3uM+8iFmoFJVM6SmEEOKmSTj30NdT\nenY8KYm/my/jg+LIryvkXHmaLUsTQgjRx0k499CIAb5EBHqSeL6E0qqO78peEDUbgN3ZMimJEEKI\n7pNw7iFFUYifHInJbGZXYseTkkR5RTDEN4bzFenk1OTZuEIhhBB9lYRzL0wZEYyPp44DKfnUN3Z8\nV7YsiCGEEOJmWTWcGxsbWbhwIR999JE1D2M3GrWKBRMiaGw2ciCl48UuRvgNIcwjhBPFpyhv7Hg9\naCGEEOJaVg3nl156Cb1eb81D2N3cceG4aNXsTMzBYDS1264oCguirkzpmSNTegohhLgxq4VzZmYm\nGRkZzJ0711qHcAgerlpmxoVSUdNE4vniDveZGDwWvc6bw/lHqW+RKT2FEEJ0zWrh/Kc//YmHH37Y\nWs07lEWTIlGU1klJOnqmWaPSMC9yJk3GZg7lH7FDhUIIIfoSjTUa3bx5M2PHjiUyMrLb7/H1dUej\nUVu0jsBAL4u219Vxpo8O4/CpfIqqmxkdE9Bun1v0C9l+eQ8H8r5kzbgEtGqtTWqzBVv1c38n/Ww7\n0te2If3cOauE8759+8jJyWHfvn0UFhai0+kICQlh+vTpnb6noqLeojUEBnpRUlJj0Ta7MndMKIdP\n5bNpx3lC9GM63Gda6CT25Bxk65lDTAudaLParMnW/dxfST/bjvS1bUg/d/3LiVXC+dlnn237+wsv\nvEB4eHiXwewMBofriQnXk5JZRkFZHaH+Hu32mR85i325h9mdvZ+pIRNQFMUOlQohhHB08pyzBcVP\n7npBDF9XHyYEjaWgroiz5RdsWZoQQog+xOrh/MADD7Bq1SprH8YhjIsNJMjHjS9PF1Jd19zhPguv\nTOm567JMSiKEEKJjMnK2IJVKYdGkSAxGE3tOdDylZ4RXGMN8Y0mrzCS7uuN9hBBC9G8SzhY2c3Qo\nHq4a9pzIo7nF2OE+MqWnEEKIrkg4W5iLTs3cceHUNrTw5ZnCDvcZ5hdLuGcoySWplDWU27hCIYQQ\njk7C2Qrmj49ArVLYcSwHUweTkiiKwsKoOTKlpxBCiA5JOFuBr5cLU0cEU1hez6nMsg73mRA0Bh8X\nPYcLjlHfYtlnvIUQQvRtEs5WsnhyFAA7jmV3uF2tUjMvcibNxmYO5smUnkIIIb4m4WwlkUGejIz2\n43x2JZcLO54FZ0bYFFzVruzLPUyLqeP1oIUQQvQ/Es5W9PWkJB2Pnt00rswMn0J1cw3HC0/YsjQh\nhBAOTMLZikYO9CMi0INj54opr27scJ95kTNRKSp2Zx/AZG6/HrQQQoj+R8LZihRFYfGkKExmMzsT\nO57S08dFz6TgcRTWF3Om7LyNKxRCCOGIrLLwhfjalBHBfLg/kwMp+Xx7RjRuLu27fEHUbI4WJvH5\nxR2UNVSgVWvQqrToVFq0ai1aVesfnVqLRqVpfb1tmwaVIr9jCSGEM5FwtjKtRsWCCRF8dOAiB1Ly\nib9yF/e1wj1DGek/jDNl53k//ZObPoZGUaPtMLivBrymLeC1Ks03tl3z+nXv01z3i8HV9+lUrceR\nXwiEEMJ6JJxtYO64cD7/KotdiTksnBiBWtU+2O4ccRsXq7JoNrXQYmyhxdRCi8lAi7Gl9bWrf4yG\ntr9/va/huu21LXU0N7VuM9N+EhRL0FwJ8wh9CHcN+y56F2+rHEcIIfojCWcb8HTTMnN0KHtO5JF4\nvoQpI4Lb7eOudWNUwHCLHtdsNmM0G68L+q9D/ZpA/+YvAdf+cnDl6+ZvtNFiMtBgaCC97BLvp3/K\nD0d9z6K1CyFEfybhbCOLJkWy90Qe249lM3l4EIqiWP2YiqKgUTRoVBrcrNC+yWzi76deIbn4FKdL\nz1n8lwshhOiv5INDGwn2dWfckECyCmtIy6m0dzkWoVJU3D3xdlSKincvfEyjocneJQkhhFOQcLah\nJVduBtt+rOPHqvqiKJ9wFkXNpaKpki8u7bB3OUII4RQknG0oJkLP4DBvUjJKKSx3nsUulgxcQKCb\nP3tzDpFdk2vvcoQQos+TcLax+MlRmIEdx51n9KxTa1k3dBVmzLxz/kOMJqO9SxJCiD5NwtnGxg8J\nJEDvyuHUAmrqm+1djsUM84tlcsh4smvy2J/3pb3LEUKIPk3C2cZUKoVFkyJpMZjYm5xn73IsalXM\nt/DQuvPZxe2UN1bYuxwhhOizJJztYFZcKO4uGvYk5dJicJ5LwF46T1bGfItmYzPvpW3GbLbOBChC\nCOHsJJztwFWnYc64MKrrW/jqTJG9y7GoqSETGOIzmNTSc5wsOW3vcoQQok+ScLaThRMiUasUth/L\nxuREI0xFUVg3bBUalYb30zbTYGiwd0lCCNHnSDjbia+XC5OHB1NQVs/pi2X2Lseigt0DWTJgPlXN\nNXyauc3e5QghRJ8j4WxH8ZMjAeealOSqRQPmEuIexMG8I1ysumzvcoQQok+RcLajqGAvhg/w5dzl\nCrKLauxdjkVpVBpuG3arPPsshBA9IOFsZ0umXJ3SM9vOlVhejE8000Mnk19XyO7sA/YuRwgh+gwJ\nZzsbFe1HeIAHx84VU17daO9yLG5lzFK8tJ5sydpJSb1zfbYuhBDWIuFsZ4qisHhSJEaTmd1Jzjcv\ntbvWndWxy2kxGdiU9rE8+yyEEN3Q7XCura0FoLS0lMTEREwmk9WK6m+mjgzB20PH7qRc3thyjpSM\nUqeanGRC8FiG+w3hXHkaiUUn7V2OEEI4PPXGjRs33minJ554gsrKSsLDw1mzZg0FBQUcOXKEefPm\nWayQegvPM+3h4WLxNq1FrVII0Lty9nIF6blVHD1bxM7EXHKKajGZzPh7u6LVOOZFju70s6IoDNIP\n5HD+UdIqMpgeNhmdWmujCp1DXzqf+zrpa9uQfm7tg85outPA2bNnefTRR3nnnXdYuXIl9913H9//\n/vctVqCAicOCGD8kkMz8Kk7hapvvAAAgAElEQVSklXAirYTj54s5fr4YjVph+AA/JgwNZGxMAN4e\nOnuXe9MC3PxYFr2IzZlb2JzxBd8d/h17lySEEA6rW+F89XPCffv28dBDDwHQ3Ny/f+OxBpVKITbC\nh9gIH9bMiyG3pK4tqFMvlpF6sQxFgdhwPeOHBLaucOXjZu+yu21+5CyOFyXzZcFxJodMINZ3kL1L\nEkIIh9StcI6Ojmbp0qX4+fkxfPhwNm/ejF6vt3Zt/ZqiKEQGeRIZ5MmKmdEUVzZw4kIJJ9JLSM+t\nIi23inf3ZBAV5Nka1EMDCQ/wQFEUe5feKbVKze3DbuWviS/yzoUP2TD5Z2hV3ToFhRCiX1HM3bh9\n1mg0kpaWxuDBg9HpdJw5c4bIyEi8vb0tVkhJiWUn4QgM9LJ4m46iqraJ5IxSTqSVcC6rAqOp9X9h\nkK9b24h6UJg3KhsEdU/6+b20zezP/ZKl0YtYFr3ISpU5F2c+nx2N9LVtSD+39kFnujVsOXfuHCUl\nJQwfPpy//e1vnDx5kgceeICJEydarEjRfXpPF+aODWfu2HDqGw2culjKiQslpF4sZ9vRbLYdzUbv\nqWNcbCAThgQyNMoHjdpxbihbPmgJKSVn2JG1hwlBYwjxCLJ3SUII4VC69RP797//PdHR0SQmJpKa\nmsqjjz7K888/b+3aRDe4u2qYOiKEe1eO5rmfzuSnt8Yxc3QoRqOZfcl5PL3pJA89f4hXPztD0oVi\nmprt/4iWm8aV7wxZgcFs5N0LH8mzz0II8Q3dGjm7uLgwcOBANm3axJo1a4iJiUGlcpyRmGil06oZ\nGxvA2NgAjCYT6TlX7vxOL+GrM0V8daYInUbFyGg/xg8JZExMAJ5u9nmkaWzgKOICRnKq9AxfFSQy\nPWySXeoQQghH1K1wbmhoYOvWrezatYv77ruPyspKqqurrV2b6AW1SsWwAb4MG+DLbQtjySqsabvz\nOzm9lOT0UlSKwtAon7bPqX29On/mzhrWDFnBhYp0Ps74nNEBw/HSedr0+EII4ai6NQlJZGQk77//\nPnfeeScjR47k1VdfZe7cuQwdOtRihfTnSUisTVEUfL1cGDHQjwUTIpg8PAhfLxcamoyk51aRerGM\nHcdzOJVZRm1DM17uWrzcu/csdW/62U3jik6tI6X0DFVN1YwNGt2jdvoDOZ9tR/raNqSfu56EpFt3\nawPU19dz6dIlFEUhOjoaNzfLPl8rd2vbR3l1I8nprXd+X8iuxHTldAgL8GD8kADGDwlkQLBXp49o\n9bafTWYTf018kcs1Odw/9ocM9xvS47acmZzPtiN9bRvSz13frd2tcN61axcbN24kJCQEk8lEaWkp\nTzzxBHPmzLFYkRLO9lfb0ELKlUe0Tl8qp8XQOn+6v7cL42JbL33HRupRX3O/gSX6Oacmnz8nPo+f\niw+PTPk5OnXfmwHN2uR8th3pa9uQfrbAo1SvvfYan376KX5+fgAUFRXx4IMPWjSchf15ummZMTqU\nGaNDaWo2cvpSGUlpJaRklLErKZddSbl4umkZG9s6oh450Ncix430CmNe5Ex2Zx9ga9ZuVgxOsEi7\nQgjRV3UrnLVabVswAwQHB6PVysIFzsxFp2bC0CAmDA3CYDRxPruCE2mlJKeVcOhUAYdOFeCiUzNr\nTDirZ0ej06p7dbxl0YtJLk5lV/Z+JgaPJdwz1ELfiRBC9D3deh7Kw8ODN954g/Pnz3P+/Hlee+01\nPDw8rF2bcBAatYpR0f7cET+Up++fwW/WT2DJlCi83LTsOp7NzsScXh/DRa1j7ZBbMJlNvHP+Q0xm\nWZJUCNF/dSuc//CHP5CVlcXDDz/Mhg0byMvL48knn7R2bcIBqRSFmHA9a+bFsPGuyXh76Pj8q8tU\n1fX+rstRAcMZHxTHpepsDuUdsUC1QgjRN3Xrsra/vz+PP/74da9lZmZed6n7mxoaGnj44YcpKyuj\nqamJe++916LrPwv7c3fV8N0lw3jpw1N8fOAidyYM63Wbq2NXcK48jU8ytxEXOBIfF1lgRQjR//R4\nmq/HHnusy+179+5l1KhR/Oc//+HZZ5/lj3/8Y08PJRxY/JQBhPq7c/BUPjnFtb1uT+/ixYrBS2k0\nNvJB2qcWqFAIIfqeHofzjZ7AWrp0KXfffTcABQUFBAcH9/RQwoGp1SrWzo/FbIZNe9ItMk/2jLDJ\nDNIPJLkkldTSsxaoUggh+pYeh3N31w1et24d//u//8tvfvObnh5KOLi4wf6MivbjbFYFqRfLet2e\nSlFx29BVqBU1my5sptHQZIEqhRCi7+hyEpIPPvig0ze+/vrrbN26tVsHOXfuHL/61a/49NNPOw11\ng8GIRtO7x3GE/VwuqOanT+8lLNCTF/53nkWWqHw39RM+OruNZUMW8P1xqy1QpRBC9A1d3hCWlJTU\n6baxY8d22fDp06fx9/cnNDSU4cOHYzQaKS8vx9/fv8P9Kyrqu1Fu98nsM7ZxtZ/dNQqzx4Sx72Q+\nH+y8wIIJEb1ue1bgLA66HWdL2h5GeY8kyrv3bfZVcj7bjvS1bUg/92KGsKeeeqrHB01MTCQvL49H\nHnmE0tJS6uvr8fW1zIxSwjGtmDWII2eL+OTQJaaNDMbdtXcT1ejUWtYNXcULJ1/l7Qsf8ssJ96NW\nydUVIYTz69ajVLfffnu7y9FqtZro6GjuvffeDm/2WrduHY888gi33347jY2N/O53v5M1oJ2c3kPH\nt6YP5IN9mXz+5WXWzI/pdZvD/GKZEjKBo4VJ7M89zPyo2RaoVAghHFu3wnn69OlcunSJ+Ph4VCoV\nu3btIjQ0FL1ez4YNG3jjjTfavcfV1ZWnn37a4gULx7ZoYgR7T+SxKymHuePCCPJ173Wbq2K+xemy\nc3x2aQdjg0bj5ypXYIQQzq1bQ9mkpCSefvppFi9ezMKFC/njH//ImTNnuPPOO2lpabF2jaIP0WrU\nfGfeYAxGM+/vy7RIm546D1bFfItmYzObLmy2yONaQgjhyLoVzmVlZZSXl7d9XVNTQ35+PtXV1dTU\n9O8P9EV7k4YFMTjcm6QLJaTlVFqkzSkhExjiG8PpsnMkl6RapE0hhHBU3QrnO+64g4SEBFatWsWt\nt97KwoULWbVqFXv37mXt2rXWrlH0MYqisG5+LADv7k7HZIGRrqIo3DZ0JRqVhg/SPqHB0NDrNoUQ\nwlF16zPn1atXs2TJErKysjCZTERFReHj42Pt2kQfNjhcz5QRwRw9W8TRM0VMGxXS6zaD3ANZMmAB\nn1/azieZ21g3dKUFKhVCCMfTrZFzXV0db731Fn//+9956aWX2LRpE42NjdauTfRxt84ZhEat4oP9\nmTS1GC3S5qIBcwjxCOZQ3hEuVl22SJtCCOFouhXOjz76KLW1taxbt441a9ZQWlrKb3/7W2vXJvq4\nAL0b8ZMjqahpYvuxbIu0qVFpuG3oKsyYeef8hxhNlgl9IYRwJN0K59LSUn79618zd+5c5s2bxyOP\nPEJRUZG1axNOYOnUAXi7a9ly5DIVNZaZIzvGJ5oZYVPIrytkV/Z+i7QphBCOpFvh3NDQQEPD1zfg\n1NfX09QkixGIG3Nz0bBy9iCaW0x8fPCixdq9ZXACXjpPtmbtoqS+94ttCCGEI+lWOK9du5aEhATu\nv/9+7r//fpYtW8btt99u7dqEk5gVF0ZEoAeHTxWQXWSZR+/cte6sjv02LSYD7174SJ59FkI4lW6F\n8+rVq3nnnXe45ZZbWLlyJe+++y4ZGRnWrk04CZVKaV3zmdZHqywVpBOCxjDCbyjnK9I5XpRskTaF\nEMIRdHuy69DQUBYuXMiCBQsIDg7m1KlT1qxLOJmR0X7EDfbnfHYlJzNKLdKmoiisHboSrUrLh+mf\nUdtSZ5F2hRDC3nq8EoVcRhQ3a828GFSKwnt7MjAYTRZpM8DNj2XRi6htqWNzxhaLtCmEEPbW43D+\n5ipVQtxIWIAHc8eFUVTRwN7kPIu1Oz9yFuGeoXxVcJz0CsvM5y2EEPbU5Qxhc+bM6TCEzWYzFRUV\nVitKOK9vz4zmqzNFfHroEtNGhuDp1rs1nwHUKjW3D7uVvya+yDsXPmLD5J+hVXVr8jshhHBIXf4E\ne/vtt21Vh+gnvN11LJ8+kPf2ZvDZ4SxuWxhrkXYHekcxO2I6+3MPsyNrD8sGLbZIu0IIYQ9dhnN4\neLit6hD9yIIJEexNzmXPiVzmjQ8nxK/3az4DLB8UT0rJaXZc3suE4LGEeARZpF0hhLC1Hn/mLERP\naTUqvjM3BqPJzPt7LfdInpvGlTVDVmAwG3nnwoeYzJa56UwIIWxNwlnYxYShgcRG6ElOL+XcZcvd\nvzAmcBRjAkaSUXmJIwWJFmtXCCFsScJZ2IWiKKxb0Pp586bd6ZhMlns07ztDVuCqduHjjC+oaa61\nWLtCCGErEs7CbqJDvZk2MoTs4lq+PF1osXZ9XX1YPmgJ9YYGPkj/1GLtCiGErUg4C7u6dc4gdBoV\nHx7IpKnZcss/zo6YxgDvSBKLTnK27ILF2hVCCFuQcBZ25eftSvzkKKpqm9l69LLF2lUpKm4feisq\nRcW7Fz6m2dhssbaFEMLaJJyF3SVMjULvqWPb0WzKqxst1m6EVxjzI2dR1ljOlku7LNaucE6lDeV8\nmP4ZGWVZ9i5FCAlnYX+uOg2rZg+i2WDiowOWW/MZYGn0Ivxdfdmdc4C82gKLti2cQ4uxha2XdvH7\no39lT85BHt/3LBmVl+xdlujnJJyFQ5gxKpSoIE++PF3IpYJqi7XrotaxdugqTGYTb5+XZ5/F9c6W\nXeAPx57h80s7cNO4sXjAPFqMLbyY8rrM0y7sSsJZOITWNZ9jANi0J8Oiq56N9B/KhKAxZFVnczDv\niMXaFX1XRWMlr6b+mxdTXqessYJ5kTP53dRfsmJwAj+fcQ9Gk5F/pLxBWoWsWy/sQ8JZOIzhA/0Y\nGxNAWk4lJ9JKLNr2rbHfxk3jxqeZW6lsqrJo26LvMJgM7Ly8j8eP/pWTJakM0g/k1xN/yurYb+Om\ncQVgUvgY7h69HpPZxD9S3uR8ebqdqxb9kYSzcChr5segVim8vzeTFoPlLkHrXby4ZXACjcYm3k/7\nRNYj74fSKjJ46tizbM7cgk6l5XvD1/Cz8T8mwius3b6jA0Zw9+g7MGPmn6felMfxhM2pN27cuNHe\nRQDU11v2URcPDxeLtynas3Q/e7ppqW1oIfViOR6uGmLC9RZrO8IrjAsVGZwrTyOl9Axms5kg9wC0\nqt4vW2ltcj73XFVTNe9c+JCPM76grqWeWeHT+NHoOxikH9DhkrhX+zrIPZABXhEkFqeQVJxCpGcY\nQe6BdvgOnJOc06190BkJZ9Er1ujn6FBvDqTkcz67ktljQnHRqi3SrqIoDPOLoaKxisyqS5wuO8fe\nnMOU1JfhpfPEx0Xf4Q9rRyDn880zmozsyz3Ma6n/JrsmjwFekdwTdwczw6egVXf+C9m1fR3oHkC0\ndxRJRSdJKkohwiuMYAloi5BzWsJZWJE1+lmnVaNRqziZXkpLi4m4wf4Wa9tN48aE4DHMCJuCp9aD\n4voS0ioz+argOCdLTmMym1pH01388LYHOZ9vTmZlFi+nvsXRwiR0ah23xn6bdUNX4uvqc8P3frOv\nA9z8ifYeQFJxColFKYR5hspypBYg53TX4ayYHeTDt5KSGou2FxjoZfE2RXvW6meD0cSjrx2lpLKR\nJ344mVB/D4sfA8BkNpFWkcnh/KOklJzBaDaiVWkYFxTHjLApDNYPdIjRtJzP3VPTXMvmjC0cKWxd\nkWxa6CRWDE7AS+fZ7TY66+v0ikz+cepNDCYDPxj5XcYGjbZY3f2RnNOtfdAZGTmLXrFWP6tUCv7e\nrhw9V0RZVSNTR4ZY/BjQeqk7wM2f8UFxzAyfipfOk5L6MtIqMzlSkMiJ4lMYzUYC3QPQqXVWqaE7\n5Hzumsls4mDeEV5J/X9kVWcT7hnKPaPvYE7EDFxu8v9bZ33t7+ZHjE80J4pTSCxOIcQjiFCPYEt9\nC/2OnNNyWVtYkTX7OcTPnbScSs5kVRAToSfIx80qx7nKRa1jkH4gcyKmE+s7GKPZyMWqLM6UnWdf\n7mEK64rw1Lrj5+pr89G0nM+du1ydwyup/48vC46hUTTcErOU7w5bjb+bX4/a66qv/Vx9ifUdxImi\n1pvEgtz8CfMM7U35/Zac03JZW1iRtfv5cmENj//rOOGBnmy8axIqlW1Dsba5jmOFSRzKP0ZRfTEA\nQe4BzAibwpSQCTd1ubQ35Hxur66lnk8zt3I4/xhmzEwKHs/KmGXoXTq/VNgd3enrS1XZ/P3kazQZ\nm7hjxFomh4zv1TH7Izmn5bK2sCJr97OPpwulVQ2cuVSOn7crA0J694P3ZunUOqL1A5gdPo2hfrEY\nTSYuVV/mbNkF9uYcoqCuCHeNO36uPlYdTcv5/DWT2cRXBYm8kvoWGVWXCPUI5oejvseCqNm4ajof\niXRXd/ra11XPML8YThSfIqkoBT9X3w6flxadk3NaRs7CimzRzxU1TWx45StcdRqeumcqbi4aqx7v\nRupa6jlWeIJD+UcprCsCINDNnxlhU5gaOtEqo2k5n1vl1OSz6cLHXKq+jE6tY1n0IuZFzEStsszj\ndnBzfZ1dk8sLya/SYGjk9mGrmR42yWJ1ODs5p2XkLKzIFv3s5qLBZDKTklmGSgXDB/Tss0RL0am1\nROujmB0+jeH+QzCZr4ymyy+wJ+cg+bUFuGnd8LfgZ9P9/XxuMDTwccYW3j7/ARVNlYwPiuPHcXcy\n0n8YKsWyEx3eTF/rXbwZ7jeU5JJTJBWnoNd5EeUdYdF6nFV/P6dBRs7CimzVz03NRn7z6hFqG1p4\n8u6p+OtdrX7Mm1Hf0sDxomQO5R0hv64QAH9XP2aETWZq6ET0Lt69ar+/ns9ms5njRcl8lPE5Nc21\nBLkHsGbILQz3G2K1Y/akr/NqC3g++RVqW+pYO2QlsyOmWak659Ffz+lrychZWI2t+lmjVuHppiXx\nQgk19c1MGOpYk0Bo1VoGekcyK3wqI/yHYcZMVnU2Z8vT2Jt7iNzafFw1rgS4+fVoNN0fz+f82kLe\nOPNf9uQcxGw2syx6Md8fsc7qM3T1pK+9dV6M9B/GyeJUTpScwkPrzkDvKCtV6Bz64zn9TfIolbAa\nW/ZzRJAnKZllnLlUzqhBfvh5OdboGVqfm/Z11RMXOJI5EdPxdfGlsqmK9MpMjhclc7QwiSZDM4Hu\n/rhqul9/fzqfGw1NfHpxG/8+9x5ljeXEBYzkJ3F3Ehc4ArWFL2F3pKd97aXzZGTAMJJLUkkuTsVN\n40q0foAVKnQO/emc7oyEs7AaW/azoiiE+rlzOLWQgtJ6ZsaFOsTsXZ3RqrQM8I5kZtgURgUMByCr\nOodz5Wnsyz1Mdk0urmoXAtz8b/h99Ifz2Ww2k1ySyj9P/Ytz5Wn4ufpy54h1LI1eiLvWus+4X6s3\nfe2l82SU/3BSSlJJLklte3ZetNcfzukbkXAWVmPrfg7Qu5FbXMuZrHLCAz0JD7DOtJ6WpCgKPi56\nRgeMYG7EdAJc/ahsqia9MpPEopMcKUikwdhIoJt/25rC3+Ts53NRfQlvnnmbndn7MJiNxA+Yz10j\nbyfU0/YzcPW2rz11HowOGEFKyRlOlqSiVWkY7BNtwQqdg7Of090hN4QJq7FHPxdV1PPbV4/i6+XC\nH+6eglZjucdobCm7JpfD+cdILEym0diEgsJI/6HMCJvCSP9h1z0e5Kznc7Oxme1Ze9iVvR+D2cgI\nv6F8Z8gKgtwD7FaTpfq6pL6M55JfpqKpkuWD4lkycIEFqnMeznpO3wy5IUxYjT362dNNS0OTgdSL\n5bjpNMRG3HilIUekd/FmdMBw5kTMINDNn+rmWtIqM0kqTuHL/OPUGxoIcPXDXevmdOez2WzmVOlZ\n/nnqX6SWnUPvomf98O+wfFA8njr7Xg2xVF97aN2JCxzJqdIzpJScRgFifQf3vkAn4WzndE/IyFlY\njb36ub6xhYdfPoLRZOKpe6bh7WG/RSksKbcmn8P5xzhWeIJGYyMKCsP9hhA/bBbuBm+8dJ54aN0t\n/myvLZU2lPF+2iecLjuPSlGxIHI2CdELb3qBCmux9Dld1lDOc8kvU9ZYQcLABSyLXuzQ90rYivyM\n7nrkLOEsesWe/bw7KZf/7kxj3rhw1scPtUsN1tJsbOZE8SkO5x/lYtXl67YpKHho3fHSeeKl9cRL\n54mnzhPvK1976jyv2eaBi9rFIcKgxdjCzux97Li8lxaTgSG+MawdsoIQB1vZyRrndHljBc+deJnS\nxnLiB8xn+aB4h/h/Yk/yM7rrcLbvPIhC9MKcsWHsTspl38k85o8PJzzQNotQ2IJOrWNq6ESmhk4k\nv7aQjPp0CipKqWmupaallprmOqqbaii4Mn1oV7Qq7XVh7XlNqHtdF+SeeGo9LDoV5lVnyi7wXtpm\nShvK0Ou8WBW7nAlBY/pNQPm5+vLQ+B/zXPLLbL+8B5PZxIrBCf3m+xc3z6oj5z//+c8kJSVhMBj4\n0Y9+xOLFizvdV0bOfZO9+/lkRinPf3CKUYP8+PmasXarw9o662eDyUBtSx01zXXUtgV37TUhfv3X\nBpPhhsfy0LhfGX17XAltr9a/dzAyd9O4dhkw5Y0VfJj+GSdLTqNSVMyNmMHS6EWd3pXuCKx5Tlc2\nVfFc8ssU15eyIHI2K2OW9duAtvfPDkdgl5HzkSNHSE9PZ9OmTVRUVLBy5couw1mInhgz2J8RA305\nfbGc1ItljB7kb++SbEqj0uDjosfHRX/Dfc1mM03GJmqa664Ed82V4G79uvYboV5cX4KZrn931yjq\nb1xG98TzSqg3GpvYk32AZlMLg/UDWTt0JeH9fO1jHxc9D437Mc8lv8LunAOYzCZujV3ebwNadM5q\n4Txp0iTi4uIA8Pb2pqGhAaPRiFrdNx97EY5JURTWzo9l4xvHeG9PBiMG+qJW9d2bpaxJURRcNa64\nalwJ5Ma/xBhNRuoM9W0j79aRed2Vr2vaLq/XNNdSVF9CjjGvXRueWg/WDl3JlJAJEkBX6F28eWj8\nj3gu+RX25h7CaDaxZsgK6R9xHZvcELZp0yYSExP5y1/+0uk+BoMRTR99XlXY3wvvnWTH0cvcu3oM\nCdMG2rucfqnR0ER1Uy3VjTVUNlbTaGhibOgIuz8a5aiqGqt5Yt/zZFflsWjwLH4wYV2fvgtfWJbV\nw3nXrl28/PLLvPHGG3h5dX59XT5z7pscpZ+rapt4+JUj6DQqnrpnGu6uznWvo6P0c39gy76uba7j\n+ZOvkFdbwIywyawbuqrfBLSc011/5mzVs+DgwYP885//5NVXX+0ymIXoLb2nC8umDqCmvoUvjmTZ\nuxwhusVT58GD435EpFc4h/OP8d/zH2Aym+xdlnAAVgvnmpoa/vznP/Pyyy/j49M3Z3ASfcviSZH4\nebuw83gOJZUN9i5HiG7x0Lrz07F3E+UVwZGCRP5z7n0JaGG9cN6yZQsVFRU89NBDrF+/nvXr15Of\nn2+twwmBTqtm9ZzBGIxmPtyfae9yhOg2d607D4y9mwHekRwtTOKts+9iNBntXZawI6t9MLd27VrW\nrl1rreaF6NDkEcHsTMzl2LliFk6sIib8xo8YCeEI3LVuPDD2h7x48g0Si05iNpv5/oh1VpkURji+\n/nHngeg3VIrCbQtiAXh3dzomx5idVohucdO4cf/YHzBYP5Ck4hTePPuOjKD7KQln4XRiIvRMGhbE\nxfxqjp278fSWQjgSV40r9475ATE+0SQXn+L1M//t1sxuwrlIOAuntHruYDRqhQ/3ZdLcIiMP0be4\naly4d8wPGOIzmJSS07x2+j+0SED3KxLOwikF+rixaGIkZdVN7EzMsXc5Qtw0F7WOn4y5i2G+saSW\nnuW11P8nAd2PSDgLp7Vs2kC83LV8/tVlqmqb7F2OEDdNp9bxo7g7Ge43hNNl53kl9S1ajC32LkvY\ngISzcFrurhpumTWIpmYjHx+8ZO9yhOgRnVrLj0Z/nxH+QzlbdoGXU9+iWQLa6Uk4C6c2e0woYQEe\nHDyVT05xrb3LEaJHtGot94z+PqP8h3OuPI1/nnqTZmOzvcsSViThLJyaWqVi7fwYzGbYtCcdG6zz\nIoRVaFUafjh6PXEBI7lQkcE/Ut6gSQLaaUk4C6c3epA/o6L9OJtVwanMMnuXI0SPaVUafjDqu4wN\nHEV65UVePPk6jQa5n8IZSTiLfmHt/BgUBd7bm4HBKPMWi75Lo9LwPyO/y7igODKrLvFiyusU1ZfI\n59BOxrnW1ROiE+GBnswZG86+5Dz2n8xnwYQIe5ckRI+pVWruGnEbKhSSilN4/MhfAHDXuKF38cbH\nRY9e542Pizd6F2/0Lvq2v3vrvPrNspR9mYSz6DdumRnNkTOFfHLoEooCsRE+hAd6oFIUe5cmxE1T\nq9R8f8Q6BuqjyKspoLKpiqrmaiqbqimo63xmPAUFb51Xa4C7fCPAdd5tr7lp3FDk34bdSDiLfsPb\nQ8etcwbz351p/GdHGgDuLhpiIvTERuiJjfAhOtQbrUZGFaJvUKvUzI+c1e71ZmMzlU3VVDVVU9VU\nRWVz698rm6qu/LeavLoCLtd0PkGPVqVtC+5OR+I6b7RqrTW/xX5Lwln0KwsmRDAy2o+0nErScypJ\nz63iVGZZ241iGrWK6FAvhkT6EBuhJyZcj7ur/PARfYtOrSPIPYAg94BO9zGbzdQZ6tvCui3IrxmB\nVzVVk1mZhZnOn3Lw0LpfCe7rR+JXA13vosdL5yGX0m+ShLPod0L83Anxc2f2mDAAKmqayMirag3s\n3Eoy8qpIz60CQKH18+ohka0j6yGRPvh6udixeiEsQ1EUPLUeeGo9CPcM7XQ/o8lIdXNNa1g3fz36\nvnYkXt5YSX5dYadtqBRVu0vp/oXetDSa0aq0rX/UWnQqDRqVFt2Vr7UqDVqVFp36yj5XvtaoNE5/\nyV0xO8iDnyUlNRZtL0b2R6kAABZOSURBVDDQy+JtivacsZ8bmgxk5lWRlltJek4VFwuqaTF8fYd3\ngN6V2AgfYiP1DInwIdTf3eo/KJyxnx2V9HXPNBqaqPrG5fO2v18zEjeae78QjYKCRqVpF+KtIX8l\n0Nu2XbP9ytc6laaLbR2/T6OoLf7vPDDQq/PvUcJZ9EZ/6GeD0URWYQ3pV8I6PbeSusavFyDwdNO2\nfWYdG6lnQLAXGrVlL+H1h352FNLX1mMym6hrab2U7uqloqSsmmZTCy2mFlqMV/5rMrR93Xz16yvb\nmk0tGEwGmtv2bblmmwHDlf2tQUFhTsR0vjNkhcXa7Cqc5bK2EDegUauICW/9/DlhCpjMZgpK60jP\n/Xp0nZxeSnJ6KQA6jYpBYd5tl8EHhXnj5iL/1IRQKSq8dJ546TwJDPQiAMv/EmQymzCYjG3hfX2Q\nG64L9WaTocNtzdf9svD1tmD3IIvX2xn5iSHETVIpCuGBnoQHejJ3XDgA5dWNbUGdnlvJhexKzmdX\ntu0fGexJbETrZfDYSB/0Hjp7fgtCOC2VokKnVqHr43eRSzgLYQF+3q5MHRHC1BEhANQ1tpBxdWSd\nW0VWQTWXC2vYlZgLQLCv23WfWwf5yjOlQoivSTgLYQUerlrGxAQwJqb1UZYWg5FLBa2fW6flVJGR\nV8mh1AIOpRYArc9gfz2y1hMZ5IlaJY+eCNFfSTgLYQNajZohka2fQS+bBiaTmdySWtJzq64EdiVJ\nF0pIulACgItOTUyYN7GRPsRG+OCld7PzdyCEsCUJZyHsQKVSiAr2IirYiwUTIjCbzZRWNbbeEZ7b\n+sz1mawKzmRVAKB57yQjB/oxZUQwY2MDcNXJP10hnJn8CxfCASiKQqCPG4E+bkwf1TohRE19Mxm5\nrROiXMitJCWzjJTMMv5/e/ce1OSZ7wH8mytIwiUkIYgIYoIiKBdFWa3aG9rd7pw61bZYK+35o52z\n0+2c053uzjpurd1pd+fQc/acnbWddns7x+rZlVa7vZxute1p6dpWwbYCyk0CiHIxIRDCJUBI8p4/\ngrS6K0uV5H15/X5mnCiG8MvPzPv1fZ73fR6tWok8mwmrlliQa02ERq0SuXoimmkMZyKJio3RomCR\nGQWLzDCbY1HTcAFVDQ5UNjhxojH0a06UCsszzSjKtmDJAgPnqa/CqM+P+rNuVNtdaOn0oGjpXGxc\nMY+jEyQqLkJC14R9joxv91kQBJxzDKGywYGqBgf6BsYAhBZDWZmVhKJsC2yp8dxtawq9nlHUtLhQ\nbXehsb1/co9vlVKBQFBAYlwU7itehIJFZpErlS8eO7hCGIUR+xwZV+pzUBDQ0ulBZb0DXzY6MeAd\nBwAYYqOwakkSVi2xYEFy7HV/m1ZQENDWPYAauwvVzb3o6Bma/LtUsx55NiPybSakmvWoqO3GwY+b\nEQgKKMg04b4Ni5AYFy1i9fLEYwfDmcKIfY6M6fQ5EAyisb0flQ0OfNXUg5Gx0DKGSYY5WLXEgqJs\nC+aZdJEoVxJGfX7UtblRY3ehtsU1+R8XtUqBrDTDxK1uRpguuxL+4hTCa0eacOZ8P6I0Kty5LgO3\nFqZy2mAG8djBcKYwYp8j47v2edwfxOm2XlTWO1Btd8E3Hhq2TTXrUJRtwcolFiQlyO/2LJdnBDX2\nXtTYXWg854Y/EDq8xcVokGsN3Xeek2GYcj75Yq8FQcBnp7rxxictGBoZR5pFjwe+n4WMuXGRejuy\nxmMHw5nCiH2OjGvp85gvgGq7C1UNDpxq7Z0MrIUpcShaYkFhVtKs3QYzKAho6xpAtd2FGrsLHT3D\nk3+XatYjP9OIPJsJGXPjpj0Hf3mvB70+vP6JHZ+fugAFgFuWp+LO9QsRE80Lxq4Fjx0MZwoj9jky\nZqrP3tFxfHWmB1X1DtS3uyEIoT2rF6clYFW2BYWLk6CfI+01iUPD1X2otrtwqqX30uHqdAPybSbk\nWU0wxl/dPPGVet3Y7sZrR5pwoc+LeL0W9xUvworF5ut+Pv9q8djBcKYwYp8jIxx99gz78GWjE5UN\nDtg7PABCVyvnZCSiaElosROp7KZ1xeFqnRa51tDFXNkLph6unq6pej3uD+L9ynb87xft8AeCyLUa\nsX3DIphkOEUQbjx2MJwpjNjnyAh3n3s9ozjR6ERlvQPtjtDP0aiVyLMaJxY7MUKridxiJ8GggNaJ\nq6svH66en6RHns2EfJsJC+bGzvgtY9PptaPPi9eONKGh3Q2tWolNazOwYeX8Gd/HW8547GA4Uxix\nz5ERyT5f6POiqt6BygYHunu9AIBorQoFE4udZC8whCWERsZCw9U1LS7UtvRicHK4Wokl6Qbk20Lz\nx+G+rWm6vRYEAcfrHTjwf80Y9I4j1azD/d/Pgm1efFjrkwseOxjOFEbsc2SI0WdBEHDeObHYSb0T\nvQOjAEKLnRQuNmPVEgsWzU+AUnn1Z66u/hHUtPSi2u5C02XD1XmTw9WJiNJG7qz9u/Z6aGQcByta\n8JeaLgDATfkp2HKTFbpoac/di43HDoYzhRH7HBli91kQBLR0DaCq3oETjU54hn0AgAS9FiuzQvdQ\nZ8z9+4udBIMCWrsGJlfn6vzWcHXaxeHqTBPSk2d+uHq6rrbXzR39eO1wEzpdw4iL0WDrrZkoyrbw\ngrErEPszLQUMZwob9jkypNTnYFBA0zn35GInw6OhxU7MCdGhxU6WWJCapJ98/uRwtd2F2tZLh6uz\nF0wsBmI1SmYVrmvptT8QxJGqc3j387Pw+YPIWWDA9tsWw2KImeEqZz8pfabFwnCmsGGfI0OqffYH\ngjjd1oeqBgdOnnFhbDwAAJhn0mGZ1YjzjkE0nutHIBg6zMTrtMibmDvOTo/scPV0zUSvnf0j2P9B\nE0639kGtUuIfbliAHxSl8YKxb5HqZzqSGM4UNuxzZMyGPo+NB1DbElqVrLald3IziTSLPnTvsU3c\n4erpmqleC4KAE41O/PGjZniGfZhrjMH9ty3G4jTDDFQ5+82Gz3S4MZwpbNjnyJhtffaO+mHv9CDV\nrJPMcPV0zXSvvaN+HPpLCyq+7oQAYO2yubjnFpvkF3sJt9n2mQ6HqcJZGisMEJGsxESrkWs1il2G\nJMREq1G6cTHWLE3Ga4eb8NmpblTbXSi5xYY1S5N5wRj9TZwAISKKAGtKPJ74x0KU3GKDzx/AK+81\n4N/+eBLdvcN//5vpusNwJiKKEJVSidtWpeFXD34P+TYTGs/1Y/erVXjraCvG/QGxyyMJYTgTEUWY\nMT4a/3xXLh7ZvAyxMVq88/lZPPFKFerP9oldGkkEw5mISCTLF5nx9INF2FA4H87+Efz7gWq89G4d\nBiYWeaHrFy8IIyIS0ZwoNe4tzsSapcnYe7gRx+pCt6LdfbMNa3PnSv7WMwoPnjkTEUlAenIsHr+/\nENuKMxEICvjv9xvxr//zNTp7hsQujUQQ1nA+c+YMiouLsX///nD+GCIiWVAqFSgunI9fPfQ9rFhs\nhr3Dgyf/6wQOfdoyufoaXR/CFs5erxdPPfUUVq9eHa4fQUQkS4bYKPz4zmX4l7tykaCPwnvH2rHr\n5Uqcau0VuzSKkLCFs1arxUsvvYSkpKRw/QgiIlnLs5nw9INF+EFRGvoGxvCfr9fghbdPo39oTOzS\nKMzCdkGYWq2GWs3rzYiIrkWUVoW7b7bheznJeO1wI6oanDjV2ou7brTixoJ5vGBMpsK+tvaePXtg\nMBiwffv2KZ/n9wegVktvhxoiIqkIBgUcOX4We9+rx/CoH4vTDPjx3XnISIkXuzSaYZI5tXW7vTP6\nelxUPTLY58hgnyNH6r0uzDQh88EiHPjYjsp6Bx79j0+xfJEJBZlmLLMaZ82GGlLvcyRw4wsiIhmJ\n10fhn+7IwQ3LkvHHj5rxZVMPvmzqgVKhQGZqPPIzTcjPNMFiiBG7VLpKYRvWPn36NMrKytDZ2Qm1\nWg2LxYI9e/YgISHhbz6fW0bOTuxzZLDPkTPbei0IArp6vahu7kG13YXWzgFcPKjPNcagINOM/EwT\nFs6Ng1Ipnfnp2dbncOB+zhQ27HNksM+RM9t77RkaQ01LL6qbXag/2wefPwgAiIvRINdmQoHNhOyM\nRERpxL3GZ7b3eSZwWJuI6DoRr4/C+rwUrM9Lwdh4APVn+1Dd7EKN3YXParvxWW03NGolchYkIj/T\nhDyrEfH6KLHLpsswnImIZCpKo0JBphkFmWYEBQFtXQOotrtQ3ewKPdpdAICFKXHIt5lQkGlCikkH\nBW/PEh3DmYjoOqBUKGCdFw/rvHhsudEKp9s7GdJnznvQ2jWAN//SCnNCNPJtoXnqzNR4qFXcgkEM\nDGcioutQkiEGG1elYeOqNAyNjONUa2ie+lRrLz788jw+/PI8dNFqLLMakW8zYWmGETHRjIxIYaeJ\niK5z+jkarM5JxuqcZIz7g2g67548qz5e58DxOgdUSgWy0hKQn2lGns0IU/wcscuWNV6tTdeEfY4M\n9jly2OtvCIKA884hVDe7cLLZhXbHN31JS9JP3k+dbon9zvPU7DOv1iYioqugUCiQZolFmiUWd6zN\nQN/AKGrsLpy0u9DY7sY55xDe+fwsDLFRyLOZkG8zYUm6ARo156mvFcOZiIimJTEuGjcvT8XNy1Mx\nMuZHXVsfTja7UNviQsXJTlSc7ESUVoWlGYnIt5mQazUiNkYrdtmzEsOZiIi+szlRahRmJaEwKwmB\nYBD2Dg+q7aHh76+aevBVUw8UCiBzXjzyM80oyDTBksjlRKeL4UxERNdEpVRicZoBi9MMuOdmG7p7\nvZP3Uzd3eHCmw4PXP7FjrjEG+bbQPHUC1/2eEi8Io2vCPkcG+xw57PXMGhj2oaYlFNR1bd8sJwoA\numg14vVRSNBrEa+beJz8sxYJ+ijE67WI1srzPJIXhBERkSjidFqsy03ButwU+MYDqG93o9buQt+Q\nDz1uL/oHx9DlGp7yNaK0KiTovgnui6GdoAs9Xvx6TJRaNqubMZyJiCgitBpVaFjbZrpkhMI3HoBn\n2AfPkA/9Q2PwDE88DvnQPzyG/kEfPMNjcLhHpnx9jVqJeJ32kuCeDHJ91OTZuD5GA6XEQ5zhTERE\notJqVDAnzIE5YeqFTfyBIAaGfZeG90SYf/v3bV2DCAoDV3wdlVKBON2lQ+cXf//tMI/TaaBSinNb\nGMOZiIhmBbVKicS4aCTGRU/5vGBQwODIODxDY+gf8oUeh0OPF8/GPUM+dPQM4+yFK19foAAQG6NB\n/ERgr89NQWFW0gy/q7+N4UxERLKiVCpCw9s6LdIsV36eIAjwjvnRP3hZeA+FhtEvBruzfwTnnUPQ\nz9EwnImIiMJJoVBAF62BLlqDeeapnzvq8yNKo4pMYWA4ExER/V2Rvp2LC6ASERFJDMOZiIhIYhjO\nREREEsNwJiIikhiGMxERkcQwnImIiCSG4UxERCQxDGciIiKJYTgTERFJDMOZiIhIYhjOREREEqMQ\nBEEQuwgiIiL6Bs+ciYiIJIbhTEREJDEMZyIiIolhOBMREUkMw5mIiEhiGM5EREQSI8tw/vWvf42S\nkhJs3boVtbW1YpcjW8888wxKSkqwZcsWfPDBB2KXI2ujo6MoLi7Gm2++KXYpsvXOO+/gjjvuwObN\nm1FRUSF2ObI0PDyMRx55BKWlpdi6dSuOHj0qdkmSpRa7gJlWVVWF9vZ2lJeXo6WlBTt37kR5ebnY\nZcnO8ePH0dzcjPLycrjdbtx5553YuHGj2GXJ1vPPP4/4+Hixy5Att9uN5557DocOHYLX68WePXtw\n0003iV2W7PzpT39CRkYGHnvsMTgcDjzwwAM4fPiw2GVJkuzC+dixYyguLgYAWK1WeDweDA0NQa/X\ni1yZvKxcuRK5ubkAgLi4OIyMjCAQCEClUolcmfy0tLTAbrczLMLo2LFjWL16NfR6PfR6PZ566imx\nS5Ilg8GApqYmAMDAwAAMBoPIFUmX7Ia1XS7XJf/giYmJ6OnpEbEieVKpVIiJiQEAHDx4EOvXr2cw\nh0lZWRl27Nghdhmy1tHRgdHRUfzoRz/Ctm3bcOzYMbFLkqUf/vCH6OrqwoYNG7B9+3b8/Oc/F7sk\nyZLdmfPluDppeH300Uc4ePAgXn31VbFLkaW33noL+fn5mD9/vtilyF5/fz+effZZdHV14f7778cn\nn3wChUIhdlmy8vbbbyMlJQWvvPIKGhsbsXPnTl5HcQWyC+ekpCS4XK7JPzudTpjNZhErkq+jR4/i\nhRdewMsvv4zY2Fixy5GliooKnD9/HhUVFbhw4QK0Wi2Sk5OxZs0asUuTFaPRiIKCAqjVaqSlpUGn\n06Gvrw9Go1Hs0mTl66+/xtq1awEAWVlZcDqdnA67AtkNa99www04cuQIAKCurg5JSUmcbw6DwcFB\nPPPMM/j973+PhIQEscuRrd/+9rc4dOgQXn/9ddx99914+OGHGcxhsHbtWhw/fhzBYBButxter5fz\noWGQnp6OmpoaAEBnZyd0Oh2D+Qpkd+a8fPly5OTkYOvWrVAoFNi9e7fYJcnSn//8Z7jdbjz66KOT\nXysrK0NKSoqIVRFdHYvFgttuuw333HMPAODxxx+HUim7cxfRlZSUYOfOndi+fTv8fj+efPJJsUuS\nLG4ZSUREJDH8ryEREZHEMJyJiIgkhuFMREQkMQxnIiIiiWE4ExERSQzDmWiW6ujowNKlS1FaWjq5\ny89jjz2GgYGBab9GaWkpAoHAtJ9/7733orKy8mrKJaLvgOFMNIslJiZi37592LdvHw4cOICkpCQ8\n//zz0/7+ffv2cREIIgmS3SIkRNezlStXory8HI2NjSgrK4Pf78f4+DieeOIJZGdno7S0FFlZWWho\naMDevXuRnZ2Nuro6+Hw+7Nq1CxcuXIDf78emTZuwbds2jIyM4Cc/+QncbjfS09MxNjYGAHA4HPjp\nT38KILTXdElJCe666y4x3zqRrDCciWQiEAjgww8/xIoVK/Czn/0Mzz33HNLS0v5qg4GYmBjs37//\nku/dt28f4uLi8Jvf/Aajo6O4/fbbsW7dOnzxxReIjo5GeXk5nE4nbr31VgDA+++/j4ULF+KXv/wl\nxsbG8MYbb0T8/RLJGcOZaBbr6+tDaWkpACAYDKKwsBBbtmzB7373O/ziF7+YfN7Q0BCCwSCA0BK3\nl6upqcHmzZsBANHR0Vi6dCnq6upw5swZrFixAkBoU5mFCxcCANatW4c//OEP2LFjB2688UaUlJSE\n9X0SXW8YzkSz2MU5528bHByERqP5q69fpNFo/uprl2+NKAgCFAoFBEG4ZI3piwFvtVrx3nvv4cSJ\nEzh8+DD27t2LAwcOXOvbIaIJvCCMSGZiY2ORmpqKTz/9FADQ1taGZ599dsrvycvLw9GjRwEAXq8X\ndXV1yMnJgdVqxcmTJwEA3d3daGtrAwC8++67OHXqFNasWYPdu3eju7sbfr8/jO+K6PrCM2ciGSor\nK8PTTz+NF198EX6/Hzt27Jjy+aWlpdi1axfuu+8++Hw+PPzww0hNTcWmTZvw8ccfY9u2bUhNTcWy\nZcsAADabDbt374ZWq4UgCHjooYegVvNwQjRTuCsVERGRxHBYm4iISGIYzkRERBLDcCYiIpIYhjMR\nEZHEMJyJiIgkhuFMREQkMQxnIiIiiWE4ExERScz/A7vt6WYTql14AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFnCAYAAACM3c9QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcFfX+P/DXsLqAwkEPrmjpJZWk\n0MoMFeWCqGV5TYUyzKKbuGRamooEaIJSlrcMt7IsskSRknJB60ZXC1HTXDAtrUhc2BdZRJb5/eHX\n8xOVAzLMnJlzXk8f5/HgbPP+AMKL92dmPiOIoiiCiIioiaxMPQAiItI2BgkREUnCICEiIkkYJERE\nJAmDhIiIJGGQEBGRJAwSkkQURXz88cd47LHHEBAQAD8/P0RFReHy5cuStjtnzhz4+Phg7969d/ze\nY8eOISQkRFL95rZjxw6Ulpbe9rm3334bX3zxhcIjImo+As8jISneeustHDhwAO+//z5cXV1RXl6O\n6Oho/Pnnn9i4cSMEQWjSdnv37o2UlBS4ubk184hNY8SIEdiwYQM6dOhg6qEQNTt2JNRkRUVFiI+P\nx7Jly+Dq6goAaNWqFSIiIvDCCy9AFEVUVlYiIiICAQEBGDlyJJYtW4aamhoAgK+vLzZt2oRx48Zh\n0KBBWLZsGQAgODgYtbW1CAkJwQ8//ABfX18cOnTIUPf6/erqaixcuBABAQHw9/fHjBkzUFpaivT0\ndPj7+wNAk+rfLDg4GOvWrUNgYCAefvhhbNy4EatWrcKIESMwatQonDt3DgDwxx9/4KmnnsLIkSPh\n7++Pb775BgCwYMEC/PnnnwgODsahQ4cwf/58LF26FKNHj8bOnTsxf/58rFq1CseOHcPQoUNRVlYG\nAFizZg1mzpzZ3N82ombHIKEmO3r0KDp06IAePXrUedze3h6+vr6wsrLCJ598gkuXLmH79u348ssv\ncejQIcMvWAA4ePAgEhISsHXrVnz22We4dOkS4uPjAQDx8fHw8fGpt/6+ffuQlZWFXbt2Yffu3ejZ\nsyeOHDlS5zVNqX87Bw8exMaNG7F06VK89dZb6NChA3bt2oWePXti69atAIA333wTw4YNw86dOxET\nE4OFCxeiqqoKS5cuNXw+DzzwAAAgLS0NiYmJGDlypKGGp6cn/Pz8sHbtWmRnZ+Pzzz9HeHh4g98H\nIlNjkFCTFRUVwcXFxehrUlNTMWHCBNjY2KBFixYYPXo0fvzxR8Pzo0ePhrW1NVxdXeHi4oKLFy82\nur5Op8PZs2exZ88eVFRUYNasWRg8eLAs9YcNGwYbGxu4u7ujoqICAQEBAAB3d3fk5OQAAFatWmXY\nN9O/f39UVlYiNzf3ttsbOHAg7O3tb3l89uzZ2LVrFxYsWIBp06ZBr9c3+utBZCoMEmoyZ2dnZGdn\nG31NQUEB2rZta7jftm1b5OfnG+47ODgYPra2tjZMOzWGp6cnwsPDER8fD29vb7z66qsoKSmRpX7r\n1q0Nr7nxvpWVFWprawEAe/fuxcSJExEQEIBRo0ZBFEXDcze7cUw31xk5ciR+/vlnjB492ujnT6QW\nDBJqsvvvvx/5+fnIyMio83hVVRVWrFiBiooKtGvXDkVFRYbnioqK0K5duzuqc+MvawAoLi42fDxi\nxAjEx8fj+++/R0VFBdavX1/nvc1RvzGqqqowa9YsTJ06FSkpKUhOTm7SgQbZ2dn4+uuv8eijj+L9\n999v9nESyYFBQk3Wpk0bvPDCC5g3bx4yMzMBABUVFYiIiMDJkyfRsmVLDB06FImJiaipqUF5eTm2\nbdtmdL/H7bRv3x6nTp0CcO0w2srKSgDA1q1bERcXBwBwcnLC3Xfffct7m6N+Y1RUVKC8vBz33nsv\ngGv7ZmxtbVFeXg4AsLGxuaVbup3o6Gi88MILCAsLw86dO/Hrr782+1iJmhuDhCR56aWXMGHCBEyd\nOhUBAQEYO3YsXFxcDH9NBwcHo0OHDnj00Ufx5JNPYujQoXV2MDfGtGnTsGHDBjz22GM4e/Ysevbs\nCQD45z//iYyMDAwfPhwjR47EmTNn8Nxzz9V5b3PUb4zroTpmzBiMGTMGbm5u8PPzQ2hoKMrLyzFi\nxAgEBQVhx44d9W4jNTUVWVlZCAoKgoODA2bPno3w8PA7mu4jMgWeR0JERJKwIyEiIkkYJEREJAmD\nhIiIJGGQEBGRJAwSIiKSxMbUA6hPy5YODb9IBhUVt1/qW06WduBcU1cElqqqptokda0E0/y9Zm1l\nmrr8/2z6bSv9PVBtkBARWTpT/dF1pzi1RUREkrAjISJSKa10JAwSIiKVEky0f+1OMUiIiFSLHQkR\nEUnAqS0iIpKEQUJERJJoZR+JNkZJRESqxY6EiEilOLVFRESSMEgAlJWVIS8vD8C16263atVKznJE\nRGbFooPk+PHjiI6ORklJCZydnSGKInJycuDq6oqIiAjcc889cpQlIjIrFh0kMTExiI6ORo8ePeo8\nnpGRgcWLF2Pjxo1ylCUiMjPaOB5KllGKonhLiACAh4cHampq5ChJREQmIktHct999yE0NBR+fn7Q\n6XQAgLy8PKSkpOChhx6SoyQRkdnRytSWIMp0BZSDBw8iLS3NsLNdr9fD29sbXl5ejXo/L2xlvnhh\nK2XwwlbKkPP/s6Ojrknvu3y5oJlHYpxsQSIVg8R8MUiUwSBRhpz/n9u0cWnS+0pK8pt5JMbxPBIi\nIpXSytQWg4SISKW0stYWg4SISKW00pFoI+6IiEi12JEQEamUVjoSBgkRkWoxSIiISALubCciIkk4\ntUVERJIwSIiISBKtBIk2JuCIiEi1VNuRmGLNKwBo3dpJ8ZolCi+wdp2p1mIyFVtr1f53l4Wp1ryq\nrjXNpSJsrKxNUldOWulILOsni4hIQ3jUFhERScKOhIiIJGKQEBGRBOxIiIhIEq3sI9HGKImISLXY\nkRARqRSntoiISBIGCRERScIgISIiSRgkREQkCY/aqkdJSYnSJYmINElo4j+lKR4kM2bMULokERHJ\nSJaprY0bN9b7XHZ2thwliYjMjyXvI9mwYQMGDhwIvV5/y3PV1dVylCQiMjsWvbM9Li4OS5YsQXh4\nOOzs7Oo8l56eLkdJIiKzo5UgEUSZrn5TUVEBe3t7WN108aSMjAx4eHjIUbJZ8MJWZC54YStlyPnL\nvmfPfk1635kzh5t5JMbJdvhvy5Ytb/u4mkOEiEhNtNKR8DwSIiKV0kqQcG6DiIgkYUdCRKRSWulI\nGCRERColaGTSiEFCRKRW7EiIiEgKTm0REZEkcgZJTEwMjh49CkEQEBYWBk9PT8NzGzduRHJyMqys\nrHDvvfdi4cKFRrfFICEiUim5guTAgQPIzMxEQkICzp49i7CwMCQkJAAASktLsX79euzevRs2NjZ4\n/vnn8csvv+D++++vd3va2JNDRETNJi0tDX5+fgCAHj16oLi4GKWlpQAAW1tb2Nraory8HNXV1aio\nqEDbtm2Nbo8dCRGRSsl1Yau8vLw6q4zodDrk5ubCwcEB9vb2mD59Ovz8/GBvb49HH30Ud911l9Ht\nsSMhIlIpQRCadLtTN67LVlpairVr12LXrl347rvvcPToUZw6dcro+9mR3KSsrEjxmi1bOiheEwBK\nyyzrapWWtkilqY74sTLR5WG1coTTnZDrc9Lr9cjLyzPcz8nJQfv27QEAZ8+eRdeuXaHT6QAADzzw\nAE6cOIFevXrVuz3L+skiItIUoYk347y9vZGSkgLg2orser0eDg7X/qDt3Lkzzp49iytXrgAATpw4\nge7duxvdHjsSIiKVkmsfSb9+/eDh4YGgoCAIgoDIyEgkJSXB0dER/v7+CAkJwaRJk2BtbQ0vLy88\n8MADxscp1/VIqPE4taUMS5vaMpWa2lqT1DXH7+/99/+zSe/75ZfvmnkkxpnfV56IiBTFqS0iIpXS\nygEEDBIiIpVikBARkSQMEiIikkSuo7aaG4OEiEil2JEQEZEkQiNOLlQDbfRNRESkWrIGye3Odbx0\n6ZKcJYmIzIcgNO2mMFmCZM+ePRg2bBgGDhyIefPmGda5B4DXXntNjpJERGZHqdV/pZIlSNatW4cv\nv/wSP/30E/r164eQkBBcvnwZwO27FCIiupUgWDXppjRZdrZbW1vDyckJABAYGAgXFxeEhIRgzZo1\nmjkKgYjI1LTy+1KWIOnXrx+mTJmCd999Fy1atDBcaWvy5MkoKlL+eh9ERFpk0UHy2muvIT09Hfb2\n9obHBg8eDC8vL+zYsUOOkkREZseigwQABgwYcMtjDg4OmDBhglwliYjIBHhCIhGRSnGJFCIiksjC\np7aIiEgai99HQkRE0jBIiIhIEgYJERFJopWd7doYJRERqRY7EiIileLUFhERScIgISIiSRgkREQk\nkTZ2YzNIVOByabFJ6rroOpikblFRjknqll+9apK6rezsTFLX0tTU1pqkrrWVfL/s2ZEQEZEkWgkS\nbfRNRESkWuxIiIhUSisdCYOEiEilGCRERCSJVpZIYZAQEakUOxIiIpKEQUJERBJpI0i0MQFHRESq\nxY6EiEiltDK1pVhHUlBQoFQpIiKzIAhWTbopTZaKqampCAgIwOTJk/Hbb7/h8ccfR3BwMHx9ffHD\nDz/IUZKIyOwIgtCkm9JkmdpavXo1Pv74Y1y4cAGhoaFYtWoVevXqhby8PISGhsLHx0eOskREZkUr\nU1uyBImdnR06deqETp06Qa/Xo1evXgCAdu3awd7eXo6SRERmRytBIsvUlouLC9avXw8A2LRpEwDg\n0qVLiImJQYcOplm6nIhIayx6H8myZcvQsWPHOo/l5+ejU6dOiImJkaMkERGZiCxTWy1atMCoUaPq\nPObh4QEPDw85yhERmSWtTG3xPBIiItVikBARkQTsSIiISBLBikFCREQSsCMhIiJJtBIkXP2XiIgk\nYUdCRKRSWulIGCRERColZ5DExMTg6NGjEAQBYWFh8PT0NDx38eJFvPLKK6iqqkKfPn2wePFio9vi\n1BYRkUoJVk27NeTAgQPIzMxEQkICoqOjER0dXef5ZcuW4fnnn0diYiKsra1x4cIFo9tjkBARqZUg\nNO3WgLS0NPj5+QEAevTogeLiYpSWlgIAamtr8fPPP8PX1xcAEBkZiU6dOhndHoOEiEil5LoeSV5e\nHpydnQ33dTodcnNzAVy7CGHr1q2xdOlSPPXUU3j77bcb3B6DhIhIpZS6sJUoinU+zs7OxqRJk/DZ\nZ5/h5MmTSE1NNfp+7mxXARFiwy+SQVFRjknq6nQdG36RDAoKLpqkrqnc+MtBSVYmOtIo7/+mZpTW\n3tHRJHWl0Ov1yMvLM9zPyclB+/btAQDOzs7o1KkT3NzcAAADBw7E77//jqFDh9a7PXYkREQqJVdH\n4u3tjZSUFABARkYG9Ho9HBwcAAA2Njbo2rUr/vrrL8Pzd911l9HtsSMhIlIpudba6tevHzw8PBAU\nFARBEBAZGYmkpCQ4OjrC398fYWFhmD9/PkRRhLu7u2HHe30YJEREKiXneSRz5sypc//6JdEBoFu3\nbvjiiy8avS0GCRGRSvHMdiIikkQjOVJ/kCQmJhp947hx45p9MEREdAONJEm9QfLzzz8bfSODhIiI\nACNBsnTpUsPHtbW1yM/PNxxnTERE8tPKFRIbPI/k+poswcHBAK6tGNnQWY5ERCSdUme2S9VgkKxY\nsQKbN282dCOhoaFYtWqV7AMjIrJ0ZhMkrVq1Qrt27Qz3dTodbG1t76hIWlranY+MiMjCaSVIGjz8\nt0WLFjhw4AAAoLi4GNu3b4e9vX29r//qq6/q3BdFEatXr8a0adMAAGPGjJEyXiIii2E255FERkYi\nKioKx48fh7+/P/r372/0allxcXFwcnKCj4+P4bHKykpkZWU1z4iJiCyEVna2NxgkHTt2xNq1axu9\nwW+++QarVq3C6dOnMX/+fHTu3Bl79+7FjBkzJA2UiIjUqcEgOXjwIJYtW4azZ89CEAS4u7vjtdde\nQ//+/W/7ent7e8yePRt//PEHFi9eDC8vL9TW1jb7wImIzJ1GZrYa3tm+ePFizJkzB+np6UhLS8PM\nmTOxaNGiBjd89913Y+3atejQoQO6dOnSLIMlIrIkZrOz3cXFBQMHDjTc9/b2bvD6vTcaM2YMd7AT\nETWFRlqSeoPk3LlzAIC+ffvio48+wiOPPAIrKyukpaWhT58+ig2QiMhSaf6orWeffRaCIBgu1/nZ\nZ58ZnhMEATNnzpR/dEREFkzzR23997//rfdNhw8flmUwRET0/2m+I7mutLQU27ZtQ2FhIQCgqqoK\nW7duxb59+2QfHBERqV+DR23NmjULp0+fRlJSEsrKyvD9998jKipKgaEREVk2rRy11WCQVFZWYvHi\nxejcuTPmzZuHTz/9FDt37lRibEREFk0rQdLg1FZVVRXKy8tRW1uLwsJCODs7G47oIiIi+WhkF0nD\nQfLEE09g8+bNGD9+PEaNGgWdTgc3NzclxkZEZNm0ftTWdU899ZTh44EDByI/P5/nkRARKUDzR229\n++679b5pz549ePnll2UZEBERXaP5ILG2tlZyHEREpFH1BgmXfSciMi3NdySmVmOipeetrRo8IrrZ\n2Vqb5ttQWV1tkroFBRdNUrdNGxeT1C0ozDFJXRsTzSpcX1ZJac6tWpmkrpwYJEREJIlW1tpq1J/f\nhYWFOH78OADwIlVERArRygmJDQbJN998g8DAQCxYsAAA8MYbb2DLli2yD4yIyNIJQtNuSmswSD7+\n+GNs27YNzs7OAIB58+Zh8+bNsg+MiMjiaSRJGgwSR0dHtGzZ0nC/RYsWsLW1lXVQRESkHQ3ubHd2\ndsaXX36JyspKZGRkYMeOHdDpdEqMjYjIomnlqK0GO5JFixbh+PHjKCsrQ3h4OCorK7FkyRIlxkZE\nZNEEK6FJN6U12JG0adMGERERSoyFiIhuoJWOpMEg8fHxue0nk5qaKsd4iIjo/5hNkHz++eeGj6uq\nqpCWlobKykpZB0VERGYUJJ07d65zv3v37ggJCcHkyZMbXaS6uhrZ2dlwdXWFjQ1PpiciagyzCZK0\ntLQ69y9duoS///7b6HuWLFmC8PBwAMBPP/2EhQsXol27dsjPz8eiRYswePBgCUMmIiI1aTBIVq1a\nZfhYEAQ4ODhg0aJFRt9z+vRpw8dxcXH49NNP0bVrV+Tm5mLGjBkMEiKiRhCUX0O2SRoMkvnz58PD\nw+OONnpjO9a2bVt07doVANC+fXtObRERNZZGprYazLvY2Ng73ujvv/+Ol19+GTNnzkRmZiZ27twJ\nAPjoo4/g6Oh456MkIrJAWlm0scH2oFOnTggODsZ9991XZ2kUY5favfkyvd26dQNwrSN5++23mzpW\nIiKLYjY727t06YIuXbrc0UYfeuih2z4+evToO9oOEZEl03yQJCcn4/HHH+cld4mITETzF7ZKTExU\nchxERKRRPISKiEilND+1deTIEQwdOvSWx0VRhCAIXGuLiEhmmg+SPn364J133lFyLEREdAON5Ej9\nQWJnZ3fLOltERKQcrexsrzdIPD09lRwHERHdTCMtSb1Hbc2dO1fJcRARkYJiYmIQGBiIoKAgHDt2\n7LavefvttxEcHNzgtnjUFhGRSsm1s/3AgQPIzMxEQkICzp49i7CwMCQkJNR5zZkzZ3Dw4ME6K5rU\nRyNrSxIRWR651tpKS0uDn58fAKBHjx4oLi5GaWlpndcsW7YMs2fPbtQ4GSRERColV5Dk5eXB2dnZ\ncF+n0yE3N9dwPykpCQ899FCjD7hikBARqZRgJTTpdqdEUTR8XFRUhKSkJDz33HONfr9q95FYWzHj\n5GZvomvD3PifVkklJfkmqWuqk8pM9XU21edrY21tkrpykutrqdfrkZeXZ7ifk5OD9u3bAwD279+P\ngoICTJw4EVevXsXff/+NmJgYhIWF1bs9/rYmIlIpQWjarSHe3t5ISUkBAGRkZECv18PBwQEAMGLE\nCOzYsQObN2/G+++/Dw8PD6MhAqi4IyEiInn069cPHh4eCAoKgiAIiIyMRFJSEhwdHeHv73/H2xNE\nU/W/ZLEsbcrF0qa2qPm8+VFCwy+6jdeeD2zmkRjHjoSISK00cmY7g4SISKU0v9YWERGZluaXkSci\nItNikBARkSRaCRKeR0JERJKwIyEiUil2JDcpKChQqhQRkVkQrJp2U5osJX/44QdEREQAuLZc8bBh\nwzBp0iT4+voiNTVVjpJERGZHrtV/m5ssU1vvvfce1q5dCwCIi4vDp59+iq5du6KwsBBTpkzB0KFD\n5ShLRGReNDK1JUuQVFdXo3Xr1gAAR0dHdOnSBQDg5OTEZRuIiBpJK/tIZAmSkJAQjBkzBt7e3nBy\ncsK0adPg5eWF9PR0jB8/Xo6SRERmRytBItuijUVFRfjpp59w/vx5iKKIdu3awdvbG66urnKUIw3h\noo3KYPevfSu3fN2k9700fnQzj8Q42Q7/dXJywqhRo+TaPBGR2eNaW0REJIlWprYYJEREKsUgISIi\nSTSSIwwSIiLV0kiSMEiIiFRKKzvbufovERFJwo6EiEiluLOdiIgkYZAQEZEkDBIiIpKEQUJERJJo\n5agtBgkRkUpppCFhkKiBpa2GW2uiz9fawlbhtbdvZZK6lZXlJqlraT9HasIgISJSK42EFIOEiEil\ntNLtMEiIiFSKQUJERJLwqC0iIpKEHQkREUmilSDh6r9ERCQJOxIiIpXSSkfCICEiUimN5AiDhIhI\ntXjUFhERSaGVqS1Zdrb369cPb7zxBvLz8+XYPBGRRRAEoUk3pcnSkXh4eGDEiBF49dVX0bFjR4wd\nOxZeXl6wsWEDRETUWFrpSGT5zS4IAh588EFs2LABx48fx5YtW/D666+jdevWcHFxwbp16+QoS0RE\nJiBLkNy4nHPfvn3Rt29fAEBOTg5yc3PlKElEZHasLLkjeeKJJ277uF6vh16vl6MkEZHZseiprXHj\nxsmxWSIii2LRHQkREUmnkRxhkBARqZUAbSQJg4SISKW0MrXF1X+JiEgSdiRERCpl0UdtERGRdAwS\nIiKSRCv7SBgkREQqJWdHEhMTg6NHj0IQBISFhcHT09Pw3P79+/HOO+/AysoKd911F6Kjo2FlVf8u\nde5sJyJSKStBaNKtIQcOHEBmZiYSEhIQHR2N6OjoOs9HRETgvffew6ZNm1BWVoa9e/ca3R47EiIi\nlZKrIUlLS4Ofnx8AoEePHiguLkZpaSkcHBwAAElJSYaPdTodCgsLjW6PHQkRkYXJy8uDs7Oz4b5O\np6uzoO71EMnJycGPP/4IHx8fo9tjR0JEpFJKndl+44rt1+Xn5yM0NBSRkZF1Qud2VBskt/vEzFWt\niT5XU7WjWjkSReuuXCkzSd0WLVqbpG5Z+WWT1LWW8f+zXD8rer0eeXl5hvs5OTlo37694X5paSn+\n/e9/Y9asWRg0aFDD45RllEREJJlcl9r19vZGSkoKACAjIwN6vd4wnQUAy5Ytw7PPPoshQ4Y0bpyi\nSv/0V+mwZGGyjsTCOgOtnNzVXEz1M9SypUPDL5KByToSI4fFSvXfkyeb9D7fPn0afM3y5ctx6NAh\nCIKAyMhInDx5Eo6Ojhg0aBAefPBBeHl5GV772GOPITAwsN5tMUhUgEGiDAaJMhgkzSf111+b9L6h\nvXs380iMU+0+EiIiS6eVP364j4SIiCRhR0JEpFJa6UgYJEREKmWljRxhkBARqRUvtUtERJJo5chK\nBgkRkUpxH8lNRFHUzBeFiEgNtPI7U5bDf/ft24eRI0di4sSJOHbsGJ588kkMGTIEI0aMwIEDB+Qo\nSUREJiJLRxIXF4dPPvkExcXFCA4OxoYNG9CrVy+cP38ec+fOxeeffy5HWSIis2LR+0hsbW2h1+uh\n1+vRpk0b9OrVCwDQuXNnWFtby1GSiMjsaGVqS5Ygadu2LVasWIHCwkK4ubkhIiICgwcPxi+//AIX\nFxc5ShIRmR2tBIksizaWl5fjyy+/hLOzM0aNGoXk5GQcPnwY3bp1Q2BgIFq1atXgNrhoo/y00jY3\nF638UDYXLtqoDDkXbTyS+VeT3ufVrXuzjqMhXP1XBRgkymCQKINB0nx+ycxs0vvu79atmUdiHM8j\nISJSKa38scfVf4mISBJ2JEREKqWV6VgGCRGRSjFIiIhIEq3sI2GQEBGpFDsSIiKShEFCRESSaOUK\niTz8l4iIJGFHQkSkUrzULhERScJ9JBplim+ctYn+s5hqLSaTrS1mkqra+WXQXEy15lUrE63xVVlZ\nLtu2efgvERFJopU/QhgkREQqxY6EiIgk0UpHwsN/iYhIEnYkREQqpZWOhEFCRKRSWjmznUFCRKRS\nPCGRiIgk4dQWERFJwsN/iYhIEq10JDz8l4iIJJG1IxFFEYWFhRBFES4uLnKWIiIyO1rpSGQJkj//\n/BOxsbE4f/48srKy0KNHDxQXF8PDwwMLFiyAq6urHGWJiMyKVvaRyDK1FRkZiYULF+Lrr7/G1q1b\n0bdvX+zZswdjx47FnDlz5ChJRGR2BEFo0k1psgTJ1atX0bVrVwBA9+7dcfr0aQDAkCFDcOXKFTlK\nEhGZHSuhaTelyTK15e7ujldeeQWenp7Yu3cvBgwYAAAICwtDz5495ShJRGR2tHJCoiDKcHUjURTx\n3Xff4a+//oK7uzuGDBkCADh16hTuueeeRrVeprroklZ2bjUHi7uwlYm+t6b6P2Vp319zvLBVSUVF\nk97XpmXLZh6JcbIESXNgkMjP0n7RMEiUwSBpPloJEp6QSESkUlo5aotBQkSkUlqZIWGQEBGpFIOE\niIgk4dQWERFJwo6EiIgk0coVErn6LxERScKOhIhIpeQ8sz0mJgZHjx6FIAgICwuDp6en4bmffvoJ\n77zzDqytrTFkyBBMnz7d6LbYkRARqZRcizYeOHAAmZmZSEhIQHR0NKKjo+s8v2TJEqxcuRJffPEF\nfvzxR5w5c8bo9hgkREQqZSUITbo1JC0tDX5+fgBguMxHaWkpAODcuXNo27YtOnbsCCsrK/j4+CAt\nLc34OKV/qkREJAe5OpK8vDw4Ozsb7ut0OuTm5gIAcnNzodPpbvtcfVS7j0Qrh71pmam+xtb83irC\n0r6/cq55Ze6krsvGjoSIyMKRy3dNAAAKQElEQVTo9Xrk5eUZ7ufk5KB9+/a3fS47Oxt6vd7o9hgk\nREQWxtvbGykpKQCAjIwM6PV6ODhcWz25S5cuKC0tRVZWFqqrq/H999/D29vb6PZUu4w8ERHJZ/ny\n5Th06BAEQUBkZCROnjwJR0dH+Pv74+DBg1i+fDkAYPjw4QgJCTG6LQYJERFJwqktIiKShEFCRESS\nqPbw36Yydtq/nH777TdMmzYNkydPxjPPPKNITQB488038fPPP6O6uhpTpkzB8OHDZa1XUVGB+fPn\nIz8/H5WVlZg2bRqGDRsma80bXblyBY899himTZuGsWPHyl4vPT0dL7/8Mv7xj38AANzd3fH666/L\nXhcAkpOT8eGHH8LGxgYzZ87E0KFDZa+5ZcsWJCcnG+6fOHECR44ckb1uWVkZ5s2bh+LiYlRVVWH6\n9OkYPHiw7HVra2sRGRmJ33//Hba2toiKikKPHj1kr2t2RDOSnp4uvvjii6IoiuKZM2fECRMmKFK3\nrKxMfOaZZ8Tw8HAxPj5ekZqiKIppaWniCy+8IIqiKBYUFIg+Pj6y19y+fbu4bt06URRFMSsrSxw+\nfLjsNW/0zjvviGPHjhW3bt2qSL39+/eLL730kiK1blRQUCAOHz5cvHz5spidnS2Gh4crPob09HQx\nKipKkVrx8fHi8uXLRVEUxUuXLokBAQGK1N29e7f48ssvi6IoipmZmYbfH3RnzKojqe+0/+uHtcnF\nzs4OH3zwAT744ANZ69zswQcfNHRcbdq0QUVFBWpqamBtbS1bzVGjRhk+vnjxIlxdXWWrdbOzZ8/i\nzJkzivxlbmppaWkYOHAgHBwc4ODggDfeeEPxMcTFxRmO3JGbs7MzTp8+DQAoKSmpc9a1nP766y/D\nz5CbmxsuXLgg+8+QOTKrfSTGTvuXk42NDVq0aCF7nZtZW1ujVatWAIDExEQMGTJEsR+AoKAgzJkz\nB2FhYYrUA4DY2FjMnz9fsXrXnTlzBqGhoXjqqafw448/KlIzKysLV65cQWhoKJ5++ukG1zpqbseO\nHUPHjh0NJ6nJ7dFHH8WFCxfg7++PZ555BvPmzVOkrru7O/bt24eamhr88ccfOHfuHAoLCxWpbU7M\nqiO5mWghRzZ/++23SExMxEcffaRYzU2bNuHXX3/F3LlzkZycLPtyHF999RXuv/9+dO3aVdY6N+ve\nvTtmzJiBkSNH4ty5c5g0aRJ2794NOzs72WsXFRXh/fffx4ULFzBp0iR8//33ii17kpiYiH/961+K\n1AKAbdu2oVOnTli/fj1OnTqFsLAwJCUlyV7Xx8cHhw8fxsSJE3HPPffg7rvvtpjfG83JrILE2Gn/\n5mrv3r1Ys2YNPvzwQzg6Ospe78SJE3BxcUHHjh3Ru3dv1NTUoKCgAC4uLrLWTU1Nxblz55CamopL\nly7Bzs4OHTp0wCOPPCJrXVdXV8N0npubG9q1a4fs7GzZA83FxQVeXl6wsbGBm5sbWrdurcjX+br0\n9HSEh4crUgsADh8+jEGDBgEAevXqhZycHMWmmGbPnm342M/PT7GvsTkxq6ktY6f9m6PLly/jzTff\nxNq1a+Hk5KRIzUOHDhk6n7y8PJSXlysyn/2f//wHW7duxebNmzF+/HhMmzZN9hABrh05tX79egDX\nVkXNz89XZL/QoEGDsH//ftTW1qKwsFCxrzNwbW2l1q1bK9J1XdetWzccPXoUAHD+/Hm0bt1akRA5\ndeoUFixYAAD43//+hz59+sDKyqx+LSrCrDqSfv36wcPDA0FBQYbT/pVw4sQJxMbG4vz587CxsUFK\nSgpWrlwp+y/3HTt2oLCwELNmzTI8Fhsbi06dOslWMygoCAsXLsTTTz+NK1euICIiwqx/8Hx9fTFn\nzhx89913qKqqQlRUlCK/YF1dXREQEIAJEyYAAMLDwxX7Ot+8jLgSAgMDERYWhmeeeQbV1dWIiopS\npK67uztEUcS4ceNgb2+v2MEF5oZLpBARkSTm+6ckEREpgkFCRESSMEiIiEgSBgkREUnCICEiIkkY\nJCSbrKws3HvvvQgODkZwcDCCgoLw6quvoqSkpMnb3LJli2GZlNmzZyM7O7ve1x4+fBjnzp1r9Lar\nq6txzz333PL4ypUrsWLFCqPv9fX1RWZmZqNrzZ8/H1u2bGn064nUjEFCstLpdIiPj0d8fDw2bdoE\nvV6P1atXN8u2V6xYYfTkwKSkpDsKEiJqGrM6IZHU78EHH0RCQgKAa3/FX1/D6r333sOOHTvw2Wef\nQRRF6HQ6LFmyBM7Ozti4cSO++OILdOjQAXq93rAtX19ffPzxx+jatSuWLFmCEydOAACee+452NjY\nYNeuXTh27BgWLFiAbt26YdGiRaioqEB5eTleeeUVPPLII/jjjz8wd+5ctGzZEgMGDGhw/J9//jm2\nbdsGW1tb2NvbY8WKFWjTpg2Aa93S8ePHkZ+fj9dffx0DBgzAhQsXbluXyJwwSEgxNTU12LNnD/r3\n7294rHv37pg7dy4uXryINWvWIDExEXZ2dvjkk0+wdu1aTJ8+He+99x527doFZ2dnTJ06FW3btq2z\n3eTkZOTl5WHz5s0oKSnBnDlzsHr1avTu3RtTp07FwIED8eKLL+L555/Hww8/jNzcXAQGBmL37t2I\ni4vDk08+iaeffhq7d+9u8HOorKzE+vXr4eDggIiICCQnJxsuZObk5IRPPvkEaWlpiI2NRVJSEqKi\nom5bl8icMEhIVgUFBQgODgZw7Wp0DzzwACZPnmx43svLCwBw5MgR5ObmIiQkBABw9epVdOnSBZmZ\nmejcubNhnakBAwbg1KlTdWocO3bM0E20adMG69atu2Uc6enpKCsrQ1xcHIBrS//n5+fjt99+w4sv\nvggAePjhhxv8fJycnPDiiy/CysoK58+fr7MoqLe3t+FzOnPmjNG6ROaEQUKyur6PpD62trYArl0c\nzNPTE2vXrq3z/PHjx+ssnV5bW3vLNgRBuO3jN7Kzs8PKlStvWUNKFEXDGlY1NTVGt3Hp0iXExsZi\n+/btcHFxQWxs7C3juHmb9dUlMifc2U6q0LdvXxw7dsxwIbKdO3fi22+/hZubG7KyslBSUgJRFG97\ngScvLy/s3bsXAFBaWorx48fj6tWrEAQBVVVVAID+/ftj586dAK51SdHR0QCuXUnzl19+AYAGLx6V\nn58PZ2dnuLi4oKioCPv27cPVq1cNz+/fvx/AtaPFrl/jvb66ROaEHQmpgqurKxYuXIgpU6agZcuW\naNGiBWJjY9G2bVuEhoZi4sSJ6Ny5Mzp37owrV67Uee/IkSNx+PBhBAUFoaamBs899xzs7Ozg7e2N\nyMhIhIWFYeHChYiIiMD27dtx9epVTJ06FQAwffp0zJs3D7t27TJc/6M+vXv3Rrdu3TBu3Di4ublh\n5syZiIqKgo+PD4BrF6KaMmUKLly4YFh5ur66ROaEq/8SEZEknNoiIiJJGCRERCQJg4SIiCRhkBAR\nkSQMEiIikoRBQkREkjBIiIhIEgYJERFJ8v8AWn5Dg+aeZ0MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "evlB5ubzu8VJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 346 + }, + "outputId": "e8666dcb-0c8f-4510-8fd7-8af5599b8963" + }, + "cell_type": "code", + "source": [ + "mnist_test_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_test.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe)\n", + "test_examples.describe()" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12345678910...775776777778779780781782783784
count10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0...10000.010000.010000.010000.010000.010000.010000.010000.010000.010000.0
mean0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
std0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
min0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
25%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
75%0.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
max0.00.00.00.00.00.00.00.00.00.0...1.01.00.60.00.00.00.00.00.00.0
\n", + "

8 rows × 784 columns

\n", + "
" + ], + "text/plain": [ + " 1 2 3 4 5 6 7 8 9 \\\n", + "count 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " 10 ... 775 776 777 778 779 780 781 \\\n", + "count 10000.0 ... 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 \n", + "mean 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "std 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "min 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "25% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "50% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "75% 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "max 0.0 ... 1.0 1.0 0.6 0.0 0.0 0.0 0.0 \n", + "\n", + " 782 783 784 \n", + "count 10000.0 10000.0 10000.0 \n", + "mean 0.0 0.0 0.0 \n", + "std 0.0 0.0 0.0 \n", + "min 0.0 0.0 0.0 \n", + "25% 0.0 0.0 0.0 \n", + "50% 0.0 0.0 0.0 \n", + "75% 0.0 0.0 0.0 \n", + "max 0.0 0.0 0.0 \n", + "\n", + "[8 rows x 784 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "metadata": { + "id": "PDuLd2Hcu8VL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "775f6215-5a07-4115-8c0d-f5d02e004844" + }, + "cell_type": "code", + "source": [ + "#\n", + "# YOUR CODE HERE: Calculate accuracy on the test set.\n", + "#\n", + "predict_test_input_fn = create_predict_input_fn(\n", + " test_examples, test_targets, batch_size=100)\n", + "\n", + "test_predictions = classifier.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['class_ids'][0] for item in test_predictions])\n", + " \n", + "accuracy = metrics.accuracy_score(test_targets, test_predictions)\n", + "print(\"Accuracy on test data: %0.2f\" % accuracy)" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Accuracy on test data: 0.95\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "6sfw3LH0Oycm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Solution\n", + "\n", + "Click below for a possible solution." + ] + }, + { + "metadata": { + "id": "XatDGFKEO374", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units." + ] + }, + { + "metadata": { + "id": "kdNTx8jkPQUx", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def train_nn_classification_model(\n", + " learning_rate,\n", + " steps,\n", + " batch_size,\n", + " hidden_units,\n", + " training_examples,\n", + " training_targets,\n", + " validation_examples,\n", + " validation_targets):\n", + " \"\"\"Trains a neural network classification model for the MNIST digits dataset.\n", + " \n", + " In addition to training, this function also prints training progress information,\n", + " a plot of the training and validation loss over time, as well as a confusion\n", + " matrix.\n", + " \n", + " Args:\n", + " learning_rate: A `float`, the learning rate to use.\n", + " steps: A non-zero `int`, the total number of training steps. A training step\n", + " consists of a forward and backward pass using a single batch.\n", + " batch_size: A non-zero `int`, the batch size.\n", + " hidden_units: A `list` of int values, specifying the number of neurons in each layer.\n", + " training_examples: A `DataFrame` containing the training features.\n", + " training_targets: A `DataFrame` containing the training labels.\n", + " validation_examples: A `DataFrame` containing the validation features.\n", + " validation_targets: A `DataFrame` containing the validation labels.\n", + " \n", + " Returns:\n", + " The trained `DNNClassifier` object.\n", + " \"\"\"\n", + "\n", + " periods = 10\n", + " # Caution: input pipelines are reset with each call to train. \n", + " # If the number of steps is small, your model may never see most of the data. \n", + " # So with multiple `.train` calls like this you may want to control the length \n", + " # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, \n", + " # or since it's in-memory data, shuffle all the data in the `input_fn`.\n", + " steps_per_period = steps / periods \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create the input functions.\n", + " predict_training_input_fn = create_predict_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " predict_validation_input_fn = create_predict_input_fn(\n", + " validation_examples, validation_targets, batch_size)\n", + " training_input_fn = create_training_input_fn(\n", + " training_examples, training_targets, batch_size)\n", + " \n", + " # Create feature columns.\n", + " feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)]\n", + "\n", + " # Create a DNNClassifier object.\n", + " my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)\n", + " my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)\n", + " classifier = tf.estimator.DNNClassifier(\n", + " feature_columns=feature_columns,\n", + " n_classes=10,\n", + " hidden_units=hidden_units,\n", + " optimizer=my_optimizer,\n", + " config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1)\n", + " )\n", + "\n", + " # Train the model, but do so inside a loop so that we can periodically assess\n", + " # loss metrics.\n", + " print(\"Training model...\")\n", + " print(\"LogLoss error (on validation data):\")\n", + " training_errors = []\n", + " validation_errors = []\n", + " for period in range (0, periods):\n", + " # Train the model, starting from the prior state.\n", + " classifier.train(\n", + " input_fn=training_input_fn,\n", + " steps=steps_per_period\n", + " )\n", + " \n", + " # Take a break and compute probabilities.\n", + " training_predictions = list(classifier.predict(input_fn=predict_training_input_fn))\n", + " training_probabilities = np.array([item['probabilities'] for item in training_predictions])\n", + " training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions])\n", + " training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10)\n", + " \n", + " validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn))\n", + " validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) \n", + " validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions])\n", + " validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) \n", + " \n", + " # Compute training and validation errors.\n", + " training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot)\n", + " validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot)\n", + " # Occasionally print the current loss.\n", + " print(\" period %02d : %0.2f\" % (period, validation_log_loss))\n", + " # Add the loss metrics from this period to our list.\n", + " training_errors.append(training_log_loss)\n", + " validation_errors.append(validation_log_loss)\n", + " print(\"Model training finished.\")\n", + " # Remove event files to save disk space.\n", + " _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*')))\n", + " \n", + " # Calculate final predictions (not probabilities, as above).\n", + " final_predictions = classifier.predict(input_fn=predict_validation_input_fn)\n", + " final_predictions = np.array([item['class_ids'][0] for item in final_predictions])\n", + " \n", + " \n", + " accuracy = metrics.accuracy_score(validation_targets, final_predictions)\n", + " print(\"Final accuracy (on validation data): %0.2f\" % accuracy)\n", + "\n", + " # Output a graph of loss metrics over periods.\n", + " plt.ylabel(\"LogLoss\")\n", + " plt.xlabel(\"Periods\")\n", + " plt.title(\"LogLoss vs. Periods\")\n", + " plt.plot(training_errors, label=\"training\")\n", + " plt.plot(validation_errors, label=\"validation\")\n", + " plt.legend()\n", + " plt.show()\n", + " \n", + " # Output a plot of the confusion matrix.\n", + " cm = metrics.confusion_matrix(validation_targets, final_predictions)\n", + " # Normalize the confusion matrix by row (i.e by the number of samples\n", + " # in each class).\n", + " cm_normalized = cm.astype(\"float\") / cm.sum(axis=1)[:, np.newaxis]\n", + " ax = sns.heatmap(cm_normalized, cmap=\"bone_r\")\n", + " ax.set_aspect(1)\n", + " plt.title(\"Confusion matrix\")\n", + " plt.ylabel(\"True label\")\n", + " plt.xlabel(\"Predicted label\")\n", + " plt.show()\n", + "\n", + " return classifier" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ZfzsTYGPPU8I", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "classifier = train_nn_classification_model(\n", + " learning_rate=0.05,\n", + " steps=1000,\n", + " batch_size=30,\n", + " hidden_units=[100, 100],\n", + " training_examples=training_examples,\n", + " training_targets=training_targets,\n", + " validation_examples=validation_examples,\n", + " validation_targets=validation_targets)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "qXvrOgtUR-zD", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next, we verify the accuracy on the test set." + ] + }, + { + "metadata": { + "id": "scQNpDePSFjt", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "mnist_test_dataframe = pd.read_csv(\n", + " \"https://download.mlcc.google.com/mledu-datasets/mnist_test.csv\",\n", + " sep=\",\",\n", + " header=None)\n", + "\n", + "test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe)\n", + "test_examples.describe()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "EVaWpWKvSHmu", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "predict_test_input_fn = create_predict_input_fn(\n", + " test_examples, test_targets, batch_size=100)\n", + "\n", + "test_predictions = classifier.predict(input_fn=predict_test_input_fn)\n", + "test_predictions = np.array([item['class_ids'][0] for item in test_predictions])\n", + " \n", + "accuracy = metrics.accuracy_score(test_targets, test_predictions)\n", + "print(\"Accuracy on test data: %0.2f\" % accuracy)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "WX2mQBAEcisO", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Task 3: Visualize the weights of the first hidden layer.\n", + "\n", + "Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.\n", + "\n", + "The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.\n", + "\n", + "Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called \"classifier\" has already been trained." + ] + }, + { + "metadata": { + "id": "eUC0Z8nbafgG", + "colab_type": "code", + "cellView": "both", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1174 + }, + "outputId": "6051e9d0-1cd9-459a-82b1-3ea3c6305844" + }, + "cell_type": "code", + "source": [ + "print(classifier.get_variable_names())\n", + "\n", + "weights0 = classifier.get_variable_value(\"dnn/hiddenlayer_0/kernel\")\n", + "\n", + "print(\"weights0 shape:\", weights0.shape)\n", + "\n", + "num_nodes = weights0.shape[1]\n", + "num_rows = int(math.ceil(num_nodes / 10.0))\n", + "fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows))\n", + "for coef, ax in zip(weights0.T, axes.ravel()):\n", + " # Weights in coef is reshaped from 1x784 to 28x28.\n", + " ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink)\n", + " ax.set_xticks(())\n", + " ax.set_yticks(())\n", + "\n", + "plt.show()" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "text": [ + "['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step']\n", + "weights0 shape: (784, 100)\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGcAAARNCAYAAAD/4C04AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVd4XNeRNVpE6EYj55xBEMyZlEiR\nohhEBUpUlixZjpLjOGeP4ziMZ5zHYUb2jINsS1a0ck6UmMScMwEiETk10Ghk4H+YO2et2jb532/c\nuHi4tZ4KX9fpPn3O3rX3aaxVa9rExMSEGAwGg8FgMBgMBoPBYDAYpgRRU30CBoPBYDAYDAaDwWAw\nGAz/f4b9OGMwGAwGg8FgMBgMBoPBMIWwH2cMBoPBYDAYDAaDwWAwGKYQ9uOMwWAwGAwGg8FgMBgM\nBsMUwn6cMRgMBoPBYDAYDAaDwWCYQtiPMwaDwWAwGAwGg8FgMBgMU4iYi7340pe+5MUpeSnqNV9G\nwIvbjjR7cdbsHJU3Ehzy4kBhshfH5yepvNN/OerFmcXpXhwdH6vyovw45egA4qTyNC8+/Ie96pj5\n71rqxaMDI1481BlWea07G7w4LjHOi/t7dV7Z9bO8eCSE7xefp79Tw2MnvDhrTbEXh6q7VZ4/Kx7n\netM/SKSx86f/jPNYWaRe66/r8eLMpYVePNStv3O4OeTFMXRPRvqGVF7KjEwv7j7a6sXToqepvPT5\nuV480N7vxf40jKvzL5zR7z0ny4t7j3d4ccGmGSqv5fUaL45N8XtxfJEew43P4/0r7pyH82nrV3kJ\nNG57TrTjfOi7ioicfxHvt+JT/yiRxNZvf9OLhwaG1WtpVTiPadH4vTVc36vy4oswPofacX/zrqxQ\necPBQS8OncNYTV+Yp/KqHzrixaU3YU5ExUZ7cdvWOnXM2OAozjUKY4LriYhIlA/vMdyN84nLTVR5\nnftRe5IrUDfishNUHteKUA2+U9fZDpVXsLrMi+du+pBEGgcf/hnOyalt/TWYizwnYvy6TI8O4RqW\n3IzrznNURKRlO6593qoSfG5Afy7fk9F+jK3hHlz3JLq2IiI+mlfBU7iG/dU9Ks+fjdrWfa7Li8tu\nmKXyTj2OsZQUwFjoDunvtOC9y7340O93e/Gsm+arvF6ap8s++HmJJPge9p3sUq9lrkINTShAvek6\n1KzyBltwf/n6x+XqcetLxTrkS8e1jIrR/1fhucRzp+X1c16cPFPXK65rUT6MMV7TRHSN79iKNZLX\nNBERmfjb7z0+Mq7S+PzCTbpGMfz0fUvn3nHBvP8t6k8+6sX9znn0ne704vQl+V4cm+hXeWOD2E/w\nfInyR6u8IZrPXB+51oqIpC9Aje2j2hs82ubFSTP0XBxowhxJmY01cmJcX/e+MxirqfOwT+M1V0Qk\nms69+zg+N5Cr9zdx6Xwcxt/ExITKE/q7qPJWiSRamp/x4sEOvW77UjB3QvWoS/4MPcd4r5NcnnHB\n9+Pr2XsW13I0pNdj3h/lXIa6y3N0uFffd0Y01fvgab0+xWUluOn/fT5nOtXfGYtorZ6Gz+3Y06jy\n0uZiHIyNjOFz0uJV3kA7xljF0rsvdOr/a+z93Y+9uP+cXkPiCzHuEqdj7I+FR1Sej8ZxkOr/+PCY\nykui9+B7FW7qU3nRcbgPo/RZA7SvSpqVoY7hfak/E+fTX6frC7+WVIX36N7XovIyV2A9Gaf7w/VA\nRGRiHHMsltaMgLNfGmzFfVx6z+ckkvjzxz7mxVd9S4+RsTF8btte7M/zLtHr9mA/nhnOPXjYiws3\nz1R548NYMxPzsa6d/OU2lXf6fJMXX3rrMi/e/Zd9Xrzp2zepY57+yuNevP7j6704KT9f5f3wvd/3\n4q8+9BMc/8WfqrzKBaVe3HgC59Pl7G2u+PAVXpxSUuDF//HhX6i8ze9A3oJbPyaRBq+LL//oZfVa\nMu3NZm3AHu6VR7arvHd87zYvjo3D/H3mKw+pvLX/sNaLeZ8xzdnf7PnjLi+evQZjIYX2NI//yzPq\nmMvXLMR50zOSP12vdzFxqAE8jwIZem43vHjIi+sPYB8UGtS1/IrPbfDiaNpXvfyd51VeRSFq9Kqv\nfkNcGHPGYDAYDAaDwWAwGAwGg2EKcVHmTN4lYFkMtur/IvB/C4ZG8StmssMm6NqHXwpH6Zexmicb\nVF7BUnwWsx1at9arvKzl+EWR/3tY8wiYN7NvWaCOOfiHPV688N349bRx13mVFx2F98u9shyfE6t/\nwwqexK/jdbtrvbhsZbnK6wnjPzIpXQP4nASfynP/IxVpTIzh18DGZ06r19IW4D8n5x7AL9XZ60pV\nHjMReo7g1+3slfq/p/xfH/4vj/sfwrpHjnlx5mW49x17MV7yN05Xx/B/dNMWgXnTtkOPkf4G/Jci\nuhX/BYwv1MyZqnuX4Px68d59zn+hkkrBykqbk+3FNfcfUnnFt82WyULuBoyt4e4B9Vo8/Ze6bRuu\nRebKQpVX+8IpvDYT933YYT910j0Y7cFro/36P1Xpc3EteIx1n8B/f+IchhzP2dgkYl8c0/8JSluI\n+9t/LojPXKzZO4klqTjvPZjPfoeJc/YJjLf0EvznrOKmOfr8fPo/3pFG32n8x5XHsIhmy/D3bNql\nxzfXqfNPYz5nXq7nYhb995T/K9FzRF/r8UH8R86fi/+YxhBLwP2P7dH7wU5Mz8K8yl5bqvImRvHf\n5sQKzCP+r6SIZsuMjuF8Zt+qa3nrG2CCVF6J/6Ccf+msyouJmrz/OzAbNHO1ZiLG5+A/leefx73J\nWl2i8pg5w+td7uVlKq/xOczZuGy8d1+NZl+OUm1MJBYpMxbDDUF1TFIZ8jr34j/qo85/pEeoBuRs\nwPn1EDNSRGS4HXWpjxhAyZX6P1A8T3kOjPRpBoLL6Ig0Bok523tCMxTSl2DudO7CtXFZhsx6YsaI\n32Ee8H+6E0pRswIO25bXsry1qPnTYnAfAzn6v+Fp83ANJ8Yw35ipISLST//xZ8bPYKdmusQmYn8y\nTPsWt/6HzuH9+bPcPWCoFmO1qFIiit4a1FN3vHTswzhLpLE+3KPXz0AmxmrwDMYBr/vua9nLsba2\nOvsP3i/yXBoNY3wPOqztlOm4Zu17sDdOKE5VecyeSCjEa92HNeOijVjg8QXEWHfYw8ziiqb/IIdb\nNItkfEyzsCKN6LgLr7vMBGEmYLzDCoklphSv4/11uu7F0PhmZqLLsBknhmqArmEPzeXMdD3PY5Lo\nvek/9O6en997sAUMCq4nIs74oRqfUK7HJrPxee/DTGqRv66xkUTlEtSr6Gi9X4iNxfl27QW7hRn0\nInp8V92zyosnJvR1GR/Hteg8irE+95ObVF7Ur1/y4qPP4Rnxuu+Aidm05Zg65qZ/ebcX/9u9YHRV\n5um951cfAkPmzW/92ouLsnT9S6FnBl4jrn73O1Xe6CjGwatfv8+LV8/SLOMZm26UycSJ34NVtPm7\nt6jXqh/c78XHXjnuxf0Oe4TZiFv/6zUvnlml90Fb73vLi+etwfcc7tQ1euaKv71wNP7lpBdf/6Er\n1WusZOFx1b5LsweZVTNG87L51WqVV3wTnu/6a1BTln/qcpX3/Lef8+KNn9uI7zBf7+2KHfa4C2PO\nGAwGg8FgMBgMBoPBYDBMIezHGYPBYDAYDAaDwWAwGAyGKYT9OGMwGAwGg8FgMBgMBoPBMIW4aM8Z\n7iPB3f1FRM48BZ1ewVz0gRlo1R2o40ugcQ1TL5Dk3GSVx6/5B6Hj7BvQ2rPh7bV4jyxoyjr6oJEt\nGtcaatb5Nb2A3gR5a0tVXvub0A43PAUt25jjelB6I7RipSTrdrX1097GuSaQfpk19yIiNU9Bu1e5\nQiKO0eDf7tUiojXlaaSzF+casjMD9zHocrTOrIfnfkOs8xURiS+DXppds8ZJC997RvcBSJ6O69tL\nbhr+DK375e9URF3e23drrWH3ITp3+rpuj6EO6sfAuubEKn2/g9yrZp5EFKzp7z7o9Hqgfj7+TFyL\nkON6kBCPe5jBPRWox4yI7nfCGkx2IhDRevVwM+Yf65rde9O9H9c8eQ60nuzkJiIyQq5BrMN23VL6\nqY9GgPrbhGr1d59OvWW4Izv36BERybxU9+mJNApvqPLiadN0T4jqN+D2VUy9dEZ2nFN5uYtQb9vJ\nBWjc0as37MZ3K75M610ZmZfhOydSneJrPRzUdbj0CvSDGqB777qyxSZhzLHDAvetEhEpuB6Oa03U\nF8vV4Pe1YJ1gR5yMhbquNe3RPc0iCdZDj+ZpDT87vU2MYpw1P6ed50rvnk/HYM3srdH9rsapZ087\n9V/Lu0r3PmFnI+6NkXM5NN4du/W6M0S9NxJovPXX6x4NvPbznB8N6u9ecgfmWMdefFZftXa0KtiE\nOTBCrjVu35fEYt0fI+KgoepLj1MvDXVgTUqdj+8fPNmu8lJmkjtSB+53535dU3PXUq8ecpJx+8f4\nqadeH7mbJVK/tJYtteqY5Jm0Lp7C+HH7Z3EvIl7f2ZFPRCST3alovRt09nb5G1ADdL3WvWnYxSrS\n4F4CrnNkbDLqlz8VdajjjN4HsNNR8gxcyyan54AvFe/XsrXWi5PKtXtWYhHmUiP1eeP+QrxOi4h0\n7MM5ZS1DH6u+On1vlJMarR/cU0dEO1XFkTtV90mn3xhdP96Xuv1Xkiv1d4w04vOx/nMvOhG9h+DX\nBlr0eOReQglUO2IcV0SuM/w9E50+Lj0HsVcZbCZHUe6B85IeI7xPCzZgD1K0XtdrdmpsfhHvEZus\n98kTozg/7tMWPKZr5Qj1M0pNQI8TdmgT+etefJHEGDnhNr69U73G68aZBqqN/6mfM8rfA4edYC3G\nY9aMhSov2IZ59cR96Ctzy8f13v3o6VovvvxOPFzVPII+pBNOP6X4ePTOuWY1nH4nnGei/n48I67+\n6nu8eGhI721e+sZjXjyXnIYGBpxemZ34vqkJmLM5a3Sflp3fRT+add/5jkQa59pQIyob9X4kn3qu\n7dyL59ZFZXp/yc8AsdG498nOM9O5HehhsyRlkReHnHFbcQdcOvvbsH6O0NriOpO1bsf1zSaXYn4+\nFBF5/GdwUUpPxHvweYuIbH8bPYuiqPZmntHPDAtX4veBvfft+JvHiIjE70PNyyuQv4IxZwwGg8Fg\nMBgMBoPBYDAYphD244zBYDAYDAaDwWAwGAwGwxTiorImpoUOdWgr7Wii6IyQrMKltacvhESCKbz1\nT59SebGxOJWkFaBQxh3XFLHENNC9MpaBCxTHlpQO/WxgePiCrzFS5oMOyNZ0eRs1JTFAtrJxF7Bh\nFBEJ+EBRZOpwa42mRlddr+18I43MVaB0uTapeetA4RslarJLie4jO8zoACiZruyg6wBkFhV3L0be\nsKbAZ2TDfmx4GNdjcBCUx1CzlkzlTl/nxYEsWPme/eN+lcf04xiyhyxcP1ef6/E6L44lC8Tuo5r6\ny1Zr/P2SHBkb28tHGn1kGZo8W1v1TRA1ebAddPxov76HoTDR+WgaMJVbRGSU6KlsT9pLkhIRkdg0\n0HtHicbYUQcqZNJ0TYeOCmCeh2pA+3UYfzKNLLeLboQMouGJEyqv+FbMnfrH/rY9u4iW3rBcM2NZ\nvspjau5koPllpjBr+naCH3+ztK7qBj1ueZxV3gl5jCuTKlyKa8B1OYUs0EVEMuajjobbcI/Z7j5v\nY7k6hu3m1fzY16zy0hZAEsL1P82x0Byk9aV/CNT9Iof+X34rrgVbObv1Kt6vr20kwXLG4W4t2Yj2\nY3wnlIFa755f08uQ18YkoEaxxbaIHgdx+bh+cY5csJ/G9/gQ6sEQ0X6LN2vrxlGSnzAdf7BD2/zy\nusCSjaKb9fvFxqOGps7BfW9+Wduc1/35iBeXvhP6z/yrpqu8sCNbiDSU3bWzLxgkW3uuge6cbSFr\nd7aaLtw0Q+WF6lDreg5h3CY5chQGS3dDZJ2e5dS2vrNYG5h23nlAz0X+HkPdWAsSS7Vdc89xrH98\nH2MdaXLwNPY74fOoG65MgOVPkQZLmZIdedFoGOtT5wHsK9jiWERkhCzG43Oxj/yr9ZzKq5/2fdEB\nvY1ufBGyzO6zuIf9dfgcV5YY5cN78FxMrdS1OtSEcTBBkkeWMYk4+1I6B5aXiIgM0d6d90CJjo24\nK1WLNJpfrfHi7NXF6rUgjUdeu9295xjtbZNmYCz012iJc8pcSBF549G9V8+XYCdqavZsqmdHkTc8\nqs8hrwTvnZ2HdWLU2VewXDAuB/fKldSz7GqgCfUwUKAlHOkk6e7YCklv1uX6Wkb5L/rI93ehjZ5r\n3D1l0fI1XsxSOr9jRV73OPYcs++91osnJnRNad2Kvfvli7EnaHhBy4ev/gysjFmm/eAvnvXihaWl\n6piqQciLRvtw3948qi23F370XV48NoZ6uv17z6q8DV+7xovbqUXCLz/4I5V3+WxYNaeTTLtjm5Zo\nH2/A3+sk8pg/B7XJlQ6ylDwlgDp6tkU/q81NXuLFPEfSF2g78swkjNtAHsZ06Z26LwS3JglkYr3K\nWYP52/62vk7TaCrt/OVWL15y9zKVdxX9dhCmVhB9fXoflJkMGVIptQnor9MycJaYtm/DmGnp0XWo\n9wWMmXmb5a9gzBmDwWAwGAwGg8FgMBgMhimE/ThjMBgMBoPBYDAYDAaDwTCFuCjHjanwowOavle2\nCV2nmVI54lBBmUbJbh2jY7obfAY5xLS+AqpwEjkyiYi0N4HC2/UM6ETpGaAcPfbwa+qYK+eD+v/8\n7n1efFuFpvMynTSGKJ4siRARiU3Aaz2nqHN0ULsFJJHDQnwBzi81XlP5YlMmj4Ivoin16dM13bB9\nF6hgmUshbzjx230qr/wmUO4GiHpfsXmNyus6hw7msbH4rPT02Sqvo2OLF8fFsbQEvxcmF2j6dnQ0\n6J+xsaCPLvnYB1Xeqecf8WJ2S3Ado7qPgC5bejvkMVnLdfftwS7Q28ZoHjDVXEQkY8nfaLkdIfDY\nGmrTdLsMcviIL8KYa3eciLj7eMPjkAex05mIyJybF3jxILnPuBRepkGP9uL8sqfj3rgOH+w44CPn\ngKgY/TsxU5HHR0BpdeVK4WZygJsFeU2/40CSTg4kLO0LOhK2xIoLywwiAR/JUVJmanlaNNWVJnL3\nSXWciNiVIi4L78eyiv/OA2U9jujMI47zUvWDB3AOdH9YPjfkdLgfIOlL0fXIO/6ipv4mkGSCKelc\nD0VEOp5A3UgkVzHXYYhlJSylc2n4Lj08kojha+TI9lhG2UtuO67kjNdWvhauuxnT7n0kI2QXJxHt\nLsQuI/5svN9As56LPHbY6SBnpXaHOHMfnC3GlqAGxJG8V0SktxvyifxL4a6R9eElKq+z4aAXd5Fj\nXuqsLJXX9hr2AVWrJeJgKd34kFvbMM6UpNeRBeSsAb2ZpR/dx3VdGSNpWPpy1KL6R4+rvBjaC3At\nCpF0iWVrIiIjVHvDTajlQ21aIjdC93iA8gbO6/qfTlLPzn2Yf8FT2rkjdx2+O7tmcA0R0fuqSCOB\n9liurJxfS6rAPHXdo3gda3gadSj7cj0PuAaypMil/rPMqfhaSHJZZuw6v6TPQ42P9eO+9zXr+hcV\ng/cI5OH7DXbqe91DrmKZ83CfRkd1XkwMak/tid1e7ErdlPvhcok4AiTtYZmeiHa24rE+GtLrXeJ0\nXLdwIzkI+vRa0H0AskJ/JtYaX5auvXmluL7VOyBHjo7C+7G7i4h2QyIlhnTt0ZKpuBzsW1JJZlxP\nkjgRkYx4yKlSSSLcuVM7jnGrgVySILe9pfeAStIVYaz5+vu8+MyTL6vXuF3BU7951Ytv/ujVKu/w\nccjbAi9u8+IXn9iu8m7+GKRCTzz5phd/+QEtFertxn6EXU3f+UnoSH71r4+oY0Jf/q0XX/Otm734\nZ5ueU3m/+cjXvfie//i2F7uS6kB8qRfnr8QYTX3sbZVXdBOeqVNLcA9b0/We6gpHih9pzHgPFtsz\nf9iqXsu4BM9GhRl4vut0niEankQdLS7CuOW9q4hISRbGIzuvjjntN6J82CeEzmA9TluK3w2Ova0l\nbcEw9kRp5H7ltvZ4/bldXnz3D+/04oP/tk3lZWajJqZRvWZnShERH7m53fwv7/Tiwz/Vv0ukOtI/\nF8acMRgMBoPBYDAYDAaDwWCYQtiPMwaDwWAwGAwGg8FgMBgMUwj7ccZgMBgMBoPBYDAYDAaDYQpx\n0Z4z/WQxmE56RxGREw8d8uK4WOgdSzbPVHk1DyCv4GpYKp44r3VaKWTROTAIXWnuAm0lmLkCmree\nI9COBsgO67ayDeoY1pPfWLQKn9OgdXLRiaTbXFOK70DWnyIi+56BZn7BevQq8TsWjY0HoQsNkdWk\n22/nxIN4v/KFd0mkwdrr/vPaDjmT+qQ0kL15eqXuh3HgAVhXl8zGMSMjWh/Muk5G7YEn1d+s2Q7M\nRh+RqCjcg8Y3tUV26izoVlPyoOXu79dWrWzPx5bMe545oPJYO+x/EZri1EV6rAdyMLbY2tC1A+5l\nzbt2mf27kTIH84B7N4mIDLZB8z6NNOlDjrbe74e2PmU+tJ6nn9d6aBZLd+3GNR+f0Dr5pApoJrkX\nQ/p86EDDrc4co7wTZIHe0+9o4ak/TswBnPd/PfS8yls3D5Z7fD8rlmvr56hovHbqL5jPxZfovgKd\nO6kurZeIIyYe3z/s9LLivg3T6HyDR3T/irTFGHfcYyKhOEXlBches+1t1CK3/0kcWex2nUNfiVTq\nbTHN6eHip/44HdSXYuYGXf/ZVpf7qbS+VavySt4BO0zuBXLu2ZMqb3AEemG2V3RtVV1720iCrwVb\no4uI5G0kG8pG1Nq/sk0vxnrHPcG4d4CISNsbtV6cMh81IKlY94RofBNa/ZKrYOPMtqXNb9byIVJ+\nh7Zo/x+MhJzeadR7iHtBuVbD3Buq8zTWkjGnn8sw2TjzfRvu1Z+bOPPimuy/FyO0VvU6/VS4N0NM\nAvef0/1F2B6e56K7FwhTz5l2skZNKNK9l2qPYZ4mt1PfDJqz377nX9UxX7oZfRGO7Ybu3h+rx1Jh\nL86howP3ccKp6y1P41oM0XzjuSci4tuF65JD/WfE6THTRn3tCsokouAeJLxOi2hr1axLscdgm2kR\nPedSZuK+dx/R9rA8Z7lnVO8p3euG+8lwvxSeixlzdd+IruNYg1PIeTzGqWODneij0H0c+99kp5dg\nYg7ePyoKPRAGuvQ4l0ScawJZwLKVvIhIxuLJ7XPho+vURft6Ed3HhfsDDZ7Xc5HBPcda6trVa8UL\nMRYObkPvvYJ03T+s4LJSL84rRA1MmY0xkjpLP59wretvRA+NpOtnqLwe6nWXSmMuyemd1rINltHx\n9Iwz4vSO4f5fYerdkVCu1wnuNRVp9Laj5k+/QZs89/egf9jGay714pwFeg1auAD3fs+rh734urt0\nb8vUGfj+7/kC6t/Xbv2YyrvrZmziCqn/0x+/+agX37ZhlTomjq2VW/F887n33arySm5EH822mp1e\nnFamx1HN86978cntqM+1bXpfl12JZk4PfupfvPjOn3xO5R3/41MymTh53xtevOXQUfXauzdhHPOa\ntOJD+hoGT2DO1e3GGC5L0+tiei7G57N/2uLFq+fpHqUZK/DMmTIPc+7n333Qi98+cUId89FNm7z4\nke3oWdTtPGukUj+alm21XlzdquvQIup/W/sAniG6evWcmrYXfZ6aujB+8tL03A4exPq05D3yVzDm\njMFgMBgMBoPBYDAYDAbDFMJ+nDEYDAaDwWAwGAwGg8FgmEJclPvNVsHBs5oOmZ4POhJbfI70aWpy\n+TthyztAEof+QS25YJvBPKKgujTiPqIfd7aDvldBFsKnd2iZS3cI7zGnrNiLa5s1rSw3Be+RQrTO\nGofelEv0pC6yLW3p6VF5FfPwWd1kq1q0rkLlufackUb947DrLL5J621C9TjnnCtKvbjuCU0RY+la\nVw1JH05reVo3XQ+2KY7L15RjH1mGdtXhs1hxMeZYhnbsg8SmLw3X07XlZZkA0z3d+8PUuWAnxubo\nVk3Xz1yF8Zh5KWR1oXNa0uWeRyTBlOjug3o8djRjnubPguSFabAiIoEC/N2zH/epqvjCFuBdfZg7\ns29boF5ji9RBsvI9/wrmX8HG6eqY+idxr2e+c5EX1z6i6ZO5a0u9mL/vPbdfo/JOHwVlsjCPKOmO\nlW0cWQoXLML9nBYbLf9fouco6J6+JC11SZwBOizL/nqPadr8OEmFzrwB680Z66tU3rk3Iblh6cJn\nfvELlffBm27y4swkjJFUqvGuDT1bHTLtvJlkOCIiJTdC5sT1v+m4ltJVH8R9rLwE9bF3QFsvzt0M\nGVtcFiQlQ13aXn4ya+oEyXcKNulr3rEHspQostV27Rub9yKvfDPq0Okn9TzIKgOdnmU4J8neWkSk\nYFUpzo/udfA4xluuYw3cQ6+xdfRYWNc/lmnEsp33iGPn3YI188RhrAvl6ypV3qGX8B1nLsW9jonX\nMhyWkE4G0uZAvspW4iIi/jSSxlKdi8/Reb4UTdP+H4Tq9FrjJylNdDVei3Hkbtm0B0klGduR17GG\nf+fz71fHxGXjnHLjydrbkb+OBLE3SyLJWLtjBZpKEhmWBfP9FRFJqkK96qvBWphQpOWV6QvyZLIw\nQtK6FEeKzVJ3tmntb9DS7ozFOL/gCawbiWWahs7yJb6W3ef1vS6/FjWP9yKxVEPDbfocWGo10o/3\ndmXoyeW0RtA6EJ9UqPJSU2Ff39eHNdeti4EE1IToeRjLnce0BbM71yON4U7U+RRHosWyM5aHupbo\nfSewLz3Xgj1DaZaWALEF98o7IbHp2qXnAdfbtIXYV7Htee1j2uZ4rB/vnbsBc5FrrYhIUgXGVn8z\n7rErJ2PZY/A0xl/AqUN8X0f6MCe6HHv59OmTJxUdDuIeRufousj7saZj2MfXHXpQ5V36SciX9uyH\npHnXs7olQcIrqIcNnbjvi8u1nH2c9lFDZOP8mft/6MXNR7VddNNzkB7lrsb8KLxGS9PaaQ2ft/kj\nXvzmLz6s8riNxZp7L/fipMf0Ndr9L7/34lu/f68XT5um96j5V+rnx0gjvgz7vjvWX69eq/kTpGbz\nPrbCi6t/p+9P1hpct9LLcE9qraKNAAAgAElEQVQanjul8jKWQi55dT7GdNYlRSpvlGTBsYmoAR//\nMqyvVz95UB1zuhl7zNgYzI8zTU0qb9sxzOGvkMQpMS5O5XHtYWlVUlD/5sHtCapmou1Jx85GlZdx\nyYWfu0SMOWMwGAwGg8FgMBgMBoPBMKWwH2cMBoPBYDAYDAaDwWAwGKYQF+V+Dw6DSlR0hSPFoS7y\noeoLU1qZltlIcod1ly1SeYlE1+wl+l75rctUXvXDu704pR/UY6bdj49rCmbAh9cSykEnLHBcJKru\nARV0sBP0wtXv1Z2oe46CMslUp/admoLaegZUvuON5MJwXMtfkqs0HTfSiC+mz5vmvEbUX5ZLpM3R\nVNDQPnSWzlsKCq3rxJG9ClKuAMkOfAm6g3l0NO6d3w+K2Oln0Yk8c4l2CGjdCulDy3bQbt2u2kUZ\noG5mlCOuytfv1xOEZIc7eI8naTlQBskEmEbdvU+7OcQmaxpcJDHYinNNqtTXspco0oF83OvYFE2Z\nb30Zji4Hamu9eOkcLTvgTuvckZ3PQUTTvJl6XLgO0pPW3ZrGmDgd829iFHTPgmsufA7jJG9LdNwH\nZvpAmWw5ifux1encPr8b0q9F1y/0YnajEhHJuTLCdiIOxi8wlkREookC31cHGn53n77uCR2g5x6k\n++h/S8tCDtdhvjz8Bjrwb7r8cpUXR/UxOR7zcsce0D2vuEbXYXas6NoL+mjeOn392rejbjTXoh72\nD2kq6IwFpV48PghquOsQ5kvBHGujesDnIyJS/yzGXeUKiSjC5MLkSgyjyY2LqfAsSxQRSW6FDIvp\n+dnT9fdoOIHxmZmMuT08qusuj+MEmmO8tkTF6P/FpJPbXOd+HJ97eanKm0YuaANtkKadf/q0ysu4\nDOtCXBtq6JgjT0oKgM7Njk8snxIR8aVOXj0VEQkS5X/AcU6LIplANlGs2UVNRKTtbaxD7PQz4jpP\nlaJuFd0KGZs/VVPbWcqVPANr14aVkHPGxet1bNo0nCtLhMWZO/nLsL+JisLaEO3TtP6hLtSX5iMY\nF23BoMrLaEVNzczG9xtq0xLD/xt9++8By9GCjoSDXcFYLx2ToOuknxxE2JXIlVXzHpXl17nrtJSC\na5QvgLkY7kStGHDWUj6mndzvyq6/ROUND2Gv7fNjvPEYEBFpa3vBi2NicA7pOStV3ugoallKCsaH\nzNFjZ3RI39NIgyVa4uzfwyRDSyTJhfusER2Ha7BgDuqeW1eCJC0+dxL78ooFWvbJx7Gsq3kL9lHR\ncVpy0k91pHVLLc67Qkvkeg5jLPhIFpzkyI74ugzRuj/ujE12XWWHsJgafX5jA3rdiCTYSayzXktM\nUqiW9T+H9e5oQ4PKO/cV7BFu/zrk1m/89DWVd/W33+3F53dAUpM6Uz9LdR/D+515gM7pnQj5uUdE\nJG0ZZI5PfQPPI7f94H0qr3IjNhYPf+ITXrz5e1p2+ssP/sCL/+ObkHF9+Bt3qrxXf4U9WlUv9lTD\ncbqunX8BsqsivW2OCPwkXT77pJbtVVyPthhdh7Hfdh3/TjwB+VO8H2tNMKzrSBntSdiRNjVbu3i1\nnYVb8Knf7PPixZ+DU5frkJj4IMbFze+Ga1fjjjqVF6K96K9eftmLv3bn7Srv0ae2ePHHfvxeL3b3\nVXEpWCf+8KnfePH6Gy9Vee5ewoUxZwwGg8FgMBgMBoPBYDAYphD244zBYDAYDAaDwWAwGAwGwxTC\nfpwxGAwGg8FgMBgMBoPBYJhCXLznzAi0/+EGrTfmfiqla9CPhi2vREQCZPMYFw/tmavJDtXCjjCL\nrLRHh7U2l/W9TS9A8z7Qgry5V81Rxxx84YgXP/nYFi++etVSldfwNKzb4kugZ+0nS3EREX827LYG\nyeq7arUWAP7HfzzhxXdvuMKLu5q09SLbiU0KSCDtWnz2noYNXcosaJjjC7WeN7gVPRySKslqM0o3\nsYn2YUg1vQYr35xVWus63AvdabgZtrA9RzCuitbrvkS9NdCMFpCdXFqj7tPwrR/d78ULy9ADwxej\nh/tV10EzGt57zoszS7Tud+vDb3vxmrug2c7dqLXmfC1lrUQUMQnoC+LPiFevsRXvYBvGI/eCEhEZ\nGMLcvGQJtKNPvrJd5V23crkX890dbNU2j+eOQi9cvhB67RDZWPbX67qRSD2fWsh22Z+p9aK956if\nwSJogEM1evyyPXjuTPTQuMzRwHaFcF0GmqBhL7p5psoLOecbaSSSNWbO5bo/y9k/YXz7fOiLkF2s\nx2Mi1aZVM3H+Ab+2u+6m7/yF26GfzU7WPa/YZpD7Stz0+U1enFmu52L72f1ezP1Uhhwr0G6qddHR\n0L+PjGnNfFcN5k5aMfV2EI0+qsVF18HG+sxv9qu83FW6f0AkkbcetaeF+g+I6B5k8bkYm82v6byO\nNlwXfw7m887t2kq7JBMaeu6lllqoey/xvAqegEadLdnzr9S29tzPYPrmDTi36sMqr+V11Ma+dvRU\nmPPB5SpvbAD7hUFaj0NndR3qH0Ttz6NzYhtyEZGRbm2VG2kkluAaJpXqnhAd1PdjuA/nkZCrr3v6\nQvx/i+3SuXeJiKg1OCoGcfCs7ieQRPeR+9EMdOB6plWVqmOaTr3ixSMh7KvcvhQDGajXHdRjiPv1\niYgI9ZwpW4v7U+j0yOKeNmxjXHKr3n9x/75Ig/X+oVq9T2Nrdl4/hzp134MBqlnnHkePBe5DJyIy\ncz1qbe4K7PUGe/SaxL1v4jLwWWovnKb72ongWoZbMMca39S9O9jeeyAKYyImoPvoDLTh3FMraexF\nOXkDmNu93fjuMc5aMtzn3PsIY7QX7x/l131SpkXj/PnedZ/Uc2eE+nAlBNA3I1CkrzWvKXM2Yu/k\n2oVzDeMem+EGzLGj+86qY/JSUR9Ss7Bu9xxuU3n8fME1eqBF977q3oPeI+fa8B7cR1NEJH0B9j7c\ny4L3GyIiw52TV1Mz5qPmvfTNZ9Vrt/34q1689h9x7iUPHtJvQnUyJQ/z7fp/1lbxz37l91580/c/\n7cUDA7qHjT8T93DBp2HTve9H6O+y8OOXqWPqnsFz4MJ5qH/1L+o9xs5Xf+vF2Sm4n8179Xf60L9/\nyIt/8N6feLH7DLzqRvT142fR8UFdx7NWF8tkYnQQ86jyZt37ZZTW+BF6hjt49pzKWzIP9XH6u7FP\n+NNn/qDy1lyPXmrhNuw9Q326V+Wh+/GMmEp213Wv7vDihl26l0xaKvW9o+80MKxr2WJ6RvzUZ97h\nxdzPTETkix/FHunN7zzuxWXLS1Ve/jrUnlv+cTOdw4jKO/so9npVq+WvYMwZg8FgMBgMBoPBYDAY\nDIYphP04YzAYDAaDwWAwGAwGg8EwhbiorCkrBxTKwWZN8cwnCltsEqjcTB8VEek8AFoeU/nY9k5E\n03kbnwalqeC6GSqv7vHjXly0GbT25udBL4wK6PeePgOUuFlLQUlnOqGISMZysnwkG7223ZpuzRbF\nPa2QSOw7pK1Fb70U1lm1jbAdW36XpoP/3yy1/l4MNoEqGTqlKeZJMyEhiIrFebCdpojIvCsgg2l7\nE/Sx3PVa2sPW2iNkEXvid/tUXuacHC8+t7cWMVE3cw/r65lAtt+9RGlNnZut8r58zx1ePEp03LcO\nalu4IMmQ9p7F+NlXXa3yNi2BxWQnWdbmObKmgfOakhpJMPU8yqdpv2y/ymNpWqweVw0duGZLiXb/\nzg9tUnn8/pl+zB3X2jbciO/7yOOve/G15xZ7cX2Hph53bINkgs/n87/+sMqboKkZoPvuUtLHabzt\n3gaaYIZjh15ZhO+7bwfsZksd+9UZdy6QyUTO6lIvbn1LU0EDZOkaJPlI3iwta2p9FcdlLYDki2Ua\nIiK3pqJOFV0PijBLCkW0FDU7CKoty14CAU2lTSyo9eL+etD6MxZpOQdbEgcPYW7nlGspYiAPFFJe\nT6qytYQvlsZgbw1qWbQzJ/pYYniNRBTnHsQYTl/qfl+cRzR990C+psimkkTw7L5avF+iziteAnkW\ny9nYolxEZIgkQDXVkOQsuwNU6e6j2vY7yof6MDGG9Y6pyyIiYyTXYQlc/RPart5H4+3g21jDl12z\nUOVVZeGehuohRUmdo+u4+/6RBtus8v5DRGS4E+vfCK0hTSfOqLycy0rx2ktYQ2KdWjmNSjFbmOcv\n1nuB9tOQsfSxTIfo/n6/rgfZFbBbbjoCW+zqF06qvOJenCurPutf1t8pczbWZpbIZV+upYJMFWdL\n9KZXtNSDLYmn66/7dyMqFvMtiyzPXfDYZ/m2iEiIJLSFJLNLP9+r8njPGh2NWj3Y2SQXAl+jjMwr\nvLju4FMqj6/fQBOkGEfe1vR+loMWpGPvllGox+8I1XGupwkJWoKVnIy52VgPG9lQjd4nZq+YXClF\nHNXHPqeNQDbJOHqPwQY7xZmz54/jWSN7Ol5z5SM56yFjGOnDawON+n7nXFHqxYMkE+usxpz45q9/\nrY75MMmH09pxrrMLtSxnoJ4+i1oD+B2r68Ib8YyT0YLnk5bt9Sqv5Q3sCWJIWuvPSlB5cdn670ji\n95/84wVfGxvDvi0pBVKZ2ffq9XMghLWL59ixX+n5UlGO41pP7fZiliWKiJw4j/djOUx1C57HKupn\nq2Pmfwoypwc++5AXv/NH71B5y2jfxPvunY/sVnk3Lsaz0+d//1kvfu1bT6i8whxImJPnokaFTuu5\nePQRWERXrni3RBphajFSt0PvUbOLsPbEF0MyNzTi7Bn6MY5//8nfefEdX71R5R36yZte3EKS+gVX\namns3Nshq8+Zg+exjhpIyMqc3x6qX8PzY04x5vycfL3Hz92F5/tRqgfZa7Xc7fTDqI8z1mNejjn7\npTe+86IXL7wF5x3ntKMoXKufH10Yc8ZgMBgMBoPBYDAYDAaDYQphP84YDAaDwWAwGAwGg8FgMEwh\nLiprCnWDypdRmalfJJot09oHHbcOpksPkAzCl65pv+3UGT2pimi7jl1HYimo++yO4M8DZe3wXk3T\n5U7aiz8Ch570PM2xDXaDLsaSp5LrtaNL31lQ5osuBzUpr19TF7c9t9eLV14JetOW329TeStv1K5R\nkUbaYkgfRvs1BYup7ew2xHRcERFfGu7XBHGi29/W9Poxen+m/Dc8dkDlde+Ge8kze9CJ+3QjKGZu\nR3rusr1yIaiIvWc07Y8p5b4MUCOTTuoxt+sMxsmtm9DJnaUyIqJop3kk4wqebFdpgULdGT+ioGs+\n6rhmBE/gPHh+nDvmyPFIktBCbiSlm/T47jkEyidfv+TydJWXS/TgjeSU8MRu0DpdumNhBub2e94P\nOdWBX+xQeUUrS704hmSKbgf1Prr380tBu58Wo3937gmivqy8AfMt5FCo1T2dBIUTU/zHnLnI43b6\nKlC5B1u1Yx2/hz8d9ych33Fh2gAJ5/go6PDsAiMi0kPyDqavs6ypteEldQy7woTOof73HtcyscOn\nQYudngs5R/k1+uKy6xtLI6OmawmHLwH3P9yOe+fP1XTt7BUXljj83SDJHdPiRUSSczBHOvZi/p3c\nqtekvgHIZlrI7WXTLbptP1+XYZIqDDufe+Q10HtXXIO1pn0r6O8ZKx1qPck2/Omg3LLzoYhI5mW4\nliwjiXHkw23b8FnjVK9Y3ioi0kTyg8JonJPr/Df9PVoOFWlkkgQv7LikpM6HtCexCPuHAWcu9pyk\nuUPyi4zSeSov1AOpD+9b+rr0uEgpxfUId6IWJWRiDa898pA6xkfzOY7uY3hIj5FUkhL3HIPMZ9kX\nrld5rQcgJxunfcD5Z7TMOFCAucjOSENtWnoaX6bllpEEf480kouJiAwHMe74mjtGfuo1icK8ZKml\niMgQSd1qnoSDY85qLfcKj2CMBHLwHoODJH9yToKp8Y889poXzy3WcqIxcmzbfhKytZ59et+9ehak\nFKEHsPcKLtF7lunXXuXFsSQLiE3Re6WeUzguT5eRiICly+61GWrHeGqoxf0una1PpLMPc7iK9mIB\nR9ozRjLwoW7c00xnzeg9hbWMr0dCIuYby5hEROYU4T38tN9KcqTJLIMJk0Nk2gI9hkdojzBAUlh/\ngl/lRZHkjveHo46kS6Jc/8PIYdl0SAJfPqhdxtqr8SzErS9O/Va3O9hXg+eChaWlXly4RktAuLXE\nyYex9mVV6OfU5eQ6W30M69MHfvwuL3YdbGNj8R7X3rMO75Wr6+TTj/9C/hb6BvV6Fx9f6sXPfukH\nXjx7/SyVF0utC7Y/vMuL7/q3r6m8sbHJc78T0c8xvlZH6rcWe36eVysc6VVdPZ4hZhVAjrf/v95W\neblFuNblyZhXj97/isr76C/f78X7vv9nL/YnY15mXa5r5eYf/tCLaw4+6MVxjvzpaCPmeSa5xnXX\na1l1Aj1b8V4l91Iti0uege80THufzv1a/vrSc7gWszd+QFwYc8ZgMBgMBoPBYDAYDAaDYQphP84Y\nDAaDwWAwGAwGg8FgMEwh7McZg8FgMBgMBoPBYDAYDIYpxEV7zsy4C5rvkw/oniGVt0JTHRUN/VVs\nstaqdh+B9iyWrDaHu7QuL4v02mlV0F321mqNbNF16I8RaoBW8IWXodHbeNlidQxbA6dkQx/W0aD1\nb2xJzDrkgGM/x/rq3mpo7aY5cs6li3Guu6gnwKobl6m8hq3oyzD3Ook4YgI430COthhuegma9+Qq\naOWUFa2IdJOFYSpZUYbrgiqP+5DsewC9ZKoum67ynn0Mlp/XLsb9mkMa6+/ff7865sef/KQXj1NP\nIL4HIiJ563AOPYehUb50zXyV10O9g3a+DRvmJTMqVF4hWbaffx7XK2WOtuQcaNb9CCIJtnKMczTU\nYbJKZ2105XKt0+V+NPGk8R5x+xCRfrl4I2zrWvdrDebLf3gLnxtNvSii8JvvXbdcpY5hDTRrbOe8\nS89Z7gHRT70xVH8AEal4F/prnH8VfR2aDup+O7mzUFMat9d6cVKKvpbjI+MymTj1J9TR+ARdK/s7\ncI+5Hw33jBIRGab+Pu3b0PNpzOmVlFqF8dl9HL0x3DlbcRd68HQew/tNo4KWXKH7DTW9gGv95r4j\nOIdxff1WzJjhxYEUaIqHunVfirgs9Gbg+x2TEKvyfGUYt4FMjOeUmfr9Gp6CBW2JdmX8u5G5Gn0F\nAtm6L8VAG2rASAj3sCBb9xzgvl1VhdBku983gTTzNY+iRvl9Om/1rbBT5n5LqYsw7tkKWET3cnjz\nPlhaco82EZGZd6A/UMfbmFfpzrhMX4S/l+fjPoVrnTViOiyzmw6h99WMG/SNGqCaJ5UScXRQ3620\nuTnqNXcu/Q+Sp+t5wPUikI3v3Fl7ROUl5GKs9jdhfLv9MEZHqJZTXwm/H/dxOF2vd50H0cOH789l\nn1mr8gbaMTYzl2DMDYb0Hit3MfZ2jf37vTgmSWv1u46ipvhiMbbK3qX7SfF1jjR8aWRp3eHUlEz0\n3/FRj4p+p8cE9+iIy7mw1TBbMqcvxP0IntJ9tjKol1FyKvYc4+PY8/Y7ts2Nb9d58dq5sBp26ynX\n5FGy1fbH6nrwpV/+0ovv3rzZi29fpvuqVL+M3g5sJ++Of97zTgZ81G+t94Qej/4s7C0KC1E7Rnt1\n7z22Sh6hfkN/1ResArWY+7c1PKWt5/M3Yh/IvSPSl6DOXTtL9zjhPm18TOi07m0XRz0yeX13ez1y\njz3u55k2L1vlcd847vHlXqOsNZNniV50Hdb6Wx2b84wyzIMzT8KSeMVX7lV5fV/9uRcv/uxGL05K\n0n09Rkcxfx75ybNeXBLSe/D2XuTd++9f9uLGXehxWLJygzqmdhvmxMQoxsdll1yi8urJZrpgIfof\nXfsR/X5fvRn9RCrzcK9TZ+rnh5P3o9Yuuwo1dGREr5+jo/rvSKOLnplmvEPX8mh6lo71YU0LFOjn\nyvBZ9PeJoWeDjCSd99gr6L/KPaOWVOhnsJ4TtH+l3qM9zZgTM2fo6857LD/tPbuOtqi8Jfdc6sW3\nX/t5L/5Z5kdVXt1ZrLOrP4teRPt++LzKW/hp9A0MUT/e47vOqrzbP79ZLgZjzhgMBoPBYDAYDAaD\nwWAwTCHsxxmDwWAwGAwGg8FgMBgMhinERWVNdY8e82K2jBYR6doHW6j8KyFZOft7LX8quQ1U5SSi\nxncf0tSi9Jmg2Q4RFc21fh7pBWVv5+9ATWPbNbbbExEpmQGaafNh2Pwy7VVEW12lzQPNeWxYU0vZ\neq1kHay5a1/SFtlsA842sjGJmh5ccb22VIs02Lru/HOn1Gt+kmwxtZTpmSLa+jU3C9dtmvPzHt/X\nEB2TXKlp/cvJdq+5G5TP8hxc90fv+1d1zJYtGFtNdMzGezV9O9wI2t9YGDRRtkcV0bT+S3NAmxzt\n01RQP1Gni26EVK1te73KK7hmErj3/w/4+rW9Vadey1yOucOSM5c6zeMgPg3H+HMdSv8g5lz7Ydin\n5izWlttXk60uU8MrSKbXd15TMNnOO30BKJ7DPQMqj6V4Q0RXj3Fs8KZNQ15sIuLFn1il8vrpPFJp\nbnM9EdHysclAydWg/rqW6KFqsobOxhzrOaLrWdnNGKuDnXRt4jT1nGWfe57D3Jm/bIbKO/1fO714\nqB/nNON9kIy17tBjfWwA82oZUVA/9KMfqbyqD3/Yi5OJhh9wZJMDRNlmq+oUp26c/SPkq+nLMIbd\nepV/tabFRhJhmldcG0RE+kkyNkI2rdNidaFMo1o0Srbknbu13SJbGUeTXDBQrG3T8y6FFILpvF2n\nYU167mktS+wiCvjhOtSUxeV6rW8kidgA2TNHO1IHfwauRdo8rHdJjiSucy9kLqlpoDm70gnX8jjS\nSCfr5dEBvc/oPox1LJHOf8KRPWbPx1zsrq324vg8fX+GghjfXftAj85aoe2A65/APTp0DO/X3f8n\nL77jizeoY7KWYh6MD2O8xCVpW974FFzfcB/kT66F+bnnUA9Y5hM83Kby8tdjnHS8hfowGtZ1LS77\nwlKhvxcsWWc7eBGRcDNo8izVTZ6uZXvTSNI2SmufL0nbFSeWQKrBtTbar7fR0UpihPHSVQ9pO69v\nIiK5c7EWHtqGMVCareUrQyM4P5YSlzl53/3IR7w44MOaGeWPVnnhBtSyJJI9p83We4LJljWxBCjB\nkcT0HodsjO3bj72tbeiT4rB/zVyCeRVq1DI23uezlD/dsWJnOVRSGWpAQnKpF7cdP8SHqNYILHlM\n3aCvJ8+R/toeOmZM5bGsNYrkqqF6va+KI/lTuBb3lCW4IlqaF2nwGCndvES99uo3/suLi2bheeyB\nT/6zyhsgyYrfj2sWCum1KyoKa821m1d6cX+1vtdzVmBP/olrP+TF3/7tp7z4zLPPqGP++PsXvPgg\nWXvfd/9XVF7adFzbhAR8zr4f/UblsdzuXT//uhdv+ad/V3kJftSbnc9D4lS9vVrlXfmtD8lk4kwz\n1qfGX+t92pVfucaLO0/h2vSc1NLOJeuwH3n5Kawn++l6iojcft0VXpyxFOPCnQdpVZjP3KoilvZf\nR36q5UV7zv7Mi2/72k1e7P6mwG0xNizCnvelN/eqvOxkrOnD9NyQMUPL07Z9D7K4ihVYIzd+41qV\n98BnH/Liz/zpbnFhzBmDwWAwGAwGg8FgMBgMhimE/ThjMBgMBoPBYDAYDAaDwTCFuKisKbkKlPL+\nc7rbeO5aOOI0PAXK2ZxPXK7yWneDxjQxCqpSbKp2KhnuB8V6mDqtJ5akqjymJD60DTIidvypbdP0\nW+7YfXkxaILpVbpzefYKovcS1Tc9TzvJTIsC3Wl8HNT1FKf7dt8JUMKyl4GW5dKqOnfhO83QaoyI\ngOmGvgxN/WUHjyii3tc70rB0ouaFG0CpdL9LGrkYJB8DdXpsSNPUKm4F7a2MqKCJRbg/zW9oCtzK\neZB/9fdCzsEyHBGR3NUYm2dP7fNipoWKiKSRkwm7E8Q6dOZoP0lsSKoQm6zzlFtEhBVOLa/gWiRW\naalHgJyX+Dq71EAfnW/jW6BNFq1Zrt+PHGgS00DLGxpqVnlDXbgW7BBQtA6SkkbnHhZcUeLFsX7M\nbV+upjJPi4GsIHUG6K3N2/T71T19GO+9EVK58y+cVnk8n0fIKS7cox0+XBecSKOXnD1cuUcGydPY\nmSGhWNfA3b+Hy1x9B95v7Vpdp4K1qNlzF+CeDDT2qbzWIObzjNUYuB0kP2GZiohIBznENPeASnzl\nZZepvIIC1MSdh7BOXD5du1ywK8X5V0DjPf/WOZU3/XY4yQySu1Vsop6LPcfJ8UNflr8b7PwijkMf\nu5FlrcL60r5Ny8K6SL6UPBvzOW+jlmOxfJjli8mV+vqxe0VvHdadrv24T0wZFxHZcRLuJCGSK1XO\n1FR4lkKEa4gW7zjJVG68xYv7+uAsNTGhP7ef1g9emwZataSQJZqTgVGSjLmOf8PdqBFR0Vg34gu0\nJOb0A294cdZKfd0YIfrOLBXqcz73Z4887cU798Dt8N5bcG0TC/U5dJEjJq8FQwN6H8Rym5R0zKOa\n119SeSzHYBlpbLresyXR3mz8Eqw1rtNPL1Per5CIgmVN4yMXdhgapnWbnR5FRFLzMed6GiCVad+t\nHf+iSMabQnKY+Bx9P3w+SIzCYdSyEZKxuo5EIXLS6qe5GO9IwpJpbzJ0BPueirV6w8FypYwlkAsk\nFum1JJiKWjFKUtXogN47uE5vkUbnTlzrhAp9jnE52LOOBHFt4hyHquJFqLd99Vj7XKlyoiOb8s7B\ncRUrvQprWWoqZDqdnXju8Dl7QHarjSV3M9fRi/NYHuoPaJksO6yx/LD/rH4eY1mvL4PaE4xqbWgg\nV7vlRBKdJNdsek5LzlZ+cb0Xn7kPde3On3xe5f3h49/z4thYzKtDP35E5c371I1eXLppBR2jx86D\nn/qBF6+ahecHdq9kaZuIyC1rcd8LMrA2t76q9yJ9JEOPTcZaOusj61Ve5SjcMEMhtArJLNX7+PwN\nqEOvfB772lW3aJeomqiLOqwAACAASURBVJde9eIFt+pWA5FAfhrmR1SUfmbqOox7/PYTeA5eTDIm\nEf0MNv8g9jC8XxURCeRj38fuvpd/QTsv1TyMz+ptw/61/Szm7CXvulQds3kc1/O7H4F73c2O69bc\nD+Hva5Zgs7j12HGVd/Wn4TzbRjL/7nN6DV94N+738YcOenEgX0udr7prtVwMxpwxGAwGg8FgMBgM\nBoPBYJhC2I8zBoPBYDAYDAaDwWAwGAxTiItyFZsOgTI05126+3b7brzGrhl1zxxWeexKwV3to51u\n9aF6UONZLnLuAf1+p+rxuTPyQdf8/v33e/F7brxRHTNCLiGpSnqkO9ez9IG7rree3qnSWHaVTJTL\nlCItkxpaAyrtGFGo+XgRkYQyTYuNNPob/7aDiIimlTHdvKhQd//vbMP9CRSCnuVKhYJE173iq3CV\nCHfort/JuaC9+XygFTYf2+rF8Q59O4Fo1GVEz+08pOU2TP/sDeP7Jp7X7kVxWaAMs3uC6/owjSyp\nOnaBfhvI1xTRWMeFK5Lo6sS555VPV6+d+jMcA2a+c6EXu/RylgQOtkHOE+rU7k+x8fge9W/CES3d\nkbbEkUQuoQBjopvchfIvK1HHZMzFnE1IAO0wJkZfy55zOKekbLzHSI+mGmYshstFz0mMPdfNwE80\n4qRZoJPGhzXV0JW0RRoZ5KzS9Lym/nYHQWGuvBYU3I7tDSrveCPGoJ+o3S+/ukflXbkW9Ep2c9iz\nRzsfsCMIOxElTYfsypUCVNwBWUQezauSTE0Rjo5HzWc3gjMHNEU4sxr14Ug9KKMbbtRU1Z6jGFs9\np3BMtEO/LdysHakiiWTqzj/UqSnzSTMz3HQREUld4DqiYX1h18Bhxz2s5Ca4AeUWXefFdUcfVXnt\ne3HNWD4Rl4f73nHwrDpmdhFkOHOnl3rx+Rotaa3aAOq0Px20+xiH0t/fD1en/lbMxYyS+SovfT5q\nD9ODhzq1xLDpVUhCCu6ViGOCZFlDjvShcBPGTwu54w20aEkgSxJ4fxNu0vUndBbU58FmfJbrMsbU\n+8so5rlz7Odvq2Py1mEtZclTIEHLrPo6IAntb4brGUtgRESaz+L+ZzajJiWUa8lA+x7sxRJIjszO\nOyIi02Im73+A7OTnK9NylSiSOg73QA4zLVqfT1QU7qFyvJumNYss++Y9wvioI+PqwnXuJPnnANXW\ncJce64EErE+lWagv7fV631R1I+QDWTRmAzmJciGMkBvc2LA+Vz+1F+A1010H2bloMhBDUlFXKi/j\nkOaEaP6VkMOriEjHcYzbILkBpszQNdlP+5aRMLlEOS0URkdxfVua4OgT48O19qVqGVIggRwER1Hb\ncleXqrxeahPB7qINe7UUsep6uN1GB1BfTlXrPcH0fOyDRnpR/xvf1DLwwrXaiS+SyFiCc6h7VO/T\ntnwX0sniIqyF4+O6VqzavMyL22q2e7E/T8v7Tv0J73f0ENaJlXfq/cI7fgxXpvaTkJg0v4xj+k44\nTkOfhhtS4MmHvXjOze9SeSeegoPelsdQkzNePKryjjbgXt16G5xl5733LpW39VuQ3qRRG4mkci1/\nb3xS798ijRmbMeZYFi2in803/dNmL37pW8+pPHY+4z3qiFMr2/fimWTe9dhTJiRrebc/G2twgJ5d\nNnwN7lGjYV03Dt6H5/ZMclr6h5/+VOW9dCvctY7VYc7e9pnrVN4Zes6afhvq8P5dJ1Xe/Fx8Vt4c\nPO+4zp5tr9fiD23kJCLGnDEYDAaDwWAwGAwGg8FgmFLYjzMGg8FgMBgMBoPBYDAYDFMI+3HGYDAY\nDAaDwWAwGAwGg2EKcdGeM1U3QwN2/ulT6jXuJdBBNqHhXt3TZKgd+jC2Lk507GHLLr3Ji+v2w04y\nsVLr7eaS5i2PLL/8MTiftqDWe2/aAB1iDPXTSE/Xtq/BaNh1xcdzXw+tCz/y4B+9eLAK/R/Ov6I1\n/azPY73oxJi2t+PXJgNsJcg2mSIi0T58dvocaEHjsrWGOSsK/XTY5jfeseYLHkWvge5TGBd5C7R9\nWV8PrI4nEqAVjMuA1rLlWK3+Hqx/vwMa92THkpjtbWfejn4H55/W9src96h1F3Shsz6wTOXFxeG7\nJ5RSz5lcfY3cPkqRBM9FV1uZfwnOjy2EC9fPUnndp9AjYJzGoNtHYZz09Gwfeua3+1VeMIy5nUwW\nkGyXV56re22wLW32tdCLBoNH9DlQj5PqJ2FdybagIlrH2fwSdMTp1ItGRPfKaHoVOuySm/Q1mhjX\nczPS6DkGTTlbLYuIJJD2nHX2bS3aqm/zdau8OFSLXlDJjra+ei/6uswqQN+QZcv0d85di54VW34O\na+CrqK9MapqeE63Vb3ox96pKnKHnIvct+97vfufFN2zQVon3fAj9qRKpBrzx9G6Vt2IFtL4+6g+R\nskD3yGrfgflcsVQiiobHoadPW6z7MIWbMJe4bxmvgyIiOavQR6mPLM9DNdoilftnpWVjbnN/ExGR\nYy/CojOJ5mL2bMy/Fw8eVMcEfFgLV9283Isn9uk1ooX6wlS8A2OC1w4Rkeho1MM4qiFc60V0D4x4\n6l/marK7D7fIZMJHfTV8adomeoT6XkyLxj3o3qfPicd7P/Vecq2HY8hW109zO2+97gFR+2Pc4+ll\n6F/x2+de8eIZxbrXRnLZ3z4Hf6XuEzKNeqj0U/8TtqMWEenswxhu6ETvjiU+bdfMx7GlsLsudh+c\nvPvo9o9hcJ8U7hfTsUv360jKw/UMnqE+Vs49HAlhTIwOIG58Wvcc8FEPqYkR1ID0pdRvrUPXA+6D\n0v0c6svcd+viNU49YzIuwXm7vf+4B9AEraV953R94bU/hnrmuXuCeMcGNtJImYs+O7yHFBFJKMF3\niaXeNO64DZ/BOMtKxvUM1/SoPK7LPH7c9XNiAr1bYnw4h84T2D+4Vtrte9DLKXgEa32sk8d9mAZb\nsZ8+06x7fOQcIct2ug4ZSXrf7c+lHkhD+H55s3TfqbEB3fMjkuD3nvmR5eq1Fz/4Ky9u70XtSduj\n++Q99xD2FR//zbe9+JdP/0HlffXP3/fiI59FD5GKVbeovK5O9LDkvp8zPoj9TFKStoE+9siDXlxw\nJZ4DW2tfU3kxCZgva2+Dnbfbn+n0o7ine9/EOj3QqOfY9lN4xr7rE9d7sdtjZjA0uf2f2t8im+ge\nfY5jYVzDXurrNDiin0maXsFe/HwX9q917Xpuc//Ee2ehBoyPD6u8Eepjln8d1qH2PTj+0Iv6GWLF\nPXi+rwhi//vAM8+ovBiq87f94P1e3HVG92uquhv9POupp9KV/6Ct03f88HUvvuxL2OeGm3Vvt4wV\neh13YcwZg8FgMBgMBoPBYDAYDIYphP04YzAYDAaDwWAwGAwGg8Ewhbionma0H9Si3I2afnv2cdiF\nZZK1aNZqTdVPJMvj3nOgN8U4EhCfD3lMNew+qq3lalphl9c/BHqXj+y6br5ES2gyiE4aSCSruwlN\n8RsIgRYZ6gRdiq2oRUT8maBfdx3BMS41uvZNULvGJ0BlXvBeLREYI5rlZCBUDSprxnJNpWIaftps\nSANiHKlVQgEolTwuGh25G987lt+Mj+tr3U2WuFE+UN2Y3pu+UEsGmttwPZnuX/2QprOlVoEKynKW\ntKVa6tJ/DnTXme+DVTxLeUREYmJA6fWR9WT4vKb8MZU40qh7BtTp2Bh9b9LJwjCV7mHbfm1XLCRl\n4uviWtjGZUJWkncJZGHBY3ou5hWAWptE8sOkOsgNYxL0PE8sxWu1Rx7yYpZ2iIgIqYt6zkAmNeyc\nK0sE4+h8xh0b8a7dsOwbHcN8YymUiEhPN+7p9GV3S6TBY7r+MU1XDVM9S+sGjXPObQtV3nA3pKNM\nl+6v1teweDrGRYDkhxkLtTTs/Euw9L7mWzd68bRpmAdxcXou9pzCPWk4gWtbeYW2sD5NNO17bwHl\nmKmuIprafeAo5KGVeXrOZlL9GulDHerY2ajycteXyWQhqQpjPXhc03RZujvQgu+Uvkh/j4E2SDTZ\nop4lNCJahnvqmce8uHCdpmKv+NjlXlzzp8NefHoPqLm79+5Vx/z6i1/E5xBFO2eDvnYsQ/KTdWx6\ntrYtrXmL6ML0NbhWi4jkLkZNOf0WKMBsSy0iMj4yueviNLJfd+17Y+hcxokOn75cz53e45gH5w9i\nDPqcGp13CeQFXLPOv3BG5c1aAgvRJ58BJf+WS3Gt4xxbWZbsZFZhXPS2aJl1Ug7u62A26mjGAj23\nj+yGDK0rhHGaMjtL5fHegdc+XttFRHLXTd5cTJ8H2V64NaReY4lvUgXWHVei09cM6WUfyZrEkbjy\n+NzyY0gc5qzQci+WMEYRZf7MsySHTNWyFKnCZ/HYGWzX34ntvVl21ba1XqX1tYBCn70YYzZjsR6/\nLItNX4h903BQtydwJYeRRiudf3KZbnnQS1bH3AKgpqZJ5Z1twV58GT0P5M7R45slpSGS5MaSrEtE\npONwLV5Lpr097eVDzr4lPg/3dTRE0gzHln2AbMsf3bHDi9l2WERkzx7sERZ0Yx5lZutrNNyJ/ULq\nAsyJ6Di9lx1o0nvWSILnVbhVfw4/n80qwBpesvIqlXcX7VPOPvuiF992wxUqr/30AS9mGe+RP/9W\n5fF+s5fmducezPmln9DtLWr21eIYku68cOCAyuP92gc/drMXpzv7qzXHZuM1ujdnt+u95we+/04v\njk9HXusbtSqvnOTmk4GK9y7y4vY9WgJa/RbWlPlXYa264doqlffwFx7x4oWlpV68+LoF+v1ex/oX\nrsWcYKt0Fy/88lUvXlSFc1j+Tv3czy0E+Llt2+lHVd6On7/lxeu/jvt48M/7VN7SeyBdm/9p5LWf\nPKzyZm5E24CGpzF/S2/S+/iB5ovPRWPOGAwGg8FgMBgMBoPBYDBMIezHGYPBYDAYDAaDwWAwGAyG\nKcT/a1lT8Jimb5dcCSrnlge2e/Hy2PkqL0Td4RPIoamvXndQbxx93ItjE0HVj3PolItngbZ7338+\n4cXvvwn0OJcaPtQFimbjdlC747KOq7zMGXO8uGYLuoanL9SUdHY96CBXkOr65gvmxZMzBnf6FxEl\n4ZgMlN6BaxYkiYiISFwWZES1j0Kq5jrJnH8Z9LNkkg0lOBTUaD9olGnk/tR6RFPEmMo/GsY4a9sJ\neuuENg1RXfZHiWqet6ZU5bETWNPLoOHFOS4S5XdCyjQ+CorixMSFb0hqeaEXH33mdfXa+DKi4WvV\nwd+NspsxNtverFWvxZE7xEgv6K0d27XUo3AzJCe7f/+2Fy+5U8vsAhm4fjVPYm6z24SIdojoPgQq\nu5/GVIYzd7KKIb8YGsIxsYmagj9EtOrR7bVenLlCuw/4UkBXrP4z6IXP7tPjbSZRadnlLbNYu0kN\nhgZlMsFSitJ3XHiQ9FaDTnv6iaPqtf5BnGNROeZR8lwtO2BnNqZbuzUg+zLM9VGi6rKcMz1d09yT\nynANc8/A5eJnP3lY5RVlolasnIHxNzSqZWe15CSWnQKJRGaxdn/qJgeMIXKhcyUIrmNCJJG+gMa0\n4xbD8rkYlpw1aGks02wHO/A9+s5ouRdLScquWuPFva3aAYldepieP9GJ6/KP73+/OoalNixzdF2S\nsi+DDMAXj3vTeOgVlcdOU2W3LPbivkYth4yJwVhMI7nXQJN2M0hwHB0jjQGSjLiSZF43YqnGuNKr\nMZJPskvkghUzVR47JrIcJcdZu3qO41rNIElf3mLUr4J1s9Ux3acxd/pjcA1dWdhAG+S/Sg7p0Kt5\n/bvhjiu8eDioa+P54xjr2VSXXUfIizkq/b3gesqyBRGRDHLs4zHtStj4e6XMwXxjqZ+Ilv9WDuP7\nHtqm3Zr4+vFakzsDa40rEWNHq2JyiBlo1rKm1DmQLUeTW1HmpYUqb9peLfnxPue4nouF11BN7sL3\nG3QkYix1ngwk0N7Mn6U/a6AJ58Ly6emOWxO3DuD99nC3Hred+3FtfPR84a4ZUTHRFGOcdVKrhbAj\nE2LHp+RKxA3P6XrN0q3oaHxOabZ2HcxJRd4I1RqWLomI9NLzWecu1IM8kp6IiCS6zqYRRFomHJpq\njjytXvvwT9/jxR37yTV0XF/z1EKM/bzKdV6849v/pvK4bt7y4+958dltev/B97f4eshNWLb32te+\np45hJ6zvPAoJzE+//0mVF5eDMXv0YUieXvn54yrv8z/5gBc/+r2nvHjdhiUqr5tkOOF0jKv5n96s\n8ny+ybuHIiJvfR+yoZYe/Zx+6aV4Duk+jP37+ad0e4tb/wnuy6/+KyRKlXMWq7yUtzEWTtfTuKjT\n+7nmbuwt7vjUdV6cUIj9yI6fbFHHTL8UrVhGqMb/+ev6/tz9r3d48Vvfxf0ZcfaoqUV4v8YdcGVz\n9y1R5CLKdbltj3Z/cttJuDDmjMFgMBgMBoPBYDAYDAbDFMJ+nDEYDAaDwWAwGAwGg8FgmELYjzMG\ng8FgMBgMBoPBYDAYDFOIi/acObMFfUaK52oLZrbgK8+B/vHYTq2tjCFNcEUvehscOqAtJJeugZYt\neSb0uA112pZR6O/ZRdD99jThfApXa+tG1pP3nYWm//xWbTU8cQN0bqlz8Z24r4WIyIk/QV/I3+/P\nW7eqvOPHjnnxs0/+0ouHOrTWrJ9s9US7gUUE9X9Bb52UeVrTOo20tPHF0O9Nc6z/fOnoI8I9gdj+\nTERbqQ+x5W+SX+V1H8d9TKlEX4r89dDIhpw+DaznHRuCbpz1/O77Jc9CnO5YKobboGNkq0jWGouI\nDA2RDfMoPqvktjkqj/vtRBykp85Zq8c3Wyuz3n94RGvrWZOfnkgab7q3IiLdZ/B9E8uhmee5IyKy\nbwfG1axCaCvTSA+dkKl7ztRshaazYyv6NaXM1+NyjPoy5a9AzwtX38k6eZ8PWs/NS5eqvN4BXKPZ\nt8HO78Sjh1TenLu1JjbSGGzH+Ol8W/cE6u3Ba5kVGLfdIa3/X3AVetUo63rqEfbff+Mack8S19Yz\nOoDr1nkA977q6ju9uK9P9+dijbE/Fz0C3n/9lSrv0DHYRcb50QcgIVP3f8oii9T4IlhysqbY/dz0\nS7AmuTbvvaeo/8QGiSiCNI/6juv+PVlrMFY7tqF/lmthypaw42PjlKfvdQz1jwnm4LvHJuh6mr0A\nfUjGR9FrZE459Szo0+OjcA2sHSeowVdfjZ7nPBcnkvDeE06fn/JbYfecmIieK53BZ1XeyAjW6kSy\nYHYtt8dHnaZjEcYY9S0L1+u6kjQTa82Zl9BTpGR5qcoL5GMcj5FO/twhbW087ybUnOEe6N/bd2qr\n0tNk3ztvNXokFK5HL79wp+7/13cW45GvYRL1vBARCVKPAH6N93Iieu1/5hH03pueq9fP6fMx1lu3\n1Xkx90URmdz72LYL1znN+Vwex+OjuDeBHN3ThPsGJRTQeHR6F4ZpP8I1anZMuco7fRTXor4D9aH8\nWsyJQK620k6+GfejhfalGUv0vruX+oVx36+2N+tUXt7V6N3ho71Xn2P9PBJCz4+WLfjcRLIeFxGJ\njp3EvY3ofai7n8ugOl/9MmrgwdpalVeVj554WdQDqb9Oj+/RAdzv+ELUV+5pKKJ7EfG6HWzA+7nW\n102H0TcjZZbuK8Tg73vdYuw54pN1j80TNagP5Ysx38INul6lLsbcjKGeF+5+qfc4asWMlRc8vf8V\nWs5s8WJ3r7jt8d14jfZiha/rfk2llbiHeRvwLNAa1M8Ci3LwWmfnG4h36j2Vn+b66zvxWdd+83ov\n5jkqIrL4EszTpHjsjd0eVO3bqd9oK2rr2rm6l2CY9l53fPVGL+a6IyLSuqXWi4+/Bgvm6xavVnln\nn3/Oixfc9nGJNIoKUUdrWvXz955d2AemJuDaxsbonxIqqHSu+xz2hC3bdJ2Kov3rNV/f5MWNL+rf\nB1aWoC7XPYcasOU4zueSykp1zHN/2ebFG1ZjjvF5i4hU/xbP8zM24N6PhnQ/pJ4G9IxJob6rweN6\nPY5JxHr38r+hf8+1X75W5Z1/Xv9W4sKYMwaDwWAwGAwGg8FgMBgMUwj7ccZgMBgMBoPBYDAYDAaD\nYQpxUVnT4ntAU258UtPP8q4GrYyp1y1bNIWwjihjafWgAJdlacrfsZ2gMU3sAN3neIOm/W4/AbpX\nCdnOrVq3yIszF2sqaOcRsrgmym5qkaZuMsWzfTvosmMhLQ/JKAMFdetWyCI+eKWm9O+twDViGmvX\nAW25HRU7ub+RZSzH9YhzbApHw/hurW/UenG4UdMhWfrgSwFNNme9lti0vgZqbPm7QOV27TSzKmDf\nPDiIexwIlOIzfdqerbcW9LHxIVBQk6Zra7muI7ClLFyNzxkZ0fSzhByMwWAt5BxRDp05thTSAFaE\nTIxqGmz1I7A8Lv7ObRJJdO3HmEmdp20U29/CWM1aA1nZgCNratiH65yVj7F/8n5tO52/Au/RdxY0\n6J889KTK+xCN9y0k4btpEc4v3KNpkT2HIT/JJZvHAce6ky0fY2jsBbK0HGb3T0C7334SNWp+SYnK\nK8lBrRgkWWHlddqWVo37hRJx8Fx37TDbX8V4Z8kFy5hERAZacK2YapuxWFudM009qRT3u/F5Pa8S\nCkDRz1oOOngwuNeLax7eq46JTsLnZq/CtR4d0GPuErJIjSLr0+od1SqPbVAryRq+Y5emKWdTvWHK\nNtPERf7a8jiSSJuNseRKybg2xlDsz9Z1N3Um3qPlrVovTijVMq7mw6hLmctQxwOJ2jo3KQkSy7GF\nkFAlJFR58fi4PtdwGHbRAx24lmnztHwlkMr1FfdwxKH99tajvgQnECfkJ6u8YEOtFzc8jvW8/D16\nwnWS5epkgCVABZtmqNcan8UcySkGhdmVPpw5UOvFDbTXKcrQkqKdf4b15rLrsVdpPKX3AiwUS6M6\nf+5JzD+2wRYR6TiBmjr3w9BFt26tVXm81jPV3kX/EO7rDJKKlM3RY47toMfourjv7dalSCKealfX\nYUcCPw56eTJZMCcW6r0nS67bqd6UXrtM5fVnQFqRXEGysHS9562iccXXiMdbK815EZHi6zB/0xdC\nCuxL1pJ6loiFyQI9Y4W+NyyZ6CeL6NxFi1RebytqANtUp0zPVHnuXJ9M8POEiEjXXswRH8knNq7T\n92e4E3KZoQ7IkPoatSRmjMYFr0mhU1qKE5OENaTtPF5je+HKPC3bzqR9Fdv3xqVpuVLvGbxfeBh1\n2Teg1615C7BH8pOdeWK5rgFd+2j/ShI0V5qXWDV5Nsx/+KfHvPjj//k59Vr2KuwpQyQzO/DSEZXH\nFtn7/nOnF8+5Uu/T/vKF+7z4ys9v9OKU+XpPVbx6lRenLcC69sI/QWq7fMN8dUw8SamvIcnZwScP\nqrzadjxP3PgB7IULL1ml8urewh6VWwgc+dkOlcfjoDAH8+/8ft0uwz/JtvYTJLO+9jYtqSq4Atdq\noAvrjiuXrPkjnovbuzD/Fr1P9+3IugR1i2uWo7yXtNm4r4Fs7CmLuiFlevpXr8iFkLsO0lNX7uun\n/WbTM/jtofKDujVC7SMYq6W3z/PimAQ9Z996E+OkjH6jiI3XdY1rz9+CMWcMBoPBYDAYDAaDwWAw\nGKYQ9uOMwWAwGAwGg8FgMBgMBsMU4qKypuo/H/biAuqcLSLSQx2K44gWFPBp6s4tH7/Gi7f9ATSu\njCTdrf7XL73kxdHkgPSRa65ReXnpoOVdthY0aKathho0zZTdlmKIWhRVrmVNe/4E6vHyd0PSdfih\n/Srv7ClQnyaIjt/YpWmRS8tBpRrqAeWyrVrLa5hmqYlUkUHwJOjW7KAkol0qKkiG1H1MU4QniE7L\ntOpAtr6P7QGitpOzgEtVFUGX7bzCzV7c0fGWF/fW6S7qSSW4Xyz7aHhGS+5i6Pw6T4M2Lw5Vboyk\nUYlEZRwb1l3Uo6PxHTuOQ34XqtN0WZ4HkcZINyiyIcdNJb6MZFc0dwrmaTo5S8EY508673cA16+l\nG3OpsV2P23u+9z0v/ugdd3hxzwGMHZeCzy4Xxx4D/W/QkWDNuhxyjARyETv7Oz0XY6JBDbz9lnVe\n3FejaZZMUR4fwXU486zuCl+6Rte5SIPlgS0v16jXkgKgPgfyMeYSirTUJVSN7zbcjvnsSntY7sfu\naKU3LFd5Zx/c7sVDHXi/pErMt/gSfQ48ltp31F8wL52oxMO9oMYvvFtXOnYZ6yHnJX+GpoOzu08M\nSZcSy3Qtb37+rEwWGl9A/Q/kaZndSAjUZHaX86VqeULXIVD1YxPxPaIy9fddfBVouywZS029sKtY\nfDycWqKiyKmwT1PIR0KoKSyf6K3pVHnpefis+rdfw/FBLXU48Rykjf+HvfeMkvO4rnZrcveEnpxT\nT8IMgEHOOREASZAEwSQwihSVJVvZ8mfLliz5k6/kS0uWZOVEMYsJzCQYAILIOQ3S5Jxnuif25PvD\ny+/ep0RirWs11vw5z68CurrnDVWn6u0+++yyrUhDP/O4lMTN+RikFXGzkL7NUiJjjHHnSjlUsBml\n4w9YDoq5NyP+NL+JsTQZkGtDKMXbsXG8xnsYY6Q73pe+9iOn/c8UN40xJqeUZRLkMJSJeGDH1IJb\n4OrEDlrs1maMMefOI94sWoP7c2yfHBejdB5FC7z47AnpujRQiziUsgTp6f2Vcvw0voT1OVeqHf5q\neNzacyx5Hq4lOyCNdMt7nTAbKfN8bUeG5P4jczHGbXQ05JWhkftFvwRyGx1qh/SIXSAT58lU+K7T\nJDlegM9uPyLjGMvSE0uxvvdUSPlnN8mzCu7C/K19Y5/o13cR94pLFYz45T7RHkvBhqUFrnQZU9mp\nsv805EqJloSF3ehYzmPve9wkhavbi+sbZTnORLtwv5KTse5kFEGqYMsceb1i2ULKcik7853Dehze\nGf6h7zHGmBCSQfddxP4r1HLP8rViLxqfjFiRtETuAXnOBpu7vwIHpKgoKY0989ifnXbBcozvTd+Q\npSDO/xquTsu/1cqKLQAAIABJREFUss5pJ6dLeY13A/Z69e/DrWnXo++Kfp9fgWcajl/3/hR719bK\nd8R7fvilXzvtb/7ss077kb/9tei3+/Bhp73zH+HCdPGJl0W/7OuxhvfX4/ofr5H7v+0Pw1by0LO4\nDjHNCaJfXOG1k6YZY8zUBOabx3b8q0ecik7HOHv8Z6+IfrftWI9+A4glR35zQPQbDGAPsu6Ta512\n/i3zRL9z/wlp2K4jeE7fuRljZOd3bhPvqX8KZSZ2/QAytp3/LtfcvirEeU85Yre93uXtwJo5SlLR\nKcuN8P4f3eO0eV/bfqBO9PPeJuV0Npo5oyiKoiiKoiiKoiiKMo3olzOKoiiKoiiKoiiKoijTiH45\noyiKoiiKoiiKoiiKMo1cteaMKxb626rXL4rXUgugFR+hWh4Fc/NEv1aqq8D1IdiOzhhjti+DxVYz\n1W45eFnq0Ofm4fMnqTbIUAu0vUMNshZIbwfqqlxugeXcqhVzRD9vPjTKPadRE6Crv1/0y0pEfYPG\nbmh2WattjDGFa6D9r3gN+rfZ188W/fouSW1zsImlmiQuy4YtfgbuY8PzqAMTN1NaKQ414hrG5OPz\nAp3SArm1EbrYrC3QMHMtBmOkFruy8U9Om+uB+M53mI/CTeeRulqOuc79qIHhKYCG0Fcl6+iw7S3X\nDmKLSmOMmRjBdeHaOWFuOX3sugXBhG15w+NkzYFQqjVy4WXUDyi/Q1rTst1iNNVxiXVJrf4YWYRH\nRUAb/8MHPy76vXkKNWO2bF/htI+9i2MIOyqvUUMz1ROhz15wu6yhwfemlsZl5nqv6JdONaSefOQl\np12aJbXWJWTNzTVbEuKlvr2BahPMudkEnQBZfObdKe0h2T+w9zzGal+VrAmUTPr1gVrE0apD0p66\nfDs0rVFJ0ML3XJJa575WzO2U8owPfY9tkc36frbSngjIfmzf21+N88hY6xX9WN87OY7Y0/62PFb+\nu12XMZY8abI+Sea2EnOt8JRChx0SZv2+QV7Ioz7oqXtPtoluURmIX2wbOd4m42k01RoJoY6dnVIn\n73Z7nXZ4OMb05CS00TEx8pr0Ug2atv11Tjv3OsvSuhE1YyITMCZ6T8hzyi5EDYhJiiEZmVK37iI7\n0aFGrNVjPlnDJlqG9aAzRcc4SjW9jDGm+xTWf47zI50yxhfNx9jnmjOvHpd1djbOwV7jO/fd7bRP\nV9WKfkszEBP6rmBvwfWVfJZlNM+dfoqbJ47IPdv8OdiPnNqP18qys0U/N9m+j1OdqP42aZHtycYa\nEujBdclYVyD6tb4r53Aw6aI1Lc6qIdjyHuJhdA7iA485Y4zpr0Vc4vqEAas2TX8d5kucFzVdPImy\nPkJEBP5WSAhqR4wO4PPcKbJWX1Ih7s1AF+o6JC+Q61hcfBn6DaD2lV1Hx3tnOY67AXEyMknWtMrY\njLqIbqpnw7WLjPnL2irBhv8e11YxxpjhJuzHctdgbPVdlvtmPjfer9p1XEap7mJaEfaHgRYZe7n2\nBjMxjHlu13DsbMJYSqbPi4iXe7a+BqzbcTmyThsz0or9QmsP9i1Fi+Uci/Xh3F2ZH221PNI++JGv\n/bV0HcacGPXvFq8dqURtv4x8XPPOY82i36pvPeS0q9+ANXLr8KOi39x7HnbaT/3mDad94MIF0e/2\nk3ju+u0jzzvtf3kWz5v2WP/bb93rtP/PQ4847VIrTh6sf9Nph4Tg/oaukXsCrjVVsBh1UUJDXhf9\n+ineb/j8Bqd96tGjot/a66x9Y5ApuBf7Rt9F+Qw2SLFziOoifu4/5LNB+746p73r2DGnffNiWWuw\n3Y/P43qMR34ox8/Z+nqn/aV/w9965oeo7/PKz38r3vOTf/iC056oxBp56AeyLtG6f0INGr8H6/GF\nX8nrHhVJNQ7LsKfJ3CzrVPqrcR8/+APqkS3eKteJ3svYP5HjtoNmziiKoiiKoiiKoiiKokwj+uWM\noiiKoiiKoiiKoijKNHJVWVNHB9Lo5twtZQdhLrx1kFIIz75+VvTLTUMK27J7kErWfUha/7E11cpF\nkP1cvFQn+hWmI3WaLWY5rTOuRFqNJZDlXl4A6YDvPntQ9Eshe++8FKTWZyZIKzOWOW1cA3tFOy07\nLArXyEUW47aMyU6rCzacLman4Q9TGn3qWqRoh1uSna7jSB/m1N/uky2iX6oHKb0RJL8JCZU+1p1k\n9eiiNGrud+jQefGe+a041kvNSIe88e+k3bpnFsbcYBvGcGyuvI9sgcbWi8mzc+Wxnq5z2jFZOL9w\nt7TDTJonrR2DSdJCSO76q6UdYizZF2dkI93OXyFTEsNjcLyX3oO96ZXWVtGPLZ0jSIoYXSDTb29K\nwHxma8feAdynw+elLHHVMqRb11Vi7FS+JtNR00uQ5+ciu9Qwl7zmzW8gXXbzMszFiASZRsyp/8lL\nkZ5a+XKF6Je79NpqKdiKt/5Zec4J8zF+IhPJ2viijBdsIz/SgTRlvlfGGHPmRcjOEmMwx6Jd8tqw\njbmfUsrZGp5lcMYYkzCb5IIVJMGqkMda+CAkMhyjr/z2hOjH1sUsVx0ckTG1twJjpmgDZDosSzTG\nmF6SpZglJqiwtKf1LSklS1kJyRnH9eh8KbtiG2qWzfRbklxe4yYpXsVmylhT+y7SgAuvu95p9/Ui\nhk6MSNmt7wLiQwzJPtosOcxwM9b3MJLX2FLVtiak6ntJahkeHyn6TZJcYKiZrIYjrXTwyKtuT/5q\neB5FWRbmIWSFHevFujFp2WaOkexn5BDm0YMP3iT6jXRinvK6s/YmmeY9NoDP6DiBNa6bYmr59eXi\nPb5TSI/2kBx5TomUPrC8ozQHMbCqRcb/pSux/rGtsbtGyisnRnEe0RnYOw21SVlwaJSMS8EkhuKS\nLV9hBmqwZibOkXOHj4+lMrwnMMaYvkqcf1IZ5EDdTcdEv5TcpU7b7caeKiQE19nlknKlsDDE58gs\nxNaJCSmb6ao96bSj0zEuZ2y7VfTrbkVKPs8j21aapd6TFB/CrL0N7x2uBUN1iHuubCn5ip+D69F9\nFPE/ZbmUmYyQNJHjlCtdynwG6D5G0fhOWibXOHcGXhsfRKyLIGn7oCWRyyLJJu+hbQvrvHLsb2pf\nxV4sY7G03J6geODNxGth1pyKKcJYiErGMYz1Sblm6pprt785dArrxscfXCte+9pSSD+6K1B2INAh\nZVan/v1Jp524BHvehFlS91Fz6AWn/cDXdzjt+0alFv2pn73mtG9bC+n9zz/1baf96V/8nXjP0z/+\nqdP+4RPfcNp+kh0ZY8wvP/ufTnvDSuxziu6RMb3qT5iLu6sgZdr+mS2in5tiaChZqM+7Z5Ho98RX\nUQbiy49JK/JgMNiMMc1jyRhjkubintS/gL1z33kpRWTpPZcv4GcDY+S+LdKDfWm8R87Z4VHMv+cf\nwT1NisUc/d4994j3xJLMdcfSbU47JlPuxS7/6T2n/dxbHzjte3bKaxtow1gd7UZcZrm5McYMkHx/\n1myswbbstnEXno1KpVO8MUYzZxRFURRFURRFURRFUaYV/XJGURRFURRFURRFURRlGrlq3nDRWlSQ\nr31RpuCPkDNB1lykaC66S6Z0tb6DSv0BSu21ZQcpq5BK++5v9zrt3BTpGpR9PY6J3Xw6qpFWtehL\nq8V7qn53ymlHZSBNy3Z0yVyEVCyurp4sM5lNAkl8onORIjUcYTkXkQNG+T2QXPTXSaeqa10Jn+VV\n7Prw338bKZr9lPprV/UveQBpe/x5Aav6e9bNM5y2vxIpwuNWCnzDOciaatqRWstysvpOmSo3K+fD\nU+U6j0qJXNpKpG6O+pHWWfPYGdEvfYMX/6DMNHeqvB+RJKvhtHZOXzPGGLeVjhtMImJwn4bqZSot\np+SnrsK5t75RJfqFUKrkJKUTri4rE/0OXYELxLolcBl5/ClZQX3NzJlOe9Z8uPysXYr3sLuVMcbU\nnocTRdEcHGvmJlnxPDIO5zQ1hWs+NSkno5+kGUkLkHJpOzlEkBQvjNLfi2+cKfq176nDP+40Qafh\nAD5/xm1SntDyOu5X9k2Q7GRsLBT9Og8hLbi/CzGn7Gb5ea/+Bo4+M5bh+vZfkeO2eCskRTHkwMIy\nmDbLNYnlNk3HcE8Do3Kel5AMjedOQrlMU+b0VpYferdIhyFOs2UnqAvPybldvnOBuVYE2nHNExdk\niNfGKN6MkVtTzrZS0a/zKK4ZO+YFOqTripvcmtreg5NAeKy8H3FFkDP2tkPO1vwmZH/j/fLedLYj\n3meV4jxGrGPgeP+7p+GMcd/GdaKffwjv4zXNjgGcks9SlKyt8l73nJFym2DDSrioJJm+zXsVlgKP\n9UiZif8C1qi1DyM3ufe0dLJiR71xkpbY62xsAVKfp8i5MMaHNO+aPZXiPZkzINOp2Y3YXf5xuRfj\ndHXPVki/Yw5LOUcEpZezK2J4tLyP3SS78l/CdYj1yvRtzwzp1hVMeL55CqWcneVj/SQrmZyQa0hc\nJo6XZZ22ZKXsTkjV/J1I6Y+IkXtZliKNj0MSGBWFmDc6Kvc2U1MYL/467GdsOTi7bQ60II4H3Idk\nv0TEjf46nLv9eSkkP/gombcxxkyOWZvgIOOZhRjI0iVjpNyX15cRy2GNZVl15xBf80YtCRlJtKJI\nPjzUJN3IIuIw3jkGJHixHg82nRbv4evGEuyRbhk3WL7o3Yb9l31/WHrJAWu4WUoHI0mC3HkQ5x5q\nSS485anmWvHQT//Gab/4zd+J13b++P847R/9x0+c9rpZ0nlo0dchyd397Wed9tbv3i36Nb8CKYqH\nJNbZq+eKfp/9McbV0//4nNO+74c7nfbUlHSYnKA95h///mmnff31y0S/e/75dqctpG5tUv4UTuOI\nn2fzl0tZ088/+U2nPZuedeISpMRn3Y0yrgebfY8ecNoDATnHVm/Ac+CBI5BMb71Hytj2/AnyoP/z\nxy867ZonrH0ayVJf+e4rTnv+fLkXyEnGGsJuzqvmY/zM/oyUEnddwfHFZuG6j1rSqksX4QT18Ffg\npvXeE/tFv7W3Qq66+1lco42WE9vJffiu5KbvbXfabe/LPdsHFyEDlDup/0YzZxRFURRFURRFURRF\nUaYR/XJGURRFURRFURRFURRlGtEvZxRFURRFURRFURRFUaaRkCnbg5Q49RSswvwXZA0HTyk0YPFl\n0HONWbp2ruVh6C/Z2krWAbM95cSw1AOyLjZ7C+qb9NeR/rZLauZZQ83vZ125McYMt0DHmbUZNRoa\nnpPWoiMj1jn+z98JlyV8WEfrKYYeesCyS+0lK8z13/veh372X8MH3/uO0x6z7FSL75/ntFnfeuUp\nqQ3M24xaP8Nkad17UWqnj1fDWjYrCedcUirtqQ8fhy4vg6zKXz4GW8p5Xq94z4IC2JL1DuLezbtt\nvug3QbUoWvdDT5i6UGqPk+aizgLXrbH11Qlkzc11XLi+jjGyrk7puodMMKk6+pjTZttqY6TNo59s\n2m27xUArrhnb244PyDlWXY1aAlE0pouXybowozTPwmOhrz6875zTXrZmjnjPxCD+VmQS9N52XYqM\nVdB11z571ml775B1VTqp3gnfz6FWqcmuewlzOJmsVAeuSIvL5JWw55y1+VMm2Fza83unfTXrV66l\nYGvhuc5TVBq05i2XZZ2LzCKcZ/1l3NPsbKk7L/o46rN0n4He338O9XxSVsj52/4O6p94yOrUTdak\ndr++QYyX0tvluGCtfs9JspzNkJ/HtsYVj8FWdtJaxkpvno12sOfiEczFnlOyLgqvL1lbEDM7qE6Q\nMbKGAdfR6a+UenW2gWVr7pj8BNGv6XXUIUmg9Zhrp3UeaRbvSaN6E2wbW/G0rKMwQlbrmelY98eG\n5DroTsWx8v3M3CzjRv3TqNeRuBh1osJccj70Xca1WPb5b5pgc/RXP3TaWdcVi9fGBrAHCZAFPNf8\nMEbWf4qi809bJucL13vpp1pl44My9npKcH2jqB5N5ZNYj90xLvGe+HmoZcJ7mNTl8hgS8qDjHx1F\nrOipaBf93GkYC6M+1Mqw5zYzOY6xOWXVdOHaLbNv+PRHfsb/Bo6n8SWyPmHzbqrNQ7U3YnKllSrv\nAxNmI2aOdMt9JMfrnAUbnPbAQIXoN9CMNWWY1iGuxePJzBfvGe5HHOk8gjXNrknkodpSg2Rxz7HB\nGHkPuP4TryvGyD1fKNWW4nFojDFRiTiObO8OE2zOvfILp+07IdexSTq3MBeOcahf1nGJzyHLe9rn\nxlgWtgNVmH+JVCtv1CevTSTVoxEW5DSW7BqOvWdw7NnXY74NNMo6k6NUuyqS4v/kmKx3yHWefPTZ\no93yWMV7aG8XlSJraY35EdeWfSG4MbW39zj+zph8XnzmG0857RXr8cyRe6Osxdb8NuZs/EzsK/qt\n+o4zbkItj8sv78LftcZ33nbUJAkLw/381ed/5bQ//6uvivdMTWHs9FRi/zJoPbc1HUPsv9yCfdNt\n35R23od+hforE7RPWf/VTaJf1R9RG5U/b+MnZD0X3v8XL7vfBJuWBlxPex994gk8n3X6cT0K0tNF\nv9kPwP77mX990WkvpGc4Y4zJ3oB9PsfvF7+zS/S79Z9vcdpcu3CkF/MoY/YS8R5fG+Iy77ciY+U6\nVvcC9jv+esTull75bMAUpGHNrbNqo97wXRSrHB3ANZqwnr05dmTl3foXf0MzZxRFURRFURRFURRF\nUaYR/XJGURRFURRFURRFURRlGrmqlXbfRaQV25ahg7VI0wshm8hhOwWfUgUjwpGOlbRUSkw4K32U\n0klji6Q9IqdoTgSQEhxOVsPxiTIVtOFFSBqi82Hd1XhcpppnluEcLz2GFLOsFXmi33AbZD2cYsa2\np8bIlGC2feXUd2OMydwsrXKDjacMKap9FTLdkCUxXceQ9h6fJe01OcWcrTFZRmOMMbd8erPTPvMi\n0sXiZ0spxeYS2J33XcFnrx+GbGXF9kXiPWwhXbZ5odMe7pDyNE5TLnsYn2HL3fxXcOyjZHWYulre\n74F6jPXc22G9bKep2anFwYTTeQcb5Rxj6V8iSXZ852W6Oh/veDPue0yRlEgsWw7LwHA3/u6kNW5j\n1iNF0XcREpiSTEgVWi5K2Ud8NNJs2cYzzC1DUaAHc8ydhTTErhPSNn2U0nTrnkUaY8JcadWcfzPs\nKjmdcKBKpi4OVNO/N5ugw/KtnpPSMjSOUskH6jDmkhZmin48zi4+D8kX28sbY0zyYsTYw0dwbWZe\nJ+3DO48gDg7WYY4lzPvoFP/sm5GyHUJxfahZjk3PLJxTkgfHwzIzY4xJoDjPxz1ipZoPkCVu6W2Q\nRtky2b4rMi4FE/7s8T5L2pOLNWC4C3FoakLGBt8VpMK6rfWKYVkDy8z6L0r5Uy/ZQyZFUMrt+5CZ\n9g9LGYCnE9d8rB/zKH+5V/Q7+TZkiukb8RpbihtjzCSdY/8lHF/3qY+2xA5Q7E6cI+csywKuBVnX\nQW7luyRTkxMopX6ArIjDc+W6mDhX7ov+h75qeX+SZkLGkjFrhdOenBwR/QIBrMEeD2xhJ25H7I7O\nkPuMNpLu5t5Etrxh8re3wR7M8/g0yP4GE+WcnSIr2THaH4xY12iI1iG2ALeleTFeub4Ek1CS7vZe\nlOtdAq2FLpYO1kiJxBQta4MNiLsR8VI+xmuwvwd7m54KKcNJKKWxQ3uHXlqPR/tkXOsnqQ3LstNW\nSvlTWATWj+Qy/B1/o9zLupJJYkihsb9BymtGaK+Uugz7nvb9daKfn+Q22V4TdCaGMb75ecIYYzLW\n4Rq0vw072sQC+WzA73NlYs8QFiX3FrFFJHOidcOWD7PcdNSP6/Tyc/ucdpEl51iwHRJ7lnay3NAY\nKSHjOGqvYwF61oigdSI6T8YhjqMJsxFH7T1b4xtXzLWi7k3YC7OEzxhj7v0R5IzNB7Bn8V3qEP0K\ntq102mNjGKuP/utzol/yq5DXrNmCZ4EZH5NSIbcbY/r07yCBjI6C3PeJr/xSvKcsC/uPwRHE59Jt\n0vabSyuEhyEO9ZyS+zqWx/zNH2AjXrX3BdHvnXNYZ7/wU0ix7T1QevEKcy3pon2pPXdWfwVyzue+\nDblS9mIpoWW50e1f3ea0X/7JW6JfxgjuT82jiKmrrl8o+l35A57Hr5Dky+PGnLjlB/K6xCTj+SI2\nFuti3bGXZD+aSywX73lDPlcmxSCm8rjgcWCMMZOT2CvXPA458rj1vJh/B40n+chpjNHMGUVRFEVR\nFEVRFEVRlGlFv5xRFEVRFEVRFEVRFEWZRq4qa4rOQfpsnJWaWrsf6dKFlCbI1c+NkdXqWbrU+H6N\n6Fd8B1LU2w4gTXe0V6Z0TQaQXsnVs12pSEH0WFX7s66HEwNLXiLDpDtERBxSRtl5iaUTxhgz1EQV\n+AtwXSITZBps5duXnHbeJFIzwyLld2LjliNVsOHU+Lw7ZWreMF2PlCVwqvFdkCnMTMseVDCf8eAC\n8VofpQwv/BgkRSzrMkY6W0ycRrrvwhVIP4uz0lb953BMTS9ddtpcnd4Y6XLR+Ar6JVhp8zx+OP2z\n+5h0NQmPQwokOzb0WrIhlkaZDSaosPTLf1amgmZtQ/r/UAtSczmt2xhjhluQIpuwAK/FWdJBdgjg\n9PzUBTJ1seMo5inf39yNkAsELMkZS+JY6tF5sFH0Y+nfAMWQ6GTpPhBNzhtxM3AeI91SwsGp4hPk\nvMDvMcaY+DIpvws2lc8hdTVjQbZ4jVOfeZyFWa5Ovgrc/7LtkAH6Lec0jkdz85A3WblHpjZnk6tT\nXAmuR+9xyFHs9GiWreSR1K/rkJSdpa3F3+09g/lS+pBMW2VpYv0LkDzZY7OPXBtisrA+DVhyqozV\nUg4QTAZrEDei0uV45Dk21IBjyrhOSldTSSrb8hYcKmwnttg8rC8+un4RSXKtKZyJeRVbiGs2dw45\nmLXIa8TuJOxyMTIgJWyz5kC+yPIne11MJje8SHJIHKyXUgqWNLP015Yz+CshH8u5BsrfdpIDpa2S\n44Wl0OwYxu42xhgz1ISxwFIFO/6w283AFOYvn78xllNSP2QCHLNCQuV1SqI4P9yOGJJYIB2oes8j\n9vRWvOe0Iy35Dt+HxDKsmU2WJIJjlJSYS3klxwpziwkqESQTdVtOWhEeOi+SgtqyYHY2cpPTWddh\nGctCwiE5CaPxwhJ/Y4wZ6cT8SZyLe8OOM/a+lo+BXd5s56uRYcTJ4TbIqaKSZBwaaiMZDZ17RIzc\nK3G8GWrDdXFbLnlRyfLaBpues4htngL5rBGgc+HYYc9FF+0pO/ZhbrNbqzFyLxBObnbmKrJ0dlVb\nMxPrHTvZGWNMWCRigI/W4x5rbY6m68muUNE5lpMYSZ76qbRA0iL5nMV7T5Y9+87KPWrqAimRDia8\nn4vJlufhq8f9YKltQqwcV/sfP+i073zky077jgeuE/1YRlnxOFwbw6IOin7VBx932uV3QnL2iXug\nWf+Ph6RD7i1/d6PTZkmRv0Luu6//l9ucduNuyMbrj9eJfp/99Xed9r/f9zmnffffS4ee2+9Y77RP\n/QznkZIn90DJXul0GWxSF0MO1PCylJ+nL8Gzxu3fxvHveeQd0S/OhTG98u9xrW/6vKwVcPTxI057\n8V2LnfaI5aQ8+2+WO+0ZJLWtf+a80674k5SJZZAT1Pg4YjSX8jDGGB/JxfNux/Nx/wtybW7uQfy+\n+wd3OW3XL46KftUkzyokN+TGly6JfnHZV3/W0MwZRVEURVEURVEURVGUaUS/nFEURVEURVEURVEU\nRZlG9MsZRVEURVEURVEURVGUaeSqNWdCSI/aVyXtB/MWQXPbcwK1Cbi+izHSji6MLGxdKVIjO0k2\nU1zvJW2dV/S78Az0XDOvgxa+lqxZ2eraGGmdK6y4p6TGtOM0zqNgO1kmD0tta6AZGtjRHtLMWzZ4\ncx+Ahu7cYyec9uydsk5LiHxb0BkkW167Bkg8WYb2XYbG37YIHSVrtBiyE617+rz5KDK3klWppd/O\nvQW1ZVJWQuPINQ24bYy0R4yjOke29jiW7NAiSevfc1Ra3KWuQd2HriOoM5O6UvqasXXuINUYiLLG\nMOtgg80I2YC7sqUePMyN8c366v4aaROdMB/6d54TXM/GGGM8M6C757EzbFlN9lThfRNkvxqfBr1x\n6ipZp4b10FwvINAi5+wQWdWFXGWCcB0i/xCuUTnNPWOMqXkG9RZSqC7WqE+OsWtph26MMblroYO1\n63gNUt0U1sGOW/HHTXru7mMY0xP9Ukt75VHYD6avwH2IOCO10yER+I6exwJryGOL5dhmq8xe0mLH\nWPUCuvajllAqWaJe/sNJ0S9vWyk+g3T3SVYNs7hi6K9956CnL7hd1tJqeRO6dnODCSpsl525QRZD\nYYtsjjdcx8kYY0b9iKdslc5W4cYY0/qOrM32P0xZNYDiilFzhmO8ayZiVO9pafnL9duyboKWfMyq\nJcP3o/eCHDsMWzdzLYsYKy4ONSKGcj20UcsydNiKCcEmoRzx0K4flkZrw9gA5tWwZR8eyTWwKHbY\ntrxcKyme4qtdy2mC9icci7oOYR7Zx8DrHe9v2s9UiH7xZPHceRjWy4N0P4yRsbg/g457tqzZ5qYa\nH6NUs4j3RMYYMzV17WKqsGIvl7FichRxs21fndOOyZX1MLhWENcGSlok63Pw/qj7BPYLKctzRD+u\nJ8O1ShJpvNn2uDwm+tm63aoRw/Oeaz7Za310NmIU1zHyWbVPeN/N+5eIOKtOS+Da1kWMTqMahBSX\njDGmrxZzM4nqBobatdjOIzbxnrJtT53oF1+KWDlYh7E/ap3j1Ek8D3BMzNzgRR9rv+CnWo2embin\n4VZ9S7bZdqXj/vD8NcaYKKqjxPfHjuXReRjTfWR5b9cs4r8VbEq2Y6H96cP/JF7b8ZktTnv9tz/l\ntCcn5TzIbURdjpo33nXajcekVfySFdhLnKF6NtXtMo4vmYV17fTTeAbLzsR7NpaXi/dcfhzPmMV3\nob5LHj3HZMr/AAAgAElEQVQTGmNM9ZOw8+ZaqznDspbg0FCV095y3RKnHZ0RJ/qNdGP/mkMW4Hmb\nlot+zUcPOW3PdbNNsHnn+2867eX3y7/d8AauzbG9ePZL9ciYOuu2uU772b97xmlvfGCN6OeORHzz\nFGFevv+c3B8a2lvw+uLdifsTFSf3Gfv+LyyzV/09LNZjcqQNPddcC6N9S4Q1Z294aL3Tbt6Ne2rX\nRXRnffgcC4+Vtdj2f/91p73jR5vt7po5oyiKoiiKoiiKoiiKMp3olzOKoiiKoiiKoiiKoijTSMjU\ntcw5VRRFURRFURRFURRFUa6KZs4oiqIoiqIoiqIoiqJMI/rljKIoiqIoiqIoiqIoyjSiX84oiqIo\niqIoiqIoiqJMI/rljKIoiqIoiqIoiqIoyjSiX84oiqIoiqIoiqIoiqJMI/rljKIoiqIoiqIoiqIo\nyjSiX84oiqIoiqIoiqIoiqJMI/rljKIoiqIoiqIoiqIoyjSiX84oiqIoiqIoiqIoiqJMI/rljKIo\niqIoiqIoiqIoyjSiX84oiqIoiqIoiqIoiqJMI/rljKIoiqIoiqIoiqIoyjSiX84oiqIoiqIoiqIo\niqJMI/rljKIoiqIoiqIoiqIoyjSiX84oiqIoiqIoiqIoiqJMI/rljKIoiqIoiqIoiqIoyjSiX84o\niqIoiqIoiqIoiqJMI+FXe/GD73zbaYfFRYrXCu+d57RDQ/Ga70qL6BfoGnLa/Re7nPbUxJToFzsj\nyWm7UmOcdvueOtEveVm2044rSHTaQy19TntsYFS8J8IT5bRHOgeddkiY/G7KU5LstHvPtTvtrOuK\nRT/fpQ58Xs/whx7Pfx97LV6bgc+OSo6W/d5Fv9Xf+rYJNgcf+b9Oe9w/Il7ja9Dp8zvt8jvnyw+h\n2xWgazg1Pim7TeDfEyMT+Lv98p501HY67dIdc5x295Emp83XzBhjOg7jtfQ1eU67/YMG0S++BGOp\n/nSj0w4Llfe7aOMMpz3qC+AcxifMR+G70u20o2mcGmPMxNC40179D//8kZ/xv6G16SX8IyREvDY+\nhGvru4Cxeem9y6Lfss+tdtrh7gin3fiq7Jc4P+NDP7v/crfo11yNOVKyAdcyoSwVfyc6Qrzn0CN7\nnXYoncfiL64W/ZromCITXU6bx5QxxjRVNDttdyTiUEpZuuiXuizHaU9NYjBz3DDGmMtvXHDaO370\nIxNsjvz8B047eVGWeK11d7XTTluX77R95ztEv+QliIGRFNvCo2WMbnsfcaWHxsXsLywX/ar/cMpp\ne+/GXJyaouvU2i/e03UQ82pyFPckY3Oh6DdJ96u/ptdpx5eliH4de+twDDtxDO3760S/rE2Ixc3v\nVDltlzUXO+n41n/veyaYVB15zGmfffqkeC0zF+eVuQXHGhYZJvqN+BFvRnuxhtjnwetQwizMq7a3\na0S/nm6M45zFeR/6nvHBMfGerkO4RokLMp22Oz1W9Gt4HnMithhrXJhbzu1L711y2vN3LnLane/X\ni36pFLt5f2DHCj6Ognl3m2Cz/1//xWmHhMmY6srC33ZnxjntnqNyf8Pjvfs4XotKlWt833msdwX3\nzXXaY4NyXWx9E2M6kj4jPBZzu/9Cl3hPwf34PJ6Lg1Zs67/S47TT1iC+DDX5Rb/IJDc+bwzreUSs\njC+dPH7mYc0Y6RoU/SKTcB6lax40weTiu7912qO9AfHaJO1NQsOx9ttzLGkW1oZAL65F85uVol9E\nPGJtQjnWlxOPHhH9Uj2eDz3Wzj7cj8IFXvFaxlr8e8SHeDBQ2yv6tR3HHihjEdaBiHiX6DfUiPPI\nWF/gtH2X5NgZHxihNsZiOh2PMcYMtQ047WDfQ2OMqb/wZ6c90jMkXoukc/NXYg8SHiPjRdcBujbX\n4Zw5vhpjTOcxzNPhUZxz1oJs0a+bYm8arblDjbiPGRvlejfSjWPv2Ie4l77BK/qN0X6Y70H/5R7R\nL9yDOedvwT3N3Vgkj/Ugzj15JcZz/btVot8krenbfvhDE0wO/Nt3nXbO9jLxmjsFMbT22bP4/yy5\n1qQuyXXao37ctyn5uGjiMnE/hv3Y2/RWtIt+PHZ43xyVgP+Py5L3vfblY047Jg9zOSIuSvRz0XOc\nKx7rbB293xhjSm7f7LSrX3nPaYe55OP3YI3PafM+bKxPxjV+X07R7SbYXNj9G6dtr8n87Dfqw7hN\nWSz3sjXPnHfa2VuxD2qyYurgCD4jmvbv/cNyzpZsKnXaHNc9RXjWGx+W+xveb47Sc3rmJjlnL/7h\nhNNOLsH+zV8jY28qnWPfRcQhe253H8MzSaAT8SB5qbxGsfnYSxXM3WlsNHNGURRFURRFURRFURRl\nGrlq5kwMZSAk0S8jxhgzUI9vlToPIHMhMkX+YpQ4B78wxBXim6L+avkNMX+T7KNvrD0zZfYE00Lf\nwoXRt+h2Vk7qEnyTXHuqzWknL5HfZE2O4VenEPqlpetEs+jHmRXuNPwK031C/qo2RN+iRw/jG9j+\nKpmBMGV/LRxkOLtl0vpbPZQt413sddqD9T7Rr+00zs27FVkS/I29McaE0i/EcWW4d9HZcaJfU2Wr\n0+ZfG5LoF4pLu86J98S66BeUc/i2PHWZ9YsH/bpZdsMsp82/Ahojf+ELtOCXoT6f/OUvtTTNaafQ\nL8zhMfKXxP5KeV+vFUf/433x77kfX+K0mw7i15pwK1Oo6xjulWcGviHO2TZD9Kt/rsJpZ27BLzTd\nB+S9Lr8D2VX8K9b+n+xFn62zxXtmXIdfVFLol7+GXRdEv+SleK3vMn7tqzxVK/oVz8UvwKPd+IUh\nY51X9Kt7EmMpMhW/DPfUyHu25ItrzLVktANjneONMcYMD+FXBM6W4fcYI7P/es8gnuXeJH+tiqVM\nPh7fEwH5C0PGFvySwL8W596Cz+M5aowcF+3v1zntkFCZgcC/bPAvoldePC/68a8m/krc7/qTMiuO\nw1cfZbHZmXk5t5SaawVnrfBxG2OMZyZ+QWvdjV8t06zxyGsAX7M4r8y+5HW3+ZUrTpszTY0xJovm\n8Jk/HnXaLlqfLr4ir3npZtxf/oXMf0X+us5ze7QHcyx5sTyGWTTX+yjLzv4VtW0v5nDaasqApOwp\nY/7yl8VgE5WGvUrGhgLxWu1j+HU3Ogdrt71W8/yLpl9ZQ6zsRs9sxNthWnc4w8EYY8IpOyN5Idaa\nMDfGWUxevHhP67sYj0n0ngBlOxhjTIw3wWlzNsGw1Y//zVlD9q+oMfn0eZR5Ompl53pKZJZcMGmj\nzGreixljTHs9xvGc+5HJ1XtW/rreSZm3pZ9Z6bQ9M+Vx8/qXOBfzsnStXD85rg83IuMwbADXNcwl\nM+k6DiMLqfMc9kYFN88U/WI8GLMJ5TiGhmfk3DaUCRZOY2fC+nU5aT7GC//y3HlU7nmHGzBOS6/B\nEjnUhuvktzJFeUzH5GLsc5a2MTJbpoey2NLXe0W/uELELf8lZLS5MuQeNTQK8afxEPZVuSuw56iz\nrnv+HdhvcnzpPd0m+qWuRIbIJGWqTYzKc4rNx/mO0byyM2IKrsd6x88u/P/GGNN7qtVcK1L4nKzs\n8/bDdU6bYy3fd2OMCfTQnrwDbXstGInH+sJZvRNDcnzHzMLePTIO8cF3BfdjKnNcvKd4xzqnHRKC\nv9vfVS36cUZpdD7mS95Ncs87Po65k7MFa+H4sMyIGevD/Y3xeJ12xTOviH7eu8rNtcSdgWwmO9s2\nrgjPdOf+dNxp2893bvoeoPckxlyhdeyNz1902jxfRhrkPXFRFm3Vc9jLczzwX+wU7+H5wmvBaKfM\nyim8FXO2/b06p118n1SPcPZzLO3T7Ew/VqMUP7jAaXcek89PEyPyHG00c0ZRFEVRFEVRFEVRFGUa\n0S9nFEVRFEVRFEVRFEVRphH9ckZRFEVRFEVRFEVRFGUauaqoO2cz9IpD7bIGie88dLuF90Kb1fq+\ndJGopfoVc74EsWrrm1K/l7YeOs6+SnIVWJEn+jXsgkYtOhcab9bO9tfJKsuVv4I2LiIJdUv6q2Td\nm5zroR2OSoQOdMQntYG1z+OcZnycNGWWa1DZJxc7ba5bM9ItNW8zPr3YXEsS5kB3OW65Q/QfoWMh\nPX10ToLol0N68659OM8kq94L1weJpGto16LgWjCGZLYdpPmbSS5OxhjTTTroMDqeUMsJJXEuzrd5\nD8ZjqFWDJZPqQIwPQFuZ5JFV2dkFguv3cHV1Y4zp65b62WDCFcqT4mSF+wiqCTHn00udtl3KKNyF\nfqx3PPVfB0W/8o9jPEanQVtZYo3T+hehuU1ahPm3/FOrnPZpqn9hjDGr/+Fmpz3cDd1wW5XUmUeR\nZpXdQ5Y/vFL0i85ADGh4BbHB1tafr4Fm/MY7bnDaXKfGmL90Twk2qRTnbB11yd1wXYmIxRjsq5Z1\ncQbroWF2kaNLz1mpJ2fXusgUXMN+ywGk+i04Y8XH4PM6DmGec30gY4wZ7cd1iy3CGLE1yhyL2TUv\nxStriWVtRg2b4z8/4LQzvWmiXyzVueDaG7Z+NzZb1uUIJskrcC2SrdoiY+TCxK5gdvxrOoEaEyk5\nqIHQOSZ1yYlzUbONayUNVst7yE5qxeRCN0j3OiVO6sL7yLklQG4GsV4Z+zmOtFRBqz8RkNc8geJu\nXDHOqeu4rF/hzkT84lolHIONMWawUboNBRuuDzTcKeuM5exAbYBRuqee2amiXxTFpjCqUeGyHBk7\nj+K+sutRdK4cpwlUI4HHTB/VYeq/IuNB3g7UJfGR7t7+bK7D4aYaAfb6yTV2RG0ay7GN3Ut4rA/W\nyxjavq/OaefPMkGF3T5Kti0Ur40+imPna1l1XNYtW/LgMqcdoBp8XNfOGCPquHBdGf9Z2S9xCdbC\nrBtLnPbC4k867ebz74j3sAth3lbaU565Ivrl34kLONyOGjaecjkuO2i/OdSB+5a6LFf06z6JflzX\nwa4xGUK19q4FPCdsFybei59/FM4qXIPQGGNcGagpEk1rQ+Mu6UbJtaGSyYFlsEHWf6o7gL1j8RY8\nC7ErFNeOMcaYBqqhMTaO+Gg7hZ5/Eg6J+cuwJ7Dr6IxTDRXeB7lHZU2XHqrrwQE7dZV8foqfI9fT\nYMIOjuzIZ4xc+wNUcytjgdzj99ai5h2vDRyTjDEm0ImxH0FOwkNNMkb1p2D9852Bm2AUj/UyGf/a\nz6LeWMpsOA3Zjn5cU3OS9h9Nuy+JfnxP+RlzsFWub1zj6PwvX3baBXfLa2Svu8GGn3Gqd1WI17JX\ne532ws+tcNr+y7JOXQzVSuLYe/6xE6Jf3nJ8Ht9je15xfCy5E9fj4tOnnXbZnXPFe/h7hKJCxGH7\nuf/Uk/h+YM4t+IxLj8pjjXYj3uTsQDyIyZHrbPtePGtU/gFuntEZ8rnt3BGsQ8VL7jM2mjmjKIqi\nKIqiKIqiKIoyjeiXM4qiKIqiKIqiKIqiKNPIVWVNk+NIqWO7RmOMCac0RH8VUppGOqWtVBJZaTeQ\nlaedvtf2DlJ8cilNt3WPTEGdIqs5TgFueAHphPl3Sisz3ylIsCLikZoUkytT5S7/8pjTjiOr0qbT\nMtW8YC1S8Eco7ddl2YkxoVFInfPeKe3EBpqQTpmeboJO9XtIFcyaJdNTCzcjzY7taFleZIwxg0M4\nz/wtSBFjuztjpIWo7yxfdykVGqyFJMjfh8/IXwtbX1+FTBfm9Hoef/aYY8nT8BjGcEaJTOnkdO5A\nO44hk6yFjZGWvZxCGVsobW89IzK1OJiM9SN923uPTHM88J+w1s7JxjEM+eR1KfoY3lfxONLtlv3d\nJtGvr55sCjuQFjraJyVAGRtxneqfgr3d2ARSEDML5DXf+68vOe38mZCHzHtoiejnyYLdoseD4x4c\nlHLIK8+95bTbKzFe2irl2CnNQvpy06tIc7YtTSOslOpgE5ONmNNzRtpr9l9BumXqaqR1tlgx0LsD\nqe08LjyF0tq4rwafN0lp0Mlzc0Q//nw3paPmXQcZW90bUp6WSHH94C6khW77h22iH0s9mt9Cin7C\nHBnoQiNwH5JJfpO+wSv6dZG0sb8OMWRyUq4nk5QGm3GLCSosK+N4YIwx/nOQleTdhXXo3B+PiX7J\nGZAOcTqvHSdZLtJ6BfHUPt/Zt89z2g2v4zpHhuP6JyyQ13yApFHHqjGvVifI9ZNla2FufF76Wq/o\nx+nLlx9D2v5AQMaN4rVIFef7nrRErk3DrdLiOdgMkuTOZaUcs/UtrxNsb22MMT3Uj22nfeekXXPy\nUsQ6vqddh+TewkzgNZZQsaw14zq5PvE19JQg1Z5TwY0xZoo+m4/VlkmxNI8tQyNi5FifoJgSSva9\nrhQp6eIYEGzmfxap9ZGW3DemGMfeSxKlOTfJ9ZP3GX0Ugwvvk2nyLW/Cvpj3fcWflHKqvmp8RnI+\n5uXEBNbj6Ey592S5fuoszD87Zd5H1s95ayHxra59T/QroVIDrhTIfViyYIyMAREe7I0vPndW9EtJ\nQ7wKtjTNGGM6SArAltjGyH1fyS3443wPjJHzlOW1rnRpsR6dhbHP16Nhv1xnUzMxfthGvZcs0VOs\nn7f5tfylXqdt29qnz4KUKUDytO6Lct9STLLWMDf2Jq5MS9pO61DvScQklr4Z85dzM5hEF2CMJJbK\nPYavGpJKXif6O+pFv06Kh4V3LXLaE2PyXte/QKUl7t3otFuNfE4dJTvlrBvwrJOSh89uPrVPvCd+\nBuJuoB/Ptl2WFTI/M7AMh+Wexhgz2AT5UvNuPItxKQ5jpEQ2MgFzsfFlKZNicmd85Ev/e+gZzh0l\nz4Vl5Sy5iy+Vzz59NVhT2N68/AFZGuH47w457bR4xDp3lhzfNRWQzK38wlqnnTUf42ygTpaZOPcB\nYmpmIuYy74mMMaagHPeObbC9N0gb+kAH5lLnIRwPr7/GyD1rJH3fMNQkZZP5JNf8MDRzRlEURVEU\nRVEURVEUZRrRL2cURVEURVEURVEURVGmkavmm/rJIYAlDMYY086p9lTEOtNKuWV3oFhypWh4RVaB\nTihH+t4YOYFw1WdjjElZgvTgqESk6LkpNfzIT2SaWv5cpC0lUKpw1fPnRb/6LpzvXHJ18g9JeQin\nKLYfRnpT0U6ZBtv6HlLFOY2Y05qN+ct04WBTRNIldoExxphGSoHn9PO0bCmRSCtCOlvlG0izS8uT\nrivhlF7J1f9b99eJfjEpeC1nBu5P33mk7caWys+OK8E9GSF3DXZTMsYYP7mQZM2GnKXtgnSzOXoQ\nY3DpCqQS170mq/tnrkTl+XBKLR1qltXWQ8JlelswCacx0vJ2lXhtivJ+I5ORKpe7vUz04/kSFYHz\n6LGuC7u4VJ1D2qk7Uo7THkrhjXXj756qQWrputlSIrHwAbhJXXgK0oekRVmiX8V/veG08+7AMQy2\nyGs+a+cdTnt+JOb2+ed/K/rFFny4o1ADpZkaY8xBkojd9ZPbTbDxk4QgOlumtnOaKLsveLfPFP1O\nPQ6JTHYuzrnnWIvol0Ap0Zwb7q+WqdOxdBxJ8/CegQ5ymLHkOwP1SIe/9fs7nLYtfWNXE05PH+sb\nEf3YGWqUXC4an7so+vFr5X8DScOpH+8X/QatFNdgkkbx4PKjJ8Vr2RtZlglpy+x7pfTh7GOQguVQ\nOvPJt8+JfvNWYw5nFEEiyC5dxhhT8fwZp738axucNl//wWaZVssOGmso1TznFhk3QinVt+Y8/k7P\nKTneeilupJDkOGlMSilYjszuQi2HZIp7TOzV037/WgbrcD0Ga+S1SVmDNYllB/bazRJaP8ljJgNS\nUjTcQi4i5PpRfL/lMNSPvUZ/PcZw5nLIOZr3SclJL8kjMzdCct1XKeN6PO19WOoyarlRRpHTlO8C\n7s/UuDwnTssfoLhsu96kLpMSh2By7tdHnHZ6uXQY4libud7rtFkyYIw8f5Z92A4kLCXpOYyx7129\nRfSLcGNNaTmFtH13Gt7feaRRvIdj9WAvYuHZ30o5ae8g9j2V72HvNu8+KRfoOIC5lEjOSwf/KJ0Z\nXbSmp2+AnChrpryWaavyzbUkrpT2m5az3eXHsU/IWIyx1HtGSgfdJF9KW0PHa5VQYGc/vveld1iu\nOMPod/QZrLlFhdirNO+VUqghcg878AbcXmbmyDng7sVYYLlSXLosjcASIHZ3tB2t6t/BnrDsHkja\nfBfkWt9zgmLCahNU+JjqXjwlXhujkgmZ5Mw41CLdlfJor9NxHPtIW3pZdA8c1urexByLzpHXL6EM\nMa/zIOZETGqK047zymed6Giv0+5qJeemJfIepudsddoDA3gm8jXJPaU7A8fkSsUYtWV5fH85Dtlx\nN2PltdAygXOPY9ym56eI1wL03OUjqagt7cnaSi5XJJOaCEhHxrKNJB2isV6x+4LoV0jSo7h0xKnw\nNRhzTW9IZ7vZS3AMP38U7lefvfcm0Y+fPfw0Xw68c1r0YzlUfDTuT1aiLG/Bkn0uO2DHtcTyqzun\naeaMoiiKoiiKoiiKoijKNKJfziiKoiiKoiiKoiiKokwj+uWMoiiKoiiKoiiKoijKNHLVmjP9ZAnI\nNVOMMcYzE1o0P+mSYzYViX49p6FxjM+HDjRjvaxN44rH57VSLZCUhdmiX6AHmmx/NXSIXEtmXonU\nELI1GNfASSqQNU0GSS8aTlry+Vul9XVMHuqv5G0nLfg7shZIqAufwVr1iWGpu6t9EnUG8r57pwk2\nPUfJxi5E6t7ii3CtMuges/W3MVKbOzAMreRwldS1Fy/yOm22LCy6S+p5+2tRs6KDLOrSl0FbWLdf\n2uK19GA8su2aXROoiPzIeQynFkj9ZOEWaDddpLO39bxsy9vXCG29p0x+XudeWTMhmPTX4jzsWiVL\nlyx32m7SLF/8hdSrpy6BtrKR6it1/FnWCCgjreZj76MGy7/982fk51XhHn5wBnM2LQHzIzxUfv87\nQHUUlnx1ndPuvSD148WfQC0G3xXEF1t73BD6rtNOnIn7btdRGG6FtnmkB6+lzJb2wu7qa1erxBhj\nBmncT46Oi9divbhu8ZtxD2qfkXVIZt+EeMRWqInzZZ0Atrf1rkVdhIgIWcfLnbYH7QTE0bg41AuK\nSpS1CnxXMH66zyIG2JahXA9q9kO3Ou3q198W/dJWoI7LcDPuVfYNJfLvkib43E9wTKll8j6mr84z\n14pTvznstLkGjjHGZATw75EuxMmJfNlv4adRL+fAzzDHEqJlLZlIslvspnPP2lIs+vGaFEZ1JEZ6\nMZ7tOj8tH9Q5be8t0PoPd8h7yGth4gKMMa4dY4wx/stUT4ksgJNJL26MMc3voY4Qf8Zwk6wnlXwN\na5UYY0zKSrLhpHlkjDERsbiG0ek458YXpa1p3h1Y/+srEaO9d8v1zhUPXXrzHsTK5nelTj46C7F9\nfAB7lclJ7Bns+N9Zj/olZ3+GOZE2V9bx4toFXHel67isHZRNNSEMWbbbNdU69qM2SvJi/C3XImld\nbNdWCCbln1zyka8lzsV9a6MaiXacnCRL8LS12KNWPCHrSR2uRC2JzXNRX/DMfz0u+vGY4H0f15QY\nqpNjvfEM9kA5czAu5316megXFonPWOFFra/PNMt94/YHN+Fv0bxacd9y0e/CC6ipEUlW2vHW3Gbb\n9GuBh+yLQ6yfjOOzEEs4hsV65ToWSXs4PpdIy7KWa+oNh5It9lL5rNFXiXg2aznWoePvo1bl/AVy\nfSqgmiknn0RdMQ9ZEBtjzJHdqN217v5VTnuAYogxsubalVass2vuXyn6hdE+q+sIxlJkoqyv1Ncm\nx10wyVhe8pGvTU0hfrUdwL7etp1upnqKQ7VYuyKS5HkEfLQfppgZ55X1P6r/hLohmVsR1+peQU2c\ncWtdzNqKfxcuuMdp+3wyHgQCZK9ejzqVyQUy9sfGcs1AxIPTT/5M9Buk8+V1NnvNPNHv4m/ec9qp\n37zOBBu2kLdt6MPomTY6G88ajUcbRL/wg1g/2SJ82NofjpHV+VA36tksIBt1Y4yJL8azetMHqP+U\nvADrTlyRfO7vo2eFT96C/W+/VRPt2Zf2Ou059B3F7Fy5bym4E/vhp7+/y2nPvUXWmr38LGJqwWbM\nCa5hZYyML0beYmOMZs4oiqIoiqIoiqIoiqJMK/rljKIoiqIoiqIoiqIoyjRyVVlT5gaSHkk1jGk/\nINOY/ofQCPl9T+pSpAb5G/EeT06m6DcWQEpXxgrYa/VekZaDXYfwb5aVRMYj7S25RKZ8D/cjbbf+\nBVh07fzKP4p+X3/gAafddhDHs+7OFaJfoAvpV5w+OTki05bYxjRtOa4D2zEbY4wrQ6aOBRu2V/Y1\nyPTt1BKkcQ3W4bWGU/K6F6yAfdmMRRgXiXOlnIDvQ9WjSCmMcMlzzrsTqb8JM5FCm14AqUvSHGmP\nu8KD9MXhbhxr77k20c9NaY69p5AKOuaT6YsTJEGofR7jIvdGaVV3ZRfSWDNm0bi1bFXjZkqZXDDh\nlLiq96xU+Cikhgq7txnyeNgitZ9s01M8Mk3+zEGk0qaTROnyfmkR2NWHFNm1CyG1GSH7uFBLRsdj\nPzEZqbmJa+S1HBtD2upwEuZb6kqZatj0AmQGIz1In48rlimOne8j9uST5CA6RaYbX/n9YXMtcWXA\nQnO0R6b7s903S4XybpVW2g27cH8yNmJe9lnWr3EluP9hYbj3dcdfFv2iyfI+MhJzsb8fcyImRtor\ndwcgheJU4vyVm0S/9kpcz54mzCO2hjfGcLav6e3AuJp4QVppcyxzx6HdZtnBc6py7pdMUJn/CdjB\nN78m5wTLuELCMfbtmN/0MtKgF9+Hz/Odl9anLEkofRBSv8o/SqvSJd+8z2lfeuoVp912BXLBcw1y\nze4jOWjERVznG9dKqcgE2ULHl0N+8PS3nhP91m/C8XkoDdlfK+Nz9kaM55pnYNsZ6JDy1DHLlj3o\n0JgLtMh06/EZSMPvOkSy2+sKRL+zv4N0NGcJpHQiZdkY09mFax8aCXkQp3UbY0xXHdbd4X6cP0sU\nh6OHbNYAACAASURBVCz5V3sD5n35zgVOu/4lKcHKWI21vvc07knZp6QN8wBZro/1kQx8odyz8fo5\nRFbaI90yrnlmXLt1MdyNOFL7pLQYb2vFPRgZw/0Mj5Wx5/AHkI2mHsFaOBiQ4+/mTZAENdfQvKqo\nEP3W0/oXV4zYyHKaWV+UcbL+dUhg2s/j3vz5uXdFv0VFkGb86Mtfdtphlnz4k5//N6d9+0qss2MT\nUp50//fvctrNbyGW5e+YJfoZuTwHnebXsafpaZPS4ryVXqedWI79pi2Xi83BWt62v85p2+tsygrs\nIcKisF+KsizWI9fi30NtkNpuKl3vtOMLpUTOV411aOZGrJlT1l7RFYH14Ln/esNpr58nSyhE0bOB\nx4f17vCTR0S/+dfhfW7aYzS+Iden5JlXt+/9a/DXYdymlMg9y1AfxTWKtXn3SnnWUCniZIQL5372\nx3tEv1E/5ibbFTe+ImPe5Bhkmb4KyOMvHMV1WXqXXO/qn8Y+pasEz44FN8rnwMlJxMbUIsTQ2nel\nZHvmNjwv8b7Wlqem0jMil75o3i/jWoL1zBVs8nbg3jW9Kp81WDo0WIt1In+NLFMSk4Nzm5zA2H/n\nmQOi3/0/RqmE1sOIo7zeGWOMvxKxc3J88kP7xeRImeMo7QGT2N6a5MLGGHMb2ZuzjCt1qZRV+6uw\nnmy9BeO26wP5rFy8DdcvjCThkQlSXhlh74EtNHNGURRFURRFURRFURRlGtEvZxRFURRFURRFURRF\nUaaRq8qaGl9GilhskayCnUapgZxy1H1appdz+jrLfMb66kS/pJmUahgGmUbHHtkvdR1Sc9lhJ9BJ\nUqMiy0Wir9Z8GB+78Ub52STv2HUEaYNrRmXam4c+v+MgHHqyt8pq5Zx6x2mRfZc6Rb9A26C5lgw0\nI+U413LT6nwfx+/zI90wIUZKrS59gDTAsvWQnY1bFahHeiA3yrkJ8iA7tdRPbi8xuUhHc7lwbSNi\nZSX3sDCShPRTqrwlnek5Qe5UYfj+0ZUunVDq96FqfG0H5AQJ1dKFKb0UKXFhLnKssKR+dppiMEki\n54nFlpMCz9NkchzoPtwk+oXOhCRhww6kaJ9484zo5x/+cHcN23lp6xdQKf7CM5CwZc1GBfW9bx8X\n7ykcwBjzlOx12p1H5LFeOoh0yh3/7z847eZz74l+SStwvjEkZ+s8JFMNoyhd8cDP8HdzU+W9Dk+Q\nYy7YcIp/w3NSspM4H7KB9g+Q3ttzWLqpjI4i5dWdhor5iXlSjjcygjly4fmnnHbe1gWiX/M+pPVP\nzkLKaHwm0rJHR6WbFlftD43AnGAplDHGJOQh3bWH3E6S5sh08HaKo25yG/L3ydg44UMcTfLg3HNX\neEW/+oMfHvODAccud650MWRpWs8JrIUdlgw4eTnGbTQ5rLHzoTHGZJJzTttenFPBXbNFP5YyeUpJ\n7ktOCd9+8knxni9v3+60vamIDWcrpEveipvhnNB8oM5pLymW8uG0VVib2VXG400V/borMDc57Tc0\nTMaXUUvyE2x43Ia65VZogiTKmeSM1b5PjqvEFJLQnsUcsSUSd3/jn5z2o9/6ltO+2CTjXlEG5kX+\n9ZjPLFmML5fxn6WSA3WQhNgOMREexLbkJRh/Y0PSPTJ7HqTFQ42QQLbtluOCSV0LSVfvKRkrWGYR\nbEJCsQjnW3Mi4p1qpx1oxrqTOE/GnoG34f6xeAH2NgePSbnSL//8mtP+2jfvddrFI3IesKS2eRfk\ni4cuY03rrZOuPAm5iBtRJHnZuVO6sYSRPPLx37/utFm2ZYwxn7vhBqddlId1pbpB7s8DtC9zpWJ/\n1LxbymGGGxF3M751swk2fpKyzrp7vnit8s9Yn9g1liUrxhjTU4H1brgFx2tLnFkGk1jgddohITIG\nDJAbD7s/utKwl6j5s3TwYSew3HWQq46PS6mWm6TEhW9jXlXUynWi6iDuVyG5kHYPSBlm+jHE1KFR\nyDayvDJWJM2X0sRg0klrHLtjGmOM/yz211zSoKdO7oGiSPrR34T3zPrcUtGv5jHsWWNJOphquTSy\nnJhlcKmXEKPq35LSnd5B7DkKaE6EhsqYPuCDs1S4C7G19Iadol9nG2ROSamrnbbt2nv6l4ecduFm\nxP7ctdKxbdB37VxhjTGm6TVcD3ZlNsaY3nO4J90dGNOxJfL7gch43MdBkryu3iDndtXTkDmlroCM\niJ0AjTGmvR7r36larMHrTyHmZ262pFX0PDZIz8Bpc6Vk03Mfnld81ZhHAeuZleX7LbQXCw+TLob8\nXQRLmEc65V52hGTc+ZaK1BjNnFEURVEURVEURVEURZlW9MsZRVEURVEURVEURVGUaUS/nFEURVEU\nRVEURVEURZlGrlpzJut6aGn7qqRGdog0hVwTofiTC0W/8UHoH1tIA2zbELe9Aw3XAFkYsuWcMca0\nvAWdXzTpT+d+AjbYAwPnxXt6qA5OFNlmtfmkDpStE9fNhpaNLSNtcraiLoPbLW02I1Og1zv1q984\n7fzbpTa644isjxFsYkl7V/9OlXgtcxF0fkOncP6eGVKnmxAF7epgDerKjFu2ZDlboZUc7oQu1q4f\n47sA7WJYFO5x7dmnnfZAnbT9HvVBC+m/Alsz2/LSTxaxJbNIg2rVpjlRA60vf0aIVfsg0ArLuHGq\nRdB1WGrwC+aSzfNaE1RGfNA/RsVLSza2WuY6Ry0Nsn5FVizuzcU9qFOz6n5pZ/jtr/3caT+0caPT\nrmyVevX0tzCf137rbqdd88o+p52fKutNFCzDHNnzyDtOe/YKWS+lvgsa09aLe512eLS0n2P9+NlH\nUd8mNUtqYHvacA8XfQy2h/9/7e3+WlpJX154/1zx2rGfQ3+74usbnLZdx6tuL+bwUAvOa3BSxjOe\nc1GJ0EsH+qTldgbVCrnyS1zDkAjowZvb5Ht4jiVEQ5ddtlFabkcmYJ5Ly8vLol/aKszTqSmsDcmZ\nsm4Ga3ij81CraswvY0BG8bWzDG04WOe0Q6yYkjGKumqsKY9MlvWuuFZG02u4FrblasdBaK+926G7\nH2yXY6Lwdth8tpD15jN/2u20d6yU87zDj7HDlvdL1ks7V7bFDrQjpmdukBrvnjM4pthCrB8pxXNE\nv0AH6lnkbsN48VfKeNVOewJzmwk6Hfug3betO2PJlrOXbO17aqRFdjtdQ66VNNwl58uvv/lNp328\nGnFzzep5ol90NvY0PBYyr0PtoVFrrBuqKxTmwpau56QcI0NNOFZeC3ksGmPM1ATq7SXOpTpYp2Tt\nK96nRZylWJMsY6qf6hSYm0xQqSJL+ZKHF4nXWi7i/Euuxzjj2ofGGLNhFeogdDTg/halS8vaJWRj\nzftXu3ZEP9moZ25DHcI7d+AYIuLkfojrNr69FzF4+JzcX+07j73tr37x90470Clt6EPDcU/fewV2\n71da5D2cW4tiB33nMf96rJomJZtlXA82vA8dtKzis9dgz8B1Zuz72HcB1zDQheuRvs4r+jW/hHg7\nSnVIouwYTTFhkvZ9bCve2yCfi7JvwP2u3oV9ULJlQ+9dgnpfja//u9Ou75QxMJKef0Kp5l95bq7o\nx6tGRjbitW27PDn60c8yfy2TVH8yNErW4XBlocaOOwnHN9Iv9ywxCdgH1D2DmkqlD68T/XJvw543\n0I17HWXt53rPo7ZM9io8m4bdjTjZ/IqsOfPKccy/0lW4n5OTMu4mp6N+TFsNrL7bDz8j+nk3YA/d\n1YIxsffPh0S/OXk4d645mLZQrrMNu7Avy/7yDnMt6T0h15BoL9bF+Z9G3UpXonxe9FWhXlNiKeow\nuVJkLdOuY+g3MYL5HGKtx7N3ok5i3x8wZ3spTtVb9vKbvrHFacel4LuMql3viH5z7v6E0x5JxzNn\noEvWiOF1Mpv2PrY1N68NyfMw7wM9Mkb7L8s9go1mziiKoiiKoiiKoiiKokwj+uWMoiiKoiiKoiiK\noijKNHJVWRPbT0Va1pCdZHU147OQCVT+5oTol78TKdLe29EeH5KpQE2vI7Xs9JE6p73Kst5qPt/s\ntPOWIdUyMpJsrj6QaWqxXqTGj1AK3N2rV8t+sUiJ4zRn7/UrRL/Lf3rXabN1nmeZTKsdG0PKXtHd\nuEZ9DR2i30jHtbXSZutIO317agJpormbkfo13CxTS194ChbG16/AeaYuyxH9htrwPk47dSXLdDa2\nIzz928NOO5pSw7v6pR3fz994w2l/agtS1mxpwaVmjJEZc71O+/D7Z0W/gjRIH2Ytwbkf2C3tEZNj\nkZJZtgJpjgnhlqX1cWn/FkzYbpdTuY0xpr4BFpLJcehXfptMmecUwrx8pLvynDDGmL+94xan7aI0\n++RSeb7Ji7LMhxFHMogZLhli2k7g3qx8EDKLjg+kPeCmDWTf+xpkEN6dUnIRTjIklinO2Ca96UIv\n4jimJpB2yLJLY4zpOgyJYY50nQ8KcSQXHGj0i9cWPATLxOa3cM6udGlFm7cKad6dh3BPKyvkNSxf\nj9Tf+DLIy07/QqbTlt4G2UnKKrIz3IfxfL5Bju1Nc/Ce/Zcgkcs8J9Nb27qQJsp2r9FRMq0/n+x2\n43KROuuybHg9RXT9GnD92MbZGGmhGWzK7oQcbWJYpom70nC8w22IXxNWOvlYP8Zd5QVc23Vf3ij6\nedIRbwZ6IIlLK5Rr1+Agxkv6CsSymW/hflZY95DvwSyKa3vfkmv45nis/VPjmDuNL18S/fydON8s\nkoZe+fMTot/8v13ltDsOY8xOTkhJ17W2tc+6EefcXyXlSjVPkb08yew8ydI6PYVior8aEgfbXnNy\nEuvsmpUYP+4s+XkRHlxrTu2u+DWkKXFJck74u8lePh/zw547/ST7iJ+L47YlNlVPnjEfRkS4jOUF\ni71Omy3kAx1SEjM+KGU/wSQyGder7QNpcz5B15xt023ytiNORu7HeJyw1oZAK/ZpJVtvd9pdLQdE\nv9e/DznGorWQsCcvQIp7xwEZq0dIlrRpFVL4X90jU/W/uG2b0778xgWnXbZNSuX9FyCPKSZ7dt5f\nGWPMYC3WzDyyIo+/KPeo/SQjNzeYoBNGVvZh1p4h0I7rHl9K1r5TMl4MkRyKpbE9p6Q0Y2AY8pSe\n/YipSQlyLsYU4LmB9wntJyENy17tFe+JTcI6VHQr7Orj4xeLft3dkMGkLsY+quX990W/1TMxNmva\nIdGJsOJL3zCkHhuXQ27Se6ZN9BOSQ3lIfzXxcxBTBqplSYKIOIy7iz/d67STV1jPD3G4h7EliGUR\nEVLeHBKC8clSpnC3HN+9J3D+9fuec9p9JMs+WSPLE3ziIVjFs728FI8Z01qJ50Cez54Z0n66YT/u\nKV//tPh40a/4U9jzjvWRZDRC7qmK7llgriUsoa15Uj4zTdVizzVFTva5W+S58Joy0ITYERop53bK\nYsyRUTrnzE1SytX4AqRcOUm4HhWN2K97oqUssf65CqeduhprZOZGubG/8raUof0P7nT5zNpO33kk\nLUBMtb8bYelWHR1DeIzck3J8+TA0c0ZRFEVRFEVRFEVRFGUa0S9nFEVRFEVRFEVRFEVRppGrypq6\nD0OCkH+HlAlwGmLzbqRUF94vpRSRMUjdufy7D5x2wnxZRby/GelSkZSyZ7twzP04cvGS8nFM4+NI\npY2Ml2m67XvqnHYKpdHlrPKKfs0H0G/mg/g7A93STWnG/evNhzEyItMn+9pxXfxUwT95vqzcHmml\ncAWbfkq3js7xiNd6TyLtj1Oqey7KqvFlWUi95FTi+IxS0a+vA5KyqHjc+/ZDVsoxVebeW4HUr5xk\nSGJ8g1Lu1UDphy8chhTqU5s3i36xLhzfnr2QKM3MkSmULT24LhePw0Ej3kqPy6I0ukAbxlmSJeux\nncWCSct7OL6+Hpk2vvgeuLh0HYbMxZ1mpb/TPfXeCXnQq997VfRbthVzuJNSglNIHmeMMTEZSGVs\nO41UeE7rm3GTrCbfVwHXsl9/F85c1y+QqZqjJJHIXYf5ERUvUw1ZesmuQT0npCtF6mpUwm96FWM0\n0XIzCI+7tm5NsflI/2/dbTmnbYEcJWMdpEt7H5HV5Vd9FlZgrYeRalmQK+9PXCH9rbcxfrotueDT\nj7zstL0k9ePxnJsiU3W/+rvfOe1f/+vXnPbJgxdFvwJy62KZQVJBsugX5sLfCrRgfPc1SDeHhJn4\nPK6E77ss0/Bj866eMvrXwJLecI9ca5ronpY8ICW5zOU/Ii5xenPbXhknB4qxLibNxlgdH5f3MDYW\n6e9X3nzeaY+NQ07VYDkIrSqDLDjGi7GSlSidzvY+j1i7aDakQC/uPSj63XUbJFnvvgDp3Gwr7naR\ntDEyEWneFS/KFOqSDdLBLdj0kgtamOXSxs4oCTMxVuuPSTlKTjLWgGhyguxvl/dneBSyiPhEjOGw\nSClPGCSpYxg5nrx2AlKzuV6veM/CtdgHRVHsZXc0Y4wpehDjcYCcm1gCY4wxGSsRK9mp0t6L+S5h\nPIVG4HoNNclzd6XJ9TSYJFNa/LknTnxkv5gs7Hts14z2Q5jPwySVdOfKvdJcckZpvQKZd8d+KRdk\nB5GhGsQvTuFvOSvXp9dPIh586lPbzUfBDms3fBH7nvpdMu7m3YR9We7NmOezOuXegeNueDTaYwNS\nipa97drOxdFedgqVa0Pze9j38dowOSrdmmKKEPObaiEBsl1Zly7FfBntgRzIZckY6k9grmfkYv1j\nl7LE2XL/wM8AqamQ3g8NybjeXUFrSCxiD7vEGmNMWSnm4oxMrHctvVI2FEN73jNvYz9t72Xz86Sj\nbDDxVyCOzPyU3JNf/hPmy6y/hRNlxym5B/IUkpMT3ZvLT78p+uXehDGdmAwZ15nf/0H0C6G4xPue\nf/n97532Vqu8RdFN5K5UiX1tX5uc526K9zFUOoMlScYYk7Yc99BP8tnsXOlkymUgeF/ruyxl6Dzu\n03YGX2PIpS8CYzIO+MkFbd5N2Au4XNI9rLUKz74scUucJ+dL2946p13+JThydZ+Xz9w5tyCeDXfi\nudB1EvuH2CK5bxkfwrGHhKH0RfMbsuxJRMKHS4k9+fJYM2etcdo1ezAeT78mZcDLHsB45GvZWyed\n3WIL5fHaaOaMoiiKoiiKoiiKoijKNKJfziiKoiiKoiiKoiiKokwj+uWMoiiKoiiKoiiKoijKNHLV\nmjO5O6BjHw9I7dlYD3R1WVtRK2GwVVowj8VB91x4H2pZsO7cGGOyNkALmdAEfWfRratEP39zHQ4+\nHJrgqCi8p2DVzfwW033kV06bbfqOPndc9Ft6J+rMHPjZXqe98E5pkd1zFnVaZt/ycafd1rBb9ItK\nQM2PAdLgBSzr7GiyKzYlJui4M3EcE0PyPkZ7Ue+gmawoU+fIujiT52Ejl0SWkL0NF0S/SLJd7b2E\n6/QXNqmkb75pEa4v10VgmzRjjHn2lz9w2oONGGd1nVIzH0f6W7ZXe/fcOdHv1iVLnHZsHq4D11My\nxpgLh3DvsqdQf6aBai0ZY0x0jLRUCybZm6D5tm1Bh9uhwx7zY74NWPU6qs5CQ513M+b25r/ZJPpd\nfvK00179Tw/j7ww3iX4TYxjHaXOhCXW7vU77yhu7xHt6+nGsxaShPnj5suh368dxTFHJuIcVP5G2\npVFUs4LtJaPSpH688wDG0oyHMd46DksdMVuaXguaXoL98OTYpHiNNcej/YivRTNkzQ62EGXL3rgy\nqdX35KMGTeswas4U58taSZlUYySOLNt3fuUfnfbSxdJ38/Nk6cr2kCtvlf3GBlBrI4VqNPWebxf9\nOqnuA+vEO3vkehL5BOZw0UOoUxSdKetDtFCNndwgx1S2k7ZrFsWS9ry/BlrroWZ5HjEpiMm526Gf\nty3AA2RzHxODGBASIvtFRCB+xVBdsX/5DWo8lZP9uTHGpOQgliWQ/WdISIjo5yfb0bp61FRYWiIv\n7M4vYLz815e/7LQvNsu1PnMC+vShFtQBmLFJ1i8LtMv6GMEmgtaqvvNyDeGaeAkzUYdpsFrGVNao\n59yI+zPcJdf4YapVxve477KsAzQ1ipgw5MN1v3XZMhxDQNY04Lo9oVSnJtHSzHcex32ISsJ7xvpk\nbZpEqi3WdQhxc/8huX6uXoHxNE7zPGODV/TjaxRsOP4XrpEWqVzHhONBGtUfM8aYyESMg4RZGNNx\nWXIP1NuAui4+qtMzSXV5jDFmdi7Gd8IC3IP4LBxf7lIZ/77zDdS5OPj/vO20G606UQ98HXVvpsbJ\nnv3bXxf9wsMRx4eHEVvbD7ws+iXOwfGFR6P2SUJ5muh3+Kf7cOz/ebsJNqNUy6LX2qOOTmBdzFuG\nuj2T47LmzEg3apTkz0K/jDZZ28Gdhdg7Qjbdl07LujBFhVivPFTrrPBePMf018vaL54UxLCREYyR\nkBC5Z5sYwZhhq/ChETkXfe1YN0ao/oddR2f1ehwT188KteZexzHaw91mgkoMPUv4m+S1TCCb7eY9\n53F8UXKvPUJ1rRLLMTZ5D2iMMdGxsCwfG8M9iKS4ZowxnjKsa+4czInkV3E8N1j1Dl0u3Pe4PIqZ\nUdmiX/WrqKPjvQH7nq6Lso5O6/u4Fuf3IoaseFg+217+HWpmxRdjL1e4fZnoFx5+7erpGWNM3VO4\nP+lz5V4xayPqP/ouY3x3h5yW/Vbj+aIjGtcjfaGsqcT3f6AVsc7eL/Hz2agPY6SpHrUGNz24Xryn\nfjeuJ69xCdaeLYyOwZWEcXbp5/JZI64M945jTfn6maJf10GsmamrqN7Qi37Rb2pKPhPbaOaMoiiK\noiiKoiiKoijKNKJfziiKoiiKoiiKoiiKokwjV5U1NfwZlmyxpUniNe99c512gFJ4A50ynXegDul3\nA5dgI5a5TaZEp85AiqxrLdL4BwakRWDza7DBGt+INL+JwPt4v5Xa1kOp8a//8AWnvWWetP3uPUFy\npQ1IVQoJlWne8ZQC3tW5x2l3n5T2iCmLkAbHkoOBKpkK2bWf5DtbTNCZmkT61FCzZXOZgRTP5BlI\n3RwfkOmVbKsbRalfLMUwRtqcjQ/i/mRYtuWdx3DOcblIWVtJdsLet6XVXAz14zTHurct2+9sXPcU\nsi1fcoeUp4VT+udwK67LWP+o6OeORL+k+Uj5tlMo2ZYx2Fz4KWxrw61UULbWiyU7yTivTOdliddZ\n+ryMZdIGb+HXICk69aMn8XdjpJRihNLGY8h2dP5DmMvhLnmscz+O9E+2IGU5iDHGtO6HBOtwJeRj\n8/LzRb/wAXz+gk8g/dOei5EJsDz+4D+Qjlp+fbnVT97TYFNwL+JmH9kqGmNM1xGkHOdtR/xhq01j\njPFdQCpnKElQ2BbVGGNOkgV33hbE2+iMONHv/B8h73x971GnvevJHzvtK4eqxXsyEnC/2Coxfo5M\nh3e5MOaqHkXqa9oaKS1IKsBYbapD+ueie5aIfk2vYyzU/Rnpt8N+Ofds2/dgEluCY+20bHT9lIae\nmEvzz1pDON08Mg5jMybm/2PvPePjvK6r34M2MwAGvfdeSLCAJNi7WCSqN1OSZUmJJFtucfImcZw4\n9ybxTZzEiePXiS3bsWzHRdUqlNULJbH3CjYQRO9t0Aa93k9+1tonEu/9RYMXX/b/0yHnzMxTztnn\nPIO99pLSnkk/rtnYGFKsY2KkfKyl+nWnzdmyv/jmN532oaoqfotprsN6F/o6xljxukLRb9XCtU67\n6yDOt6text033/mx0+45irG8uVwe6yxJXIPJSprlOcYY03FEXttAM3gJadRZ98jUZD4uf0Mf9Vso\n+vVVQuY1QRaqtvR0uB77oMxbIX8aqpd7gUGy4O4g2+SGLsz55fn54j1thxErs7ZDOuOzpOMsnwgn\naU/adikHmhrFus12n+lVcj1h6aiH2r4z7aJfUAjGet4SE1AGaxFDU9bJtaH2aVicpt4A2Xx0plzv\nZqdx/VgK1XT+rOjH5ztGMrVga42r+F+bnPbMNMnUBrHnSVwppaqNr2GvveAuXKTPud2iH+9FebxV\n/ubnol/SWtzfmHTE/sydcvxOkMx4iCQ6w5YkunCtHCOBhuUNtuUsp/9ze8ySII82IfaevQwpxaa7\nVol+bA8ftxL7w7gZuWaEkPSe9wUzJCeLzZdjLjoaso3Whj1Ou/e8nBODlxF7WMabECXX5poOxGgv\nyfVZxmSMMeNduBZRpTjW4UYppUhdK9fdQDI9TvvQtETrVYxb3rvbz1ZTw3juCA7F+drPGef/7WWn\nXfxl3N8e6zqnrcf98V1BDP3eE487bbZgN8aYmRnMK5YyzczI8cZ73vbjmL/xi+U4CqP1fRvFKL81\nzrNvw9rPNtB99Q2iH0viotdJmVAgmCa5oG1rzxKtGJKMjXZJCXJUOuLbSDPGoGud/Lz4UvTzerEG\nh3mPi368nmZuWu60C3bASnx0VJbBiCQp1NQwnulmrRIbLXuwL4pagOOLyJVS+apD2Hv2DeF8p2dk\neYKdn4dVvO80nkPsUiGu6OuXwdDMGUVRFEVRFEVRFEVRlHlEf5xRFEVRFEVRFEVRFEWZR64rayp8\nHOlDdlrZeB/SyDlN3k7n5Wr6ERlIExqslin90TlI/xnxN3zi50XmxdJr+G1pdgptv5UqHB2OY3iE\nqt2ffP6k6LfpQaQjjffj/LxZMu2NU6Q4/SwqX6b9XvvFGaedex/kEyz3McaY9J1zmzI6cB7pfJy2\nZYwx1z6ETCyC5DuJJVKekHEHUu44hS0iRaZh9hxFOmkcuTpNDErZwThJgKIKIZnrOoAU48xbisV7\nKDNSpBIXpMjq28NU8b7+aB3eEyx/i8xYiOPzU9p5nC3NoOvSeKzBaZfcISUxww0yFTiQJG9COmpk\nphyPfkrtvvAOpB41pxtEv4xUSkP0f7IEq/FVpINnkpNMzzGZNjjRj+ucfQfSpYODcb0mLCeQKBfu\n2yS9f6xHpox2UUr/jq2QRXD1fWOMiVuIe1//LI67+JHNol/T+5iLnJI40iLTfjkFfy448YODtu22\nvgAAIABJREFUTjs1Q87F7LtxDTnGhEXL1HZ2lGLXhumDMr2SnR+SlkAK0XmiWvQrvQ8p0vH7ybWM\n5ti6r8nrydSSXGnwinQXqb4CacqCFYhzQ9dkSq+HUp3zSDLripFSl8jHsIb0nMWa0Xe0QfRLWCGd\nFQIKSclsV7B0WgPiyhBHJv1yHoyT40D1TyErK3lCLsmJ2UjZDg3FvfF17xP9QkiGU/8anM+iKLV3\na4hMgY7IoWtZDYlS1mYpmwnzYvwFheLcUwplnGRHhcTF+Ixrv5auB+HkJtV/Hq41sffLeJp/b+BT\ntpnEjZC39J7vEK/FLoSkdpzcFe1UZJZjDLeQpK1MXpvkTUhnd0XhM8oevkv066lHnIogCV/F3diL\nNX8gJYbhEbg/LBmYHpUuQu5EjFXeV02NSBkvS3zZGWOxJQH15mAd6iZXJ9sNwx03d1LR6HzsHQbr\nLDkMyX17TkBmZ0spal/EmhlDUmBen4yREnB267DT2lveQXzN3IU9zNnvH3LaGWulHIZjPDteJi6S\nEonoAqwZR7/zAb6nTMY74fw3gbk9NSrXWb73LPeJWSDH70CVlDAGmrilGDPs/GWMMf0+jEeW6CdW\nyHO+dBYyviUFufg8ax50Ur/oBOxfxwelC1r+Z7EODTVinY1IxjiYCpGuMp2dbzhtlp8klEvXG5Y1\nhZNb67JV8pz6L2DvHplDsv5E6V7kG8I5sbuc7cTG8znQ8L7EdhMMT0LsqXsG+7SYhbJ0Aa+tMbmQ\nvAxYrnYR9Bw4QGuXvcev34fnkYX3l9Px4B42/U6Wzqj8+W+cdvpNkASGWM+i7e/j2aLgEXz2SKcs\nHSH3mBi/LB81xpgZduojKVDBZ9aJfq0HK81cws8atttXTAn23/wMb7uchkbi2mTciGvYfPyA6MfP\nwpMDcAOMyIwR/Uq3Puq0h4ZwT1nKNDEqn/v5uZ3j4ZTlBpe9G/uMhBzshUdGpOtW3BLE4sFrOPeq\ng3I/zXE0dSv2QaMdclyEp3jN9dDMGUVRFEVRFEVRFEVRlHlEf5xRFEVRFEVRFEVRFEWZR64ra2qj\n9NnoIpmC30opt9HFSC2NL5cVia88BenQDFVaL9q9WPTrJLlIUgXS2c5+76DoF0Jpa35KDYwuQ7qV\nnRKVfTeqQHN6Ym6mTBntu0DuFZRmOjQr5SqdH6BidQ6lYrP7jzEyVZPTQtM2STeM7rPkSiFNrAJC\nkAvXjJ2WjDGmYB3SrvxXkRZsp0OOkjsBuyY1v3lV9OM0f04lG+2SLl6cxrvvGaS9s9MSV+Y3xpjq\nV5B+nL4EaaKjEzINNj4b4/Hlt5BGt3WRTMvmY+jxI+UsZkqmWmauQQoyp0T3WE4tXN0/0MRTpe9r\nT50SrxU8jJTK1elIke05Id06BsmBoW8Y9yPTks0cfBWOPUvI4WN4SEqhEopwnTqPQo42kPyC07al\nfuzstuAJyAhf/ctfi36cnvrd/3rJaf/FE/eJfpwyn7AacePkv7wu+k3TWGKnobFWWWXePzZ3ab/G\nGJOei5Tj+AqZ6tyxD3ElgpwA7JTRpHWQY4TF4N4lW04MPnIuCApCqB+3XMV6jmGcZN0FGRtLFl0e\nOSca3kY1/YybEbQO/tch0a+sHFImdsBhiasxxkyTBCGU5tGk5Rp37idHnfbCBzDuC+Ok206I+7pL\n26dihtLVg0KkRCKKZBYd+xtwPJajC8cKbyHmyMyUTLl1u0m2dwbzIKlYunXEpGM9HbkRqfaHfg1X\ntiVrpBNU9WmkHi8nJzuWxhhjTMsbJJOifYDtSlH/AtKSQ704vxGfHL+p27HmDFzEujhupdyzhGEu\nGKpDGnTKBikzad+LvU/qNozhkXYpY4hfTGs8ua9NDss1KakYEonpacTAkZEG0a/vImReLIVmx6gF\nj0rXwR5yhODU+4RlMr6wZJPHcMvbMi2bJRMshXLbLpgkBYsjF8OeYy2in5AuyCH4qTn4v+GWaUsa\nEsn5ppCuWf3zUhYQmYj08ty7EFO6T9WLfrXvYh7kbMAYTrbcDhtfuey0G0gylU1ywYW7Pi/e09eH\neNp7Den0j3/9O6Lftx96yGmveAJyB78l6Wp9E/vz2iY4ma57REok2EkmgvcOp+Teof8SyZruNQGH\nXV4T10onq1TaV9e9hOuZf6/czzGzk5CITFl7WQENmbRtUs7JEht2TOw+ASmFLf8aJjkKf7YnUcpf\nC/5g2cd+j73ejVPs5DUkKkfuq1gKxnIZu4RCZI6UxAeS4kfWO+26l06I1wp347XSR7c77YFmOcfS\nSuAUOj6OWBhTKvcf6esQ22Zm6HwtqRCPg6hs3KuhVjw7Lv38Q+I9/T5IS33nEFvHOuVeMY+e/SZJ\nEtdX2Sn6eUmC5YnHOBioklKtrG2IPf5szL+wMHnP7OMINI17EX8WPSbdMs/8J/ZfFV/d4LSHrPIA\nnR82OO0RcrcM9cpnDd4vNe+BvMybJ8d3Xx+eeQZasTazHD7YKkkw3IZjYhmSvU+eGMC9azuL87Nd\nnViGxI7La7+8SfR761/ectqLi+AS6E6W+yrv/8dc1MwZRVEURVEURVEURVGUeUR/nFEURVEURVEU\nRVEURZlH9McZRVEURVEURVEURVGUeeS6wvykVdB+dh+XNrouqnUQQTVIbM1f8nJoAxuPoy6FXZ/F\nmwv9Vd3TsFpLtywH2QLSQ9roxBLo/4Z8UsfINQw6P8JrxY9LPV3n8Qan3X/m4+vPGGNM/Gqc0zBp\n7exzYssutv2bGJIafI+l8Q80XCfFriXTcRraxshoHEd4mrT5YqtM33G8p6GrS/QrW0321yTZY7t1\nY6Q2tzgd1zM0DEPy3POnxXsySTPK1zYuN170m+hBTY2KAtQLYNthY4zJ9uK1rAJo5i8eqhL9ihdA\no8i1c2IXWXaTl+bObpK1yEWPyZoDXJuh+wjukz1uM0hTnTSAzxu4KO9hCd0PTwo0sku+drfo13EO\n9yeILPcSS1FTqbdWzkWev3u/9SLeHyRrdyzdiBoinjDM3wmfrJfS9Ap0qqVfhu3w+JS0z0wrQm2I\niV5oTG0daNaqhWYu4XvSe6pNvBYUhmvYX4l7krhGavBDPLgerDW3LWJjyfaw6xzqJbRXyu/NWpfr\ntMd7EZt6zyEGuuNl/G8+g3pLnguobbNkbanoV3kUcynei5hStrtc9GP7wW6qd8D1rYwxJmcjxjDr\niO3Ye/FHx5x2+j/dYQJJZDbWqr5KacFc/1vURBifpPhfIC3gw6m+Q9c+rIszk9KWd3It5inXV7Ln\ni8+HWj9eOr6KXahN87tnPhLvWV2EWkFs9Z1SvkT0C7uF6sdQ7bH6Z2XtDq4RFreU6tFYpWNa30A9\nDG8BjrXnsBxjs9O4FiUbTcDhz+c4YowxMYtQ42Cwhmrb5cu1pu8S5mnKGqwnPecaRT9XCT6v/SrG\nSO9ZOX5SN+fie2sxvmNLqF5Ci1zHUkhD7/aiJpDLJcfc2BhqwcwEYb7Z2vqoAq4DgPkbWy4tsnlt\nEGt9lqwnxfXqAk051YiJLZXrMdtEz5Ld9bRlpcox2VeJuNZ2sEH06xzAnqWC9nPt++pEP0NTc+9B\n1K+4d8kup+33y/E27EPM6zqIsfPdRx8V/Vp8GBODVOPoehbJ5duxN97zH2+L1xZQjb+McqwzNSfk\nOSXHyDgcaHynsYbkPyDrUXYdxj3JIGvaEJe0Ng4Nwb/dqRib9p43ezv2J2M0Nse65DgdpdoeXC9t\n8DKuO9eeMMaY7Huxf+BYGZlm1Vhj2/IknG9Pt6wnGE77Zo6vLreMQxEZuP9dhzF+4ixb+26OsbeY\ngMJ17bgGlTFyH8j1tyJS5XVpu/w+Po9qiNjPlZ4Y7MMb38A65IqVe97MzYgPE+OoyxSfh+JX09Ny\nT8lW2OFpuP7hqfKZiGukcW2gnipZcyZlI55h+67gNdsOvepn+5w212WbnpbPi8X3bTdzSXwW6r00\n7ZFxKotixJgP9+Diy+dEvxGqA3r0A9S8+vzn5V6Mn81HRzBPgywL75ZDqF07SdfdQ/dkZnxavIfn\n7Ggb5mLPGbn/TaTabBxHXbEe0Y/313ErML7brJptKzfAmjtlM2rOcL1EY4wZoDphmf8on62M0cwZ\nRVEURVEURVEURVGUeUV/nFEURVEURVEURVEURZlHritrav8QqY2xZTJldJykI2zX1rZXpkNea0e6\n4rKVSCUbrJHWf5nrK5x2zONI0339m78R/RaT3CEsCqnsMzMkVYiWEpqWvbA2bKxHGvHsr6Vspq4O\n6U7L74TV3bSVUheVh5RCtsi2LWq7L+G7UjflOm1XpDy+MctqNNCEUXpWmCV1SSKLZnci0uZHW/2i\nH6dH8v0usFJLLx1HilfpKFK6bNuwwlt2Om1fGVLi2Er0wgsyVa62E6/dsGm50264Km0fOfU3LhLp\nrZkJ0g6+6l2Mi4w8nN/Kz1SIfizFCSfLx+lRKZ3xWrbRgaT2V7gWE5ZkxxuHcwyNwZyoPlEr+m38\n0xucdtNLOPcXPpB29bdX4PwXP/yw056dld+bWbHFaTce2eu0x4YhA2h8VaZFnqrFMSVFI6V19Z1S\nqmXIovjG/+dzTrur8rLoxnIMTs9PyZYp/YmrkL7deQBpv5m7ikW/NrIRzJPqjoCQtAa2qx7Lmrbl\nHcydgWZIF2ItW14XzWG2xnz7H98S/TY+BNvUZrIGjo6S6bRsocpjPWUZ0jN9V6+J90xNI4X0rYuQ\nabgqZTy4fTWkZnXtiIc9R6SEJWYx1pdoklU0/PaS6MdzzB2PuJa0Ukq/2Jo70LS/jTHC6a3GGFN/\nCdKRVY/j+vM4NUbKOt88jXXokTW3i37BobiePWexPg16pA0n20HOTkHC4SH7x+gIed8Xf3Wt0+YU\n5Y4zMu6ynIo/O2qBjKc8/1hux2ndxkhpaNdHDXi/kcSvTDNzySTJG4Nd8u9UnMLMckN/g5QU5WyB\njebsLK5N+ioZfyYmIH9KyIOMYaJPylFCSbIYRXJdtgXtOy+lUHysbi++d3JSHutYHz7DFYN7mn2H\nlCK2vo9YkbAacdO20vadxLqbtA5xzd5jhFuS5kDiikEMGOsZFq/1HMdczLwZcb6uWV6/nERcs6T7\nVjtttpk2xpiYs9jLHvyXD5x2WpKUmGTegX3ul++H3WxsLD57bEzuWToPNOB7yHo8zi3j6bVncQyH\n9yDV/3KLtC//I1ozOV5tWFEm+sUtQ/wKi8a1nLVkTZE5cytrctMedWZKSjtZ6skxxrarr+nAfV1h\nyQ+ZhCWQMVw5APmrvX9ru4R4m7kM49udijgaVSRjYFQSpI0hLuwz/I1S/sT3JG0X9tpT1jm1URmG\nkXGsISMrpXXx4CWsB6HR2AO2vyfvo21THkiCg3EPY/Kl9XVfFe6Nr/aC004tlTbErjzs8YODaS/7\nwrui33s/+dBpr1iG+ZZ7m9y7R0RAuuvx4PksJAR75raq98V7uvY34P3ZVLLDkkN6kvAZw/WItTk7\ni0S/npOYm71UQiBlnbR0Ln4U63HXKdy37lG553XFIg7Hxi43gSZpA45rxtpHhYZjfTr6n5BSL9hU\nIvq1nIQU8QtfgJTJlt4LaTrJEqtfuSj6BZOMOz4bc9sVj9jQf07KyZJvyHXasUuwv/RmyWdRO478\nnjaao8bI/Qjvk0NImmWMlFCN92HMTU7Laxk0KceTjWbOKIqiKIqiKIqiKIqizCP644yiKIqiKIqi\nKIqiKMo8cl1ZUxiljIZGytQdVzw7R+D/c+5aIPrV/USmGv2e4DD5u1B3FdLXx3sg8+kfkZKfsXak\nAMZRKnxfPdLAMhfdKN6TtArv6SdHnYkBmWrOad/v/eaA0374378o+vk7ke7Ijg8xxTKVefACvqv9\nA6QKZ+6SKWBcuX0u4KrTg9U+8RpXIB+mlG27MvnF95FaV7IG1e7fPnlG9LtpGaqjt10jCZnlQtKV\n0GQ+Dq6wHRUu06i337rGaZ/8EBXaKzYvEv2iL+F9Q2NIGw/3yDTlhAUYP1GU0tr0lqy+nUrphxf2\nYpwuvUm6CtR8hPfJ5MpPT+btGDNhXnkeo1RdPpiqnIdflenbveeREt3YhNfu37VZ9Fv6BaREezyQ\ne3V1vSP69VXh87LXbnXa9R8iTfQ7e/aI93zxRszNMEpjZBmTMcbkbtjhtC/8/HmnPdAm03lTliPt\nvusEpDKXL0mXqJ4WyCgzViBF+YNvy3Na+cAqM5ec//lxp51WKiUxY61Ih4wmF4NgSzrIAfeXP3gV\nnxcvU7m79iOtOpkq0qdRBXljjPE3IOWaXREGmhucdsNrUp52qAouLjuWQP+VkCZTRo+fRb9dX9jm\ntPsvyHUhMh3n23kIx533Wakt48r40cVIKe+9KMd63UGkpC7974XwPxXxq3Ath+pkuvqaL8FWqOMj\nrEnszmSMMcffg3QokeR9DfukFLFjD9w7Vt2OFGY7xXq4HvOC3dz8jeRQ4ZUxnZ0G2W1ielyuR55E\npG9fewPrQHq5TJGfoM/wkjTNd07em/4rWBdZHpexSY7Lmr1wGFt8mwk4wSQZ8VjuhCwvYNeQ2AUy\nXb+nFs6SI62DTtt24ggjNzHxeaXy83j+cZzndPC8u5eJ97DcNCEBMpqurvdEv/4rSKmPKsDc8Vnu\nFUkkAWV5YP8l6erHjix+mgdjljvTXMp9616mfaMl980mF7qqn0ACtPrB1aJfeDLGd0gI9g52+vub\nT2JdW14AN5WCh6XzXFgEPq/1EPYpkTdiDe/vPivew3KdM29gTG34opR9pMfhWrJ71H07pJ0Zu6B4\nMhF72GXVGGP8VF6A9w4rHpLroC23CTS8xtnxJyLz4x1zbKe8BZmIR8cOQjoT7pJOfskbILOcIQck\nf60stVBwA+QpM7TP5zjnvyb301E52Hc0/w5rZnxFuujHkot/++tfOu3F2VLqsrQY44wd+iatZ5eQ\ncDzKeQswRmJKZHyZHru+lOLT0LwPe5uITCmDCyE5DEsqZ2ZkKYjISMjCgoIwJnLulHttjtcRtHeY\nmpD7w5kZXCe/H1KZwTrcN5Y/GmPMKJWnmPLjeqXtKhD9eo7ifX1teHYK9cpn5SunsQ9IjMJY/m9r\nyfkGp51Ee9S+K3Kch5Ocai7o/BBjODJPxsCpEczN9V/Fc4MtDXr6uyhH4n8Xz2CriqTka9sKuEme\na2hw2qmWO1zvENaUhDysXY37sV/69zfeEO/5+jDkVCV/gL3T+aeOi35Ft8JhjWVcIR657w5xYY61\nvIf95ZglT4qOwPje+2PI79Li5DqYuVLOdRvNnFEURVEURVEURVEURZlH9McZRVEURVEURVEURVGU\neUR/nFEURVEURVEURVEURZlHrltzJpJsxPyWtn6c7DC57srkkNSebf/j7U57ZgJ6tRCP1OWx7rn2\nJDRvN39pu+g3UAXLOLZ0ZluzqteeE+/pIc076zbDwuUxzAzjnG75MmpenP/e26Jf/HJYavH39p6V\n2u28h1AvoWMfzmliUNpnjnVKjXagaTqE787bLjV/g3Q9J8genfXHxsh6PHzvfX5pud09AN096ysn\nLcvQA8egxY4gTXB2EnSYecnSvp2tPBcvQH2C2lOyvsjFZtQeue2W9TgHy/ZwZhL6QtY5JyyRtUC4\nNkHZJtiO+quk3rhgs7y2gWTwKu7Tf7MqJbvc0S6MJbvGxP5XTzjtXLrOZY9K+96OKlhrZy2+1WnX\n/1Za7KZuxT3obYGGvv8s6olcvSJrlczuhIV6rBdzZ7xHao/3fevHTnvpE6gRkGbVZwqicTpKtQ6y\nE2X9pwVfWOm0B+ugLY9wy2vZS/awRsr4A0IWaYk9yVI77M2FvjciDXPHmyr16l1nUYuD58vmu2Qt\nBYa15x0H5HxJoLo9PCfaP4RWuqlHWjd/+W8/67Q9VF/j/E+lnveOr9/stF1RHnqPPHfWwkcVol7J\nUINcd8LI1nlqBGtN3MIU0S/07SozV0xTXZCULbJOyqQfcW6Q7NA7amW9jqI0rCExhYhLHZfbRb/g\nYIzvsXaM755aeT9ydyD2vPSNF5321gcR/5KiZN2b7sOo+5V1J2rF/fzrz4h+dz54g9MuvBn9gi2b\n31Gyo56dwZ7AnShrh3VRrYxVZB9a96K0zyy6UVo8B5pgD7Y/tmVo/DLcn+vZ97L/d/Iq1IfwN3eL\nblw/ZuAa7t1gjVWzIo9qihxswLG6cawZN8h1Jjwc39vagBpftm1pZDbiC+9B8qiWmzHGDHWjlsIU\nWYFyjSdjjBluwVrPezG21TbGmBD3dbeZn4rFX4NdfQddL2OMGevEPmXBVxAb+67IuTgxiLoUb3//\n15/4XavKUTMmhGowhnjk+Y0PYk+UtArXwtd12Gmn59wp3jOz7WW0uT7frDSYT87FupaVhJoFcYtk\n/BtqROzJuxP1Y1wuWZes4UPUVuTx0ndWxiF3kqyhFGi4tsXsjDznTqoJEk57ruRNOaLfpWPXnDav\n/zMzst7hvic/ctqLVqB+YkikrE1z4W3Eo8pG1EHjGmF3/cUt4j3+euwtZsYRU7oPyBqL9W3YI21b\njHoqF5pkvxE/5l9iGe6x75JVsy0Rez0eMu17ZQ2zyV7M+/wAuzCnrMP9GOmQzwX+eqzjQ9QO3SCf\nwfqvwp55iPZpdt29ZPouVxTOPTJSxkaXCzErJgaVIGeysE+x9xh/9eR/Oe1v3I2CdRzvjDEmdgnu\nR/017BtddTIe8PNN8W48E4ZY5xRN+wCXC88g7nhZR6flXYzzlIdNwMm+GzVYOg/L8eij2n6pm3Kd\ndvMeuc//239+wmlzXabv/PQF0a+S6sysLi522n/1ox+JfvfedJPTDjuJ67tqB2rWPDGxU7znAD17\nlIUj/pd/Qa537VQbkJ8xwzPkfikqH7GT98M3/PE20W/ff6DOzM3f2IUXZFgzPuv3AhvNnFEURVEU\nRVEURVEURZlH9McZRVEURVEURVEURVGUeeS6+aac4p62OV+81uWhdCfKnh1plqlfbe8gBSt1G6X9\n1knbOrZ7zspHSlfvGZleycfEKUgswxnrkvbbxX+I/L3mV5DqNNQ3LPvtQsp2VA7Si1luYIwxE2S1\nxpbgaTdIqzW2zGSru/AEmR4culqmUwaazDVIAWTLVGOMCc9EimZfK1Jho6Ok3COlBBKjCydwT5fm\nyNRS5iylrHX294vXhseRSuz14N6/fRbymP/7sQfEe46TrWxRBqQebLNmjDE3rSUrWbIHty092YKP\nx09ohLwfnR/hPOIrkO4+bdnZuhPmLvWX0+5ZbmiMMcd/dsRpx0ZCLpJnWbbfkYr0WU6z7752XvQL\n8+L8fT5InPJ2S8vQ6GhYulb9DumK4+NI/f+HL31JvKfZhxTHIpKBsUWfMcbkbMZcckfjvo1OSRkA\n2/JOUnp696CMQ2lX0S+a0hMnp6WcIWGNtAcONGxxWv2WTAVNSsN5Nn+AdORFX5JzMbYUc/Guv4Ek\nreNAo+g3XI+x33sacXRsQkozWk42m49jcASxYsUOaWnNtroxpUghT18iJVh9F9DPS6nrMQUyBja/\nhWNgu9TE5fLzWLYXkYL7WPPrE6LfoodXmLnCRdIqW5bC85RTXxMsSVEiyWZ++TNYQO7eKbV0fSS1\nDY3CvLzcIu0/fa8gjXyU7i/bGieWSJnolVMYY+7DiF03bq4Q/aLJFnusG8cz2S/jXzjF07rXYLm9\n4BF5L6LCcf3YDrf4YWkRzfKfuSCO0tJtuRLHfFcCpTpblugsafFdxBi2JUUshTv+MtaxiltlTK1+\nFrE4hcb+NMk5Ow7XifcEheJYk0lGM9YrpaLRWRhzHcdhSd9xSsrJ4hdh/zVOsiaW1hoj5TeuOKzh\n7e9Zx0eXIlc64n5qJocQ8wcuSilZ2k6Se72HPUt4mryHtS/h/JfegjjHcidjjLnzgT922q+9/EOn\nzTHJGGMiUhDnBhtxzXKX3W0+CY7dQ21Yu0LPyf3v0sf/0Gn72o+YT6L+I1i9xi7EvA+z7FynuAwB\n3ajpUcvOOiPazCVektwNWpbWSRWQ3bLc15ajFC+AzKu5FnGFLXqNMSaf5PI1lbju2RkyPh6/hjHT\nR3vMO26CVHTK2gN6c3F9z/8Oczk4SMaDLHoGOFqNubhjqVxnw+Ixr/qpBIE3RY5hlhyyRN+WiI2O\nz50lOssF/dVyXcy9C7F9dhZxo+e83LMwLOUMCpHXj2VTwy2Q/USsyBX9enshk2KJU9Nr2Ht11cm4\nkU3jI3cn2amPy70iw7b2Rcul1Dl6CmM7KgtraX+1lKZ1H8QzdfnXINexx1j2rgAHUYtRKrMRXSRl\nkMm0P+a9Tu4D8pi6T2B/MuGDlO4vvySf6S6fQpw6Uw+5/ZN//ueiX3wqrmFzI67bcA1iQGqa3FNu\non1G/XMXnHbJYxtEv5RNmCOzUzin8GRZFoLn0prdKJPAJUuMMaaoENeIy7VUH5USw2W7r68r1MwZ\nRVEURVEURVEURVGUeUR/nFEURVEURVEURVEURZlHritrYheJvisyBYvlS5z2298kUw1DyG2C0+3G\nrZRbbw7SlrjydY/lBrT9IaR9DzUhbZ8dAdJ3SnkRS6iy70El6q4jMqUue+0WHMNHe532cKOslp1A\n0paEJWize4gxskJ5yoZcp33t10dFP28BUiHTpdFBQOD0s8ErMt0w7UZcK3b86K+U95srV3OqfWa8\nTHvj9M9kqmpvy5rYyWlxNtJRNy/E/WlvkK4KZUtxrBPdkFwsq5DyHXZGWXA30kSHGuQxsDwtuhjS\njEm/TGfmjFQew2MdUhYnUoQD7PQzTufrO9EqXiteifTtiCxInpqpqrsxxoSEoDq8h6QZtiMEV8b3\nt2Oel31JugH1+OE+wdfvxPtw4lp7u5Q0jLZjPmduxmtNe0+KfpzKXPMbzJcoyzFkglzAfvvSB077\noSduFf2q3obMIrMQaft5ZVLGVL0HKe7F60zAYeeJpX+4SrzWfQRprYt2L8L/H5eyo3HwreGPAAAg\nAElEQVQfxm3DZXxe0VoZ9zJuQ/X7vvNI885dLc+59Q2kVQfRvU9LRmw7TffUGOkElro5F99DznjG\nSEeNa8/hM9h5whhjUjaiX88pjG/feZnW7zuO1zJvx7yPWZgk+l36zRmnnfevMpX203LlzUtOO6ss\nQ7zWVY3Ys/YzuL+hlhMIz7mNCyCn7W6T6+eCCtzT6THE8VVFhaLf8CjmQVsfPqP9Aq5fXLKUJoyQ\ntHToGt6TeaeMpyOtiAEz5MzIMckY6ZaWUg5JDkv5jDFm4eeQzjtAqfB9l2W8H7HidaARTm9tUpoS\nt4ykPdZehek9hbTlOJKqTVlryDQtIskxiNH7Xzom+qWR7KT2LYzhsFDsb0pzPll66TuB48ndXSZe\nq3kG3xXqxT2JXSzn4mAd9ghDtPfhsWSMMRkrcByj5CQWmSdltywfDjQ1v4KDYNbtctyyHKDhLGJr\nxar1oh9LW1kC9Pa33xL9vrh7t9N+6wW4HN31xRtFPx85HbHkc2yMUtz3vC7ek30LxXtyn4zIlNeu\ntxNrYT/NHXbjM8aY/J2I/Sf/A9LkLX+TK/qlboYEY8yH/Qy7b/2fYIAkc+2npWQzKgZS7UiSV81O\nSRemmiqsk8VLcp0271eNkQ6NmUm4P++eOCv6hdF+6aPD2Ot89THI09jJzRjp2JpTgHiQdbt0nmsi\nd5sNCxH/B4bksWYuxPF1NWFe9tRJ2XYhOSbymOPSCsYYk3qDLE8RSDhOTvbL+Dc7i31zUBDWwshM\nWTJiiNyusm7EnAgNlTKukX5cZ45XrWcOi36ZK7Y47Q/+9kmnzdLur//gB+I9z3z7W+hHa1zBzTeI\nfld/+47TXlGIdTrjRukY5SNpYlAQ4q43R0oM+d9VL73qtPNv3yT6VT+DZ9Okr0o340AQkYprfe3n\nZ8RraTfhPHmvl3GTPGfbGff31B2Vkld2QfvMRmy4q5vkM87pOryPXXwPXsC+nuerMcYk0fPn+rvw\nXNm894LoF0XlLni+jFguyh3kfJa0Hs+srnjpRhlRhuPj50V+HjbGGHecfJ+NZs4oiqIoiqIoiqIo\niqLMI/rjjKIoiqIoiqIoiqIoyjyiP84oiqIoiqIoiqIoiqLMI9etOdPwPOovFP3hGvHacBO0yDFU\nB6LxRIPot/AeWIKxDaetSeslnS5r5lcVSy0b21lFZkGv6CLr57YPasR7MqiWypUfHcf7LT1vfye0\naK4YWNhFl8hjZR2ivxHHynaXNvXPot5C3v2W7djpVrt7QBmug3Y/IlueM1ueDo5CM1qyReq3m482\nOO2FGaizEBnuEf2yoqFfd5EOtvxOaRl6dg/0vWz9mhCD42OdoTHGuMJIJ58AXeSMdd0Ld+LYL78M\nO8PCbfKc4klrz+Oq7W1ZqyV5a67T5nvsLZSaUds+NZAkrMY1j1+YJl5rfA01MM69gusa7pJ1LrKX\noaAR1yEqvGeb6Nd1GWN16kPcm65jsvZJwa4dTts3Au3/ti9ucdqsXzXGmN5LqGU0MQ4LQ7smR80v\noHXl2iIHntwv+s3MQHf+yFdgK21r9V1Us6G9Dlr9pY+sFP38TbK+VKBhC0x7vLBNb+s7GINck8oY\nYzx0TZcuQK2Bcy9LzfwaqvvRUQV9cHx5qug3NIB4NkO1UOJXYJzd/Leyhk+4F5rbthOwBk7dJuve\ndO5H/YTCz0BD7qNaHcYY0/hbjGG2wGUrX2OMKXoMdYoGalCnILpQxuiFqdIGMZCU3YU6Vt2H5JxY\n9IcYT9PjqNtg14lquIS6CrlU96jtqqzZ40nBeXC8mhgYE/3YvjfxTcT0aaq7UXdFHuv6u3Css1RL\nputQk+jHdYP6L2HOjnfK+gjZ90LX3XMa97fvoqxfdu2DqzjWWNQniV8p41pLo6xBE2g692JsBofL\nrVA31VDJofNii1BjZN2LwSu4Np3X5LGnlODetdP+Jsiy2M1djms9fhz7mETSqw/5Za2fwrsxr2bo\neLqPy2ONWYRYwbbTdoxueBFz0ZuPcZVaJuOGn+rXhVBdIb9Vi40ttwNN0aOoX2RbmnJdp1Vfhn3q\nyR/LuhTlD2MevPQ3e5z28JicY7c9tNVp+6tRG4NrFxljzKWjqOG1fSti2dgY7gfPa2OMmZ7Ad7EN\n9vpv3iv6+WqwLuRswrp94acviH5JGxCfS27B+J2akjUcR8i2u+F3qIOy8AlZD635TczZQvlSQPBf\nJsvxnXLPP0rjietHevPkurg4HOfJe96ygmzRLyQSY5X3QetL5P4wYyPq8WSQ9XUY1WvqOWbVx6E9\nYewi1J7w10t78NYmxIe4SNTUmbXq/zFcz3HxxgXiteYziNlh0XgWGqiUcYjP10jX7k/N5ADqzHBt\nEmOMGenCvmqYaoUGhcm5407Cteg+i/nMNUmNkfbZHnqPN03Wz7r66mtOu5jmAdeffP2VH4r3fFKN\nrObD0ro+53ZcwKAgrB+TY3KOBbtwjiEhmPc9VxtEv6lRrNWxi3Aeje/LGqVc72QuuPQTPCOPT8ln\nq0ha47iuUNdhWb81dRPZiRdiTGcPybqsKamoWRqRg73A+o3yHE//FnvM/BLsl+KaqB6VRz6L5lJ9\nWV4L7LHU/i5qyYwMIw4v/WNZm4xjatsbiMNsAW6MMVtuQ4CMLsT5uWPl8Q1TLT8jy8MZYzRzRlEU\nRVEURVEURVEUZV7RH2cURVEURVEURVEURVHmkevKmvIfgiSp6S1ppcp2uyxJKNouUwM5ja7/HNKb\nvUXSgjnnLk5BQtOTEin6ReUibTA6Bd812Im0y+ybZb6e7yJS/pLXQdrRe0Km1nNqd2wJUhKb3q4W\n/RZ/DZZfjS8jBTjnHpmb1HcZ55u4FqlYfO2MMSaOrLfmgv4+pNnlLJaWi3kkSRsj67DILGmHmT6c\nTv0obdnKWE5Y8/E2nwMXZXplwUKkiLkTYSk2NYI0ug3BMnWT0zWvXUWK/urPyjzbiyRlSsvB+Y73\nyHTr8X6ksPlOIj01ekGi6Nf4WpXTTiBpgW2/2tWKNO+lMhv5U9N7GrK/MJLwGWOMm6zsPST9Si+W\naeh8vN2dSK1PqKgS/Ybq8NoopflFjMsUx5AQyNa8afiuqCik2Z/+4X+K92TeCovPbrrmKWtkGiyP\nl75LaBcWSutiTjUcacM4//AHH4p+q25H+vsgpVCf+LlMGV3x0BzkbBOcujnSIdNf2QY3h2xwWXJn\njDH9ZDnsSUZ83PxXO0Q/Ht9LH19N/y+lQpy+6fYgFk1OIhW755wlkdgAmWLycqSh+9ukLCfvHlz3\nsQGkIodZKZ4sixiswfd2W1bangSMua6PkEobXSbnLMeo/OUmoLBEiS2XjTGmjezrBzuQthpfKI9v\nxR/gfvRdwDpRtlvKPweqkEbccwbjY+CCjKccG8NiKa29BenbxavkHOOU8nCSgcUtlufE63Ecpepn\nbJef53ZjbvqCcd9CLMlQCFleuhIwDtoONoh+Kx9fa+aSiDykNw/XSAvz8Excj3GSkHnzpZSC9zfu\nJIzNqBY5t/d/CJnmxnXYnzRWyz0I25MXLc112iynba6Vc2ykHd8V5sVezN47eRLx77pW7Glc+y05\nENkDd5P8MHGZlJ15S7CHiynFOhvikdbpHR9KeXIgmSTL8hDLsn2ih+TnDSSV/+oG0e/iT0847dv+\n9Can3fKKXBfbKHU/oRjne/r5k6JfMEnVxvtwDIf+9QOnnZUr5Rcso4/x4j5NT0sJW2g4znF8nMaB\nJZHt2odjZamMv0bKa0ZonKZtzHXaM5ZNdUTW3NmhG2NM1ALsQyPS5Hf1ncZ5RtGYCwmX93t6HHPR\nk4ZrWH1Cjj+We7OUf9KScIx+AAlGeW4uPu8QZGfp6TKu8/XsbcK1bu2V1718Lay12y8jVg6PSwtq\nlnt5SbYx5Zf90ksQsztJfl5glVDgWBFogkMxBoV8yhjjr8N5pKyDdLO3Uq7viUXY83ddRlmNyEQZ\ne9o/wD3lceDxyH4TPZDoRNMzZ1AIzRdLWtr+DmQui762y2mHhX28PbQxxvj78RyYkn6jeG2k4yWn\n7fXimdXnlc+VLKeamcT1y94uNzDjIz1mLsmn59iLz0mpfEQ29q9Zt+JeTY9Nin5dxzEGeSzweRlj\nTPbd+Ay2Yh+slue48nPYL/H+K3cz9iAsszXGmIGrPObwnMAlA4wxZniIynk8uMxp1/5SnnvKdkhU\np6mcAsuYjDEmlkoNTNG6nbpN2thffhafv3Cn+W9o5oyiKIqiKIqiKIqiKMo8oj/OKIqiKIqiKIqi\nKIqizCPXlTVNkdND/LJ08Zo3DSledS8iZTfv3mVGgjSmEapOHGqloF78AeQFXCl+ckim742SNKXn\nNKQL+Tdvcdof/t0vxXuWUjX+fjqG4i/JdKT4+E1Ou73uHaedc1up6BcSivTC/PsqnLa/5ZPdJfor\nkbpuy1JYTjUXsFNN/xnpnBGzBClYw42QHdjSK/81pAUnbYQ0bMRK3259CyljGTdD7iDSCI0x036k\ne3Ham5dSzWcmZJrp1ADSTFd+Btd9dlrKPpKTkHoeU4bzm52S/To/Qjq3m1LAe0/JVMuYfKRDjjZT\n2mq3dPZZcIdMIQ0kWbchHXJiULpIxBQjtXblEqR1ckq1McYMVCHNb/kdGNPDrfI8XCQ5GZ1EDEha\nkyX6NR5732nHlZIzgR/pqAWfWyreMzlMzlwUU6p+eEj0S9xA8kO6H55Umap/6QW4RC15BGNix5/J\nPMEjTx5w2sWrkF64/l4pRXRFhZu5ZKIP9y6hXKbguthlgeQstsRwtAUxLJ3cQPzkgmCMMVNUGT+l\nHFKzzgPS8SqhGFKz8THEsKhovCd55y7xnulpnEdwMK7ZZMKg6BcailRdP1W1z95eIfp1nMaYccfh\n8xIrpIyt9yxkFqk34txHOyyJYX23mSviKzBuJy3XpIybEPMiLiAdv8Ny5OP4Okox1E4H7yVHqkgv\nrgs7aRkj3Se8FK9Caa3J3GzNxUm8Z6gJ8b37uHR1il+K74pMQ3we75cy0aZ9e502u6XNjMtzSs7C\n3mGE7luqFV+aXoTrVO4chFa+1um3SoeYcR9iZ89RXA9O6zZGyo1YlmhLJDasxgmcOAlXnOhwGW+q\nrkKOkhGP+3g9FxeOKR5ySJy0pA+jXbjW2RvgpmHHl4ksfF4TyfQmB+XnsVNVL0nubHem4LC5+xug\n7xTmFbvFGGNM3v2Qjx35V+wVs5fIcbbgDxCLqn+NvWzCIsud6jy+6/xRSJ5eOX5c9Pvrh3c77ctP\nI3W9oALX/OzBy+I9m1aTA8kKfG/Da2dEP5YF1DXDXZQdU40xpo/Wj+ybEd+92dKphJ25osj9qMZK\n6Q/j/fptJuCweys7SBljjLcY88AVj/HtsvbRvouIt26Sd6/8A8tpthn7Hd6X2q6fXTSmWSK45nMY\nV4M1UkoRngbns0iSMKf0ybE0Q3vR1FK8NmXNsYhccuGLJWnG3lrRL5Skoiy5qH3+guiXv3uRmSty\nb8HzVEiIlKbNTmOf1nMW8yhn8ybRr+rZN512MrkStew/L/rFkePkIO1rx7o+Ev14nWRnLS5dMFQr\nJa1Z90BqM+rH3jM0Ts6d8HDMWXcK9r9TU3JdHCFnqZ5U7EMHLss9SuHdcIPz1SA+tB6U5x7swfNc\n2sdXkfhU+MhpccnDcp82eA3j3Xce/WJLZbmM+KW4P7xOBLvlTw5DJDdNWY6xaT8jt7+P8R5ViljR\nSg59qavkxWBXpknaC0/4pKy/sQfjJ5NiQ8nnt4h+vks4hsxbEFOrXpYlX0LcmIvePMSuCaucQOHN\nsmyHjWbOKIqiKIqiKIqiKIqizCP644yiKIqiKIqiKIqiKMo8oj/OKIqiKIqiKIqiKIqizCPXrTnj\nioK+c7BOaiu7DkEbHUQ2ftMTUlc1Tfa7kaTX9mZJ/R5bCfJ72vdKG7ySh29w2s1vvua0a479wmnn\nleeI97S9Deu7zNtRu8Pjkdrjymefctpusp20nNZM1Y8OO22uF5N1r9SQDdVD0892uFzrxBhjUi1L\n0kAzQfr33G3S6vwS2U5nkRa787i0zp2aproBJH8fa5e1Hhq6oaP0HIOe3p3iFf3MLHTtrJkfoZou\nrL02Ro4zxpMsPzuD7Jr5YKet2gestecaHxOT0hYuuBXnODmJa5m9Llf0a3kP46xk88ce6v+Y809B\n1566QF6XsChYQ/ZfwHlk3l4s+iWTnVzNf0FTHm5ZrqbReGzfA5vQsJ9Jy9C8mzCWUtMhRB8ZQY2G\ngV6pmffG5zrt+ndQZyauQtbQCE+FdjvtRopDlsVesJicaA+3yDo6JetRU6LxRIPTTlwpdaoTfopf\nc+Bwz9bXtkU2x0Avac0jMz85VnINn77z0mI3ZSPiYMuh0067aPc20a/6BdQKiS3DScdW4Fjbml4V\n7xkibe4o2XNm3bBC9Gt8H+M2axvqkdW9ekT0iyWLZq7H0n9F1vGKW4Kx3/gcWW0WSovj4ttkLaFA\nMjWM+OAma29jjDn2o4NOO96LuJS9vVD08yTh2naS5fnlUzWi36K1mMN87my/bYwx+w9C07+yDfM3\nZRPGgO+K/GyuUxNNNSumx2ScbH4FNVLyH0bdmupfyboUbLUcSpbOw01yLkYvhN6/7S3c34ISqVuf\n6Jf1fAJN3BLYGXPtEmOMmfJjXrlpztoWtskbEFOH6mXtAobr2ywfw1gY6pP1CaaoXkRUEmLg1eom\np82WusYYU3u2wWmXs9W3tXHh+jiTdH42bLecRWvBwEVZIyGZxhbblk5bmv7ZqbmrqRdOtY1St0pb\n47P/jvVl7Z9tcdr7v7NX9Iuia5ZEdcBCI12iX88gaqFUtWK8/P1fPCr6TVOtxr/8Z+xLf/L1P3ba\nixZLW1XfSXzekZOoA/PQ/35E9Gv9ELVuwikOXToqbXkXb0JNucFq2rtbe6j0nbi/1b/GfE7fmif6\nsQ37XHD5OcSvolsXitf8VzC2RiLJNtmypo0tQAzLpNpfYR5Z/4RrSKXvxFzsONAg+nlTMP+ELT1d\nwtaD8j2lj8D22LYtZ9xUG2qW/kRuPwu0v4OYHbYM8SrvHrm+cR2d1qN4NotwyzHcf5HW0/JPPLz/\nEVxrZaClSbzG8SF7F2qLXHjyZdEvehHWgDAv6o7YzxkdJ3APY2l/5F0u95Etr2C+LPijjU57sAnX\nwa6b6aP6cGlU06/ufRk3sreilunUFK7/lPUMHOzCYzbXU4q3jrX9DOZf/zns5ZI354p+ETQu54I4\nqhfD48oYY/rOY9+R8xnM0/E+ec7edIzV6l8cpvfIcZu+EnWKgoNxv6cn5HN/zj34rlA35mK49ezH\nxOfhebz54DGnbdcoXXcH1Y2lmjqxC+SzBj/fDY6gJh3XezJG7lu4RthYj6wBGld2/QcMzZxRFEVR\nFEVRFEVRFEWZR/THGUVRFEVRFEVRFEVRlHnkurKmKz9E6nny5mzxGltmD7Uh/aeD5E7GGDPehVS3\n3N2wk+ytlHbFbBXZdRQpcQmrpZVq2wnIcFwepDjmFSLF1rZt5n+3vIo0t8EymbYkUs2PIG3OPypT\ntlb9L9i/+c7hPLqPSAvS6FKk2Y734jNseU7L73BMeUtMwEktRYpZ90GZbrjwbqSpd30AuVV4jLT4\njF2MFKya96467WArdTohCil3bPk23inTElMobZZT5yboOkXlSqlC50E5tn4PW0kbY0xwKH5zDA/P\nddp9zZdEv26SbvVdw1gYHpep62kb8BnidK1xFmXZrAaSknswd2wLSU6Xy7oLqb12qiFbFJd+ZbXT\nrn9WWvXVPI1/b30MY33wqpQ2svykpRbpqfVPw74xYZ2cv689DynipgfXOW2+78YYc+JniD2LbkEa\nbKRlBTpJEqXzvzzhtDMXye9Nu4Espy/jXtc/K60mxyaQ7p/5z3ebQNN7HCmzsQukjKOXZEkdpzA2\nB634k5mH+cxyoJEmaUHKcabpIOZ2+jppp1n4Gdzj0QHEs1Pf/bHTjsiVYzuJrF/Z9nCoW8ohx2ls\nsh1mtGX9Gp2LazHWhzRjO211pA2vhZC961inZet8BnEu0BLD/rO4T+OjUh6SvyzXaSeS5XbfJSnP\nuvwGJFmlNyJld3mOvM4NB5He23we1zZ/k5RJ3f2ntzhttlD31yK1vvmSlO4wOSTP7amSkqn6Lhy7\n+z2skXHW+A0jK/g+SsueHpYyUZYCL74P+4jeSinLa70Aq04plgsME2SDHp4uU8Un+z9eapu6Xco9\n+skOlfc6kdZ99JBMMygMcXPqjLw2uQ8gztc9g/myeA0kpKONMtU897N4D0vCbdkkxwP/FcTyNpJf\nG2NMzBLElDE6J9vOOygE6+xoK0kbb5PS6bb3pe1vIOk/h7Fq7xeK7kGc672Efot3yfjXQ/u2UJII\nJ6+T8vithYhZq0nK+ebPPhD9Vpfh/L/10ENOO2VLrtN+8m+fEe/56j98zmlvpmNoeU9abjPeIti0\nrrekD7wH8iRgzh7/3j7Rr/Q2XAt3OL43YYmUXJz/PqQJ+ctMwMnbinjWdUDu8zjOTw1hvkxPSvll\nKEmeJki213OmSvTzk7SErbCT1sgyB50kc0qm1wYppoZZkobL/3UKx0ClAOK8UhbGMqnWc2TZba13\nrgRIGIMpbtS9dFH0S1mN4wsNxr2PWSqlExHpcyeJGetDXHLHyucH3t8FB+OcYsulRD+5Avu0rpNk\nXXyzlOhnUSwbIgl7eJK8fm66zhNDeAZx0Vo1bMW/tBshLeugZw6WphpjTFclniciSV45MyllnINX\naI1IIjmbpfZMIevwGIo1w5a1vI/Gy1xYaXfuxV4x+14pMYwpwbPWtV9Bilj40FLRr+MI5lz6TZjb\n9jOJy4s9yWAD9uXt78o1I3E9xrc3EzFgrBvrU856KdcfHcW9SyjHXiw0PEz0Y6mfOwHjlktdGGNM\nNq1rrW9ec9pJa+VN4HImtTRPvQkyBoyQ3DtbLpnGGM2cURRFURRFURRFURRFmVf0xxlFURRFURRF\nURRFUZR55LqypozbkErW+rqsBh+/CGmPHSSHyf+s1OX4G+FgUP0jyA5Y8mKMMbFLKVX/elWMqdJy\n0WNIdh5uQ4pQiEemLfVdQLp03yWkKtnV+DltMHEFzi/aklyEuJASxyn9U1b6to8kDOxs0PKmvJYR\nqZ9ccToQjDQiLS5qgZQTDFxGSlewG+cfniHTH9uoKn3J7ai4Xf2alAqxLITduWwp1yBVxeY0/JiF\nSJXvvyylAOxKNHgJKXAtb14V/Tg1OTIb3zM5IN0/IskRh1PA/Vb6fxg5j3AaXd1hmXqXv37uXLdc\n0R5qS1lT04tIfebz8JbIe+0hh4Bqcmvy+WW1embmDVxb4dhlpDyh33KP+T2nXpFuTTu/tt1p83zz\nV0vJ1NqvoLL+xCBkZmERcm4veQDuCH2VOAaWMRljzFAjUg15LOY/JOPVkFWdPtAUfxEV/juPSYnh\nUC1ipSsU8XHjN7aLfnXPVTptTqHNvV+m658iV7lFu0mG2tEm+nUfQ1r/WDvGd9ImpNmO+2Sl+ff+\n5V2nvfIWfHZsqeW4043YOUNuMTZXX4UTQjClZS98UObQ95M8qLcb92rhZ2W/kRelzCmQJKyFZK57\nv7yHTZW4ltE0/4auSeeOtHSkBweFYjyGhUsnntgorA0hXoz90TY5Z1lW0laD9c4Vhvcsf2yNeE/n\n/gan7c2DJKSlUsa/HV+CQ+IApWizo5gxxgy3YJ3htH1/tTz3aJKh8lxkBxNjjEktnAO7NMKbifWp\n+VUpfcigFOb4csS90W45rkYohTmyANcwtizFfBKhFMNsaWNwKGJiZBZS5V2xiPk9VXId6z1PEnGS\nGg2ckzHZdj/8PbYMPJpS6ieHEHsj0qXrTTvJlZI3Zn/se4wxxp0oJQ6BhPdcdhr6FLkmTfTimkVk\nyfNIo7T7C0/D1W7i53Lfl0drBctDbnxgo+jHrlgFD8MSZ7QLc/TBz8iYzqn2HnK2tPdN9R/BMSRr\nba7TnhyU13ysCxKO1lqk4K/5ixtEv+lRXCOWhbV9KPc2ObukrCTgkF480ZIJsOvRbDjWxeAQ+bdl\nLkvQ8hrJKnYViX4stWVpenCY/Dx2c6t7pvJj+xU/JgWXwtWWzmnggtzLcgyMJzlyz1EpC47IxlgN\np/OLTJTPDLzusrzLdiKynWcDCceukQ75vV5yRJuexrxKWCrlczMzGMepqyGpGemVscybmIt/ZOOk\nek7J6xdC46XxFeyTueRE0WPLxXumaE6kLKL5OyLXenb96TmLNTNzg/y8mMUf7+LH0iVj5N59qAnr\nSnyp3Ms2Xj1l5pL+AcSOKRr3xshniElyAT71E+m+ufIrG5z2xafw3J9eIec2uxnxPOffHoyR+x2+\nPyxrrX7nh+I9C++F1IqfNew5xuebFo3xGGO5Rzb/Dq6VXpL5RxfJ+zhD7oRx9LvGtdekRDXSLZ/j\nbDRzRlEURVEURVEURVEUZR7RH2cURVEURVEURVEURVHmEf1xRlEURVEURVEURVEUZR65bs0ZtlHM\nI7tGY4zpvQidsysOOvmOA/Xmk2DLR1eM1NaHhEKXXPvsSaeddUep6DdJFnkjpOFtexNa3LgKqWPM\n2LYA30sWb3YdhQGy2I0pg94soULa8vqb0I+t7/6blnkzbDernoTuLnVrrugXUyitoANNaAy0baPN\nUgs6Tbrs6EU45+lxWV8klawEJ8hmtOROWeeC9XbVb0Bjl1kutYYRZD3HdRu6qqHNzVorrSyHrkG7\nGUYa/IEGqel0u1EjZnIAGtbmKllrIyUROtgpsiC1ZbkzVFuFa92U3lom+oVYFm2BhDXpl398QrxW\n8ih0z/VPQyM60SPHd+WvoFXNXIr74Tstx0RGFsZB4hr0G7HqXCTSvDj8/X1Oe/M3dzrtgnFZZ2Sc\n6v4M0X1jbbAxsh5GTy2uef6tC0S/cy+ipk3BUqqR0i/rBXCtjKTNGFchbnnP7Nj/2w0AACAASURB\nVLgUaCaHMR7Z2twYY0bpGsRQzacZyzI0737EUbaz9ddbdU1yUbOja1+D0866W15DniPDQ7hu/jeh\n249Nk9bAa3evctq+w9Dwdp+U9Uq8aTiPsS6MR/eIrM+17MuwVe8+gc+zrRdZl13+pbWf2C9zh7Sa\nDiQzE4gHOVadnyyKfw2/hY1iyiYZyy6+AQv3EKoR4M2TdVyiF0LPXEM1rjLyZE0TrtnGn2HbKTPh\n6Vi7eK0PsgoTdJC1pjsZmvPWd2pEv9QbsN4Nk92zXUOCA2wI1Z4Li5Jzr7/y4+tYBYpRqsuRvkuO\nl5ZXoS/PugvzheuPGWNMCp1zH9XdmrDqm4314PqGuHHOs1PST5X3JGlbUWuAaziUfLZcvIfrt/Gt\n45pRxhgTTN8bRdadQ5aV7GAtPs+bjbE0aNUFyyB720k/zndiQNY/mUu4xp3vVLt4LYRqYOQ/gvoD\ndb86L/qxBfwE1VFwJckaSGNUe5Dni10vbaIf5x+Zg+s3SvcwcZWcE40voHZfIdXAuPLTk6Jfziaq\nP0FT216b609izs6QBXru8ITo11uJa+Y7jXbJEytFvwtPHsVrm0zA8dC1nrLWhrBYxAWu3TXeL+dY\n9wHsI3nPy/V3jDHG0PVooto6GdZ+k2svJZGVL9eq7K+WdY78VzEW+Llosk8eq+8U1kmOt3Zdv2iy\nLu46TDVPLFt7e/37PQM1cmzGFMR/bL9AwNel62VZXyNuOepdTU9wrJDH3U/7NK5BFr9QPtNNTWHv\n2LQH3zU9Kveb/BzHNSu5PWtdS66l2HoCe+1pa1yK+o40z2tfOSj6uZNRK4j3fFyjzRhjRtoxh2OK\nMfbaDl4Q/Wyr7kATn4pziV1sW7HjuS2e9tihVi3InpPYw8Vn4Tmr7kid6Fe4BfWgBqqwz09aLeNj\naD7GbftezFm2iretzidozg3XY7xwjTFjjBl5Gfu0+vOYY7GL5LkHu7CedNO891pzquEAjq/8CdT5\ny16fK/pxjcmPQzNnFEVRFEVRFEVRFEVR5hH9cUZRFEVRFEVRFEVRFGUeCZq1c7oURVEURVEURVEU\nRVGU/2No5oyiKIqiKIqiKIqiKMo8oj/OKIqiKIqiKIqiKIqizCP644yiKIqiKIqiKIqiKMo8oj/O\nKIqiKIqiKIqiKIqizCP644yiKIqiKIqiKIqiKMo8oj/OKIqiKIqiKIqiKIqizCP644yiKIqiKIqi\nKIqiKMo8oj/OKIqiKIqiKIqiKIqizCP644yiKIqiKIqiKIqiKMo8oj/OKIqiKIqiKIqiKIqizCP6\n44yiKIqiKIqiKIqiKMo8oj/OKIqiKIqiKIqiKIqizCP644yiKIqiKIqiKIqiKMo8oj/OKIqiKIqi\nKIqiKIqizCP644yiKIqiKIqiKIqiKMo8oj/OKIqiKIqiKIqiKIqizCP644yiKIqiKIqiKIqiKMo8\noj/OKIqiKIqiKIqiKIqizCOh13ux6eqLTrvx+UvitbSbC532aNug047IjBH9wpO9TjvME/WJ39V5\n4prTji1Nctru6GjRr2HPWacdtzTVaU+PTTntkIgw8R7f8RanPdE35rSTt+SKft37G512UBh+twrx\nyMsUszjZaU8OjuPz1mSLfsMt/U6753ir005YmS76tb9V47Q3/t23TKB55xvfcNp5ty4Qr7W+i+92\nR7mddiydozHGuJMinbbvJM4lxB0i+sUsxPs63q112pEFsaLfePeI045fmYHPPop75evqF+8pvmOR\n056dmnHaQSFBol/1axirQUF4bdHDK+Qx9I467YGqbqftSfGKfhPUr/1yu9NOSJbnFOTCmFn7J980\ngeTo9//RacevkONnpGXAaUflxzvtgas9ol9rJe5b5rIsp117ok70i3BjHGSuwpgevCQ/72oLPq98\nTQmOoTDBaR9+5qh4T3pcnNMuuLPMac/Ozop+PE8jsxBTgsPkeGt/H+PX3444FFeUKPpVn8Y5rnls\nndM+/gt5fAs34zyWfuaPTKA58m/fdtrhGTIeDlX5nHbC+kyn3X+2U/SLWYT4GBaNezV4rVf0S1qD\ne+yvw2vebBmjDc2R4SbMuZgSXMNumvPGGDPa6nfaUwOIgUlbckS/kRbck5QNeG2k3S/69Z3rcNoT\nFBv4OhhjzOwk5v3sDMZM97EW0a/4Mcz1jLy7TCB57qtfddoDIyPitUX5OMfQaJfTPn3mqui3JBf9\nwrMwDkYaB0W/0YkJp+2NQwxuapZjYsEmjFv/VYyj+BVpTvvq+1XiPT1+3IO1d+B6cbwzxpiwGI/T\nHusYctpDLfJYW3sxxjLiEYfiypJEP/8VOr5ViGXthxtFv6RyHHv5fV8zgebId//BaQ/7hsVrHD96\nryHuTU5Pi35Za3Efu2iOxFrxx5MUge9qQrye7B8X/fwDOI4p+q6SuxfjPQPyPcG0V+k9jfUpblmq\n6Ff3frXTjg4Pd9re4njRL7oI8ZvXSFesR/TrPYPv6qrvNp9E0S0LnXbp1kc/sd//hONPfsdp83Uw\nxpjoUtyDqDyc4+TgmOgXkYzzbTuIeZpUkSH6+RsRG100J0Za5TyIKcb3jnZjvgzT+9O2FIj3zEzh\nXgeHYo3rOt4k+iUsxZyYnsCe1x0TKfo1vnrRaSdT3LWvUf8V3LdQL+LV4BW51kfRGFm44/Mm0Bz8\n1t857WRrDeH9d0Q6ngd4b2eMMR0H65121o4lTnukR57LaDfm2P5fHcL3WJ9327fvcdpv/F+vOO1I\nD+79ykfXiPe4ovHaxADG2TPffkX027l1pdOur8LaVfHQKtGPnw04Vr7yi/dFv8f//WGn3XEA14H3\ng8YYE0nPZ2kZt5tAcvxHmIs5dy4Ur3347XecdnAwxuCaL6wX/fjezE5jrR9tHxL9snchHv7umy84\n7aUri0W/kRascbxWr/yTjfj/az7xHn7+3P9PuM6Lb10s+k0OYW3mNbPwni2iX/VzHzhtnot2HJoa\nncR73r7itCu+skH0e+uf3nLaX/jZz0yg6e7e67RnZyfFaxN+XMMguo+d1tpdQ88Uhavynfbzz8lx\n+81n/t5pX/zh604778Elot/Tf4V7XJiKdW3r39zntMeGu8R7xvtwT8ITER+DQ92iX/sBrItRBZgv\n0VnyOav1AJ4r48rwnOuKkuviED33t72B3zX6rb1i1wD2AY8/9ZSx0cwZRVEURVEURVEURVGUeeS6\nmTP+uj6nnbI9T7w2Rb8aBtEv/QNX5F9QQtz4ihHKsJmhzAdjjBm4iF+9+C8MwaHy96OYMpnR8Xv4\n186ZSfnXrUH6i094Jn5554wDY4zJfQCZGZPD+MWQsyqMsX7FnaEMDvnDu4nJxV9eIlLx19H6Fy6K\nfik7881cUvLZcqfdskf+9TTrVvzSfPXlC07bv1/+Up21Gcc41oFft+OWy7/O+U7gr4fT9Mu3nY3C\nfw3h6xYWj3uVYGRmypQffzEcqscYcdNfJY0xJiEN2Rmp2zBuJwblXxz5viatRYbIpF/2G6W/EMdE\n0HdZGTt2Rksg4esVFuUSr538APetYga/7rdVymyHhCT81SQiHeOx7NZFol+IB5ln/Ffejt4+0c9L\nf0FyJeC6cAzgvzIZY0xCAf6qGBqJ8+i/LH/1Do3EMbS9iV+2m9vkXOS/NHkp4yLEIzNszGn67Ah8\nL2cmGCP/UjwXTA8hrow0yviT9/BSp9369jXzSfSexF+sOcMveqH8a339s5VOO2VrrtMetjIe+C/l\ng9X4K5IrDn9dnx6W1ykyB2MpLAZ/ifAdkRkss9PIbmkfQyZdmPVX+Kgi/MXCsxbZMvyXNGOMichA\n/PadbnPaGTcXiX7dJ5rxmly6PjWlGxAzG080iNf89Jeluhr8BTPRygCNo+zJY6+ectqccWKMMdHx\nFDcpUygkWK6LHB8uN+DcXS0YK8t3yL/8xVG2EuNOlH+FD6VM1Ivv469HxRXyr//X2vFdsQuwHp/Y\nWyn6Fafhr/9DtYgpNR3yeDLi53Zd5AzYBI/Mtu2hTKyU5bhX4z4ZHzirz30eMWy8Q66f4am4j4mr\nsC/oOiD/4hg1gzgaTDGs5S3Eg0TKhjLGmK7DuO7hlOEaEi7PKXt9Hr2G8RLiktvAMZpzvE7YsZEz\neNKX0F4nU4715vdw7KVbTUBJvxEZ3MPWfs5Da9IQZQR6s+W+YqQHYzB+cYrT7jgo700knddQPbLE\neB0zxhhD2wJPPI5hkDJZ2/fV8jtMNGUpctZo6toS0a+nEn+RnpnA/mrS3y76Zd+BzIXmt5ANlH2L\nzJw2QVhPea8eY2W78biaCw5dRqbAjYVx4rWsnciwnRhCJsSpJw+LfksfxV5g77eQqZKVLs/l/ZPn\nnPYfPfWnTtt3pUb08zdjLSxbiljX14R73/TyFfGefZcQH5fmIEvC3gcVf3ab0064hs9oeb1a9Buj\n/Unda1ANPPjXd4t+3ScRr9w07sd6rL/W05hO+/PAZs7k3IUxd+E/jojXcvMRQztaMA96Tsj9QsrG\nXKfddwnZoacPSOUG/3vpcqz94Rky9gw3Y69TsAPrdsNv8Qx27Zo8hlu//TmnXboRnx1XliL6Hfvu\nR+h3C8Zob53Mko2htZCzZU4/f0r0W00Z3Su+iPa5n8js7tDguc2pqPw+zmvKyhRd/Ze7nfaVX7zt\ntC9crhf9VmzC9djz0j6nXZIun5GuPv2e047IxVrKscgYY0ozsL7wPqH6aXz2zKT8TSHvfux33vt7\nZBstvUFmdXH8fvP77zrt8ny5cSz6ArKLwyPwvNhTI5/n9z91wGm3UDbxkmyprLmdMvM+Ds2cURRF\nURRFURRFURRFmUf0xxlFURRFURRFURRFUZR5RH+cURRFURRFURRFURRFmUeuW3NmhqrBz85IXS3X\ndRmlavW2cw7X7+Dq/tPDsgo0O5cMUz2RrDtL5QFTvQjW2XMNm6ZXpQ40jGonsJaNnQ2MkS4zEVQj\nJc6qczNJ9Re6j0DfX/3jk6JfwaPLcAzh0OzOjE6JflynxawzAWeQqpGzM4gxxnTuhVYwNg6v2fUr\nWIeeugO1AKZH5X1MWk8uQC9DFzrRLyuTuxOhi+0+jGsYmQc9uDdfao/7K6FBZfeohmNS71hya5n5\nOLj6uzFSazg9hvOwjzXYBe0/u5TZ9ZAGrarvgYT1/X2V0qllza3LnXZMCfStnZVtol8C1ToIT8b1\nG+mQzjlc8+n8QcylZTfI6+olJ4AemgcR2dD9VlRI94HODxucNut+p2fkvcm/F981M45YkylNnUT9\nlJNvQ0u+6pZlol861fKo/jW02+sfXCv6cf2UuSA0CnUgpvxy7oz3Qh/ONb1y75M1gcZ86Nf5EcY+\n33tjpGvIUDPuKY91Y4yZ6EctidSt0Nn2nkN8dFs1B9i5hV0p7NpkMfk4ppEu3KuOD6RDGLu3eSg2\nzIzJWMka/4xbqc6MVfDLdhabKxLipMad3ZEyJlBzwNZQ8zVftBjxNGaRXGtG2zA3PSm4B3Gzsu5I\n5euo67JyK7TWH72NNcl2YBmhegbjPTgeu76Qn2rFFSxAfLfrOq3YgDnbRzWkFpfIMRFN9SzOvXne\naa+/vUL0O/LbE057LhxiDIWcqRE5J6JLsRfoovU5xlqT2t5GnYpgquPi75U1Z9zkTjY9jjGdtEHq\n0JteQ72CMNrTxFN9HN4fGWPM0BjmX1IB6jXZLkIucnbjWj/semmMMW4P5h87XvQcahb9uKZcPH0G\nu6gZY4wrTNa+CSRcZ2DSqimXuAjzquc0Yv5op7w3k7TeJ1DduKkh+XlcX4jrvtn1E3lu8x5jyo95\nxXX7jJHzj8dexzFZv2KM6x0GI+albpFzrPsU6mhk3oQ42fKe/Dze27hpn2zH09Dw6z4qfGru+tKN\nTjsqR86x9kM45o/2HHfauUlyvfMkID7mFuE+ttXLenbL8nCtLv8IzjSLvnqr6Dc5iXoR559GfZDL\nLbi2OzZLB9CIGsyxDd+8xWmnv3ha9PuPx//JaXMdjsJy6VSVTrU00ygOv/Kvb4h+w+MYqzfdgD2X\nXTvo6Fmsn4F+1Dj6Lx867ShygzPGmJy7Uedj5CmsSX01cs8cvwzrWh+5VN78zZtFv+Fm1Jca68Kc\n4FpnxhjjisM+5dzzuAeb/mqH0x74voyT+//+JafN7nyVH8nnylUP4DqP0R76KK1bxhiz7U+2O+2W\n1zGW2RnUGGP89YjJg5dQCyosRK6zXP9oLoigmkWFlnvYC3/2pNPe+ugmp333w3I0Nb+P/UhmAuLZ\nih3ShSl7O1zLfvD5f3XaKR/KOnWbHsA+fcsqOJMNtKNGU6jl0uwOJ1flKay5vefl81Mcra23fR3j\nzHYiPvlv+512bSc+Y8Zyms2i811A8+Bkrawz5vvrl53240/dZGw0c0ZRFEVRFEVRFEVRFGUe0R9n\nFEVRFEVRFEVRFEVR5pHrW2nXIM0qY5eUubDVa8YupE1yaqExxoz1IOUsqhjSgthSmb491IjvmplA\nKpkrRlrQcUp/QiLSt10upEJO75Kp8P4GpCfGLYAdWqhXSrWmKbV5nFJTuw42iX4ddUiTXPIwUrFt\nq+ZrPzvjtL0FkOvkPiAtTXtOSSu3QNN8HPZ56UszxGvpJNNhq8y+M9LWNLYc122UUrRtSRHjoXTm\nECsttu4dpPclZpM8hqQUHf0yfTvchfuVNo30xdRcmcrY+C5S3SLDMX6y7pE2kmF0/zl9e7xHphyH\nUjp4zR5p6cfkbC/8xNc+LV0dGMN5edIKVEiZDnzy/RhqwPW8/Brst3NXyFTaCbKLXXET0hDDoqTk\nh2U4nU2QTIS2Yi7nRxeL99Q1QGrVNYh00tSYGNEv4qMGp32lCu0tX9wi+tW8iPNYdTMs421bew/Z\nrU/2Io09yJKm2baygSaY5C3R2fKc2Rp6Zoxko10yDZ+Jr0BKtC1X6j4KGYI3F2MmmuSbxki7arbC\nrm6CnKO0WMov2skOc/mja5w2jwljjJmdxXmwNDJuuZTl+GswvrsOyXjLsCU4j2dbjsbp+oGm6STi\naf4mmWI8Q1KPS3svo9/CLNFv1pJC/J7ze86Jf8+Q3K9kNeLLUI20tY9w4/xffhFWmGzn+m+v/E68\n56+/8iC+hyTM0QtlPI0le+EwioWD1VImVXu2wWkvuRO28IOXu0W/IJJjsJxxelzadtqp8YFmiNLI\nYy3pcn8t7xlwPdrOt4p++TsR3zh2uOvk/QkOxTn3nMI8n5iUc7ZoN+JtCI3hYZI0hKdKaXL6LhzD\nUBO+t+2M3FcU3QHZ2SzJgU49K9PwvXTdE1NJZlwibd4jc/Cavw7Xy5YUzqVUdJTkBLasabAZ15n3\nekIaZIzJvAXXr4csiaMK5Pn6yT47fhFkXJ1HpOU2k1CO+JxO8qJxn4yTvBdpeQP7F94zGyNttlny\n33tWSpinyWab5dxss2yMXDPGaN/jSfKKfr2V2A9m5JqA4zuOedW2V0peo0lKmBqLMbfmL6Qve8dB\n7H3YYr3/F3IfufzP8L7qn0ImVffaAdGPJXPlj0B+kXcl12mz1M0YYx7Yie9t+QDxv79JxgMvWWuX\n3wMJNkvKjTFmzw9gV3zPn0F2FemWc+qOr0EWUfUSJCFZt0rpzOiElKwGkpV/tNFpt74lLcH7r+CZ\niSUhEdZ5lCXi+TH7Xkihhi2JZkIZpGlTJZjP/BxojDFNL+Ee8NgZaoEsasWfbxfvGe6A1Kr7OOJB\nyka5T/bE4d6ffwtr7qo7pNQtNgPPHSfaYP8ePyjLJzR2Y53c8ec7nXbDc9KqOWmd3EsEmjf2Yz34\nrCWLu/97f+K0L/3sNafNUnRjjEnbAklp0okGp+1OkGt6fyPm+m13Yfxk3ShLKDS9hX3+paded9pV\n1dgrsnzMGGOOfu95px1EDwTvnpN7rCd2Yx80SVLWiX65R2NZ0ld+8pjTrntOSrBKHt7stH/w+e85\n7Tt2SunXe/uklbqNZs4oiqIoiqIoiqIoiqLMI/rjjKIoiqIoiqIoiqIoyjzy/zuH33a6iae0dE6N\nnBqVaXPsTBCejFTJgasy1TmuDKnTnE44SOnFxhiTvmI1XuuuwvGkoaq0ndLuzUY6W2QUUku7+2Xa\nb/8ZpNslbkTqWPQCKelyk0SimdxDPBkyFTR2MVLC2MGg40CD6Jd1s5R+BJrS3Ugxb7ScrFhC5qvG\nPSm6X1bV9pMTETs0FWwtEv32vXTMabMMqfJZKVXgdPuBVqQYVrchPbd/RKb+5lB1/rpapMGGhcph\nnJWNFHVOw2/4rZQkJVRgDPdTZXhPuryP4elII8+/BanEPUfl+LEdWQLJFKX/j3XItOw+g5RjD7mM\nlW2WDg5Xfolq9VwB/oRVGb18Ke7pJDlM1B6oEf08LDMrwvxlJ66zr5wV78nPR5p3WBOuV/m90l2J\nx+XaJbif3YflOIpKpJhSifEbWSClX8nkitJ5AGnoPYelA8k4pZrm/MNuE2hiSDIyaaW1Tvjwb1cC\nyTkth6qugzj+tJ2Q1bBzjDHSOc9/DXH0+KvSOWKEnB4WZeM6La7AOBhpkY5eybFI6e06RDKfzywX\n/QabkM7cdx7jNNZyJUrdnOu0XV6MH5crRfQbaMc5uuORItt/Ra4nSZukDCuQJGf8v+y9V3xd1bU9\nvKxejnrvR92SLLnJlnvDBTfANphqOlxIchOSkEJyL5AAgfSEkIRwgQChY9Ntg3HvvTdZktV7713+\nXv7ZY46d4Icvxz+/zPG0zJnnaJ+91ppr7sMYc0BqYJdS9NVCGpAQjbl2pDLdWtJspcQh2Y1lp/sP\ngpadUIo82WHLjX2Crj41A+dJTC7227PXcU7vEU5Qh7bj7/TttkltYpAnI1JxFnZXMtW8pROf1yqc\nGbuaWSYqXfjSkoSrik2G0277jq6GlDpKhx1jWMo1yhP/D2t0BksCK4W7Ukge3hNso4N3FELq4x+D\n86S1iB0jZZ0g3dLcfSERDky1yRKFtEdKxiLT+BpqvsDeCRyNefQuZZeL0xXIsePFORFWEE9xUmLT\nU4G1IKXSxhjTeordMVyJS8IpQ571xhjjE+pnDzfGGBNgc9ySta28z9KRzhhjgpOd1rh8Iyjp9hyQ\neD1kDFLqPtSNcfMhlsdJ56WuVuwXj1qW3kuZ09lXcQ2BESx1k+fCuRfhjuNclU1xTQex52Jm4LqH\n+rnGsEthXY30eyAbOvCrzfTamGW45mIhndzw+GcUt/SpG6xx+ceQguw8xzWv7wtYJwkrUc/t+OsO\nittyEnXRc3MftcZv/+NLazwxlWWt074JB5sgkSuObjlFcQU5kBtJSW/KiikUd61w+ypei8+QDjjG\nGNMvpOhSHsMCG2MWLSowVwqlb8B5L+tbLDnrrEYum3sf7pF/LLsdVgk5lHQoda5mx8q6/Xj2K92O\nvJZ9yziK6xZ7KeNO1Calb2Nu+2fYpNji+TNGuFd6BXDLDg8P/HviDyA5q9zOspnBQeT+jBnIje2n\nuGbJFlItmYdaO3kvZtjumatxx7eXW+PuCj7jT/z2A2uc+1185446lnb21OJ9ZWI9zsxjaVjZJ1gz\n549C4iRlUcYY40hGzk5eDnnQyUdfwnvSFtB7Fj2N+Zby+rWP/o7i3n3mY2s8QTi5+fly/n/o+but\ncbd4Zm2uZsnimT9/ZY3vevIma1z1GUv9bntshbkclDmjUCgUCoVCoVAoFAqFQnEVoT/OKBQKhUKh\nUCgUCoVCoVBcReiPMwqFQqFQKBQKhUKhUCgUVxGXbZLhEwnNrtSmGmOMIwXa1+4q6MvazjRQXGAm\ntM3DXdDFSztmY4wJShcaaGG31WmzpCzbst0aD4nPG8iB/tk3ivW3bh7QTQcEQGMaP4O1fLHT8BmD\ng7C0q9rIWrE4YZcnLaK9gtkmrEVY45LdeAj3NOltFtfBLRZcAtmnwzeEr1FaCcfNcFpjqfc0hm22\nTx+BxjM2hPXbyZHoJXGmEv08Zk8bS3HRQss50I77Ht0IXbvUzxtjzIHP0b9E9kEYGmYLVnc/6DXD\nhNWwcwXrUTuroYUMFOtP2qkZY6jnR3cF1oVfIms/m/cLHfks41LExuL6HDbNfHcF9I9Sd3/m72zV\nFhKHPixy3rNW89z4if3j7YC2+V9sOEXvoYr9ZdZ4+yfo7ePvw7pND9HDIHM69pFd399xAT2OSvbA\nwi42mXuVDPeip5V/Cvqg/MvnCV13sOgNYe8TJPu0XBGIj7f3cfEMhL7cLwFra3iA13e4sFJ088T1\n+8bzepS9FM7sQw6z22keFhaBCeFYZ41nkNfd3fh3/Oh4xB06gH4lPtGc2yIn41pjFyEHBkRx/wo3\nN3z3wUHMVVMR94ly98b6kf0mIqewveRgp20PuxD9otdGSTH3jkjPFr2NarGGg/p53RZtw3zEJKE3\niH8SW7POmI9eTCWHYRWb4OSDYrAN3/eTQ+gx0Xv0qDVOi2H7ci+xF4+W4rNvmzGD4hzCurmmEH2D\nwkP5WrPiMadBufi+XtW8zqWtsZfo+1Jdwv2kslOuXN8gY4zxEj2LPAM5Xwz3Ia+0HMI5HlbAPYEC\n01EHybpF2rwbY8z5/TgzEyKwd+raOC53EHvdT9j09oo+YxUf8J6Img99fr3oK+Plz/1KZJ+ZnlL8\n3ahwPk8KRd+3wFDs53V/2kBx18yCpn9EWMM3H+U+OiO2/OVKBCbj/letL6TXfEX/NWlVPWDrEeMR\nifU91IMzrWE3r0efMPSYyLhhiTXu66ujuL4O9JjwE/e26riYt1F8zsi5kb2Q/OJ5jx15G3t77PU4\nt1uP8jXs/Av6p8x8CMVInc2mOk70O+xrRd71DLDZn1+yNT5zMco/Rj+V8d9gy9mSN5HDnGmo58pL\neJ25u2MeQ8bB6vzheXdRnOyNsuH36B8zdR7XQflL8O/hfqzhb/0an9ffyr2qhkRNNCieT+bbbH6l\nNfSG12DD3F3eTnFp94j8L+qgPtsZ7hOJtbn8h1ibJX/nnn/Z/819OVyJI1/iFgAAIABJREFUxJvQ\nG+j8i9y/J2WN6Hsp7K1zH1lEcf31mJsz5dh/p58uozjZt2bcg+jTM9TH/dLOi1w2NgwWxxFTcVYV\nfsE9iSIjsGdlbV1/kXvExGbjPJV1Y9QM7qvi7o797Cv6jdl7VVWfxXr22o596uvJPcHc3bnGcjWi\nxqP31LbPPqDX+gdxf2ufeNMaJ8RzfZOwAs/Zsxei89GuX/AZkrUcvYQmZ6JvbFsh/44QlotaoL8H\nr01dhs8+8Owf6T2+4vks5fqp1riwmms22b/JPxBzFZrP9dKr38P3lbXnqgd5Da97CTnlntvQ56+r\nnXvvNe3Hbyqp9uZQRpkzCoVCoVAoFAqFQqFQKBRXFfrjjEKhUCgUCoVCoVAoFArFVcRlZU3dF0Hp\nCpvGdF4pn2gRNNaU25ka2HgA1LT2M6B7Rs9nm9/hAdCIvYNADy7cx7ZkkqY2cwFotUNC3tBVyVTh\nkDRQ3uvr1+M7eLId3ahRoHmX/B1USknRNsaYjhLQ1QPTBEV5G1NG3YR05MLroBcmr2Q7w956QXfK\nMi6HtHGt2l1Gr0nS7GAb6PruPrw0JFXvwgl8Rmcf2wGPvRlzEn0e1FJJ+TbGmLptoNEPd4Mq19SE\nNZcwjqUP3cLyd895WOldu3wqxUkr9nZhYRqRztyx/gBQS2u3YO7SV19Dce21oJPKddYupDfGGONc\neQUm7/9B2rcf38DW1wVrQOvsuIDvK63MjWE5VGge5qbkdd5jzltzrXFfJz4vYQbbPFYfPGiNY3JA\nN84UVP1hm+QsMggrrqcc93/HepZgObyRX/IXghr48bvbKW68sL7zF6v54KdHKW7qalAmz30Gm81x\na/IpbqD9yslhjDHGPw5Uy/4mtnD0iQA1eagbtOXuMpZ2SplAQAbyj4cf71kpzUhLRv4+cqaI4oL8\n8Xe7xX6e9tBMa9xZytfgnAurzOxhfI/6kycobrgf1xCWgLOhpZrjHBHI0R4euEdD3Wx1HpiEnDDQ\nBalH1XqWnvrECOpvrnEpGtqRo4L8WOrnGwfacqTIa701LO0ZvQRnQNsJWA2f3Xqe4mKEbDQ1H2v9\nkpCRGMP5oegTnJGzx4A2/O4OpprPG4v5WD4RudFuPbskGnvneFkZPtuPzzEpfLg0hH/5RDENu69e\nzNsZUIzzZ+dQXOkRtud0OcQFl3/M3znpetCyHWmQztht7T2EhLb9NGjvdslr/xD2QV0r8uPYDLYM\n7anE2kpdAgnC8DD2ZV8vS8xDQsX5J+jWbp7uFCfPhihRfzUfZJq3jzg3/rD2U2uck8DSwb4G7PvI\nOagP7LWDXSLtStR8BRlX0Biu08KEpXzp+n2IExIiY4zx8sG//WJxpofk8Oc5QiHDdTjw2Z6eoRTn\n5gZ5laS/56xaY42Ltq2l9ww04152FiHXSmt1Y4w5UITc7b0e9zl5Kq+jNPF3S4UM7pJNntR8FLlC\n1n8x89kiuqtKyG14m7oEledwHZu3cC0QHQw59pSbYLk9fIH3wZePv2ONlzxznzU++psPKW7iD1Zb\n49If/cUae9ikXDs/Qn0zfTHq2u2fQ1o2bTofLgHCPjsiDzLehqMsuavbidw2Ywo+4+3PtlLcNT1Y\nF1O/jzO34lPOV7LFw/6/77XG2VPTKa6vU0hzXOyOXvEB5EqR85z0Wv1efN+EG5BbW4tLKS50CurI\nCJEnHTZ5fNUG7IOYOfhbwaN5z45LQ57b/jQkNZMfgHQuISuW3rNzB+rhVY9dZ40/37SP4gqENHHG\nT2+xxr3dnE+9vISM3hf5Kuk6brMQOgHX4RWE7xtRwHm3rQQ1UTinMpfg7ItbrHFUJOe20Q/OscYX\n1+23xqVneC9W/gnSo+wFeC6S9YMxxsybcIc1bq/GvQlLGk9xZTsg/ZM15R//8J41vmce27dHTEbN\nWylyyk/efo7ifrnmp9Z4hXj2qfyUa7EMIQuPCcN9kTImY4x56K8PWePn7vytNZ6WmUlxmTMvL9tW\n5oxCoVAoFAqFQqFQKBQKxVWE/jijUCgUCoVCoVAoFAqFQnEVcVlZU1AeXCQGWrgruaRd+ScLFxhb\nF/qyXZCLeHngzzXsZMryxYuiq/a1oBY1djIdfMY80J2krMRDuCZ1nGe5SdIEUNOaG3Za4/7BeooL\nCgXNLHAMvnv5TpYrSWqocw6orsNd3Ck8IAu8waFO0A4b9zJVP+5aph66Go5EzE94KvPgJGW77Tg6\n/pMswBgzKFwMJq4CxbNuWxnFdQkXCM8A0KMjCpjC1d8CGYKkkwYL2dBLf/+M3hMXimuVbk0t57iL\nesxspzXuOIPXpGzNGO7An3MHqK5+fl/fbV0iJI8dU3qEa5mZYFyKi8cFLdTGZeytwx6RDh9lx9ht\nIlzszd5GSOlyvnktxfn5Oa1x5fFN1nig/SzF7Xgb9NmqFjg9LBJyiQFB5zfGmC+OQd73sZBZfPTx\n7ylOukWUfAha9n2/up3ipISxZANoiM5Ipre2CunIxPshz2o5xTmg9TTomKOZJekSdJWL/RHINGrp\n7iYdx6Q8yRhjLg1A0tLfhHnsqeiguFGe+O39052goA7apGbTBd0y/17cG99I5IDghAx6T/150EQT\n8tCtPnES74mODlCEvbyQU2NSeM21teH6vL2xt4PSeK23FUFC2yWkViODNsc278sebf8RsgRNt/UQ\nO4Yc3wTJXFgAJE4pts7/UuYknUXsLi7yTJEvvfn+VxQ3RUg4sm3yk3/iW8uW8XuEHLLsM+yd666b\nSXFScnHdCrzWVsjn7LkqUJt9zqE+iJzF+bT0ozJrHJuK9SKdLIwxJjKYnWpcDuEGmLiMKcdSql1X\njJzQ0cNSxGqR91Z9H/e3p5r3YkoUvmdl09fLuwOFC1dzGaR/3sJlMSCY5bPd3aD4x46ZY407O1n+\n2lmM+XLEoyZostUjeYk4q5tF/TUpLY3ijgmHr7njcN2BaUyFlzWBqxExVTrX8fnecArnVYC4psjM\nSRTXWo37FDkGEtryzXsprqsCsgbvuchlQ0Ps+tlRg33gLRw8S09/Yo19wv3pPX5jkAPC8yHdPPzC\nbopbOaXAGodOBW3/tT9+THFRQgoU6kAezxnLciWHE3H+whnKnj+D0lysgbFh3hOQNxy7+yl67Zrv\nwumosxw5X7qeGWOMm3Dyqz2KOuOCaIVgjDEZTZBPZGRg/bQd51pg3hq41nUL97UasedlywBjjAnP\nlfsZZ9KhD49QnHQ5LSvC9d1zL+do6dbVcgb1eV8dO7/4JyJOPj/52iSlzceEg6zTuBRBY1Fzhedw\nrugMgdRHOloVrjtFca1Cqjx6IqR63pG8X+Km4zlwoA81/vm/HqS4dpGvJ94Jea5sd1Ak2jQYY0yA\nL/ZszRfIrXc9torizryP2ubQLyFTnPnEdynu2IsvW+MocRaWf8rtBEaJ/FV1AjkkYzHn+6IvcFan\nFawxrkamkHw9/8AL9FpzM+SNpyrwfPHNl35EcRv/5+/WOGYqdJDX2mqG5mLI8+JzUUfac+qmd3ZZ\nYym9f/R/8P2b97K0yt0HNXTtYVGbRB2iuAefQ+7537vwHPKjZ+6lOPkMf/A81sXdz95Ccf2dOPvv\nfmi5NY6byS1fzvwJNVxynvkXKHNGoVAoFAqFQqFQKBQKheIqQn+cUSgUCoVCoVAoFAqFQqG4itAf\nZxQKhUKhUCgUCoVCoVAoriIuK8zvFL1bEm9i/7w+0bNC2riVvss65zFr2L74n+ip414yGQ70JxkR\nVlkzH55FcR1CN32oGNrRvzzzjDV+84nH6T1dXdC1BYehGUhfXx3FNVxE34PgTGiKZc8WY4ypXg+9\n2UArevHsO8H2djHleJ+n6LdT8I0ZFNd6Fpp2W2sHl6B2M3rm+MWzrr9fzKO/sFou3VFCcanX4MLO\nfoEeIDnLxlCc7EU0yh2//VV8zP1KZJ8FuZak/Znbnj30njm5+FstHVg/sseMMcaMEr0EYhZAY91a\nx2vTNxz3ou48tN2OeLY9DA6GRt3DB3PcdIg1jtJW1dWIT4Kmv6+V+z/J/iRNO6EDnXBvAcX1NeA+\nt56Evrq3lveihwNzFZgCrX7radZkL/oOrF4HWqEDPfAedL+5M1kvuyIOPSuaRD8DeW3GGOMXCw11\nzgPQCvc2shbVkYA9FhwCfbVce8YYE5CB77H/b1hXIyNsSZycHmeuJPpF/46QPO5DEpCM/ddTh+9Z\n9xX3vHKkIW5Q6GAH29iy1t0fOSczDt+rb2CA4qS5arvo3xSRilx57q1PjUT4FPRFKNoMq1JpAW6M\nMZ4ir/fEfWGNO4pYeyztlttOwgY9KCeC4oZF76sOoV8OL+B565B9qJYal6L5IHT7/glsmZwo+pEV\nil4HUbZ+QEVHMKcTb0V+Wb+TNfNzsmFXXXMIPT5k/y1jjHlf5MrDR3H/Xv7xj3ENBf++F40xxmSu\ngYa/6TBbgfa0YM0m34J+BqHj2YK0/x+Ym3OF6JHV3cx723k9ckKb6PG0570DFGe3KXc1SjZCu5+5\nki1xu0T/sIR89GA5tvU0xS1YihzbIXrgtdv6oCUIa+7gMqxpu+10VzV6IfSKHODu+/Vny8CA6CXj\nwL3trmmnONljzdsP12DvLyfrgEWibqlq5j1La3AYebT4HT5nbe7jLsWI+Luyn5cxxoSNw/ps2If1\nOGoM93VqLxRzJV6y90AKz0IfjZ6eMmvc2859p3pqsXaC4tCDpGMU7p/sIWSMMf3iTPcORg2Vd2c+\nxcn6StbQN8yeSnGDoiZ3iJ6Q9j5n/aKXpJfoj9N4gPsQecnr5bY1LsH519HbbvU9C+m193/+kTW+\n78+PWON9a7l3RHY6+nn01mLveHvy3nnv8XXWuLwB+SciiHtcjRH1yYDo0yYtcQNTuRfPsd+hj8TC\nZ5+1xsMj71BcSAb235+fx7mYcZHP+rsfucEau3thL/IKNqZ2D9Z3zkPISede4ntUIfpd5a0wLkXH\nOazv4Cx+tjr0Mvo1ZS/CmTblR8sprrcN81GzGc8gl4Y5iwwP40za+LPPrfGyp2+muPLP0delS/QN\nqjqIOnny3bx3yj8Wz4tjUXfbe/9N/MZ0a9zfiuupv7id4mSPwLYz+H6ydjPGmINHcR7d/MubrLGn\nFz9/Ro4fba4k3v/Bm9b4mlw+F9PuQZ2QXozrKP18F8U5k1HbbnsK+y17Cf+OEJGBz3N3R4458Myf\nKK5anD03XYvfBLxD8Z4QW1+/5hPIy/IZoqeGa7EXvo/+ON/9PvrHBDi5n1TLIdRFIf7ogSR73xpj\nTOQk5KHzW/EsGTuD72Xsssv3mlXmjEKhUCgUCoVCoVAoFArFVYT+OKNQKBQKhUKhUCgUCoVCcRVx\nWVmTZwgolA172Po6cQkoOu3nQZULncjUImmJ6+4lrO6+YtlM4GjY4gWNBuXv3CuHKc4RBjpRXRto\nak888IA19k9lGlhHNa7dU1CVgoLYv+rSJcgCPDxAcaw5wlRzvwTQXSuPgf654KbpFCelHuGTQLsf\n6mHLbSnDuRLw8Aet0yuU6bSSXlvzOeRacblMWS/bBglZ9rWgprWfaqA4d/G3HIIeHT6ZZQfBTqc1\n7goB/V/KHVZMnizfYrzCsB4n3oG5k9bmxrCNad02SAHs93m4BzTFjHtBleuqZetFX198x8pPQT1s\nqGQ6W9pCtmN1JYYFBbKpg2l5vVswN1m3wg6+cR9Tk6UV3LCwLA8ew7bT1Z/B5lxy0mOmsIRtcBC2\nlqPc8DvvuIXIDa/8lS0+J6eDyjc/D3MYMTme4lpOghbrSMJ+lhI4Y9iqVMp94ueNo7jqnaDaT1yD\ndXXo9f0UF5BxZS1Dw/OxD8reYYlEwirQfduExXfkbLahlxaBlRswV9L21hhjsvOxT0d7YH6G2plO\nG5iD3JswDzR6Hx/kALtl6KFXcd8iAiHt+eQQ06g/3gS6+ptPPoHPjmFrzPaT2GM5Qi5X+MoOimtq\nQM7P/2/IQzvLWikucUW2uVIIE/TZg58fo9d6hWTMxwuSrsH2PooLFJKdss+RUwrSmerq64+cV1cN\nWm1tK3/f6VmQszz5+H3W2E3IZgbb+Bo2/HWzNZ61EBK25nOc0xMX4pqqNyHXuHmxdfHo27Hnos9C\nKpK4YALFlX6K89Q3GpKaCXM4v3TabDddjYQCIYOwyax9wzE/VYdBgZ+0fDzFeYchTlpG+8ez3C0i\nAznRP6bMGjccZGlspMiDw0LeHRAOeUxDMddEjbtxfeWjIDkebGeZ46UBSDOqdmLd2iWgPRWQQzlv\nw3UHHGf5jpSzS6vSzNs499rt4V2JgDicXbLeMsYYT58Ae7gxxpj681zPhQp56UAn7pmbJ9+XoSGc\nuw2HcM8HbDJjaWvc04Y96xuJte4fwjn9UnC/eA9y/4Btz3ZcQK3tJuyuZY1njDHxy1GLDAqpaX8T\nW8F3V2DNynmPXcRWyCODLP91NeKWIMc4wll+uVzUqL1dWIMFy3gvnt2CPDqqCjksfxmvRzkP9dvL\n8HfTWSr6vceet8ZLJ0F6OlvkswFbXo+bhX165suXrHFKVBTFffjRdmv82AOQUjRcZDnku3/ZYI1X\nrJ5jjQeFzMoYY7r7sX6aT+IeRUziujt8MNpcKWTcj3s0MsLXR3IWsZRO/WETxcUvR/uEqBnIz0de\n5jpN1vL5SzG/Ra/vpbi4Jfi8ht14DiyuQ33Z/hrXlIufvtMav/f9v1njnERel8NCUpnzbTw/HPnN\nZopLWY6zebAD8xQ7n/eYfxLyRvUmPItFzXRS3OEX0ILhht9xiwxXoExI/bLjuS7/4tmN1njCLNRY\n6z/hFhQP/fW/rHHIKeRKufeMMSYwEOuipQWfcbaKz8WMWNSiiStwP//67des8RuffELv2X78bWtc\nI+qWMNueeOCnkMI9+f2/WuNnX/0exSXfgueV4VfF2ZzMtXF/GySVs34Ciea5v22juAtl+I6pL91u\n7FDmjEKhUCgUCoVCoVAoFArFVYT+OKNQKBQKhUKhUCgUCoVCcRVxWVmTn6DmRhWwjVDpOlBrQ8eD\nFtpdzZILD+HWUf0xOhd7BHPXeH/hiCQpxuHZLLk4uw90r5sWwPnl3iefs8aPe95J7xkrqMeD3aC0\nJuczZauvC5RCRzAoZt52KZD4vMhpoKd2VbI7gp/o9l/zJWhVQza6ccZDk8yVRH0xaGrSZcUYpqvG\nXQ8qbOOeCorr7AV1V3b4D8rl+ZEyJzcPpr3TNR0HBVW6E0jnoTDb3EvHgM5y0Po9bE4WPcJ96NII\ndDl+idyNX1LKG49DHiLn1xhj6s9hzYSMBy00YgZTk+2OQ65E8AT8XZ8GpmufOohr73gFtE53N/7t\nNTUflFu5Lz1sjiHpD8BhzU3IYc7/fTvFxS6EbUP7eeydnjLsg4d/xN3zK7dAzph5B+ioUqpjjDEB\nwgVhuA8ywH2fHKG4lc+BDtgyAjrvxXVMg41fgrV97kXMZ6zN9WaU+5WVGDbsxb6Kmp9Mr7WdBtU2\nTtDKT7/ENPy0GyE16BF05gQnU6dPbTxljcsaMT8zc1ny41wASq67O/ZizQVQWO3zMzAEWuf2M5BS\nXKhmp58xott/UTXkgqNq+D7Pfmi2NS7fiDn2CPKiuOw5Y61xe7F0tuG9NyjkCfEudheRKsoJ81iK\nM9ACmnttCeQJXkIibIwxzkzMb7dwmfnsC6ZlSxQJ96czNleP13//U2vc34z8TPLFPF4f4QHII321\nuH/OpSzPbDmCfRWzENdd+RG7E3YLWU9oPmjIw8PssBY9y2mNa0U+OHuUpc7B/ix9czUuCVp6/RGW\n7IQJabV3Pda+/azxEWdFr6h9IhfwovP2Ro3U0wl6/VAn1wJVQqYoKfAjQpIkXXWMMebQIczD/gt4\n/z3z5lGcbyiuVZ6L4RNZwuwVgDgfH1D5B21ObOFpWPtFH26xxg27WAJvhAQhmZXk/zE6hXzF7kTU\nUYH9ImWu/T0tFNcn3MT8Y7hG+Dq4+6C2sdcLzQeRA6XkSdY28Rl8I5qatlpjR6gT728/T3Fu3vi7\nTftRv9hrGynJiszEd2/yYCct6WrnJ5zn7HV8j6htk66AYvT/fviWNb7nZ1wzdBZjvkKzUL96h399\nfph4J6TL3ba6/OAbqA2mCTfYR9Y8R3F3zJljjd/ZBTeaQXH2LQmdLd9iRl+LesTNDesxOGMDxUWc\nw/fwFPXvxs3sWHfHo3Braj2O+sDNJhWMSUGtHCxyV+VHvH7Cp3H970p01+E+V9n+rp8Ta6tPnNVp\nd7PkrHYLzjUPsZ+n//gaiiv/CI6iB/eh/ph+LUtov/jtl9Z4+RNwhurfBkfDmd/lPPnBD/7PGi/+\n/iJrLJ3SjDGmTzwHVW9FDo6eyPdYto7Y/QbO94k29ydZh4dMw1ltd4VNnJhkriRiRE289TRL7+96\nbJU1bi9E/XX3c7dS3Ic/ftca5+XiLHQs45Yj57a8bI17qvHcJmV6xhhTkIXfH9qEu95Nd0ECv+LG\nOXwNv4KLl8MHc7f0WpaOS9c72Xbh81/xnh2bkWKNm1uRHx02F9vYOaiftj+Na7hQyzWG/Z7ZocwZ\nhUKhUCgUCoVCoVAoFIqrCP1xRqFQKBQKhUKhUCgUCoXiKkJ/nFEoFAqFQqFQKBQKhUKhuIq4bM8Z\nabvcXsb2wsG50MRJjXHIBLbS7q2F3tw7GhrR7irWtEpdqEPoZyuPs95u8u0F1vj02uPW+PE70Wcm\nawb3xwnOgh7TOwCat8a6rRQ3LDSAQ0PQoTliIyhuoBuvSf3bxa8uUJynO/TBft7QT0rrWmOMqdqI\nXjzR9y03roaHuI7GPWyv7BUKLZ5fPO67fR5PnUA/AGlx2n6Orf+GhMWfbwPm3j+BNdFBSejX4u6O\ndVEsLAZj5nBPjob96NcxMoi/02NbS8O96FEi7bIbD3E/DGnF7hR60pqNxRQ3+kHokovf2meN7feo\n5aDYI4uNSxGQAh2omyf38plyE3oW+UTgXtot2zuFTbm01bVrsivXQT8re904Ulgv2iV6Zch77iut\n5rdwH4nDJfh35Bn0OvCN4T46DcLisrQGms7YELatK/w/aMH9xfV5BHCvknU/XWeN44SmNnEc2yNK\n3euVQMhY3M9hm+ZYWsFKPXPm7WwZ2iFyTpCwZJY9DYwx5m9fQm997/z51jhynpPi2qow31KjHrsU\n+tvmA5yH81dC2z1efI8Ze0ZTXOqN6Eshc0XJoVKKaxPWy94Roo9HJe/tzhL0HwifCEtE2VvFGGM6\nL1w5G+aSHeh7Fp3EZ8O5s2XWeOJC9JWo2F9GcUnTkdsCR+M8WNI3meKGu7CvOnZhTYyZO5fiju2E\nBj9nDLTRAcIe1jeSezQseXqNNW6rwHz4hHIPjR7Rf6LzIu6/p61vXPRsJ/4heiJ4e3NPk5pt262x\nuz/2qb1HVmMHz72rMdyPMyRpMdcMHuK6OovR38zd1nOmQ/TDkNbG9txbfRqWsUPdeC0kj61tC989\nYY3DktF3KyzbaY1rdnOvn1pxjmXGYU+Ej+PP7qtHr4eoKTh/3Tz4O0VGXmuNu7pQ0/jHsj14RyPO\nSU+Rb/tqucdQ8FjudeRK9DfDGjo0l7+vtBQe6MCelTa8xhgTPTbfGg8N4SwcNYrP2YEB5JTC9dhv\nfYM8182dOEMmuCGHJq5Es5a2tqP0npCQ6da4uhC9DmQvN2OM6TiHa4icjTn08OPzLiACOaC3twzX\ndoTr+Oj5Iq4O8xaSxXMWlsP99VyN2dm4NwGxPI8nTqPnWuIy9DBb+8f1FDctE70e+hqxLuy9aaZ/\na441bj+PnkX/vWQJxfUOoMfSL35wvzVe/zksf6t3l9F7ui/+2Rrn3i96Stha2RVvwb7KvR1n6fRM\n7vdV/xV6sPiJ+qaliPdY/ETkr8pPcIY7MrinXu0mfF6Gi12Y+1twz928OJfLujRpKeqZLT//iOIm\n3Y3nO5mDL7x0mOKSb8fZevMq7N8zz7NdcYjoW/bF09hX08dhvRW9dozeM2a00xpXfY55ilmQQnEt\nogfQsMj3dkv2RtGDKkbUr/bapqIE+Wr0AOooe75y87yyfRGX3IcePI27ufdocCr63bz0c/SVuTvm\nBoqTz7sVF3GffI9ynR+ez7bW/8TUCdzYKmQc8tGFDaK/Tyqe7S+c5l5nCWE4P/1Fzxl3L87rO/8O\na/Jl/w3r6/d/8xnF7TqB3kazxsECvLeGnxkq1qNPz+JnHrbGw4/9meKaj2Jd/Lu+iMqcUSgUCoVC\noVAoFAqFQqG4itAfZxQKhUKhUCgUCoVCoVAoriIuK2tq3AVKk3c42zcmLgetZ7ALtlcDQi5hjDGh\nY0BHGhJWjOGT/z2dyRhjRoTFZepctr2SfytJSBIkrT1hAdsUBgXBGrixDrQ3XwdfQ7+boMH2wyZs\n0GZ3Kel2tTvKrHHG9WyrKqUekg7deowttWIWpJkriaRr8PmjPGzU8e2gggXnYK5ajvM1FiwH9bKn\nAtRfNxtFTMrdPANAbfMLYZps4ynQBX0F5TFEWHMPdPBachdWc36CYm2P++L1HdY4MhBxgX5M15dW\nrSfeAm0yLICpd4WvQDoTuxjr8dLQMMW1d105K+06YTEYNddJr7l74b40CntwD5vMpfY05jRpBmQV\nQzaL1MAxkGokzILMoquZaYO9QrYWIvZ5wz7kjS+PH6f3SEv2sv2QUtjn5qVNkAHMHwv75OAgB8UV\nluL7+lRB/tQh/o4xLO1zTnZa454KppaWluMe5d9jXA6vQCGf28/yufACWDD2CKpkfxOvK59o3IOY\nxdjbX764heIeWQ6JpMyjUgpgDNsBh01FTmwSaynvIbY3vXQJa7/pImjBud+cQnH94jyQuSLcvsf2\nQXbg5YH1POGeAoo7+xb+lne4sAaW/tbGmMhZV85uMvsGnC8D7Zx7soWcp+MczpDEAr6ejjN4LXKu\n0xp7h/E5e/g09v2am0G5NTYr1ZEBnH8bN8GO9Ru3PSTewjKk4GCVlLGwAAAgAElEQVTIISs2I/+5\n53BOH+pCfnA4Qcuu3Ml23v6lkK4GJCOu5DOWD0vL4/Id2AM5s1gSV7inyFxJXBrGmpGSDmP4jJdS\nXWlBbQxL62Qe7a5iqWjpBkgNEsV53PwVS22PCIv02X5YC3X7IX32i+W9c9+T2Jula0G9Dkhlen3k\nNKxBPwco+m5uLIkZHsaa7miBfGeol+U7dduQv0PHQ+LbXc7f3SeCc7srIesZKWMyxpjOIkjOpLwv\nYhzLpSW8vECF9/RkCW1vB+j5XX24R6MnstwhR+SlcGGrGxUL2czgYCu9Z3gYOV7Wm45k2zVU4lxw\nFzI6d2/es60VWC+jhFxwsIXzlZSTys+o3FBIcdI6POLW+cbVcArJ12A/n8nZK5Fv20v+/RwYY8yp\nCtQd+SE4Zz/aspfiRgvp37RbcV5FTWPp1rH1kBgWbj5ijWXdmLI8i94j2wZUHkLeq/6K5d2fHUa+\nLayB1GzB9VMpzl+0eAhMxhquPM7tCaRd8+h7YTt94c3tFJd6F1tXuxI1m5G7fEL4HJM1R7OQ/joz\n+Rms+Sj28Pmj+LycaSw7NeK8bytBneJcnUNhjsO4tz5C1uvhj9o4etxYes/F9ZC5eIvWHsFOJ8U1\nCblSiMh/PuGc74o3YS+1dWOfpyzh807KXS/uxLmYOJ6l93Zprash5c+BWdyC4/f3/dYa5yXhPHEk\ncMsDeWb2CFtsTwefNRUf4nw5egrnfVY825GPOgX5Yeo8rAUp+YqxnbmZd+OZdf1zkLQl2KzJl/3s\nOmu89rG11vj2J2+kuKBYnNve3pjvhtJdFNdTi/x17NfvWOPFT/MDRdH7XBfZocwZhUKhUCgUCoVC\noVAoFIqrCP1xRqFQKBQKhUKhUCgUCoXiKuKysibfONBnBztY2tN6HvTCIfGadwR3Rvd0gMIsJU+j\n3Pl3ITdBT61Yi27M4TOZ0uUXBUr/2Q2g8M7931XW2MuL6bw9PWXWWHZqHh5mKrOUx0j6VcN+phBK\nWnGwoA4P22i/fsKBxhED2YdXENPLuyoExZVZki5Bu6CuSgcuY5gW1iS+Z3NJE8XFFIDyOTIE2Zm/\njXYbKFyFJPWr/tQpioubCHeC1pqT1ljSxr2Eg5IxxrgJ+Y6k41afZmp4axfmNS8R1x1VwFS5jrP4\njpLiHr2Qacp1m0Hf7q0HrbjlENOo4ybyWnUl5F7srmD6nnSJ8k2EjCvURtMlRyShirg0OEJxch9I\nKVOjjQ4oZWZSVvLmG19Y44MX2MEsR1AhI6OxVrzCeK6nZ2EjXKyHXGn2vTMpLrwP97zwc+SDngGW\nasnO7URvtdEs42wSRlejoxhuG942uv+gkEUEZYJOWl3KFPjgMbj+3S+BUinp1nb4CMeK8NHcCb/u\nGOjbkgLvXAFnDHd3lpP5+mJv98ViXfQ287VKqnyfkI6wOIRlbR09oECff5tlcREpuC8jwm1HSm+M\n4Vzhamx6dbs1nlzA9/LESdCRB4YgNQoSjmPGGJMxGntzqAfXfnwXO/E4pOvBKdxnSYU3xphQB+ZH\nrvWaXdh/4ePZNenC6Tes8bEtcBgof5cdYk6VIwdIN6D5eSwf7hAufmU7QONPnsfS5OZ9+B7DI8g9\nVYfZGSJrLtO+XQ1/kSvt7kqXxHVJmd1AK8sl+8W/3dyRVH1sddCeQlDbQxJwZl4a5tx7oqzMGo8V\nuTJGfJ6bTZocEA8Zat4jcPEa6GIXic5SyHy6vUG9HrTJgmXN1nYa6zZsEksQ2sp5r/8TzbX83zvW\n4W+lTbZH/2eQ96KrtI1ek/I5mSv6O/j87O7FuvUS7+mp5fsn/y0leHaqvpRv9gkHmyavr/B3vCLp\nPb3dqGGkzDTKyRIiN084FMmavLeepa+xUyBfaTwjpGm2PBk+ATmhqwL3zyeS871dCutq+MdBvjPc\nx3tRulNKZ9ib71xIcVLmKuX6N8ybRnEfb4XMKU+crZWnuL7Zcx5SxNtnw7FT/i/tvka+7+FTuMb8\nJ6ScxRhjcmUdJKT3RXtZ6jwhFRum/CPMY0wqtwm48AbkvqNG4czcW8jytAIhuYh/duW/vdb/v8j9\nzhxrfOx3LLEOzsN6D83CPWrYxlL52KWQjvQfwLWP2GrU0rfxPHHwPOQwUrJmjDHnq7GvDhUh7qc/\nvdsa9/XyWRoyBtdaL9pWePhzLXv6KOZqpnDGO/wiy+jchAR58c+vF6+wFDEwFee2EQ5Sp/bwHKbE\nCDczVt64BKdfh4Rv5v/cSa/Fr8dr0x9CLf7RL9jZKEzUI1J+mDCDLcJObXzRGncL+dOGo+xmd/+j\neL5vPY4zKf1OyN43/mM7vSd4F54v5tyJv/urx1+jOCnPys/E+jv+ygGKCwtBbdbegf1cXFdHcUuF\n49PBYqwRx+csfxp96zJzOShzRqFQKBQKhUKhUCgUCoXiKkJ/nFEoFAqFQqFQKBQKhUKhuIq4LPc7\nOAf0Ljv91jsUFMIuQQ2MkNQsY0zzCeEQcx3cjBoOMZ3NzQu/E/mngfYrKZ7GGDM8CHpq+rRUxPmA\nnjk8zBRMd3dIeTw8QJ+0uxRI95lXfwKaVkM702BnZYPKLqnX/yJrisLfkh3FRwbZ5SconTtiuxrS\nScHTJqnyFc4v0rFicJivcVhILj7fBrrXLSnXUlxPHai/FYdAC608w9IjKX/qKAbdWso5ajYxxXPM\nmjuscdle0HunLMmkuMStkAxUCKq8lDEZY0xXO9ZJ6gp0eS9ad5riAoNBKe9vBo1dOhgYY0x//ZVz\nawrMwL5qP8/fo7YNdOTxi7An7PT3Cx/je40IGZKfF+8DKVFqP4Eu6c5bcykuJBrU6ZqT6HAvHZmW\nT2Yeu/zs97aA5rd0wgSKmzobkolLQkZn3zsdhbgXeXfmW+PytWcpLlg4UDXuwJqot+3thNRocyXh\nH4+c0HqapS7DfZDB1G2DU4GUHhpjTNVH2FdSzuLwYWmYdA0ISEJOrT9xkuJ6qkB1JneCYDhZjBrF\nR0V7O6RQQ/1Y92Vvs3wxaBzo1wcOgxYqO/gbY8zkNNBJA8Ox1nv7mYZfeR4U5AlTIWlrOsT5pWFn\nmTVOZvXNf4y4UCHHC+F7Pm4inAQGGpBfPII573oEYM9JWWGvTY6XmYrvGCTo1oF7bG4YQkIlZYD9\nDZibllNMv+1vwvWNCBmPXR533aRJ//Y1P5t0p7oUfzdthnAgtDlpye8oXR2SxrMMs/GwmFPXMvCN\nMcZUbob0SkqXjGHpccwSfBeZi4wxprsSubdXyF62fHGI4qZkYF1Ul+A+ZS1ld5HVdZBgBDtwf6Wk\nJtDmwtRyFrWFp1hX5R+yRC4gGY4anUICVNvKMiTpVijvS28Ny8Cls9SSCaCNe5ezm0jcTKe5UvAU\n7nex19jkyDsgR/YS7jFSumkMy3NJ3sZp16TMX2CNW2uR/+wOXqFx463xyAgo/VLK1NPDTmdNR7DW\nA9NE/utlqV9oCmqdkRGcs35+/N3L939pjd088X0dmVyfV22AVCNOOFF2lbNETLoGXQms/99PrPGS\nJ5ju3yfyVEs9zmu7RD9qhtMa91SL/ZLO++UGMZbueF6evG6bO/EZT733vjX+zS++ZY07TrMEdFBI\nstqFPHfGYwsoruIT1CeFx7FOJ9w0keI8hDOPdKQNL2D5jpy7mq9QNy9K5Prr3DFed65E9Tbkm8SF\nLGWt3ARJkfwemQ+z5OzTn35gjWffB9lM015ba4kkrEfvYuxfefYZY8ySeyHzvGvsA9a4rwPPHCf+\nuIfeEytc7XxFC4s//uxNirtpKpy1+uqRG50T2ZkxdCxqysZj+B6RE2x7dh1k+bWNuL6ZD7KU3y86\n0FxJZN2Kuv7or9+j10ob8Dyw7QU4H9/x+wcprvVimTUOTsa5vu4Hz1OclHzd/sxqa3zuZT4/izei\n5o1KRx4dNQrPYJ62MzxwNGr+cx+i5v3GPTdQ3NPP/8Mat4iWGDc/uJjiLmzC+p7yKNbV6Fqb46tw\noLrrj3Boar3A8rm/PPAza/yjd981dihzRqFQKBQKhUKhUCgUCoXiKkJ/nFEoFAqFQqFQKBQKhUKh\nuIrQH2cUCoVCoVAoFAqFQqFQKK4iLttzprMEujdpg2qMMc6b0H9iqBMa8q5K1qq2n4JGregr6Mb+\npT+CHzTeQcJ2TfZhMMaYUaKPRvRsaPbqzu6zxhc/4n4T0QXQ7YeMQQ8EaattjDH+cdDyXTMejQq6\nu9g+Myw94t++p6uMtdvdtbgXsteGtBQ3xpjAtCvbc0b2kWjYyxpm/0To0KX9Z/Jc1owe+PiwNZ6Y\nIrSSNl12s+gTECx6JEhtrzHGDEj7dXF9bWegGQ2fwtbUjeXoaxI57uttVqVVcmgwNKNvbd5BcXet\nhOVZ5Wewq8taw/1Par6AXlb2cbHbwTtS2VbclZC661G2XjKT74f2VWrFB7u4r0fOGuiZ67ZCeyz7\nFBhjTNQspzVuvwCbUd9gtv+8dAn9F9KnwnLv0afx31uOsN24REUJXrtgswaOEX1r0mdjLb7+m48o\n7ptC01kv1nb/IPd/OvgVNKczVsN+b3AH97CJmHbl7NCNMWZAWHXL/krGGOMZgBzoK/Zi9eds4egl\n9tJwBXqKfHLo6/tcDLyI+xk5z0lx3cXIW8HXY47PfAgtrrdN3x+UgWuXa07q7I0x5k/PvmaNf/L9\nNda47hj3iAkXfbG6SnA9KUs5D517DzahtV+iZ4hHIK/hAFtvBVciIgg5v6eC9cah+fge1VXojxCa\nyT0CApJFrhA5dNHD11DccD/Ov5pN+L7Btj5lbh62RPz/8Pzr2C8xIZyfZK+ReGG//fEOzpOzJiJv\nuIl+HX0HuD/OtNHIyaUfwk508R2zKa6hA/csJQn36+z+IopzRnG+cTUc4ejXFJbPNuN9ov9c7Qb0\ncAjI4nV1bjf2ZsaEZGts731QkI51nLII+1JaPBtjTEIK+hMUFaI/QXY7eizI3njGcM+oIKGzDxrN\na0T2RqlsRl7/3xdfpLjv3H67NZ6Shzn1iuD+fwvikUe9w5GvYqZx7yDj/u/Xpivg4YeeHAPtXFfF\nL0I/n5561LItJ/lM8o0VNdxFxA3b5iYiEzm05Tg+I3RcDMV1tKJ3REg4en709pZZY9kH0RiuS6Xl\n+UD7cYqTZ3rqLDRi8vDguQnOwt6R/RgvjZyguJ5y5CjZ28w/IZji7LWyq7HyV/db465mtrQ+vh7X\nLHvl1ezlnkqx89Fvb9uGg9Z4xnRuOlZUhH2V5cD6CYnivjrjk7GfK5rQ227zWuS2W5+7id7TdBR1\nzMgBfI+9z22muNxbUGPGVmAOWo9zX7CI6eLZRfRvG+zm3DsygLUq+yvJvmLGGHOh9uvrsf8UYWIf\nHPzLbnpt8jfRk+roi3hWG7J9j2sfQ5+PvX/Ybo0z53BfSQ/RJyp/InJUQBr3FwrLhW13/UHU+IXi\nWXTWT6+j97RdxLytf+Erazwtk68hcjrynLRx7z3KtWxwAvK9dwg+u2Y7r9+MNbBr99qAWq5C9Bg0\nhi2nl/5quXE12s7gmf2rk9yfcO4Y9I2d8T93W+MLH26kuMxV6Bsln33t/c0e+DN61cieRdG2MySq\nAHu7rwX7ZevPUd/kZ6XRe/7w+BvW+Md/ecgaP3zTUxT3m9992xrLZ6ukgoUUd2Yjenbu/fVWazzv\niVsprtYPddobj7xmjVc8upTixjmd5nJQ5oxCoVAoFAqFQqFQKBQKxVWE/jijUCgUCoVCoVAoFAqF\nQnEVcVlZU5+wBvZLYPuusrWg+DiEtWNfA9sJh88ALe/SLtCb4pczRcwrEJR+SdnzC4uiuN42WNc1\nnwB9zDsYVL7UVWxP+c4vYdN351Ow6ypdx/KnikpQkTv7QJGdvIBpkdJ6sUpIDtLuGU9xvkGglpYI\nKqS/kymjzcfwPaLZvcsluPge5ip5Nd+b82+BNivtbVMKkikuNx+07H178HkpPSwf6asHjdI74uut\npWuF3V/SSliTx+bBNm54mN/f3QG62PmXQCtLvZvv++lPYef76POwbnvxhz+kuJpiUEiDhEVsZ0kz\nxZ06B6tD3xLIJ5KjeW16BrJdrisx0Nzzta817IQtvW889umRj49R3NS7IH8KnQAKql1m987j66zx\nzEmgMfpGlVFc50V8ftzcLGss94dvXAC9p+Mc6MHSlnfTCaZbT5qMNbH1w/3W+K3PPqO4FdeBCjok\npHLZ90+iuNGC9lspLGbjFzIVsn4H7mVqvnE5eoTUxd2PrTub9ghLXGHlG5TL8o5OITUrEjRlafFs\nDEuMvNxBS49z2GRs87HXfcJAz23aj+uRttzGMAW+fgv2h502vUJYqTeewGuR2ba8XgPb0pDxkHYM\ndTHtObFA2lxirduleR4+fG9dCTlvvol8Lkqb0A4hzXMUcU5pPSZyj7B5l3NrjDGxi7A+vYMhBd6x\n+QjFSZnwqXKs4V37sXcevfNOes+YRFCHW7uRa1fNm0dxd3wb1On974NunTM+leKOHQJtXNpalmxl\nudK4xZBENx/E2Zc+miWFzVVMgXY1gsW+6q3rpNd6ayEdGiWsiNvOsHVuSgZo819twr3JiGWZlJ9Y\nJ20nUGdE2+yfpRzF/xTqhBEhbzu0luc+QMx9RDWuW1q0G2OMTxxkXL94k21hJWSuaGqAZHG4ltem\nlJhkCsmTm00CM9DK54srMUpYsbacYElIhz+uN1DIAKX0yxhj2i/gTJLS0uF+PnOHh7FG3MQZ19/C\nsvfQdKyJ0l2fW+OQHOQ8/wCed/8Q7EUp5R/q4fwXMU7Q+/uwdwIDx1Ccvz/qtZINsNW2S7BiFuHz\nmo8hP0fZZAUtJ3Fv43nbuwQNp1CLR4zJoteShfQx9lrkw6qPCylu87P4nrPnQ4p54XAJxc35NvJb\n4T9Qw7ywYQPF/fbF71vjJiFRGhE5/tAfdvG1zsbNCRGywtgYroMqhIw+QDwPnD/KVtfy+776FGym\nb/uvJRR3/OUD1jh9Ce5fwjVcG99kO8ddid4mnCH5D0yl16o34gyIy0FutO/FFlEj+HljL57bxtKe\n8TdBFtYtbKw9/Pncj4y8Fq9NgWW2t5CNl354mN4zKOrIBXfgeSTAaWtbIGqg90TNfMN3+CGu8M1N\n1ljW54E2WfvAAM67gWbkFLkGjPlXKZirkbQYeyd1Jz8jJy/Gc/vWJ1+2xnVt3M4kehZqyt5GzM/d\nv7mN4vraUQ9HTUdt5+7J9dy2p5FHM6fjfki5YXgg12KBvvhNoPgfeL742SN3UZx/POSM3TWQCFcd\n30px078H++y6Hah53d39Ke6jPai5Vs2djutJ4Jog47bLc2OUOaNQKBQKhUKhUCgUCoVCcRWhP84o\nFAqFQqFQKBQKhUKhUFxFXFbW5J8Euo+duhkxFdTN5qOgojmvZ6ebY79Dt+voyXiPpJIaw+4fvuGg\nADadKqa4qHGgbwZHQaLTWgMpS922UnrPshtBTavfDcp3sE0u4EiHLODSECjBfbXsjiAlWQ5BdbN3\n9790CfRHzyBQj3tr+POku9CVgI+gw18avkSvpSxFp/NjHxy1xi2nGyhucIhds/6J1lMcFyjuYc1e\n3OvEBUzNG2wFddDXAQqtmxuutfHiAXqPTxjuU9LNWAcHfrOd4uKTMK+rF4NiGJrEso8duyDpKhZy\njFvMDIqTLieegvIdfwNL80YGef5dCemqJbufG2OMv1iDvbWgXmfnM/+4W7gCnNgKR4kptxVQXE4C\n5AWdgpI4vIkpt6GTJEUa1xSdhfvXHMAOQgMij7z17k5rfEZIMYwxpkvQC50RoL5+b80aitu7E93k\nVz5+vTWu3cxU5uA8UMpjrsV9qfmcJRe+CUw/djVC8yDZMaPYxaS/CfemsxCUfEm1N4alELcJCWfJ\na+zs4e6L9O4ZjM9oPsxuAm5CtlG+ETLNxIWgxvsnsJNFyylIMxzpWH9jBlia4u8AtdSRgf030Mrn\nSVC2oDeL29JVxnRZh6CAe4mcWiakm8YYk3xrrrlSaKwH/Tg5g3OKlCuFOiAjkTJCY9jpzVu4a3jY\nJGdFb4OOGzkJ52dwIdPTI4IwP/6CDp4chXVfWM0OWelCejNjHujvng6mhrcex1xLGvHAIT4TDhRh\nL33jnhuscaDNOWu4F1LYsMm4hn6bJNqe51yN2h1l1nhkhCVA/eK8i87Cnm0s5PNuuB75VuaptLwk\niktYhnN2oB1rv+0sf15/M++Lf0LuD7t8MUzkNilRte9Z6fj31L33WmMfT57v+HycxzJfS/dFY3jd\n7n0R8g7pWmWMMSM2eZUr0VOLc2LYJrGOnIrvMTKEs7n1FDtpSYeO6r1l1jgsi79v8fuQRUjpkaeD\n8/PFTyBhdy5HPdx8Dp9duo9dUEZ54RpCxmG9lW5k6U5oIvZw+q1wQevp4ZrX0xM5OXEBZAqDgywV\nvPA6ZD1eQooonb2MMSZ6Bq9nV6PqS9T5O97YQ69NvR7XL+W0gbksiak7j3tVsQGOQHc8cSP/MZFX\n5Bm3tIF1zJ4iF3fUYZ1J6e6Nz6yk9zQdwfy8+y4cmuySi2m5kB5JSW7BbZMpbt+fsa/GiLosanIG\nxUnpaFAa8m3NnlMU19/49fL4/xRH3katJ139jDHGQ/x76vchD+mxyUnbT0I2mibkWe1nWU4anIm5\nD8t2ir/L52dXF9ZVbwdybZt4vvnV/71P73n0HqyXtpPIFa0259HdJyD5mTsX+7zsE3ZhSr9jnDXu\nEXWtrMeNMcYnFM834cI11M3mzmqviVyN9kq4mTV18vxs/jucHK/9xnxrnOPGtewbP37XGicIJ0hf\nL54f6TxVIJ5DdtlygHzuajuNtRArns38bdLB0BL8u0u0KYmytVroqsD9DBuLOs1+btVuwzNFwmK0\nXfj1nf9DcbeuXmCNE5diDe985hOKm/JddrG0Q5kzCoVCoVAoFAqFQqFQKBRXEfrjjEKhUCgUCoVC\noVAoFArFVYT+OKNQKBQKhUKhUCgUCoVCcRVx2Z4zPdXQx8UvZo2jpy/0ce7e+JjWokqK6xZar9Ld\n6FkRncx60eAs/Ht4AFZhHja72YbT0PlF5Y61xrVb8Nmj3Fn/5hsNjZm7H64nyGZl5hcCrW9Pq7Bl\ntPWGkL1FWoV2MTCDtfXNDdAB95RDXyitYo35V/tUV0NaG8ueJMYY03EePQSkLu/FL76guFXTplnj\nnHj0PvDw5iVUdBjfuU3YswaeYJ1f+Ax8xsgI/u65tdAq2lsOyHsYtxRa4YRx8RTXJvp1rF4J20RH\nMluYz+xD35rdr2Ndrd23j+LykqC3zhbf3W5BbbcQdSU6iluscdEB7qeSkgdtvbTzbrzAOt1tp9GX\nY2oG9nObrb/QX8Tc3zwdVnBxNh1x817oq6UVsoe/sNQNYj1+QDr2yOi4OGtst551CP1oSBD2aVQz\n71mfaPT1KH4N+vnMB1k/XvIqXmvrwroMDnJw3IkKa3wFnLRNTx16+DQf4h4g4QVYW0Nd0OL6RPI1\nuov+BMPCYjdiFtufyn1f+il00Om35FFcRwnWVpToa9IvrDFDbNbXobn4d9t5rLNAW8+MbXvRByeh\nBnOXM43Pkz3vob/UFNFj4F/6kAxDByz7s4Tlc0+XgfYrZ9/bN4jeFu22nlu1jbiXLV2Y64H13J9F\n9l+TfRSklt4Y7vlxYQf6AU1cwHP4yXvb/+3fve165L+lWbbPbhNW36JvlV805+q6XWXW2E2chfae\nMEmi50qnWFNN57nHR2Qe9vpXnyHXLrtzLsUlXUHbV2OMCRH3o7uEdfzhmVhPch/VtnLPjnRhjznt\njlnWuORt7iki+8z4h+Ozu/z578bNQk1TvgE9HGQPvKpmrhe6DmKtJxU48YKtbtn1FXrKzb8Zeb1m\nD/f7GhR7p68O+683nHvlydph9BT0lPO3Wc6WrWcbXFeiVdiSe4X68GtnxLoTa7XH1uthuAd70yH6\n2jWd5XX7zu7d1nhSGr7vfFs/qdCxyI2yz0CfqGtTs7g3V9kF9AELysG6DE/nPRsozk8/P/T2aSjf\nSXHRyegHMdCHvTjUy315vL1QX3uIvmSXbP3zOsuw7mO43HIJsh9Gr5Wt33yVXpvUjWv2icBZ+OEv\nP6e4u/8Ii9wLLx+0xj+5//cUd9NU2DwfKkEtVdHI9dKEfegTlb4aPcxCD2MOSt/mni4St90FG+eR\nAb6fDafQv+T4BlzDpMnZFJeQiL5Hp86hti58ZTfFxYsa+MtnNlrjctt3Wv0w2zy7Ejnzce3xs7j3\naONp1B91O8usscwhxhiT8QDOfmmNPmHpWIrrF2dXxTrktfHfuYPimquOWOOmg8IOXdRNdS0t9B7Z\nA3TbJ6hLFt45i+LGtiE3njmKOVz61AqKO/Ar9B4KDUPvoeyHFlHcRz96xRpPXY39cH79GYqLTePn\nR1ejYSfOA9m/zhhjFj+y0Brv/hv6ISXHcn24fA3O8rjpWAtvPfJnirv3r09b45KvPrPGK55ju+uS\ntejjFb8EvT6DRV/TiALOqckip+46i+e79h7uuzTjIczr4d8ij2asGENxskbw9sa53yP65hhjTF81\nnoW2PY29aD+3J3ZzLrZDmTMKhUKhUCgUCoVCoVAoFFcR+uOMQqFQKBQKhUKhUCgUCsVVxOWttIVt\n6bCNljfQDopOdyVoom4+/JEZC0ANvCjs3kLGMxW05B+wDI2aDRmJfyxb0IVEQwrRUgqqXNRMvKf5\nKFvFth6HRMk3AZ/nFxJHcW1loKZFpEPUcOpvH1Bc/DLQqkKEHbdXANNq+1pAn/J3wtYyJIcpYFda\n1jQk6FP1e1l25ilkSdMElY4J0cZUCepfRy8ohX3tTBGOEJaB/YL+X1HGFOFuIZnoKgVdrOQEaGp5\ny5m6LyU70g54x/ZjFJceg7Xl3SxoeTZZU6W4pttnw9bMbqvqTAOFzU/YsBWvZ8s85zVsF+5KnN0D\nqdDElUwZ9Y/H2uqtB/W8sIb3wepVkDhIyvvOLUcp7gfXw6CsDs0AACAASURBVJLaNwY04tfXbaK4\nu1aC4vjrP0OOdu8111jjzl6WuQwOI48khkPmEutk29JyQUlMTMV8Rs1xUtzF9yHVGiW+k13Wkrga\nltPhwn614qtiinOO5pzgavgJudYlWw6Ulq7BOeJ+2OQjneXYLwFJkBBEjx9HcUVrt+LvBsD2tr2Q\nqcRffgjbwvHJoMr7+mHvRE5lK9VBkVMkNTliGlNLx9bgWiPTQNFvt9GZszPx+VIq5B3J0pawfMxP\nzQacJ4mrmA7eKCVjU41LIWmsHgFsDZkzGVRYN2GX7eHPcY4E5KL2YmFPbVu3Y2/8ljX2Cn7ZGgek\nsJ3y6N24L2kTndY4bAJyV/t5mx3pGNCj3YUkc7CLabpSBuIupI1S4mmMMUXCYnZI7POSes79/kU4\nJ2Wubj/Ha+K0oPHnXm9cDklf9xK20MYY03oY38UnBnH5i5leXyeo8hXvg36eeF0mxUkJbOdFUKzt\nMpO20jJr3FMu8tQxnNtZ41PoPZ7CUj4kF3O67y8sdYkUZ7OsOQKiWMa2XZynAT747AnR/hTnFSpy\nyhmsLZ8olmGmrmJ6uCsRNdtpjb2DeQ6rNyE/BKRiv4zy4JpllCfW9KVh5NrQFJapPxy/zBpLeaq0\ngTbGmABhYX5G2NKGB+A+XzhbQe85Xoq1fulTXEPaOM67IcLWva0NsrfQOM791echCekWVrF+8VxP\nS8vspBXIoZWfs4W3rL2uBKS0dsUNbDErWxtIq+qbn15FcT+56VlrLO/1D793O8W99LePrbHMU/lp\nXL+9/eEWa3x/Aiyzk1fC8vfTn7xJ7xmdBmlxiDjDi20yx5gCxHXvRL4NzuU6SEpMI8VaP/T6foqL\n74VMJy4Ua332Q3wvP/w1pGDZCx4wrkTdAaz10DyW3hx8F2t1ziOoQxMW5lJceynmd+bDkJsExTsp\nrnI7ata2VshIWmq4lpX18M5NeC3ID3VFxcWL9B5/sX8npiLX7v/gEMUF+yMfXveLNdb41B++pLiJ\n35lpjcvX4YzoqGU56bz/xn0pehvPw1O+z3LfznKW1roaKbdAWlZfzmfyhXfEdd2OfVC7ie/hQCvq\n/t/fi31552NsPV9XCGlU3Mzx1tjLi3OvESVwv/js8oO4h9s/5/mZs2ySNZ75Y8g8i146QnFvPbXO\nGl9/B+61XYo4+pszrLG3N/bpiplcYI70YS9KGfR9f36U4k7+7iNrnPTzm4wdypxRKBQKhUKhUCgU\nCoVCobiK0B9nFAqFQqFQKBQKhUKhUCiuIi4ra4qcAJpfZ2UtvdYvXCQiJ4H6NWoUuyuVrweVbNxD\noP807mNaZ/o9kGq4CZqpl18QxdUdBCU4WnQ2P/8SKPyVNUzfjo8Bnd5LuMecf3kzxQWNQdxIKjrr\ne4WwXElSzwOEM0Hxq0ypS7wR1yfp5XU7SynO3fey0/AfIzgPMqr2M+wuYoSCp0PQyictYZpsVgno\nWVJ+IaVvxhjjEwGqn/8e0BxHhlgqFJgF2lqv6G6dPQ8yuMqt7EoUOxVU0Iun8dmTbHTU6PmQZpxc\nB7eY3i0ssfETnch3nxNuNjEsN5H07b5GSNXs3bwllc/VyByH79RVxg4fI4O4txe3wNHluu9xZ/6v\nXgBNVzolRQfxHgvMAC1W0umnZjJV/9NN6KD+reuWWuPKOuy/MYty6D2eDtzzt59Hd/b0uezeM/ka\n5JRNf/jKGi9akEpxAULS5VyFv+XhweuyqwH5q3kfqLMJ1/DnNezkvORqyNwxMsS0Sf9QUM57bK5q\nEp5CIhMeB6plYwXLGOIWYl9IGZJdJrUsCHTa6u3ITeHTIVGq31NG7/EQ8+gRgHFHETsfSNr4QCu+\ne+RMdpYq2wJpQPwUUPkHbXtKUlqHBJW77RznNbtjnysxfh7WmZSeGGPMkY8hCRl7DeK8w1ie1VEC\nWYmU4w33scylsRFnlJTE+QSyI86M74KOW7+7zBpLZ0GHTQolXzvxClwp5JwZw+4GI2Lt2OVK00cj\nd7cKp76C2SxPdfeBhCosDNKoup1M887L5b3parSdxPU70vjetHWCDp8yBWe3XKfGGJMwzWmNPfxR\n+wx2sDTMLw55SkqZ7PMtc7tHIPa5bxfGXZW85k7uhmNM3mnsnYEhdgiT8+oU7jNyLRpjTNcO0MOl\nW0dgJlPNm3ZD0iXlvhW2exQmHYcmGZfCV7j3NJ9gGW/MXJwhnkKC4Ejis6GzFLWNlAC52yT6F/cj\nN2Zem4X3F/L9O3oQ7lQvrwNl/s0nn7DGH+8/QO958LHV1ljKpGLm8R7w8gKd3sMD97ytnmUzbp7Y\nY7L2aj3Je1aeBJ3iu8dcw9I5u/zO1TjwLtyV7C5w0cGYr/jZuK5Dz++iOLnel8+E5ELWR8YYc4tw\noJTOnMsfuZbimvZjfSfPRi115k1IuLOynfQeWQ+/9TPM/cqH+bO3vI6zev49kB7Z5WNh8Wg10B2C\n2m7OjxdQnCMIufejH/7BGoef5vm+94X/NlcKUsIRuqOMXpOSSs9APE9VbWa3qyNbIVOfcz9kTYOD\nXFekLJgvxpjf4799l+LchezY0x174stjOKffeupJ/h4bsf+CJ0CeNUM8VxjDe6L+KJ4fEldmUdzp\nv0CClvNfmM+hHt5THn641tg5+FtHn2dnrivZPsEYYyo3Yg4ylvB3Wf8KnrOrXseceHvyc39PNWrs\n7776U2t88TPes1UnsMeSCpBHd68/THEL7hfSLpEfcm7Gc+r0FJZZV4q1VbUBMs3IuSwVXZKKPRs7\nA+di5ZbjFHd4A2qxrDtwrX6JLBWVEumxokXGr+96kuLu+PZyczkoc0ahUCgUCoVCoVAoFAqF4ipC\nf5xRKBQKhUKhUCgUCoVCobiK0B9nFAqFQqFQKBQKhUKhUCiuIi7b7KRyEzRbgTZNdvhYpzVuvQB9\nmaeDLUNTrptu/h0Gc9gyVPYI8A+CrrS7g/uzdAsb2bpLsCWLFBa7bR91ybcYvyTovQdEr5y4pen8\n2dXQcks9b2BmOMX1t+Ez+o9i7LyVbeHqduDa5WeE57Ndr9QaXgn0N0tL7+CvjZO2sB02W9Ne0esh\nTPSwGbRZv0ZORp+KiGzoYDvruZdH+QeYO9nTxUOsn5BkXnP1B6BPvCj6HTgzYimuR8xjQgo0o0E5\nERRXuAH9ixaMhUWqTyD3GGoR/SwiRe+g1hN1FBdqs0Z2JTrEuo9fxJpTr2Bcb5+wL+9r7Ka4xT+A\n7rn8XehK03JZg/nZx9C4OqSVajJrbvPmQo+6dwP6LeVlIK50B/cNkv0rpBVv8bYLFDc5D3rjWXdM\ns8Yevqxt9YlGz4HWs5inovXbKS4yBXOffDt6YLQX8Tq35wRXo24rcoKHg79L8wH0THAIHWzrcV5n\nvsIOtawX1phD3axhjp2Knkgjg9gvwzaLQGnXmfMgNNEVn0BHnbSSraprt8E60VN8j5Fh7hdwRNhU\njh9xWuO+nZw3pI5aWhj6JXI/JImQ8chDsv+MMcb0VnTYw12GUzvQUyItjXP55JvRVOP4Ouja485w\nv466Fujz81ZBN91ygnsEyP5eVR/i74ZOZTvgPmHtK/v+nN8P/XygH/e9iRmDfNXdh/lo6uR+R+nR\nyKGxIeh109jB9zg6HmdcUZHoN9bPc3P2ICyOc6ai15RfJFs1y/5eVwKOVHwX2SvNGGPiJ+Ica96D\ncyfQn+/hKDfULUc/wnzLHmHGGDPUjR52fnHYv7KeMcaYdjF3TmEP3/YuLEztPTmmz8bZ1VeFuYsP\n4zVXKs7MGtEX5pKtH1yoAzm1RvSRKNp4nuLCo5GjgoRtcNgk3hP2/juuRF8zzrjQXLbvrRd9DX3F\nOeEdxOe7rDmiZjqtcU8Nr++clbjPB99Bj5QoW882aWX8zVtuwQvif4U+/ORt9J420QswfJz4HrbW\nWZ2NOD/azqO3W/qCFRRXfmCjNR4WvTEcydyrKiAF/5Z279K+2hjuc3YlMGEZcuBwzwC9Ju3huyqx\nX3xsfS4e//1D1lj2dtv6JvfsuPHZG63xLx/7L2tce247xdWX4v5mDmA8SvTziV3ItVOX2M/X3Yle\nbpdGeI8tfww9+i6+iX5B0x//IcWNGoW/NTCAPhcX3+OeHI4U1AiTboQVsqwpjDGmtRTncWgoWwD/\np1j69M3WeOPjH9Br0+7Dc+BgJ+YmMIOfrRZPXWKN/YKQR9zceM8ODSHP1R/H/fOJdVBcTSHuS/4k\n1KvLfoT7X72Ba0+fKJwFITmoMao32uJiUTd1nkUdGVrAzyMjYu6ltbcjkZ/FzryA3jRZD6KOcPfi\nx/Q9b6NPUs6iB42rcfYAzgavI/y3Z89Db1h3b6xNX9EPzxhjdryNfpRDQzhDBlu57su+ETm18yLi\nbhN72Rhj+nux/0peRy8Y2Sf25Duf0ns6e/HMWtmMvXP/4jsprrsCtdTaH75mjaddn09xi559yho3\nNm6yxvELR1PcYDf+bswUnOE+r/tSXPsZ0Rv3GvMvUOaMQqFQKBQKhUKhUCgUCsVVhP44o1AoFAqF\nQqFQKBQKhUJxFXFZWVPQaFDOOi7YZC51oJX1CGvHxBVMf/fwEBZqnqB7+uWwVV/x1o/w2eGgqvpF\nMU0tLB+UMcnurf0CVKwxdzMd6dTfYQ0ZFvP1sp7OQlCKg7NAIw5MY+pdZxniOotAlxrsZEut7hJh\niynsZgc7mebbXQ5aVcz9X3t5/79Rfwo2wrGTEui1FiGZiLsW0gI3D/7dLmoq3td+ChTcpJvZTnqw\nG9/twG/ft8ZBNkp99DWgfXsL6zFpaxmQyrKm9NWwHEyrAr233mbbd2EfpDQldfh+s/tYdiZpsc2C\nyh/jxXTZfmHRKCmt/XUsG5LWi2kFxqWob8NauvRFEb2WshpzEBsNKnvxpkKKixkNerCkfw628Xpc\nfgPsmd28kSJqj1RRnLRGXvgtWBtKGrXbYabVOp3Y90GZoCSWvs1WoL0NoH/2C3mWT7hNfiBsejtr\nIK9MnOKkOO9wrL/9f9xhjfNumUBx9VvLrHH6FONyyPw1PMByD7/pyB+1m4Sdo5ARGmPMYBdo35J+\nHj6G5W4jI5iHjovIU1LaaYwxEUKK6CUkDf5CDtpTx1IXKSfbtxb5NSKQc+B4p9MaDwl6r93mt19I\nWKQEZKCZabBSCjbYgteibDaXV1LWFCOsXc+dZ/vnFLEnvD3E8Wr73yD7L4AiPfQ+ZFydffx9p4QI\nyWI/7ktXSSvFdQkpZ3AGcsDRTciTYxawrX3FHrzWO4DP9vViCUORyKHDYg7zs1gC2FqPc6ynHzml\n8GQZxWXmOvEPcYhLK2pjjHEEsATD1ajYW2aNo9Ij6TV3X8xdyETkzaLtnHsHDmCP9Q9Ki2xe3/Lf\n7edAZ77EagcTtxDWyVKem7wMlPyzH56g9/Scx72uFeeEfR7zJkFCNsodC3LLF4cobnIa8oi7l6Cu\nx/PellKhlkPIvZGznRQnLcvNXONSNOzG/pM5yRhj3MXZZUawzhr2sMTaPxn7WUqegjM47/a14ExK\nCkdNGDGHpS1NO/H5i27CWeonqP/+cSyFkvJFKfGXEnpjjAmIw5npSMR6qy3cRnE9tcjXSYtQjHTW\n8Xev244c4BOBM9Iu2XZex+ekq7H2lS+t8SPCeteOoT7UNCnX87OGfyzuqWwV0NbD8sgOUb/v/fVv\nrHF4AEszFjz1fWvcVA2ZRpuQQnuHstwmMAPz0ybk8Ps/OUJx87+Dein/R2vwd+q3UlzjIdRcnuIZ\nInA0P5PINhP/+O5r1vjW51ZTXOXnkCamTjQuRdUWtMFY8L+L6TVp5178f7gXGQ9Norizf4HFvH80\n5trNZmuffAPk1/5CJmp/Ts29A1+ydC1aKfQ1Yi9n38c2571duOcn/oR5dy7OpDiZQz0m4ewKcPK5\nJddfXxPGst2EMcZ0izOzW0gqvUNZDrP0qevNlUTePOyr0LEsFe0sQ90RNQFynrrD5yguORLn6Vvf\ne8May7xpjDEfboLkcEIKng1e+Ns6ivvGPTdY48ZGXEOcEzVI8mQnvSdhASRTF9dChtpTz7WslCWF\n5CLnXxrmw/n4O3+1xoe24nll9hpu3RIsnmuK38P6Sb5tLMWVvsvPPHYoc0ahUCgUCoVCoVAoFAqF\n4ipCf5xRKBQKhUKhUCgUCoVCobiKuKysqWYDKLzBeUz7NaNAvXSIju9thY0U5pkHymjNUXSj9rVR\nUMPGwTnCzR0UsY4y/jzpLFK3s8wahwq5QNVnLOfIXAU5S/mnoPXFL7fR1AS11NsP1PD+nmaKkxTl\n8MlwnBmwORdFLQBNy1NQtmu+YAcbn2iWarga7m74Xr6xTN1MEtKh2k24LimdMIZphb7CQaX5KMtW\nJC1sxk9ARavZe5riukRnbq9xoGsmzRWSGjemuXd1YD3W7xRyAje2NJCyg9xlmPv2s7yW/B2gC0qH\nksY2dkLxdBfUbiGzax/VQHGSsuhquIk59LbJriQFOWJmojV2xjN1uqMY67hiM2QzAeG8FxtO4/OC\nYvAZY781jeLqtqPz/8G/o4P8jEfAXZdyImOM6RESvhDh8OFji5Nd7c9sx57Nt3WF73OAxlr8DmiC\nFU1Mb5WuU/l3g+ZN1HdjjG8c3wtXQ+6rwQ7OF24eWGdhBcgrDTtYOuOfgvXtLvblYB87v/j4Yy9K\nNxr/WJYn9Ldi3XZXi7UvcrxdTtZyFFLJ7NFOa/z8e59Q3LJ8SEylk1hMFDvJeAlpY+UxOP2MvoGl\niA3by6yxbyK+h7uN9txnu7euRIdwARiyuXCUNyLHFNwC6nXHeV6PNxTgtVc2b7HGP3ryboqTZ82F\nWnHPRU4yxpguIYfyKsUcTk6HRKWzkM8xKcNJicJa+cU6phSvmTPHGufOBgW44XgtxUkZ14yV+H77\nbJR+6fJweCeo5tIlyBheL/n3GJfDOSfta1/zCsKZJF3vvG0OMdI5Sa6F3gaWvMr6xCEkLY0HKylO\nUvSDxkOG1t2NfJ17K0tMeoVTV7yQBNYf57PZS0rk6nF9c2aPp7jouZAIlr0FqcKQTY7d1YP5CR6L\n9dPfwudgYyWvO1cifilquNqtXFfJWsdNyLOkS5cx7JrSJiRnHg6uA2QOjBKybLtMPSAb1P2gdOQ5\nLyGZsktapaNV2Bic4RUbT1Gcl5C2eAgHJa8Altf4x+Dv9nXhPPeyOVXFL4HUrUlIaGTuN8aYxhO4\nt+HXuFibZoxJEM5iu595l17rELIQZwr2UcpteRQnnZyaD2Htzx7Dck55D8fcCJeoPW/spTjHWlzH\nmX2oPQtuR/0wZHOWGhHzet2qb1njn9x7L8W99zTaOCy+GWdD+R52p824HpL1d34PN5plS7kWG+oV\nDnjCBXOwy7Y2ba67rkTMHEgy63bx93ATOT8gC3PdWc7y3DjhRHr8AziAXvvUAxRXtUfIzITD4cVK\nluN5i7rHTazpfiHtPvvSRnpPaxMkRdl3INd62GqMISHf9wr0/rf/3Rhjpj6EZ5rqjZgn+/OncwDP\ni52iVg/K5mfvor/BqSv6iWXG1bi4p+RrX6s9hPNK1s5+tro8ZgpyWPUGyAjDbNLB6aNRTySMh7y+\nuI7nUcrUM66FxFc6e/bYpOzVoraQ0tU//+QfFPft36K42P23Xda44LbJFBecDbnSzAj0PPj8pc0U\n19COc+MHr0Ea+eUTayluyj28h+1Q5oxCoVAoFAqFQqFQKBQKxVWE/jijUCgUCoVCoVAoFAqFQnEV\noT/OKBQKhUKhUCgU/x977xkf53Wd+27UwQwGGGCAQS8DkGABe+9FlChKpLqsZltyL0luYvukJ8dO\nnNhxcpIcx/GJrfg4tmNJkWVZllUtkaLYxN4JVpAE0esAA2AwKDMo98O9532etSPy/n7x8OLL+n/a\n5OwZvGXvtfc7s571KIqiKMo0csuaM2mko2O7bGOMqXocWrxrP4FNVe7yYtFvJIy6HENN0IRmz5A1\nB3pOQO/qLpK6NKbrIOovHCM7qwU1Qac9FpU60J3Pwp5u/QOwbou2yXOamoB+vOEV1NAY65YaarY6\nnFoJDeyopTMvuwta1/gwdOHFd0sb8dig1IUmGv9MXGvW6BljTBLpltmy11sh65U0vgT9Hts6e1wu\n0Y+tfbMLoR+1NYm+GuiyM/yoNTDYA01mpKFPvIctyoo2B512x+4G0a/0Aeio07w4vqlxWR+CdbA5\nUZx7rF/Wqxij+9pGdZjSvNKqdGxAjrtEsuSxm1tZhskOfbgdtXMGr8g6F+lkyddItTFKJ+SYGKd/\nh+oxL898TdrIFlJtnxWfgAaTNfj1R6V+lc+j/V2yi14kbUuHruPeL9wObTnbSRoj607lUb2jYp+0\nN+07ifoYA/XQ83qsGkwtZ3G+CXaaNMZITfrEiKw7wLWDWCudt6pE9jsDjTXX7+g5LOtXVD6E797Z\n9txdIOvHUNkMYQ/J9QnYmtQYY3xzMRdP/hwa6Lnl5aIfW2s3UR2g5HT5u8AI2wZvgHadLXqNMSb4\nBDT4gzRG4hE591i7nmgql0BP3b77jHht1TbYJbaSHXqGV9Z6SKIaGE9v2uS0bb0667ozqN5JydYZ\nol/9T2FJWVqLNTizkuoTeWS9lJQT+OwPjqC2xSOrpYd8L9Xj+uBt1I9ZTlaaxhgzQTVIPvgl9gTL\n18maD2eOoCYc1/MasmzEZxTKmJBoumm+VD0uj5HrzAycxR4meKccVzyHs9qwZtrXOonqol14Fnax\nMx6XNZVc2fiMjnPo17ULa5x3tqwbMdqBvUUhrYvZNXKPFW2BFr7kHliQpllze4pq57gKESvScuQY\nbj+DWOkiG2a7/lPpolJzu0hJw7HbMcBDddpyqrEeJCfLek0952Fr718A69gUt7yHRUWo7xCPI15F\nIhdEP5cL86+3BTblE7T3ysqvEu+ZmsD9bXoDVunJaTJORml9Z6tXV62M6f31qLnCe7KcYFD0azuF\nPbRvDmJ6n2WlPUJj7HawaC3qSLhLZO0pnmM8j7732z8S/XwejEG28l37h1tEv51//bbTnrMY9+H+\nbz4l+j3/lX9z2k/9w5NOO9qBeWTvKaOtGBevv/xdp51u2SHv/Mk+p120DnNx6KqswRJtxt9aQRb3\nVQ/JGH3hOzud9qo/ecxpd545K/qlWnvWRHL471A7bfGnZL2OzCLEovgIYmvPCbm+ZwWxXs3ZjJos\n7SePiX6uPNzrZDfizdxl8tmK9zrcDixHXZ6RdmmtXD4r6LSHW3H9k6y52PY+5mzJRoyjk6+fFv1m\nz0PsyVuJWNhn1WybjGMscazl501jjAlHbu9c3PDnDzjt6z87Kl5b/aewZm87hH1fVpVck9IWYJw9\nvOkzTvvKc9Iqvmop4m1gOa7NtmG5DyrZirHfdajZaR94CXVsV98ja6dlUz3Vb/7es077I9b+xhNA\nDbJ7vv4Rp930+inRb3wIx5S/GuNn0xb5bNZ/Hc8XGRlYC2rmyWeS/Jq55lZo5oyiKIqiKIqiKIqi\nKMo0ol/OKIqiKIqiKIqiKIqiTCO3lDV5yXYtZtkjTsSQguxbhBRC26Z18BpSzwvXIR080izT9wLL\nkCbEaVxdh6SN7BRlEW7/43udtpBz1Es5x7YH76IPQA6/tyxH9OuJIE03k9LrWP5ijDHeINKg0shy\nM3euTMOu/xGkUblLkL5l26pOjpKsRGZgJgZK77WlVz37kCLmCeLepWXJ9Ee2M1z4COwHu95vFP2m\nJnF9m3Yh1b6P7O6MMSZAaWGe1ZA4jXQhhfz8m9JGMtiA94y2k9Vyi5RzrKb0RWFxZ6XKeSjVtO8Y\n0oA9QSnp4vsTG0eKbXqKlNjMfEpaOyaSjABSfSdGZPo2p6q6ST7WZ6Vr8phevQOpeEOWxS5LjNiC\ndHJCpvB6y/F5dT9G+jZb1M7fJuUCnGI9MYxrOXRD2kBnzcKY6N4NW8Y6y1q0iKRV1R+DpKT7QKPo\nV0Dp/k1vQ1YROSIlcSOx2ydNM0beK0+pjJVsX9pzAHHPTm3PqkFcjg8gDs/96AOi38QE5npmGfqx\njaQxxkSbce2jZHVedCdShG0pgI8khut/d7PTXm1Zizb8Ain/K7difvjmSnvIbpKnsQTNWyVjdIwk\ncxx7Q4dbRb+iO6VsIJGcOwhrd9saku1t/WSBOW5JbXmeDl7CehAflP2azmB8zijCGtLw9mXRryQX\na1KsF/c6KQ0xwFspr2VSKsZVTTHSb5MtG91kWj+KSaISt+Sf7jKcU1E3/ta5o1dEvzUPw159hCyd\n42E5LpMzbrk9+Y3JLEJM7XhHyi/ZTnXuk4grLFswxpj+U5B/BD8GiVJyqvW7F13TXJL0ZpUFRLfh\nEO2L6DYUkhQ6s1jGje4jWMNzqxB7+xquiX4Fa5BWnZUFeeD4uDynxt2wE03JwLyfsMZw0VyMx+h1\nHHfR3VJyl1RmxbkE0vLOJaftq5XXMm8e9puh87gWthRlqAHHnjsH4zvS3C36XTz3v5120XJcv0hH\ns+jXG2HpM2IUX7/wcL14T6Aa63FLH+a2LY/zlmNv4s7GnO06dV7085Bd+2A9JMyRBim54DjUfRDn\nwRJ3Y4wZC8n9f6Ip2hR02q1vynjR1oC944Y/u8dpz3hbHmM4ilgyZ3ut037tq78S/QpIanu9Dud8\n6bTcC2z/Ip4bvv2Z7zvtz371CafdtVtaRrPsqmeApLorg6LfwgqMzWgH9l9FW6Ush23pfU2IVxe/\nJ+1791286LRdz0Pyk2TFoV/vgkzlL155xiSShR+HELzrgHxui/eRlDUHcyJngbyH/Rcw53a9hWP9\n6DceE/0mx7B3jHbjWSCv8Oaf19+GfU7oO4hxsx+V0tJOWgs47k5YkuMJkn/6ZkG2VZGfL/qdOY14\nkEKW9A/+zeOiXxeVAOC/5fJJSdzaP5H7vESz+69g877iU1ICFI9jfxg6AklaRqGUInbuxLlklGKO\nNV2TUq4KisW//tl+p33fM3eIfvv+AeP93m98wmnvCwtIUwAAIABJREFUegPP2MWb5J7vyr9ACjc8\nhn1jhSVNjo9ijnHZga4rMv6zrXonSdpse/p4H/ZF33zqD5325nnyWajpPRx7zkf+cxEFzZxRFEVR\nFEVRFEVRFEWZRvTLGUVRFEVRFEVRFEVRlGnklnnDLL8JfkSm5HCl+OxqpPWw24cxxmRSSutoL9KH\n2GHGGGMK56HS8sUfv+m0cxcXiX4pHqQdierWJMNJt1wFOt5BSmvZg6gAPhKSVa/588ajSLG2K63z\n5yen4xI2v3FJ9KukazZwBamldsooy0NuBywTS7EkWllz6N5RSmakQcrOCoJI1RtuQ6q87bARIzet\ntFRcm46w/Ly+93Dtb+zF/alch9S0uVtlNWt2LnGTy87inJs7RrFcxl0qJQgRktyl+XFPbUeg0gcw\nZq69iOr36VQx3hhjWl7B/Q/KTMnfmDM/RFXy/Hwpu2Lnl7EQUnsjXVLWxBXGPeSIdnaXTIkeuIyU\nxC1PrsN7rOvX/DJSaSs3Iv0zfxlSw6//u0yjziE5S/kjuL8p6XJcjtJ5cGr30sdk+t+B5w857Ynn\n8Lf6huTcXjyv4ENfW7Bd3ig7diSaSD3GXKolHUzPxd8eIekRy4uMkVX+s8iJbe/Xfyj6zX/6w/2m\nbDeVwg2Yc8MzkLbKrls9p6V0kN2bsqlS/3CHHHNZJHNlB6oxSybrrYYsp2BjEH/3kJQMJKeRzI7c\nT3hsGyNjlFlsEsooSd84XdYYY8bIFWuQ5IL1HTKdd245uUWM4jNc+XKtqXkAawjft673ZAq+iyQ6\nSbQEcyxk+ZoxxoSbMBZ5TizaWCv6TY3jOqeQM8bpvVI2w5LAFSswt/NDUtbCEuT4AM49o0imRo8P\n3V4Xw4INkPmEz8sU5uJijNWu/VjTsufKlHV28Ig0Yo0bj1oSWlqvWGrQb6V5swyX5UssL50Yky5v\nPC7CN24u32l6BRLDaAfWE1+NTMtmd5x8chexr9FUHOMiuxbXJW65T7JrYPXNTQf/S5RsgYSKHT+N\nMabpdTipFazDvbbXd3Zo6jwoHQmZjAKMz5a9cPKo3iq16OF2rKdd+xqdtqdSrttMJA9Spinahwas\nuNZXh31z3mKMo9xaS4ZEctexXqwlyS4Z+zN4D0MyumRrH+/Kl3udRPPmN7DnX//oKvFa0g2Mu1P/\nuMdpb/vL+0S//svo56N1cXaJdDtc+JXtTvvk37/utI9ek/Gs5Z9wTCtr4KjU9T6kTLxvNEbuS4ur\n8J7RLrkfyaL1rvV1SH5qPivX7E5yaQuFEL/tdWdjLWJ29RNwSnr7qz8X/X772S+a2wU/+1U+Ip8X\n3/4arvPGbRuddt1/nBT9qjdAcrLtEew9LaWtSSepT8V2uLM2viUlcbnkCpw3AzGq/Qrm0aVfnBPv\nWfY7+LtpmVgHzv3TXtFvztMIZn11kN41dMkSDmsfgoz38Gs43+RkudafI8n+xv+GmDJq7ZW6Pmh0\n2vlPbzSJZt2XNzvt6z+RbpQzPoHYya7DgZpFoh8/q/F6FTsi42t/F6R/9z6Jc2nZJ/c3PDdXXYck\n9JPfedppf+dz/yrec9dCyOj/+l9+12k3/vKi6Pf+Cyi/sekRxJ7jVjyoaMI++dBxrKV3V60T/Qw9\nb3/xb3F8vSelM1neUhmXbDRzRlEURVEURVEURVEUZRrRL2cURVEURVEURVEURVGmEf1yRlEURVEU\nRVEURVEUZRq5Zc2ZqidQjyElXWorr/wraj0En4StYNPLF0S/0h3QA/qqYP2XHZS2h427YKNVdAe0\nXa2vSsvQ0gfweay15nbkcp94T4oXunu2ep6amBL98kkDlurGezotW97IDWjLue6BXcthnGxluW5N\numWNFmmieizShTIh8DFmlkvdc88R6LTZAmw4KmvJVD8ETSvXsLHtT9keubcbGtnygNTqx6mOQRZZ\nPHPdm/4zUrtZsLHyQ/t1tUoraDfVOcolW+gpebvNCNWl4PofkXr5eRN0/QpXlTvt8YjU/Y6O3V4b\n5v+DPW4L6bpEW1AzZPbTS0Q/HvsTXC/ALcfjgk2oF8G1pYYaZc0Kfo0tQ0/84z4cj6WNziTdZeQi\nahEkWTVnUmnOXr6GuiNb7pU2eGs+ssJpD9RBc15x32zRr2snNKwpZA3M2m9jjGl7C3rWmjUm8dAg\nzFtSLF7iGj48J9rekjpdrl3AtbvmfVwWdOB6IyM9qOEzZNWT6qD6JYG1GN8cNwYv9Ij3ZM9D/GZ7\na3eRrEvkJlv7gXrcb29QXvcQ1Tdji8ZMy0qbLYq79jQ67YJNlaIfW1smmvnV+FstnfK6pJO9d/Yc\nxLxlM+X5HtkDnfsCslU9vF9axRssi6aGrLQL5stabF3nMQ649osnHXHNlSZtecfGEavZijt0XtaD\nK6KYx7Wh5i+SixVbeF8+3+i07fiSFoWGPkC1zNgW3hhjBlpkvEk0g1cR5zmWGWNMjKyDed1wW5ah\n+WtQEySF9gzh47KWDK+7XD+m97jUobtovowP4T56KR7Eh+Q6k03W3B07qebMpFwniu5CjYA0ms/u\nwkzRb5DWP449Q0Nyrfe4MNZjVGvJrqmXatV4SSRdh1APqGRzjXit8VXMsc59qBPit+Ju+Bz2GVyT\nz64JkJaNPbCb6md1XToh+sVoHHMNEq4t2GXtKXPnoCZaweYg3l8o4+lIJ2qXhGgt9VbIfV2KG/Oe\n63mJWlzGmNggjtVTin2TXQexbRetQWtNwrnrt1BjI3xazp3gMsTbM/uxRi5PlbWszv1y54d+9swV\n0mL3BNWZqXoAex1/vXwmSc9F3Dr+JurZzVo4x2kHlpeK9/z7l19w2hyvl31BXrQBmn+zPo89TEqK\nvN8h2kOv/iNcIx73xhgToDp/l76712kvvlPWfhnqwDobkKf7G3P+OdRTCVTI9Xf5vahJ4qK6fuUL\nZE0lrkHmp3qj4yOyztbR78IKe81XNjvtJf/tTtGvZSeeR5NT8cyw8iubnPa+v9sl3tO2E2O96SLm\n2KT1ADGH9lc5c3AxNxSuF/043t/5W7CIfu1Pfyr63fklHHvLa3jujfTIekWNPRg7S582Cecnf/yi\n037qTx4Sr3lyERP7L6H+5vkfSLt6ft6d8fAGp73yKVmLjeNomOppZRfIuf3Z38Fx7PsBNkULV2Of\n/5V/+7J4z95vvOa0U18jK/cU+ayx4UHUaLq4G9f9kWfuEv34O4HP/Msf4Lib5HcUvtkYCwNXMd/2\n7pT1lbp+vttp/4+3HjE2mjmjKIqiKIqiKIqiKIoyjeiXM4qiKIqiKIqiKIqiKNNI0tSULfZQFEVR\nFEVRFEVRFEVR/v9CM2cURVEURVEURVEURVGmEf1yRlEURVEURVEURVEUZRrRL2cURVEURVEURVEU\nRVGmEf1yRlEURVEURVEURVEUZRrRL2cURVEURVEURVEURVGmEf1yRlEURVEURVEURVEUZRrRL2cU\nRVEURVEURVEURVGmEf1yRlEURVEURVEURVEUZRrRL2cURVEURVEURVEURVGmEf1yRlEURVEURVEU\nRVEUZRrRL2cURVEURVEURVEURVGmEf1yRlEURVEURVEURVEUZRrRL2cURVEURVEURVEURVGmEf1y\nRlEURVEURVEURVEUZRrRL2cURVEURVEURVEURVGmEf1yRlEURVEURVEURVEUZRrRL2cURVEURVEU\nRVEURVGmkdRbvfjB3/yV0w6sKxevpWTgrfHImNMe7YmKfq48j9NOSknC+91pot+VX9Y57YWfXum0\nhzsjol+6L8NpT8YmnHbX7hvoE3CL9xRuCDrtcF0nji3fI/qFDrU67azZeU57LDQs+uUtL3Ha0eYB\npz14IST6ZVb70K7Mcdqx/lHRb3Js3Gkveux3TaI5/D+/6bTzVpeJ1/i6jQyPmZsxNTXltD1u3AP/\nyhLR7/rueqc955EFTjs+ID97chz3ju/pWN+I005KThLvmRjFdWo51uS0vRkZoh/fH0PHneaT/fi+\nuvwYM9ffvSI/rzSXDhyfFw3JsV62dabTnnPHp00iOfbs/3Da/mUlN+3X8c41HM+Dc8Rr7vxMpz1F\n55GUKr+jvf7vp5121iy/0y5YXSH6dR5odNo5tQVOm+NBbFCOdd/MfKfdfbjZaZdvmyf6DTZ1Oe3J\n+KTTHmrqF/1GmgfxDzqNnEWFol//uW6nXbp9ltPO8MsYMNaPMVEx+zGTaD74xteddvE9M8RrExTP\nuvdifJfuqBH9ug/gtaIt1U47ciMs+mWWZzvt/gs4/4xApuiXluXCZ+/DZ2fPCzhtT0mWeE98EPc4\nfBYxtXBTUPTj9aD/PI6B1w9jjBltH3LaBXfgMzzF8u92H26h88C9yyj0in7JtNZUL/2YSSTtLa85\n7da3ZKzIKMJxBJYj1o70DIl+Ix1Y14bb0c6enS/6ecuxhgzTe6YmJkW/eDSGfi2YE7kLMA/c1jUa\nasZcSnHhfkSb5RzLqsFaGLna67Tta57mTcdrAbzWub9R9HMXYfylZuI9mcXZol98OO60K+cmfi6G\nQnuc9vG/f0e8Vra20ml7g4j/ORXVol/H8XNOO6MA55WcmiL6jdA+5uo7l532uj99UPRrff+M0248\n0ui0ax9b5LTdAXndJ+OIGwNXepx2do0cS/u+i/O9+6vbnXZquvy8977+S6edkoyguujxpaJf/lzE\n0aFu7J08+fLvDoewL6qYk9j7eP3kC06b1zRjjJmg8TPWh7iev6xU9Aufx1rjpjiXlCT3H4b+2fle\ng9P2BHNEtyz6d5hiXvEdGDvDHYPiPbyPDKxA3BjukvtfvvcxWmcjDX2i3xSNiaEGzOeqJxeIfl2H\nEO/HenCNsufKezjUgLVl5Rf+yCSaC2//64f+LWOMmRxHrJscw3l5q+V1p62eCazENez6oEn0y13I\newO6qVNy/HA84/ncX485Zo+5zFLE68kY9qsZeXLN7T6KdSw5DXPMU+YT/XgIDl7DPR4fiol+k7Q3\nTs/DXrZoY5W5GcWlD9z0tf8KF979gdN2W3uMnsOID+5SzDF7X8HzgJ8X7T1LUgquGcfWgfM9oh/v\nYaI3MA9SvXj+LNpsXSO6pWP9eB4Z6x2R3SZpDab3jLTLOZuaib+Vnot7M3hRPi/yfjByHffaNzsg\n+rX88pLTXv/f/8IkGr6PaV6XeC2nBnMnfKnDafN5GWNM78l2px1Yje8OBq/Kcy5dv9Bptx3EWsrj\n2RhjyrYsdtrDfYjXnXvw/Fr96Brxns4TF512wVLc45adF0W/3Pl4duH5nGp9R9F/GWPLv6DIabuy\nrb3xMPa8ExQD+uq6RD837Rdmrf+ksdHMGUVRFEVRFEVRFEVRlGnklpkzGfQL1423L4vXipbi1wf+\nxr3oDvktZOhEm9PmX/FiViZF6SJ8Hv8KwL+sGSO/URS/EC7FN1n87asxxpz90TGnPft+/EI/eEV+\ni1e0Fb9s8C+7ozky4yKNjil7FmUCnGwT/fyUNcS/TPI3qcYYMzJ484yVRJCcjm/9k1Pk93F8LHkV\n+OUys0L+KtF3Ct+S5izEN43865QxxszaUeu0+RtkO0tppAGvNexFtsfch/HLTvis/KaxswG/Qvlz\n8G1lRqH8Vp0zcUIH8QtF3lqZNcTf2g/W4xfhmTvmin4DF/CNKWfvlFjfuI90yV/HE0nlw7iuTb+S\n3/wWrEVGS/XH8QtrqkeOs0gTfpHyVWG+TE7KX2H4VzM+38aXz4t+xZQpFG3hXyUwPwYvWdlkJRhj\nnE3V8NJJ0a9gI3655jmfTb/iG2OMn2LKKGVd9VvfUqf58AuAOw+/TnUduS765cyRv1IkGs6O4Ywg\nY4zpfAfHkrcGY/XC86dEP38hjr9jF97T2yZ/caz92BKnzWPBzkbhGO1fgays5p1XnXb5XTLLZ+g6\n/hZnuNnZO/yai37RG26SvxyPxDAGr/8aa01OnjzWwT7MsWAFMop6DjaLfqFWjJlEZ87EBpANVrC+\nUryW6qYMlDasQ97KXNEvPVv+IvV/6D8nx61vBsZ7fAjzxV0or8tYL63BFJf4+idbGXL8syz/SszZ\ni8YY46dfz3i966OMKWOMmaJfuLmdmiXXcP4F0sWZa1aiQtzKuks0PWcxd1b98UPitclJ/O3UVMSs\nxncP3vTz/PMRU5telTE63IzxmOPBOQ+2tYp+0SaMmXV/ep/Tjo9hvdz7rZ3iPTXLsG+Z8dA6p33+\nf/1a9Nv65/c47ZQ0zMVYVO6XZizCmM5bWuy0OSvAGGMu/3C3086ajQxLOxPTzi5IJJ07cQ9LdswS\nr3kpC4HnQf8V+es6Z3GnUxZhx+4G0S93Me7veAT7Hm+l3CslUZYFr83jw4hxUxPymnA8zaRsOV4v\njJH70r79lC1u7VELKWMilIn43vKmlRVM8Z6vQ9/xDtEvsEFmzSYaN2UcTlpZgXxt/MsxHidjVj9a\ne3hNszPfh9swl3yUqThg/ao/RevzxAjudzLt5ePW3t1bjrHA2R1jAzKmcnbUrTKg+PNjFJd9tXKf\n4qMsOc6kG4/Kvd04ZyTIBLLfGH4WGOmUe2H/Mty30CHsyQetTBf/KoxH3h/aigzOZmR1RvE2uU8Z\nC+Oald6D/SrvFUPHZAxmlUOUMrX5vhtjzFA9xfQliA12vOPj85RiLbGzTZp/gYwYdwnmg501lDlD\nxptEM0xrkFAhGGNGw5g7Q42Yb6WzZKZd8H7sPbtOYh+ZWSHXkJ7zUFrwfth+/mw/iGePwtWIbZxp\nzGu2McbkLcSYiw1hPGZVy70Y7+fSaF/G8doYYwpWIgOo7T08swZWyefKOGW1cfZXmrUP8lmZrTaa\nOaMoiqIoiqIoiqIoijKN6JcziqIoiqIoiqIoiqIo04h+OaMoiqIoiqIoiqIoijKN3LLmDNeScaXJ\n+hWppEPnfp37GkW/vBUQNrJjiF352kW6us5DqB8w5zPLRT/WM3OVc66yb1c8T6F6C6xttevo9F6H\n5tRXjM8otuotcNXl6DXo7kbisv7KEFUHTyatcBPVcjDGmPgENKJLP24STia5B7S9Zf3tcWhQc5dA\nozdYL/W3PqpDwm5Gsx+W1f+vvw6tfcVmXLfhFqlrZ61g5yXULujcCZ13ml/qqItmoNYNawPdtpMM\naXjZTSq0X9alKKQaQyOkQ86eI7WAXNOmiRw07NpBuYuKzO2CXRsCa6Rz2hA7PSzHfAudahf9IlRX\nJ9UD/WPUujfsJDMegX5yclTq3+MRaDVZQz9ADhW+eVIb3fAStKNcz2DoSq/o5ymENpfr3vSflzU5\n/IvxGaxL9pRJ55cA6UWTkhA34hGpK215A2O7/PdNwvHOhN7VrpOSPY/qeRyFZl64hRljRklDX0i1\nebhOjzHGtLwCDXPuClyn3jOyVoiLXLy4RlM51RSyawdlz8n70NfCp+zPhq665G58XrxWXvcQuTCN\ndeP8wiFZm6Y/invsO4m/5S6XMSB3SMbiRDJAsTHPmvOjVPuFnR5Ye2yMrLXCdQ+43oQxxgx3Yy76\nF+Ae8twzxpjkdKwvrJXmumoe67PZCar3DGpMcJ0MY4zp3IvaFly/jGvIGWOMl8bp+OgYvUduM7gW\nD9feSbLqobGL2O3gKtU2qn/7knhtlNby4GzE1Loz10S/DU+vddpXnj3utFPSpVtT5TbUQ8miegnN\nr8q/yy5zdf+Emi7zv7TFaa/+/DrxnisvwOHJfews/g457RljTPgi4vKJV1HHat1n5OedOHgBf7cN\nWv0Zn1os+rG7SA/VkSjdsET0q39+r9OurDUJJS0346avsZsgj6WBum7Rr+JR1JgbpPpmXqs2AdfR\nqPncMvx/SNbX6KL5kk/umN374RrEbqDGGFNOzooT5N45PnLzOMY1OewaNh37cAy8fnI9EmOMScvC\n9Ruqx/FxjTZjjMnwy/oYiabzfRwv1/YxxpiiLagxwXVl3EUy5ufMxV6DnbaaWmX9J64R1PIrzL+M\nYulaFrmEPYmL9oB8DUvvkU6KHHu59tDpHx8V/QI+7E8qHkcdTK/l/CXmFf2tVqt2EMPjhx2KjDGm\n8pEET0AiJQP74fBJWbMoi/YLJXQeN16sE/3SczDO2JkrxS3XEK4TwusG1yc0xpiCNVjL+s7SMVEN\nKnu9G6A1k+eYKyBjev567Cl5XRy8LJ2GRA0u2gb0nZT78+qPw7monWoJho7Imjgl1phLNLxPG+mW\nsY0djCZGcJ49J+Qxum5SbzXNI+uueEsQY3vrsOe163f6qKbNCO0J2akraZ68P+zQx3Mi3XLt5ecG\n3i/ZNSGzygvMh2G7OqVlInZOjCF+2+5/wolabqWMMZo5oyiKoiiKoiiKoiiKMq3olzOKoiiKoiiK\noiiKoijTyC1lTZlBpD2XzZd5NzGyeMskCYFt/dfxDtKA2ap6Mi4t1NyUNjhjAdK7YpadJtuw8fEN\nNSJ9j6VLxhhTvAlpkSM9SJea+0kpmcoqRApqejpSJHubpM2vi1I8vXeR7ZplcczWdxdfR/pespXe\nVL222txOWg4gZTTLJ23ZOFWeUwdtC3O25AtuQjpz+zsyzTsthVLL6Ku/ljMy7W0OpXaHSapQshAy\nJG+VTCsebme5zc3tx9kiO0x2rzlL5Bhm+2zfAqSsDVoSm+xZSMksnoXPyLHS+rv2NDrtmjU3Pbz/\nEpy2bMthJsm2tmAFpC2cymf3m4zhtfBpKUVJy0FaXvAJyNY4TdAYY/ovYQ6HSco061NLnXbTLy6I\n9wRWQSKQvxRt21o40oj0VJZDDlhpq2wHnLsQ92Pgkowv136ENP7S+5AWOmnFK0+5lEMlGpbIpVnn\nzJafuWQZymnpxsh0e5YLZpbKY88gO8ZoA8XHEhkfG8nKvmcQKaOTeyc+9P+NMWYGyZUC65AWbNtS\nVj6ElO2UFKS6tp6Ttuyc5s9SuuCqmaIfj9usasg2Ot6Ttre+RR+egpoI2LY2OU2m0rKFe9ZMnFO0\n1bIO70LMSydpBltiGyNlToPXkHLrsmw4WYaQSunlLD92B+R9H6e05ILVuIdDzdIO3b/kw+2Up8bl\n3Blqx/s4HTzSID+P5Yy9JL20LbxLtsp7n2gWPANpSscuOX7YsrjoDuwfJqJSZtJOVs7VTyFWHvze\nftFveBf2MTe6Ec/u+PRG0c9DUo0RWu+uvXDEaVc8NFe8Z+H/BWnVqX/+wGkv+e21oh/LmopzsG+J\nWXbA1YWIo91hxI1Lf/Wm6PfI30KDPbGUpDjjUkrhnSHlVYnETVKU/otSrjTSTHOOZIWcjm+MMcOU\nQs/rbM5cGUPCdVgnR0KYv7adcuGmoNNmiUSM5sRAnVyfMkmK330A8qL+Nnkt55NVM69dZdtni34s\nr+n6AJ9ny0NE2n0qrlGqZfs6cJX2RPNMwuE4atuC95DktXA99jeRGzKupFL5An4Pr7nGGNN7EvKJ\nkm0UY5Llb9Wld2KeTcQQm1LScW16TreI9wxewH3NJplV6Uwp1Zoiu/Buuj/xfjmW3BVY00/94LDT\nnr1dypMGL2Oc8b2zLbdZ6l4sHYB/Y+z9JjPajfkSKyXrYo+UhPBeh5/jJsbkWsPW5gMXcc3zV0p/\n8BGSrFRshnxzeAjXPDtnvnjPZBzPexwD+urkPrnvBMmSSAGTt1oeA1trs2zGvjctr0NmyzbuOZbM\nz7ZHTzRsBT3cJvctvC4G1pZ/6HuMMSaZpGZZMxGzwlaM7mppdNp5VJIhLSj3xi2vQX44Poi/5afn\nidD5G+I9V97As8es7ZjL7e/L5/TKByAp5WfO/Flyjg0PYK5X3YcHvJ46KU0OLICEebAf++Gs0mLR\nb3RAPmfaaOaMoiiKoiiKoiiKoijKNKJfziiKoiiKoiiKoiiKokwjt5Q1cQqTnTLadBRpYblepA0G\nNkvHEE5Xb3mz3mn7F0pJSDc56WTXkmtJnXRnSaHUw0sH8HlTU0gdy8uSVdyrH0R6UooL6ZNpltvO\noW/90mnP3IE0KHafMcaYiWGk3oW6kXaaF5BuGDmLSQITQ3vwvExpzaqRlfsTzRg5T/hcMg0/Ug+Z\nCFe/b7NkSPllSE3m4w0PyaragQDSwlr3IFW8sFI6IPXsw/jxUJpoGlXS5nRFY4y5eAop5MvuhyOE\nx6raHzqOY89ZiJTANEuqFSbnH5aU5K+QaYns/sSpiMPkamSMMflrEpwnSoyFkVZru4fx+faeR8qu\nnR48QXIRmi6mcEtQ9GMpWCNV008PeEQ/dququB9p1dFWSG1s2dBwE17roRTyoXopV8qsRipkx0VU\n2c8rkG4GOXQ/3OQ6NFElU2yzKLU+jaQeJda1THXJMZJo+snNyE5XFZBci13pjJGuW6XbkUI5cEXO\nl3SSX8b7kUrcSWndxhiTnoo4X7sIEsuJYcSN/o6oeA/LZdiBoOoR6dQy0IDzLZqHMRJYIdP12cFn\n5qchNwmdksfKUqYzPznmtEvnyJRRPvZEE73B8h0pu80kJxB3IdKy2RHAGGM85MqRnCpjMhOj+8ap\n/6mW60FaNkmtKKU4l+TInBpsjDFpJI3iuZxtyVDS6bPDFxEzS5atFP0mYnACZHlWSoYl/SLJYUY+\nYoq3Wv7d5JTb+9tREu0lfPNlijnLsnoOY28y93N3i37RPqQ68/2556+fFv2admKsdu7D2LflnKe+\nf8hpX+vE3HnwK/c67cycoHgPywWX/z6OoXOflGpdP4x/r/7yJqd95nuHRT9fNuLoij+632nv/vrP\nRb/z39ltPoz4uEwb9+TQurHjQ9/yX2a4FWuwLfcaaqHrTG5NvZaLYbQJ/UrvRIwabLIcK2djjHTT\nmMix5AksY8giCWo/uURNWU4ge763x2nPW4AYnD9LfnbkBtbJzjasA+lvSefRvBXYixSshvyAr4kx\n0v0og+TgxZul1L5jrxxLiYal1KFjMuZ7SmlfSjL6nIVSdsYSMt4j8f/bsKQtuGab9SoWtoGB0067\noABzMVr8M/EOL8nTYrRvrH58hejX9AY+j2Pu76NqAAAgAElEQVTvueP1ol/VIOJ3aS0k/517G0U/\nH0mo0kjWlD1TPlu0vCbHSSLhcg8F1nMgO0yOkiQw24q73e83Ou3KJ6GfS5NbfDNCMqkKkqUkp8lH\n2niUXAOTsY6lkPtw52UZ/wZJwsf7V3tPESd5TWAD5li0WbqfNp3Es04GPevklsi9rHA2pmdOW1rk\nus3OaVx1g12XjDHGW4z7NUZS91hY7oPS6X0sLUu35Ni8v2H3osxSufazlCl/IyTYLOtvPSfjRoyc\niEc6cQzNIRkPCsiRKn8J5tjwoJQstr+PGDg1gTiUbT2/x8YQoyMNaA81ydhbuPLW5Uw0c0ZRFEVR\nFEVRFEVRFGUa0S9nFEVRFEVRFEVRFEVRphH9ckZRFEVRFEVRFEVRFGUauWXNGdbbhc5IG7HaJxY7\n7TjZXfcelbqvVC80dgVroMtz5Unt2dn3YXs1m2xaCyxrtP7T0Lwv+yh0nMeeP+q0B0ekJWfdz6Hv\n7OqH7utyu9Qe371okdP+/rde+tD/N8aYvedhA1uaB72ZzyP1eRfeQr+aNdDADvbL+gNJO6Flq15s\nEk6+nyzHQ7JGTNFKaJOnyGrZPhdXADr0jg8anXbZ3BLRL285/n36p8eddsNpWTto7Q7UlUjropoG\nJ1BfxNajzlsB28Or70E729on65W4SE9a24bzdeXLMXfjPDSFwVpch54jUmsY68F4Sk6Hpr+vR2pL\n/UWkIb3DJBS2VR2okzWQ2MozxY1zt+0HWUw6QvVy/Atl7ZNusgQv3AIb2ZY3roh+1R/DvBgli/rS\nZbAsDB2S19JP44O1+cOWTpePfWIS47K3W+o2M+l9bNkbPifHW/AxsnSme5hk1fto3QXNd8HH7jWJ\nJncZaqOwbasxUiseI9vyaKO8NhlkH3vlOcS2nKC0nuf6TaeOYr4sWigtig8dJ8tB0un+7APY8q6Z\nLa1aD72KuV1bDQ2wp1LWvQlQ/G4+hLoKsbCM0T6yrIwPUY2nWbJWVbQdOueZW2aZm+EpuX2W6GU7\noHGfGJU6dLZIZZ09W2IbI+2uuf4T13cxxhhfKeZfzwXU8mB9tjHSXpNrxfEYywxKjXvlJtQd6bmO\ncZSRJ61nR2ksFizCOIiEZH2E1rfw76It0FPn1sr6cl20fvD+wLYlH6LaVUaWMEgIbRTP5nxeBuy3\nv/qi0545C2vD+f/1tujHtrX+ZYhtHQ2yRgfb/K7/3Hqnvf97+0S/+775jNNe0NrotA8+e8BpL94h\n1/Azb5112sMxjIMFtVWi36w7yOLzGuoqrP7jB0S/G6+jPs6lf0VdmfIZlh0w7Rd4XSyaJ2uB8JxI\nNHz9W96U9TTK7sH5TtIxZFbIeZBZhlgxNYV1h+vQGWPMANVd9M3B3mR8VNY36z2CGnA8JrLnIJbZ\ne5HC97An7KJaN/n5Mm5wLQe/F+tA7iJ5b5LJOjxOscGei02vIPaX7cDc7j0t98ZTcWsvkWA4TnEN\nEWOMGaX6VYOXMW55T2SMMeNkcx9pxF7Aa62LvP4P1ONaDw3J8ZOUhDjqdmONa6xDnZnkVPn7dnZx\n0GmnpqJQyvi43PNX3o+9U99F7JG2/oGsaTXSibnOdUhK760R/Ti+hM/hWY3rKhpjTOEdMiYkFFrH\nJsflnM+hmjhNP6Mx95DcV0Qu4f5ybagp6/OKNuI8Bqlu0pBlrx6jOdwdQO2XsR78v9+qMelfhD1a\nViFif8veU6Jf0yU86/r6MLebTzWLfrk0T0coPve2yWP1zcM1KtiA8TbWJ/dKSam3N6fCRet/Wpas\niRZpwXjKrsDzfIZP1otree8c/kEbnIkRGSv5ebH7AK4b13wzxpiqZzBfOvfCMrvtAsZIQbms/cK1\nqi7uw1rfEZbXPdqAZwreN7a+Jp93Ut2IB3lUXzRsfTeSMwfrXx6NpX6rJuRYhOKXfNQ1xmjmjKIo\niqIoiqIoiqIoyrSiX84oiqIoiqIoiqIoiqJMI7eUNXH6lH++TFUdJSsztsMKrCsX/QavQnIyMSZT\nmphCH9I3vWTleeHdC6JfBklWhl5Dmnf1DKSmFW6SOdCcps32drW/kJaPO88iPZgton/vO98R/cor\nkHI2TpILb4ZMSV91/1L0Ixu24FaZkjjSJVMeE02aH8dVSelyxhiTRDa9bH/qWyzTX9m+re000jBt\nq+SmX8Kula3MTlpp3kvakHLcdgOpcixRWpYhh6enHGlq5QsxzorCUvpQX4/jYwnI7nePiX7lJElj\nq7bj52W6/ub7IZ/rr0NqWmGNnBO2bCCRxHqR2si2k8YYU/0UtHAtv8b157RuY4zpK0L6HVvvtu28\nJvrN+CTskG+8iPTEwGppFc7WzWwZ6nbj3lR9XEoCPVl4LS0N8zxnprzmHg/SVmc9iBTtxn3SvpVt\nKNk6vMdKy25+BdeleBskhjfekPbCc56WVtCJJsWFMd29t0m8xim+jS8j7rF8zBhjxsIkl6lE3GzY\nKa+hiyyyl65CqvhYSKbJzi/HPfnp3r1O+wvbkGLd3idTQWeRTJNlcXHLbrLpZcRYtmwf7ZGSAZbl\nsLxlMi7XDI5RPceRVpySLH9nSNl4y6XtNyI2gOsXH4qJ1yIkF8ldgOuS5pXW12wnOtyBtWbSkg/E\nSDLM0pGGV+Xa1dqLv7tgOdaXXLJrH+uzZBrd+Ax3AHEy0izvNdtV8nn4i5eLfimP4JqzTfVwh7QC\nzZ6NeN35HtaF7Lkyt1fYj68zCafobozhxjePi9dYysTHG1gm9zfte2AfnjsbKdo9++TczlmC+3Dm\nuRNOe91n14t+jW9Dnu0uwj0pzkV8PUk2vMYYc70L6+fTf/Sw0x64JNOoQ8cRE6ueXOC0r/x4r+hX\n/iBiBUsLcmrlehchCQHvD+w077xVct1IJGNkkWpb3bJtNO9lbYkhp92LNWmOnNsDqViHJkjKlEQS\nImOMKX8Qlt48Z3luh0/JazQ8hn0p75t27T4r+j05tdFp90dx7qk75f7KOxPjhaUJvcdl2YE8kp2O\n9SOuZc+UMoXwLfbuiYAlzv310up2nPbsFQ/j2vZfsuTdJIVgGYzLJ/flfRdw7QfJZpvlbcYY030I\nMoviOyDTjLYingWWBcV7JicxZpoP7Hfac7Z9QvRrrX8Dn7EA863rtHzeySzFWOU1cnxYjk2O7a58\nPO+w3MkYY9p/jXhVtdAkFLZdtuVePF/cFbjOnXtuiH4Bsklmi/s0vyyzwLI1TzGeC9jK3Bhjuo/g\nHr7/Jvb/qxfimqdb4yOrEDG+6xRKU+TMlfFvLu3lpsYxt8vmS5nU2cOQy6XRnqyqUH5e0y7cm+A9\n2At6SqSPeNOLOKYZy0zioXhoS+8jjbgn4yRR6jsp99tsC87jduCiXJMGLmP+ccwy1t9N9+L+81gq\nnoXnVI917/l5YO3vQMJd9IKMqfyM2EUW9TkL5f1hy+wMmmMua2yyfTsft3+BlJ6O9Eh5so1mziiK\noiiKoiiKoiiKokwj+uWMoiiKoiiKoiiKoijKNHLL3G+RilYsU6vadl132pWUBhuPyCrLE5TS9MJL\nO532QytXin6BeUj54fTPxY9KmUFWFVKfUlxI2UtNRarccFimO/adgwNQ/jKk2I7GZGogOxRlFKPK\ncmDLFtFv22LISEbjSKW1U+uv7oHMgB2EKtbLiuk58z6kVHMC4RSzaIt0fuk4irS/SpJbtR+Uadnu\nDKTGFlEq2Ru/PiT6ZbrQr5OcsbZajldv7UH69p0LkGI9cx1SzaNN8ljdpbjHPEbsdOblD0NOVvdm\nndOuLpRSLXafcBUgTW3inKwMP0qys+QU3OOBRpn+762WrgCJhFPNWepgjDGjfUiPy1+B8c1pysYY\nM0Ip4N5ySLC8lhxr8AakZcHH5zvtKZlpKByavMVI/a/f9x9Oe/bmT4r3JCXh+sVi+DuBwFbRr6dn\nl9NmiVN6rkxB7a9DSn8SuVFV3icdHwbrIfvoJslB0TKZgmrLVBINSztTs2TKcf2LSLcMzMfYbHlV\nSq88lBbcQhJD22Gtj6SZe9+C89I9S6Ql3NUOxMftSzF3Gjpxbdd9RsovOFW1g6Qp7nKZGl50J+5d\n5y7086+ULm9DlMKcTk5OUcvFyzsDc8zL6cw1Mg1/9DZKRYWkQSoaxPxjl5EUS6LJMgt25rLdDNiR\nhN28bnTLNW7lVsRXlvqx65m7SK7h9T+GPCafXMQmLPcZlgiwy0/P0ddEv/zlOHdPLmJtW91V0a90\nG+SWJdvgHMafbYwxuQtkvE40nTuxh5nxCbnPOPMdzJfgY4iBKSle0S+zErGz8xDkoRklsh+7k5XN\nxrW2XeVGaM3rrsO8PFSPvcRHPiFj5XKSzrAzUslW6cp243nEF08B5umsT0rNWE4OyXgvP+e0bQkC\nOwSxY6DtJnL4x9gjzFzxcZNIUn2YE7YrVBKt1cPs7GOtYxyTmynWTo5KiSHLl1JILuKnuWOMMR27\nMa7YjaSPZGWZ1XLNHW/CveZ95JIquVd0FSDG9zXCFWr9n90v+k1OYo8Q7UBs9VtzKjd/NfpFMcaG\ne+W4zLUcuBJNgKRv9j7DkFwmdAuZXXoupHX+ufi84ZB0eGRHUHcFpBB2/ClYh/IIHL9z6e92Hb0u\n3uOtxPrEDqft198U/Xjv1HviiNO2pRkszQtuwrwfHm4U/fqvYSwkU6mCXktu4qm0JH0JhOWr7gIZ\n/1iqPEYOVAGrzAKXScigzxi2nLlY8tT0DsZtniU9Or4X+/8xelbLDOI6jFjOhznluH7sbtZ7tkP0\nG6X3nSLpkr0PK8zBXGf54vi4jC/9w9gHJLvIUdTaZLhv4z00xpjkFMS2+ITcD5duhOvp5CTWtNBB\n6crK+/LhVlwnWyrE0qNMGvuuXOlmN0gOdgFyfWZ5kS2f5rW17F7sOUrvketi9gzIlVhqNNIlZUdh\nckvLmYvnHduZLKsEY6bhFcilgw/Lfben8Na5MZo5oyiKoiiKoiiKoiiKMo3olzOKoiiKoiiKoiiK\noijTiH45oyiKoiiKoiiKoiiKMo3csuYM6yxti08P6Sm796OGQ5al/R/rho6Oa4uw/s8YY1JIl5Zc\nDb1dq2Xzm0k6RNbfFq4POu2u/Y3iPayh70uj+jO1ll10O/SZx6/h737lsQdFv+QMHF8RaVaHrfoI\nXaSTq9wIKz62NjTGmMkxeW0TTfg0zrmzXmqJ88twv3qP4fytUgqmOwyN51AHrAgjI7KuSUE2tOwn\nrqLWgG0zzlrq4q24Nmz/WXRXtXgP2+iOR6CFHOmU2sAr5xud9uU2WEcGC6TeMeUGNITdZ3DvllXL\nvztMn1+yFTVxWOtqzH+uK5FI2t7BteRjMMaYvnOddndjjNTs/j//xnzx5GHsj4/KuZjhx9yOD0Ej\ny/pnY6SmPykVY501spHIefGeWAy67rQ0aHHj8T7RLyUFx9p64gA+r17qwlPc0MeynWvfCam1Zsv4\nONlQ+hfJegHdR0g7u8oknH7SwdrWwclszUj1E5LT5Xfo0WtkI5mOmgvZs2TsjZzF3FxQAW13zLKn\nDtCcLc7DZ4iaOFYhgMwSvMdL1rTXfnJG9Hv3ZdTuWDuPapMNyLpJLSdQ+2rGVuiDcxbKGD1KOuBS\n0hF3WTWysiwr2ETCduipblk3aJRszvlY7fUzg+wXx6lmlm3z23sE8evEMdTDWP/ACtHPTTWzWLvN\nlqN9Vn0TH63V41RrKdoo17H8tajfsPunmItr77I01LlUX+Ma4tX4kIwvbEU+PoLXUjOl3XiYdOvm\nNjjce6juwN5v7RSvLX0KNuEcX1O9Mk5lBVFjInQIsSM1W67xIy3Qw5fsQG23n33zV/LzaJ2cXYLr\nee8GHE+eFbM69qCWE9f88xTL+k/Z8xFvOg/iPZVbNop+0SjqaLA97uX3Lot+vvlYT7kmYZplTTsv\nU86RRMJrTfUzcjy20fqcNQs1AsJn5XpZfj/ikqhld4vaS+HTGJsTls00z2euvzP3C6gZ0nPhinhP\nVQ1qn7H9MdfYMkbWYti6GXuolBRZT8rlwhjpuL7baRfN2iz6jY5inWzeecppF6yRtUD6L1KNqxqT\ncDhO2XGA51iA6ieOdMu6YuNRXPdYFLG3/7y837wXGKf9Dde/MEbGJmG3Tvt322pYWFWTXX3olLQw\n55pFBWtxrdOzZL2S9r14DonHcY14f2SMrDPDY6TkLrlXnLiNzxq8JxDXzsi6dFlUr2O0R95DrhUX\n68MeIaMoU/SrO43rwnugtPoU0Y9jKNdpG+vBOl28WV6jaBj1ezw5eH/Jahl3ey7C9nxNPu6HPX67\n92Nvk1+ONfeJL/2Z6PfE9u1OO/lniGvzdswX/bj23O0gFsG1SfPKdaxlF+qWlWxB7Ra7xpqXasNy\nbbKm1+Ua4qZ9ENcburCvQfSr3oEYHQ3h+LhGpKdQHgPP59EQxpX9/O32BJ12qPmg085bLOsi9kRp\nXBRhrA9cC4l+HQexT8uagfvd9Po5eXz0vFL4iPlPaOaMoiiKoiiKoiiKoijKNKJfziiKoiiKoiiK\noiiKokwjt9RhcKpzdk2+eO36u0jLLFsGa6tkS9rRQXbKnH7WHJKpQAVxpBgXb0OaWbqVIptG6cIs\ngWl/D6m4HsvOdfAS/tZQI47HXSzToBop7e0rTz7ktHs7pGXy0CjS7YootdK/uEj0u3H8otPOr8P5\npVppaXkrpZ1vopmMIx23Yq20Zuw+jlStzFykDjZZ92eQ5Ev9UZzzNssi+0IrPu/pO+5w2rXBctGv\n4I6g02aJA9shslzOGGOGyLrOk4djTXXJMVeRj7EapXs1r6ZS9BsK4zxW34O8+cgVSzqThFRJTs8s\nu0PKn9guMNHkUAp5qluOn8ELuFel90PqkZwur0vuLNyD/kakWnbtbRT9Kh+tddphSmfOLJXzitMD\nOT21h9I4K1ZZFtn1sDYsmI1zOvNP/yH6lT4w22mzVTrb8hljjKcM6dycgp87z5LDkF3xGLXt9Nvb\nTUYhyU+sODVBxxI+SzaAdE+NMebyy0iPLJqD8xxuklaCOVmIbwcuIdWSLbaNMeboBaTnfutTn8L7\n03BtbYvnKR/SuZPoO/665mbRrzwvz3wY49bnsZTpxntIDfd5ZTpzwZag0x7pxnm4i2QsZwlkouEU\n8q7D8nw9JbhmbPXaua9R9OvpRGyrJLt6WzoYimC8b3psjdMevCzjc3wA6fk8FwfOY4281iqtQBdv\nxjxnKYVvvpTbDbfhGCoCeC10Udp5+5fgnDhFObCmTPRrfQN7B14LS++Weol0y04z0bA0dt7dteI1\nF+07cmZijsUiMg3/0rPHnDbPsTWz5JwtXoXYe+yHh532Q1+4W/Rj6/QXXnjXad+zGJKdN78hbXnv\n/xrZKCeTpLRBSrBqt2Nu1+953mn3NUnpaVYJ9iP+Wdgv+DwyJZ2toWs/j/MYGZIyEnsPl0jSSU4w\nbFnispUxW66GwlJSGb6IWJtFVsjDHfLzWP7LMou0bHl+wY9gPgeK7nLaHTfedtqXf1Un3jNKMv+K\nauwj+45JeW7xvZASxPqxJ4uMS5vzcZLulm7E2A61HhT9copgjeuia5li7R3GLYlXokkmO/ikZCmq\nb3oZ6xNLxz0VN9+PsAwrydqXsaSI49613VJqVrGEnmtoj8nrtCtfrk8pbvTjY7WlFIVL5+I8PHje\nGRw8Lfot/MgXnPbZl77vtMvuWiD6jdJ6N0rPJNk1cv3tv4CxXilD3m/MKMlNbOlN7iLEUI7rYVtq\nS5bt/BlXXjwr+mWk4b7xM2aBT8qCf30a17MjjOe4+Usxjwau9oj3ZFDccLnINv3KYdFvguIBr3f5\na+VzBteIaNyJvc2nHn5YdLtrKZ6lwv0Ue6RTsxm1yjgkmvZdkIxlz5HP/SzT6TuP/QQ/nxhjzBiN\nhSma2+U75Lo4Rc+mXCbCXyll6aHDeK7s6aL7+CSe2+zyDFV3b3baw1HER75XxhjTfvyo0+ZnCJZf\nGyOf7wYb8IzI494YY3w05yapPAHLzY35/14XNXNGURRFURRFURRFURRlGtEvZxRFURRFURRFURRF\nUaaRW8qaMivgptL9gZSYBMqRusNVtaM3pNMDu/fUdyANasefbRf9om1Iyb/6c6TtV1qpzldfQ4pj\nyVKkS/eRs8Noh0z7yiIXE64G/t//8gei347lcETglMT5zywX/br2IEWKU8A5JdkYYzbchZQrlhY1\nn28V/fzLZVXoRMPSj0mrurxw1unDdZtTKVPRD9RBorVyJlICR2Ix0W9OKVKik+mzR6IylZhT73PI\ntYZT3v3L5HXhe5LsQorZSJu834WbkVaY1YZ733xaShB4POb1Ik2tKCdH9MsrpnnQixTK3MEx0a+T\nZFgzE+z0M9aHFLu+EZk27l+J68Tp261vyTTdnAX4DA+5a2RWyfON0XkVUoomy4GMMab3FFKu2V2o\nLYRrmf4TKVdiF51wG2QABZtlKmgaVbwvWoXU67J1a0W/1FScR2/LcacdaZJSxOEWxCUhAemW58TO\nCbcD/ntTk3IusjRn6CokCb3HZWo7S30yqEJ93zUpx8umivKVJEd56e23Rb+tG+HWUjAT/SoepLxn\n61hHezF/rz+HlONlC2S8vnQFc4Ir+k9Z7kXXdyGltaACa4tvnpTYdL/f6LRLdiAORa5KCUfB+tt3\nHzmNNWaltLKji+0iJ/pRHGZZRbvlOrX0M6udNqfq266I3krM4RjJRDnNvmdQyt5Y1tN2CmsSjwFj\njJkgF5T5H6U04mGZRswSQU4BHuuXsZ/jeveeRqcdbZN7h7gVXxNNH6Umx69KidaatZANXPnxXqd9\n7bp0XVm0FRKWT310odM+/OwHot+lXx5x2oWUem87TBx6Ef2+8i+fc9rsCjbPmjutb2PusGySU7SN\nMeboP/2j0/YvhfOIv1K6gfh8OPdrx55z2mv//NOiXyyGa3bjbRx39Y4Not+R/4nPCH77CZNI2LnO\ndk6bpLnI61Pp/bNFv/B5zL/cuZBfjHTJ+csORt5yzDeWORpjTH89yyR24fNIbjL3kYWG4XmQnot0\nd99aay6SvKhyKeRsk5NyrrTWvee042PYlw41S9lkVoBca5Zjbo+NWQ5Htn1ngnGRa0vfSbnelT0A\np5bBq5BzRi7L9c5NMqf6Q5BmlFdKiXN6DiRG7CxWtVbK1LOqIXFLISl566+wb7Hn2Lv7Tjjtp3kN\nsqRak5OIvZEI9taBwD2i38AAZDn5y7G3vv4fR0W/oi2QH8aj+Oy+M1LKmlkp93qJZLgd68vgJXlv\nchZgHMdoPXAXSlmYl6Qf5/8V55jtt+LkFext2fn3arqUU10lB94ZxYh59ecanfad983htxifH/Mg\nHsd8Sc+RMtthet7LXQgp4oV/3i/6Zc3EOCpciLVvs3Ws/lV4rZBckthpyBjpgHw7cJHzoy3H4zWf\n5V+DV6TMmp8zs8i5yWVJlfsvYQ0pvxPyvuE2uVfh0gYls3CtWcJXsXG9eE9mJvaHU1NYM8O9Up7L\ne6f8snVOOxKR0lNGuFhZwXGArkX+MszZ0GkZ1+JhPI8VfeZ+Y6OZM4qiKIqiKIqiKIqiKNOIfjmj\nKIqiKIqiKIqiKIoyjeiXM4qiKIqiKIqiKIqiKNPILWvOpOdAjzlg1XBwZ0E7Vnw3tJrxIVmDpO5V\n1CO4+0uw1R229LyD9dAo5pM9bFYwV/Sr2oqaBjGyRFz0FVgWXv+Z1GN6yAKYazl8assW0c+XCQ1d\nSgY0874yaQM9sQb6t95j0KBPWHaD6aRHZZttj2VJ3HeCtGirTcIZ7SEb4U6pXyxej1ofkWu4NqmW\n1nBjGnTp0X58ni9Tam5PXofVtN8LneiKR5eJfqzzc/lwPXLpOv3oH14R77lrIXTahStQEyd/jdTR\nTsRwH8ZIkxibkFr91WR3yhpWu47OtU7or9kaeLjVsi62bOcSCf+t8vukZr6XdMVcvyLaIo+vbDvO\nNyMT+tv5D0qd89AQ9NqsZR+KXBL9qu9DrZIrz+902jMWQGtt21hmVaNWBlu98tgzxpiSxagtk5oK\nHXI4JOe2PwCNaIYf/WwbVC/pXn010D+3vCX1p4NXSSs90yScws1Bp925W9qfsm1h4Z3QkNtxhW2U\nWZsbsmqKhMnyfkYhYupffO5zot+ClRgXwQeXOu3YEGqAuLKkJWffGYyR1DQsI/FBOXcyM7CGtNSh\nrklRuZwrU1PQKO/af9JpL2+bIfodu4a/u3gQ99ifnSX6XX8JeuGqRU+ZRNJLNRHYAtYYI/THeYsx\nx0Ys3biX6jwNXECNCq4TZIwxfWcRe1I9uM6pXqlX7yKrbo7dT/3hV532N37rt8R7fvUW6qJsX4u6\nahkFlj0s2ciyltxdIOsA8GuNL+L65y4tEv06jqD217zPr3TabI1ujDHZs25fPDXGmKoHYGe7/8ey\nRkz7QRw/z1l3mbw/Lj/2QTd+BkvqsmJZK2T1F6CHP//vqEtx8odHRL9lZJF7/SdnnHbwKfx//U9P\nifcs+BJi4LUfYu64iuR9DD6G2l3uLNQ3SE6WY+nynh857eKlGBenv/2C6Jc9BzEh3YcxN9B2VfRb\n9nlZJyyR+FfgPCatWjxcp2CEbLa91p4yTjWa+i5gvhWuk3XQ2Kq7bD6sw28cfkP0YyvoPrIuHjiL\n+goTYzKmt3QiBtTW4PiuvSJtzvNnYVxd6XrRaWfPlPHZTfUg8gJci0GO8+Y9GH9sC52cKn+39S8q\nNrcTjjE5C2SNGC7pkFmONb77qKzd2HUUa3cu7eXt+mMcs/1V2Et1X5DXuudQCz67EWtuYRXuAdcC\nNMaYinzErCP/dshpL35oseg31ImxkFmIe8dzzxhjvFT3s2t/o9O2xzrX++J6fSlWHaaYVf8rkfBz\njV0vLIvGZ7QV+4rOg7IOJN/fLKozc76+UfTjvTtbZNt796JczKW7F8Gqmq247VpnE2PH0I6hVlXv\nSVlvjNfgniMYK4H18nmx/xRiCsertJrc6PUAACAASURBVGwZd8PUr/hu7Hty5kqbartuS8Kh+oJu\nyyo+QjWruP5MfEjWnxujenuZtGaGTsm6K54S7Nt4LlU/sFH0G+ppxOflo47L+DjuXUaGrFHK9YIm\nJzHuJ2My9nKdzs76vU7brnvDgYhrWKb75f3IpfjVdx73NEA1o4wxpteqQWOjmTOKoiiKoiiKoiiK\noijTiH45oyiKoiiKoiiKoiiKMo3cUtbU8R4kKhkZUuaSXYv0vcZXIXeootRZY4zxuPC+9Gy07dQi\nltsUbAk6bbbINsaY5oOQArhScfghknYUrpFpZaOULp1K6bfpYZnyV/EgLNWyKJ1wdKjH3IxMkksU\nrZorXuu9cN1pd+7CtfTOlimouUtub8qoj6yq66/I65lKMi8X2dpNRGV64OQI7ldqCtJCJ8ii0hhj\n1q5H+vXkGFIv7fRPTynSF30+WNddO4OUQk5JNMaYmY9BWsV2z74amf7e+DLSU3cdhhXhrGJ5nc80\nNjpttnzvGpBpjvc/fYfTrnsHn53qkeMnxWVJHBIIp2hPWXbohashgYk0I/02I19KzvrOIcWu+g7I\nzC6++WPRb5zuNduc23aQnWeQdv/V7/3UaX/to7BLHbYs1Is2BZ1271Gkic74hEz79XqRttrbi1Ts\nQJGUIqamIvV1NIz7FlyzXfS7+IufOW227Sy5S8pmGn4KGaa51yScIZJyDXTLtEm2PWbrV1tm0noJ\n6ZDzHqVU3cvSNnOUUnzTKY23plSmf7rJVj0lBSma2ZQ+2rDrPfGeo++fc9pJlO65cJ68nqdOIu7N\nLYMUMalVWm2ebGgwH0bZuqD4dz5J0nqvIi6X3CctvDt3Xje3C3cxxhyPJWOMSSJbXbZb7L8s15AQ\nyWGDjyOujVtxd4AkbOmUAhxtkTEqhWJR1yXM8+f/4mt4z4ici5WU5p0ZRDwu2VAr+rW+j5jH8gZ3\npkzTbdmP2J1FaxyPa2OMKV6F9bnnKNLBeRwaI63Dy2+DxPAASZnK/NKanFO29//vA057wWopKeW4\nXLgZMphLb14Q/WYV4Ppu+frvOu3+HilRGqIUexdJU5pfwj2IjMr7ePXZ4077Wgfu/fbPPSD6sYSz\n6kGsmaf/XsqVRsmaluUyPEaMMebUezgmtrOdmJR7gvv+8DYE0v8XXoO73pcyl7KHsB+bGMG86j4k\npRSpNE85lrnccp9mCrHuxuO4T1PWHihOFvXF6xCXAksw7lvekXLaP/3a1532P6T+ntO2ZRqFNOc8\nZDvc+ma96Df3cyghcOWdl/B+2isYY4xvNuIp7w+8QSkVF3a+0nE6IYTpbyelyH0GS2RSM3G/S621\n+9JP9uE1ms+2nXQxWfaOjuI1W2rG+51Meo4Zp9INF8/Jdesvf/ADp/3DP/kTp925r0n0yyMre18p\n7gnLu4wxJnQcY3q0A/cgOUPuNUOH0S/4BPbg9rm7rZIKiYSl6baciiWrSclYI32WHK/x54ibh+sx\npr0kjzbGmLxSPBuULMW+ovuMlIpwGYLyDbjO0SbMX1+1lN1mZEAGNz4OKePVi6dFv6YerOk5JKOb\nfZe05s5dhnvNUhlPuYynHrKC52dlW6IfOoJ7PUu6RyeEZNrDsNzcGGNSMjA+WT5XaEkHm16GPXz4\nHJ45i++UweP6c9hvL/jynU57sF3u3/gwIp3YM7DEa2xMPttOTKD8Rno6pGHJ6Y3ysyl+h89jz8Fl\nXYwxZiqO+DAZw7NtYGWZ6Bcme/DAcrxmxxeXJRmz0cwZRVEURVEURVEURVGUaUS/nFEURVEURVEU\nRVEURZlGbilrmqD0TDslupBS7YOPIA3adhap/TjcPwavIZXddrkof0RKgpx+lttLfByfz6ltXSTn\nKJyUqViBVUi5mqCq5il7ZEoiV9l3uZD6398tU0azKvF3OXU9VHdN9BusxzHlkAvR0HXpTGPLTxJN\n6DDSwPLLZfp2bysqnVcvQOpX1x6Zhp+7EK+NdCBFMXeRTAnk6vJTlN6cniVTuMYGKM0xCfd4zqfh\nupVzQlbtH+lBWqenCCnwXKneGGP8y3DvtvQjJfbf9+wV/dJJFvfkOjheLF4vx+LV93H/uep+/2mZ\nRsdpp4mmgORA7btlyp+fZHFhcnfxzpT3OtqMVM6LP/+50y6/V8oYvvn0t512TRHub1WhvB+Dw0gb\nDBZQRXmaR6WbZRp1RjaOqeReaBVs97bOVDhgpLkw34aGroh+0TBS1Dn9s3vqgOiXuxDHzq4buXNk\nJfyyh2RKaqJpPd5y09fyVyJlfYIkgc1vyHOuuRPSioPPHXbas6pleuW5y4hvKSRFXPX5daJfXiXG\ndFYWPvva0eecdv8ZOdaTKTW5iu59T7uMbdU0Zvj4WCZpjDG1JHmqDGLMXdh1UfQL1mBue7MQNy++\nKFOOZz+ywNwuWOrRdUCmq5duw5ge7cP8GLFSk/Mo1TlGbjGZJVLaw2tSWjbSbDnOGmPMcAfSpVmS\nkL8o6LRDdfJY8xdgbrpclPZruffM3I5x2VEHd5dospRWFa3BuYfqMC/ZDccY6XLBUiZvmUzzHrgm\npW+J5oG/edxpN7ws5UU9ZyEHePBbn3Tal3+0W/RjebavFtewfJ6UfMWHIetN8WHchkm6ZYwxR1+F\nk1Oc3AXv+i1Ia9MOyRgyFsJn1y5C2nhsUEqJ2eGl9xL2KlXPLBL9XNl0fCSRi1yVjp2zZ2FfVbYD\nMtQPvrtX9DvwL5CbVH7vCZNI2IWpaKtMmY8N4PzjEewDpiynm9E2fEb+cnaxkmnt+YWQ1LZeestp\nFyyWawbvZ1JScC0Hu+BiNWHtWT776KNOu3op5HHsSGqMMbEQYkoLubylW+6ajW9hXYg2Yp7a+3NO\nzy9Yg/vJ184YY0a6bt/exhgpV4pZEvhkkvf1ncK89M6QsvelCzEGMysRS1hmZowxkRtYo1ii5C6S\nsbd0GyRpoROQkoxHce+iF+X9mUkuQqEIxtXC+xeKfuwiGulGXC6YJ/tdv7bHabN0d7hNridpFFOH\nmjFPCzcERb/uIzfff/ymjLTQPFpfdtN+w51YqzouSBkSuzuypO+BT0g5e+4C7BH6KFYH5sk9Kjvs\npJFUqOYp6IFGBmUM7j6FeMX7Q0+e5VzUgmtZOzfotBv2Ws+BtE9mud3UuJRDsksZlxbICMi/W7RF\n7qkTTcFqxJ8xcuY1Rsru0n24V+PDco5VPoZnCnYZS0mXXznkr8I6OdiC+9j5vnQy9ZRD8sXOq1P0\nrB8blG5rviLE5a56xENbNjnSg2cPlmDbe7b4ANaQCpLMDjbIPW8OOeqNhRHLhhrl+snS6Q9DM2cU\nRVEURVEURVEURVGmEf1yRlEURVEURVEURVEUZRq5payJHSBGBqSzyMBFpFSOUzX1vFUynY0dF9gB\nyCoCbQLzkYLUcbzuQz/bGGNKZyMd3FOGVKcRSvf0BmW6Y3Y2UtyvH3vbabsCUk7kpvSxgXakpqV6\nZJp3cjLe58rFiYz1yRSwwvVID2t/F59nn7td2TzR9HQgnarmHpmCmz0Hrg2jlGrpXyrlSpHLSDGf\njCEdr3u/TJUP/A7SOseGIevyeqV0xkep3cnJJA27BAlHlnUf4zR+WMrkD0qHsPFhcsqgFLYv/cGT\nol/4ONLoklLwPeXgVZmmNmMt0qXTSVow0CvT3nwBmRabSNidxXYYSk5FGnU4GfIT3yxZCf/qe3CI\nCORB+vDe198Q/djVKpnSQtNTpMSQZWExkhuORJDKV2o5sDS8AkeXZZ+FK8XlnT8V/TgFPzAXqaXH\n/u4Xol/wPoznK2/gvufnS4lEfxipi7M/gnjQ+AuZCjk5ir8bnG8STs2DGKssQTPGmCGSnUWvYc5O\nWu4n7HzG0oLLV+RcLMrBPZ77AM55pEuO25RqVLwPhZBGPUlV7FmCZowxwRx8XsdOxLZMK1UzL48c\nRdqwZsy7W8aD7BjJasgtoDJV/n4wPoTPHx3G2lC+slL06ztB6dJrTULhdF52HzNGOsGUbUPqq8dy\nyYhTOn0ynWOKS64FOTPg8OJyYV72tZwV/Qrm436wA8nADbRnbfq4eE9fH6R/qam4TwNhKRFjl4Hc\nGhxPUpLcPgw04dxLli132v3tUhbMzjmeIlyXSUtuYsf/RHPhn/c7bY5fxhiTQrK9iQmsi1VPStnB\noX9432mzc9CiZz4t+rFUrKPhHacdbeoX/dZ/EpLD7//Vi0576Nu/dtr3PLNJvKf+Eu7XlbMYF8/M\nk5LNpotwCGu8AJnG3X/1CdHvyLcgea15jPZOnTJebbgX0gB2+nGny/1S6Zzb50aZv4zS4q308ow8\n7DHY4STNJ+VK1U9D1nnx+0eddtndUmrrq0FMafw51o3Zn5OfN9aP+JxMafyc+l+wTsarzd1y7+ic\nQ5FX/Jvldrz2tb8jpRTptLdNz0N8j1wMiX7j45hz2TXYL8QsKaIdvxINy61Y9miMlKQVbsR1s2UB\nrtV49uCYmmy7aJIUop+uO0urbOY/ivnc0wlp413VMkblZWG/M3MhjvXKO5dEv9n3YG0YoX138yty\nLxanMXP6A3zGwuXSnbBwI6QuU3RP2Q3PGCl/SjSBjdiLhA7Kv1uygyRiB/Baqr2npGetGtqHuqzS\nD+z+lFUNqVCPJdtqPY+YV+OHZNvvR5wNJ50Q7wmP45m1Yx/kNecuyHICK2pxTlFyM6vaJPfn7OjI\n0l1b0ppDsu+hDuzjm1+RYyfdj3hTvdQknHgU861zr5QXZc/G82K0GWuX7cjIFG7C2LTlT/75eM7s\nPNDotCcsKaLvJs+pOVW4Zm53ULyn6eAuvFaIONr6qiwTUHgXjq94PZ71xkfkdw8RkiUN0bnbUtEx\nkoSy/NA/X0ruei1nMRvNnFEURVEURVEURVEURZlG9MsZRVEURVEURVEURVGUaUS/nFEURVEURVEU\nRVEURZlGbl1zhjSY8x5bLF678kvUhZl5L7Sv4dMdot8Q2VGV3Y26BTfeviz6FYWgDRwhndZwo7Tr\nZD3qnpdhj7Vu6xKnPXhVWnDmVKDWQfWd9zjtht3viH6TZG2WRtaEtu3haBja5mgbavEMXJAawp4m\nHIe/EFrDgo1SbxwLS+vARFP7EVhl9p2UOje2SAysRz2B6A2phe/rJatWsrtLTZNDKNKJ+8h26fG4\nvI+97cfxD9IAszac7RCNMWbmvfc57YwMaBWjUam3NlzTh8p1cL0YY4wJfgx6etZsl26aJfrxNet4\nB7rT8QlZIyEtR35+ImHrRdbbGmNM73EcX/kDmIvdh5tFvzKyd+UaO1dPnxP9FlRAOxzwQWse2CzH\n7TDVwflDsuOO90OvfvBZaWm97FGIZNkW210o7QK5rse1l1EbwpPlFv2696HOCteJePvISdFveTW0\npK5cfEaaT1qQFj8k7VgTDdcOclu2yRmkq84kjb+taT39C9j+Ln4Uca/G0ulmzUUNAQ/9Lbdf6uTD\n3bhWbFefnIb522VZG3qrUc+meCs01mxTbozUWFeTDWNKhowbR/9+r9OuoPoxJ09LfTBT4MNn+8fk\nNcpfdXMrz98UriMxEZO1Itj6dnwEbXsNmSCrTB6PNn7/Bqc9Nob1JcWqo5CWRhadVNTMVYM42dH4\npnhPQTnbk+I9hcX3iH6dbah3Mj6O8eFyybpk2RVYP1oOYG0usOoBjY9Cy91fj7XZN1PWyOI6baWf\nMQmn9nep7sAVWU+FbU5Hw1gL29+TdQeCSxArPeUYj7GYrO2x86vfd9rLv4giSJkVco3b+yPEyxtd\nqDvw9MdxT86/JetksT3rsvuxT7v6prShf/fMGaf9Z9/+vNOu+66sczH7Y4gpb/4j7j3XsDLGmJyZ\nsJ0+9xJiUjgqbZfnWVr7RMK1buw6Kd5yHG/V41jru4/KdfHIP6LOVu3DqCk01ivndug01lkv3bf3\n/vZd0W/zlzGvcoqxLkYHMXaGWuX+as4XUb+n5wxi7Ui7jKcVd6POxSjF6vRb7D24NqO7WNawiVNN\nR64hkb9Cxs8uqgdRJcsuJYQ02pux5bExshZk7xk8X/gXyVpG6fQ+Xy7GcKjliOiXRHX0uFZGpEFa\n3eZSzabWy7BO57VrzLL9XvbRFTiPTDyrsOWvMcYMnEfcCz6O4nbNb8v1LpdseRdXYTzbdZO43uUQ\n1V6y96R27ZZEkpSM65pVmy9eG7iM8+UaH1UlspZR+Dxi3kp6HrH3QDxuu+mZIWduQPSr3ohnzlGq\nS9rXhzGRnS2LC05N4tmEbd3v/f1tol9KBp6PO8kuOs8al1wbqXM/5rZda7T7NNY7nvf8XGaMfE69\nHfAezq5v6c7BnOBabD0nZL3DdD/2NGwnHTosawKV3Yc6QLz/dfmtff4HiNmBNbge43Eca7rPL94z\n+86nnXbr5decdvUzi0S/sTDGRf0Pce9d+fIY2II7owj7aTte8b2L0bPQwDW5Jyhed+uilpo5oyiK\noiiKoiiKoiiKMo3olzOKoiiKoiiKoiiKoijTyC1lTYE1SG0cvCZtCmfdT5awZ5BaGu+X9lMuN1L7\nDr6AVOeFa6SlM6fT5y5EGqydMhRtROpleR6l7VPqZmaZTBXOzERq26XXn3fadnrYlX9Der+XLIBz\nFsi03H6SL506DnnW4kXS3i5O9pwZJNtgG1VjpPzndsDpuWyPbowxY3Gk3PUdQ9puapZlh7kYY6GP\nLOAyi2SaZNubsE0tJfu8SEjaqXKq20g7JFM5CyltzkplnJzE2EpJQbpm/Ss7RT9OR8soJnt0Sq00\nxpj+OqRQemdA6sFSGWPkmB6hlPyKVZY8bUCO/UQyOQYJlT1+irZAitNzvJXeY9nDUhpl9znc64p8\nmYI6j1K7c+dAupCeLmUM/fm4p2xtzhKsdV/cKN7DUpnGnZAr+ZeUiH43/gOyyZ0nkY7/1rFjot9v\n79jhtNle0t8u5Xu1D+GcBq4gvZBlKMbc/pRRTsXuOSTHWeQSjiuTxiPbABpjzJz1OE+2Gx4slmmT\nQ9cRK4UVqsywFhLO7j2NTruzA7LMkippy8uwBbLHOtbMfMSNpndhU+ux0pkDZUhJ3fsG7vEdD64S\n/dqPIy2WLXvbz8n7PdqBMThTfsRvDMcuT6GUpvFc7CXbWzs2BFYjNZfT5Cdics4mJ2O+TE5irEZb\n/2/23jM8rus699/ADMoAGAx67yDBAvYisZMiRfVuWbIst7jHdtyu4zjF8XVJnMRObhw/tmPHXVax\nLVmF6qQqm9h7J9F7m0GZhpkB/h9yfd53bYu8zxMN//iyfp82OfvMnDln77X3Gax3vWNGAjtlN83z\nDA/uW3ndLeKIqSnM2XAY13VsSKbW8/dlCVbUL6Vuw4dxD/IX4nMjI1KGye/B331yTF4jV/bVs301\nxpjJcVoXLZnYKEkD3vjNbqe9YqNMRa67FTKGE/8OeYstd2hci/TwqUnMl7MvS5vUf/jZz5z2fTff\n7LQffQRr3Me/+h5xDKdbBzsgm3ztpJQ/feU7H3XanGpfdr2Ucva92uK0eY6NhqTM56Ev/NJpb74D\nk6ycrFONMebFr0FO17RW2na/U1i2UbBIygn8Z7C+B45jz5Jm7W16/JCzzCJp1PhZKY8vWgcJ25mX\nsc6uelAGmJFj2A+PkAyn9oZVTru/Q8Z+F0k+WXZTZl3Lg9/f5bQTU1irbIn1gkWQcQWO4ToUrZJy\npVAn4ghLLe25aOicrga8R01Y+5bpBJUboLIG4X4p+couxj49FsP8jVplAwpmY7wHC/D97TmboD1X\nPIg9F5+rbU2dRXIHtt4t3yzn2NglnF/7E6dwfK6UUmSSJTqfg703zm/CehLuR7y19w79tL7PXmWS\nSjyCmJLqkuMlnaRpeU3YR462yFIQvB5M0LOet1FKVvpJHpPXhOfA3FmyX2oa8g/cZNPtb4XEcKpW\n3nfev/JcTM2Qj8ss46q6EXuykDUu8+tQJmF6OTZf9thJ8+BehWswdrpfuCD6xVm+vtkknWzam010\nynIUgbPYY/L3L1wi9+98DXi+DHbImJryIr5b4XK8x/BBuZ/jfZWbpIi+PJRJiETkMe1vvoF+NEZO\n/nif6OctxpzNaYR0UOyZjTH9r7ShH9m3x8dlrGTJIcu7XNZzfnxSXlsbzZxRFEVRFEVRFEVRFEWZ\nQfTHGUVRFEVRFEVRFEVRlBnkirKmiXaklY2flinzXMU6HkQ6W8+wlD+xtGcsjGPyFsg0+dgY0kk5\njeutCzKla+uN1zjtRZuXO21PCVKTCorXimO6z8Bx4PxOvB+n7BpjzDidX/nGOqdtS4E4VWnRXKRb\nPf6SdKa5dTnOL9iCFKaMEulM4ymRqYfJhquZl1hprSWUIjZAafhl86TUhd1GSqla9tEXToh+5eTo\nQKYhZqxFjgtObZ+KIW01nVIHsyulPG10AOmfQ62Uxp8lhzGn6kb7kKLIEi5jZFowp+2mWCmZbi/u\nf2oUKYUZxfI+ZtdIN4tkwtXpw91S0lDQjDTRAZI1lSyvFP0ilK75iX/5F6f9yD9+XfRjyUlqaja1\n5TzIr57ntNm55Wzrb512WrY8hp1uWMo0dl7GF28TOZD4Mce6R+Q4YseeCbrvd31RSjiyy/GdxtuR\nMmq7YXQ/D6lW1WdM0ul9GRX5S9bXiNc4jZqrvNvjMYtkm5zqPDksJVruHFz76QQmo+321fUMZCxV\nd6J6fjbJ/sbPy+vOxCitM7NIzgl/C75vkGRWwVaZ0nm2FWnKa9dDgnb6denq17gA12zgEmSK9dfN\nEv3Sr+CA9E5xpeNvGuyMZIwxWSUYZxzjUixZQPd2rEPlmzC+bReXltFHnHZRI1wGci1no3gI48CV\nhnvArkFjY6fEMYkE0o3dbhyTmStjf0oKUpHZXYnTxI2Ra0vPdqSNF10j49Awud5MjmDMplrSorIN\ndeZqwi4N4T7LAY8ksJlpmEd5zXLfMjWFPUPVHZg7tjvX6Gm833CIpC6LpBPH777/baf92LOvO+0b\nF+Pes6uOMcYUrcB1f+XHOGb9vHmi3x/+z/NOe8vN2EdVXi/nzugZnOvGD8MtzB7r+3+D9HDfXLik\ndD4r5+zm/3W9uVoM7ULcGHZ3idc8JHXPnYP50vq6dHdMpbl5ejtkZg0L5L1hF5y6hXjNf7xf9Csh\n+RPLxwKdkIs13XaHOGZ8HBI0lvG88Z0dol+aG+snu2J5M6UrD7sdlm2GNKp7m9xP17wbblJDtHew\n1+3cOTImJJuiFYgRE23SNYldIcuvQ6xkibQxxuSRxMHvRwmFykWbRL/0dOwtXEt4nZAxmt1o3G6M\npeBYG/4/Q64ziUnEM96X2U4tU3Gs9WN92Leku+Ve1n8QsaJ4I2T0buv+jHdBSlexHvM+cFHOicwy\nuT4nE3ZHY2mkMcakkxOPx4PxODAs5X1hcvctWILr1/9qm+jHe3cuC2GXLii6BvOU93Yp7lQ6Rt6b\nIVrjyim2Dh/qFv1887AWuC8jvTPGmJ69KJcRIjly9W2ytEfPTuzD2HnMdvWMW2UNkg3vDycDUvLl\na0IcYHe8qYQsBzB8ANeKn5dTU2U+yOQw3p9/byheI2Pv5Cj9dlCBtTA9HefTdfQVcQxLldsexnNq\nX0CunxxTB3sQ42tWyrIVpVvqnDZLIL310v00SGU6CpohtRy1XKTTcq98HzVzRlEURVEURVEURVEU\nZQbRH2cURVEURVEURVEURVFmEP1xRlEURVEURVEURVEUZQa5Ys0Zrj3BdUGMMebSHmjKmzZDa73v\nlLThvNALzeR9a9Y47ZOPHhb95t4Bi0rfXOjI8i1L3FyyxOL6BsFu6FIzs6XF5xDp34q80O+lZUrd\nZkHZ29cMiY5IC0m2WvvD63uc9orGRtHvdCf00ItqoV+z6w8M7kG/hqVvewrviAyyJE1xyd/jEhFo\nX6NUH+jUa9LiMzwJfVyOBxrCS319ot/cJdCTPvHtZ/D/lbLuQB3ViGBNYidZq1VskjaSXDMleBG6\n5GOtbfK9S6AFPU/jb06FtHsrnYN+x/dBjzp/gfzcvk5oUuffA70j13kwRmrFk03FzbheWeXS4m1g\nX4fTrr8LGnK2sDPGmMFWfI8ff/nLTjtntrQfzC7AdUpLI0tnj6xXNNANPfy0D2OndivqGZz60Uvi\nGNY8ZxSSXjtVzonxs9B+ljdCt7k5Iq1suR4Ej/MJq8YRTzk39au6dY7oN0J1l64GufMR22zN/KlH\nUEepjCzM3ZaGmb9LiOoP+RYWi34cs1nHb9cPKNmE2DS4Dxr1dLKpLV4rNcBchyuzEHryjidl3Mhb\nhDmWThb3MctaevU9sCT2H0FMmbVI6n7ZQtRF+uWgZfloX7NkwjbWtiY7fwHu23gr2blaNq1saz+4\nH/G/arNcAAaOYT0dunTMabOm2xhjUmgsFSzGtc2tQdwd65V1AOJUF4X141zHyBhjajei7kisEq+x\nLt4YYwLnoNVPUK2NtFxZD4OtpCtvQlybnpq+bL+rAdsXd+9uE6/N+wDqV1R2YWzlVMk6aPEo7msO\n1Uiz7YCHduMeZ1WjX6Rf1rr5/sNPO+0vfuo+nCvFrMLF0jL6le/AZntRM2py1NwzX/RbQdfX40Os\nuPT7vaJf5U2whd3zf1532uv+Uvq2LrsLYzWvGmtm4JSswdLzMvaK1bNNUmn4wBJ8ziuXxGu8vvS8\nij3hgg8sF/2mfnXQac+7B/Wu/Efl3iaVbH6rad2ITchYNt6KWNu48W6nPTqKz4lEZC0QUTOK9qVV\nhbK2lKcK+9fmOuxXA1bdG65Zlk21QNIL5Vxk8hZgnR0+LPfdcbLZNitN0olRzOH9oDHGGNfb23jb\ndtLxOPY7Hk+d005Lk3N2ZAR25BE/apyMW7VuPFRTsKAB9UG4PubASVkzpeI62Cb37cZ45HpyxhhT\nuRnvxzVTpuMyBo6fw56N68zkNch1cTKItUbs2Urkd7L3rMmk43eoaVZ9r4w9vKaMDZ122iVWXY++\nPVij+l7BnOV9kzHGZEcxpss3H2u0ywAAIABJREFUYA0Za5U1ZxJk753mo/WKNlHj52QtkPKV2Ovw\nvSlfI2t4hUdwb/LLYF3f+pqsfVK5FjFqtKsNxw/J2B9swb1Kp3o7wVarxthquQ9PNlGqA2NbsadS\nrZ4g1YjhmpjGGOP2Yr3a+zye9dfeLYMH16tl23O7Duso1aRMS8PzyvDwa047cErasgcu4b4ebsVY\n2nqb9JDPotpkWWWIr2zrbowxF3+O/bmnEucXHQyKfuEe3Ncg2cHbz95FCxvMldDMGUVRFEVRFEVR\nFEVRlBlEf5xRFEVRFEVRFEVRFEWZQa5spU1pflNWul15NdJiOb1w/frFol/+YaQGnieJ0rd/8QvR\n74tD73faJ9qRKvjhO24Q/QbehIQj90NI+Sydv8Jpe70y/azhbqRp9eyCpdYLj0nra18W0vNrB5C6\nXrtV5uJySv+9W9c5bU7RMkZadU+RDaUtZ8gsvXr2dsbIlEDbMjRK/55ze7PTtlN6PRVI49pDaWrL\nGmRq1r2fgFzmyx/8oNMORWXaG1vmRQcpHdWHlNbsSinfcdN1j9B5L1vUJPqdOdvmtItz8R72ORze\nC8vPFZsgl7ElfA3rkTY5QnKC1Aw5ffgaJZuRw5DbRGqlXGn0ONL5AnHct4mwtFb2khztaFub085t\nl9c5kcB8Yau6tkNPin7Fc5GuGY3i/OJhnF/jB2Q86N+NuZ1HNnM9L0qLz9EJpApODCE9cfZ8aT+d\nS5bvR5886rRrLJlUIdmKcxr6VEymGxdZ9uPJppssJj1emb7NNprplILbb6WYF9F1yyaJRKhHWqy3\n7W9z2vWrIDsYOSjfr5TkgzwXe0+gX36RHCPpJBlgCUtGkfxO/H29ZWRHGpBjeIrOqbMPqckVYSm5\nY6lCxbUYCzk1MnVdWG9uMElFSIDCMrW+l6QV5Vsgc01EZMqtpwyxIkHynUuP7xH9YgGM1ex6pHKz\nFagxMv2aJV6ZxfgcO6U9m2Q46V4ab7tkqv7EKL4TS+qilqTLU4qUYLZVteNp6bo6+hfWxf5dHaJf\n3gJpW51sxi5BCrDqr+8Xr114/FWnXb4Za9xUXH6XguLVTrv9EKyqXelyjS+5rs5pswywdsMm0e/T\nJEeZd++7nbbbjXu16+v/LN/bh9cee+lNp1154KTod+v76bNIzblz5zHR77b52NvNWoXv/tRXnxL9\n2IJ04XmK0e9dL/r17Dlhrhb+U1jvpiJy/8U21tmUnt/9zHlzOaJDWHeEDMJI29f2JyDhaHzPtaJf\n59PYV7RnPeu0i5uxL+3YsV8c4yaJYFoO2sUb5Xr3+m92O+2849g3uiyL2rr7IbMYfAvzKsuKkyzZ\n53hg71FtqVqyySapdsvDcjzmNEKmM3wM99tj7ZsTRdgThsOIYZmZck0P9uG5hm3QeS01xpgIycKD\n+biGvkrsN8fbpOQkGsA5xMYRb8Nd46JfVxzSHrb87bPsmld++XanHY9jbKakyPudloVrMTmJ9bP3\nFcvSOv/ysrZ3ipeeM1iGYoy0f06l7xuzJLS8jmfR/t+2jw4FsMb5z2FMsNTGGGMGTmBfWlCP50WW\n0OTZcnCK8Ye3I3bdfI2UdvvKIE0Lhdpw3uXS+npyErExTDJWl1VWI0KxP5MkdflLy0Q/W26TbPg5\ny1srbaKHaC86fgHzqOJmKb8M9WC811OZiZEDsmzAZAwxOn8W3sOWOJctxXNEVhbug78fUtHj+2RJ\nlW/89KdO+7q1a532vKNSUjqxF3G9oQmSMVtK1/hBnMPIcYy5cK98pub9XMVWPDv2bL8o+o114VoW\nyY8yxmjmjKIoiqIoiqIoiqIoyoyiP84oiqIoiqIoiqIoiqLMIFfMj/LNRbqX7TaRVYnUrRC5V0wn\nZDrSRXLzuXUtKjV/85OfFP2GxpEGdfsKSJTMtHy/aBBp3u50pKqmpyN1anBwuzgmHiXZDDlQ3fWZ\nm0S/YXIqifqRYjZ2VqboHTmMtNhFzUhdL14vU1CHn0FacRqlirELijF/6iyTbNp2IrUxzyulN965\nJBtgR5scmXJ3bidkJyvXQwK0+3WZgvq3H/mI02apULhbpnVODmE8sYMPp/NdsNJbE1NIN2QJSCQm\n05nnN0OmkUZVw9mZyhhj0lsgNbh0ANW8szJkOnPlCqTRFa/DPbbdAliqlWxYxjB2SlakZ7ed3Aak\nBtqOIWd/ihTA9TfAjaTjsJQTpG9DVfLJIcgsfAulzODcYy84bQ+lcrJrlZ0ezamqLnqtaLVMGe26\niLhRW4+0zvxl0qnk6GOHnPaaT0G/0v9mm+jH55SWjftrV1C3wk3SqbqeHN2sz8qklNzsOqSTuo/J\nlHJ2ixul2DQyIdMri0jSx9c906qEz2myLJ1hiRLPS/v9nvu3F532xntkin/1DZCEsjSvmtI9jZHy\nsuCrFBuKs0Q/dnli6cjwISnVmvDLCvrJhMdS3nyZEs2uHONtiOseK9WZv+/wW1h37PEdIolSCkn1\n2o93in71yxED2KmKZQt2qnDgLOKIrwl5tZU3yHvjycHcDCYgFwh2SxldjOReaT6scYETcvxW3QJZ\nQIzS1XlPYYwxmbZrS5Lx1mOOxWLSsSNO7hMZXsyJlt8fEP2GqiFDqF6PsX/0X6UElPdBd337Qac9\n0inXuJWf/ZzTPvfKI047fy5ib2hSpvjXrMd6V0quFBvXLxH9xi9gPB55Fp9779/dJfvRfiRvPj73\n1qW3iH5dzyCNPBHCWsOyWGOMGdlPc/M2k1R8s94mH/z/EqbU+gRJznOb5TF5aZCJsuw7zXIjC5Mr\nR2YR4tL5X+4W/bxzsAZPkOzFNxvzrdCSz/a8jJT3bJYeWU5Fi+dh/fBUY76MnZHjt4/Wv3J2vbQW\nuLbfYY/qvg5xg11LjDFmep6Mc8lmmvZ29Q8slK/RM0Xv6xjfYSv+pLjfctqF9XiP7nPbRL/iBrh1\npaRAoj9pOc5ULsF87j2CvVPgPO6j7dDZuQ1zonAlXC/ZEcYmPo7PLV4gJSwd27G/4b2KvR5znGeX\nXVuaZ68ByYT3JeXXS+fa7ufxzMROYvzsaIx0JmI5bOXtsnQBz02WMtnORr5SXItxWkuLyA3JlpLl\n1+GZ6OavIWCxhNIYY3KuhawpOorv0bddSslc5LJVeA3m/dBbUl5TTK/17pDvwZRtqb/sa8nAS3vP\nYK+8P/zs6srE/st+Fmo/gmeKxrUYC8EWeX/SDGJO5U24x17fXNEvMxNyo1CI9j4UHu2R/eDtkAR2\nDSM+Do5KZ8+174U0eWgv7snYafncz/sv3i+VrJLP/e1PQrLY+RTcSz1WDPAUXbmciWbOKIqiKIqi\nKIqiKIqizCD644yiKIqiKIqiKIqiKMoMoj/OKIqiKIqiKIqiKIqizCBXrDmTSnUubPuueBgaXlub\ny7z7vdc7bdZwpblkLYobHoD9YvdO6EqnJqWms2wDtPWBFujDUmdBu+Y/L+sPBE5C887a46Eev+iX\nnwedbf4iaK25To0xxmxeiroAz/zgJae9xqq3U0f2tYNHcE62laOtgU428+6DBZhta9r2LGwfa8hu\nsveM1FfWNOI7j7Xgui1vktrSs+24JwGqh+FrklZrrH1mG9jR09DzvnnmjDiklCxD19yEminRfllf\nIqMEenC2v9y557joV1kAbSnXs6mqLxX90shmtmsb7p2nXNbuGGjBuS+RzqzvGLaVtWvb+KkmCV/L\n4f1SS1u8EprW0WOotxONS70oz+ecBuhPJ1rkfMkl3WVkAFr93Dn4/+iQtEwOnMTnpuVCv9r/Wqvo\nN0nnVHY97Fwj1vstfS/qU7Humu3ujTEm6sc46H+tzWn7mqWWPnc2jVMp/04KHqr30v+mtCwuWY/Y\nFhuDLttv1ZJhbXIqabYHzkp9cCZZjfK1ZitxY4wZuwA9bt68krftZ+uo2S5wfjVqkkRHpH17gGze\n8yimcn0SY6RVZu2N0B4Hjst6JeU3oR7KJN1T7yxpuc3jNtlMUj2yqUlZxyqzIOttX2P7ZGOMEEjn\n03pia/D5PXhezbulWfRL0Ho8fhE1Q/j9Mqxz4GO6qTZGxZYG0W/gNOxEJ8h+Oq9Z1qAKdmK8+I/i\nvqUXyBprPTtgzc1xjTXdxhjT/SLqcFR92iSdPrKZnYpJm8uq2+E1vePrf3DaoaicO0uyYY/c9jJq\njzR9fIXod+kbsFRufx41vSJWLbbOBNa8rFrsO9rPQMd+vF3GjbJmBKrb33ed0+aaOsZIi1iuLfXb\nb/xB9Hvvt+512h1P4HxGBqVWv2ZNndPmNbL7Nblue+dZa38S8ZPFc8yy2+X5UrEVta/O/VDaWKfl\nYu/oobpHh7bL/cJSqqFXtRUxauCArNk2sBc1EapvRb+JLly/8YuyRkyMYoq7+fJzYpr2TZm0X+P6\nkMYYk12BvZLLhXnf8rismZQzG3GTP6v3Dbkeuz20/5eljJJCF9Uk8Vp7RVHDzo1zzJktv3OwA9fX\nlYF9bc9Lcm73ujDv3VSTsMKqk5KSgr1UNtVY8+RjXI2ck3MxSnWJ8ubg/C781yHRr3AV1vD6LXhG\nGjgv708GrSfDR1Gzza4lwzVo+NnMfnbJrZfrZDJhO/jOJ2UMqLyN5gHdJ0+Z3EPnL0IsS0TwPfi6\nGiNrGfIaUrBE1mzregrjIIuu0Y6nUJ/o5g9uEsfEQ7SWtmPP67Wunb/3qNMeOoi9ds4cOX65Fk86\n7cPyFsnnDH7ezl+M1+w6QfYzXLLh+paeInl/UqgGVmQI3yuN6twZY4wrld6jAjG1aIWstZVbiPWT\nLeBdLlmPZbBvx9ueK+8l5s+pFa81lWMsXOrHOjE4JvdY/OzipvpAdj2pwTcQ58tuQqzge2+MMTm0\n7sbJKr5gsXyg8J/B3ri8yvwJmjmjKIqiKIqiKIqiKIoyg+iPM4qiKIqiKIqiKIqiKDPIFWVN3S/A\nPjl/iUzJYWttTknvPCHtwQq9SGkaIbvsJfcsFf06tyP1MLcEx3D6rTHG9JCVXu1tsNva9Y+wrqxf\nL9OyTx7Ce2/4CORTuQGZFsnp6q178Tnz71kk+nVQCqYnHelcrix5OScuIiWuiqxjp6IyFX6iVcpF\nks3Jx5BGPe9OaVNYewvSt2NkJWjbSfe1I+Xs4Z07nfbn77ld9GOpUH8AqfKZAzK1neU3/e2QP+0+\nizTEzHSZKuf1wFrVlYHj0/LlewdbkTaZXojXNm2VqeaDZ5HqVnEt7NAivVJGEid5B9sj2raU85ZX\nmKsFy4HSre/Ltq8jR5D6WnPXfNGv9zWkALooTXnxPVaeMn0tntsBKxWbX8uuwzzteR7zLRaSqeZp\nmUgbjA5DhlS0Sub1Vd2GcVlYDevL537676JfQQ7SLme/HzGl56VLoh+PF08FjvEfkfK9oX1IUaz5\n5rtNshk5hs+z7ep7yU41NobrtuT9K0W/w79GWv7CuyFZXGOlZfe+ivTti4/COrdkpbzWZWvrnHbf\nmzhm9ATmvC1NGD+DOZs3F2nekyPSRrerH/1yE4i3Mb/sZ1KQLstxKKdRSjPCPUhJDbZjnpdtljH/\n+C+RHj5/q0kquZR2n54n7Z7Dg4gdnC6bbaWXjxzHPOU0ZR6nxkh51tg5XEuWNBhjTF4z0qAHSM7o\nJVveyKCUBHrpvXObEFNO/PAt0a/xbkioOOU7p0qmefNrdDtN1Prc4g11TtvtwRyIWVa2PE+vBtn0\n/cfPydjmKcL9WvuZjU47YcnYDvx0j9NuvhWyl+xcaXe6+TObnTbLi0as92Mb84P/sctp7ziG+fuB\n99wojtn1CtLrS3Jx3us+u0n0e+KfsEeaW4n08ns+Ly2yW36Fz/Itwbjyzrm8JKJ0GcZI966j4rVT\n2yHJWvrAZd/ifwRL+K4kExhrkfeX4bVm7w+xt8nxyLmdQetu7xuI1YXLZKp+HkmMRk4g3tdvwRgo\nnSP/Ltp1APd69BTW+um4TK3PnYvYw/tIW/7U8TSueaQHcajsRrlGDO6BBCtOkv88yzrbT/uPq0Hl\nTZCdTY5JyWuwEzF/Ko7NSSIq5dgBknezBJstqI0xpmwz5maUbJ2HLEvlYRdiNFvnxuNvL4Mwxhg3\nyftYXlT/oHyGmIrzvMe9C1sSfW81xnTlepyDyyVjY3gC9zHYjXWR5T/GGDNCdtBvJ6V4JyQo/tt7\n8qGDKOuQRlIyew/N6x/LStIL5Fwc3AWJSRHZ0vN3N8aYYT/GTqkX129OBfbqbA9tjLzXQbJrD1nl\nBPgc8pfR87Hl6cx7zP6dbU47Pir3xtkN2EOz5HjSkoqLfaPcGiYFVxrePzxoSYCs/d0f4ftrjDEr\nP7/BaY/RcwPLfIwxpvXoq067eiP2+d0nXxP9uGTBFNl287NPtiVlz6Axk34c7Vl+uc+I9GHO8XOR\n/dsD7zdzqrCv8li29tNU3oTlXnYc+n/Z2mvmjKIoiqIoiqIoiqIoygyiP84oiqIoiqIoiqIoiqLM\nIFeUNeVSamOoR6Z0hbvwb08lUuwmLDeD2uWooDx4EClS3Tuk7KDuVqSWjhxGOuGlN2Wl9TQ3Tvml\nnyAl6lQn0vrWhmQa9eEWpOrXb0Nl74mITBfrHkGK7Lwq5PwFTsmUzsKFSDXcsBpOJZyibYwxCUq/\nilDF7okLI6Kfb6F0vUg2TTehInawU6b9cbV0ThPNttLmzx5GyucXH7zbabutKt0VVKm8mFJGRy4M\niX4HL+H+swvTb59/3ml/5UMfEsfsIvemOQvrnHbJ2hrRL1SECvfjdK1jVnpg4x2Q/bRuw3unpMgU\n4awapIpn5CM9jl1/jDHGWKnFycRLLkIsBzLGmKaPrsZrVIm842lZMT9/KVIvs6pxzbPKvKIfp4Zy\nunQpjXVjpBtBmKrp192P9P7JUZkGyal8+38J+cTctbNFP5aLBIOQES57UOZx5lRT6iGd6+wPLxP9\nRmn8sSTTUyXlJhmFMn022XAld5Hea4wZp1Rsdrbj9HxjjJl7PeSc+38L+U51oZQe+Sh+l6+rc9px\ny63p7A/24bPoGm4/DreSDbF54picUjlm/oi/OyD+nU7xOhFGfImNy/TW8X6sJ5mUVltxe5PoFyLH\nE5b8dD4hx3r9Bpm+n0y8dfjchCVRdZNLWNEKrCGcpmyMlBhxKndGiUyRZZcnnqeudCtd/ThSpzl+\nsfzJTt+eJMcsduyquX6W6BcgB71CclsYOd0r+mWV4/x4LLMDjjHGuDIwJnpIzjxlSTgyrWuRbILk\nUJVqyclafwdpTscFfM9rPrFW9PNl4f64SbLZ+tIbol9qGuZwhKQLtqvY8R/sddqrvgwXl/wf4z5G\nh2RMbaa9SngS88p/Wu5b2GmqntyLdv58l+h327cg53zxa3ByuvbBa0W/lmcgnRk/h3XWlkDe+I0P\nmqtF/f2QabMbkjHGDOyE7IBdeeres0D0m+jEOGhcjL2E7YrCKfmV1+Fz2Q3JGGO690BGXrYGEhqv\nF3F7dFQ6QXlonnpo3Hf8/rTol1GMz8qdDfkFu6gYY4yPHJ947zBpyUmryEUn1Y050PGUjKdFq5Os\ngbEI0r3z1kn5nDsL966QHE+ClsyEpfL8ne3Yy3EmSo4zmSWWVKgf8qXR81iP666DI1rIHBbHzL3j\nPqcdiyEGRiJS9uH1QgZ48ZWnnHbxCnmdR07juSZ/HmJvz64Tol/hUsh0fLMwLgJnB0U/lm0kGy85\nfwVOyNjDcY6fGdK9snwCO65F6PqPnZXPD4O9uLbZJBUaPy+frRo2Yi3jZ7AGcluLDss50fbU2z8L\nFCyQz2mF5JoZIvlT3HKNY4c1dlUL98nxy/GFHY74WduYq/+82P7USadtr4vlm7GvyshC2+2WEqBI\nBC5mdatvddojA3tFv5pNq5x2aBTx2pZpFi3B+B54C/14b9GxRzrMPXcYc7OJZGzrNywW/bLoGaBg\nMRyebNkkj5Mxcq209/FiL3UDnkMiY3IMx609sI1mziiKoiiKoiiKoiiKoswg+uOMoiiKoiiKoiiK\noijKDKI/ziiKoiiKoiiKoiiKoswgVxQgehugIXRlSu1ZHmlaTzx8yGkv2izte4Mt0PPmk+1t4bJy\n0c9DevrsWujxiyekXrT6TtSmmUvWbW1//7DTZgtnY4x51yro2g63QpfWUCK1e2vvhNXyFFlcRi37\nMP7ufa/i/Wz9ONdzySZLU6698N//lt8x2bB+z9ZDcl2cIFl/584vEv02zVnjtKfJznD8nNTReaju\ngIu007mWvm74KHSUdcXQYX72ve912iVUi8YYY/78k/c47Ymz0PX1v9Em+tXdBz143jzcq/YnTol+\n/Ttw71yp+J2yYL4cF1z/5BzpMfNyZE0EuxZAMuE6F/FxWTOk5ffQVk4OyHo0DNesSMuGTjJwXt7D\nMbKVnSbdffkNshbFyElYV5atRW0p1v5PtEgNsDsHGuPaesSApjukJXtKCuLNcM9Bp51ZJK8560J7\nX0Udo1zLCpQtJTNJt583V97rwf2d5mrSvx31r2wrPa6vMngANZ54jhojLSuvuR81eGzb1cgQxsLY\nKWjPXZaFN9fD+Pentjnt922AHWJ2vrzuL7yBWjfvej9qY0RjMpbNu4VsmElT7a6TGmXWwmeQNeGU\nZTWclovxM0rfKadJxt4c6/2TyeBB3JvcWbK+hqeIbNrPQnfPNozGGFN+Hay/uVbCqFWbi+07c6hO\n1KVfHxP9DI2l+vtwzVkn3f9qmzik8jbUHWGbx8E3O0Q/Xj947JWsk7W+0nNR0ybdh/v0J+OX7mn+\nUsQAtqc0xpiYFeeSTV87xs/yT6wRr2UVoa5co8G8OvUfr4p+JaRRL16I+evPaRP92Aq0qBZjM69O\nWsDnNmI8XfjZfqd9ug1xaetntshjqqGnP/idF5x2ZpGshfKJH37caU90Y5ytuG2J6DfWgbh+3Zcw\ntzNz5RxLfx/u8cgx1DwqpPoAxhjTtROxIv+OFSaZcAzt2XZevJa/EueRT3u2npdlHUNeK3j/Yu/7\nDM2RYD+ukcuqNVi/CVbnAxdRY6Evjthq26pyrarhI6hPUnWPrPU1TuvpwB7MU3s/zXUQ0rJxn9p+\ne1L043oLvdupDmTCsnm9suvrOyZM9UDGzkvbc66nU3QN6t75j8iaV7xXGdmHGH2xr0/0q6N9v68J\n8y02LvcqHMPI7dq0vLjdaRevkjFwfBy1YHJyEIdH2w6Kft0tuA88fuJhuU/mOmFdL6P+UMka+blc\nP8xNezvb6pvrgiWb7ErE73GrriY/C6XS2J/okOti4DjmlY9qvASHpMV4YT7GbZzWpOq75XwZfAtx\nc5TmTqQX9Wxae/rFMWNUs5Rrj158q0X043pjXCdv1Kp5Wj4PdZK4jpErS96bPHrumIphjSy5rk70\ns2ubJhuu4WnHKbY+73gZzx1sZ26MMZO0dkf9bzrttBxZY2hiGM9gXPMqu1zWghw5iTmcmo69Itdm\nLCyRe74tC/EcODCKcdZ5RtZ/mkuW2V3PncP7rZTfSTzPV+L8YtYzdSk9C41cwPez6/YWLpUx20Yz\nZxRFURRFURRFURRFUWYQ/XFGURRFURRFURRFURRlBrmirKnvVaRx2SnMTFEB0tn8x2SKWNcwUhQX\n3QALQ9smM5MkLIko0o6aPnqNPKc9OKc8siV78H03OW07la9tF47ZdMNypz1pWaixvWuoA9ZolbdJ\nO9fsMpZ7IW0u0jch+rEsrP13kNSk58nUrtxrZPpUsuG0v4LlMuWY7eoG+pD2V7BS9uMUUrYfbnyf\ntCwe2A8LtfQCyIGi+2Uq2Qc+fIvTDpxAenl5PlKnp6ZlLm3lZqThu2/AuIiMy7TVUB9Ztj+NVGfb\n4rP3UJfTLluKezBxTqZk5lLqa1EV7ulAp0y/ndtQZ64WfpIQFa+oFa+xbeEUpXnP/4sNol+E5H5D\nh3E/Mqz096YHkDYfiyFtMDNTWmm70vHb7tAhpBGzVWX5RimFSklByEmjtOHMTDkHpqYwF8tqtzpt\nv3+P6BcLYQ5ns5TFSsPOp5RRll1d+sUR0a/ugYXmalJBUpK4JW8MkB1yEc3TiXYp02TLzzSyomTp\nljFSEpTagGszeFjOxSqSq/1N7fucdno+Uqptyd41s+i+0phjeaAxxqSQDXjgCMZwrXWdO3aT3JTs\nxm3rV5aHtndfwP+PSgnM8Al8Vv2iB0wyYQmCLb0J9SL2cJpu2QY5Z9lifmAX5An5VqprmGRNw5Sq\nH5mIiH5pZFk+QrG66ziOKamW8S+LUofZCtROy65YiLE4Rdbh/hNyrXdfi+vC8pCJNjl+h2n8laxC\n2jivU8YY0/dmm9OulktwUgjQ98wskOn+J/79Zaddfz/2LbaFOcfOtDRc35wqv+j3wn/g/e78O0g4\nx/ukjHLsEtaUKMkAFzTVOW1vlZRsniapVY4X59OyTdohFzfjnLwkwQ53y3TrWABjq3g19n0vf+1x\n0a+6GNLnyrsgN+94Uto/X01JDMtabZkAx/yWhyADLNsqpWScus9SFtsO2NeM6971LPYV8aAct2k+\nXPciHt9hXP/xC3LvUHMzpGUFi8jq2Yp/qRRPq27GpGh9WFpze+dgn5K/ABI9ljIaIy3vJ/2479V3\nzRX9up5Gun+TdJNPCsUrsP73vSEtcSO9kLSkkQ2zbfM7GcF9yCYr4tkuuZcNRxCzeazbsmCWfPHa\nyv1afnVUHFOyieTdudg7ZVdImcYASfFZPmHLeDkuR0mmPLi/S/TzzcFc7N/V/rb/b4wxYywzl0Ph\nHcMyu5xGKYFMTcP6FCTrelvaXXkLTqrvNZK8WPuK4vVseY9r1vqInAelG3E/MorwPFK4COus9y0p\n403QGsdj4OLDcu9ZUYFr652D2D++p030y6I9S7AV3903V9qmR2ksDu7EOVXdLhe/8VZaW6QrdFLg\n/aYt2anYhPuT14y4kpEnbeijAcQtlmrbZQnSfdhj5pUuctqRiJQsFi3CvYtPYh6w7M+2vp7ei3la\n3QhpWaH1vC1KHtD59W0/KdbQAAAgAElEQVSXMrayG7Bu9O/EHKvY0ij68dzk/YFdjsKTV2quhGbO\nKIqiKIqiKIqiKIqizCD644yiKIqiKIqiKIqiKMoMckVZk28+0jgjVrVsTkHOKKHUXistb8P7kKo0\nTOnWnKJnjDGxarx/Bslh4mGZvu2bg3NqoVROdkoqWi9TyMNUJTmjEOcavCTTrbNIFpFC1dmHrBTC\nwQRSznzkAmBXjx9vRQph7bvhYnXqocOi38CT6Ne0ziSdfqpYHozK1KrSGqTmVS1Emt3552Rqck4m\n0seKqZr34CGZlp1F6aRcnXoiIu+jISlTLI50tPJ1uHeeCplq7j8L2cfYecjECiwpALuD5K/Aa+w6\nYowlZSL3p9wFMm18ktINh7pwr+bds0j063oBMos5G01SYccClvIYY0zp5nqn7aJU30uPHBD96u6H\nlIRTgkvnXt5BIzUVad7hsEw3dmchxTiH3KSyS5BCmJkpU4qP//i3TnvBx+502kND20W/y7kPTI7J\n8StcUBYh7TA8LNPGu7fDoSNKzhC5zTLtd7ydUkZltmJS6HkO51Fxq5R8cSzhuTN0VMaVmluQ5squ\nW707Lol++UtwH9LzEVOzu8ZEvxhfU5ISctyM9sl4Xbm8+m371W2QF+3SC2ed9px7MP76XpHnmpeP\nuT60CzHFliKOHEUMqL0BKbZDe2SMrrz+Kty8/wuntY9flOOMlZjsjBcZlOtnNjkvVdyIcZDu84h+\nuSTxiszFWO15QTrOlFD6dgotXj5youl/xZILDELSynMsm2K9McZ4yZGK3caMS8ZTjrtF12AtmYpJ\nuUB8Ivq2xwwflfLU4lVSRpls7vz2h5x267NvidcyaQ+y60dwm1jxbhkr2bXhxE+ecNp19y0Q/W76\nNFyPCirwHp0HpPsTOzlO02AqvxHj+cT33hDH9IxgTZo1B9dsMiDlSpcO4v7734BbTGOpTK+e/0lI\nhnsoboYnZYo7r60XHsNerHSZTBtnKUqymejAHi7VchSN+hGzZv0Z5NdDh2SsSKPU+tgoxmreQunk\nN3oaexZvE2RDPJeNMab9KcQ8DznP9ZAbUsVWGZ+GT7c5bZZZ2U6eLKNkCVxmhZQVZFB6PktHbIks\nu1hxOYCMAil1Llx1daX33S9i71Rkzfu+YYo59F1SLYlhJV1T3of2WW6eOTm4d9F+eu6wSi3k1qNf\nqA9zyU3jJb1Ixusxci+dHMYepuJmudaz7Gf0DMbVVFw+P+XQOWTX4PlkzF53Ehi3hctIEt0m5ZW2\nk1oyySAXzJxq6ZzDUjUflaPwW88PQZLAujLxeJrbWCD6BUhSGxtDXGKZizHGGNrzsxy57XE8Pwz2\nyDIGLM1uIIee1bcvF/14H8mSwIYbpQwpRPstlq2xc5MxxnhK8Vnsjtz9rHShq7Yc3JINl6MoXCrH\ny8AByHkKF2N/GR2V38VXj9dcGZgT/uNyjecHbXaiK7mmTnSL+Gk/fBCy6Dl33eG0uw6+Lo5h6Zst\nn2PCVI6En5+aPiwfxodOIg6lZmBsxiMyRk+Sy1/BEqyR+fPkeuJvaXPahYV/+uCvmTOKoiiKoiiK\noiiKoigziP44oyiKoiiKoiiKoiiKMoPojzOKoiiKoiiKoiiKoigzyBVrzvS8Ao1Vo20xS1qxwFHo\n/0YsnXPiaWioU8h6t3RTnegXOAvbwvYd0Dk3WvaIbdug560mC6uRQ6jLcOB7O8UxNSuhx+/cCe1j\n4x3zRT+7LsAf8V+S+s6CJmgmhdVpl9R3soa1k3TIhVXSZq5o9dXV1scS0Dl6PVIjy7Zi0WFotH1Z\nUnOcvwwaQr5ObGNnjDEB0mVn10J3WjJL1nHJWwide4isjVtfk7UUmNI5OIY1xTGrDsngm6gJxFrc\nvKVSW891hViTaOtW+TVWLtrjpfJGqStOJmwp3PWc1KCWX49aK9MJOkNZEsIM7oe+N5fqSJx+6GnR\nr/JG1PJga2CbGFm9FizA+Dj7n685bU+1rBuUS5aD4TD0qz2vSds61uaGWjE+Zn9M6n7TSCfft/ec\nuRzeWdAss/Vd4Oyg6PcnmuWrSNuT0uq2gepUjB1HPCyYJ+cO22ezTldYiRtjBnfjfpdtQV2iYive\njNI14LpMRWTxOdExKo6JkF56nMZI8Rr53rNvR4xlq8PRbvl+3mLorQuolkXnq1ZtmmrEzpH90B4n\nrFpnqa6r93cH/h4Jyw69bBPVfyLNPFtLGmNMei7GWbAH18+2ruSaE1lkT23XNOH3cHsxJwKnMI7y\nl8vaXFxnJofqR2WVDIl+vMbl0TqQO1vWa+K6dGGq0VC0wtKt75bWpX+kxKo10f0C4lzdArv3O+fY\nvz3ntMu3SHvlkjXQq9fnwK/U7Za1PXp3ozZbwwOoQXbuP616X7R/Gu7Ca3lNcm4HKHxX34raBTlk\n21pzxxw+xEw/jb2FdzbiXIpVE4gtn6//2P34zI520Y8XxsqbcA41tzeLbhd/echpV6zBHitqrYth\nrnF1i0kqeVSD0Fsr91VjVPOP7VILFsl5EDiDOZJHdQH6d1/+urD9uG3hnU5zKUb1lbjOG5+bMdJq\nmfeKjR9aKvpNkPU1n085xR0brtMWG5V7pSDdm1AXvpPPmtv+Y9jjm+tN0vEtwHXnWljGSCti/ymc\nx+SwjKlFy7FexSkue8rknM0nC+CRE6iBYdckDA/gPEZPY4wUrri89bWb1uaidRibHGuNMSZCtW6q\nqIZcsFvut1LTsI5N0DqbWSzr4/jJ9t1D9Ye4noYxst5SuXRyfsdwPU/b1ji3icYTXeaCa+Ta4PJg\nLrmoplDn03Jvx3telwfrLNcwM0ZakRcswto1NIHrUDlfxoNsqvOWQbX67HopbPHuysF5Z1dL23Su\n/1R0Dda4ceu5ku8hPxOOnbfWY65VI5eCpJDXiOsx3iX3xylu3LwUqs2TVSCfrUbbsca7qD5L5Q3S\nv32caiLxXmW8Q35ntrhmS/SxwAmnnZiU975gIX0PirdcL9cYY9K8mJteqp0Zi8q5yLWDiq/F5OHv\nZ4wxdXfjGcV/AXtwXmeMkfvDt0MzZxRFURRFURRFURRFUWYQ/XFGURRFURRFURRFURRlBkmZZr9G\nRVEURVEURVEURVEU5f9XNHNGURRFURRFURRFURRlBtEfZxRFURRFURRFURRFUWYQ/XFGURRFURRF\nURRFURRlBtEfZxRFURRFURRFURRFUWYQ/XFGURRFURRFURRFURRlBtEfZxRFURRFURRFURRFUWYQ\n/XFGURRFURRFURRFURRlBtEfZxRFURRFURRFURRFUWYQ/XFGURRFURRFURRFURRlBtEfZxRFURRF\nURRFURRFUWYQ/XFGURRFURRFURRFURRlBtEfZxRFURRFURRFURRFUWYQ/XFGURRFURRFURRFURRl\nBtEfZxRFURRFURRFURRFUWYQ/XFGURRFURRFURRFURRlBtEfZxRFURRFURRFURRFUWYQ/XFGURRF\nURRFURRFURRlBtEfZxRFURRFURRFURRFUWYQ95Ve7G570mmPnOgTr6WkpDjtxGQCb5gp3zKryue0\n46FJp52emyn7FRc47eFTHejnk/1yKvOddrBv1GmnuvE7k6fIK44Zaxty2lPxKXxmmeznP9XvtKcT\n0067fG2T6BfxB5y2Oysd59M9KvplFmXhmJGw0w73jst+xdlOe/bqD5hk03L4Yac93uIXr6VmuN72\nGE9pjvg3X7fUtLc/xhhjUl0YFzlVhU47MRkV/cJDQaed4fM4bXdWmtMOnB8Sx0wncA4eumZp3gx5\nErh1JjaBz+XvYIwxrgyM1chwyGnnzS4R/cbah/FZ2bjf4y0j5nIsuO2Tl33tf8LJZ//TaQeOD4jX\nXJm4H7XvanbaaVnZol9kdMxpj13CdwoclnO78jaMdx7f7Y+fEv1q753vtPteb3Xa6QW4nzy2jTHG\npGJ8cAwYPTsoulVsxHunpuIcohNyTPjP4lqULsd5j3f3in5pORgj3S9ecNp5C+W9Hr+A67LiI18y\nyebr73qX037wr+4SrwW7cH+qNi522ikpcr594sbPOu1/e/QrTrvtN8dFv1dPnHTaZzo7nfaC2lrR\n75M/+pTTfvzLD+H9BnBtF9fViWOWv2eF027ZdsZpF88vFf2O7sJrd/0TYlv3m/Jcx8/iuu87dd5p\nN1dViX5r/vbPnPaZR5522mPtAdFvyRdvctpFRRtMMjnwk+847ZGWYfHa9DSCj68ca58dM9N8GI8H\nX8d9ml1WJvp1DuP9U2nNXXh9s+jXsw9rZsUKXDOXB/H04qvnxTFzbsUci4diTjvULtcxt5di3kWs\nHz0jMv4tf89Kp3388SNOe2RiQvQrz6c1PBJx2rV18runpuOarfrsX5tkc+qFnzjtztcvideOtbc7\n7Ts+vtVp97zSIvrlzSly2jm1eU574PV20e98V7fTLvRi35GaKv8+VreuwWlz7Ox58SL+n/YVxhhz\n4Rzm9uy51U77zKk20W/pZowZjtGhLrkfiY9jzWw51+W0m5bVi369Z7BuzLp5rtN+5r92iH5bb1vl\ntJe97/MmmRx/6odO2ze7ULzG+9LAKcSyjEJ5/TJLaI2i+WtovhljTP9rWON4XnlnF4h+sTFcv9g4\n9rxhmleZFXJ/lV2PsZNZhPOJTUyKfrw/8h/FGldx/SzRj/c67b9DfHH75F4pswznkZaDee4/IvcE\n5VsxLhuWPWiSzeGHv+e0i1dWitfaHz/ttOd+fJPTjkVlzO/cdtZpD7cibq78y5tEv97dWJPK1y6g\nV+T+sG3bYaft8mCv6KJnnBSXHCND+zDPaSSZnOpc0a/mjnlOOzqCvWd4MCj6FS3AfU0kME+7Xjwn\n+sVGMeZ4LGUUyLHe+xLi3MZvfMMkk4M/+67TLl5VLV4LD+B7xYM0J/rk2lC6HnsTXpOCnXJNCtFe\nKYPiob3fnGjFelV5w2yn3f0S1sKStXI/ZOiWBk4jbuQ3y71NsAfn4ClFTB87L/eybnpmCHXjmJRU\nOXb4WdmdjXk+0SbHOY/Fhbf/uUk2J575kdPme2WMMZF+3MdpijH171ko+vW8gnGWWYIYw9/LGGNS\n6Lk9RPc4xSXXRR4L5RuxDo3RM1ioR65jk0OYV6XX4RiX9cwb9dOzOY3HKB1vjDFTtJ6ImD8tupmR\ng4jL5TcgbvK9N8aYbNovNCx5r7HRzBlFURRFURRFURRFUZQZ5IqZMxMd+MWOf803xpicavzKNzmK\nv37FrF/asigDg38VdlkZNhO9+LUxtxF/ARm7KP8yGUrDr0855firVf9+/FLnKZK/UifCcafNv9yF\n+uQvbVMx/BKYPx9/UR863ib6+Wbhc0eO41eyvHnyr/AR+kXcRX8FtDM9+C+EVwPOGsi1/rrE2SiT\n9Bcf+xdtzkyaomPMlPzZMI2yIYJu/GrNv3waI7NWuM1ZAlOxhDgmuwL3lb+TDWdo8XeyrzuPreKV\n/Bd6+Ys2/2Iam8L7ZVh/wfQ1yPufTPive5yxYozMbvGfQfZXIiyzR/hr5c0tdtrlK+Wv3oe/u81p\nz/vYSnM5Orfhrzfj/ZhLJUsrnHbE+ktQuBfjqv5eZIe4rDlw5vuvO+3mz+Ev15Fh+X4ZefgLcGQU\n9zOzUMarxCRiQNmmOqftLZd/Ncmq6DZXkw99836n3f28zGRY+bm/cNqjo8g8mJqSMfUXrz3itL/7\ngb9y2g984Q7R79Of2eK0z/zoVadd+26ZdRGdQJz/8H/+q9OensY8/8FHPieO6aa/5D976JDTvt+z\nVvRrqsFfQUPDGJs1160W/fbt+x19LmLK3vPyGq13Yc5NRTEvx8Jh0e+LdyLT4te7d5tkEgsgBuTX\ny7+a8198IpSRkNtcJPqFezAPPOmYv3nNxaJfUTauX8cu/OV+4pxcF8uXI35FBrHuXKIs1Iw0+Vcr\n7nfyTfzVecnNMh7E6a/3HUPIXJuzoE702/ObvU57zYPIlnj5Z6/Lc23CXyCzqhDTOVYbY8yhV044\n7VUm+UxRTLD++GVu/wjmzqu/3um019y0TPTjvcVz//WK077jL24U/Y7/qM1pz9oyB8dH46JfqAN/\nPRw62IPjKZNnywo5d5bNxZp+fBsy0qoK5Njkv+B2vYoMoHFr7pRXYaxy5taKedeIfi3HMLYOPYEs\ng1lW9lcGZekkmzD9tTQtV67vOTX4y2TBknKnPbS/S/QL0j63YBnWLiupyWSW46/jU3TfssplBnb6\nHMzhvp1tTrvmfmRpjJ6V2a88ALufRczjLAhjjMlrLqHXkIHW8rDMRPQtxDlw5lvF9Y2iH//lmvdD\nU2E5Ll2edHM1CVJG95Q1J+Jh7B0Pffd5p73oM2tEv+I1yNbgPVtoWGbbRocx3mMRfG7/bpntxhlk\n2bV43uExV7ZRZpMVU9biKD+7TMsIk+pCLO5+AZm8Yb+ci5xxyfvXREReI98CjAvOrvI1yPWk/dmz\n5mqRSUoE+7mteCXuTeAcnvXKNtSJfvxMxt8jYj2P+Obje0Vpj8mZz8YY421CbAz24tmRsxYiQ3JP\nyc+f+QuwVvFzrjHGTNK9itFYyaF5aYwxA7sQJ3Ma8Ro/UxljzPglZIFwVkrVrXNEv57tF83VhOdH\n5VaZkRfswfrkP479XOtvT4p+hpQnnGWY4pbPVtEefFZGIdYJWzHDGWA9O/D9q26mtTQsnzGLr8He\nafQcYkBWpfx9YHA3Mk/zFmEeZZbIuZNDmU0tlKVe+275PBYlFUbvy1hnsxtkLO9/Ffu5hiXmT9DM\nGUVRFEVRFEVRFEVRlBlEf5xRFEVRFEVRFEVRFEWZQfTHGUVRFEVRFEVRFEVRlBnkijVnWPcV7pea\nP3cGajqMtKOyeyHVmzDGmKGj0E1znZB0Sx/MtSPcGXjN1yS1+qxX5ErSXJPDf05WmmctcnYFdGOJ\niNSosVZsopPq7VjV/VkDy1Xxp636K5MB6Ony5kLLZrtEDR+zaoMkGa7dMnZJOmwULISmks+/sFlW\nWw8NQps7Si5KrMk0xphMH65vSgqG12ib1HmPUxV1vp5e0on7Zsn6OHytw0MYj5MBqQXlax0eQD+7\nbhJX7R7YT7rDuVJrmDcbenWu/+FyyTEc7Kdrm+TyM1xR3K7fwzUhSq+FY1E8KucsV6iPkX6y88Rh\n0a/mFrxHWjbmZeMHl172nLqp/gxro22NaflmVC+fmoJumusOGSM184E2aHaH9slxFOjAOJp9/yKn\nPT0lx8QEuflUb0LdiAuPvSH6sW79alBch+oZb1x6Tby2IIwx2PLEfqd96rB0krn1m3c77b957KdO\n+/jDvxT99j2yz2mvuBvf+Xtf+Lno99VHv+W0/+qOB5x2IoG4UVMs58TyL6Nfyndwjxs+JMWzvVTb\norAKNSva39ou+j194IDTvn8t6tb4Laeff3jgM077sz/5mNOe7ZZ63v0fvGCuFtn1mDujJ6QzQ/4K\nxAo3uZ8MHO6R/WaTyw+tdzGr7sqFvbj35QXQqyesmhCsc+f25CDmqKgVZoyJUdxcsB7a7ckRWfeA\nnX1WvR/jN8Vys1lEtS3YOWHTvVbFGFpnuJ/tolBfcvVqeBljzIHnjjrtlbfJ2Hb8GWjK2SUr2i/r\nEwx0osbB7Z++wWmPXZTr7OotqK/lKcU6tOfne0S/5XfjPDKp33I3ro2nQmrme7YhrrPjVX+3rL+w\n7SHEm7I8zJe1H5S1O7j+17w+xM3R03KsN65AvY3UNKpJNylrxaWkXb2/AfIcs8ftBNX5GNmP+Ve0\nrkb04/qJXGdxmGoqGGOMm/es9N4THdJJxjcbaxk7fgzuQU2T+IRcw7kWRQnVRAta793xBzgN8X3K\nsRyjeA3OqqH6kOMyvoxRjQ5vA87BrpE1SvtuM88knfr3os6VvUeN9GHOBaM4/26r9kbZBtSPq7sX\n9X3sOnXhTsQc/qwUy1GP635wvOV5OWLt3dnRJ4ucsNj1xxhjBva3OW3vHOxzq629Z4TGDzuF2rE3\nwm5ItB+0a84s/Kyc68kkSrVbcupk3ZU4PWvx88h4u3SPza5CXOJ6mMZyNgrSfo7rlsWtdZH3/J5i\n3I+JLhzPblnGyGfMgvl4no1bNU1Cnahhw3VD7T1ByUaMy4w8PFP3vdEmz5WeYfn9+nfJfoUr5DN2\nsknPp7qhPTL+jJ7BdytZjb2yVVLJ9JN7q4/GtF1b0kf7oMF92P8WL5G1saLjuF88TyfIIdmuCSTm\nHM0XfvY0xhjvLIxVrhkYttyfuLYRP5/Yaz2VajTe2XjvwmXyvvlPWXXHLDRzRlEURVEURVEURVEU\nZQbRH2cURVEURVEURVEURVFmkCvKmtgGNzYh7VxDA0iHLFyCdJ3RC9K2zlOMVK0opZ26M6UkpH9f\nm9PmtDxjpe+xFXQm2WuFKaXuSpKprCykSw0PHBX92Gpygqz92P7XGJk2ztKvjFyZWp++EJ/bvxdp\nXt5GKdexLcCSjUjHs6RXbG/O1nWTQfmdOeWcU9NGjksJWe4ssrH2k8W6NX5qrluB84vjHMJk3Rmb\nkCm443RP8hcifdvtkWnULLeZHMV7DO7rEP1YguchqVl4QKbBsk0eWzSPdcqxPp2wDVmTR/lKSHZG\nLllWevSxnS8ec9rxoBxXbMk3sBfXYuK8TMvrPwDpUAPd696XpLxm/qdgN5tRipREtocdOyRTPPOa\nkA7IaasXfialVcXrkTLJ4y1kpRqWLYdd3sXfwXp36Re3iH79r2H+DZVAghUflWPMnh/J5okv/ZPT\nvu4L8hwf+ux3nfbWj1/ntLdsknadz331Saf94PchFWq8S9pY730dY6FsBez+bl7aKvoNnT/ttDfM\nQ85648bZTnvwgLQYDwUhV1rwuc3mclTeiPc498xTTnvirJRc/O9HYQm++9svOO25ty8Q/UJP4H6d\n/QGkXz0jcgx//BsPmKsFW4ZOtATEa4FjkEJMxzC+JxMyRmUUY+2KT6Gfd5aUJzRmYol2ZbJcQko4\nWOIb7sUcyWnCWuWzUubZppVTgida5LXkOXHuD5hjDVubRLdz+xCX5q7Ba4GjUh5ysgXyjmuvhwxu\n3w65HtvW38lmcAxp6bZUtGkVLETd2TiPljdl7HWR3/JL/wkr7eWL5bUZ6MY1DV7CmGleK21S33wU\nduTr74ccLL0Ie4mAtebmNGHMsOWsbUPfVIH17kgL5m/f9+QY3rJ5udMuKiPL2S4Ze9mGuXQLYpQt\n7x79f6RvvxNY1hRqk98jnyTb/kO4Zvb5BE5gfJZtrHParmxpH80ywFTaD41a8if/QUhdeP5llkJW\nYesA2CqWKV0rJVgFi7HvERbTD+0X/SpLsMdkWVmuJRUvWYV1dqITEoFUS37AEo6rQfdLmFeZJAcy\nRj4CzH8Qsr/hw1JSlOnDPOigfZBvnmWJS/dk5Ajeo5TkZMZIyf/QQax/kyMYB7V3SxvdwHnsd8qX\nrnTannwp0ZwMIh7EKPb0vCTjy0gn9ryLyTrcvkY5ZA3Nso1gr5wTCZYclpuk4iFL+VzrGad/dxvO\nIYpz4Oc5Y4zJoOepnldwLfIWyOsXoTIbQZr3hSurRD9+PnO5sHefmsT+I249m5SuqXPaQ8ewr7W/\nUw7JAHn98DXLcx3a2/m2r1XeNFv0GybpM9tZ++ZJieHYedo7LTJJJ4UkZANvSnv5olW4viyT9h+T\na1LFDVg/uRwFlzaxmaL90uBR+azBz+Y1N5MEsgOxN6NIxlAuHyL2TlYZjLJ52EO7SR4fCklp/MgF\nrJkBWkPY1t0YY4IkjS25Hr83dD4tbezzl115AmrmjKIoiqIoiqIoiqIoygyiP84oiqIoiqIoiqIo\niqLMIFeUNXEaV+CMTAWNR8hphSpxp1hVtbl6Nldg9l/sFP0KFyHFJ9SP9NmCWTL1Kz0dKV7T00iP\nK61GulUiYTm1TKDCfTjc5rSzy2T6WXEDnGTca5ECFwjIlNHwIFLq/CeQzuXyyNR/dxZSsQqXVZrL\nkb+g7LKvJQOWgpSskmmyaZlI45qagpwn1C+rdMcobd7bQKn38nabzHxywwoj5aywuU70C3QiRYyr\n0HsKkSo4fPS0OIbTW4dIepNZLF2YOMUui5wY8hbK6zxC6cyFlC7szpDpcSNncV/d2RjrLN8xxgh5\nUbLxtyLNL6tUprS2vXbSaVfdgTT57udlWjunUofacH/rHpDSkWG6frl1VGn9ThkuvN5mp51ZjHtV\ns36j0566TsqGhi/hXF2ZkAukF2SKfhdfgvSoqJycLNbL8cvp6nnkEHDou9INqITmWOcLSFec+9EV\noh+nP14Nbv9HOAx96qY/F6/dthxygl/98x+c9qe//2ei39oPIL1559f/1Wmv+/svin5bHlzntF0u\nOBrkW/KWv//sD5z2j176idM+99iLTvvp/TIGVp1H2mpKGlK0J1plGnUlpXWOnYYMsHRzneh38SG4\nNVUvQqr98B7pznX3d//OaR//xa+d9sljx0S/lfFrzdVi4PU2p52/VMYUTrEOkcRkYFTG06J2/Nsf\nRNw995yMeQvegzR+TsFnWZQxct0tvgZrIbt92C46EZICT00ipXj0nJSczfoQzqGJ5BdjZ6RksXnT\nXKd96nWk8M5aVCv6GYR+M3gC36myUKaNW0tL0qkpwl4iaMnThodxf1gyt+6ea0S/cbpWaS5IQdLy\nZDwbOYexcLEPMatvv3SOKCUXpTZK6z/Xg5T3VYvmimPSaSxkkOPHrRRPjDEmux7vfS25U+3dJiWl\ngTack4fk511DclxMxrH+5Y1gHsTG5P4rd65My08mE3T9q++WNkLtj9K6eA9e6yMHOWOMSYTwPYYO\n4TqXbagT/fynsV8QMugeKfnJm499pa8UnztFDoLhCblXzPFh3Z4YxdrHrjLGGJNKUjLe59Q1SSeQ\nwpXYb775s51Oe/IRuR7X3IWxNEFyGJY7GWNMer7HXE0KlmL/3/9am3it9Lo6p932+1M4ZomMvf37\nsd/JI6nBuCV3a9tkxAMAACAASURBVNkHWe+mr77LaV/4zS7Rz+XBXqCMXCZ575ntnSWOMaRSbH0R\n7mg8JowxpvMPiI9Nn4T8Kc26zrOvwX2cIGejVMvZ7vyjJGEmqXfPi1ImNe9jl5cgv1NYWmWPW5Y8\nsYTWWy9lvP6TGNMcyyKWWzDL8xK0x7cd/7gkQSKM/UcaySFT6XhjZDmF+VuxXzv3xi8uew6+cshY\nO3e9JfpVUjmBCD07nv6vA6Jf7U14D3a0YrmPMcaUrJZ74GQTG8eznqdSOgtP0Fxi2ajtdNZFzx71\n74H2ih1jjTGmfBPmFbs/5RTWiX79x+GeyFKm0bO4p3teluvYiuWIbR0Xsc9Y9r6Vot+ll/Gs0LAV\npQYKCmSZgFAxPrdiK+b90CEZy8u3UOkUkqqVbJD7oKH9dNwm8ydo5oyiKIqiKIqiKIqiKMoMoj/O\nKIqiKIqiKIqiKIqizCD644yiKIqiKIqiKIqiKMoMcsUCC64MvJzmkxpqtsgO9aGmiW0nXL0SlrCJ\nBOzBCmbLjw4OQWtY3ryeXrELeUCJPjYCTfHghYNOOzVdvndR3TKn7e/F56S45G9T41176GPxuWwB\nbozUALJddHquvEYpLpwra4WHj0oLwOLldeZqkuaFbnzgLWknXbkJmsLEJOqppFv3OzwArWQG6WJ5\njBhjzMhp6HF9pMnMzJQWd5kN0MX6e6EnHD6F86vcLO1I09Oh2215Djrq1DR5H71N+NwoWYWPt0qL\n2EyyXmN7tZFOaY0parWQLVxmsaz9EuqSdSWSCdvGX/qVtJwtvBbXMjKMGhNZ1bmiH9uejwziXJt8\nstaDmcL4nIpjTLAW1Rhj2g5uc9psbR6LoQ7AhUd2imNOHYfev5lqUOUtlJrs4W7oqzPIRnbcsmD2\nVGH8ct2N6k2Nol8R1XwqXEF2gHFZh2MqKPW9yWbntx522p994E7xGlvrLUugXkRh6TrRLyMbNbS4\n7lEoJO0Hy1cudtpnH37eaX/v10+Kflx7o+cgast0noFe9p+f+bU45h8fQL2cP/vafU67yrJX3vvP\nO5x2wybodHMtrTn/u2cHdPI190qrUpcLcelXT7zstP/2Z58R/Qb3U60aWSbkHXOYLBWzO6TeeP37\nUQ/InYu4G6WaIcYYM9AGrXQZ1RlptK7feAvmQT7VxbKXxcHdiJuRWorVRVinw33SCrn/KM6pagO0\n343vXyz6dT2D+ghpPnyn0TZZLyVrHJ9VXYKaD/mLZG2IZXGcfFoutP+Wu7DJKHx7e+Fk0bwF9UAy\nrTpe7gO4NsWlqGUVOCzXBk8NYmwt1cDwH5P9EmSXXuRFzGookXHvSart1OvH9V1ST1bV1oWqux11\ns8J+1AZMy7VsS/k4ipU5GbLfC0eOOO0Y1ZX5yEduF/1e2bbPaR/ahmP6ArLexC0PbjRXi9xmjDN7\n/LiyUNMscBrXpWSdrNnAdRHHzmFe9myX9Tq4jtDwAcz7wwekReo6g5oGvCcMUm0aroVhjDEla+tw\nPnFcv7RZeaLf9DSOiwexNk8G5B6VWXk76gvFxuQazhbAXG+t52X53TMrZO2JZBOh/WVWrawB0vkc\n6lRU34r4OOmX3zm7BteK6woVXSv3nmu/cr3THj6LfjVWzaLjP4Ctfe1diIl83S89L2vbsS0zPyd0\nPytrbbTQc0gV1dj0WfWZeE8ZpDqBBculDW/FGtSz4PpArixpBx+PXz1LdK4lY9fu42eG7Crc3+Ej\ncl3MqcFr/HzW+4pVJ4rsuAupXhHbyxtjTIT2/3lzEGv5mSjHK2t4ZWUh1nZdesJpVyxbJfr5u/H8\n2bUbdWZ8lj14iOrlcK0brpFojLRgzrLq4Ij366V7ePlSpv9jCmif0Wddd7bSzqBnkkifrAlUfTvq\n7PCerfHO60S/tpfwfFC2EXuQwbOnRL8zT51w2iWVuL6T9Ny2/6KMWQNjuE43r8camVUun4uC7bju\ngV7c0+6De0S/1HTU1UnQOPM1yTkbpDnro/qO9tjkumBvh2bOKIqiKIqiKIqiKIqizCD644yiKIqi\nKIqiKIqiKMoMckVZ0zSl4ubNlml0fbthR8uWuHaKTziMdOvQiCUX4RPx4D069iIV3pYeZVO6l5tS\n56ZITjVtWRx3H9nttDkVMrtKpjdNdCAdidPr3NkyNZDt33IoNW06ISURqWn4Ti43Ur4zCqRd3vS0\nTHdKNh5K2bZtLv0XYGnOqaWlqxtEv5IlSFObDCPdOuoPiX6FzUgZTklBGlgoJFPO4hGk53ryMWYy\n83Bt2TbdGGOiUaQSl1B6nf+UtHnn++AlaVWoW6Z0ZpEdpq8Slu3ZpVI6Ex1D2ungflyvgmY5J1zp\n0k4umYxdwjk1fmCJ/FyaB2yZHEhrF/2mpzBH8vLx3eNxmZJYuq4OrwVxn1gGZowxngKkERcUbHDa\nB37wb07bnr83fOUmp82p08EOeW+Wfx7SRpZN+o/LGJJOMos0SiG/+PwZ0a94OWz6sosxrnr3ypR0\nN6XCG8slMxmc6cYYftKyp37fIK5h+yBsip/5sUydfvAfISNiq2lbishSylffgM3gL954VvTb+63v\nOe3ChUi1nEWSzQfW3CKO+beffclps+1jYlKmzVfOxxxhK+2uXW2inysV57rxf+O9R0el3WQ8jrGw\nfh7S0PNLpG1wbJ6UDSSTTXfBpjsRkrG780Wsi2yfvXB2neg3MozxztbK0y9LbUbjdYhLgZOIczu2\ny+uyfjFs7bf97k2c69KFTru7b0gcE6F7lUMynHCvlD9xOq+h+1Rg2cOyVffFNnyn0kSdfD+SobYd\nxv5g1sbZop//MMl/bzVJZ+fTuIZLF8jJ3teNeNs6gOu+bvVC0c+dhdjL68vOAydEv9EQ1skSH/YW\npzo7Rb/hcVz7T913m9NOy0Oc4zXNGGMmg5DrjpIsJ9tKjR9l63PSAC25S64n9acQA44ew3gOWTH6\n2nmQmPQM4hwKvVICEziEsWCkMuodw/a9o2cHLttvOn55uSrHryKyod/5ozdEv4ZqxLKSDdjnLHdJ\n03e2DR48iHhfsRrSmNHOVnHM+DjS+IfOwkrbWyulDx3PYF3jeSQkj0batA62YkxMROT+L+Mgxu+y\nj6122v6Tcp3NbZQy1GTDe5NYQJ7j4i9gz9C9ExL46ZiUJB/9OWR2DRswn1nC8t8H4rNyGzGXWh4+\nJrrNfjfmev8+SIYb78F1Gjh+ThyTUoaxcPE53Kv662VsayKb7s7HTztttu82Rsr2QiTRcZ+Xe1S+\nZiGStlffImWyQ0exXyi5wSSVVLJTZqnIf/8ba2Hpxjqnzc8cxhiTRfK5+BjtPcul7DTOFtkkcXJZ\nJS2yKxEDoyT94716qk+Oj8HBl5x2Ri720yNdJ0W/dBpXbJUem5B7oByKw+MkBZ6Oy7We40aoE9fL\nlgVPWNc22WTk4fk0vUDuKflZIzKM8Vhzp5QE9r6K+VKyFpK78YiM0dkUv0M9+M5dlgzwRAftE2jf\n8pUf/MBp//Av/1IcMxrE+TWSfXbgoiwrMtGC63nwZcSXFTcsEv1SqYRHHsuVIvL3Bh77/qNkDW89\nPxVYMdtGM2cURVEURVEURVEURVFmEP1xRlEURVEURVEURVEUZQa5oqxpktLKYkGZ6pw3D2lcXHE7\nHpIpXWNBpNGNX0Lqq+0kwE4wnNqXYpXgj5Isqe8I0pNSKd2qYot0asnMQvrQ8HmkIdrpYV5KcRy7\niLTB0lWyun9ODlIFXS58v0QsKPqNXkQ6aUYu0reyKqScKhogaVCpSTqZhZBU2Smew+TYUbkeVf0H\njktZCEuAckogEUlNk6nyRUVbnLbfjzRTn2+Z6Dc9TVKIBL5/KNRKx8i0spER9HPn43pOVsk02LQc\nfEchd5uSYymLHEUiIaQBhwbkWA91IZ2br9/gQel8lVV1+Qrr75TSZUgb7HxdujWxY5bLg3Tk0iWy\nCn00hHs1Smminc9KaU/RNUhrz60k+dilNtHPU4DU0LM7fuW0I4O4T0XXyorkLF9MUDpg5U0y7Zfl\nUCFyuZiyJIveBqRbs6PYyi9JhxC3G+nhlx5HhfjiNXJu82ddDd71JUgV2MHAGBnbsnZjzvr3y8r1\n7X9AGvSlLsTAX/+v10S//3jxt077ga/ieu7+5r+LfkNU1f7838CdYOkqjJ8fv/hNcYzLhfHzpbv+\nzmnfs0o6GpQ2YI7N/Sgq9UdDMi37zX+BlPXCjsed9ne//ZDo96Ptjzntm7/1Yaf9Dw/8hej3ld/8\ns7la8BieuCAd4DIyIIENU/pt4SrpGHL81xiDK+cgBX86JuUXbz19yGnPn1vntNn9xxhjnt0DiZwv\nG2Pna7+CO1h1cbE4Zk4l5mYoirW+blTKlX78MlyxvvJnkNSFBuR6l0PucKv/nGSJ1pyaHMY4b74H\nUo+E5WaQt/gqLIbEDZ/cjHOyHBndXtzHebdBMrb/9wdFvznzkbIdpuuR65Fz+7YP4rNe/y1cIO7c\nIOfLfUWYI7989EWn/ckvvBudrD3RFEt2UiCrSLf2WJxGzXufgO0sRe5FPM4G+6U71+6zWDeWkpvU\nnMoK0S9/pfx3MhncC1lY+WYpxWa3r3RK1Z9ol9+D97LsTLZwo0zVZ5nYGMlK0q043v403sNHcqCW\nJ3fh/5vlHPN3II2/ZD7mRNdb+0S/iq3Y24ZIfsiubsYYkzuHpG80XAaOSUe/ueuw7l74DfYVpauq\nRb+RY0jPr5dmbklh/Dzi6KwPyb2iv6XNabM7al6zjGcbtiA2de+EjNeeLzleSPR7jsORiR1mjDGm\n7VHIWCrvxJ4/JQXzymdJDEdOYS790xNYS6+/JKWDJSSXqSjAGFn50fWiH0v253wE0t2+N6UsLm8R\nYqWHYtnAa23yczfXmatFNj3X2C6uQvYTxLoYHZRlEfwncP28NHdsCRvPbXbp5LXZGGMSdFy4G7KZ\nyVGsd2m5x8UxE52Ijb46xC5Podzfp6ZijUgkEPvTsrJFv5QU7L1yajAW2fXLGGNGDmEvl7cE9zNk\nuSyGOq6eK6wxxrQ8hDhQtEbGge5tiFPsRpxRJmVn2XV4Phtvwdx2WfeHHapY1nWBpN7GGFNM82Xv\nOTzD18/C3iliSepZXtvxHOZyifWdEnQfmmqwJwq2yuvM9+TSQ5BAXrTOdckqxJG6e7F3iFsS+IG3\nsHbVSbW0MUYzZxRFURRFURRFURRFUWYU/XFGURRFURRFURRFURRlBtEfZxRFURRFURRFURRFUWaQ\nK9acYf1ybq3UyA4eanPabNmaUSDtohJUI2Ka6n+Mnhw0l+PCOdIR5+WJ1yq3QFfsb4WWrXgxbA5D\nvVLjnkF1D3Jq8H4Jq34FWzCzDjlwzjrXebgubMM43irrD+TPhcY7EYcm0a7Lw7rSGil7TQouF+4J\n1x0xxpiiZdDYDZ6AVrpkkTyRoTOwPc6vxDXMzV0g+kWj0IwGR1DHJR6X9X18Plibud3QE6an47pP\nTcn743ZDQzg5iXvirZa1CRIJshXsw1iwNX9j7ai3EyWdbmax1IyyXnaS7Phya2Q9lfCIvLbJJBLE\ne5etrROvXfwl9NUpNGdta/fGDXc77bz3QL8cDLaIfnxPuQYQz3NjjPGfxzx97EfPO+273426Cazt\nNcaYzuegF52exPmlZUndfv9b+NwY1b6quUPWAWBr0cIV0AezbtgYY1wZ0rLxj9jfqWDBle3t3ilc\nZ6Z3h9T/Z5Rg3HmoJtAdn71R9AuQLputUb/9xLdEv8e/+HWnHY1h7J+07Hs3NUMXe/+/fs5p//U9\nn3faf2vV8frYXej381dgxT3eLW0K9/0U9TXmpaHuT8fuw6JfwwLogFlDfvMyWX/g53+O+jbXf2ST\n075j62rR741v/Mxp3/ad75hkMrwXdcbyV5SL1/jcF9eQrf0JWddjdjmOK78JumlvjbTOLaO6ZUd/\ni/oz6+bKelJsNbl6E4pCZKRB4x0Iyhoxr52A3fN9a9c67bCl3b6fXttBtRy2bloh+uXOgUU9r60d\nOy6KfnM/gHsapTpiE1bdjCDV+jJ3mKQzRrbTR3fJGmsJqlNRfBbrTiQm1xBPFe5xbARzcc0tctye\neB7Xujwf9zirRtaf+82vUWfm/o3rnPYjP37Oab/3E9JXPH8Ozi+zGPc4cFralhYswphja9vEhPxO\nLx5BzQGOL26XS/S7bQXuv38C8bXsRhkrQpY1ezIp3VDntLvJxt4YYwqW4fvytUiRztdmiOyuc+fR\nXrFW7j27X8D7e5tQD4ProBhjjIdivP8CxliYxk5mmbQbz63H+wXH2py2XUOjvO4Wp92b8oLTrl4u\n14hwuN1pT7Si1s3sChmvgmQjy3vrqais8ZFu2Q0nm9Lr6pz25Jis/zQ1iXNh+/Bsq3bjxADWtcAR\nxNvK9XIutuxAfbPh/4+984yPs7rW/VYfjXqXrGI1y733LuMG2JhmMDUQQvq5kEbKSW8nnJOTHpKT\nSkmAQ+9gA8ZgG/feJatbvUszkkajkXQ/nJv3edYO+P5+l9HVl/X/tM27ZvSW3d5hPes5gj3ghA2y\n3+begDmWa1A274TVctY6WefI14xxcO/69U67pETWuehpwdw27eMYRzXPyPpyXIeOa+cMdct9VcQ0\nWB6zZW/z0XoRNzFV7m2DCe/t0hbLGmsdVB80hPZcSXPkfmuEaq7VvYrvm/WFUhHXfgr9m9eQzpNy\n/8G1pvj+8T4sLm6a+IzX7DMfRESErDkTEoKaM30t6G+NO+R6l0jXyPUrG081yLgE7Pl6z+L9JtPq\nY3Z9tGATPwNzYPs+uVfkWmy8dtn1NvndYzQa9z0iJlLEte3FvqXmONrTCmUtyCSq95K8HfdpxkTU\nfOO9jjHGJNJeKnEGvVf65dzGe+MRP861r1OOMba1T1+J86t9Xv4+0E21dePJOj3cLc8vfamcE2w0\nc0ZRFEVRFEVRFEVRFGUc0R9nFEVRFEVRFEVRFEVRxpHLypoiYpGC1LzPStWi9M+Blg+WDBhjTMcx\npA0ONCK9NSRC/i7E1n9sqhtXIq3qBsmGM4vs/jh9LWuatNH1+5HS2k7n02dZaYs02DNIU0tdJFP0\nPDVkDUaWcT7LWtSfjXP1tZPVWrxLxMUXJ5uxxNMIq6/RgJS69F5EumYYpV2NjMjUr+w5sPjz+3H9\ng4MypauvD6m/yVmQzkRFpYo4vx/pXl1dsCWLjkaaGktqjDFmaAifiYmBFKC7U0okhn1IU3NnIvVu\nxLKp7a3AdbC8xU4/Ywt4PubOkunaAcsKNphc/BMkDZM/t0gcSyarUk6P7jwlUzz9fjzrptMHnPaw\nJfcanY10vmM/2+m089YXi7jzryIFdxalF/oojZ1tWY0xxteP7y65A/aSqanrRFzceoy/k398zGlX\nPnpcxPVTCnRMAdLQ0+bmy7/biTT+rHVIX+67JO3yolPkfBNs2D585sfuFMe8XsgKuy4ixbPzuHyO\n5SdrnPayjXOdduNeaQm5/DOrnDb32+uTZSpxdx1ShOelI8X63TOwYbb79gM3QCL39vdhGbrh+7eL\nuHm3QiLzmQ2fcNoPvfFbEVezA6nE+auQDp44Rdqlclr7g5/4ndNeMklasS+4XY6RYHKsGvOSu7FR\nHEsj+8bClRgvR/fKdPUZJfn4xwhSaVsP1ok4L81R6QlIHS6z/m6CG6nspw8gHfxdki6tniElqPeu\nw5grWgAr5MhEuT5xmvxckjuwRNgYY6rJXtJdgHMtun66iDvyRzzriTOxtsZNkuvgmWPYc6wxwSeB\n9jCJx+s+NK54DWx0PW/IMXZ0O655/Vc2OO22Q1JOUDgde5XQSMiDhizZ583XlKL9+a877Sce/IHT\n5j5hjDFpCyCvrXkR8qzpn1ss4t74AaRRBelI895x4oSIO0BWpfdt3oz/Xl4u4vLJmr2+A2tLjiWn\nikyWktVgwmt9Rmm+OMb7sTAX9mkJk+QcH5UCqYfLhbW0t1nKTlMW4T4fehLW9RkJMqWfJYYna2qc\nNtvBJsVJ69l4sg1OnACZxWievOf1F17GdWRjzmut3iPi/L2QWu3aib3DpEw59yfE4NrZkp1tjI0x\nJtwl90TBhuVbMSlSenXphV1Om/cTYRukRGL377BXWfElzBi2pN49AXN02mewTpT/8YiIy1yHOTFp\nOmQVHWR5vONXb4nP/OThh5326mXLnHZ0pDzXkuVYG84+jL+bvXSiiCtYAI/ddpIo5Wz+8PoHUdTP\n4tOkfK7q75i/cn+w9UO/4/8FIR2xJPUsEeQ9V7glc4lMwNqTRVbNTe9LyeIIyWYzVuQ77YFm+S7a\n8j7GYh9JNNPz8T4SEvae+EzGrFlOu/0i5tO82ZtFHJdw8LVDWpWxpkDE8d6J379s+fBUkoOylN/X\nJt8rbSl+sEmYhHvD86YxxvSeg0wzIg5Sx9AwqRUdptdH3vMmFsvyKLHFkB5FpWGfkbJQlozg8iG8\nDzrfAGnYyIjsc7M+gbGdlI1n2lp2WMTFJGEO5HehEEv/OkzlSN586SA+HyUlnx0k8U2l3zy85XLd\nFrb2cvtqjNHMGUVRFEVRFEVRFEVRlHFFf5xRFEVRFEVRFEVRFEUZRy4ra+LK1zG5VqVqcqXglPnQ\ncFnRn9OiYvKR2mY7ybTvQ8oepzeNBKS8hr8vOgOpoQmFSNccGZHVrH0+XMcQpXsONMkUuIAXaUtc\nfdquvh0/FWlf9a8i7TR1kUzF4nQ2ThW3ZWB8L8cGfH90ukxzdFFKb08lUpP7O6S7SEwe8q687TVO\nO9Av0w1HqSJ6jw9yqvSps0WctxMOQSxVCA3F8+1qlinkfJ96LiFdkaVLxhjTU47riCE3DVvSxamR\nAS+Opc6Xz3GwAymLnPo7Yn0fX3uwSZiOPlf77BlxjNPk3VnyXjCNJ/Y7bU4TjLLSzquehkys5DY8\nN3+3dKWYfQckMCz9Yrcre5zz+HWRcwBL5Ywxpnov3J+yN0FWwDI8Y4yJp/mhbDtSUAN9UoYzSCnu\nwhUpU6aXVzwOuVfaF64wwcadhjTOAz9+SBw7VIF5ZvVy3Pfjx2Rqe3w0ntf5vTiWXzhBxD3+J9zD\nBx6FROKFrz0i4q578C6n/a2773baPH/Z6cLRObhvi7bg+Tzxxd+LuNt/+Xmn/aP/us9plz+xU8Qt\n/vzX8LcGsBa8/IOXRVwGufd96v4bnLbtrBKTIR3cxoqVt0mXKF5DKnbh2SzeIOe/thNYk7wkr205\nJh0cHn7nHafN6bxrKfXaGGNeOwrpwidvg5tPTjLkCeca5HdPWvrBadSxloNGy7s1TtuVgbHjrZbu\nSm8cg+RwqRd9ouOClL4mkpSipQwSmCJLSjFnpXRmCzbnnoYkafbt0nnqpV/CCWdiB5wZVnxyhYj7\n24+fd9rddJ0hVpp3oBf9gt0iPJ5+EXeWnNRSyNGrqhb9ZctPPiM+k5CAvhDxFVon3jwk4pbeApnT\nQANcQ1YPSdnZ1hsgCdn5JlLAr1sj+7orC3uJTHJ9tOfePS/hO2Zdb4IKOzAKdy9jTCrJvdiRiaX2\nxhgTTTKX+EJ8X+XfT4o4np+n5UCOx5IuY4yZkQsJG+8JVtKcnrZcOnWk5uHZuN3ob2Fh0l0nLBP7\nyNFR9KPoVLlf4z0mu4Olpch5MnEuxjqvx/WvlIm4tOXkniKVN0EhJpOc3obl/r3kHoy50VHs2Wpf\nlnK8ZffJcgb/oPVQjfg3l2RofAfStdTlsnwBy+I8tO9Ipvnxof/6L/GZpx960GkHSLKYslR+d+ch\ncolagGO2ZJGlEO6J5AzntVwwn8PeJ5ZKRGRtkFL0qqdOm7GC3e9GAnIvHJWKPcswSWN5b22MMS27\napx2yiLsZ468Lp/1/PWQe7Udxn7B3m+yFPMPzzzjtL99771OO61ark8JJegfUfTe1lTxpojj9xZ2\njGJHV2OM6b0g54d/MLFE7tf4vvB+K6tUujV1WI5UwebSS5DXj1qlILgPxlEJhZonZb9KmAX5Uu4q\nyIuajsnnyJJX3oPUvSDdE1liFErt9cvgxGa7DmYUYP/eVg/p2qDldlVfjz1I8WLsicrele9ZqT5c\n05JZcHKrrJHrSSJJzN3ZuF/eCrlfCndd3ixbM2cURVEURVEURVEURVHGEf1xRlEURVEURVEURVEU\nZRzRH2cURVEURVEURVEURVHGkcuKnoZJG21rqFm3FZUCjVV3mbRRHCINvotqPdh2YH6yREwgXTtb\nqxkjrauLF8OKtqUFNpEjI9KirKcMmkLWuGWUSvHskAef66+F3Vt3o7Tia6ltNx9EqlVzhHWhgT58\nd+JkaSdmzNjVKjHGGHcGNNUhIbImUPtJaNxDI3DM3ys1rWyRPdiFZ8/PwxhjOo+jzkzidGg3K1/Z\nJeIikz7YXrOC6hZEZ8v6OFwnJWMFnl37EWlbOmEZLJo9Lbg+W2vItVoM6RjdiVILOpgLPSnX6Ok8\n1Szi2Ho+2PC5ck0mY4zpOEWWfi2w7HVlyXoqRetRi4L7wfnnnhVxJbetddpHf4qaCimzZC2KiRtg\nld5XhzGSORfa+vq90raOa9MYqiF07vVfizh/ANry6Z8ke/BDUt9ZcCfqLSwj7Xb57+XfnbAJNZM8\nVCtj0LIp5HpSY8HQAP5ebGGSOJbRlvCBx67ZdI2I2/Nz1CGZvgG2qz998O8i7tevwa760ft+4bRv\n//nHRRxbcN/yy+847de/8VOnvfJfN4rP/Phn6DNfXITvGwxI6/QLj77ttD0tsBWc88VVIu5HN93k\ntG/9+nVOe97CKSIuZT7GZvWL55x2ao/smxEr5LoRTNi2+sxLsi7W9M2wqy5aBb3/IUszP3sxrFAH\nyG7x9ePSKv6Ld9/otA8cwNh+co+0zt2ycKHT7ruE2hvd/Zi72D7ZGGP+/RewSv/Kp2922q17pa10\nVwPGdgat9X99/HURd/U86L9fP4a6VQuLZd2Deetwjw6/iftXOCLXwbCYsZtPjTEmKZZshIdkbbs1\nVy20w40x91PHuQAAIABJREFUxhx55KD4d0os5lg/rYuDLbKWwqt7Uf9l+xFY5/7wjjtE3NKZ6O83\nfwcFWtqprkJ3o6wHwnU4AgE8+2eflHWdSqdhrmA7+IhwuYa7IlBD8Ib7r3bau/6yW8RFV+H5zL0a\n8/CxnVKrv+zKeWasCKX9h/eirNcRR3MoW726smTdFd7PdJ3FWvqGNRYnT8DcE0X3aN66mSLOT/uM\nK2ZgXopIgOUqW0IbY0x7HfrV6CjatkVt0gSsrR21GGNcH8wYYwbbsc7M2Yjx5rHqHkTSOfEeNe96\nWe/JZ9UGCTbtp2qcdspMWZ+l8kms5SV3YN1Inif3aaFheKeo+Cue3dyvbBNxLedQn2ugHnPvtJtu\nEXEDA6iL2HkRba41+N9/+zfxmQs7sCZNWo09h71vmfrJDU67qwa1jHKumCPiuiprnHa4G+Ot8XVZ\n6zFtNWoCeasxXzdtl/UyM1eNQcGg/0PiDNR5s9/beqgeTXwx9nN9DbJOlHsi9kDvP4VxMGWi7BNt\nx1F3hS2pbctyHqf33Xab0+Y6Ucu3LRafiYig+qr0ChIZKfdr3jY808hEvM+4UuX+nGuMRVMNkt4L\n8j3STTW8POU4ZteY4TqaYwG/6yfOkbb23krMH637ap12bImsF8drIdc85TpOxsi6sfz7gP1+GD8J\ndZSa38JYdOdQ3bOV0sLc68VYHCWb7dFhuc8IkO/3K89jjdt0tayx1n4Ov22wLfv05dLWnusedZ3A\nO2IGW2cb+XvDB6GZM4qiKIqiKIqiKIqiKOOI/jijKIqiKIqiKIqiKIoyjlzey4mIiI0S//YHkLbU\nQxaSybNlGlQIpRpy2mSIJYeZcR9SiFhO5WuXaVCx2Uif8vmkhOofhIfLtK/kaUiJCw1FutRAt7Qf\n5BS75JmUorf/kohjCzVfC9vtybTayGSkt7nSkL5lp1D3U7q/kdl7QSEkhH+Dk7/Hpc6GpePIMFJj\nA/0y5arjHCwHfWTTGOa2Us8pfaz7NO5v5UmZKh8eivP40q9+5bTv2LLFaV+fLaUPCWSBOEop8DF5\nMk25qxrn2n0WfaS/SsrTXJQSl70RKaht5y6IuPAYpEb6yDLPtmEeHRk7eRpbsvVa/WzidUhBJnWW\nSIM1xpjKnZAhZC2FfWrBJmkPW7Njn9OOIXtNIQOzyF9b6rQ5zb7ruJR+Fd0912nv/SnS7nefOyfi\nrlsE+70jD73vtNMyZGrpwV8jDXEOWXtP+Rd5Td5GpImyNeGlV+WzDvu/2Nt9VFguGJ0hbVJL74ec\nrI1SRgtKrxJxE5KQss2psD9+5Isi7tTPX3Daq66CBK2nVqZYZyyF7OTYL//itK/8Mayvv3Hdp8Vn\nlk9Fn6t6CjKG985IScOCIlgTRruxhpz+1V4Rt7QE1ss8P068Qdr8sgRhxuexZuz/mZRNFm1aZ8aK\nhVsg0+g+KdeQzoO4t+lr8p12datcqybXU0o+DdqbVi8XcRHxuGdrbljitOccyxdxvSxfug0SkwKS\n2vZWSkvPeyjlm1N9X3hdSqbySQ7lP4axfdNSmfZb3oT0641zkJ7f6ZU27JyyvPxWXFPlG9ZYpDVi\n9g0m6PQNIDX55FPHxDGWp/WRTIDT5I0xZuEiSIX6a7B/yLlepjpvK8a8deONpU7blrc0lmO+bP0D\n5uEOuoeb1khr1ago7Llaz8HStMPjEXEvHIK0iu3Mt6yVz5Htn4d9OL/FV88VcYbSt5/9K2xmb7xL\njr2oVDnPBZO2PZgnw9zy2bhIgsc2251H5fwXPwVS1mOvwj77jk9uEnG1e5FOn1yMNPthS1IUQpL9\nEbKijS/G38kqWi8+4/djfvD5YPsdEiLXo/ZqSHI8VdgHVO2uFHH5S/Kdds9ZrH1xlvyApeyD3Szv\nsvbWo2MrvWcpU9nv9otj2VuwNjS8DxlkKtm3G2PM2YcOOO2l3/yU067etV3EseygmPYj555+UsSx\ndD51MuaD84+84bSbaqUNc04JxmLmcoxTb4GUkzUfxXX01aGEQkbJMhHXW47nzbI4XluMMSZ9Mubb\nA29Drlp8s5TcxeWkmbGCyyfUby8Xx6JI6jNC93+gXsqaQkjqHuuCNOpCrSxdwNLiogX5TvvxJ6Td\n9Q2luJ8Pvw6JdQx9N48BY+T+dcSPdm+bfA9sP4xx6u/CWmJbOrvzyQK9G3GJM6TMmN+50pZCptZx\nzJqviuUYDjbZV2O88fMwxpje85hL3LmQf/E7oTHGjJL0r/y/cd/5PcsYY6ofxzjI3IDxcvzxIyKu\nkOZYXjP9dD9te/l+Kmnhondxb6V8f0qJQ7+ton1a/GRZ4iC2CPc9ivYwtuSTZeo5m3AvW/bUiLhA\nH/WT1eaf0MwZRVEURVEURVEURVGUcUR/nFEURVEURVEURVEURRlHLpvDnzQdaVf9TTJFltN6EkqQ\n/tOwQ1YRT12EdMWIOKTlNb4m0976SVKUOh/piiyLMsaYoX6SU42iintkJGRIIyMyvcnXhbTBoT6k\nIUZYbhB8TZ4apCHWn5ApdVOuR6ogp/1GT5DuQlyxOr4QKVGtB2V6XNoCmZ4ZbHprkIo20CzTz5LJ\ngYevxd/rE3EXX4HshKtb+4ZkCl9tG+7vhGRc8+TZ+SLuE9/8D6f9aXJqyUhAqpzt1hTwfnB167yF\nMkX40nHIZTiN0F0o5U/sMtb4FqraRybJSvPxlMIsXKysVN/YXPn9waTjMFIbM1bni2MNNJZ89NxG\nSGJmjDFTPk7uSm2QY8SmSyki3+dAL9qH35COM/52pPOxpIvTATPXyxR8Tile8HFIGqIfl2MxbS7O\nadoSpHie/d0BEcfprQ0v4z5EZTaIOJameSqQ1pg0W7r82O5NwYYlkQlTZIpx6gRIsRKyMEf8/pPf\nEHGeAcwr03swt+UUZIi4hd+AFOnkHx9z2lfcJh1i3nzvr0779QNIo25vx3d7B+WcOnk5pFDxNP//\n+haZRt2yu8ZpV56FtPHqH98j4ipfhjwtdTIca878WjoCRaZgbBZug4xtww8/L+LCw6XkMJhc2g15\nQ791X0qugJzFR31peFhKWWOnYE6pP4L7ws/WGGNSPfh3HqUE8zxrjDEbvwcJRmQk1u3KFyBRcmXI\nezLxKqTc+mgsL5okU4/z5yO9/7/+/KLTvvfWq0VcBTk0TcvFun+cnIGMMWYZSZqf+w2eL8uYjJFj\neyxgl49E62/1nMX95bT30BCZ5s0ykQMnsR/pe1w+x0iSQ+Vdgz7y7p+lA9K6+0jaeBD7jkxad6qf\nOC0+k70Jc37lS1infX65Xn79RxhzPedwfTmUxm6MMX2N2Iv1X8IcEBYtZUMsr2UpU9thmYbf3ovv\nK1l+lwkmsZTiz/tQY4zxe3DPek/jesNi5XXsfwEp9LPmo+8nkEOIMcYsXoY5r+UgZET9l6Q0w9eM\ncZ9FqfojQ9hfsXTCGGPCwkg+TNJ7T7OUg7PrDe9fMgvkWnL0LfSR6XMgLfVbjpWecjxDXiMjk+Ue\naKj38s4iH5VhP55VwZ2zxTFPDc6xeR/uhy1Bjp+I/dfF117Bd1uyM+638ZPQZ1IX5Yo4dpo11BWS\n52FvUnz7EsNEREC+WEYSm/TleTKO3IwW3HOv0+7rqxFxLMFuPYBrj7akgu0VkOMteAClAQb7pTyt\neR/ez9Kulfvmj4rfQ3tty1GI55FAP55HRKLsZ1VHa5x20UzcMy4fYYwx+85CAnv6edyXm66UpRAO\nHj3vtFdPh0S6ZBrJho7I+YplKolTsZZ6a2VZhDiaH1iSxO5MxhiTSPu8bioBMtgu5TAshxyi+X7C\n2iIR1/gO9h95Uj0bFPgc+d3HGGNcJMXvpbnIdl9OXYyxxE6uXIbAGGOyJuLeVL+AtStvsnRiYyk0\nl7HIXgDZWu3u98Rn0hfCvcnvwXuvXX6i8DpIkzMbcd6p0+Q+qP0C3hHjsvHO7kqRksXMuZBA1u/B\nnigqXY7Z8H45L9lo5oyiKIqiKIqiKIqiKMo4oj/OKIqiKIqiKIqiKIqijCOXlTWxBIbdYowxJoKc\nYELDkQ6ZskCmI7FUqOMYpAaDfTJNMpaqQg8PIuXTWyNThtIWIl162Ie0oLaKszjXLCmHYYkSp+ba\nkimuTO2eAHnNhKlS+hARh2tnJ4LRgEyXSpoBmYH4buv87PMINpyWzZIxY4zpON5ohxtj/tlRasIs\nPNfaY0gjnLSgQMR59yK1sSAH9y3cclL4X9dd57SX3wRnHpYhJU+X932oD6l+sWlIP2upkM4vUZQy\nmroUcSypMcaYEEpRH6a0RLt6eyR93whVIY/PlXKg3jq6lxNNUBmhMdF9VjrElNwDh5eWQ0hbZVmi\nMcac+j0kQZlz0Q9auqXsIDwW/TtxHp7B1Ch5XxKmISWRn2/nCTiOzLjtTvGZoSGMxf5opAlOuXGW\niHv2l6857a25kGzEZcp5qOi2xU679lXIrlLmy3koglK2W/bC4aPnnEz7TZoppUHBJmkCrjMiIkEc\n+9yGrU77/vtudtpzC+QYm3wv5GnxKXBNunPVrSLO9QQkKG0kf5o9S95rnuddJL+YfgucLBbev1J8\nJtKN1NLRUczDL3zjKRE3dwkkStPXIn3U75fOQdx/dnznb0577/nzIu77T33Xade9BdeqkcFTIm5k\nEPPXwk89YIJJXinSjDutlOhzb+N8m7uRzlsyQfbHi/vQ9ydOxljMjLCkPTTG2Hlu9voZIi4jYzP+\nbiNS+tmJZsgjJVjeaoxFluRm5kh5yLH3sLZeSy5qvgYpkZ2Vn++0WToy2bp2TznSoTffVuq02ZnK\nGGO8FdJVIdjUd+L7l10hpRT9dZCqXLyEZzx1Wr6I436Wl4r7ZkuVh3pw74/8Ha5JK++U7iwDrXRP\nKf369d2QTG25Wjp6eesxtg9VoF999pbNIq59L6SSEYm41/EpU0RcSiakQp5JkMdUPnFYxPV3Iy0/\noom+r0i6ibQdl7KfYBJNe6mAJV8JY0dQGla2m0p3H0kmSLVmu6QYg3930LqRsUhabLILS1w+7sVI\nAH0lLEzKOUJDMV7aL5Q5bc9FOU8OXEJ5gScPwIVoYXGxiEuNxzrp74CUyT1Rrjl+2vckTEf/ZcmU\nMVL2OBac/A2cyWITZPo/S6NdLvSzriNNIo5d6iLc+I6BDilHqT+F95C2/djLTr3lRhHX1QxJAu9b\n4vIhXRrsld9d+x7WJJZMx2XLvWJ4OPpt+b5HnXYauSAaIyVd2aW4vot/l3te3rOyQxiXkjDGmKi0\nsXNO66W+GrDe71jGxWUDbKlkHsl52itJNmPJSddvwr5v/05Ius6cqRJxRRnYz03ajP2Hi+5Dt7UH\n5Pe7jiOQlibNku8jPN8kT8ff8XvktXedwX6d36N9bXJMRZOjVfo8SGoa90on0xHf5eUwHxWWN9p7\nBn6n9ffgXa3bcndr3IF1iB02bfyd+I4ckm/1N8oyKjkrFzrtxES4ZdaeedppT1gq97VtpyF942dq\nl4VgGVsMyfE8TZZDWBHmx9hYSIHbuuRY7PVgTkmdh72Pp07OFQHP5aWimjmjKIqiKIqiKIqiKIoy\njuiPM4qiKIqiKIqiKIqiKOOI/jijKIqiKIqiKIqiKIoyjly25kxMLvSpvRVS+zpKNsKsd7Rri7Tu\nQ30HW//I9NVAj7Xjufed9tRsqd3e+Qy0qfOLoEXN3gINmG0DzdpjroETbekvvZdwDqGR+Ez+tQtE\nXMc51Ohwk92zz7LhHSY9ehfVCXFZfzcsQtoIBxs/1XGx69tkLIbOz9uEZzxk3cOT78KmONYFzWjV\nsVoRt/ga6AG5xott4zqnD88rgewM2w9D59ddJnWM/ExiUlGDJTbLqk0zCI17Ui5qM/h80paSBeYu\n0nv2WH2d6/KkLYYFn7dZnl9IuKzJEkwy1+E5jQZkPaDyP0Pz6PNCI1q/W+pv06mGD1tq5m2RNQca\n3oRetPs49dts+Qwbd8BONDYfc0XO1fD3K9/+rPgMj0W2GCxYKPXed/4b/lYdWexxPRxjjGneB11p\nfAls/yJiZBzXfApQzYH8rbJ2Rw/pnMeCqu2w1/zLH18Wxz55w5VO+6nHEMf1A4wxJr8L2ulP33K3\n0+Z6IMYYs+Z/XeG0ea478B+7RFwb9e8WqpPSW45xUPfSBfGZmlb0/eRYPKuzly6JuNKPo1bNm398\nB9ewv0bELfvGDU775E7UOLnzBmn3uftHzzvtKjqH2/5jm4gzsvxXUOmmmkoZa/LFsaRujLHcc9SX\nrP8N0tqIWgK1ZaiBkJGYKOK4FkzNWcyN0zZME3Flux922jnzVzttbwTWS9vyl+t7RSZjXYwtlOew\nkuwqeY176/l9Iu6qO0ud9kGyJ7brtNDWwQyRbt22NM0slZ8LNqVbl3zoscbTOJfiTDzTk6cqRNzy\nImjhM5agvln3SVkXbMpnUCfm5D7UJRq0rI25zo6Pnk9iDMZv/Xl5n/KoFlhGAuZhW9Pe34fvm3UP\n1un26pPmw8goXuq0c6+VdQCqHkGNL7ZYtfcYXMcq2ESRFW/jW5Xi2DBZleZvwzxv19M7+zPsC6pp\njHV5ZU2lFTdgfh0Ywnfb9tRnd+L5TrsCNUQylmDvMDoqz6H6EOqDeWkvzP3QGGPcUdhDP/ka6rIt\n/sIXRFxEGPqEKwvzc5pVH4f7CNvVeiplvaex3NsYY0z2MhTpGxmWkzfb9GaszXfaXJvSGGNaD2Lt\n4fV+wKpfkb8E3zFpE2yn26oPiLghqptS9yLWP95PZ60rFJ8ZpDoirc3YG9tWw/1NOCeuc9Fy8oyI\n45pm0el4jlyrwxhjMtehLt0wWTknpMn6YSMBuWcNJlz/KSzS6i9UMyY6Dddh7/HdubgXMflYhxrf\nl+8ZvA+Md2PvPueqmSIuMh7zA1s6e6pQQ2jYsjQOpfk0Mhnf3WuNiUFaC3uo5spAo5w3Mtbi2YS5\nMBfGTpTrLL87123H3Mrv4cYYk7FU2rIHG08Z9n1xk6WVNttQt+/FvBlj7RnSaC3c+Vvs+6ZPl/UT\nc6/Bu0diBp5dS9khERcZiX5cdexJp503C+O3sfx18RmunROVhOf4T78PuPBOEp+PmjpdZXLuTc3H\nWh8IYC/F1uPGGJO2AHNsbxX1GVk26Z9q7Nlo5oyiKIqiKIqiKIqiKMo4oj/OKIqiKIqiKIqiKIqi\njCOXlTWFk83ZsGVTyOlNacvznXZPVbOIi8lDulPXSRxLKJHpUod2wQr1r6++6rQHrNTSrVci9b+2\nDelEpR7EpWUkic/kbIHMwteJtEOWOBljTPxEpC+7XJBT9bRKO9eEEsgxoqJgm9gXJ623QiM/WO5l\npziOjMj0zGDDKYDDlg1by0GkAqfMhe1Xf5NMgc/OxjVHptJ9s9ISOaW5vx7f4e+SqWShJG/hVPmk\nWbAcjE6RluO9NXjeISH4fFiYlIn5epCWNxAOCVpEhOwXMTHoF55QpJP2uWUabMp8SLBCQ5Em2d0u\nr50tt4NN1ymMnVDLbrfgdljIsQSLbfuMMWbIizTd2FyMy9AIOQ1krECKMcsZD754VMStuheSFSGB\neRnjJcWylO04AgkH2/T1NTwj4goWQ+bUUQjLzOxVUs7hciF9sm4/5Dp2P2e7vLxr2a5SplC3vAkp\nWIl0uQ0KbMX+wO8/I465EtA/P7ECqatJhUUi7sKfdzrtL9wNOVD5qRoRl5oP6UJXE6QL+ctlKnbZ\nu7BuXT19Os71MpaNc1biHrId5ouHZDrqIN33c/WYH+dOk9avL33jEae9+UewFO84I2VSJbeWOu21\nNO5f/NpDIq64AP0u66tbTDAJT0A66q6H94hjS6+Bzbl7Isbf0bdPi7hIknosvBmy2VgrhblpJ/pj\nOEkVWFZsjJTHHPvPx5z2m8eRHl2YIW3iiydgrn3kd5DYzbGs2xdtQzovr/srV0j7aT62aAv6XsBO\nG6d1kdcFV7Jcj3vOUrrwOhN02g5iLorJlJJNfwBrcvqafKftrpJzKs/5LLNInJUu4rZ/9wWn3UTS\nwa9963ci7odfvNtpj5K8w+vDfZp6rUzd3/v4fqe9jPpf1R4p80lNRt86RdbFmYtzZdx8jJ0d3/yl\n086bI+OSFyNugGQajeekxfHIyIgZKzxkBx/okbavvBfhPtdxQp4fy7TdkdgrNQ3Jfvvkn95w2kPU\nPz62ZpKIW3A75E/cPwa7MBf2ueWzCYvivSLW4+w5UoZ0bh/k5b/+0pec9n+++KKIe+g/cSwqFfNk\n45tSlhdLtufdp7GfSZwp+69t6R1svNUYE4EeKcdj+WVUCuaIzqPyXaPgdoyLHpIa+Nul7IxlzZ1N\n2NMk582RcQH0aZZ5Jc/HvNn2vlyfcq/FnpItlC88e0rEZU7Dd0TQ/jyuQO5RG0iqd+KPkF3Nvnex\niOPlgGV7LPs2xpghuvYC6Tz8kYnNwZ6yv1m+P3SewL6U3wljrD0q/9tPttphoXLPyyUOZq6GNGbU\nksSxbXd8MfZRvD+MjJPvGQ3v4J6x5Kn7MqU94nk/bb3fDTTj3bS7DX2it1ZaK08kiQ9bP/Pe1Rhj\n2mgPnbHJBJ24YswJgT45B/acxBwRRu+0sYXJIq7jGObY+WsxLkf8Us5Z/xr2non3oEOGWxbrPZ3Y\nv6aXYG/h8eC9jSVjxsj1uK+hB99tlV6JyUKf498v0mfIkgflL7/itLlEi32ufY3o+8mTsY/vLJdl\nNeLy5Vi30cwZRVEURVEURVEURVGUcUR/nFEURVEURVEURVEURRlHLitr4grbVha1iS+GLCk8HGmT\ncfkyvcnfg5RCTpHyWRWtJyTjczesWeO095w9K+JefAeVn6+7Am4ke89DSnHXFdfKc7CqM/+D6Bgp\nufANIPVucBBpke4kmQ4eFoY0uOaTSIvkqs/GyKrkRqQdyjTfgRaS0UjjoaDAzksBr0wZZcmTOA8L\nljJxhf8ES3rEf2uoG2mJyWuyRByndLE7UiT9XDjYI/uIKwUVt/u78KzYFcoYYwIkwWs9AClF5sqJ\nIm50FJ8LDUWaWsZMme8ZHo7nyKmuQ70yjdqWJAST5Dm4fz3l0lGo7kVy/6AU3oylUr7CnbDmecgs\n2BHGGOnQlHsj5CuzlkpXp4QCdNbkYvyts7+G05Cdxigqo1P6pCtVStMaylB5fQJJaCIj00Scy4X7\nwhKJgSbZd/qrkEJ6aftFpz33y1eLuIx1UtIRbAqvLnXaw8My3for133Vaf/qtT867Zpd0l3pZ09B\nIvGNz93qtEtm5Yu4oSGkcnYcw3jZ+fJBEXfbv8PpaKAd9y2EU4mttOLMVbhPB375ntMusKQzSTPw\n73s/fo3T3v6ydPphR5znvoZq/Ju+Lp9P+RPv4hzIzWfDd2V+70vfxD0KtjqNHfqWT5QOWX217PgH\nqcKybTINvXIH0nl5/vLW9Yg4dmiacwskKy27akRcQzPmhD6SwLB7z29eeUV8ZuuKFU57UhbG0ZQ5\ncgwM+5EezPJme97guZ8llbFW+m4TSSuS5uHv+mJkevB7rx522h/uq/T/TvpScpR46n1xLInckQ4+\nBanepElS2tNpOUz9A9uxiOUyzMppUqbZeB5p1SlpeHZXrkU/q36jTHxm2mSsa5x2HhctZWI7jhx3\n2tdvLXXavefkejJAcuQJkzAuIy0ZeP17kNyN0AZx0JIDtfbIPh1M2O2L5b3GGNO0C+fXfR77uQml\nUlLJ7pkXX4Mz4CuWRPO+zZuddmQ4OYBacrwhckwcaMF8GhaNz3hqDovPRJLrVOthyBbS5sp906Rp\nSJM/cxKSl5/ed6+I6yOZUOVujLeiVfLaE6fABYUlIOyqaIwxGavHdl3Muw5rfIRb3s+mvbjOyERy\nlBqQ62fjdlxnRwPkbpNvkv1i2If5jOfonlbplHTxYYyXeQ/chO+uxjsJO/sYY0zd89iLZW2EjKbM\nWnNZ1pQ8E+3mPdUiLptcOrmPVPxdOqxFkTtl3lbMKVnL5fzSflo6eAaTgTb09a7T0q0udSHked4a\nPJvBbvkMebyw81WqNQ7CXORGlob1xZYURadi7x4WQRJUkjVFRck9S8oczFen/oI5IGOyjGspwzXy\n3w2xyg4kz8Ic2rK7xmnHpEspLTvGshw8wXJCanmvxowlg7SPDgmTFkMpS/Ec+R2uYcdFEXfpLOaw\nouXow4nTpFySXb26WyD9s/9u9wWsa74U9JGkAsxnPO8aI+VgUeS65c6SUrqu8/hufg9pOSmliPGT\n8JsHO1RHJcr5in9vaNyD9cRb2SXikuejjIgpMf+EZs4oiqIoiqIoiqIoiqKMI/rjjKIoiqIoiqIo\niqIoyjiiP84oiqIoiqIoiqIoiqKMI5etOdNbiVogbO1ljLRri4qCdiokJErERaZBB5Y4CzrYhOJU\nEcf2wFMqYWG16CWpkU3PRJ2KS/XQimUlQpdn1yDxsxUf6YPDwqTmz1MLTVhCIa5jeFjWaXG5oLtz\nT4B+LTpR1tvxNEI/7kqHli06XWr1bdvfYMOa6kFLC892Y6wztnV5rJfjWivRE+Q9ZK194mxoNNnq\n1RhpMemhGipJk9GXIiOl3XpvM/SyXefw7GNy5LnyOcTmo1+wdbMxxjTuhO47mqxUMxbK2iq+fugn\ne2tgqZi1bLqM65Ha/WDCVnDuLNl/DFnYJs7CPR/2y37LtSPYktJbJbWQKctQi6ltH+zfIkkTa4wx\nUVHQAcfHY8xmboRGvHV3rfjM9v2o0TTneL7TLm+S9qYbt6BSSNhisk1PludQf+FVpz3tujuddlfX\nXhFX9wrsEaNofhgZkf2ynWoUlawwQafsyR1OO3WxtEn9zu8+77Tr9qCOi/18fvYoatPw3MH2ksZI\nzWwcWaYGhmUdoBtW3Oe0n9r+U6edkAUhbHqRrPrx8tf+02nnF6IfNHZ2irh+stjtq8T8f/MD0t76\n+Z+/5rTv+c2n8ZlWaVf/+ItvO+0f3oFz6KiStclmTh67Ggl9tRiLkSmyP7bXYM2c+3n04YA1x0/Z\nijqGzvAzAAAgAElEQVQIvRW4Z1FU98EYWTOmm3T8kckybvASvn9SNubQ1w4fcdpblshnWER1frjG\nSrVlX55Ldcqm3nOl06586T0RN3DpQ+pxWfXqYougVe/Yj/GWskSOhys/eYUZS5rfx9y0etMCcaz3\nLObyjPWop+WtlmNx13asIRu3YcLYfN3nRdw9N8Dy/so1sCZ/6U1Ze6mqBc/4Is2Jmz+z3mknzbYK\n01G9lxqyJn35sKxrwvbgbMncYtWEYcv25Fisi90H+0TcwvlYJxNmoJZAn3WPMmrHrhabi+o2tB6Q\n/VbUN6N6Ab01cp3ur8f1t3vQh79wzTUirrYNdWvWfXz1B/4dY6QdcOcp7AGjM6j+RZSsr9TfhDo/\nfYNUq4/qoxhjTOYazGupNF5a3pPrbCrZnLvzcP/TFsqaScODmDe6TuBcszfKfXfXWczDufJQUBho\nRR2JWqrTYIzcv0dn4R6mF8n6c16qlZSSgzkmRJavMK/9AWvIkjnow0O9cr80+0uoY8Z1SfrrYV1f\nsE3a7XI9yfaj2DcuXyTjCrZgDuitxxw42C5tk/uoVt7hMxizmz6/XsS1vFvjtNsO8veVi7jMK8Zu\nXRwdwbW7rT051wNJmYe+2XVO1qbhmpgd5RhvCRPkHJI4Fc+e9/v+HllfNCIK/cA/gLU5MQP2zkND\n0vbb14ln0OlFvyzMk4VBMkPRseJLML/wODLGmFZaZ6LSsF9InClr2ETGY03PWIw6La1HZB2i/Jtk\nXwo2/VSvyl0g692MBvCMecwGrPqbxVTbqvEA3iH4PcsYY7poL1Vw9XKn3XzshIgbojqnvP/qoJpv\nrgxZt5LrwnipFmCgT45zdybep7j/DFl9KW0mnn8ggO8LC5N9vb8Fz5ut3SdYc2rPhTZzOTRzRlEU\nRVEURVEURVEUZRzRH2cURVEURVEURVEURVHGkcvKmvxdSPkPCZW5gQkTYd84OIjUIlsqFBUF67/4\nQqR7ZeRuEHFDQ0iFjXDBlmvd/OUirun0AaedEkBap5TDyHRHzqvuqkXar7fngohKKERqrq8LqVOj\nUiVlIiLoeskKzNcjU/p9bUgDZsnBYIeUUgg7vnwTdPg8UmdJO+nBXqTxhruRalv7vEwtTZqLVOoI\nsu1zZ8qUrpEhpOFGRkNK0VVRI+KiU/G5vGuQ4h8aiu9mK2BjjEnImuy02SbNlitFUHogp6Z5KuXz\nicnDOaTMRKrlQLdMN4uMg8QtNhdpfp1lMt2QbWZNkQkqDe/ibxVeJ+0R40sgEYwiuVhvtbzeMOpn\n/Q147iODUuYSQnnAGavynbY7VY6rcw/DmnfJ/Ui17CHJ2YhPfvdjL73ktLc+8xvE7ZHahwSy+Ow8\ngfT+1E1SmjGSied75plHzYcxaesap332D7DpDgmRU6Cd2hxsBlvQbx/74bPiGFvO/uL1p5z23vd/\nIeKS8yCn47nusX/5pohr6Ubq5cqpsCr92H/eJuI2n4Z8JD0f6fr1JyHBevQnz4nPPPDYj5z28DCe\nwUNXvyriSl7FvJxLtqBdx6WMjdn+naed9pYHPyfPdQHkJyyrSymU/5/hmWMvO+1gW2mfPAnL1nmL\npQSycANSXysfQWpubIm0k550DSzC4wsgA3zxX2WfmLsE3z9CEgd3rpx3Q09hzEbTvBZzGvNB6UyZ\nDt3aRTLjHMxrMV4p1UpbgTW8qxZp8u3npeQseyVS5r001yZMt9ZjGurhJJd+7+/SznpKNubkyStN\n0Ikh20yW/Rkj1xDGb8kONt271mm/+QhkXg9/U47FR3btctrHj+EeXr9ZXthvHn3Raa+ZgefVvhep\n4fHW/WTZ44maGqedECPTvG++C3uuun1YT86RrMIYY665AnNsfTVkB6U3yrnXS3K8w89APleQKdP1\nzzdA3rHKBJcQsrD1WJbgoWRdnUl9MzJOPlu2Vp41ivHWdFrapF/zNchcekiKzbIbY4y5+BTkpFmL\nISPqq8P8znstY4x57a/vOO1FxUh/Z5mMMVJexNbXLksu4KE+4bmI52Sfq6+BZBsfm+20WZJjjDH9\n9VL6EWzCo3E/eK9pjDHxhRibEW706dZD0hY6kkoWJM3Ed/Q3yn3k6g3znfaR92CfvXjjHBHXWYl5\nOaQY58eW6L2WhC9lKiSQ7hzssaIsSXjdW7DpzlqFvhnok/LXiTdhrc+5FvvfskeOybhNOMaSUnte\ni06T/SSYcLmGIUvm0kNW9izd4udkjDHtuzHPTfsE1npXoiWvGcV9Cg/H2hpI7hZx4eGQQw2F4VmF\nheF5NJ8/JD7Da1fJFKx9nUfkniVlCdan/gaMj/RV8h0r3IW+40rCdbQerhRxSYX4nLcV78p22Yvm\nPTVOO2OrCTqpyzFn2e/9XAaD7cOzNkjJztnHUL5g+p3z8Hm/fB8o2493fT+907F80Rhjiq7a6LT7\n+2ucdt2rp512VKpc79iOPHEK1kx77g2j58O22KGWJXrdWxhzLO+KSJClXPgdIonkvk075XyVOEPa\nitto5oyiKIqiKIqiKIqiKMo4oj/OKIqiKIqiKIqiKIqijCOXlTVxKl64W7o1eRqRChubxalpUrJT\ndwQSAq5qP5AuK+tHRyN9LCqKJDQR0rFnwiwkxrZWomr6sB/pmqMRMg0sNhYpfyH5kHaMWnqlQADp\nj93nkHIWSalOxhgTR1m7LKkJj5H3iB2JuKK4y3L48LVLF4Rgw25NLQdlKl3aQkjD2k8gjTdpjkw3\nbH2nxmlPvAXp1oNdMs276wzSoF1pSA9Mmpot4kYCuG+DJD0a7MC9SJ8xW3zG24VzZ7cvX4e8f5VP\nIK04ntI6bRevqCQ818AgVQO/JNNgQ/KQiughqVBgQPaztAXSbSSYzP0S0ud7qj5cEuKiznnsZSkT\nyJyaaYcbY4wZ8kopj7cGqaEv/PFNp33rt64XcfFT6Rn48NzTlyM90+7btx5GarjnAqrnz7xOPmtP\nBY5xunLV7tdEXPJ0XC87sbmzpeyjswoSRk4V7q2X9zJxpi2JDC5VTUhXve/PXxbHWKZT/uYzTjsy\nUqZh/u0+uBQtuxIpo4uvniviKnYjZTRlEeRFO/9tu4hbcDPSh5//8vfx32+Fo0SD5cK0dcnNTvun\nP4IzzQNfkpKpyn1I5eTK9UVbpZyDU/TDY5EmyimsxhiTQfPV9n990GmXfucOETctZ+zGojsK53fw\n/TPiWMZZzBWJbszzBYukS8qZv0K+xNKMtZ8pFXG9FzEOzh7DvazcJV0uPvWrj+EzVXhWWz8Dd6WO\nA1KqkD8P4zSuEKnhveUdIo5lH5z229YrpQ6xZyC5YBe/3jL5fWWna5z2jGWQgbEzlTHG9PbLtSXY\nnD4HaU/aJSmJ8Q1hbo+KwPgrWTtZxMXS2rDlK1c57cr/Pi3iPnfzZqf99l6kRx/ZL+XDn7kBcrfY\nQnz3QCPkJ4Ntck6Nn4x5uP0tPJPirCwR94ufP+m0l02BfGfjHCnnqKnAPqBwCsbRi4/tFHHX3Qk5\n5DRaS8Nj5HwV13p5V4qPQmwO+szAdOkA6iIXjtBwnJO3Uc5l7Ljpa8W9nbpNrklD5PIREYu9XpiV\nJp86FenqrYcx5lyxmOPip8lzveazkJw1v4VxnrlauuuwI058OsZOW/kpETfCLpy077ZddJJpn9dz\nEWOA94zGyPl5LGCZur0/5n2btx59KXOJlJQ27MKYGx7As7r0ttzzZi3FuwbPOXtfOyLirv/+dU57\noBfvO+zuMhKQe8q6NyDnSJqFe+uzxmzxJsg02irwmYY6KRXNG8E19pGr2IKvyr1Yb1ON0ybzNiEx\nN8aYpElyHQomvVWY56NSZP/pJWldDM2ZTbuk1CN5Kd4TwqgURMeZOhHH4yBxMp51bIKcn+sPYw8s\nnKCisO+79I7sHxPXT3LaI4EPdkI1Rjr7ZJVCsm2/sw4PQ94WF4cSDnFXzBJxfj/6dmgY1nd7L8su\nRGNBZCLGen+jRxzjuX2UXGJDI2WeR9FV6Lcte+BeZLvATV6Ke80yorQleSLu4qvYs2Yso2PU2d2W\ntDNjxlwKg5xqwCv70lAvOTTRHN95TL4bsAS79iiuKXem3GuyIxWPe3bNM8YYX/vl9zeaOaMoiqIo\niqIoiqIoijKO6I8ziqIoiqIoiqIoiqIo44j+OKMoiqIoiqIoiqIoijKOXLbmDFvqhkfLUD9ZpQ10\nQasalSD1caxddadAsxceHifi2tugZ3ZFQ8PFlmnGGNPVDH1mJNldBshurM8vrSFdLugsPe2wQR2V\n7r3GkIYuLArXa1tqGQO9I+vG+k81iyi2xcu6AhZ7bYfk+aXMm2DGkphM1BPgug/GGNPfAi17bB7i\nhgflfU9dgXvYcwHayEC/jBsgy0XWJCZOkXVNhvrQf9jimW3OfP3yPiWkznTabVWH8ZloqflOW4j7\nmTwLuvumd6X1dRfVSHCl4j4kTJF1R1jrG05a8/S5Ut/asAea58zrTFCpehr9vmjbInHM34/z66xA\n/+bxa4wxeZtx/8r+sM9pp6+U+k7u+8WnoJse8shnyLUyGs+9je8rwfld2Pey+MyMPPwttuxjXbwx\nxkxYAz19bzX6W0y21G2641A3I1CEvtjwxkURlzADz9Q9Ad/B12qM1CWPBdt++T2nffDffieOxU+F\nVpnrV2VdJX3Z3/vpWaddsR966dJvXSvinn3sLae9Zvk2p733eWkdGV+AukyVLdA6V/0K9X1m5+eL\nz/zwsS867ee/C/vf678rz8HXhvmxnvTlaXPlNf3gwUec9iPvPuG0f3L7AyLuvj980mkXb0R9ji9f\n8wkRN3UMa85MTEW9iPAiWUursxn1mgq3ojZXxzFZ7yVnE/p3TxnWz9bdtSIugewWl38adXomH5Rz\no6eOLERpio/OgP55oE/a6GZNwzOoeg59KmmSrIfBNqFhNNdGR8oaa65MrPUn96LGU1WLrI/DdR6G\nerAO5Fja7f3vnjRjyYLVqD317o6j4pibrm3VLUudNteYMcaYwU70b67LV3DjdBHXQbVHJqZhLkqN\nk/ugmirUe5kzE8++rwna/4RJ0h6XLUPnF+GZ5mTJ59jlxRpXlIG9mDvP2rN58Lde2L7XaV+7TprS\nv/oErMNv+hJq6nSekFr9mRulhXswadmH8cK1Y4wxYj/XfRF9MCJO9lvu38mzsd4NWrbTyUWol3Dx\nv3Ht6Svk+jk8gHovKTNxn7mv99fKunZc5yFnC+aGxrcqRBxbZsem5jvttJKZIs7bhbk2lNa4vhpp\n/RxbgD1fP9XaC3XJPVXSzMvbvn5UOg5ifEz6+EJxzNeF/ti2D7Uq43JlTaVEqj/H9sNxGXKMxdP8\nlk517xbdL43eI2MwzjrLsXeMjEPNMbuWDNdT6Sb76BHLQri1HPVtap5H3an5dy8WcU278HcD9M4V\nmSj3N/UvlTntgtvRF+zn3X4a35e6Zo0JJv4ujBeu3WSMMYZqxHCtxuwNk0QYP7foeFoPCkWY6TyN\nd63oWKqbWXVcxIVF4t3CT/WBeL+ZvTxfnio9q8TpmKtjc+Tcb8hm2lOLmjrJxbLmjIfqJA3G73Ha\nA1bfCVC9E3535Jpvxsj3JSPLDAYFfq/uPitrFnH9p5Ehuk8l8p2p4SjWsbjJuB/8TmiMMUNdqFGb\nuwV1ajqo/qkxssZX8+4ap811xXgfZYxcj/saMcezHbgxxvRewOe4fpi3Ts7RXKN08tXTnHbTuzUi\nLmUB9oRdJ7EW8rpgjDFJsz+4Bug/0MwZRVEURVEURVEURVGUcUR/nFEURVEURVEURVEURRlHLitr\nis1FGhfb7BljjItstvsoLbSvXtprsvRhZAgpPi0NF0RcVDK+L3Yq0puayneJuPhspLB1nEdKf/oM\npPINDUmrxPZ62KlxKpnbSnfsqUaKoysdKdqcYmaMMXVvIQU6OgvfwdbZxkhpgrcWaefpS6Sd3bCV\n8hhsOs8iRYzT3I2R972vHudoS4VYbsT3g9NijZHW3O5EyIsGfTI9rpnSNdmijtMQeyqlBWvPCFIC\nU2cgHXKgR353KFnw+Sjt3N8mrcvCE/B83GTJGRkrrRy9w7gv3GdGRgZFXNoCKXEIJiw9GvLJMfZh\nVreLHlgv4tpPIQU8ZQnOte8yKdYFM0gSWCGfh6cCKbMz7oetatXbkNOwDMwYYybPQ35qQgnSi9n+\n1xhjhvqR7sj2drZVYvXbkFNxuvKUuzaKuMqXkYaePAPp0BEu2X8HmqSsJNi0VOI8Cu+QVopekqZU\nvVnutK/4/n0ibtlkpDAX3Q6717o3pAzkji9BYuRpgQzmmm9fI+L+9XZYcy8pQUr9qVrci+89KeVF\nv//sn5z23T+ArbYtc+wjK8a8jRizTz/wmIh75N3Hnfbnr7zHaf/pHSmLO/yzh5x2WTWObZ4/X8St\n+vZdZqyoaEZKdUiLlA4WZyFVle8Fp98aY0zLXtzbV16CdOTKUpnSP0ByFl5z7fTg7lOQbaQtxZh1\nkaVpZ59Mo04hi+u8q/Dcy14+K+IyJ0HSUPMCUvD7BuX85yO752kzYQG8xJJhdh3BPoCvIyRM3sv4\n6GgzlvDctPZaKScIIbvSruN43vuekZLAmbMhI3JNwDMesPZB3mY8xxiyYi+4Ss5nRbT+nfhv7DNS\n4yHZCbWkmI88DPnhrVeXOu3z52pE3CSy1n7vHJ7jDI/cj+TmYz3eOgvH4orkXLmO7t/+R/c77fnX\nyVz7t/6OdXvmls+aYBJK+0tXutzbtB/GnMfSdNuKNoYsTlOyMf6qL24XcX2J+L68a6c67YY3pfQo\nnGQvkbQes8TflsfxPqWH0uz9nZa0aj72VO0X8AzjCqTUresMybhoXxpm7etCwnBfOM2e5UPGGNO2\nH/8ukMtWUEhdgn3jUN+AOFbxN6xrCSWQSFQ9fVjEZV+J9YX3QZPuWCHiLr0F6YsrC88kPFru3xv3\nnnHaheuwl2o8CUm43ec6jkCelU6Wvy0kxTBGSkLiaQ890OwVcfx8RsnW2S61EBGPseghKVNPmdyz\n+VpoDQiuqsmkzMH8Yu/nWJYyQBITIdExUlLj68d7y5C1r0ieib46MoIxYo/t2Im4t10nMI+7aRyl\nzc0Xn6l7HeUJ4kmi1Fstr4lLfbDkyT/YJuJYrsTP05a58BhmOWPCVCkZ8tZ0m7Gk5X3sTUIjredD\n7wY956jcgCX5ikzG+PNYfZDhMhsdJIf1Vkk5njsH6x9Lj9oPYE5OWybXsVqSC3oa8I4TGJbv2+Fh\nuMZsKj8Sa1tfN2HshJCkrXCblJQOtGCtj4jHWtBfK/cEYdGX/flFM2cURVEURVEURVEURVHGE/1x\nRlEURVEURVEURVEUZRy5bF7NkBdpyyMBmQoUEYt0HZYujY6IMDMyhNQtlv3wdxtjTDhVzy577hV8\nJkmmNodSWlhcPtLA2suRwuRKkbIUrg7u70TK5GhAnmwEy5CqkVaVvUamLXWEUAV1kvhw6pUxMrVy\niFxgfB1SXhNhST+CTepMuAz4emTKXW8VUs64SnlKsXSbGBrqorg6p23fw1Gqyt56Gs/EnSXT+mML\nkW7IUiH+fHyeTFMLC0OfG/AgBc7fLdNgsxbj3AMBpJJ1pUnXkMxVcPqJiienqmH5fEIp9ZIlNiMB\nmV5oO5UFE+4/XIXcGGOikyE7YIemxvfPiLjm/Xhu+ZSWfepgmYhbshWp3WW7y82H0d2P+5S8B8+6\n6SBSoIu3SqeOrGmrnfbgIJ5hzGxZjt/vRz8NCUXfazp1QMQVb9zitH0+pBR31kjZJKcBt+xH2mbC\nZJkyKtJ+x4CoJMxNSSnS/aT7wtNO+5UjcHM4cOu/iLh1s5BX/s4vSdZlyUBmTUJKLqdafv2LvxFx\nd5Nrw6w7FzjtaykN//2f7BCf+dSvIBvqLoOssGlXjYibsBbPdciDOX/jZ9eKuEAAaafbli932hXv\nPifimlowXyXHIqV86de3iLiq7ZDDzrk5uG4xk7KREl3bIiWVKcuQnn/ueaTjT7teagHqT6GvLiCH\nHX+7nMtiCiyHiP/DYLPsp1GUnr//j5BJRUV8uLvSKK3p7z6KzyzeMFvEvf4cjpUuwnW01tSIuCWr\nljhtdsOw5ZDDlKLO7g/9lsNHRJhMqQ42FbuROj55/RRxjFO2E+dA5hNbL593ODn/RFEqd+UeKXVJ\ncGPc89/yW45ALI2dfdM8p+0jWVTtQSm9vOUqzKltl3Cvj1ZWirhKkuPdsgJSD5bpGSPTvicvxt6h\n9g25FuRQCvi0SEhKbGea4szLu1J8FMIpbXzU2qPyXo/d0ZreqRJxnLrfHI6+PmCtBSxTT5qK55Rz\npXSciXJB3tFRgXWIJYq2lD2GnKa6yUUye7P8bk8lpBUsxe44Kd1NhmnP23Ma3+fOl6n6ncfwuay1\nmIcSyWXKGJmePxb4WiHn8ffKMVFwE/ZzrlTMc1HR0kGq6iXIjdIWYx72DcvnOHEjZJbt53jvI6Wi\nbeSwFp0J2V7XSYyXGEv6wBLz2qcgD41IlPdvsAN9M7MUElB3krymc7+Fi202uXi1H5Luf8NePG8e\nf0V3yrmcXZ2CTU855Hi27Cq+CHsRltbZjqIJCdh7djSjHEVMmtyn+fuw967fjXU2Y6l0TouIwL4+\nOueD9+fN+6TzlTsbcfWv4n7lXCMlqOzm1k5ujP4e+W6bTpI9djm2Jf8ekoIlzfrwOdN2mws2Mbnk\nZmpJb/h5Za3DfGHL9nj+8JMjk+3K2k+/HbzzLMZYXop0vJpAcjV+d4xKwZprS6Ei6VgsvaeGWlI6\nllZz2Y8zr5wWcW6SI4ceolIh1hzAz7uVZFf5t8nfEXjv80Fo5oyiKIqiKIqiKIqiKMo4oj/OKIqi\nKIqiKIqiKIqijCP644yiKIqiKIqiKIqiKMo4ctmaM6z9tC1SO8mqj22WE6dKzaS3Djqw6FjodAci\npGVcTCY0ZuEroamLTpBaw44L0AsPD0LfGZ8PG93uCqkL51oyg1Tvpc+yJHOTdiwmH7q2S2+fkudK\nccM+3Jd+0hT/z/kNUxydq2U/zfVExoKmfdC+uifI2i9sCTbYjntT/760DI0hvSZbQoZFyi7EelK2\nYh9ol7rftDnQK4aGku0aWRn39kg7R7b99vegbyZMnCjiBvuhux/swjXF5EnNaddZ9JORQWgI+dn/\nzzE8R1G/yKp1Y9v4BZOEIvTvsDBZU2l0FP0nNBSaSVvTGpeJ64+mZ1iQIfXlp15Bf59ENoOJlg62\ng3XPpEUtuQ06Z1vjnFKMWjd1bx902oVXrhNx5Y9CPx6djT7r75D3PG0a6tY0HYD22JUeI+JSyeL9\n0vPnnXb2SqkDHeo9b8aSN77/qtP2+Z8Xx+566HtOeyrpb9PjZb/N3wYN/u7votbPQqpdYozUC9e8\njOuaU1Ag4iZvxvd1nca8ftf3f+u0Xzj4Z/GZ6hdh8xudiT63/Nv3i7gHb/uM0/YHMAeWN8oaCX99\nB9baa3/wFadd8ba8R2l0L87UoYZS+1lZ4yN/g6znE0xGSCtcmD9BHBsiTXlCDNlYH2sSccmJ6NOu\nLNy/EZ+013znGbIonoL6HxHJ0vZ1sBXz3NwbUavkEllysn2yMcZcPxXjeUZJvtPev/24iJuSjXX7\nrf04tn6xtEyuew1jfXQUOu60ufIepa/B3+I6RPYeIy0624wlM26a47TtOin7juFeLerF/Bp3GXvv\nQapxMuuWeeJYJ9mEJkzBnqbsL0dFHNcHyboSz5t18X0+WZMjg2qm5C5EzYU78qRunyk7h3V2bam0\noQ+PwRrO9Qd2viH3BM3PY/80YxnqYXCNAWOMiY+T61Uw4fpFnSdl7ZxYsv5uo7WKr8kYOZ65zkza\nItn/EnOmOW1ec4eH5fX6+jC3JdD8MNCI+jO8dzXGmPZj2LN0VqB2R7RVq6//EmroJZRgT+CpkOfA\nVraRabj/qQvkNQ204XqbdqJGUfQEuebYdRqCDVvX955rF8fS5mPtrnoSe5Os9XK9y9mI+jydZ9EX\n7D1q1yCus48s77l2pjHG9FJNvcQi1BHqq0W/t+9L/BQ8E38aPt/fIN8NwlxU5+hd1LCMTJDrYvx0\nfF/PBdTBSp6bJeIGJ6JPJxTTZyrkvUxdLus4BhOuSxSTLcdYH1kZ95OVtq9JvgfGT8b8F0W1Q5ve\nkfNkwIPxlzQP96LhbVlnq/ow7u0IrUkztmDfZ687A3RObF3PNt/GGLHnHezEs45KlWuEh/oL1xiL\ntvaowvKe+lXfJWnBzHuMsSAyAc+RazzZ1DyNmpY839jwuthf2yOOJc/Hs9swZZXTPvniSREXoGvu\nPY9xEFuMurOHXjkmPrPiY6hdGJv/wbX7jDHGU4FaP7xvmbphmohz0TzadQr75MwV8v2z6wL6MNf+\n4n5vjBH9x8jSYsYYzZxRFEVRFEVRFEVRFEUZV/THGUVRFEVRFEVRFEVRlHHksrKmsCgcZutsY4xJ\nno50JG890oL66qVUiD83NIS4aCtdKiICKbgdtZCzhBbK34/YjpDt2kIpdXF0WFriJU1Eym0IWXGz\ndZkxxiTPRJo3WybbaUtsg8jSnfAoKSMZ7EWqW2QcUtaa368RcSwLGAvSSNLhs+RFkYlIYebnbZOc\njxSvzlpIJPrqZZpaykz8raEhpPDFT5Qp1gOdSONNyYF9XiANMji/R6bq1j2PVPOMKyDNYLs8Y4zp\n70BKa2wW0hIjYqWla8u+OjqG+8AyOGNkimFsFlLSe6qlVMFTQ1Zu+SaoXPwTrJXztsp0O05NZolh\n7wWZ0pp7LSxcz/wXJEVhoXKMzdpEtr90qOYFKYsouIHTvPHfe+jv5lwr7Qe76mBb6EpHv+/vl/am\nJXdBljI0iDHfWymfYespSPZYItF5SKYHx01Dqm82WSKGhMhrH+wb25TRqhakQ37ih7eIYwf+7U9O\nu8ODa15eKu0wG3dAqvKFh3/stPv6pCXkc19/1ml/6k+wz47/w0MijqWNXZQ6/dx+yJp+fMe/ixBA\nTCYAACAASURBVM+wvONAGeQsP/m6HLPdfeib//KjO5x25lQpO9r1vd877SNkAXz1xiUirozkUHf9\n9utOu+HIfhHnaa9x2omJUrbxUcm4It9p21LGIZJbpsyGXPDULimXm389JEEXt0PuUN0qJbknqpGW\nXUTyw/f2nhVxN99whdNmS8mkAqT9Tu6W8iJOQ688ibnwwUceEXFbr7zSad9yPf5O1RkpO525Gani\n/ZewLnD/+p//gGYHjVOfX8p78zdJe+tgM0Qp5n2X5DrGKfCBEcheCtbL/ONdj8PudVZBvtMOtSQS\nwwOQsTSS1CyrNF/E1b2NY8f+BhkRz9E8NxhjTM17SOfu8iIlP9yyImfZo2cA45TT6Y0x5u1XDzjt\nzETsb0pXSxnbiSOw1naTVKjLkvBlbZTyk2ASYEm4tY5F0nUNNOKe9VVIy9W8myHrDIvEd1Q+KlPr\n46diX9F2Cu2S2+eIOC/tA1iWxJL/uHQpLe27hPU4bSb21rY9+ChZwlY9CatXWyLRX4P+nLYK+9f2\no3JdZJkTz2Ut71SbD6NkDBSj/XU4X9uyuPXQJTv8fz5j7T2FzIL2cNE5UhrGcm/vBewnbFvsSWtx\nHo3vYo4eGcIziLHkXx1kTc6yBZbhGGNMoA9yh5Kb1jttv1/ubyqfQL8IJSlUUkGhiPNn43O8V8zf\nNkPEdZ2T60swYSmTp0a+W7kz8QzayV44m6SbxhjTdgjH2LI8Oku+I/E4iCVL+W5L2piehPkrlMZ2\nykzIP0eG5Z6PZU6eWoxl3mcbY0zbAfTLFJI/+aw4fp/wkoRmxJI2uqkv8Xsl9zdjjEko+XC5ajDo\nPoc9YET8h0uqeE2zx84ASXiE9LTNkjWF4r7xmjl93VQR13kUz3Xy3ViHhrw4n9ltct44/CTWz4np\neG8rb5BzYAatcX3V+P0ieYHcL/E+JpUkr3UvWqUQaH8TQRKxQUvu671IY2S5+Sc0c0ZRFEVRFEVR\nFEVRFGUc0R9nFEVRFEVRFEVRFEVRxpHLypo41TfFclzoa0L6T4DSm0IjrTRvkgd1X0DafbhL/umI\nhUjpikxEOmpkTLKMi0fKFaeJjvhxDiMBKUvxdtTgfLycliWrdPO5h49AHmLLpDjtbXQE3xeWIa/J\nU420Ja6gbrsF2K4/wabzNFLChi03kNR5JPtx4761HZappIGBE06bnYMi46XczVuP9Ep2PshcJJ1+\nRoaRft1Wg9RNdqUYHZbpfCmUSjbQgs/3xMi0sqhEpPgOenE+duX6nPWQu/XW4BinJRsjJTtceTzJ\nciYLCRk7R4PCu5A63UVOacYYkzIbadCNO5EW7ycHF2OM6bmIa0wuRGpkwjTpiBaZCMlK/YtI5x0M\nyL7D6Y+cdsrjqOktKVcqoDTbmExKJ2yS9zx2AvpVWATGYlSSrArPrhfJdB/YEcUYY3rLP/j51lsp\niamWC0Kwufcntzvt1//jdXGstg33M96NyvBPP/eOiLv/t/c67d4OSM1+8y9/EXEf/9pWp93djTH2\nl2e3i7iSfZgDrv/yJqfdtBfPbq7l8DT3Kkjfvn3VI0779a//QMTNyIU7xMVnkIZfGSplObmLkXq/\n6wzS0wtuWCDPdRtSwAMBzC+Hnj4s/+4KSGJyZeb0R2b33+EkVpIl+0t8CdarmIno3wtulO49A804\nd5aYLF0q09A33AkHg8cfgtPX5GzpujLUg3VoPzkNzcpD+naR5Sz1ytO7nfa0HMhRv3rXXSJuxSbI\nwkJp3U6tlXKBnjPktJGB+YDXc2OM6aa4IZpT3DEyrq9OpkAHG3ZaSZwpHeuWtaH/xBThOR589oiI\nmz8XqdRxlG7evLdWxFU0Yw2euxCfCXdbjnq0dqWWYA5LWYjn3VshJQO+ZqyFhw/i2a/ZJvUn53bg\n2OxijOeG43Kt33A9PuclCVDSHLmGhx3Ffo6lTMkLZd/0VtPcvsgElWh2n5TbNDNEUhLug1lXSEmI\nkCbSd6SvzhNxLM0YaMQ9ZycaY4zJXAK5r38A187Okb3Ncl1MmkZ7CUqLb36vRsSlLMY4ZedRsUkx\nxsRT3+kpw7piS7pcqVhneG/IsnFjpBvNWMDp/yMBue9jCRBLzNMWyHIDkbQ34Ouy3VBrn5Py7H9g\ny8Czyf2p9jmsV/2tmLsTpsp9ho/2vKMkR0maK8eOj76j/Jm3PvBvGiPvRdZKyAOrXnhfxAW8uEfx\n03FO3SRTNsaYrmMk+7nOBBV25rXdCV3r8TxySbZmy4L9XT6Kwxw80CpdnSJT8Ez5/UY44Bhj8m/F\nehom3jkhF2x8Wzo98v41cyXGQcdJeU2xhSinwE5O9ljhuSec3pfschn8rAMkrw8Jk9ck5v8PcPn5\nqCSQ45g9dgbJLZXdBHvL5NhhyVbS7MwPbBtjjKcS1xIRJ98lGZ4fWvbW4AA9b1em3I8s3IZyGXwd\npZvlTWOXNt5zDDR7rTj8Le6n4dY78BDJl9KWYP/rt122rPXKRjNnFEVRFEVRFEVRFEVRxhH9cUZR\nFEVRFEVRFEVRFGUc0R9nFEVRFEVRFEVRFEVRxpHL1pwR9rgXpaYsKhkaQta+Jk6TdThYx5q14sMF\ncu2nYd0XmweNd9spaQ/LdWZYrxhKFtldZ6VdHBubcU0Ttjk0Ruoa+ZriiyzrMrox4S7Uw/DUdlpx\naPK52jbiZuT/Ij77iMQX0/lb2uQOsp5j3XPmshIR17yf9OV+1Dyx7bdHhqDlTF8AvWZPXZ2I4/sb\nS7UZus9DI2vX5mELxHiqmdJdJnW1g2SR6qbaB3aNmO5yXAf3ObaxM8aYrvPoT2wf13FKalC5r6df\nY4JKHdlYD7bLGkV8L3vKUGNn5hfWibial1AvoWgr6gq0nioTcWz9l3s9dL/FNOaNMabqiVNOe8Ja\n6KFb9+NZxxZJm/PQCPQXtkDvOCZ14FxLpvM47nNmqdTCx02ABr/1OOrjuK2xPUSa7LQlqCXguSit\nK+MK5fkGm52/gL5828/uFccGetHPWLccsOpEpWTBd2/HN2Fx/a9PSLvrsDDMM4d+8men/dV//4SI\n4zH7s6/+1Wn/8o3nKOjv4jPdJzF29h/5mdNe8tU1Iu7+a1CDJjsFY5Zr6hhjTFEPaX3JUvmt7z0n\n4m742Xedtt+PcX/Lr34i4sq2P2nGilGaQ89Y89pM0kAffhe1c9LipeXq0DDuecmsfKcdYdVnufAG\nxsWiYmi8m7u7RdwIzUsrV8F6veIUap9EDch548bPwiK7ajvmgKVrpXX7abIBT43DuOq3rK/5vrBG\n/NLOShEXm0r1qcj+uKFVjsW5ls10sDn+/HGnXTxL6v8jkvAcTryLZ8DXb4ysE9B1FPPUyVpZc+bK\nu1Y7ba4PNGTp0A+ehT31+ukY51xnINSqQcBzbNhh3M89zx4UccuvhwZ/x5N7nPaqVdIKOioZtTvc\npei37/zpPRG35Ep8LjwWz7vtPXntR8vx/OdsM0Fl2IdxFO6OEMeSpmO+6STr64BVa9BPtQU8VJts\neFDaWIdF4/uzr8JetuENuUdl22SuZ5A0Pf1DPxMeg+920Z6FLVuNMab5bdSq4doiUYmyFlvds6iR\nkrYS613+rTNFHNfh62+A/W1MntwDxU0c23VxsA3rXatVrynvWtjqdp7Bc/R1Skt5riWXXEJ7T6+s\nqTTj/iucdtUzqFU24pfPu+V9nEdMAe5H0a0YR53n5HeX3L3CaZ/51U6n3Vcr6xKl0zPh2kjVtKcy\nxpiij2GMcW2VzFJZN+nCX7C3y9mMmi4VjxwXcZGXqevxUfH3YN8dVyxrhXKdxBB6V4u0aghGJGDe\nrX8Dc2HuJmmT3H4cdsgDDegHqYvleGk7iOfDNeD4nluvRMaVjvHH/c1OZRA1bGhKTp4h66o076n5\nwM946uQa3n0K94jXT3+nT8TFTZL3NtiwZXSsNQ8MNOFe8/tOaIS8OWEuPEd+R2zcIev7RNJak74Y\n9Vlqnjkj41KwX4ybhHk9nObk+pfke0w21TbqOom/62uW80bOVYhzpdC7ufVeXvW3k047IhnXl73R\nKmpIe8DW/TQ/WB0tc2W+uRyaOaMoiqIoiqIoiqIoijKO6I8ziqIoiqIoiqIoiqIo40jI6Kid1KUo\niqIoiqIoiqIoiqL8/0IzZxRFURRFURRFURRFUcYR/XFGURRFURRFURRFURRlHNEfZxRFURRFURRF\nURRFUcYR/XFGURRFURRFURRFURRlHNEfZxRFURRFURRFURRFUcYR/XFGURRFURRFURRFURRlHNEf\nZxRFURRFURRFURRFUcYR/XFGURRFURRFURRFURRlHNEfZxRFURRFURRFURRFUcYR/XFGURRFURRF\nURRFURRlHNEfZxRFURRFURRFURRFUcYR/XFGURRFURRFURRFURRlHNEfZxRFURRFURRFURRFUcYR\n/XFGURRFURRFURRFURRlHNEfZxRFURRFURRFURRFUcYR/XFGURRFURRFURRFURRlHNEfZxRFURRF\nURRFURRFUcaR8MsdPPb3Xzrt6Alx4tiltyqcdv6myU67cUeliMsonei0u443O+3I5GgRN1DX67ST\nFmQ57dHRUREXEorfk9oP1DvtzLUFTrv7VIv4jCsjxmn313ucdlSqPIeYvET83eERpz0yNCLi+Cet\ncFeE027dXSvC0kvzcd5hIU679pULIs4dj/NY/o3vmGDzzre+5bQTJiWLY4kzMpx2+0Hcz9iiJBEX\nX5TitM//5YjT9gwMiLjSb2912r31l5x2x7EmETdx8yynffbX79H5pDntS4frxGdiXS6nPWFjsdP2\nNXtEnL9n0Glnr0dc26FLIi59Gfpm9/lWpx2V6hZxDS+VO+3UFTlOe7C9X8S5cxOcdsmyu0wwubDr\nr057dET2x85DjU47NBpDOmZigogLc0eYD2Ko2yf+HZWG8RLmwvf1nGkVcQnT0z/w+6pfOe+0CzZP\nEcfKXzrrtDOnYZxHT4iV55CIMdFX1+20Y/Jlv6x54ZzTTixGHzXWvDESwD1LnjfBade+eF7EhYeF\nOe3VP/iBCTbbv/Y1nEdBijjmrcccmLu5xGmHRYaJOF8H+l35Gzj/wlXFIi40HBOVn55xzMREEReV\nhHvdeQLjtOkU9auQEPGZjJl4dgOXcN7eHjkmirfOcNoXnznttJNy5XNMX4WxyHN85/FGEdd5vs1p\nJ0/H3BVfIu+lvxvz0rT1nzTB5FLFc067+rGT4ljhXbOdtjsp22mHh8v10+/HdSQlLXHaQ0PdIq6p\nbJfT/v7nH3LaX//hPSIulPrIYCeeQSytac88+LL4zCd/92X617DTCgT6RFxMTJHT7u0+5bS7Lsj5\nYGQQ38Hr57HX5D1KjsVY31+OubWpq0vE/fzlXzntxMS5Jti0tr7htMPD48WxkJAop132t7ecdurS\nXBEXm405tuFt7ImKtpSKuIvP7nTaBdfNd9pVzx4WcdlXTnLaffU9/5u99wyvq7q2hpd67713S5Yl\nd+OCccMNjAtgiukktNwACekkIcm9yU0nBBIIvYROwKEZbGPj3nAvki1LVu+9HenoqL0/3ufuMeYO\n+PueN0dXf+b4Nc2Z52ifvdaaa+3DGHNYcUQu5tK5J/eK96TegDXWvA9nkITFGSKv7TjWtrMZYzw6\nJPeTiGlY2yFUbxt3VYi8xKWoN1we/P3lPepqxBin5l5n3IkTbz9hxfb9rb8e5wLvYIynp7esZYN0\nXhjqdSF2DIo8/wTM24B4xPa/e+YDrJHsOZn4u37YS3tL2sR7gnNRvyr3lVtxYm68+Sr40jml4ZA8\nKyXNT7firpNYpyG58vznS7X/7CbszdkLc0ReYALqV/bsW7/ymv5fUXP+XSt21HeL13h/crZi3rra\n5dkznPaDoT6MY3epvNfeNF4xszBXB+k9xsg53VuNtRgQh7H3j5JnxeZDOGOGZuFetx6pE3mhudFf\nej38PGGMPJeGT8R5yzdMPrt0lbVacVAiahmf34yR9zZrxs3Gnag49aYVN34uawWfqSOnYE437aoU\nea3V7VZccOcsK3Z1ybF20HhEz0ikPHmW5WeBATo3BaWibvtQbTDGmMaduPbAFNxLnxCZV7YJZ6/k\nmZhHYRPluXiwF9fAY1P0zBciLzQBrzmaeq2Yz6TGGJO0CmtzLNbihSOvWXH9x6XiNa9gzM/QPMxh\n+3N6wlyc+wedqMPVH8rztrMR69knDPc3KEOeUb2odrrofDPUhxodMUXWynZ65oyZg+e24GRZA9uL\nkNdHe0ZAfJDI42fg6o147rCfCZzNGDufMDyzntp4QuQtfmQNri9mqbFDmTMKhUKhUCgUCoVCoVAo\nFOMI/XFGoVAoFAqFQqFQKBQKhWIccVFZE0uZ7DS10HhQsDy88BtP3OJ0kceU/IhpoB2N2Ki0TEv3\nIDo+U6WNMaZ6MyiyHsQ7bDsE2mBQupRz+BH10NkEGpWdttpXB8pf1znQBGNstKVRkjmN+OD79Tkk\npa7580orDi2EXCf7xskir35zmRlL+IeCWpVyRYHtVdxfv3DkddL3N8YYn0BfK47IAC0soElS4FuL\n8V0claCpp101VeS1HIf8zTU0ZMUsdyu8faZ4T0cRKJ5hRDGr+qRE5E28E7TxvibQ1BwVXSJvIA/0\nuIh8UGJrP5WfF7MwFX83B1Q+X38pzSh9jejm84xb0byj0oojZkj6nn8S1inTWAMTJVWfKZ/dZzG+\n4VPiRF7bAcjbQibi+4blx4i8fqJe+hNtNSQStN92m5xtwjrMP6b/uTrk2uk4CglkGEnd6j86L/IC\niN7bV4nx9Yn0F3lM3R9owZyNmiy/O9eyscAQSdLaKyTdOmE25lndJtBJgzPlPPMJwVpMmYra5GqT\nkiKmEjvKsBYrj0r5pZ8PqKrhUZhLidMgpYgokPdpdAQ0Vi8/1MDYlHSR17Sz0ooTiELuZ6ODn3oF\nUsmsJZB08d8xxphUktB6+mCsKjYWibzwDElddSeY7u4bJenlEfGQ3/zh1u9ZcWWzlAC9sAtSmY9/\n8BMr/vT4cZE3MwuSophQrOecBZKS3lC1CdfniQtkedHquyV1tnr7QSvOX3ubFZfvf0/kdXiDqs8S\nA7t8OHXtRCuu3476Hhcm9+NZP1iN6/v1P624qqVF5HU3YS8ZC1lT/Q5aYza5ZEwe9iumto8MDIm8\n3lrI0CIKsUaqPpPSo/gF6Vbs44Oa6hdro05H5Vtx3eYP8HepfnnYZI48xrnXr7TihuNSMpW54nIr\nHhrCvujpKWtlRzUo2yHhoKf350n5sLc36ryzC7VsqK9c5HWXQapgco1b0XgM577ITCltDCfZbXcp\nriE4TdaGjhbsNbVVWKcsSTJG1izeZ2s2S+p/wVqc73iNBJAsqq1NSneGT2BeZS7Amj/3uTyLsHwg\nNSvBfBVYih+UBYmAF53jjJFSppgwzHPvICmvadiM9Zw9+yv/7P8z+hpoPnrLPdiXpAHDtP68g+R3\n6Tj95W0TomcmiTyWSDjbcBbwj5ZrsY0kvjze9mcXRsxMyCdajuAc5Wf7bH6u6SN5VtR0ea0BJCcb\noPNbf6s8dwfG07PankorDrGdHUJta8Sd8PL96sfJWHqGKnnxmBX72yRFhV+DlMknGOPLZ0Vj5Lmg\nkaRRg90DIs+P9ufEZZADNe3B82zzMSmdzrx2EvJ24ayUcYN8dkqZDSl2I401tzcwRj6nnnsO55y8\n26eLvMo3IPsOprM7n3OM+dczkbvR+BnJKldPEK+xrLD9AGrvgEs+S/ecpbMtXX7CsiyR5yApfznt\nx34x8nwYTa0IustRy2upvUpQupRC9TdgzrAssb9RzqU6Wi9hJFO+8IXcxzJnpOPzWvAZre+dMl+F\nSTdjjOd/d4m8vjaScctHK2OMMmcUCoVCoVAoFAqFQqFQKMYV+uOMQqFQKBQKhUKhUCgUCsU4Qn+c\nUSgUCoVCoVAoFAqFQqEYR1y054whbVtwqtTRCdsq0uD72SyyT7969Es/erKtnwhbvbrIotiur4ud\nAU2mTyj0in110Kx2Fcl+KRHToAXn/g1DDmmdV3cUusHIROjXglJk7w62ces6TX1QEuU98qEeLmE5\n0Hp2X2gXebEL08xYIu+uxVZcteWIeI37Uoy4oKX1ttlDnvsbbN/8SQ+Ye69srtJ8GFpOB/UA8fKS\n86JsK7TUc34ALfxgH+ZB017ZG4N10G0noBOd+HU5l0pexJwr/BauL/AGaWfbsBOawiTSo0bNShZ5\nbYcxL3js7TaFyVdJfaY7MTgMjbJda125B98jMgZz0D9G6pzZdi4kD/Oxt0La97KtZ9VefHbmEmmv\nyVaWoo/LHKxRu76TbQW5N0af7RoCUzBWbIlqV9sOkvVpMNnv2fu0dJyAHp3nfPd52felswHjO2W9\ncTsm3QoNqr2PF/cy8fkK23NjjHGUd37pf/eNlmts2Al9vmsQcWK6tHqMngc9eNM2jHcTrTFXu+wJ\n1HABvRS4Z03+JNmbxm7n/j/wDpZzeMod0Jqz3Sdr7o0xpov6TvlGoL4GRci57h8vrdndiS6aM1Pu\nkVaWv7rxm1b8n+/BWrRk+2si7+a5C634sY3oORPxrPweIROxFm9f/0crPvPP50SeVwDGoPUg6tWc\nn+B6/mP59eI9z2z/yIp7e9HLqWm7nJcnq1CHS+qgM//z5vdFXtned6w4fwMWT/Wh7SLvB1f/2IqD\n/DGGd92/TuQN9Usdu7vB9afzjOyfEzsR/9+Ke1TYezbw+aSnChryjBWLRV7F1p1W3OyA7bG3zZ61\nswF9B9hOlHudefrInjNNZP3qcxXW1b9YCAdhX4yfeKkV15/eI/IislEPyjZtwfUky3NQ5UfoHTFg\nq/OM4OyIr3zt30XmWvTo4XEyxpiK99BPJely9I8pef+MyHMOYp5NuQ69jezzr+5z1MZYOiN4ecr/\nx+lJfct4H/Kk3lyZi+VeytbmPCfCAmXvhbAUzIkRqu9py+TnGZrb3F+u+aTsAZc2DX3OuK7Z51i3\nQ/Yzczd4HXH/GWOMGXbh7MPXNWDru8Ln7QF6hmB7dGOMCcvD/jcyiM/uOCv7gvF8949CXW7cW4n3\nnGrktwg74IR51K+pQ67FQXr26K3Cfl676ZzIC81DMwpHDfXUs+2fkRPwDJG8AtfgqJNnhX7qlWES\njVvhS70tE5dni9e8qddR5vXo3VL8uuyx5v8F9q7gDKydPpu9Op8f4uZhDjcfkJbyEZPRl6nybdRW\nvziMZ/Rk2cMxJBU1fnA6xmnY1v+ULcHjLsX9554oxhjj4YW1mHcXnlXKXpLfPet29Dkreg7PW9yT\n0xjZT8rMNW4H35vQVHmeq9y4w4oz1qM3T+0/5bzlsyj3guT1ZozsIcWImi4nZwvNi2Gqy5nrMZe8\nbf20HEmY+4HUP3egTdqyB0fjrOhqxWsrfnm3yDvy+7esODQZdTi1UJ6nfakOHX8J4zjjrjkir+04\nanFqnvkXKHNGoVAoFAqFQqFQKBQKhWIcoT/OKBQKhUKhUCgUCoVCoVCMIy4uayLYZQKDPZAn2OUT\njMJbYGvMsgq7nMBRSZaUU0EX6y3vEHneJGXqOE5SBbKkdLokjZHpru1HQSVKWCmpd+EkF2Arvu4S\nKZNyNoMyydZgZ1+REi7fZlDNA4kiybQnY6TF8Vigk2jp0TOkVV870VxTLofkor1M2oixVXI02eJ1\nlEgbunayNA/OwZwZHpZUsiiS3xz/0y4r7qexS50h5V48zyJyybLwuKThM025/PWTVpx1i7SuS1uF\nfzcfJ1vVFGnJFjOPLPPIIjYkS1pysv14snSM+7eRvBK0ZbucKmt57pe+Zqd58zzrJWvRliq5FjOX\nQZ4VFYt7YZ+n/dWgmsYvB2287QjmhMNmgRiWiXvWVAIpQXOXtDlP7QGNv8MB+nJavpy/w/2gRXqS\nxSzbFxojbfY6i2DZG5IjZQpsUz0WcJL8q6dJ0rfZ9jE4B/eJ5TvGGDNMlOiQCbh+T5vFbhd9z6Sl\nmJBsP2iMMX4ks/QmWnYA3Vu7PC1nBXiYRZsgE+B9wRhpK8l26b0Vsq4HUZ6Qm5ySVPOEZZhnDVux\nFl22v2un5bsTZdsgyYyZkfqVee9950dWvL9EWuI+tfkJK37pgb9YcWSwlGOdOHTIin+7DrKkwmvu\nEXn1lR9bcc7Sa6y4rw+18epLLhHvYVve7kbkvbVvn8hLiEAd/90HkFM5HLLuhk8ABf/ce7DI/mKH\ntJr83cZfWfF31z5sxdE2G9m9v4ccKvPxm4y7EUy1KDq7ULzWVIy9PCgVtaP0WSkLLvz2GiuuPATa\nfFyBtP5OWwp57fAwybZHpXSGx4Qp4HWbITvziZDyRX+iobOUceKNa0WehwfOI04n7NG7zsrzTUIB\nrjUkq858FYbpPMfWwPEr5ebXfkxKadyJ0vchXcpcLmXFIWSLyha7ueukJS7XzQ6yvo6aLq2qs27A\nHGkiSWru3VJWHRYNK+2REdyj2sOwVw+fFC3e4xuAuVjxPta8wyn33PIjqCOzl0MG0VMmpRRfHMB9\nmbNoihVH5UoKPn/3pOU0bjb9cKDv2O6LLFVg62w7Qknq0m/bqz298V2CaOzt5xYvX/w/6Y7TuG8x\nl0g5O+9DXaVYIwkLM/A3bTb0nRdw9hkawl4fFGU7d7djDw6ms0nVp+dFHp9buGUE1wljjKnZhhrL\nLQn+5V56ynORO1H1z2IrZom5McY07a604hiSISXPShF5jiqcA0fJstzLJvMOiMU+Wf53nPGT10l9\nSCdJ1TJuxLrsbybrdtu5qb0Y9aqvDmdcfgYyRsrRIgog/+EWHfb31XwI+U/KulyR17wfz2l5t+HZ\npIyeYYwxJsn23OpusI11b32LeM2TztUt+yAhi75MjiO3PMi7H/tJ8V/k2SIgAeMYTc8a/Y3ybMyy\nMW5HEp6AWu7pKetB1C2oj7znNhyXz+m8j/klYC919Mhn4JhZkFqFZuPc3XVe7p8lH6L2Gd8gMgAA\nIABJREFUZi/AWLHluzHGJF958TYYypxRKBQKhUKhUCgUCoVCoRhH6I8zCoVCoVAoFAqFQqFQKBTj\niIvKmvxJKnT+DUmtiswGLZOp+kwBNkbKLKo3gZKZbOvm3XMO0oqOY5Ar+URKWl4LyXC4S35oPq4n\nY8JE8R6mmcUtASXRUSmp9QkrQOt0EJ0tbnaGyOuppu735Cg08fYZIo+7/XeR5MXLz+a2cBTU4Ukr\njNtRvfGsFfva3CH8icZ16HcfWnHcZNktO+1auCLUbQUlM2OtpMr7kKPS2bcwZ1jSZowxQw78O3kx\npAqjQ6Brth2SlOqIAlByi/+y24pbu2Un99kPLrBiRy1oks52Kc1wdWFMwnNByT/02C6RF0FSg5yv\ng254/nlJjwuI/Wp5378LpmVXfSIlEhlrMN9HiAradU5SEvmeD3bi82KzYkRe5wlQu8Ongq7ZuFu6\nZ/lSd/SmbaB5d/SiHtjdJspPgQrp44V1YHe8aOgEZfQASUKW2fJc5GKVMoT5YXdiG6UO91GXgGLM\nsihjjPFKl/XL3fAgJ4/kJZniNQc5VrHkovbTUpGXtQH0ehfNC7vcbYheq98Oimb0FOlO0FuKOtjn\nQK388PBhK75x0WXiPdteB0V/ybXoQt+8R86R5nrQxpPyIBMInyxdABq30PURRTZ2gZQ2lr4J+jbP\n++adlSJvxPXlLgDuQFQUKPMREZeK1yKDX7XinNnYT+xk8nMvbrPiRSsgizixp1jk3XLtUiseHkb9\ncjrl9+u+gP2zqxSSIh6nu/72C/Gep77+gBXf99wfrPjeb0op2ZRr4PhUdgjfLyhZOnFVvI6xYbeG\nSSmS8vzUvY9b8TPb4fjU1iwpz3apo7vBThR1JB8zRlLRg+KwFmMWyfno5YW9ITgLkovzb28ReWG0\nd0XlYt2X/n2/yEtaBaqzbxjuYeQM7MeR6ZIO31GN+tB2Aucj7wApBfAJxP7U14pak7RMypB6e0G9\ndxB1v+OkdLRKvx5uHb7huNYRl3TkSLlKXq87EeSH80zlZ7JOZq/D9fF+cM7m1pR1Ocl4Z+I+R6TJ\nM2pHFc492bfOpldse9cZzOPYiTgvsMNO3RZ5rf7xcBOpOUPnwfVTRV4enSldHZAO2KUZl67E3923\nGa5asy7JF3nsLsSOhr4211W+L2OBAHLXG7S5K7EraydJCOySneFh1MSQFKzZgTbpNNVVhloZPz8d\nL9iKNJ/f+RqCgzGvulrlcxGv2WEnnf+bK0VeQBy+L69TuxMn76fcWqLf5mgVOZUkeCRd8rF93ujw\niBkr8Lmq66xNDkMSe35mSlwqa0/nabxvdBjPAnaZeuNxrJHCe7AWfYLl8w1LTnprUcu66b+HZMr2\nBFGT0q04YiLWWMvhGpH30pMfWPEtt19B1yDvOTuURkzD2Uu4LhljOugZkWP7dy8ll6fkX11r3I2O\nw9hDBlplO4pscpTi8XHUyb06di6ka4N9VKds34V/Y0hYT8/fjdJlrPkQ7n0fOeb6bsB666mWz/PN\nJCPi86ZdnjbhHpy/vLxwPdVbpBybHaRC4nCmaflCPqcW3orfAU68DLem/HWTRd6/WM/aoMwZhUKh\nUCgUCoVCoVAoFIpxhP44o1AoFAqFQqFQKBQKhUIxjtAfZxQKhUKhUCgUCoVCoVAoxhEX7TlT9Cq0\nqn7eMtWf7baoV4KHzaqNrVTZ4vjVxz4QeVfOg+7L0YGeFUNtUluZtRp9Bqqoh03xZ+irMnmt1HZ5\neOOaPLwQx8yRNqhd56F3ZA21XRxW/h6sssKzYKnVcqhW5LlI6xo1C3rM4vdtWraQEPO/hYyb5L05\n+vgeK2YrSrYlNEZqfYdIE3zm8c9EXv4D6PcSGoI54h8nLWI9vcnO8Ci0zt7B0N+mXit7BzVsQ1+K\nrNthD9nxpOxVUE9Wwd6kQWVbPGOMSVwCTfnoCPSfE5ZJO762g9AUdpZgjmTcKO1Xz79+wowVnGQt\nNzgsNf0dJ8lSnvSUAy1Saz3sgCbb5cJajEiTlqEXtsPO0fMs5oHdWpS1tWzlWXgN7p+9V9WEudCV\nbn4f/RaWXCatZz/Yitdiw1BDvL3kvDxJNvGT12FOdJ+T9nZFpzB3CmjuheRIvTFbwo4FKj5FzeKe\nCMYY00ta2thLUZtS18r5WPsxxidxJc9hWaeS16DXA/edGrZ9xwmk2R4mK/vIz9CLyCtA1n+vUtTR\n15/7xIp9bPvE+tuWWfHIAOZfV7HUpIcW4m85m1H/owqkBWn6atwLtnIMmSitae3W3+7ElAdgad3Z\neVi8tuquy62Yex3MuE325vL0xX3iPdPvoOxF0VSK/i/OP75mxQmrckTeifdRe2ZRP4z7nnsUOS+8\nKN6zYAW00ceefMGKN+3+QuQNkU35rs9wJphdaLMCbUQN+Nnv0Zvm6e8+KPLuf+77Vnz2/TesuHC9\ntAe/+9mFZizRXgwdu92aNiwN669+LyyykxdI2+SedqyriEL0E6g8fVrkReRgHp96DP1oomfL+R0S\ni7/raMd5ovwd9ElpS5cad+51w2ssNEr2F3G50GsjIQtjX7brPZHXV4u9xoP+992sH31N5A0OYrxr\ndqFnT/qSxSLvxKNvWXHiL9YZd6KjF+s8LilKvkb7YmMZ1lGwv+xV0l2CvaJm5wUrLrhX5nH/nYFW\nrG0vW2+fztPozdN6EH38YheiX9HenXJfnDkR63niWpwrei5Ii2xnA77vvhPoTzUhQe7N+6lPWxB9\n38GuAZHnojNCxEx8hr2Hjd0e2N3wi8S5JTAhVLzWUYT7GZKB/dre28NJ9r29tbhv9l5s/N0cDTgT\n+obKfiW+oWRdTb382mqP4NpONYr3RM+CHbeH6P0iP3ugE9c6zP3DbHUo6QrMi756rMvAJHmPnK3U\n9zMRr/XWyN4dUYVynowV2BrdGGN66GyTcR3OPU5bP6As6mnibMdrfrb+Qh4fY34PU81z9Xy1jTVb\nqodNxHkjZdIq8Z6uLqzNqvfxrFd07ILICw9Cf5K9n6L/ZGl9vci7ejb245o21OBpK+XzQxj1FPLw\nwRwd6pE9mP6/LJj/XXQ4MJfSZheI1/qpv2xADL6/vf8c3+v+JtSsbOrZaYwxnfTMfeE1nC14LRtj\nTFgeznch2agB557EvuMXJftkZdOZy8sL88DbW66dtgu0vxfA9jtxiTxDBgTS3txdieuh/dcYY1oO\n4lwx57uLrHjI1ieQv3uSbGtrjFHmjEKhUCgUCoVCoVAoFArFuEJ/nFEoFAqFQqFQKBQKhUKhGEdc\nVNYUPxE0Xab1GWPMQBtoR8EZsJ+1y1eK/wGKGFOHs+OlnWtVNeiB/r6gK6bPTBd5DVshTwiJBz0p\n1Au0KpZYGGPMTx9/2YrvWAzK7YLvXC7yhp2g+zfvAmXebrmdshxUQ0cN6HpMlTPGmNNvgOrW2wY6\nmN0e0U67dDdy7wUV+/Cfd4vX0i8Fn8qHbLa9/OQ1VbwLet+sH26w4uKXPxJ5NZtBEWPpUk9Jm8hj\n23K2v2veB5lKeKq0Gva9BtTGXrLILrhBSmJ8w5HHtp59NvtBVxfmcGgcxtTZWiby/JMwp0eImla3\n6bzIy1ovKYDuhLMB8yf9cmnxyZbJQWlYi3bqK4Mp32z5aEdXA+5zd6OUhQUR7dcnAve8rw73ecKG\nKeI9jlp8xoafXm3FncXSvvfe39xsxUxxfOfxj0XeNbdiDbMt9rlTFSJvYh4o5SxlYjtAY/7VotLd\niEjC+LAsxxhjYubCnu/QM5DqZRRIK+LQPJJSEoUydp6UaYYkgGIduxAUYft39vdH3oAHbBS5rvfV\nSKvE0kbMH7azzbHR63vOYd2zzGpkSEqr2Fay8wzmQm+drOVsK1lcgloR3ySvLyZdypzciebzqOsR\nGdIKlOncwRmgu77631I68r2//9aKH1kP2c9vP3hN5Hl7o/Zs+uFPrXj/o3Id3PnE7VZcR7LEwQLc\nl8YLco0t/S9YaQ8MYNzf+HSHyPvgfUhfF08CJb3gPilRcblA0/3gtllWHDdhnsir2LHZii8cwH6e\nvUrKgl//1m+s+N4XXjDuhrMZtGXfKGmv2XwctPmky0DF9vCQEhaWSPj6YL0k2mRnnp5YI4FkG+wb\nKun61dsgKXOS5KSN5DujFXL9smRg3k8xlzw95R5e9HdYrGesh9yBZUzGGBOUgn3Dn6jro6OSll27\nF5I+lianLxFpJu+bYydPy7sK8/Hsx0XitdRC1DUfksPWt8uakpMAWXkfyTprSTphjDH1FVg/fC4t\nOSCliOnZsFxtrMKaCEjEuF9+vVwT57bBvjysB+fIPSQjNMaYZRvmW3H0BdT+09VyL+kkaUJjJ8a6\nbqs8h33r4ZusmPfPCzvkd8pbJyUY7gbvSU10BjRG2nqz7XTrCSkf8fTCeTOQpD2uLilP6CeJOFv5\nBtqeXfh8yPbULA1LXCQlx12VkGCFpcO+t7tZ2tCHpWOv9iDtYECq3Ot7eyGbZAlQZ5Gs5X50j1x0\nHoyeKi3QRwbHTrbNz0L250CW/nUWYU0EJcszasMO7Ad91Tgrxi1OF3kZN+Fc2VUKWaKXTY4XEIvr\naCIL78hJeP5sqt4m3lP1DuqIN0ndqlulVP7FjRvN/x/EhtOZrxvfaWaglPhEX4J6deEtPEdFFsSK\nvK4yXMeXyWH+XUy/b64VB0RIqaiHF/42n+Vrtsp6wc/IXoEYe7bENkY+c7Is/7NTsvVHYg3OUnlJ\nkALHkL11g83q3Nsbdb35FNYRrxVjpFSr/jzadNht6OuLsd8lzMDYhc2QrUK8/PdasQe1B+kqkRLI\n2FkXHzxlzigUCoVCoVAoFAqFQqFQjCP0xxmFQqFQKBQKhUKhUCgUinHERfU0LGXy8Ja/47ATjKcP\nXus8Jel2Die6Nnf3gyZod13JzAWl6/xZUDRZomKMMSETqFt7GChRoZn47zX/PCfe84uvgbo51A3a\nqm+IpDIzxbGtB9TH1MnSNaj1MNwSvPzwPXorpPxp3o8gueghadSwrWtzF0s6ZpgxRURI8Fe+1rgF\nlEK/eHlvuJN40YtwIPC1UcTC8kHB86Zu+r4RMq9mI9F4J0GCkHP1cituLpHuR9E5oDB3V4Dua6dq\ncvf2qPx0K45Ile4VB379uhVf+lN8dnB6uMhLnAaa3+ln3rXihGVSdiWcFdw8jmHkZsNSEWOM8aUu\n5fUfQdIQaXMC6bXJ/f4H53ZI+vYIyQ8nXgvK3rn3JNUwZxVeG3JAzjFAMiT72ISQ1CM6DdKHgFhJ\nSffxAZ1yyIl5ufp6SZFnZx/u4p4QITuoBySB4sjyRVe7dAtoKpH1y93oqAPF3NfmbORJ8yc1C/Kg\ngETp5nZmC+7VxAXo3N/wmXQT6CukGjZ3kRW3VhwVeY5u3N/mA6D+Ms302ZekfLG7j+o/0XZf27VL\n5F0zZw6uwQd11Nvm/lT0HCij0RNRQ3rK5Fx3EaX8slshDfjiLemalHeJlNO5Eyz5HB6W84ed3QbI\nnfCuP9wi8t7/wZ+teFYWpFF26cjgIKjDB89jbV81X7o/bfkFxmf5z6+0YpcLdPplv/yWeE/9GYzV\nnhdAxV02Rd67Jb+4y4r3/eplK/bzkzLeNx96zIpXfmeFFff3V4q8cBrfaURr/90t3xN5D7/xhBlL\nZK6Ek1hXS7F4raecnIh2Yr3wWccYY4JJRhqTifnd2lku8tr68e+kK7Bmjzy5V+TlX4t77+rA2Slv\nESSBjV9I+vaUBy+1YqcTr7WclTU1LB/j1V4EGVubreb1luOswu4iS74vz2K8v2ffjQ3vwqdSJjBI\nTj8x99g0T/8m+sm9KNrmeuljc9/5H7B0yRhj6spAN0/ORd3dsk26lqXHYt4e/hx7Ibu2GGNMH9Hk\n2fnxlSdxblq3cK54T1IqPrtiF+q4/Ts9+NCfrDghEvtdYqR0HVxSCBlSUQ3mhNP23WtJRuLnA/kB\n1y5jjGk/ShKiy4zbwc5LUdOlFIfPy9waIXa6PH91VWIcBzpwBkmYLh3WBgcxpwed3V/6HmPkOTIo\nGeucpVVhYbPEe/qCIYvoqSX3V5t8seUkann0ZEiuK/dtFXmR5K403IcxGbS5Z0VORd5gN15rPSal\nX/zMRKpnt8BRhroRPU9+uHcQzS1qiRGSLs9ph97CmmM3o8Fe6TJW9jxqMrtN+vhIOfPgIGQ46WtR\nW+s+h8xlqE/uuZ50NvnLa++br8KdV0OWf9VVqMHVp6U8d/KNkMBwmw9nszw7tB/CWLGjFbsdGWPM\niEu2GHE3Kl+HpMovXtY2lvRl3ozzf9OOSpHXU4o1FkTy+IhJUqL1yR8hcc6iVieJtvP72kfWWPGO\nR7G/lG7CPsb12RhjWou/3NHrrf+WY/rG9u1W/Puvf92K7bVyyq2oIx4emCN9ffLczW066j+D3CvR\n1o5idFR+vh3KnFEoFAqFQqFQKBQKhUKhGEfojzMKhUKhUCgUCoVCoVAoFOMI/XFGoVAoFAqFQqFQ\nKBQKhWIccdGeM4GkBx922XpHUH+Hpm2wrY2YIS2yYxdCTznYA43VkE1DONAKHeKsa6Ff7jgh7ae4\n50DCcmj1q96Gvjo4V9p/OUhDzTrp0hekptiDbNgmrYOeLihB9iDpjcHnVe6BZjdtvtTAunpwrU2f\nk7Uv2fLZ88YCZ59GP4a0ddL6j61Ao2egR0nF67K/SMIV0MtFZUALevrJf4o8tvOtOUb26DGyh01Q\nGuZW9qor6RVoioXO2RgTlo655aiCbV/cZWkizycQYzwyAv1tX4+0V579o2usuP7EISu29wQqeQe2\ntSnr0FfAUSvtewe7x24ca/ejF0iIrVeSbyT0zHGXw57NUd0p8tgWkPvqFBfJ+zL9cliCH3z1oBVP\nKJD3me2Pm3dWWjHPlch02a+JrYGDgnCtgYHys5ubP8F7aDzD8qSmuOof6BXB1u1JC6RNXfVO6ELT\nl8Hmr69K2oOnzh8Db0JCeBzmfeJKabdb+wH6MPX3YN4GpEi7yek3oD76hqPfUECC7E/Q3witcmMx\nxtHVJfXq/WQp7EX3mns2zM6R1xoTimt6Z/9+K/757RtEXk87Pptt7XnuGGNMxlWoS9y7KaJQ7ifc\nF6DyQ+jG02Nl/5O2Q9B9Z8u2AP82YjPRR6fmyOfitR7qsTbre4ut+Gc3/kHk3XUzah7vi/evuEHk\n/ebdn1vxN/4Eu+z5OetF3g1X4vMem3aPFW87A7vPotfeFu9JWIr90zWEmheXJtfY99d+04r/+OGz\nVrzz54+JvFUP4xp+efdfrfjHf/2GyGs/AZ147tVrrXj5jPMir/QT9OiYsv5+425w/zDfCNkTwtMf\nPRKyrlpkxYODsub3taGnT1s1+qBFF0p9ef0e6PhbdqGWZ14mrdi5b117OXT7U2h9TLjiGvEef39Y\n9hZtwvjY9zG2eS8i++fYUFlfIqbg81xHaV6kLBN58am4R0eeRg+l4EzZL6CnRPaNcifainD/M66Z\nJF4rexf3PGc9ziw1z+wUeWyL7ROK+rcgX/ao23MW9WbVNbC0rjkqewAlLMTnHX3/uBVft3aRFfN5\n1xhjmupR8xKSsf42f3pc5Pn7oSZ3kF12forNgpnqUBNZaa+cNk3khcZj7D08cC4NsfVbsPc9czfa\naRzt56iYmTiXcu/GEHlkMP312MuHyBZ8IEc+Qwy7cO8jotGvpD9I2pF7e4dRzL03cGZ2OGS/Prbp\n5n574WnyYsMTMFdHR5EXECftmoOCsO+O5OA72dc292ShtjzGm2yM/++HjJqxQsZNWGMjQ3J/H6Rn\nnAY6K4blyr0mfxbVTXpO2rtRPqtd9fAq+hfOfdxjzRhjzjyBswmviSl34FCw9XGblXYLegVdfyl6\nySQVyl5IbJNcdgjny6QE+Z1OvYV9Ycot6Fvy9COvi7ybbkWfNv8ozLfyd86IvIxrZZ1zN/K+idrm\n6pX9bnj9lTxzxIozb5F20jzeQ9QracDWK8mH+i5O/hbudfR22cfF2Ypat+wnV+D6qL+S/VzLzyTh\ntKfx+BpjzNwCPO/Ut6MOX/WrdSKvYRee9XvKd1uxvUeWow5nBO6vVPayrOWZt168L6IyZxQKhUKh\nUCgUCoVCoVAoxhH644xCoVAoFAqFQqFQKBQKxTjiorKm7nOg2IVPjpMvEjsuag5oh70VUkox0A6q\nEVOHT+6Q1pXRRK1lyt6FciltSY+DXRbb4HqQxeW5/ZIe3UW2r8lRkDxd+uNrRV7TMUijEqeDut7V\nfFbk+cdBmhEVD3lIWK6k1lf8/aT5MqReJ+mydgqguxF3KaRGXWclpau/FjTMDLJG8/CSv9sxNc3p\nJIlNnpSQsUQilGzPY+dJWmfdZtCqBwdBJWs4gnsWPVva8ZX+HdKj2Pn4TnYLRJZMRKdCAlJ9WkoQ\nvINAPxskSlzEJDnXPYheyd8vYqK0bus41mDGCrH5uCb/WGmH3nEctN0gsnYdHpBSxCGiC+/cA6rk\nnJWS6sy82LgwUHsDbfKaDpInhE+F/CSQqNI9LZKeGBBBVuveoEoPDfWIvH6yI2UZSWPJPpEXRNfE\ntu5e/rK0dRA9M42+X9gUOYb+0dI60N1oa0B99DkgadTB2ZAD9JEFpp/Nrr63Ep/RV4m1mHiVlB6F\nk619zUbUsMAMKdMMSsUYByUhbvgcNM7pywrFe1xET/3Z+vusuKtE0rLT1qPWdRTDsjd5/nSRV3sB\n1pgDTajXtR9L2jjbAQdFYKzs0tARmwzXnejvh4yh6lO51xTcAdryez98x4oLU1NFXtyCdCtmmc93\nH7lV5J18DJTreT+V8iDGusWw5o0ja/OGg6in8YukZI/r5opvQ7ISly29cp+6//tWPDqKfSBloZTx\nNu/HfA4LhPSy22aHvuNTsj0nKUXsArlHsG3uWCDzZtCKy144Jl5LJ4p+WwXOBR0npUQi7rJ0Kw5P\nAj26p/OcyGv8AjK7yBzQ3sv3yPqYlAdL3JwbSVodAvvtkRE519vaQLH2i8Z9b/xM2nlXNmD9TZwJ\nOZW9rrNUMn8arqehYrPI663B/hk6Ed8pulDO9ahpkvbtTiQvgwzC1SnPAREpqKd8pkyJkmcWVxvq\nTdWRSiuOS5byhKu/JmVd/4OkyUni3yc+OIHPoP3TLxb1yj9B7uGeJThvsZx0wyK5FstqUStYWjph\nrZQ6FL2HdZ+XjHNUkJ+0Fz92AvUrKw5njJg8eQbqOkPnxuuN2xFAZxq7vTLb4EZMIIlTrbSA55YF\nobTG6nfKPcSD5M89cdhL/SLkPtt5Dt+ZLYAvtpdG0XphmXV3nZS+DbsqrTgoAeMYnTFV5DmddYjb\ncCZyNjtEHs+ZIQdqtP0cZH9GcSeq38d9aamSNT9xKubg0DD25oatsv5FTMc5snk39pM1P1sj8+Jw\nfvDyIgnQHmmTHE3n0s9e2WLF8btwH85UVYn3XDcf8prw6VgHdjt0ltSk5WJexi9KF3neO9A2oHEb\navLXvivlqXyOL3kGeyTLDY0xJjBubCWG/W1YE9Ub5bNv5CzMbz5TDzmkDNIvEvuQoxbfy8tPzsfc\nJOwNERE45weuThd5Xl6oD6eff9OKU6/B+dJut555G9ZSPcmkJiTK/Yj3gxl3QuZ44bUTIi/vzkVW\nXPYPPIf0NchnlzCqPQ76PSQwSY7bkcf3WPGaP641dihzRqFQKBQKhUKhUCgUCoViHKE/zigUCoVC\noVAoFAqFQqFQjCMuKmuKI3pWZ7GUw/gTRdMvChSm9i+kDKmqGe+btho0o+wMSQVl+t2W3egCnRwZ\nKfJiF4P67KhBd/bGVnSRzsqXtNpEcnUKiADlqK9TylD4e4yMgBrIUhZjjPEn6nCIzRmKEbMQ18Ey\noSFyTTDGmIYtoFxl2hQm7sAg0e/qTtaJ15himBsICm78UkmBd5EkpvJd0LyD0iWt0y8C96bXQK5U\n+bbsOH6mrNKK2SEhYjJoiNv/KmVIs9eAyshd6EvfkPKxbKKDF70GRw52vzDGmGGW7xCNd2SClEQE\nJoJ2yl3Im7+QVNVQm5OQO8G01WGnnD+DfaAUVpPMwj9QUph9o0DbnTYz14qHeiUlkWVNubdgzTbt\nlfRP72ByfyI5Fb/f3p3d2VZpxR0GsaePl8jzDcFnu1yQygTGS2rgEMlcyj8CBTN6gqTvZk4ArXaQ\nrikgSVL6azfh/uXMNW5HxmLQ8Ct3Skpv8iw4bgTHgMbZskvKn0aHIdtL2wD5Rb1NYpN6NSifcUu/\n2oUqPAs0z1N/3mHF7ODTcEJe6+TZkFnwmAzYpAVtJM8yVAPr9snO9aE0Xt5BqAcu2/zxi8G+c6ES\n697uOBOTJyWR7sRT98KZZs2Ni8RrTI1ffDskCZ2npItE3SeQdT7x5gdW/LtXvyfyLn3kP6x42yP4\nu++9+KjIm3QjXJ4KSSLYXgPXvSe/87J4z5wJGMP89ZD4+PrKPfedbz1kxYfLyqx4Xm6uyFv9+19Y\nceqVmJfv/fBNkXf19+C08fzP37JidkowxpjfvfcjM5boI2eVtOulLKT8ZVCaE1fjPg209Im8pj2V\nVtw4DPp65FTpMtZOFPCsyfhbLLEwxpjeMpxjEpaCRl97eK8Vx02V13rqz5C+JS6F1IydMo0xpnlj\nJ+XhTNR8UO5jMVPxmocHrq/xoJRqsSTNJwRrtq1Ifl7XGchP4u+/yrgTfA6wSz2iZuGMWfQOxjN9\nrqyFfbU4R4YFob54BcjjsacvucKQa+hQj9w/Y0nKFEXnmd4yzG/ez40xZsSFmj7QjDnGMiZjjMkk\n6ZFfNGqNXdqdT26jmSQRZpdLY4wZbcDnR+WgBrOL5/8GRoZw5uo8K1sjBJPstq8J51c+axpjTADJ\nPbrO48xQ84U8t8Sk4Mxevgf1LMhfylZCaA/e/A4kCI3kfrXe81LxnvCJuId+JO+2Sx9YPhwcijra\ndE66EvF+wnJDXm/GGNN6ALJJfm6zP7uYMZSK+sdh7aTES9keOy+N0DUkXzVBpDU9Uoj6AAAgAElE\nQVQfQO1Ip5ocGi1dP51OzFsPD6zT/iZZA7wD8dp11y2x4m/8FE6D4SHyTMnPmGF0LhkZkA5Z3RVY\nzylr4KZnv+fBOdhPQzMRjwzJsXC1Yw17BaCuxS+W9cpRT2t4DI45516BxDfSdo7m60+ZTA5xNgfi\nUWrVwaoslt0aY0z+A0utuPY0ZLPeQbI+hifi/gaRlJAdc+2yphJy6xsYxDPTmWp5nmZ5qA+dPQMS\n5RzmeRZKLmPVm6RssuCBL39wiJyaIP7NZ9kvgzJnFAqFQqFQKBQKhUKhUCjGEfrjjEKhUCgUCoVC\noVAoFArFOEJ/nFEoFAqFQqFQKBQKhUKhGEdctOcMi8W8g3zES9xzpvs8enmETJQ9WPLJHtZRBa0m\nWy8aY8zhj9GDYOkl6HPh4SW1bKwrjp0LzRtJo01fpdTV9tVD71m/BRrTSXesF3mtDvS6aTwF3d3R\ntw6LPNYlx2Tie/iG2azWOtAvga0cA5Nlf4TAtDAzlmCdX9Zy2SeA9eClf99vxZGzZE+g0o9hfe7v\ng7lgH59jH0PbnZkEvfXJsgqRN/8qWM6y5rv7AnSci+9dKN6z7wXYly3+zuVWHJos+96w9XXLBWiP\nJ999icirfB2aRLa2rftE9u6oOA+d85JHrrDi1kO1Is8+p92JhkPQ4kbnS5vLMNI5B8Rjbtr15dxr\nxYe0zM46mxUc2Uu3n4INXsxc2cvJ2QJtLfdvqN+KNeZslT0agqlHkYv6N0TPSxF5XqR5Hx2FHr2r\nVFo1D5BON34GBLis3zXGGMPTlHqfjNps7FPW5pmxxAj1i0maIQXDHtR3x9GKOjfhdtmIqvZjzE/u\nMxM1R36eow7jz3akmfPXibyhIYxjxnrUgy6yEo1sl31ImkqojwRZNEcVSl1t+xnMn+BUGnub9XUd\n6Xazb5tBeXL+sMV6Ti7mjKe/7JHQvB/rZdKVxq2YS71adn4oewS0vb7disNpn9h3VlpScu+Ip7e+\nYMXDw3Le9vejxvh6Y7tuPy97wHW2w4r8919/yoojg6Gb7h+Uvaq6+/G3fv2D56z43mtkXcu9FBbt\n1zz6n1Z89mPZS+bQ79ATJ4BsI2949F6R918bfm7Ff/h4oxWX7X1L5B34HXqOrfuTe3uVGGNMSDLZ\nth4pE6+FTyNb4Qno38G9sIyR9vB8Ruoskja/nnSWCknFGWmoX/YxiLsUNTY+dTn+bjD25urP5JxL\noB4TKxZ/3Yo/fO+vIm/m3dDCV23Efp5100yRNzyMNdewE9av/bRPG2Prt0ftE+w9zEZHxq7PxfE3\ncGZLjJf7b285+vf40dop2S3394mXo+Y31+As69Msa0oPnXVGBrAn+UbJPgobN2614qtHcebYfAJn\nI+73ZIwx+SvQH4zPq64KOT82HcU6X1IA6/YRl+yT5xeDa+qrxLh19sh+GFwfhsmC2WXrrRQ2aezO\nNsZIm2L7/OEzYST18BkZlN+57WgDvYZ91sdLjuOho6jFwyPI+/DQIZFXQf21fnTHHVa8/RT6eN0Q\nIM+oXSU4n3B/Qt77jJH72JATvdMGbd+dz7LtJ9G3LMx21vQKRK+MfjqLBaXJv9t2HD3g4uVW/W+j\n9jD2XG9P+f/9wxLxjBORiGsSPemMMeFkWR6dgR6T7bWyr6R/JOatq5f2TFtPnSOf4n0FM9Dvb2oW\n+mp9496rxXtiCrA2h4awdvxCZf+VkBnogzMwgO/h9JR9bzIXoMdadzeec+u2loo8vvSoWegD6Okj\n7yU/bxv5SOMWpC7Hfl/0wSnxGj8rOPswvzPXzhZ57RfwvHex3ip+fpiEcXlY256e8lm6vRHP4PX7\n0UMq61rUwKKPZV/T5i6cf7ccx31fP2+eyMudnG7FvH7942TPGbbz5r6IU7+zXORVbMS1Jq3EvWw/\nLfsOth7EOStvkfkXKHNGoVAoFAqFQqFQKBQKhWIcoT/OKBQKhUKhUCgUCoVCoVCMIy4qa2o7DDlH\n9BwpO6gjaj1THqv2SvlK1krIaDx98edadkl7u2XfBzWIbefYSs4YSc8PiwEVNHnDNVZcduhV8Z7G\n7bimCXfNsuK2GmnnWkF2z2nXgLLGMiZjjJn6DdCDHQ2gvTmbJGW06mClFRfcDIpeb2WHyPMNk1Rp\ndyM8F1TB3hppU8j0z/x7Vlhxxab9Im/SLbj+0rdAddu6XUq+WPLEVrwRtnvIkpugVMi8mg/Xfmls\njDGzN4DDt/GXH1rxrClSqtVTgfvLtNUzz8trZao50yuDMyNEXgHJzs4/jc/Ivmu6yKvfJqnx7kT6\nFfiOffWSXl5/nOzRif2Zd/1kkTdCEp6z72IMIyOlzK6Z6HYhKfju3WXSirzjOCQrB86jHiRFQgLz\n69deE+956PrrrdgxAFpkUoOUK+XOBx0wMA40WLZONcYY/2jMK7YYt1t4n98EGr/rAq47/0ppS9tx\nAq9lzzJuB9ezbpv1KxdjtkEftEmAfMPxmqc/7senT28XeaseQE3tpTVRd3aryGP5ZTdZkHqQ/OvH\nT7wo3vMIjWPpS6ijOXfKNRFC1otM0WbLQmOMiSZJVgXNzZRVcm2zJXXq1ajRdjr4sM320p04VoH9\npNMhx5Atk2+4e6UVzzyYKfIqmiF7ee4bv7biBYulhC11Nb7j37ZsseK2blkD3v32fCv+xdt/sOIH\nrrzPillKZYwxhQsg51j0LdiMRibLa6jchXm15z9h4R0/X1o1s5RiE+0fa4PlWM/Pw9/d/tP/suLO\nPimlcLrkmLob7cU4g3SXyPoTSPa9p56A9CrnbikBMiRTTLwEduQtZ6XtdAJJrQMDUds8J0r69qAT\nZ59Tbz1vxSxbSVgs51IzSV5f+slPrDjOJkPlPLYC9fKSZyxHI2QkZQcuWPEl980XeWdfhqQoOARj\nX3D/apHnukTeW3ciOQ1zerhPyvZYopSYC8p8tM2+nKVlI3Re+Mc+eQZaMQ3rYk8x9hOWBxpjzO3X\nou6y5XFKLe75qE1+4epGjQ9MwX6cVS7X7Kwl2NOdjag1LCM0xphze7EfN5D1c3yYlNBPWoz64uWP\nHchuI95xtNGMJVgW7aiRcuyIQowdy5p9gu125Fgj9cWQOEWESXlCfDjOEyx3u3fFCpF3YSraKyTy\nmeb7d1nxQKM888fNQ010tmFv8LDJfHgv7K3G3mzfF33DsDZHXJinFR9ImWwMyb34fnWcluPGFs3u\nxrRvQi7C1ujGGHPhFRxM874JCUzzF9LWeJTqqZ8f5v5Qv1zbrFPnc6ndrjj6BM6yrjacc3746N1W\nzM+5xhjTfBIS61h6tnC5ZB2r3oH6l7MSNa+hVtb+vlScF3x8UAMmrpf7LNuDV2zaa8UhWVJSXn0M\n92z6LcbtiC6ETP2ySVIqf/iP26w4PAo1x9krZdZ+4djXPv0dLLIn5cgzA68Dtpcvf13K2DJuKLTi\n+Jl0TSSZLW1o4LeYU5WVVnz1nDlWfNNf/iDyWELVUPWRFdst0Y/9AbLrELJHb/ysXOTxXB0kqWhg\ngqxDE++fYy4GZc4oFAqFQqFQKBQKhUKhUIwj9McZhUKhUCgUCoVCoVAoFIpxxEVlTUHkrDLQZnNd\nIRemkWFQizKXyy70w07Q21r3UDfvUEnf6yN6oE8o6IpO29/1JbpUbxeom+21cN7xCZVUYf84UG7r\nd0J6Ej1DOhJl3QJacu2HoLblXiflIUyZb9wM2m91q6S9xYSCntr4OahtLpvkguUdhWuN29F2EnQv\ndswyxpjMm6fQvzCOHjbqL7tNZa9Hh+zMwXyR5ySXmQDqdt1vk3wNEd1roA204IT56Vb8ypMfiPd4\nUJf8W+6CBYujQn6nqj2gmWUuBoV81Ea1ZDcyH3LhOPeR7Po96XrQW0PycB+Knjwo8mJtDlfuxBBR\nttvPSCcQdgxzkKOGnR7MHcZZyhQ5S1JBd795wIqnxrKbg5QZlNRDClaQAtljbRtoptMnSdnQr1+E\nPOaBDRusePIauca4Bgw6MD9YhmeMpO3WHkF9yViaI/JYVhcxgxwfbC4XLOUZC/STlMlRJaUpHSSJ\nScgGpbfjpKQmN5zFvxMmoav/JVOlBIhrWMRkSBt3PrVT5M27CfTKrdsg21u2GBKOhEhJrfUhqUrO\nncir+VTSrZOWYRz6W/H9usvaRZ4/OZ6wAxzT3Y0xxpOo9427K604KEXS9c99iDWcOe0m404MkOvR\nL959Rbz23D0PWTGvt8RVcj4meWOsfvKNx614xU0LRF5ICOi8T7z5Yyu+/4ZfibzuCqy5miKMQVY8\n5vq0jAzxnpRloFWf/SukSw9+8GuR9+5hUKwb9uLv2l14Jt16nRXn3YT6HBAgqczZV2L+Hn/0dSuO\nSJdzbPfuE2Ys4UUSSbtckp3tCh8AZd3ZL91F8tfdYcU1RaBEp05fKfIcVaBEO52g2jcckBT4YHJX\nibkE9G2eS0wFN8aY/Ktvxt9Zjs9rLZZuICEk1w1LTrfilqISkRdBEqCceXA1GXJIeWXOdZib/U2o\na5Vb94m8iAKS5sQatyJ2PqRbvbazTVQ49uPmPZACHCqV9yU1GvtnfQfJP9tljXp7H75XCr1n1YwZ\nIo/dMdnhauXXF1vxgM1N8NAnkIZOnYkzdNxsKStoIofI4HjICj54Z6fIm51D0jmS1My8Tdq78Fzq\nIVck+z5ol2G5G15+qOvs2GNHKMlkS1/56vrA8rRum+NfwSqcX/tIXt9bLc9LgX44g8SlYbwjJmM+\nB62Udb27HPeQnxPs9aWfnneCSULZWSzPdp101qsrITcq23gk0vnVLxxSKLvjTGiGrLHuRDudxfrr\n5b6ddTvO0NUfYX9i119jjAmfgNrj44P7MmJz1RwmyWvK3Mus+OTjb4u8vKtRo/aRG23bGxjrSTdM\nFe/hudheimcJ+3NlzEzUl/qi3VY8Ybl0Aa45BTly4iS4e42MyHo6MID750fnIfvciYmTbRfcjcEB\njN2Q7cwfFo75lLgS7ld2WfmRZ3GvL9uA8+XKpXeLvD8++KAVf0qOSt968HqRV/QUnrXCSeblnQcH\nreUrZG27d90DVhwcDCl1a/MOkVfzMfbMtHWoDd09so1D7r0453aSk2mgTVIaMQlzuPw11Ch+pjHG\nmLZjWM9xd60ydihzRqFQKBQKhUKhUCgUCoViHKE/zigUCoVCoVAoFAqFQqFQjCMuKmtiN5bouZJe\n6WwALa+nEdTNihbZtXnJvYusOCgLlF12CzDGGGcLqIdn/wn5yuRbpTsC0zDDIkHL7vZGd+cdv9os\n3sOOGh0U3zhhncjzCQR1uKMV3ynF5hjFblIh+fge0yLkPSr/jBytJiKv5YB0IZp44xQzlnBUgu4b\nMkHSGjvOwv0kegroc0GpUibgIhpu5U5IuUID5b1JuBJUt4YtyItbIin1PsGQkwSTfK7p80or9vWR\ndL6VMzHexZ+DipYUHSXykqZjHHpJPhGaL+ccS5m8fL2sePZ3F4k8llb4kKyO5WjGyC757gZTpWPn\n2NYiUcpjLwPNmym7xhjTdRIU2fBpoOYOtEra77TpoFVHzoRsZsjmhpEeA0rhJ0RJnJAAmVRukpR6\nXf8QZB9RoaADNuysFHnhuRhTdmTyDZfzrfWQXEv/g1Gb/Mk3Cu/zjcS97DgmO7yPDNikb25G1wly\nG1ovJYEJ3ZBSsKyw/P1imTcR84xpwQd3yg730SSrvP16yFFYTmZHfjLmVnkxZGL3rZIyDT/6u9zt\nnum4xhjTUYzvy7R5R42UdHmQxDDjJkjcGnfITvhcKzpP4rPtcrfspVLi5U4wpfzoU38Trx0nJ6cN\nhXBK8vSUMt6yjaDWrr0EdFwfm7NR6SZIOxMWorZ+felSkcfS0OIjqLtr1kMm5eknt/uBXtB2Pcmd\n5fHXHxZ5DgfGIONqzNnWg3LtPf/2z634ivsut+LQDOng6OOLMZz5Azif1BfvEnl3XjfPjCUiMiG3\nis6R8suzL35C/8JaPP836fh3yY/hPOJsQR1uDdkr8nh+1u2ABHvYJeetg6QVTQew/tj50NdbjmNE\nPo3PlXCSTJkh50hAANb2+f2Q4yVPXyTy6k5gHKKJut/fIp3JAklWE0Dy167zUt7NMkV3g+UOjUfl\nfAwKQF0KIsfFeb55Iu8fuyFXYvlmjM3Z6K6bIdULL8T+Wfm+lHL2lkEalfN1SJ5Y3ld35JB4D5+T\nGefekTU9LAj1daAVa57rtjHGnK6GjGvNPcusuKtEUvVjLsH4OqpRk+MWSilic6OUeLkbwcm41y1H\npHsOO/51l+L6szYUirzNf4IL4bw1uO8e3l4iz5sci2LJcS7YJqFNo3N/aArONBERkGkMDUm5vqt7\npxWzPGZkUJ4rIsldydcfMhW7dKb+M7RhyFtNciybZN0/Bvsxn+mDU8JF3rBr7FwMq3ajDk25TzrR\nlL54zIr7SJIU5yXPzK5enEXbvSFlYTmQMcbUncT+2Xke6zd9Q4HIaz+Ne8HurF4k9es6K59ZWULK\njrvhgfJs4xuN+RFATjyuPLnGorJxni7/fJMVC7mnMcZBLqy8l1TukC6w6YuyzFiCZT6Jy7LFa1m3\n4Vm1aR/cDi8ckOe0cGojwPLn79x6q8hLJzeoZKpZ7BxnjDGB4bj30ST3bTmIPXLCdcvFe3pacd9C\nQrC/v//Tf4q8hTfhnNF8GNdgd1cKDIFLYvBs7CG1h+Ve7+pCXY6eh3YPTZ/Jc5B3mDzr2aHMGYVC\noVAoFAqFQqFQKBSKcYT+OKNQKBQKhUKhUCgUCoVCMY7QH2cUCoVCoVAoFAqFQqFQKMYRF+054xcD\nndfosLRuiyKtavFL0FLNuEz2UTj4Eiy18mZCK9d1TuqSWbNXsGG6FR9+SdoVsxVgczk+2+MisuaI\nYHx2chR6WbTsqxF5XqS7j8lCf5LSl4+LPO5hE0Y6RB8vqW1lbSWj3/bfPX0vOgz/NsILYE3oZbNl\n6yLrvvp2WEza+xNwr5+UeelW7Btmsy2nnhOZt0Kf6GnT/foF4pr6u9H3Y8sX0KamRMleMo2t0HJn\n5GL+edssyt5963MrXnvFpVbMvVmMMSayAHrX2s347t5BUl/dQzptZx/6zOSvl72Cqt6CfW/KT681\n7kTLPmghR132fioYA0+ywIyZl2q+CgMd0EV2n5ProKUJ95l7n9g/76MjR6x4IVlmP/Hxx1Z8x5Il\n4j2pM6Dxbj2DnlbB0VLf6Uk9gFh/W/vxeZHH2vqMWMyp0WF5j8KnkL6XNLDBWdKWMCBeXoe7wRal\nDZvLvjLPSf1n2nqkFj4+FHP//Dbog6tbZU2dkok+T79/ALaCdlvU6i2Y+xmz8R4n2WFm3CTnemgo\n9P69veiJE5gUKvLaT2CM7XbXjP46aPePkg1j3pVyP2k7iH4EQRnQ09v7WjhstrruxNkarJezb8i1\n8+D6NVZ8/5XftuJH/vsukVd48+1WfHTfD624erOc33vOYXx/dvWdVlzf/o7Ia9z4hRVPLsQ+m7wU\n929kRO47wwPoIVVwH6774Wu+I/J+s/FP+AdttFkbZom8ESf6KnTQuP/6B8+JvFnZ0LF/7W+/sWI/\nW2+3k4+hd9ySX8037kZPPeZSVLq0U01YhnvYSP20pnxX1vUTz75gxXm3rbBil0uuxdQr0AshMBDf\n/+w7Uv9eswdnqSnfRP+Yg4+hD0zKZbJ/20evov/CAupZE7NA9g1JmY4eNFmzb7DipvotIi+uAPdi\ncBCfFx4ne3ycegpz0D8RddPZKPtwsB1wqptbQdnt3Bnc47CnFHtaU6esDevn4j5zfc5skz0h9u1C\nL8Q5A9jvcr8mrbR5f2mg/nzRM1HTucedMXIviF2UbsUxGbJPXgz1MGjZj9ozfZW0dE6h8wJbuPbZ\n+h220v+e9ae9r/WQ7PsSEzO29r29NRgT7sdijDFdpVhLvlQjBsju3hjZZ2aYescN2Pqbcb80tjT3\nDpJn48gM9JUYHMSZsKMDfafaS2QfiSDa/7g3ZXh2oshzdlHPmFHMzeF+2dcvfhHWen8T1lUYWQgb\nI3s+cc+UDps1t6cPDbib1+L0B+msbbOKzyYr7U7q8RIzU/ZKctG5x8cHc+78R7JOcg8v/ziMp72H\nV1gu7lPcAZw/YvKxtqtPyD28kerD9FmYA901sm74eeHvcj/GzsYzIm+oH31+uosxl4ddsg/RMOWF\n5+O6o2fIudNZIvcWdyOd7McHumU/ysp38N1Sqf9cQKI89+17FWe49IiJ+LxBOb8ri1CPVszBc3/4\nRDm/k+fjud/fH3PG0wf7oqNT9r1xtuK5Yf/Lj1nx5PxMkbf91T34bF+snWUPLRN5vr6YjyU0H/tr\nZX3pr8O/Q3LwDBuULWuoX7Q879ihzBmFQqFQKBQKhUKhUCgUinGE/jijUCgUCoVCoVAoFAqFQjGO\nuLiehijMlZtLxEthCaCIFcwATZdpocYYM3UV6PBdp2Br5p8UIvKYnjrQDipVn82umO1Yv/gMNNOy\nBkhjlhRIO7W8W0GX8icb3f4WSb9lKUTj56ArsozJfk3DI3hP1sx0kVcYDwpq9TbQVlMXSlrVsFNS\nvdwNprWGJMeK1xo+wXXFLIBsJYCon8ZIOUnyGrIRs9lItuwFnTaGbJ0PvCmtI2dcgXkROxv36dbv\nwd78vb98Kt7D1tUFq0G9O/zeUZF350/WWzHLsdiu3RhpixpFVvFMFzZGjvGUh2Dp110l6YVZd0hq\nvDsRSOulu1ha9bHNdh9R6rwCJE2XZQNlH0GK4mnTBOatwfoZJrqm07ZeHvrtHVbMFp1La3Efgvyl\n7K14H+pIfDho58O9cg10F+HeskV5iI0aOJXqDdvas7WwMcZ0nQaV1icc6yHSRhntKQfF2Mw07geV\nx/YWaYeZOBVzkC1iAxzScm/ze7COrO/A9dbaZE0vfLbNir9G8jK7EKCYZDoTbsbYjRK1lK0IjTGm\n/sxu5JHklWnJxhhTdAh1o2AeeNR2K+1Ikp0FdYMi66iQVOKwQtQvlk+MDkk6c9QsaeHuTjy77SUr\nbjwlrZUD4kAv/w7Jgg++I/OYwrzye7Ap7y6TY5jXjft05Mm/WPE1v10v8lg+ETsXddfbG/t05RYp\nEQ7JxFo69NjLVvznT98Vec21kM20kr1zYJxNAkhzO2kFzgQPBF0j0pJXwlq07hTmqF2aFpoVacYS\nLfRd+mw2uilzLrPi/jjsaU6n3Buyb2JbXaxnV4+slYMO7F0DwfhbWesWiLzGX79txRdeOmHFR8tB\n2Y5PllIXttlmG3q7fLHh7E5cTw8kbr42OdlQH9ZsbzXWX0S+XItp16MmdJJ8ImGxPN+MJXrKcB5M\nsVnMdhP9n89snX3yHDDzToxhH0k5A5olVT+DbIjjyILZ32a57WjE3/Uji2PvQNRx/2h5vgqZgLnO\n+zRbPRtjTHACaPLB6/GekWG5f3r6QTbVSXbCyasniDzfcPwtH3+cMWq2nhZ5bEU+FgiMx73uqe4Q\nr/H9YPlIXMF0kVe68TMrTiIL4OYDVSIvbCL2EAdZUrMk3xhjqj4/YMXxl2IcgoIQe3rLz2a7+aE+\nWmO+UqYx4IG/yxL/YVe9yGPb78FezOHISVL65emNPK5l/tHyO4WkjZ08jZ/9+LsbY0zdhzj3JdEc\n7DgnZVeOStSY4RlYb6E5ssWBfwz2nsq3MVft54WIqbhPbJ/dV4H7nzZDrjH/01inBw8WWfFlK6R8\ncYRkSSzD97K1qWjagznS24H5kTRR6sr6GrDXc62w74tx8+T1uhuDfSSpPybnY/xS1Nim/dgXzYg8\nf01bgmcIPh9e9/BakedNrUQGHZgzfU1y/3S2YRx8w3DWScy+Ap/lLc8jDd4fWjFbgPc3y+f5a67D\ntbYchsyq/WSDyEvIxudHz8D5srpanuNZNsl1nmuXMcaE5ch93A5lzigUCoVCoVAoFAqFQqFQjCP0\nxxmFQqFQKBQKhUKhUCgUinHExWVNRItNWya7wZ/+EJKiwrWg0vbVSXpwTynkDl7UDd03XModRqn7\ndsVOSG0mX5on8hzloK19UQqXkZyEBCuOLZCUv8BYpmTi96iEXOk20d4C6Q1LQiqaJfWuhTqt9zpB\nAfP3kTKS+AFcB0tyjI2m1nGaPn8MpBSD3STDGpayg9gl6VYcmgma7IWXpENV+DR8l31/3WnFLTYn\nmWsegetH0+5KK15w92Uij+U37BxU/hFkUgumS3mabxR16qdu8EsfXiHyyp6H41PaBsif6t8rEnnJ\nRH0NjAeld4Toy8YY00/yif2/3WrF9vGOIoevhHuMWzFIsp+AVEm3ZrlW5WnQ7vNtzkPsepS2EPTE\n45tOiry8SKI6k8OOl83Bq2kf6JrNp0B/vHIFaOJ15yQ1MGsZOrz3lEpXLAY7J3SdB0284Yz8PHY+\n82lETQlKDxd57DrFjgi9lZJCbXcfczfilsB9YWTLBfFaBLmqNdH9zLxU0vVdu0GnXbRgmhVXl0gK\nanQI5nRwDujMzgZJ61z7n6CadpWhXkcX0rWOSHmpk6ihYbmY9w2fSgeq7DTIxv7+Otx3blgu5RxV\nhzCX4nNwHwbbZb1iKnHYJOTZZbeG5IzZs41bUbl9pxV7B0vJWesRuJyUHoUUZccZ6eBwx9N/s+K3\nH/yWFa/7w09FXgu5psTMh1zJ01M61MXOwWtvPvwPK97w2+ut2CdEvue138JxYDFJgX93090i75vP\nPmTFl9x/lRWfevcZkcdr7Pf3PW3FM8mdyRhjcq5ebsXvP4trWP2LNSKv42SjGUuwlNpRJanJJTWb\nrDhzHcleOiXd2gRhnvVUkcRmypUira4YjkgBYeQqNyrX1YR1GIceWovX5V1uxVvfPyDeM3cCZALD\ng1gf/TapVmAC1YNk2uvfkHt9+nrIlYad2AudbVIOxOdDltFU/kPO9fDJkCwmuFltOOz4ckdMY6Tc\nN4ro8y3dUlLJ0mfe+/0i5V7AZ8LhAeRVbDwm8kbIKYjXRCfJ+vmeGGNMf4jDXBIAACAASURBVAPm\nVSDtuQMtNkl9LeZp0jwcFjtrSkUer52gNOyF6YU3irz2dkhkKz6G41vV8WqRl7tyohlLDNN9tzsW\nsQ43cco8Kw4Ols8ksfPgbNdZgjO1p788t/A5yDcCY9z6hXSo8glDvew8B1l0Sy/y7K6QSfPxLOTn\nh2eSgYEmkceyZUcbpBTeAXI/4bk51Iu5zjKm//u3sM+GZ2MtNuyV7n8hGWMnFT33FOZP3jflpuua\nhX3cj1pL2KVkcVNRe049hho86UF5XuiqwPxm2Yz93Nd6EPd2wi2QbB97HhLf0EDZ6iEkBNd0xRrU\n3W6aA8YYE0Py4V5yhxyxzQmWJWVfT88jW+SajZmL9g7H6fpiYuR3Cp+OZ7F4+ajrFhQ9g3Gc8u1L\nxWtHHoWcvYvafXTZpKLNVGPn0f405aHFIs/PD1/Axwd1r/bETpHH7QYip2BdjYygVtRVSEevjiKs\nufPbcT6cfKOUQzbuxdkzgmTzwQlSilh55AMrbqXWF362FiBh2ZDgNexAe5S0NZNF3nka48QfS7mX\nMcqcUSgUCoVCoVAoFAqFQqEYV+iPMwqFQqFQKBQKhUKhUCgU4wj9cUahUCgUCoVCoVAoFAqFYhxx\n0Z4znj6klz0j+66kZkH3xZq/yKlSBMdasWDSAzqqpOVZzCzo7djakW0AjTHGOwSazK+tWmbFQWSx\nG5Qibf+Cg6GXdbmg424s2yXyRkivfb4IOrQLjVL7ztbaSydDR5a+UPaGOPkpLN4CfHHdg11SZ27X\nrbobjduhe2s7JHW1SVdBD3j4MegJ47OlDnPbW3utePFa6El3fyQtYrupx5CzCTrEzX/dJvL2FMPK\n+aHbr7Xiqd+ab8VD/VJP7heKMT7z+OdW3GezMotZCC1o/afQ3AZFyx4sLTsxxv6JeI11yMYYE5yB\nv5tEttO+NpvC7lNyjbgTrFvtOi+ttNkmND4a1zo6JK1UO49hHscsgh1fZopcs64O6IO5H1KUbW03\nHUePk/BErO2mUrwnNFDeo8BE9D3gHhjcY8YYY7rOQt/rJFs9X29ZshKnoImBF2nL6/dLi8sY6kM1\n7IBOlcf2fwPDTvztlHXSSrHtKO5n2uXo09G4W36XZup5ldwDXSz3mDHGZk+divHxs+m8uX5HFaAO\nDzrRs+Lc02+J9wSQtTv3f9pyUvYvWr8Bmu1r+1E3/KKlfW9WAb7HEI1Pc5nUeTdRz7EM6gUVO1la\novuGyf4q7sSJreipMWP1VPFazmr0GglMRj+HnGnpIm/bj39ixW3Ut6u7W/avYF13/UeoZasevU/k\n7a+CjewdT3zDim9b/B9W/KcnvyPe00GffboKc+xHb74o8kp3wN7Zfz7s3gdslpRT773TitvrMU65\n10mtddHz0G5vPQG76LoHZQ+q239yrRlLTLwZPW7sFtk1W7E/tZ5DH6W4SdNE3tlX0Bchcgbm4Pmt\n74i8zCWw/BwcxPcseW2ryJtwMzT5gfHYq9lmdFGHvIaU1ejL11OF89aArUdMN+0b3L8i7Zp8kddD\nZzOu0RGp0oa5/oujVhxJ9ZXtmY0xxtXZb8YK3GNiyNarxEV1KXYB9rsJzmGR11OO8eDaE5Ao6ynb\nENduQg8DX1s99Umks14n9tLM1Qut2Nkvz2HcF9BB5xnur2CMMT7U46rhGNZOxzHZiy1uMfqFRWai\nN0tD7Ycij3vnhGSjH0m6l/z/tmztOxbw5J5wtvHhnjP+/tjvOztlr6TQOJy/vQOxnrsvyPNSFz3L\n+FNfvuAseRYYaMP8aae9OSAZPf/C8+U5eXgYa669DrU8KFo2W2KL7L4G1P+aPedEHo9jcDqur7tC\n7ouhSDND1AeTe5EZY4yrS/ZwGyv01sjnuyGa3/wa9+4wxpjkq768h1Rvfav4d+rU1VbcuPVxKw5J\nl2PIfZ64F0x3P8Z2uF/2mIxfnol/8BHaQ/YKdVD/p7zlt+HvjMjvMDjtE8TduP+hE6Q9OPchyr0S\nNZn7fhljzLDNktndGBwmi3BbbzsH91ilZ9oJMzJFXkgWagmPce1nZ0Vefy36vObcifOhp4+XyAuI\nwzr1o3613KfG2S73u5JtWEsTr0QvI3svO963HTXdXxobY4x3INYs14q0JfNF3uAg9uDoSzBWlRtP\niDzu0/ZlUOaMQqFQKBQKhUKhUCgUCsU4Qn+cUSgUCoVCoVAoFAqFQqEYR1xU1uRNlFaWOhhjTORM\nUIFYejQ6KqUUQz2gs/WTPKH9qKQWxVwCOn0wUfCZzmSMMWUvg8rItDC2ZHN1SBpt+Q5YuLJEIn5R\nhsir/QjWp58RPX/X/v0i77a1sL0K9gfFytNGBc2dDqoX01uDUqXsquIDSfVyN+Ivx/dkO01jjPEO\nAjWt8LYZVtxXKyld8wws4KoOVlrxmh9dJfLYHq6iFmM8Y5qUcLywFXTuyhJQfDO8QYH3D5P3qeQF\nyNDyH5hrxT2Vkg5/+FVQ5UICQLFmCYwxxsSuAx3cUQ9q6fkPpBXoXPqOrT6YIzxPjTEmYb6UtbkT\nI0RtDIyR1m1DjaAhxi5Kt+LOi1jRtpO8jSVdxhjTsg80xIgZoKu3HJQU1Lp23PfkBZhj3qGoG9Gz\n5D0f6PhyivupN6Wcg+3rl6wG3dHLU66xkUFQQf1iMJejcqJFXgfJpGLomnorpJX2CFOqlxu3g2nz\ndpos/5tpnbVtkpYdH45519yIMRix1d6EGNQfXvedxZIS7RNOtvatmDORkzH2zW2SppyRCVqndyC2\nEb42Y4ypPgy5jGuI7Gc3SxvJldeDGjpCVHuW/BhjzPzbYO3YsgufXXNMWr9mLZESDHcibwrmetcZ\neS//8gqssB944ZdW7DFdbrXVh3ZYcXogZLfOdmnVfJLkRilR2O8+3PJXkddVW2nFHz/6qRW/8jko\n37+48b/Fe777p7usOCIV9Xnzw/8l8pJnghp/9NGXrNjLT36nv9+P777wVoxT+rR1Im/IAcnPH5d+\n34rDktNEXsOh02YsMTCAGtNZJmUh6VdcYsV8b1tKpGwvcTnkhyFxuP7+bmlr39eH+T7YDzlY4gpp\nM95Ltrp+obRXe2Be2CWgTL1nuUTIjGSR1nocNX/iDZCMNV+Q1tx+JCsPTUi34uJnPxF56TfA9ru3\nDhT/0DRJ1/fLdrN/NoGthrtOSAm8g+S+I1tR1+37nU8Y2SkfxTyImZMi8hp3V1pxNNneMs3eGGnR\n7huC1zqqIUtkGY8xxoRkQgbgQ+MbGCHlmp6e2ON6/VGTU6+W0rTucuwZdQ3YW8MnSnvYVpLrxM3D\nOu+vl3W3h+Tq5jLjdvTWYP74RUlZXEgqycnOQpYVkSq/8/AwrplbBYTnyu8cnII9ii2yg5LkebP3\nAs4GQbTfxc7G2HeWyPrP5xuW89llYf1k5x0Qi/mYsFyeIVmKyDK73gq5H/vTmdBB99Jps2K3y7Dc\nCU/7eYYwRNKhxs0XrNjDR64Dlm8Oj2AM+2zz8Vz561YcuyTdinntGWPMlG/cYsVN5/Ect+A/IDEc\nHZJtJYZINhSdj30xOlfOt8bj2Atqz0GqG5oox5CfRwfpebhqd7nIC6FnybDJGCf786KXv63+uxmh\nZCXuaJLPVpNWoeaf/BDf//xR+V0ySMaWdQdkuG3H5b7IZ8eW45VWHDVZyjm7yrAOmg7grNcV/YoV\nJ06bK95z6Q8gP6zfgeuLsj2T+FL99/LFuZslvcYY4xuEdVr5Ab778LA8s7n6qZbRZ9t/b+hrlHPa\nDmXOKBQKhUKhUCgUCoVCoVCMI/THGYVCoVAoFAqFQqFQKBSKccRFZU1+kaAXsjzJGElpjr0UdN4R\nl+wszZRCF1GdEpbL7s7ckbr876AM+SdJCirTgJm6yHS2iPw48Z6WI6AKnzsCSp1XoKSHVV0ApfX6\nefOsuLNX0pYaOkB3ZLem3f84KPLmrZ5pxXXFoHN1/VPSmfJulo4f7kb5J+haXXjPJeK14qcgAUom\niradbugVgPFu7YYMomFrmcjrbAClKzUa0pIbvv1jkXfpbEhV9pfA+SD2CVDRcu+dJd6TuBLX5+uL\nz3Z1Sarciv8CldHlQpd3Ly/pqtCwD/dlxAXac/plcm4yGj+H8xVTyI0xJo7olbFuZo+yXDAwTdIc\nuet3z3l83xBbN/iY+aAttx7Cmqg5WSvyKltA1Z1Ba8zDJtubewPmElNBea4wTdAYY6o/wVjHET04\nIU1SjwcG8Xk1R0BjzFtXIPLaiYZedx7XHZ4mu/anrYN0pIcoknZHK7sDl7vRRx3gvYPl/Akguj3T\nowsXThR5Rbsxb3ups37+FDlvW/djXFv24B6G5Mp5ERgPujTLPlmGGhsu51xfFda5qw9U5K8mNhtz\nvAJrZ8VUWfPYYY/d5RIi5DjyPsQ1KnOhlIew3MHdmHH3A1b8yNU3iNfWLAW19h/ffdSKV/3yapHH\nEtgdz8Mlb8Nj3xN50SEfW3EMyTx/8M0/i7zbFi2y4kqSBLKr3eqZM/ktpu0w5seBZ/ZY8aIfLhN5\nF16Cy0D216db8bPfekXkPfzm81Z87Omnrfien10p8h75KxykIlLhJPPyA/I7FddARvnsFfcYd+Ps\nk7g3aTdOEq/V7cN39o+GZMDurDjYi/m46YmXrXj1b+4Veef/ATetpGWYq3a6fnge6mAfUcpZsdha\nLF0B/WJxfT0lqG1ZG+T+yWe20VGsWf9IWfPYwefoH9634vx75dmhg65joPX/sHfe4XGWV9p/1Gc0\no9Fo1HuXbLl33A0GG9MMBEIogYRAGukJKd8mS8qm7y7ZhBBY0ggECCUJvRdjbNx7l2U1q476qIz6\n98de+973eWL7u64w/vTP+f117Hlm5i1Pe0fnPjfkE55sn2jXehyymuSV0rnrgxJHkiJ2LTRGriEx\nJBViibkx8p66fPg8W6XBbkZxtHccslzL+kgqkzIX6fkDDZCi2I55nFrf9Cr2VMnTpRPlGMk+WI41\nEpLnxDL/dpr76zbViHZzP4P5qokk6S6rnEB0/LmdRT4oLL9JsaQ3LJnjvjrQI6UU7Nbo8Rc5Mbun\nGGNMjA/325OHPjNuPbswibno02FyQYu3JG3s/MP3eKBFlgmIJ+k3jyN7fmGXTnbx8hZL+TDjITep\nKEs+dz7vI7v/JdfJa86OkFVfuNiJG1+Xjlt8fxPckIIlWs5pxx7D/MzOS3Ovny/aHXoLToN5l0Hq\nzJISe68QR3MAO+vZ5RMKL4DuvacLc1zD29tFu5QZ6M9Hn4VUt2C+dNLyV2Hu79yFZxrbdS8wX0od\nI01/P65nw5OHxWt516AUxLJPQ9/Y/Kp8DhzqwDEPBbGPnLAkZCzH6zmMcZC1UErIMmZiHu1pxHeF\nyImt5iXpfOgpxBgpvBT9osHqc50HIOXnNe7QA/I+Vt6Kz4gl17xjv39btBshN2b/LNz7nDWytIct\nwbPRzBlFURRFURRFURRFUZQpRH+cURRFURRFURRFURRFmUL0xxlFURRFURRFURRFUZQp5Jw1Z3rJ\nctU/S9ZxaXunzolT5uA1u45LFNWZ6STbvnHSzhpjTNvb+Dz+ySj/MqnTiolDHZyGl0m/twG1KDr2\n14v3jNIxxMZAc8k2r8ZIjXJ1C2pZVOZK663rN65xYtbmxrVIO07WNhcvhY0W28oZIzVq54PZn7nA\niftqpC1vzoU4Li9p9Gofkzamactgy3nR/Iuc+N37N4l2c9fDcju5AnVhXl//R9GOrX3bt+A+pJB9\nb2KStLLsq4HOtKX9gBN7cqXGvfM4LCtZh+zLlxbUbEnqIru6ltellnliFNba8WSvxjbTxhjjzTu7\nDviDMtwODedY/6h4zZUBnW7LQfRB1ymp+/VQXx2lPlcwT17n0V2oY9LVA21ufKycLgJn0Uy6qAZC\ncGeTeC1ANRW690DrWW2NnblLoW2Nptoitk6zswnnWHQhajkI609jTM0zuIc5y1Ajy2PZoXNdgPNB\nxkp8d8eO02dt1071QDIWyPmncj5qyySVog7CpGWlnToT2uRQI/TScR5p69lEttZjIczLWctRD8Rz\np2Vr/8BOHN8FmBu4rowxsg5EeTZ0w1kXS1vBEPVVrv+UbdnZNm+uc+KeQYwJb3lAtAu3yjphkWTL\n937sxF944E7x2ov3wOr18u9f5cQ7fv6maLfiX2504oVkfXrn2ltFu188969O/OkN33HiNTNl7aU1\n3/mwE68ka8c/f+VPTrzxbln7hfvB9s0YH71Ut8oYYxbc/QknjorCWDzU8APRbmAA827lR9c68Zet\nGllcD+PUC6h1MyNPWj/f+O8fMeeT3KtQg8CfLes6jfRCl871QOJ9ssYE21hnUE2gUy/LdbH4atT7\nGaCaQGkzZa0ktxt1CAZbYf0aHYd9S/mNsm5LYibWvwyaG5o3HxftxvoxtoOndjtxlFVcxZ+PcV94\nJepIdB2SVtVcq6FsI+ovnHzuddEuY6msrRBJeg7gmPJWyZpb3XuwppyuRsx7QGOMyZuN+TV1CeIB\nqx5QPdVLK79xjhN37ZI177h2YXgn6iNUTMN1GOmWNWL+8jTmh/IczNtbH3tetONaXTPXoU5S31Fp\n6ezKxlqfNI1qjFl1dNrew96L9xU9bbKuUfJMWRMu0sRRDRaueWSMMclFeL4Y6sT6bNdnifdgLY+K\nwj0ebJfXhuuNxFDdwLbX5doV48F+h/cg3TQOXFaNOn5mSpmH9S64TT5r8D4msBD3e2J0XLSLjsV5\n+GitHyabbmOMCVGNlySqtzfULGvdePPkXBxJMguw3+dnLmOMCdC16DyK/fXEqLyHr/74ZSeumoE9\nwlv3vSXaLbgYzxlNb+BZpeO9BtEu6xLMCbt+9Z4Tz74N9bjsPV/2Uoyr4X7sI+3aL0f/+owTc92g\naXfK2m48T+bPxX4meKhVtAu3Ya7leoTZa6U192CTvKeRxufH/r3ko7I24In/3uXEBdehLsxQt+yP\n87+Gvc/4+Nmfb/tOYl8669abnXhkRNb32f8fTzlxTRvG30VfQv2i4U5Z+6vheczXQ4uwJ7LrF3G9\nQ66JM/32BaJdxy48y/Bzg/1bxvRPoGbfkf9GHZyt214R7S742oXmXGjmjKIoiqIoiqIoiqIoyhSi\nP84oiqIoiqIoiqIoiqJMIeeUNaXMgWyj52DbWdslFSONrvkNadXH6YruTKRL+afLtHa2fOvcS2mi\nVhpm/fNks00yjbFhpFVxaqExxsSnIBXZFYd0MVsGECSL6EtWI6XpxBGZKtd4lI7vKMIlV0kbN7a1\nHKaUNXe+lOHY6XKRhlNXU2ZLedqhPyG9edZtSMezZQedO3HOsYuR+rvwWnnO/mln9pCO80ophTsJ\nqZy569BHesgOuWX3HvGe7AW4Jz4fUg8nJy1701HIBHp6IL9ofENKtTjdsGsnUpFLb50j2rWSlMJX\nhdTNzHkyFX6w5+xj5IMSTeNjoENKNjwkG0grQgozy7aMMWY4iH7G4zKWpFrGGDPvJvSD+udg2zxg\nWZVyur+rBOm9bVswXpKnpYn3DNQjhTREFohsh2iMMXu2YmBVlSAdvPe4lCulZGAsjfbJVHEmtRzH\nMdSCtOZQtUyfnByRacWRZpAsNduOy/4yjcamNx1z28ApmXbrm4EUc57Dwralay3kKWz5y/IGY4zp\nqMM1nfe5ZU4cagye9T1uSps/+AokMf3hs98DlhMMd8n7PWL922nXKf8/TNLTFA/WE5aB2e0ijbcc\n6120JfW74d67nXh8HNdie3W1aBf47UtOHGxBSvrv3v6LaNdyGKnY//k72Gznzdwg2u3/4++c+Mm/\nw9rxm498y4lf/+6T4j3PbNvmxD/5zRedONGyQk5IwNjZ+qOfOvHXbvuQaBcfj/77wxu/4MSfvfc2\n0a71XcgHhqnPlt4wS7QT9sBy2YoIoRqMfU9OnXgtLglzW+derA0jVn/MXou0eW8axgSv98YYMxom\nS2QaszVPvS/aZa7EOhs6heOLIuv1wGwpp63/G+xO2VbbWLKP4isgb46JwXwdHS2lWl2N2GPF+yEj\nZ/tfY4zpp7l8bAzzWipJGIwxpnUT7neezND/wNQdwbivSLEkZ3T6xYuwn4nzyb1ILElbtj+xw4lb\ne+S8e/HlS9DuoS1OvPAWaTFeW43099I8XItjR7EPs/eee2qwb06mea1nQPajtl70o8HnsT/KS00V\n7WJI5sJrqydB3sNs2osGaL8/aqXqH/sr9k6zrjIRh+d/vh/GGNPXAMkIS8dH+uRYHOrBOhYawJhN\nzi8S7YZ7IL9kuWDeNWe3umWpLVsjj1jynfRlkK20k8TGP1eOWSmHwj60c5eUgSfS/QnV4p6yxMmY\nf5QROcezWMqCWeYfaXit7m2RFvC5l0JC2vMW+vrASSm9nzEHE0RiAc59aI/sjzwfsgQ+xi3Pr+k5\n3OsOer57/ZdvOLHXGhM7nsO4GpvAJFJgjbG3DmHf85GPQF5jW3OPDWIvwmMs3CRlk/kbcR6DtEft\nsPpE9mr5bBZpim+GbLZjt9xXTbsLc2BvDfaXs764QrRLTIRcd3iYZJ7BE6Jd7ipIo44+A+lS/voZ\not3JVkjA/vQ29jfhEfSLldddIN6TRKUq4pIw5295VK653OeO12KeS8+X97vwOhxT9YOQd+VdLeeN\n05vRf0pvm+fEQ7/cKtq1bsa6mHWD+Qc0c0ZRFEVRFEVRFEVRFGUK0R9nFEVRFEVRFEVRFEVRppBz\n5rixlIllR8YYk3sp0pZqH4Fzjm+GlDF07sdnpJKr08SYlA8keJA+y1XY6546JNulIx0wdQ5SRgdI\nLrBp637xnglKIb30muVObDt6dFMKaV8T0vIqqqTbQHQ8UiE7KbVrclymqrrzkJbXfQipmal5Mm38\nfKYaGmOMl2RnthPR7I+janlwB9LnSjYuE+1Sy5G6dfIpOFHM/Ogtop3bjXtyat9jTlw0+zrRLhxG\nqlvrXqSSJZcilcyVJB0Cal9+14k9+bjH2XOWiHZjYzJd8H+x5SEtbUiD9bqQEj0SkimU45SWODaA\nuGmz7Gcskcn72rVnPIZ/liFK8U+dIXP8g3uQCp/gRvpesFa6royMwQWh4mKkUNryJ07DzCAJm506\ny2ms4+RA5kpHWvZoSL5nlBwhOkO4T4urKkQ7lnEN9kCOFbDOvWE3UsXTqfJ/+qpC0e7Uc0ec2E1p\nrK5M6eDV13H+XH6MMaZnH+bDotUyx5/TYTMvQupqy6tSKjpClfE9PqR5J1mpzn0n0L9H6T2F10mn\nnyLu30OIE0jSkFEh5YvGQBJTSSmjDS/KPsfp+3Eka+JxZIwxadTP2L2uY0ujaFe2Af2W0847t8nU\n34rr7OONHBXXXOnEzfveE6+55+C+HfsznCeONMrzWNiCez/tKtyP9pptoh07KgW34TPuvvMS0e6u\nDZA5dfajDx+491Un/tkzz4j3rJiBNN2EFKyrvdXyHt73Wbgm3fEDuEzt/cN20e7FW77sxCzH2PXr\nLaJdwAv5zxsHKY14v0x5XnszpUpLU6OIkFSG8eLxyNTk1nfhrJB7EdyL4uOlPKHtINYA3hPxvTLG\nmCDJ7tjFcHJMSo8yS9fgmDLhNhEXhzW8YZPsc2UfXuXEp/6Oa51o7TMGurBO1D2O685zjTHSDYSd\n93IXyD3B2BBSu9kdp3OfdCFJXZBjzhcJJFOfGJP7rwnaR8aR+8mo5Y7ZuQPXhfcBq1dIp5Idb2Gf\nyw5XfZa7GUshDp3C+nSoATIXW/7poe996OmnnfjqdetEu5horIvtJNM41S7dla5aj3s13iD7GNN3\nGMfeTs6K/jKZ0p876/zdQ2OMGad1x2M5CvU3Yt/GsvfU6dKdq7cO1zd3Jq5ba7V0+mFJEe9PbOeg\nWNqXx3mxZ+ja10Lvkc8xheuxF2Xlmu2a1EbPA8MdWJuz18s9AT8LxZH8nOVYxkiJJn+vK+AW7Qbo\nODIjLBX1z4bcq35bnXjt1KOYJzPXFDmxp1C6Zba9AalHzjpci8ERS1adhTWki+ab5OnymeFAPcbf\nnDLMc03tVHLCkkCv/iTm0+YXIEfOuVLuUXNX4Dx6D5IEfEh+Xtu7dU7MLm3uAtnPh9qxbrPrlD0/\n1z2JZ+KsL15pIk3jC1h3ApZE9RBJc7w59Hxrzfn5V+J+jYdxPfyVsuzF+Dj2CSVX4Lq//2Mp7179\nqdX4DJJ9HmvCnLXvRfk8dvF3sCdqe6/OieevlfvfAP2O4G/D8UXFyd88ap/AmukmyV1KcbloF+fF\nvTvwX1iP/UUpop2/6swlQP4XzZxRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVRFEVRlClEf5xRFEVR\nFEVRFEVRFEWZQs5Z7CSe9IojPVIj230ItRNSFkGPmlwhtaqhalilcf0ZtsE2RuqFMy5AjZf6psOi\nnY/02vt/BT1XNVltsR7YGGNWzYO2vn5HnROXrpZC9pIunGPOBrw2eFrawrmzk+i4oQm1LdTCzaip\nkUv6yZgEedmjYiy/8AgTJP2ib5q8P6xBzb0E57zn358T7TKXwpKv6ubrnXhoqE60Gx/HOaeXwkbs\nxKZHRTu2Pc5ZAQvVviZo890+WQulk2ogcd88vV3WNEidjfoVR+9DDYeUWVLj5+2F3nHJN6524urH\n3xXtUqkeRgLZR7MW2hhjym5daM4XqWyfatlwck2lcbJ85BozxhiTPwPnweO0/X1ZH4FtksVXWeOK\nXxwjXSnbJA81WGMnD2OnrBjH4y2R2uOYRNTacFG9FFdGomiX5Car11TEXGPGGGNc8fg8PotgnawX\nUH6VtPCLNNGkY03MlTUhuHYBW0X6rX6bXIk5sOcY3tP06knRboS01KmleM+pR/eJdn6qBVZQeb05\nE4df/u8z/r8xxpzeD91vRbbUKPO8XJgOPfhor1xPdv4R9UtmkI1i9qVSg9/yGmpmdXRg/BUvlbrs\nhiexbhTec+Zz+mcJ1ux04tceelu8NqeszokP1CD+ztelnfT0q29yTQIZEwAAIABJREFU4tYa1ETw\n58raJ+Pj6PvhMtRe+uqN14h2qUvynHhGLXT7PDf88df/It7zqS//3Ilf/xlq0+QGZO2ij/8f1Avj\nNa78QqnBr4jGsb/5JLTpbKFujDEVn4X1cPkY5sye47JuRtZ8WfMj0vjI5vjA/VLjXvYxHFfjK0ed\nOG+9rEsR3ISaBq5czG1FG+Va0HEI/TYxA+Og+MOy7sChPz/ixFzHK6kS87VtF9v4Jvoj1waMT5H1\nJnqPY65IqqB7bE3rmcuw/3J5MEef3iFr3SSkYi4+/d5uJ67YeJloNzkp63JEEt7r+ay9J9fr4Hoi\nvL4ZY0wcWYSnUf/ur5E2v6VUpONNqpUU2CU/LysZ9zRIxze/BDVSGjs7xXtWTp/uxLOKipz40nly\nDOyuQT+anot744qTe6VYL9a7MK0D0z80W7TjGhhce67u5eOiXaJlNxxp0i/A/tKuUxdPtVZ6j6G2\nR8e4XO8y52DdGB9H/Y7kPLk29HdijzlGY8y2iu+kWn4uqnHC/YzrnhljTKgF80HPAax9oVq5V0ym\n8RxL59e1u1m047qV42Ecq13/L/sirJO8L7W2ima0/8yW25GA6xdVXT9HvNZfT3WDDmOeDzfLGn+F\nN+Aetm6qc+J5NCaMkfU9g1R7qaBymmi3sAP/7mzCeJ6gulBZfqvuDc3pyXOw9xqyapQO1mNvyzUS\n7WfldJpPR+i5p++YVZ+PniULb0BdlHDHgGiXtkzao0ea1IV4nk+w1pAcqn8TRfWvYhPl/MM11kY6\nsG+xa9f207gIzMczTkdI1g1dWgrL7Qu+jJozFTTG2rdJ2+/27XiuSZ5+9vouPUfRH5977B0n/thP\nPiLaeUtRM2aYzmmov0W0G6L7xXsfXi+NMab+KTyjFM0y/4BmziiKoiiKoiiKoiiKokwh+uOMoiiK\noiiKoiiKoijKFHJOWROnnqdT2rQxxnTtRzpRB6UTNW2uFe3yLkQq5wSl5W1/fIdoFx+LQ5m+CunS\nMWQlaowxPSSnSi1HevBLe/Y4sd8r00zDlEqWPxcpYZ27ZDpSHKWCnvgb7MrSimS6bBfJs7LIFs5O\n2Uokq7TuvbheLCMwxphY6xwjTe7luJ7jw1LqUvdXpFalTMdx8f0wRqb49s6GLMI+51N/Rzo751Tm\nbZDp+glkuX30IdiWlt6GNN7xcZke2NyNYyj0IV2RbQSNMeb4e5AylX0M0qqah6Wcg1P+hweRLps8\nQ9rxtb+LNMfcDbBNa35L9nW2ls748KUmknCKe7hJpvwl5yMtM2UOUgPTLenIaD/s7UK1uJbjlvUf\np4qzZaGdbuzJw/cOkvW8txD93pYhhU7gXiWSHV2slVLcvRvjJX05xmx0gpRIZK8uwnFTSrrPslRk\n6WDji7DszZomx2KomtLNV5qIEwoiNXbyTWlr7yVrXy/NHYMtMp02SJanbK+ZOlfa/L79LKRC130S\nUpLO/dL2MMaFlNSG4085cbwPEr6O92XKaPJMXF+2Tc7wSakWSwHS6DVOETXGmHyy8+b+2LVHztGB\nhWR7OIJUVTtllCW0kcZfgDVt0ZIq8dr8Oz/rxIHXH3PigpWrRbuBAVh07v891sL+oU2i3faTSN2/\nYR2sJncekLbTd33pK058cRul9E/Dffr7T18Q77n/x7C+Tl+CMfbs96WkNasZa3/XHvSdJ7duFe1u\nvxlylhv/HbItr3e6aPfZdTc7cVEG7uFnfvMJ0W50VM7rkWZkEHNWrE+uwUNBns8wz7Va+5sZd2Ge\nP3QfrNOjo2Wad+oM2nccqnNityXvTiCbX5Yl8TjIWFEg3tN3FOnxvHbZNrpp5ZAMHP/zazhWS2bN\nKeqDbZC3RMfLdrwm9R3C+lnd/9JZ2y28XcoOPijFqyDnCG5pEK/1t2GdzF+PdZslo8YY007reDzN\nhaPWXimZrFBn9uIe5BXKlHlee1zbMVdXN+Merl0gZR+NzUit37hhuRO7SSpnjDGLyRJ8rA/reXya\nvNf1e3Et0v1YS4Y7B0W70FGsd95ynF/2Qrnft/d5kWZ8GNK3mHi5xscFMCbYbtidKa/NJMu7SQ4a\nPHpMfh7t8xNpf8N7ImOMybkYMv/oGLLVjsPzQF9rvXgPS+lYBp69Vtp+836kn77Xvs6TZNU9SPs+\nV7pc78YG0Rdi3Wwvb0kKLZlTJEmajusy1GrtUUmKzfet/q+ybAWXWci+CNdsfEDuUatfwHNL2WK0\n6z4g1313PvYcBUUYB1ufgwxzwQ1SgnryBchYeZ/jtSze+VmK1whbS8bXYrAJ55dUJuXDE1SSYIz2\nQ0eflBbR2VUkHV9kIk7Dc5jzKz4+T7xW8wpeGxvH8XpdLtEuhiRPRR/GuuMKeES7xhcwNuOoZETf\noJyngscgIx1spLW5BNcwd70sU7LpYchw133pEiceapN9c4ikdXf8CvLz4U4pJ0suR//uIFlhqFbu\nU1KmQW7anYU5P7hHShb9pfL+22jmjKIoiqIoiqIoiqIoyhSiP84oiqIoiqIoiqIoiqJMIeeUNXEF\n9X7LdcVHaWoBklIcfXSvaBcdhxRFlsZULZQuHAP1SPfa/xZS1mYuk44QyVVIIZ2glL+bRy52Yk+h\nrL7dfxJpR70nkMaZtkA6iwxQ5ei0AqQcpcyW0gdvMdI/a15FmpfPLVNLY6j6ffYlSL0baJTXsuFV\npLiXnYc0tf46XHe7onXFbUhb2/NLpIFNWql5rnak8B15EGn4CfEyfbupE9e6dE4hPm9Culw0b4MM\nrZSOIToaKaf9rVLSsORGSDMSyTHLWyDvd2cK3rf7fjg5ZeRKeVrBRUi3P/0S7mOaJeFjt5zBFvTT\nomulpKF9s0xxjSSuDKQDxiXJFHyWCtU+j5TMQIk83z6qmJ9C4yjeL1MS3Vm4tsPklDRGsihjZNof\nV7LPIeeA3hrpSsFp952U8p1opYwmcJo2yZVCJ2UKYQzJnAZqMa48ZVI2w/KBtHkY94l5UoYT3CKd\nqyKNLxvfF2NVuOcK8OwE0NMsnR7YeSohBfcueaZMry8myUjjs0gftVPlu0kyEQzhHke7cG3tNNP+\nXbhOlbOK8P+UtmuMMeVLMQewO1W05VDnuhAuAKGT6DPuHHms7FjRQxIbTqk2RsoTIs2Be1904j+/\nK53dWFpXcDXmh7ajO0W7v94L6ceqpXBQCZ+Uc96dn4cr0/QNH3Pi4Xv+TbQbG0OqLq9PWWVrnPjK\nL0mZhr8I0oxbL7zLib/3xVtFu8Qc3LenHn7diX/27G9Eu0O/f8aJk5ORKh5sktfov168H68dQ8p2\nb3VQtDvy1wNOfPV/rjORZrgHc9u0my4Xr42M4FgSM7B2BffViHaxsSQpnY95ZWxMjoPRAUhMO2kN\n9lkS2vQluCfsrMLuJLZrSDiIsZlfinHgSpKf3dOINY6loolZlmsczdk+ShsP7pJ7h+ylkChx6n7W\ncrm3i4+XxxFJjr6B9c5jpdYHssg1aTNkPi7LrWmc9iZ9IVzLssulHG+E+svcXIzZaEuGwwyPQJ5w\nwfXY3I2Qo6ExxgT68L3sRDnaK6XEqYuQMs/7uoZ9Z1+3stZh7zlmSZiT2QmQ/lRrO542v0NyPmkU\nFxFcJF3qq5NrvO2KiffI/XbDG5hjfSQZ8ZfJfX7PCcgLRuj62u5mfK26DuD6+kqxNo8OyD1RShnG\n1cg0cuY5LvdBmStpXaT5dcKS0sWRtDhI7jO+cmu9o3Z877oPS5mP7ZIbSQbrcF1yLy8Xr/WSXJzl\nQCOdchzEL8I94OekLEsWlhuPz4/zQtrdtk1KG3mv7KO5cenE/DP+vzHGzP8CZIXd5OQT3C7nv6bD\n6EcJ2/EoPe0WKQVi57Ss1djnsIzJGGMmaI6vfxwynkVflZJoewxHGna/Kh+Xz4GL717rxG3bMSek\nVMln5EFaD2rJOXPaJ6WEjPdITa/hOZidPY0xZucjkOhXLsb6wi5Z+5/aI95TRJ/R+hZKCOReKvvm\nELkqVz+4y4nLP2XJ3X6Pz2fX2e59skyAOwNjrI3cYO3fB7hfnAnNnFEURVEURVEURVEURZlC9McZ\nRVEURVEURVEURVGUKUR/nFEURVEURVEURVEURZlCzllz5sAfoOFMzZB1PTLWQDPJ1oT+bFk7YoSs\n+/pIO5qzqli0S1uMOh8xz1Idl4o00e7I46hpw8fU2wndmN+qvcB1CgbC0IF6LEviMOmAY+NwacId\nst5C70HoEHPm4rjjk6Ud8EAdzreV7BqDLdKyb87HF5vzCVvThoakxjPBD71rPtWH8JVJHWbvMWjw\n/TOgL2TdvjHGtD8JnWjqghwnZos8Y4yJpXo8MTGopxJqhn4v3CGtzLiewwjZo9c9Ke34Rsnija3T\nCy+TWtDjD6EWgrccGmW73s4A1VtKnob+2HO4XbQrv2WZOV90k+17nF/2s8EQ7kHmfGjS2/dK67ZU\nstVt3gf9bP5iac3atQ/fNU6WfuFmWetgvBLXjOs87fsv1C6yteuJLhy7KwfazJEuOca41sgYWXhz\nvzFGaqgnxlA7wGPVkml6AXpWN31v3+EO0c5bIWvVRJruJswJ6ZaNt78K9yf4PvTlgWI5Fl1k/8nX\nY/C0nM8ycnF/JkZxbcJtclxxbZnoUcQuqutUNl/q9rmWGNuC+irksXJtqFHqS80vnRTtcq9EbTG2\n9k20as6I2kZXQDtc/3dpl2rXE4skXqpn9LOv3CteS0pCnYrPr0Mdk5vWSt34nfd/1Yl7GnEtkqxa\nAj6yW6zb+7QTr7jn66JdTw/qgN3zufuceFbh8078ke/IYhEjQ1iHvnH11U68f9tx0e7WWz/pxLd8\nGWtp7ZtviHbvbYNOft6n0CdOvyA/Lzoe5zvjo9c58diYnF/s2iqRZqQHa0hv61HxWv3TqHvH9RP8\nlVYdl7ZDTixtiuW8V/8M1qh4ssH1Flm1sdxYr049intXdQf6UtN2Wb8oidaurv2Yu9MWylooHbuw\nHgxRTavcqytFO385xk5/E+bHzCVFol3zZlyj4otRiyBYI7X/o304Jv+qBSaSJCZgPSlcbdW6of3Y\nINUVSLIsTNmW2E31P/Y+Kq9z8WzcmziqTxJv1T5hq9es5dhTdW7BmhselrVKSjai9sKxZ1BrKX+R\nXJuHaZ08fQA120qsOj+xHtQz2Ps41VFYJu1mG3aiTt6MG+aas+FJ85z1tUjAey5XqrSJHqX1n2tf\nRkXJ/s12zQl+3JPxEblH5RovoVOobzNs7Te5Dg7X5Rtsob5kjd9QM2q8cC2LOOvZgC2VY9xY73hd\nNcaYOLouWSuLnLhjn9zb+YrRpztp/xaYnSXadR+U9TEiSQzZvE+MyxqT/CzEx+SfK/dA/XQ/EvPx\nLMn3whhjeqsxL7W/jXWn6JbZot2x36Hve/KwR02meXzY2nueeAx10Lyp6Pe8HzLGmIBP/vt/GQoO\nnPH/jTFmz31UA7NIPttyzcB0er5ut+ro9B7As1jePdee9bv+WcoXUf2/OvmsOpyMscR1K4eCcq3u\npPo8KVRXjesmGSPt4Yuug+V28nS5zkbH4TeGNnqW5vo7fo+co2Z8Cs/VY1QbKsYtnyH4N4Zhqt8W\nGys/r7kVfW71J7CO9RyXz4GuAPrFgrtQv6jxeblHPb4F+6C5N5h/QDNnFEVRFEVRFEVRFEVRphD9\ncUZRFEVRFEVRFEVRFGUKiZq0NRyKoiiKoiiKoiiKoijK/zc0c0ZRFEVRFEVRFEVRFGUK0R9nFEVR\nFEVRFEVRFEVRphD9cUZRFEVRFEVRFEVRFGUK0R9nFEVRFEVRFEVRFEVRphD9cUZRFEVRFEVRFEVR\nFGUK0R9nFEVRFEVRFEVRFEVRphD9cUZRFEVRFEVRFEVRFGUK0R9nFEVRFEVRFEVRFEVRphD9cUZR\nFEVRFEVRFEVRFGUK0R9nFEVRFEVRFEVRFEVRphD9cUZRFEVRFEVRFEVRFGUK0R9nFEVRFEVRFEVR\nFEVRphD9cUZRFEVRFEVRFEVRFGUK0R9nFEVRFEVRFEVRFEVRphD9cUZRFEVRFEVRFEVRFGUK0R9n\nFEVRFEVRFEVRFEVRphD9cUZRFEVRFEVRFEVRFGUKiT3Xiwefvd+JXRle+UZPnBOPDYw6cXSc/L3H\nlepx4o7dTWiXECPaRcfj38MdQ2c9prQFOU7cfaTdiVOqMvD/h9rkm6KjnHC0J+zE/lmZotnEyLgT\nh0524jsX5Yl2/Y09Tjw+iHMf7pTH7SlMxj8mEY4NjIh28SluJ5625nYTad7/xY+cOMYtb/ng6ZAT\nZ6wscOJwcFC0Cx5sceJEV4ITB5bminaJ2T78YxInPdIbFu1Ov3rSiUtumOnEfSe7nLhzT4t4z9g4\n7k/ph2bga8YnRbvmF6udOOeKcieOTYwX7QZb+pzYnZnkxIcf2S3aDY/iHqd4MQ7SFuaIdp27mp34\nwn/7NxNJdv723504MDdLvHbkiX1OPOOW+U4cqu4U7ULHcW1jk3At4lJcol3fCbzPlZaIONMj2sUm\nYg7or+l24rEQrlfS9FTxnu4DGJv5V1U68WBzSLTr3Y+x7avCZ/gq00S7yQnc+zEai3XPHxPtPH6c\nR86GMrzf6jvt79Y78QVf/JaJNKf2PebEO373vnitbH4x/kFjZ6hRXhv/PMxbwR2YUxPT5f2ZHJ9w\n4qgYzMu11U2i3fRVuA/uTPTvgcZevGdXnXhPXhn6YPIMzL3vP7FdtFt5x0on3vr7LTi2SXndl922\nzIkHT+N7Y9xxol3TeziOko1VONaGHtEuOgHz3OyrP2siyckdjzhxz+GgeI3H5gCdh39aumjXT9e2\n71iHE6cvzRftYun8u/ZjPuw5ZH3vgmwnTszGXNbySo0TpyyQ8wavO0PNmAvHhsZEOx73aXMx34c7\n+kW7cBfWvwQ/5hRXutw7tLxzypwJX7mcK1pexhqx4tv3nPE9H4QtP/2BE/d1yXPJW1HkxNGxtDfp\nlOtiL907vu71x+UYKyjD/WmuxdxWvqZctOve3erEE7x+juGe5CwvlO/Zi/f09g04cUap7HPHD9Q5\n8fwr5+IFayyGg/iM4Tacb0e7HGNl6zBvTI5hrhkNDYt2oyHsdxbd8TUTSV7/FuborGUF4jVvYYoT\njw9hbfDk+kS7A/dhHp71mQucuPtYu2iXRJ83Nij3cEzTcyecOHNdiRO3v1XnxPa6U/aJeU7M42h8\nWI7FOA/Wbd7nJpUGRDt+XxftS1LmyDmgczv6aYxXzrVMxgpc2+LZN5613T/L5u9914mXffsb4rXW\nhlecmNf7o7/dKdoVXIb++Npv33biuSXFot1fNr/nxLyfGxyW/fbrf/ycE//sY/c58U+ff8aJ206/\nKt6TnrPaibs6sN71nJDz9Vg/+k/9u5gPq1vknnfRzAonTl2Cufcn3/69aHfXrRuduORDS/G9dfWi\nXcf7jU685HPfNJGkZvefnZjvkzHGjHSjT6fOwb55PDwq2vUcx3Xy5PvP+l3jw3hfFD3f8VxtjDET\no3hmiPdhTeLj6zsl98lMYBbm7aioszYzo/3oOwNNfeI1fyXmYf7eftofGGNMDD0De7KxFkZFyWe2\nriO4p5WrP372g/onqX7/T07Mz8TGGBPc3ODEybNwXlHWdec1xVOA5+DTfzsumiUWYS7uoeeOvPVl\noh2vuzx3Dnfg/xNS3eI9vHfk/hcfSBTtErMxB0TFYp9s9+HBJuzDz7a3/p8Xae9OzzX82f/zH+hQ\nCz/+FWOjmTOKoiiKoiiKoiiKoihTyDkzZ2LoL+P2X4x6DuIXoQBnsxyQWSucEZNBfxXsOSp/Sea/\nCPAvnEOt8q/G/BcLzoLhX0j9lEVjjDHB7aed2FOEX2M5Q8AYYzKX468DnAFkZwNxptAY/ZUo+0L5\nC/1gG/4al5iFv6p17mkW7WISznkbPjD+2fhL+0C9/LU2qRx/ceHj6DzUKtoVXzXdieO8yJwZtH79\n5ft17OUjTlx5yTTRzk2/Xu79ww4n5uyY7HT516CSa2Y5cc9h9LPWPfKvlEUb8BeUoVbcgz7rr9yj\nlGmRvgx90+uSmSSZ5ehPnGnEfy00xpj2PvmLeSRpPIxzjE9OEK+Vrsf59hzCX/vSFsqsJv4DKf+V\nunO37I9lt+KvqpzhYI/Zzl34Kw9nowxSVkBiTpJ8z370K8468FXIv5q71+MvjoefRGbQ3OlybI+G\nMAdUP3vYiVPS5F9HveX4q2foFLJ8ODPIGGNGOs+etRcJOLtKZMoYmY3opXkquUr+BfzAE3uceO5H\nFzkx/3XAGGM6tmDecxfgeiTEyb+Q8hx2Ygf+KlO0qtSJcwrkMcTTdes5iLFYli3/Mst/beKxnZwo\nr/vBJ/fi8wbwl/vFV80X7QouRj87+swBJy68oEi069lD89fVJqJwZkDuJfIvPLw+9R1BVkWC9dea\nfuqDk6OYRzw5yaJd5wH0l77D+LzUhdminacQ/YUzTtKWI+uz94gcvwnpOA9PPr6Xx4cx8i+T/JfO\nzr3yr7x8s4c7cA/t9S1rZRG+qx7fNR6WWQLJc+RYjzRNTbgecTHWX1zpWEbDmGOsJBPjCuCvdUkV\nWK8qM+T9Pr4Z2ZylC4qcOLhTzr399F2FS5AhM0zZFI2ba83ZyF+Kzw63ymygOZcg27SLMiYCS+Q6\nwXu2riDm8okJud5xBvDhN486cfm8ItHOnSUzpyJJ+c1Yq+qfPCxe8xZgTHC2TO1fDol2iW6s921b\nMf9xPzXGmIbnkI2ZfwXWXM4IN8aYaMpO5r+cFt2I/UvzGyfFe/gz3Dk41rhEOVfHebFPHmzEfoP3\nwsYY4y3FesfZMmNWpkL2pZjja5446MQ51l426lxpAxGgqQN78X/ZeL147ZoNyL4sug5Z1ou/+RHR\nru0g1pCP//rbTty4fZNo9y+f+LwT81/hh4JyvPTWYL6tysM8uvOX9zpxQroc5yercQwxLvSDhV/5\npGj37vf+y4nLr8a43HuvHNvT7liD7/3ZC05s71FdNMZ+8QlkWX/3mcdFu8zKRnO+4GyCEas/Zi7A\n/n+wC/sFO2Paxdm/NN94s+QcNdyPe9N1EGt9ykyphhjuwTwusnWpO6fOlmvpBO3reY7rPdkh2mXw\n/i0K7eyMi+AujO0EWi/srDh/Mfa8wyGsi3bGf+qMUnM+6SVFymivzCZjFcpQC8ZLT73cMySREiEx\nj+azFPnswhk3gZlY7wca5HMlL7ycgZJI+xa3ldk/Poz9ZkIqxqmtXOFu0fAUnlnjk+SxJmTh82Np\njm+15v+sBeirqYsQ99db2d12Jo2FZs4oiqIoiqIoiqIoiqJMIfrjjKIoiqIoiqIoiqIoyhSiP84o\niqIoiqIoiqIoiqJMIecsdsIONqFTXeI1rjnAmvTMldJJYLBFagr/F66eb4wx0aTdZIcnW/8+Qfr8\nVHLL6bc1akSMC7q2ENWZCcyXWkOuJdBFTkF2hfvoGJxvnA+6tKH2AdGOdcA93YhZi2qMMa5UqVuN\nNEefh8a6Ym2leK33IPSFATrPviFZv2LfE3AwmnMdnAXcVk0Rvm6ly6GNPPiy1Hkvvh0V5VsehvY/\nQNXzEwtl/YWRHhwT10wJnZB9k+s7cC2iYFBq/kpW4viiYqkPr5Z9OIH6emABBIpdVs2FimWy/kQk\nyaLq7bFeqYVseafOidnVw9aL9p3G+XMFdY6NMWbXb+AyULkBjjixlv6dq8tHU8Vy7t/RcbKWAzsi\nTJCDwdBpWa8n6xLobzPzcO6sazbGmKaXqZbDBuia4/1Sk33oz6jTkpZxdheAFKuWR6Th+jFNL1WL\n19IW5djNjTHG1PxN1lJg9zCu+WTXr3DRNeBK9mWrpUNMwxbo3HPnQlvP9RISMmXdCJ4Dx/rJCaVU\nXlvW9OcGUJOj6hMLRTt22mKXqCGrbkbDIdTRKV8DJ4twm2xX3yH14ZGEq/O3vF0jXvOSa0relZhr\nm187abVDTQgeV7YLjCcP19P9IdyD4DZZO8BF98eVgzhE7nfsuGKfB49TuxYb09+Ee8NuT8YYkzoX\nY6fnKNYVuxYI95HQUXxX7lUVol207YIQYQqnQQ+eYNWeqtkKB5XccqrZYc2p7Ho3Qmv8QI3ct6T5\noLvn+dGbJ2tj1e3Bdet+E9eNx45dM6qtB/N6Nq13PQ3yGDrqOs/4nhk18j66aE3n9aRkaYlox7WE\n8tIwRzcflfXq/PV0ba8wEeXkY/udeObnl4rXwlQn8dgDcPaZ9ulF5mzs+SXWvjir5kAc3WveV/Ce\n1Bhjyj+OuW2wHetacCfmrtx1cg4easf81U37inCL3FMWf3Q2PuNS7DdiXLJPhKnmE+/Bkytl7bCm\nl+AslUbjt5PqlRljTModsvZXpDnciPnsUz+6Rbz23gPvOjHXpYqK2S/aHTiIufgj/4k96lbLQbCi\nAOO+L4Q+8tTWraLdf7/1vBPzXr7kQnRit1vWQnn8c3B4uvrncBI78sxfRLsn6bu+98nFTrximqzN\n2LwF+2Z3Avrj3GJZE8hXhvHnjkc/3fvw/aKdmxzlZmyQ8+0HhR1Z2bnOGGNad6AmVcZC9Ntea61J\nnVHkxG070DcHmuX+MH0u9u7uLIwdu44H1zLl/SqPWbtGDK+LPMf5rbEzPobzdfngIuqamWLOxtgY\nxuXAafk80ltPzpv07B0TI6/lYCfVdZXmpRHBW4K1xq41y+5Ivmn4ctt9zldJNSTp+notVznel/Ie\nJD5Z7t/5vnbuw/yYuRjzaPPmo+I9XJ/LlYHfFLr3y/UpltqV3Iz5ddxyquI6M1w3NilN7o0bd8DR\nqjIPz1ZJJfLc2eHrTGjmjKIoiqIoiqIoiqIoyhSiP84oiqIoiqIoiqIoiqJMIee20qY0sOQKmT8V\nDiI9K3QSqWnRlm0mS556+pDGw+nAxshU3+bXkQJuS484fZPlQAl+siiz0pEGKPWf07/ZdtgYKV9y\n5yKVbHLy7GlvYbLfG7ZseAPzcOycstW1T8ph7M+PNAUzkXpQirqAAAAgAElEQVTZsV3afuVehrSw\nTrJ8s61uMy8gG3SSQnF6rzHGZF+MdMMxkq7l50lb1OEupMfN+xjSOnvJrtlOUeRUxK2/RfpxUZ6U\nnQ02IQWS5S2j4/JY2ZIt3Ib+3HdcplqyRRun5bGkzRjLBjDCjA8hnTcxV6bCJ9MxZSyDdGHCsvpO\nJckE91VbrjR9Iyw/B0lulGil4J9ooDTM40jfm2QpmSW1CaTiMyZGcHy2JeXxZ2DrGRON+zT5qpSR\nBObi3nvo+Hbdv0W0q7wM8qza1yEnSpouLbyjY6UMK9L01yKV9XSXlON1v4M+yNKF3AV5ol0+9Wm2\nWbTnEW8Z+kXNOzjn9EyZdsv2u0lk4b3rj0gHr1guJXtRNJ/lXYn06LZ360U7XidmfmqJE5/6k0xJ\nDyzCXMnzd91BKd+pWIn56uQmnNOsD88T7RaWy/saSXheCrfLtN90mifZWtpjSTTT5mNOHmyF7MC2\nnWZb41Adviv/Cpn+HqpFX+JjGO3HmLc/u4+kyu4srHecAmyMnNfclMIbWy7HbOs2GldFJNvyybU+\nTBac6WsgIY2y5vuouPP8tyMaLhPWnoEluS070QdzlxeJdp00v7XVQUqXvyBftIsP4T5MjOGL7ZR6\nF437nTWY6w41IFX6mrXLxXu6TkOC0rCzwZwNNkOetRDjaPC0lJ6PD2KtyczAfWTrZmOkRDOxBPNG\nIF1KPWzL2EjCc96BX0pZCtu5sgReXgljeo5hP1N1M+YRTos3xpjWdyD/7KvB2Jmwzm+4B3Neyxs1\n1A59rM1am0uvXIvPPvGGE2euLRLteB/p8mF+n5yUn+dNhexlMAd9ot+yvHWTBDI+BesK24EbY8zh\n+7EWZP9oo4k0X/ztV5zY5ZJ7/pvvg7X2i1//hhOzBNcYY1bdBFnbO9//kxPfcO/dol3jdsikcukZ\n4ud3Xyra7XngAfyDhmlLDqy5+45L+SzvVd66B3bZWTPlOf3y5Uec+Llv/NyJC4rkXvbdv+K617Wj\nn976KakPfP3e1504Pw3PaimzpbV0+3s0P2wwESUwC+doS3YSxfMUngOTK+Vz5UAbzpHtj2Os/th9\nAnNyMkm6WB5tjFzzwvTMwVbNbkuCxc+Sgy2Y82Lccp/sK8AzTdvuY06cMl0+6/D3uqjkApcNMcaY\nSZoTQiRJTS6Ve9IQzT1GVqmICPz8FJcsn3G4VALvg/xWP2N59iCt9/5pUhrW8DdYVw+TdLDo+hmi\nXfdBSLnc2Zizah7D+PAUS0k9l06Jor0Y228bY0xgNsZcTDz6S9dhKX9KpN8OuG8mWGVJOl9B3++r\nxrNkTIK8j6LsxDLzD2jmjKIoiqIoiqIoiqIoyhSiP84oiqIoiqIoiqIoiqJMIeeUNXGF7ISArOjP\nKccsnxjplq4ZvulIY3JTejTLnYyRFeUzlkOawc4dxhgTR1WcQzVIGRrpQYpQYp5MF+OUJi+lWx97\nXjoIcRp653Gk12UtsNJ0SY7hzkKqk+0swhWnOQUsfbFMx+w7eX7T1KJJCsZOL8YYs+vPO5x43nWo\nyO8plClinEqXMg9pYAP1Mn2xn/7tpc/wlstK1Skz8Bmde5EanrWyCI2iZB+p+cPeM57HkVMylbvn\nIKp2c+V6r0tWAK9/F44cyV70zYQU2a61FlKrsZNIdcvOlyl6tmtDJPGUIBVv/x93iNdK1yBFnSUh\nQ20yXb1zG2RI2evJSevxPaJdwTyMP5Zude+TaX5V04uceNcmjKXpuRgvr+zdy28xly9Y4MRecm2x\n5ZD1QVzzy7+KdOOhoHSvaHu7zomPvIPU0kUfXSLacYo694nRPumO47XkJ5EmRJK5+Fh5zkULi5x4\n4CTSWoeDUjrTRuMlUIa04FQrtZSlGizp8xTJc+S5+CC5WhXPhDTDln2wW1rDU0hNTZ4rj6HvSMcZ\n3+OtkNIqThnmPrzoDunAEtwOCcf0K2c68eGn9ol2GTk031xkIoqHKvAnWI5FCcmYRxpfxjyUZMms\nWBp75HGMkewqyy2MZBtjA5jzbCeZ5HLMRewCwOuOK03KlXh9GqBUZlsWPERpyU1/P+7EmZdI9x6+\nFnw/M1cXiXYszeg9jnHe8a6cxzMvlo4kkaaf9jeBgExFP/YunELiYnC8o+RIYowxsXSePeQQ5j4g\n58qeQYxhP0mGT7RIifMAudmN05i9aCb6+sEjp8R7ll+GObWDJNNeO22enO5YDnSwXkoRWWjF80ZV\nrrUPIgkBp7/bc8W4JTWIJBnzIVeasBxDhhrOvH899YicK9y0X2QZdMPfpPsH99vkcsy73bvlPdyy\nA7IX3lPtewbjfHqlnA+OPfKiE+esg4S0+4iU3rszyM0yFeOvt0uusz4fXEcGe3F/E1KtOYAkHLzd\nYlmiMcZUPyyvWaQJ7sN485VKWfk37/yME4dp31fVKsfYklnYPOfPxx7m9M73RLu//PolJ+4KYY90\n7yvPiXaj1+C1zn1Yc3/9LUiSLp49W7xn2oU4hkHqf/HWnvKhT3/biWNJChXXKKUPF9260onfJ9ep\nB3/1V9GuP4x5aWEp9nbBrVIWbDvPRpLRPhyDv7hIvjaK54LJScwPttR2bAD7MU8u1llb8uqj1yYm\nSL4SK/e8/OyXkIy+PhrA99jS0mh6tvUWkqyzVX72UBc969CeID5RPuvw2spS4ijr+YbP0U3S4pFe\nWS7DU3B2t9FIwHvPGKvkQWAB9idhcm6yXVl5TzlOEieWMRljzCQ9M8XTnqaNHGiNkXvWARpXMR4c\nX6LlHMyuvb3VWJvHLUdMdpZkSbd9f7j0Cku9W6xSC/4kzNHs8GffN3udtNHMGUVRFEVRFEVRFEVR\nlClEf5xRFEVRFEVRFEVRFEWZQvTHGUVRFEVRFEVRFEVRlCnknDVnWN9q2wp2kPaftVnxadJWaoys\nPMdIH+bNk5rb/kbo97huiX+6rOvRQ1bLPtL9DjTgPWxZaIwxYarZkEDHV7q6XLTb9gLqLaR6ce51\n2+pEu9wZ0DmH26B3TFssNdnDnfjevhNkuWdp2WxL5kiTTPpmn1X7pZx0jtVPwr645Ooq0Y5rJGz+\nAzS8c1dMF+1OUx2Xrn7UKrjgDmn/mZQEqzTfatJHD9Y58d7/eFm85xRZCRaSXeADr70m2nX2QZN4\n2cKFTry/rk60u3X1aidu7YLOciwo+09BPupojIu6D3JMRMXI+xpJuDbK/E/KOhxs1ccW5bEeeXxc\nS6L6GdSIYZtpY4zZ/vQuJy7NxLlP2Jby1I/zUtHH0lagVslnPywt8Xhss7Z3uEvqai+580In7jsJ\nDfpAvaxBlXYB6jcV5uM82HrcGGNGQqjlwBrvodPSHrZxD+peVKwwESexAHbf02bJuc1FVn2sR41N\nlNN0DtXFSczB5/G9N8aY1x/Z7MRzi4qc2K73lVyBsVRItrDpS3AfT794QrxnlMYB1x5JpBpcxhgT\nSzrd7sMYv7HWesL/Tp2JegF1f5O1FNi+t3s/7BVn3jhftOsh68VIw7U7eF40xpjaJ2ER7p+FsRM6\nKW3T+R7wOGJreGOM6T2Bvs91a0as2ieeLNJkN2GMpFYVOXHPqdP8FtNfh7HoI9v1aMvCmq0rM9ai\nDkzXrmbRju002dJ0bEjWHImivt17AOu526r31HsEr5nzMBY7qd7EwO5h8VpuBq518mzUo+nY0STa\npS3CXiCzD+MvYNmpekmfv/8QNOqzi4tEu9f2nrm2x0Ovwyr3ExdfLF577OFXnPjSebCC7jgt+9zX\nyBo4NwfH/d2bbhTtGttx3ZM9pK3vkfXlZlKdI14XbctZe52MJFwvgvuwMca40rHX4/GSNE3uPfsO\nY2821Iw9i10TIHsdannUPo69UtZaWRtp4mW87+izaFc6F7bxbzwtbb+XL5vlxI3PoXZazvoy0Y7r\nV4yF8Rktr50U7X63/VEn5r3ssssXiHZDTRgDuRuwH+7cK+voFF4j93mRZgftOZbecoF47Ru/+bQT\ns9VtZt560e7oyw87ccEqTBjhsKy7css3rnHiX9/zZyfedM8PRbvV3/sXJ/75nXjPPU/8GP9/23fF\ney6OQ9/35GFt5vpexhhz7b/CjjyQjTF74MHHRbtf/fAxJ777P+9w4g8VfV60m5zEup2cPMeJm079\nzfz/IjoedUdCzXKt4b0o15kZbJb7r+Ee7AO5lulQi6z3kr4Ia2bvSYxfew/uof3RCNXEyZkN7+K+\nrsPiPYNtmAMS6L5lTZd1DFuPbHPiOC+e4Ya6ZJ2opGLMS7w2+wpkfbnYWIzT0VGs+6EGWYMp3E51\nF2eaiMO1b+y5kmvdcd2V4W65fx+m2pCuLNSC6dov92UhqpU0SPXWiqfJuqyHXketmvL5mG99ZMXO\n+xljZA1Yfm7oaewW7QIlOMeeg7h3gfny/jQ+i3k5FMRnZ9E+2RhjeukzeE/Pv4UYY8xIj7xmNpo5\noyiKoiiKoiiKoiiKMoXojzOKoiiKoiiKoiiKoihTyDllTb0kxXFnynR1dzZSlTjNO7lSpuqPjyDd\nLjELKWb1fz8o2mWtQapSqI5sZHtk+raQP1A6+CjJFjwFMj2aZUMsx7LTb8uzkFJ+ugspwXkBmS47\n1IgUO18VUqJsS7bgFkgk2FI81rInGx+WEoxIc+zJA06cUSHTrTkdufLmuU7MUhJjjKnZDzvGWLIW\nbdgnU0ajSTIyfUWFE/cckuls/kL82+VCivXJP29x4uZumX5WRvenl6xJExOkLGzNMqQsHmrAPfjY\n+rWiXXwAKYtsALzfshadUYGU3r2vot8uXlMo2tm2upEkYyW+y5Y0cErliceQFp9Ksj9jjCm9Femu\nLW9Bfrb/2f2iHduscqrhD59+WrTzus98vndNbnDinDlS6jfSifHrKYa13KRlg1r/AlIIZ35u6Vnb\nsZV71hL0t/5WmVq693dIQS1eChlO3bZa0a70Qil1jDTeElgzDlu24I2vVDtxoArjlFPPjTFmoAPv\nyyab4mhLYrN8De53bw3mM3euT7RjyWq4FZ/N6fW2lWXHexhXf3jlTSeuypcpnqsvgdwoKhbzRsbi\nItGuvxFpp+Pj6N/Za6VdM6c6uzIgWxhskunRx3ZBOrLwdhNROO15tFfKYUZ78O++asyhtkSCLZgr\nNkL61/K6tEn2kgy17iXYWLPlsjHGrP72tTi+ZvSX3iM7nTjGLZd7XsPZoj7rAimlqH8e60cKSZfY\nStMYY3ylONbgdqwLo/1S1lR4BSQcPXnSDpfJvrj0rK9FAraKbzkh16e4gMtubowxZnxiQvyb5XjF\nV2GdGLX2LT3HsZeaXYU+PRGW/WJ5Jax4eZ1lWi15kceFY/353//uxIUZcq2/eT1kIG30GXtqZJ9b\nMA3335WJMeatl9dEyLhpWm7fIi3RR9plP4kkgTlIPT+XBXzmCqyfA6elNPZkJyRBMbR/mXWLlAA1\nvYD5OWcDrtE7v3lHtOsbwhqXRPfmjccg065tl+tTPsmCK8mOuf4paT3L+xneAy2jfmOMMSeaITn8\n6KpVTty+W8rydtZgnlzvxz5ioEb2sdAR9N9SeVkiwoIrsPf89Q+ktOe6pZA5eWg+dG2Q+5bf3Ye+\nH/3rZ534cz+9VbTLm4Nx8NGPYl3sPCTnorXTILd/fs/zTvzFyz/pxOvmzBHvSZmFMRdP9u0vP/SW\naHeyBbKxL/3oNicuv3WZaPeD2yC9j4o683xgjDG/uP0HTsx9+KZvXSPavfIryCPv+uOHzvp5/wz8\n3ObNl7bBo/1Yr+JI4mS3Y1lSiPYsSaXyGWyS5uHUaZhP+1ul1JYl/2kluJ+jo5gDRvrkWuorxFgc\nbOd9hdx78n7fl4G9p9stJTntp99xYo+wAJfzYtv+Oifm62I/V9jzXKTxlOK77ed+fvYYOo75ddyS\nLvO6FufHHGjvW7Yewx7z6ktQ+uIfLLxJmsl70WiKwyRj+p8Xyc47jGdsljMbY8yeN/EMsKAEfWnz\ng7JcRnYK9u7lldg7HHvrmGg3ayP6WddO9EdPiTUmrH5no5kziqIoiqIoiqIoiqIoU4j+OKMoiqIo\niqIoiqIoijKFnFPWlFSMNB52XzBGpmlzqrntGBLvR0rWUDvSidw5SaJdDLl6eCila7BJpqCGqik9\nn5xBAuSMkZDqEe8xJNPgtLLqP+wRzTJWwiUkbifSqmwpRfIcShemzx5qk2lVyZTiyN87HpbX0q5Y\nHmnyFuO8GrdLyU7eIry2/SFU/8/2WylY47jfc9chLd1O689YhnQvduYpXH6JaFfz2otO7J+OFHiW\nuqy9UqbqRschrbP5daQi//SzXxPtBim9LfXxHU58rFZKsCrCSImOT0M/vXj1Snmsr0BOULUQ6cyh\nain9Slgi0xkjCZ97nEem/J16GOm9LEmypSi77odkbGgElcOzKF3PGGMGqIJ6B6UALiyXkp+/vvqq\nE2fm4dzzl0i5F5NUgZTR3c/BicfvkWOWU3Nb3kLqdXxAusF11JGbzV70ickxOWbTkiHlGazDnJJZ\nIKVfthwh0nS8S1LH2VJ20D0AaUkeSY/sFPOcC8kdhE4z3kp/dVOVfJajjFlOVuyixNKXcAuOxz8/\nU7ynP4x5mFO7H9u8WbRjpxB2+7IdgTa9APnNqsvgsJZoSbDSZ6APNrfgfmeukY4pM1ZNM+cLXg/G\n+uX8lzIf0suuHUhpjUuRkpBQLVLA2fXAnSvXxcDsrDPGxnJOi46GJCGB0uknRzFvpy6QEkOen4dJ\nKteypVq0S10A2WlSLubMgQVy3WrbgrUlqQRp6F2W88vpN6RU439xZcg5oGs/3pdXYrf+4PAeJLFO\nSmgHSBrW04DX2NnBGGMGGnAN+Fof2yflksmJmLf27a3DZw9IaSNLYk53QEpyPUl1CzOkdNwdD5lA\nNEm92WnPGGPGqc9UkFtT2YIieawkwWZpge1K1E99eDSE9cRXKa/RiRop4YkkLA+sfUxK5QvJKXCA\n9linnj8q2pVcgPPa/QY+Y9MDm0S7LNoTHXx0txOzJMkYY5ILsZ7ueB9OMJ//zs1O3LFNutkU34g9\n1ak/YT1PninvtZfkULw2N1BfMcaYO9dhv9Udov1QupT88zrLkkyf9b3x/jPL/CIFlyX47hPfF6/d\nffXXnfiuaZDiNLyxU7T7wdP3OXFPG65h23vWnnf6md1Rp9+xSPz7+f/zMSc++OBTTnzv879y4me/\n+QC/xeRcCHnLd2/8uRPfcftVot1V5DrI/SwjWd6fEM0HV/7ky078wCe/I9ql0DrLZRh++tWHRLtf\nvSql6ZGEn+H6auTeOGUG5iKWBYfb5TOTr5Rc8oqwpww1S8nZBM21w+RsxK6cxhiTXILr3HoAjmC8\nN86bc5F4TyiEOYAlWENDsh+l5sK9aXAQe9TxcSmbSc1e7MQNu95w4rD1vMjlNybGcH5D7XKNSC6V\n802k8c/AvrT5RbkXSFuB58WEVKxpndulXJLLIQySZLrNkuTOIxlRYCHWJLsMRuGlGFdtb9XhBVrT\ntu2Q+4o6miv5WaWgRG4mBmiMsWR4TqF8jtl1EvtNdiKOs+THjW+gL/BxD7XKfhH3/5hTNXNGURRF\nURRFURRFURRlCtEfZxRFURRFURRFURRFUaYQ/XFGURRFURRFURRFURRlCjlnzRm2Ak2ZadUcIL2x\ntwha3BGrZgNbWA21kAV1paz1wFae+x6BljQjRdY+SV+Bmib8XYOnoSkuvWa1eM/kJPRvvSehoRsZ\nk7UXxsjaqrvn7HreaSOoGZO/ATUQRqz6K1Fx0H8Pd0PXlmBpzVLn5ZjzydFNqJky77r54rXQKdzH\nvFzoM9Op/o4xxoy8QPexEdfanSOt1sbIUo1rMwRPbRPtWshqtWcv9IWpy6Ezzci7ULxncLAOx3oZ\ndH7H798h2rHN5aIPo37FoGVJzPVFEvNQf2CY7J6NMSafavZEJ2DItG2TNWxGOvF5JXNNRGG9Yqel\nV8+5ErrGOLKgm7BqJbEFfFsH2x7Kuh6uEPpnbhbuR/kMqcHkWgdcU6GN7DrLrp8pT4Ts7SpnFjlx\nUrm0SjRoZhrfhIYzg6xTjTHGn4L+17oJmuDALFnPJW0l5g2uIVR8obQNHg2d297ug5K7EXWUjjy2\nV7w290Z4lE5SHa/3jx0X7S5fhGsQS5pod4Yci91HMK7YmlFodo0xvhkY91kXQY87NoA6Eqf/Lo+B\ntb4Vy3ENb7P0ty/uQV2v9XMxKPoOBUW7ndWYl0t3Y63J7JfrTskFsAbNXIPxNzlmWVVbVoyRxE01\nYnzFsl5TM/VVP9Wf4XXQGFnbh2uVeQpkzQG+zqN0P2Li5HWOjkadmUSyyI6i8dZp2ehyjaKm/Xgt\nIU5euyGqvzIyE3OcfQ+TKjGGO3dTvZ2keNGO6whNTuD8uH6IMee/Flsf2QOHR2UduMxK9DuuBTA5\nLq20E9Iw7/E6Vpgm9zdcT8pL9spJblkninXtqUlUEycBxzAYlnNUmg/X885fwpa357i8P+Mj6IPp\n84qceNSqe+PyYT5gq9KS+TeLdl1dWNPb9qG2yq6nd4t2Bda1iCSd+9DPyu+UHs81v8f86qW+Wf7h\n2aLdsb+gPgnX5Vn1seWiHY/Tl59414lXLpRrXHsNrvuFN+EzUmegtk39KyfEe7imnKcMcwrb3Rsj\n96JcLyY+Vm7lx0Zxr2kpNbFWvbpqsnRe2A7r+twNsr5c14GzW95Hgjk33OXE4bCcp371ymNO/PBd\nqLWy4e4Nol04jL7gSkZdjtKNRaJdfz/WspEO1Mi0LYpbDqJ/l98GO+/WfVjTrvzRx8V7Qm3Yg/C4\njPPJOfDOj3zPib//MYyrmZ+V1tfj4+hzbP/84Xtku+AO7AnLN8Iq/BpPqWjX3g574KysK0wkcVEN\nkrH+EfHa+DD6I/f1tDlFol2QanUFZqJPe7PPXmdlMIi9bNYMWTeoqxH1Y3xlmId4b9PRtF28Jy0X\n9b2CXe85cfNuuQcKzMH9SAxgrXe7ZU2T9jp8BluF+yrkvBgTj+vC67bbqsU21EG1as7Do2PbO3VO\nnLVO9h8qaWZGyVY7dYmsZ5eRgHMJnUTdsopYuW9JWYi9bP8ptCu6Rj5A1T6FuTxtKZ5J9jy/D8fg\nlfvfvkGM7eVLUB8oz6oRxnWe0mnM2nuCZKqLybXixifknmDNDeg/bEUe3CKfFwML5bOMjWbOKIqi\nKIqiKIqiKIqiTCH644yiKIqiKIqiKIqiKMoUck5ZE9ud2inGbNc50Eh215z3ZIxJptQttuNm+21j\njOnegVTGkiVI/xzpkjKp9s2wok1bjFSqrBVF+M5kmRI1MICU+YkRmV7OnN6JtCNOH52eJy2Sk8kO\neIhsmznNyxhpLxmXjFRmtrU1xrIpPw8OsPl5kHjEW5auMS6kmaXMQ2rejkdlqt/yT69y4l2/e9+J\nC+JkXl089Qu2X2zbVCfa5SyHRIYlHCy/GB+Xtux9bUj57m+A5Zl/lrR97NyJvhSYj9Sxp//ypmi3\nrBISEw9J7lIsSUwd2Y9nFeO7sldImQ+nv0eaDkqJy1ovUw17j8Ayjq9llCV9CIVwPadfDpvRccta\nubcTadmDZBX79p4Dot0be5FqWJKN67x6GayV45Nlf/NnwjI0mlIcBxqkxZ6/CveAZU0n3q8R7coX\nYa6I6cb4q94q2y34GNIa53wSce0j8py8lefXpnDbb2FnXliQJV7b9zjkALM/hDmsPEu2Y6IpfdTj\nk+m00bMxfw934d6nXiBTUJOKkfI/SunInKacWCzlNi89h/O4KAEygTS/bJdI0rfsTFzbSSuF/Au3\nIU27qxZy2qEGue40HnzBiVlG2nNAWi/6qs6flKLhaVg2Zl4s7YV5DvCV4XwnLNkVX+fQMZxvf3WX\naFdxO9Lpc0sh152clOtn49FnnZglwlExJH2wrNb53yVrIY30lUqJ4YmHMc4nSJ41NiznDb4fPloj\nhzvlPB4iuXTWheiznMptjDEtL2O+NzKLPyIM9uC40vLkOccn4z6Gg2jHNqPGGHPob5DEuKivexLk\nWjBBqc8LVmDurd0n7VnXzMBrZbOwvqQvhSyTbdiNkanTAy0YL5xCb4wx+UuRbh0Tg7HdeOQd0c5F\n62lCCtq1t78i2mVkXOrEcYsw7u190NG3LUlkBHHnIA19yLLlTV2KeS50gqx9y+UcX3wJJDwltH8d\nOofV7Ye/tdGJWcJnjDG5uZAisXT6gc/82omXVlSI97RurnPiWJI8hi371ewUSJ5ONON7czPkObUE\nSUqwAud38B1pI/6Jjeuc2EcW6r0npJS/7zD9+zoTcX5+0y1OfOl1K8Rr6Yuw/77oE5gD+05I2R5f\nt5E+XPd3739CtDt6GhKgD129xol3PbhFtLvsx3c7cc1bWHdYMvtvN90j3nPr7Zc5cQZJJFKq5J7/\nV/d9zYkTAhhjD376R6LdResg05l/2xedOCpK7u127IJ0xp2F84hOkPv47DkLzflioAlzT2CWlGx0\nHYJ8zl+JOTQhQbaLTcTePVSPec5XbO/LID/0ZuIzhobqRCsuszB8itbZWuw3E3OkdLCv5nknjqb1\n016bE/Nwf6OiaQ9urc0Dp/FdgZnYy4nnPiP7LMugk0vl/q+vvt2cT1Lm4XoOnu4Vr/Exu2jd6T8l\n1yRe/9OXoSyELQvuIDle3gbMiZ0HGkQ7VwbGCFu2+6mcwtCIlNKtrqpyYpYuBSz5Uy1Zbgf70IeX\nzpIP4ywtLivD2uK1SjLwWsNx5oVF8nufw1xctc78A5o5oyiKoiiKoiiKoiiKMoXojzOKoiiKoiiK\noiiKoihTyDllTalzIVnpt9KbJqmqffYapCYHd0knmRhyt+E07+5DMg093I7UYV8V0ivTFsoU/IlR\npEUF8iGRmJxE2nhUlPzNiSt2D9TjPE61yWOYNw9pVZyOn2E5FwlXFMocttNgU7OR9sayApahGGNM\njPv8OYsYY8wkXbP+eikfOb4VqeNzroYcpWJ2kWiXQI2X9tAAACAASURBVCnw8z+KVMuuPS2iXX8N\n0ttGyPUoIUumknXuQEouu3QkkJTCXSXvfagGaYXsqsNpbsYYk38l0tE6qD9ed710fxrtQxpczno4\nzoQ7pHtFAZkehcjhI8YjK/B78i2nlQjST5KklpdOitdYcuIh57SOrXIsFlwEOZQrjSqPW2OxrR3X\nuYDuwfwSKZvp6kd/7wwh/bqMHCoSEqQMoKOOJBIkMZyUxlKmcx/6VTSlmletlamGXPm/5SDeM/Oq\nWaIdS3RGB5CaGVgsZXksEzofTFuKFHO73y64BNd304NwA1l4uZRpxlBaNTuiddYeFO36jqOvTpCM\nKGO5lONxqqkvCzKd8ADG6OSolOVsPgJpD7uG1LXLuS3Tj/54rBbSPNsRqIr6cO8Q5o3iy+X9jvNB\nJufJxWeHLUnDaO/5c90KLEGfsR2yeH1q/PsxvMeqzD9IUuAokg9nr7SkaeTCNDKCcRkTIx0cQjVI\nny1bd5UTH/jDn534zXeki86iUswH7CZUWCnnXV8hrvMwrdNplkNDmNa/5rfhulF5u3QI7KVUX06T\nDm6VqcyZ6+S1iDSZJBVqsb47IRPX10Pn32C77NDcNDiMPsf7B2OkQxNL9diRyRhj/CQtYek4O1OO\ndEk3QU7L5/XdlqsGPZBgsUyd3biMMaad3NxSyRkjpUrO5f39WIeCJzGv28dnz9mRJDEL537qkf3i\ntYxV2Lelr0Dc/q6UkvGayc6Zo31SnjVI0ueWN0458Zg112STW2TPYcyHaXSvDzVK5445NIcWXDvd\nibsPyrV58eXz8D1bIXE6UFNnzsbxJzc58exCy3GRpBkd72O/kG1Jpws/MsOcT+YVY92xne2C7DJH\n7m5eyymP17gPXfpVJ/7UBunqdMMt0BCEqe83dnaKdg9+8pv4vO9AxvaX7/7Vie/8+vXiPf7pGCNX\nTMNYZjm3McY8+4MfOvGln7/EiTOT5R6y9GpIvD57MdrFRstnnJ899wcnDtZudeL77n5YtLt4Ntak\n9T/5iYkk3gKMo84DUurHMqe4OJxjX8fZXSDH+rE2sCzqf9rxP+AkZstreD3mfpVKJTFsOS1L7JsO\n4jzy5uWLdoPsYkhSzuZauT/3z0SfYJnVSK+cJ8dovo7zYv3oPCTniqRC2e8jDe9Lbbc4njvZyS/G\n2jc3vYayAgEq42HLmjzUZ1o347Mb98j1OD0b55y2EGvSgs9jfGz7xSbxHnbEnJaL++3Kknsn3ouO\nkoOz/WyQthz3v/5l7APiU6VcvOBayKmG2tBH+k5KWVzJteeeUzVzRlEURVEURVEURVEUZQrRH2cU\nRVEURVEURVEURVGmEP1xRlEURVEURVEURVEUZQo5Z82Z7sPQu3qLpM4tijTvE1SPwLaMiyJdWnAb\ntHNscWyM1FqzzWhMvDzEBLK4HB2FhisQQJ2LltPPivfEUW2QoSZowH7yxz+Kdr/wf8mJs4uhE7S1\n26wDZmvRaKuGRPA9nG/u5ag1EeuVevTAbHktIk18GjRxwe1N4rXFty914hbSCSakSR3dOGklu/dD\n4+ktlf1igPT0uVeghs/hR/aIdoWroWlufx/XqWz5jU7ccOwp8Z7U+dANspavv07qTI8+tNOJm7vx\n2vwrZO0Otpp2JeM8YuKlftJHVsOHD0FDPmFZyR57FLr7op9+xESS2Bgck69K2go2kNV3gRfa7dwr\npV1nP1mwDndD72rrSmddh+vE49ceB6vHoK0suwjfxTWfEhKkDWDRTNQfOL75j2gXkP0tTHbAw6QD\n5doLxki98LQbyMI7SVrZduyBdpjrYE1axW56DlDNlEtMxPFSfYP3/rRVvDZ7Ca7hoqtQp6P5vTrR\nLlAOm+iRDtzHpEpp6RfrxTVIIF1sy1unRLuijbhurAePTsI8dXjnS+I9H7/oIifOoroy8bFnX1Jm\nTC9y4mCzHLMvkDX3TV+Dvn9sUNojsm68ZTfmK9YuG/OP9s2RJJmuf/NrVv2nQly/+FTUGbHrKPhn\nY1y0v13nxEce3yfaVd1M1r5JtB6nFol2BWugvR4YwP3tbYR+vj8sx44nDfVyYmh+4fpbxhjTvgXz\nSzrV8Wh4WdZfySDL25y1mE9D1vycOoesOtsxj7sypRZ8oIHq3C0zEadnD65n+mw5Tx1+F7UZ2IbT\nrpXU1YG6TvNWQ0PeZdWVy1+P9X9yDLp7nueMMSZ7NdXZobmtcz/mL0+BrEvBdXsGTuJat7dKjXse\nrVcvvoi5Jy8g540ZM3EMvGawht8YY8KdsOntp3uVkJYo2vWyDfNGE1G69qMWxeSIrIvVQXudZKpj\nuG9ftWh34ZyVTsx23GMDcu7pOYD+4p+F/WG83yXacX2zrr1cCxH3s61H1v4bysaYOPgoakMVr5S1\nX/i70ksxD/lTZO0rT+mZ61IE5sh+vv8h3MNp18124gnrWnLtjvNN+cb14t9H/vScEz/x/NtO/M2H\nPy/a9Teir7515EUnPvawtID/zQOoGbOS7HYrc2SNiYMNqHvBts5uqidlP+/4/Rfge9973Inf/OXP\nRLscskQvmvshJ479onw2OPzrl5343hf/5MSPfeF7ol3ric2IqR7SVUsXy8+rlbU8IonLh3OKrpB/\n9+e+374f6wbXPjTGmJRKrCHtu3Aedi0ZbzHWe14nouPk9yZy3U/aKw2S7XdSiRwrvB+eOQs1nuKT\n5TiPIptt3k8nl8n9efs21HJypeN8YxPlveaaJF6qc2bXtRsJyXU80gx3YO8U65HrXRzNP3F0PU5t\nPSLaVVyKullch9SdLc+FawXW78NzYEa6vCdpy1Dvpfck1hOuhTrj2jniPb1U7yuOPm6sT87rGQW4\nX1xvp32THCuxtP4FKtLN2ah/6pAT516OPX2SVSPLrnVko5kziqIoiqIoiqIoiqIoU4j+OKMoiqIo\niqIoiqIoijKFnFPWxCn/ttSjbQtSfuK8SH0KzJOpgQNk2ZhItn0JfiljYPkSp0G7rBTZCUoJHp5A\nSvDExDtOnByQ1p2tx2BLm3kRZB8/C8q0yKx8pIkmk/3ZQJ1MQeW04miSSNjXKHMFbAvZ+jnOklxw\nKq2RWawRgVPq23ulJXoxpebF+XFccSny/iT4ce+i6TxD1TJ1uu4IUvi2bzrgxNf+8FrRju2qMyll\n7dDffuvEuWtmiveMjSAFvvapw07c0dcn2oVHkebN1oSuDJlCGUuWxOEenAfL74yRkokEune+aWmi\n3f8rTe2DkLUMcgIhvTEyHXm0D/2MbZaNkTblbNUXtiQgTa9AqlF0PVL1bZvpggXo35zi2F0DG93U\nxSvEe4aGkGretVNK7JiuVvTTguUYs7aUbDTEEkgc36iVkj7cjv7GqZnDQXnuwWbZnyNNzfNHnTgv\nVaa/sk1x9d46J87PkRa2POfkXw2ZWG+1tAJle0Pu6xPDMmV9mMZP19H3nLhy1cedeP2/Xi7e8/mN\n38f3kg1zYoKc2y6Zg1TTw0frnJilUMZIOdQrD7zpxPMqrQmRrFSTZyG1lNOUjZGptOYKE1G6yXo+\n77JK8doIzfMDtVg3OAXaGGNaX4Ukq/hmjN9AvUzf9uVB7uB2Y7yFw9KqdHiQUqc9SLVni+wrVsgU\n97+8hnXxs9+GnLTpJSlXylxd5MR91McC02RqbyKlgwcqII3pOiFldIMkSa3+C9aIipuk7LR7v2Wf\nGmE8ZUgztlPWF1yLPcTxl5CyPUxrizHS9r2F7GPLr6oS7RJzsH6yjXVSiZQUscyL5zY3pcO7M6QM\ntelV3K8w2T//x7NS3v35MYzhGLLi7R+WVtC9LZh7+Z4MNMq9w2mS9CW4sZ4kz5T9ortLjs1IwnL4\nlJlSYsL7qj6yby9Kl8fH6eaDZAdvW9aODeDes8zCXvdZLs17RfdBXKONly4X7xlqwffmkFXsP+xZ\nKO2eZavtJ4OiXRnZ18fEQEoQGyslcau+g/mrdT/kVDGWRF/ce7ktiwgXfOv/svde8W1eV9rvJgkQ\nJEgCJAj23iU2iaJ6l61iWS5yj2sSN8VOMvYk42QyieNM2kw8sT2TyRc748QlbnKvkpuaVS1RnZIo\nUey9VxQSYDkXk7zPWtuSft85AQ9v1v9qSdgA3rLbC65nPXcY8d5fvsBe21FZacS33bjaiEd6XKyd\nMw/z6EMbHjTirATeLwqIre6yB1cY8YSP7y3Mb+E+1n8OKdz6f4De+ZPHPmTvWf4gxm/tPszx1z9+\nL2sXGoo13e/H+Gh66zRrRyXY7z0C6+vV31vL2sVnojxBdDrWichIPg/ltHO74UDScRDzUKwmn6P3\nKjof+2ZqLa2UUl0VuGYh4dizUFmiUpoMnkimzHa+/4jOxXWemCD7HrKPsITzshLBwfjesTHcT+8A\n33fT8hvUSps+6ymlVPxCjOdxH55fh873sHZ0rNuy0Gd7K7m8JlR7dg40k+Ta0JIlSrFLrVp3Yl1P\nL0tn7eh+m302fyRhzyTRETj/qBl8b0zXv3ZSVsS+Dn3Jre0BR9rQ5+gzYfraPN6OrBN0Lg+N4XsC\n+tzQux/PLrGLUli7AbLW9BNplUV7pu47gv1CTrn6CpI5IwiCIAiCIAiCIAiCMI3IjzOCIAiCIAiC\nIAiCIAjTyCVlTY4SpKbRtC2llIrKRTquqw5SAOocoBRP8aKV/4eqeEpXRCbSLd2NSKGkVb6V4pW0\nY3OQ0u/34z0eTy17j4ekjDpKkC5mC+dpRtGleC1lLqqujxRzmYurBWlL3g58diiRbSmllKsJae1U\nbkKlWUpxmdBUELcEKWe9rTxtnrqhBBNnHpPuPHUYUpWwRKTJhifw6ttU6nPodbgm0WuhFE8l87vQ\nZyZGEB994lP2nqg4fFfsbNI3K3ifK7kG6a00/ZhKCZRSKjIffZi6ZtBUO6V4Su84SW3W0xdDInj1\n9UAy2of0ed1Jy9OG1MsR0h91J6Lhc+i3NH2PyhaUUip5DaQkw2Rs11Q2snbM4eU8UsBTrkWq9PDw\nWfae/lakKNuKkKq67ZW9rN2cHMgizDakqtZ+XM/a5V2NtF0qz9IdNJwLIZ2jLhy2XC4raK3pUFNJ\n6tJMI9ZlZyMkpd7WTyRoNt6v6Bjp3NNgxIOao0HalagUX/3qCRzD8izWzkX6t5M4tTScet2IW7dw\nqcsPNt1ixHRMjPZ6WTt7EeYD6pQ30sfb3fAPVxrxcA36qVmTm9CU2wMfwgFuhua0kbhuCvShf2Xo\nDNYuukYqpZRvAOcVT2StA8T5UCmlZj5wOV5rwLhq0dyfYosyjZiua2Yz77d0PPt8OL5hIrvp6+ay\nFHrNdjyHdPezbVwydYcVafxd1UjTLbl7HmtHU6Bpargtm6coT4yhXeZ6zBUt71Sxdpl3lKqpZIzM\n3+0nuMQyaw1SnzMXZBpxy2G+F0gi8ryUcqSv9x3hkiy6TrqITNqq7RmCiASZSsiok1X/KZ5e/9a7\nu4y4LBvjd1lREWv30+efN+Jf3XOPEcfHcomhibi0DVbhu6isRyml/OO4j2FEtqfLfByx/BwDSYgF\n/axjD18bQon0IXUt+pnuRESdVoJDiKvMQX6v6XmlXYW9pzUqk7Ub6sJc2ULmTSpj1Z0P02+YqS5E\nZLImrfKiz8aUhJCYS3eCg7F+UClTaCiXYk9M4PMGSL9ykz2FUkp5iPStaP0FD/XvoqcO69OiH93M\nXkvZhXmUynye/uFLrN1Dz9xvxM9sgyPT4d8+zdolE+fUpDzMw99eewNrl0cctG7/1U1GXPk/h3Cs\ndyxk73FmQQaYsxhSs9p3+f4mjMwHzzwFV9JHfnc/azdOZNzlhZuMeM+/PsXaJf0Mcq/xcTKvnf+M\ntUvOn4Kb91foXspk4dLLwS7MZZ529C19LMbPw/w1Nor9nC7ZHibPkhFkDnWQZ8L/ha5JmA/8/gHy\n/3x/FRYGmUrraTh92TMyWDuTE+OqbwJyNP8Qf1am+1LqHGzL42NRTeC50E2c9qjjlFJKBYVMXfkE\npZQKi8PcMXCayyXpI0XGBsypVDaqlFKeZtzjcbLet1TzdTGKPIO39uGcMzL4fOhugWTJMQf7lkEi\nDaNzg1JKpV6PvtB3DPt6XapFz4nKm6M0h+pQO46VOlpRZy2llIophJTu3K5zRlyykbtJJa7OVpdC\nMmcEQRAEQRAEQRAEQRCmEflxRhAEQRAEQRAEQRAEYRq5pKyp4wukidoKeArWKHHbiSdOMq1bz7N2\nUXlIdYtbBGlB81s8hXmgDWlmGSSl2KU5JVHZVLAZKaO+QaTyOWbw6snOcvy7uwKpqvZ4ni7m7SSO\nLmakKk1McOeXIBOOyTELqY/jIzztlx4rrS6up7RONe1bcE90qUvHJ0iVb+tDqmBeGJcFNB9FxfDZ\n9yKVc6CKp1iHkmrpZ5pxrcu6Sng7UnH8xKen8L1FSB2sauWp5nNtuUactByxXeub1BnF3Yh75XHz\ndENVQ1zBEpE2bk3mKZlUdha3AKnrPYf58UVrFeUDSfdppOWZQrgMLoWkkw4RJ6eQmfx4nKRqfMc2\njG2aIqoUl47EzceYHf+cOwmU3wRHiN5DuBbWRFy/6ne2svfYyTF5SariZ8ePs3ZLV5cZcXg8UoBn\n3beAtTvz3GEjTiBOca5a7rrkKMM4pS5GSpNN5iyZOjmMUkrV7YJsJW12KnvNSfrWsUNIh+xzcVeK\nnGyc55vbkC69fCZPBX3xcaR213dCVnONm1fSn309rnXbHtzjxCVIuyz77l3sPU0H4ag0dA6ppbpb\nQuUXkLV5fZhHi3J4dX/fAMamrx/xmYNc5tM7jHTZ2Cj0syAz/zuDni4dSMKSMFe427lDAHVB6z0K\neZApkqdOe/pxP5y5sD+J+adM1m58HJILKmWibh9KKdVbg/V0mPT9FAfeU93OU4obujBXLMyHBE6X\niNH5NHst2tW+fIK1y78XlgNtBzCebblc1jRUj+OjqcPO5bxPTGry30DTfBb3p2A1T4ev2oJxkDkH\na1JyKb82I2TP0HoEjlnxuXzu7dyL9TOcSJR0GVsEmevCkxBTCaR/gK9j5TmYs6hz4YYlXHZGZRrj\nJIW+t5/34T370ZfWErc1awSXGCaU4PP6q5D+fmY7l7Law6fOXaTxbdwnewkfExYibT3z3/uNuPC7\ni1m7iAjMmx4P9kq6q+bEGO5BhA1zY0/dSdYu2IT1hcrR6PpL10illOoiDpGZ67C/mpzk81j9Fjis\nlXwDDmuhoXyMNZ2CU1fyDMjbulu4vMZsxbwUXYTrRyVhSikVoclQA00oudaV/80dkJKuwF7v5Ktw\nlIoI4/2RzsWh4Vg/7aW8XziycL/bq7cZ8abbua1f0R2Q7j73wKNG/Pt3sK7u+DaXVtVuhYzo6Hbs\na2/9r8dYu2N/eMGIv/fbu43YmcHHbN12yGqe+90PjHj2LO44c/cKyIKffP9fjTjMyd2+Go+iX+Qu\nuFMFEuq4S+VESilly8E6ROcyutdUSqnOg3geoU52eqkBZwnG38ggJDV+P5fhmM2Yh1195LNjcf3c\nQ7zcwcQE+noYKaXQc4o/29LnO/rsl7SU78OGmrDujhNJjaeF77ujZ6Kfjg9jjjeF83mIulhNBfT5\n1DGby7b7T+I5pHN7gxF39PFzCSb7aupw2NbP22UTJ7W5V0ESOHiGP1f2kn/biYsedSLOu4PP66Mu\nfFewCcdz/lO+PhXdgu+lJUd0KR1dt8eIk2LjZv5cZLJjTqXrbN0n51i7vGu57FhHMmcEQRAEQRAE\nQRAEQRCmEflxRhAEQRAEQRAEQRAEYRqRH2cEQRAEQRAEQRAEQRCmkUvWnIkgFlFjLl53JZxoZv3k\ntYSVmazd4FloAJmFZAav92Lqhcau5hNowjKWcrspewE0hH6iy4udCV24q53bllLtWPwC1NAYOMJt\ncy3F0Nk2HIDW05bFbUtNVmj+qNV32zauXaR1eqhNYVSO9nmRU2fBrJRS/S7o4lNKuGa+6Ti0zllF\n0ESbo/gx5a+HjnLci/vdfKCBtYtx4r5+69+hae3YXsfajUbCiiyZ1EU4cQy6ziUruJWqNR3WdYN1\nxPaxiVvEThD7wV3bYbfrHuXW1xs2QKP4xts7jHhuDq874rThnKJJzRRnuVZ/gFjmBZqC26GL1Os1\neVuhtfaM4By9nbxWCbU6TFwNO2X9+jlmo5bASC/6TkFpJmvXdwQ1G6i2vu5VaPCj8nlf796P/kZ1\n7T+9/zbWrupL9IN0UhtoyMu170V3os7F6ZegR7eY+NRmm4H71luB+jipG/JZO71+UaCh+tZTm4+x\n10baca1npqBOll576Ww16lecbkL88b59rN23r7/eiG++A1abYaSuhVLcKj6mFBpgWouh8/x+9h5q\nP0vtgB946D9Yu9888E0jrq1Df3ljFz/W5Z34rkEPxlFmPK8XMGst6rN4SL/taOBa88GtGCMzVqmA\nEl2Ma9R3jNdxSVieacQTRA/t02rg0FpdnjaM39TyFaydz4f6LGNj6B8mE687EmxGnYv0NahbYCf9\nPvEMn68ce6CBjiT1GxLsdtbORSzau89ibS24hc/PZiupb0DsPiOcSazdmBca9PZtWBeCtbpBQ2dw\nT9N1h9QAMGNdoREf+YCPxeKl+MKGww1G7IzitULiV2XiNTPWT31N97ZjLramYLzElfFr425CX/CT\nOnpmcksscbz+QmwXjumlXbuM+HQzt4K+9fLlRvzWFxjPdA5RSqk7VqAPhpJ5NDSG1/io3It9Wk46\n+tbkEK9hExY6dfub2AWYJyNTeb89/YeDRhxObFBrXz7K2iWt4evf3wi18fP1uzAvhYSgr+u1keLz\nl+Gz8/AZR/77j0ZMazEqxesIjXiwL3U4eR2ForswnkdGcH9drjOsXVgsjm9wsALf68xi7TyDuPdh\nTvSro28eYe3mfZ1bRgeapEzUexldz9d4Zx7mmZxluFeZ3kzWLi4f9ZHe++H/MeLLf7CWtfvBxn80\n4nWzsR4fredW7F/swpxwzXfWGfGcUuwZ9j2xk70nfynq46z5Ad7z0xvuY+2obfBNLYuM+ED1K6zd\nj1/9tRHfv+EbRvzb27/J2v1pJ2rJPHPf9414QRmfOJsaMH8HuuYMtSj2aXXygkyY233DuL/9J/mz\nWiyZDwdO4zVrGh/bA3Xo+7RGinPBUu2oUNOG1pLx+7GmWaP4mOg4ifnBloX6JhHa/OLpRP07Rwlq\ns4SFaXN6KNZ6awKpo2PndZ283bhm46O4lqPac4Vu8RxoaH1U+vyulFJD59Fvk9fgOency3yPGmbG\nM/Lcm+YacdDbfO6ltWk8zVg3wrW6n7FF2HO5yfNA0pUYbz4Pr09La4LSmkVOJ7+PdA83SvbgIVZe\n24fWIo2dh3Xn1Cv8nGLD8PkFi1DbiNa9UYrX7b0QkjkjCIIgCIIgCIIgCIIwjciPM4IgCIIgCIIg\nCIIgCNPIJWVNkWmQNfWf5ulnFpICSdPK/C4uHfETyylqWxsSwVNdY0j6mLUbab/etmHWjkqK3EQm\nZSHWzNT6UymlTMR6jFq32Yq53eXQaaRwhREby7hSLnNxd6NdbyVSoiZGeep6qA0WaFTCEZkezdpN\njk+tZWhSPlLCao40sNdoOnvFAaTGrr5nJWtHUxa9HUi/061FMzcgRbPjSKURp13L0yt7KmA7SpO9\nzMQm+sxhLhObl4X0uN6DSFmzzeRSFGrLm5uIdMP4ZJ5KTO9JLrEZzS7LZO1GWnkf/Bttmg1qVK7j\ngu0CQd9xpDqnbixgr5kj0c8aieW5r5enB/e58BnjbkgLdHv1PR8iDXr5dbCu1qWN0bPQrywOzAfJ\nq5FqGBVVyN5z/NTLRjxALJh3neZ2dFRKRo8uLZZbhvoGcI6Ft8MSuub1Stau/kPIXCwk5ZLaISql\nlIdIxBR3fw8IY+S6ezSZXcxc9MHRbqQ8Wnt6WLtUIgNcS9KyqzUJ0JFajJ+6P2P+/taPblEXo2MH\nUrsdGbh3dH5VSqm2g+hnh2owDsqyuQyVWn23k1TuAxUVrN29D15rxO4GpK7HLeX2yv3HMd/GL4OU\ntb2eWy8mafLNQOIfwn0LCedLKF1rqDW6SVvvqLyg/QjSYhv3bWftnLNxjt5eXJcRC+8TQ0S6GxKG\nY6p7A3aud//61+w9r/ziZ0Z8+Bzu4fJ15axdTAnGuW49T2ndAZkLtQNu3sXvNZX1OsrR573tfJ6N\nKeE2noHm5BbIL9OdfA0ZI/sYagWq7y3GiUQr2Ix5mMqYleIW8ydfxPUICeafR63ic1JxbSoPQ+aZ\nqs2BDmJVvrwI9pzUxlMppcKJLHh9GebK0owM1u7RZ54x4pcehYWwJZ7b8uZmYIx1diHVvGgtn/Op\nvC/QRCRhnWj+iFuV5t4KOcypv0CmY4/k5+HMQn+ndvWtZz5l7dwtGH+uZGK1XnYDazc0hNdCQohc\nkEj+dTkHlQgkJG0w4uaqt1g7H5l7YguQMj9Qwz8vOhdrAbXj9rpbWDvan5vfx/WjsgSllOr4HPLD\nXO72HBDO7fiLEYdqa01kJGRE8fOxPnXsaWDt+hpx3bdXYv0v2cf3Sx3EznfRP6404lVRfF00m/FM\n4vXie4fJXBvewef1YAvm3mcfwV6nWVvDf/3MQ0ZM905zPItYu0dv/Ccj/sVbTxjx/U//E2vX07rH\niG97AnKlpo/4PihSsx8PJL5h9E17Rgp/zY1nNfr8kEhkwEop1foJ5jm6Lx3p4tKesHhcM7+LyGRj\nuMwsJp3L1v8GlSWOjHBZpz0Pa8FQHVlXLXytd+STNXw/+p4vl0uObSmZRjw+jvldf1ameywPWQtj\nivg6aDbz58dA0/lFgxFTOZpSStmIHNMUcXFLb5uV/D7gw/xfsDD3Qs2VUkolLss04p5jbew1+twe\ntxLrlcmK8affH3cj5uuwRDzPR2nPi65q7Eudy1D2JNTOx0rzu9jfJKzCsTqTuMwsaQ32wC3v4D3B\nlhDWzmTjFuk6kjkjCIIgCIIgCIIgCIIwjciPcOsGYwAAIABJREFUM4IgCIIgCIIgCIIgCNPIJWVN\nHV8glc+axt2VqEsRTdnWU7VGWpCeFVqENJ7RPi65MJH08P5KpAQnLOcpt7Ry9WAD0hMTJjPRSJNp\n0HSits+QNjdcz6s70xRjczRSmlzt3NVpnDhv0FSqaOJ0opRSnbsajDgyB6lPng6evm1N5O4pgaal\nCili8+7mVfeb3obcY/5SOKFUv3+KtaNyowYi6yrK4LID3wiRhsUhdbDhNZ5eaSfXqomkfFLZSqjm\nuDNG0iZPnCRp+EVcnnZyJ+RZ5VdD9kFdMpRSapy4Oq37Hir6d+zkVfstJIXSR/rfV6p5a58fSKhT\nBk1tVkqp06/CVWDW15Fz3PEZd8iiqaAhSag83rKbt/ONo39XbMFnL7yR5zMPVeG+DbYhhXDmN5Am\n7jXxlNHwVHzvPuKos3zmTNZu3zmkWDsiMT7Ck/hYcdVjDggORR+ljj9KKZUzN9OIJ/xI9+/ax48v\nIp1Xcg80g8SBZsHd3ImDyjr6yByYmcDlSu29SMO84nY4q6zxcNmZusgc3fAxT//PWIfU3xAyV3ZV\nncDxHOWuRCmLMC8nkPmgNJ3PB09/CmkAdYGZlcUdElr2NxqxIwOps65GPkePdOK+Vr4MqUL67DTW\nro7IN8vvUgGFjkXqHqiUUr0kHZdKcPs1mYuahzXKWYo02Katx1mzlm6MkUQi4/JoTmxmkiLLHBJH\nkGL92H3cMeRINWRvq67DutB/jK93NH3ZOQfp6r0neZ/wkPV0sBVzaPtB7hrknAu51wiZ+3UZ04Tm\ncBVoZl0Ld5eRTu6cMNKG6xsTgXUseg5f4+ne4sw7kEnFJfBUZ+reFGHBvdIlpWlEXtXdi+sZTxy0\nYmfy+aCf3O8rboMjk6eFuya99Tokc3RtnZ2ZydrdeMUVRvzMZ58Z8UMJ17F2dF10NaEv+If4PNRy\nDPd/1k0qoPQex3iLW8znHksMji+xEBKxyEwuCzjzyrtGHDMLfVB3a6LyfbMZ9ykoiEtbwsMxF4WE\nQKpgjsRYjszi/WOwBvIJZwpivya7TZ19mREPDWGuiC/kzmndVdhv0fT8zt0NrN25k/h3XgGOOyuX\ny1MtsVxqFGgyFq8x4so/vcZeG6x62ohLb73HiGOu42v8v9/2oBFT+U7zcS7l+tcf4TMiorEOnfzP\nd1m7P36CteuGhZgf6VqTtTqPvWfP618a8br5kA4+vInLkF56GM5dRamYD3WZ48P/AVemjhNY74Zr\n+li72XdtMuKgIIztJ9/5HWtHndM2qMASTlwg3V3aekf2ItRtyNXE1/d4Im3pIrI1Vzufyw58iecT\n6i7YfprLYexWPAvYijBmowup7I8fanQapDehNrIuaA09vVxK+DescXxsu3vQ/warsd4lLuSlHlp3\n4ZzCiISUOjsqpVRkOtn/c4VrQKASslCH5ljXj/2EKwrrWF4Sd6iKX465mLozhsbweWRyjKzxRDFN\n3SeVUqqZuArnknIUfcRp1Dk/lb0nNBrH13sKe5qYXH7R6LweQmTpbVt42QrHPJzjECnJoLtMDtdi\nbEaXYz0JNvFz0p89dCRzRhAEQRAEQRAEQRAEYRqRH2cEQRAEQRAEQRAEQRCmEflxRhAEQRAEQRAE\nQRAEYRq5tJU20cWOdHGNe1QGXqN1ZqhVrFJKJW2AJnOc6Gc7jrSydkPN0B7ayWeHEctupZQKJbVg\n+on1tZtqz2Zlsve4iT0utU+OJ3U3lOI1SFx1OB5dG2ZNg8bRUQwNuquZ6ycp1H51pJtrZSOSp65W\niVJKlXxtjhHr1uQp5P5Qe+oPDx9m7e5ciXoRQ17UC0q4PJO166+CDpPZK1/JtbnU7vXKX8CKsmM/\nagLploqtn6NGwq+fe86I42z8+pWth/66rwJaeEcp10V27mvAP4gmNqaM1z4YOgt9IbVkG9csQll9\njFkqoAxXQYduSeBjItqOY6K6xtBYrhftIXbcnQM41tL13DO6/xPobLPyUGPCp9WJCo3FcRRfA/2s\n3Qk71/bKL9l7Oon2c3EJ6sx4h/ln33g3agDRMa+CuZVv9xeoVdLdjXMqvpqfE63JMdpPvmuc64h7\nviTz0lUq4FBL+s7tvLaRvQQ66PiF0M/qtSPaa1EjKJGMWVrPRymlBuqhfZ33wxsveAz/+/mYO1PX\n4Z40bYFeO0SzAdz5Du7rmjuWGfH2V/aydv98/fVGbMvGvF6ewo+1ZSfOKboY18HdzM+d1j+xDGIO\ncdXyuTd/GZ9vAol/GDU1Wt7l82TUDNTLofbJ7vO8RoCX3FNaj2RcWz+jZkAf3XMUeno2JpRSNZ+h\njlBcMq4zrb3UMcCv0ZU34r71kppC4+O8f9AaMYpYWtIaA0opFboYxzQ+QiymNfvtIVJfY7gasb42\nJV+Wo6aS6o9RAyR/Pa95RWvQNJK6OLZqvfYe4vhk3HurVrsqmFiSOmdjHaL1r5RSyteD+0Xn6Iw5\n0PDXVPB5I38p+jqtYeNt43s2E6kbN0HanWhsZO0KUjDnry7FWjrcOsja0c+LJnV5ag7Wsnb0tUDj\nG8S+yqvV8mt5Hzam2XdgQW7fyWus+ftQR2FyDPejU7NqTr8GfaR5B8Z9o/8ga5d7FdauhgMHjNhC\n1ku9TkFEGsY5refYuY0fa2wu6oP1VWItjZ7Bx2z6nCuNuHY3aqls33mEtbvq9pXkM1A/a3SQ2wG3\nfVhtxDMvVwHnJzd8y4gffvJu9lpEPPZjR59F/ZlBbb/949dfMOIn77zfiHVLeVpzqLceFsjJG7jN\nb/urqH1zvgPXunwhasXpNVMy43ANM25GDcfISD6/3PrbW434vX9524iv+cW1rJ3Njn57fusHRpyg\nWVAff+l/jPiTrehz3/q3O1i7ky/y9SqQ0FqaVm1toM+IEQm0jiivB+QbQr+jdb9ON/O6ZTOSk414\n0+OPG3HZ7NmsXRGpgTd5HHPe9deiNpdZq4PiIfVtaN2pqCwHazfah7k6nDwX+Nx83g13YD8TtoDU\n0+vgNWvosymtZRqh1bL0u7TaggEm7Trs5VuIfbRSSgWT57YRsl5HFfA6LvT5jsa2XG5j7RvAXjws\nEs/SIeG9rN2c+2ExP0zqTNLnMWfaAvYeTzaOzzEH/eXc5hOsXTrZZ8TkoZ5UuJOvW94e7AnMkdjb\n6XM5f9bHe7rP8PuddzOvE6YjmTOCIAiCIAiCIAiCIAjTiPw4IwiCIAiCIAiCIAiCMI1cUtZkIWlW\n1BZZKaU69yIVltlEaum8k+NIKew9jLTsKAdPexvuQyqYrwepTl7d4pKkCcXOQhoUlS2M9PNUw5hC\ntDv9B6TjJ6/idq6RSUgHp6ncY5pFLZVJte9C2imVOymlVNwSklJH0ohpmpdSSo0OcElHoOkmsiw9\n3XqC3J/685BIRITxtHmav+2Mirrg/yvFbVjHXUhtdyxIYe2CTHhfSCiuxxixNdv97hfsPZ+fQDra\nmuVISzzXxu3zMgdx3ansqmNvA2sXkYp0wSObke658P6lrJ1jDtLQzcSSuPkDbkmsj5FAEhIJOQft\n60rxNGjat3qqu1m7wrvnGnHsCdwndwMfL3NughU2k8BokqJoYiPccxjpqf4cjJea907z9ySh/zXV\n4Rgitf42dI6kNRLpUUgEty9vaoXNYHYhUhJPvM9TF2mfbSdyAbuVS8Ry1xWoqaSlHqmNhVcWsdfG\nSDpk/0mcV9wibhEYcgD3wTOK95gGuKVrJknD729EWnrumqtZu666fUY87sPnpW9AWvaWR99m71mx\nAX3JVYc007ICLkUJT8E8n7waaeO6HXz2xkKchxXnkVzG7caHB5BmO/D7/UYcv4Lb6A5UalaeAYSu\naSnX5LPXOndCcmIhklzHIj7/DZ648PFRGZNS3K4+/+4leH8dlwUX3oz0954DGIsmYs1alMbtxqt2\nY/7KzMYcl7yOp/ebwzB2wsNxndt2fMDaUevK0Bikb2ddz/t5EJlHqDTUmsrTt0f7ifw3WQWc0TF8\nd9M2bpvpLEAqevkS9M2oHJ7aPtKLY6RSNWq3rhSXm4aEk9RwTeJsJtcwNQ4p4HTOn/21cvaevgqs\nf0EkxdqqyRxnDUFOcIrIBIY8/BiuuQkSZiuRflPZt1JK7X/zkBHPvxJyAl3aPtrF93CBxDkPc2NP\nBZdIDAxiT3n2T1jfW/u4xLB4McYwtX3VJZULkq8x4m0HXsQLmhWv2YwxHEMse4fq8L0JJXPYewZa\nMa81Hf3YiIse4IbHQx3Yb9L9hm4H3Nmw04ipLW2Kg/ffo1uxTlq3o48tfeQy1i7rrgDrtDUe2/xv\nRvzWI39gry2+eb4Rl90LudLkJO+PY2OQMVx11yojfue5z1m7kklYXLd9BBm9NYPPP+9WYM1rOQip\nUM1LuGZJKzPZe+i8Uf38USM+PXaItashMqnHX0RfSormNu9bjj5lxA//FBKlhlcqWbuCByDpiNuL\nPRftz0p9db8TUEgn9GgSQwuRDoWFYa0JiuP5Af0ezMOpRF5jPc6fW/wD2D88dt99Fz0kKt+kEt/g\nMOwj9X07lXAHheD46HErpdSkDfMNlcpbIvkabrGgTzR+seui3zs2jHOi9s76vDtBpJeKu3EHBCqb\nos/2SillK8SaRPfocUVxrF3DW5DEp1+NPXXjW6dYu7il2E80bMGzeZImaY6JxRyQPgMyx87OLUbc\ncXYPew995qbPbclz+X7aUYTP83sw57d+fJ61M5M1PboQ59v6QTVrl7g224jpvbPF8/llzH1peZpk\nzgiCIAiCIAiCIAiCIEwj8uOMIAiCIAiCIAiCIAjCNHJJWROtRK5Xqk5cAUlQ15dIkdUlO0eeRyX7\n4muJi85BnpY9QFLOotMhL9JTuuqONBhxyUakWo72Iq1sUnNg8RHXEgdJM42ZGc/aDZyFDGSEVGae\n1B0VSCX76CJ8RnAoP/fhWqR9hZP0YOr2oZRS5iieOhZoYsqQjte9lztPuVy4blRacvsta1m7YCJD\nmpWFFMOvSL56cd3GSJV8+whPr6TOP/TenduHVDJHJJe+/ePVkGM4ypGKtve9CtbuuReR6vbQL+8y\n4pwreapuw47dRlx+6zwj7j3CZVI2Uomcumt0t/H06OZGSFaK1qspw5bHK57X7kYqaDpJeQwJ5r+9\nHn4GMpDc5ZAuTPi40wNN1afuLKaI0Iu2o85aXuLslnM1dyno3NlgxKlJOI/qBj4f+InkIGspUhxP\nfM7TImetgfSGpoKGh/JjjSNjIJFIM6zJPPU/1K7J+QIMPa6JUX7dabX+8ASkvO58fT9r9xXJ4V9J\nXJPN/h1O0mZDQpGy3lnDHZXGiLRknMjYbERmMmNmBntPVC5xETqA+Z/KmJRSyk4cQKIdSOV3W7gL\nSf/J40ZM+5m3czdrN+FD/05biX5hjuJSPyqpDDSTZEyEhHIXq/gVmUZMU+bjNNmVvRjXhcrC6Gcr\npZQ1A3Ottw/riVtzCYnIxJrpmAcNkL+fuK6EcFmiMxQp9OnXQbpDXQmUUmrMh/E8YUHqtSVWc7kg\nMhAb6R9BmhySOuLQtGk9zbudONVkcGVUQMjMx3UK1yRV53ZC8pW/FHOl7gjUeQxrRSyRNIx0cMeO\ntpNoV/INSALdTVw6Y8vDPouOseg8fHZQEN9n0PTo/qOQS9TU8zmVpvgvzIPD04AmazIR2RWVYLk1\n1zjqTEPvfX01/97M3CnQpP2VMTf6Y6idzwE5a5FOX/c5Us+Ll3ItwGuvfGrEt96Gfc+nx4+zdj++\n5x4j3vEsJNfLb1vE2p167WUjpvN4+jLIxcLCuMwxPBeSw5ER9JWqv3zI2hV/82tG3FaJufHoEztZ\nu55h9NPZcyDbirDwa+T1oe8UERnruLYnMEdM7R7V68K+tL6LSz5XEdfP+gPvGXHdVu4kU/79lUYc\nEg7Zyq0/3MjaffQ73O+rH1pnxG1buLRxdLRDXYjFP/kOjmf/FvZa6R3fNOKu5l1GHJ+2krXLOwXp\n2r1//A8jfu5bP2Dt7r7lCiOmZSYGXXyOnhjHGn7tr64z4paPueRiziO3qqmCzvP2TC4d6atGGQx/\nAlzf/H6+h47NgstmSAjO1xLD931DtXjf4lKUrfC08jmqvwrPdHbiFhkSir3xhPaMSeeRMeIw7HXx\neU0pnG9kOtbSMR93tQsKwnexvY3mgBxTjGcadxvOY1yTpjln82sbaHxEohU1k0u0aNmKeCLpO/kX\n7gIWTJ49aOkM/xB/XqTX15aP5wH2DKKUGo3Es1VnPeRLtkTsS3u6tWeIAex9qOOVt51f9+4K7F+D\niKticBjf27WcgIyNSt90OeQw6ZsO4syof2/bZ3A1LFiuvoJkzgiCIAiCIAiCIAiCIEwj8uOMIAiC\nIAiCIAiCIAjCNCI/zgiCIAiCIAiCIAiCIEwjl6w5E5EKvbuuhR+shsWn2QYdHbXLVkqpaGLdRuvM\n2Et4vZdgom0OJ3UgXLX9rF3WLGj3qV7N1weNWlx5JnvP2Ci15oYWl9ZhUEqphDnQ3A63QyM5odWw\noRpvTxs+T7cd8xG7t6hsaMnHQ7iel57HVEDrfGTewsX7nXtwnlG5OMbWHbwmhCUUGt74VZlGrNcJ\nMJtwH3OIFV5/ZSdrd3APNKSJxD5wgtSp8fi4PjEqH8dX+RnsApNiYli7td9ZbcSxOTgGVz/XFFuJ\nDpHa4/o0e9MTx3GN5tyJ2jRxSfx7nYu4VW0gSVgGbaV/mNsQpxRA19hfCU1oTC7Xi+bOg87dQmrE\nROXwdtQOmFrd0VoRSinV+hH0zPYS1B9o3w/9eLiVj7G0jbgfr/8K+vHaDq7vjo5Av6rtRN8Zn+DH\nMKMb2uuuGuiLh73cnt5Ham8MHMUclXEVrz9Q/TosL1N/c4MKNDlXoA6COZJfm8FzmFPtxZgfrSf5\nWCxdjM+gVo91b3JdtqMIWmyqqzZHaza/pBYJrankzEZNr3CtNg+tBWYmGu20K7jl6tgo5seeVtQf\n0+uQpK2GvenkJObHoCCu+615Dbbf1Np9RNNvWzO59WYgGSX1svS6ZYOkzlhEDua1gZN8/osidaxO\nHMe8FF3NrU6Lr4IG363p6Sn2TNT1mJjA/OWeAf27t5XXS0knY9HbjesXkcKvHbVFrd+MMRuVx+vQ\nJSwn+u8KrPXDdXwNDyMW47YCUj9L6xMZN0xBoRkCrTPj1o4xndSjoXbf7ZXtrF3nAGr/xIzietQe\n47bOybF4rZfMP7XHGli74f1VRkxrrkWROlOdg7ymwYkGfEa/G/Ph3BxuR2oLx5zfNYS+VLQoj7Uz\nk7pbvYdwH8c9vDaDexTrUMQEjrV4Hb9vJz6G7S+vzvL307Uba3PaRl7frOldXMuZXyNW39p+KycR\ntR6e+RP695pZfC672PU79QG3NV788EojHqzBnB4VhfE2McH3gH4/+l/zAcxxsQt4fYkzr71lxD5S\nq4+ukUopVZCM/jvSiT4RHMTHmI3sz63JGA9fqflA9teJ3FE4ILzw/VeN+PbvXMVe6yM1AGNmkVqD\nZ3nNmbQK1FzztmPOyrimmLX71rNPGPHrD//UiNOdvJbfU/f8zojv/Tlq/dy7CjVdHryRH+uR408b\ncWM99jTFV3SzdmMujJ3YHLRzRPF1ltZs+/Q/YQlOawoppVTHTzEPXfWLa43YOZfXe2r8ArWSiq/i\n4+XvhdpJd/VxG+Joch49NRgv4fG8Rp3fjbUwzIb7odcRDSJ7FmcRaoIN2HhNzZgS7IGi0zEfurrR\nztXC51NnFuaK8XH0e2pjr5T+DIw9UMYCXq/T5cI8RGua6Ptp3xCpkULG4nADr8vjd4+oqcQSizmh\nZ18zey1xNcZYwwc4r/wreF+ic2wf+U3A4uR16rr34D7Er8D+IVSrIdjfjLFOn118PtSn0vfTwWbs\nHamlfGQ2f24LS0AfHDiJsejv49e56Gb0C2pnfv7906ydzYrjG+3BmBgb5M9tMdpvIDqSOSMIgiAI\ngiAIgiAIgjCNyI8zgiAIgiAIgiAIgiAI08glZU39JMWHSkCU4haB1ELartn8Uptoml7pbuKpZDQt\nbMwFOUvqhnzWru8E0opHieWng1jldh7g8hVFUjlpep3fw6UPIyNIFaRpS9Q6WymlIolEiUqcBs/w\n1MXEVbAbpylWPZpkKDR6au17wxJxrzr3NrLX4pcilWywCiliYZocpamdpI8dx/GGRJhZu+QrkGIY\nEo57Ty3HlVIq9STS+qk8aLgH6fWFc7jd5Nuvbjfiq69YbMTeNi5pmCB2wMPdkOiMeXlaNrWoo6l3\nyetzWbu+v6CvNpBUaa8muwqlkoQlKqA0vXnGiHXJRmcN7o2pHv3MHs/HbBdJIQw243dZbwtPka2o\nhcWbswr9Rbc2TyD2rqNdGIt5tyId3KL17eEGpG/nJWHMbrhjJWt3bOtJIy5ejnRwarWuFE9RrK3E\n+WVn8nTeaGK3aInDfer4tJa1yySyo6lg8DTmiLgl3F6ZXkPaN8su42nZlV+gD5auggVyeBS/1ucP\n4tyoNXmhJmPor0babPbtpUbc1wSZVJSWCtr4HkkzJfaQrnZug0qtpgfP4dxjtbEdHIxU0LoPYZU4\nqkkMo0kqKEu/PchlJFbNGjmQJCzGnNm2k8/l0YVYX0xkbvyKRXYSjm/JTfONuEX7vOYduIfJS/C9\nQWYu9/J7ILMYG0HfiZsHWcRgTA97j8WGeSTMjuOenOTpt0EhRPKUbiMxn4eo/W7C8kwjjsrjsklr\nIuaRji8ayPdwycVoD+590hS4h57ZjnFUcmUJe41Jl8lepaW3l7WLsxEpCFmH+JkoFZGNazXShfMq\nuYp/7/lPMa5SZ+GkPY04hm17TrL3LJuJlHJqYVo4K5u1q6/CGMkthgS3r4rvWzyN6EutXThf/Zx8\nZE5JJTa/xz/mMp/sjCnQwfyVOCL3Harh9yY8BRIRdzOun6M0kbUzhWAsLSrA/D/jci553f7mfiOO\nIbLbs63cwjX3IKQAzYexJoWEPo9jS+BrafP7uO9JayG/0Oc1E0n3jyrA/Bd6im/l89ejT3z5ZoUR\ne0b52F734OVG3E3kyMFh/PN0WUmguf3nNxrx8/+ymb322NtvG3HVjj8b8beeuIu1e+6HkEZdd8dl\nRrzzl1tZu5ONkB49+vqzRmw28/mssAcyIvo88Ked7xrxb27/NnvP2iVzjPiGJ39lxM8/8D3WLplI\n8WPLIQ+/7rc/Z+1az8Jy+54//pcRn/vsVdYuhNj+HnsK6+eeqirWLog8C/3qqm+pQOKchTnFN8zX\nbRcZf9R2WreTtsQQSYgL49lk5c8ZUVl4BvMOYv4yaf3WmTlPXQhL9ACJeWmGnvoTRmxLwRw80sPt\ny+maTmVIo6N8Pu05gT10sAXHZ3FwCTOdYC1kXRma4PMafb6ZCgZICYqILD4m+o7i+Ts8AvtNXaZO\nn+FDydrw4bt7WLs+F+5/fhX2OkVpvEQE3Ue2d2O/Wv71BfhOD38eo3JkWtojdh5/NrASad3Zszj3\nIE0COvk59ma0tEeMk+8145ZhX0+vpW+A/47AJN0XQDJnBEEQBEEQBEEQBEEQphH5cUYQBEEQBEEQ\nBEEQBGEauaSsKXE5ZDmjA1wCRKuh0zSr8CRebZymNzlI5fC698+wdqnL8F00pb/xTV4JOf0GpPF3\n7mkwYk8LUnHdDVwyZSLSqq4vkXJKK3krpVRIGFLnaHqdt5On3g2cQup+4kocd+giLivoJimpsXNw\n7vaZcawdTaGeCkY6SLX+EP57HJVs1R+ABGhykqexJhBHJUs80vHMNn7OVnL/L5V+54hCKhmVtNlI\netz2979k7xkkThS99Uj1y7uByz56DuC603tP09yU4vch9RqkMNMUOqWUSp4FCUY0cdEZ6eZpjjRd\nPdBQJzC92riDSD9oSp1Zcw/r2Ia0vPAUfEZYIk+xXp5OK8Uj/TM0jKeWOucj5dM/hHRp6vaUfn0h\new89pryVkNfoMse8AqQ1hsagj+n9MpT0PyoxiJnDU9f7T1y4CnvsEq6X0KUVgebcGaS4BmljMSID\nKaRW4pQ3qjlnUHczJpfRUkudxPkh52uQT4RY+LRPZSfUMYA6N+kpuGYTxkj6jbjHJ589xNqlLYLs\nwJ6PNE59jE1MYH2hLgYpV3JZ68BppInSNUifU/sqiGvgNSqgeNrJWlPTf9F20eSYdHkCdZeykRRt\n+zmewkxdu0JIyrZLcxdytWL8dG7H+KPuaIlzuaPCxATGrNmM+aDz9FHWjq5PduJO1fgGX5sjiTsV\nnVOGtXPy5+B8aeZwTCGXvrbvqldTSTaR9uhzeTg5/vPnce+KsrgUkc5He08RuWFGBmtH17gJIv/q\nPcAlMVQu4ydp0D19uL/UXUgpvjZnroQkV99XUOmWuxHzunM2lx1FkfszuRXnR9dSpbirE3VtzC/m\n5667XgSS9i2QuSau4+5UfrK3ofK+2uePsXbzN8Apzkpc6Y68XMHa0Xvz9oEDRpyXzNPkd289jOPr\nQwp+G4lnFfNjbW2FFCI1FHNe/Rk+b7SSz1hzE6TdS1ZwZyk6V8xZg/tu11LpLyZFDNbmZ7onnwqo\ng9lN37qCvXb/ypVGPCcbUr1lNy1k7a67ExKt0o0PGnHVzn9g7eLtWFtbTnxqxP/54xdZu3/+4wNG\n7Hfj/CcdGBP0O5VSKnkp9qL9/ZDBXfmjK1k7R9JcI+44C6nHs/c/zNpd85Orjbi3e5cRV3zA52gq\nV1t128U19bO+s/iir/29+IYxh+p7G+ruSJ2/wjW3V/bMQPYzDscK1s7jwV42LAz7c5eLO3iFhWFu\nazr9Pj6auCbpfT2MyKXpvsSnue3QvRd1qgoy8XXLT56Bw4g8i64JSvG9bNdhcn5xfO9liZ46ybZS\nSkVkYT3p2M3LYDhnY+2JIXHnDn7OjvmYE8fIs0FpOl8/BzzoC2mx2If2u7RSFWSdpS6Bh57HPEzX\nQaWU6iWOZolO7G/0MiKVT+M50x5BnCS3O9/tAAAgAElEQVSL+Z6SloLoIjIp5xIuwaJ7Ahrb8rm7\nZTspqZA9W30FyZwRBEEQBEEQBEEQBEGYRuTHGUEQBEEQBEEQBEEQhGlEfpwRBEEQBEEQBEEQBEGY\nRi5Zc6bt85qLvhZOrLVtxD67j9hvK8V1yWZiuZqxhtu50jouVK8eM4froUMs0AdOkpoIVDdINXNK\nKdV/GPZfVvKaXpOD6gbH3NC1hTm55m+4Brrfzt0N+Dw71xBS7XbXPmj3wuK5zlIFTW2di/iV0IC7\n63mtgk5iD1awAbUjItP4Nax+ETptqiedHJ9g7Ro2w36Xnta5eq6dnr0M9Q82b95mxNevW2rEunVz\nUw+sYGfeCctCvV5A3h34jN5zOD+qs1dKKT+pr+EmhxeZxu3jmo+hThGz7z3Az8muaRQDiW8Y/XHM\nzfXfCSszjbjvOPq6bmHb3ozrV1QOTWjjJ9WsXZgZutjoAnyGXteD2sOffg/2rqkFxNZ+H9es0nF6\nchtqVlz2yBrWjtZF8XRBO1p6dSlrV/8ealclLc004nNbeU2rOfcvMmJXE/pBO7HyVYrboxcsVwFn\n3g3lRnzqQ245m+dAHYL9L0KvnpvBaxq8vHu3ET+YeJURh2g2kqdOo9/G16PmQs1Ofr+X/+R6vLYZ\n30trNKVv5LayoUQH3XsMfS7/el7/iVqwhtpRx6v6aV7PQbeaNj7bzMeYIlbBtUcajDi5mff1EQ/X\nhwcSqovPu6+cvVa/Gfe0ldSjSblGq51zBjUm6H1rruXr5zCpb5NLLOpDNGvRto+xVqddCzvgpPzV\nRmyx8HoTAwNHjLjmPdjGpmp28n4X5slzz6HWQfxCXq8pphA13Fo/RS0Qh7aG0/pUdC5r/ugca2fR\n1t1AE0Hm+ZbdXDOfROoBlG9ETZI+rUZMcDju3doNqIFx5svzrJ2jFn3B24d9hlWruWCOxvc2Hcf4\nzV6GWjLJbbxW3rgH43TgGPqP2cG19V5Sly+UXFtP8xBrR2tNDRFL3KyFKbzdKMaBtw2fYYkNZ+3U\nFLowJ63HdaFjSiml/GQ/1/wRalEEmfnfJGltmiDSJ9LSeQ2kk2ewl1hC7MtXX7mAtas+hFoCG76D\nde3068eNeGyI1wNq60f/CCL1MBwRvH+kZeDe0/vmKOdrhKcVr1Eb4rZP+Z4+Mhd7VFME2nnbec2H\ncQ/GaUaRCjifvId1Z2YK72c/eQZ21bQuR92rJ1i75CvwTLH/CdhYz76xjLWLK8Za1rwd9YEW5vM5\nevOjsPD2j5O+7nvdiL//ws/Ye048gffM/qdbjPjAb55j7XafgYX39/+4CecQw+sJekhdtU+e3WHE\nKzfyPvfac7DcpjXb7HG8Bmh8Eq+RE0gGiZU9XQuUUspZQutQoX/7vXzuscdj/xAVhXVodLRHXYyg\nIMzBVmsWe623F/V8IpOw/o0O4Xv1OoZDdXi+o88WtGaeUtx6ntbQi87hNUiCTXi2tedgn6Jbcw+c\nxfwVPQN7bXcrr8c4NjJ1tS2VUmqwEsebui73ou1aP8Yal7Q6m73WTNb/jKsx3ug4Uor3925yT8JD\n+bN5chqu/Zn9eBadQeaKyqYm9p4FpMbe/kN41liVy8dYMHlQbezCPSjo48+ftMbOBNnXjnn489gE\nqc/r60YcvYqPidHuS99HyZwRBEEQBEEQBEEQBEGYRuTHGUEQBEEQBEEQBEEQhGnkkrKmYJJuHaal\n31IL5q69kC6EOnhKq7McaUdjHmIppn0elTLZ85H6NUQkREop1X0Iae4TJH2PSm1Guni6GLX1ot9L\n08iUUiz9ltqc6TIS2i7pMqRzjQ5yy8g+Yg/oXIAU8JBQftmDzVP7GxlNUdWlLr4BpJj7+nH8vb3t\n6mJQu0ndho7alFFLuvDjmlToKFLQbrwaNnnUzjFuMU8PXBe33og9xIo2e8l1rJ3bjZQ6egy6jXgo\nkdw1EjlW+E3c/jl/PdLjRklK+pCHp6VlaFawgYRayQ2d5v22j9rVk77es6+ZtSv9GqRgbpL2rIvq\nqLRHnUe69ZkDPFU/Kw1pftQmND8NaYzV27i1YSyxdy5ajDTixne4DCmZpFM2vQ2L2th5PH07fT0+\no24Lvstm5ZKIpnfwGTHlOO6ExdzaLySM9+dAY47EvFK0nkuA+o9gzC28DWnLFZu5BCjNydNr/8Zg\nO09/jSbXoHoHJCPJ6Vye1nEY12bvfsjTqLyN2pkrxcdmw9u4d+GaLbubpN77XZhr4i/LZO2orNU2\nA+d38j2eup6WijE2cw3GZYQmRaS28YGGWnhTqa5SSpkiiSRwFtJY9TWEWvuOEGvR+Zu4DWr7Nkgk\nqEW9bSbvA+k34Fr0EWmLMw8ynP7eA+w9XpJW7alH32neyuVFNiJtzP8m5pCu/TyNuK8S3xu/FGns\n/mEuMaOy4OS1GOc9FVzC5ijlltGBxt2Ec3aN8LWbSl3cDYi9o1yO4syDLMRC9j4zZvP0+hAif6IW\nsV+RwpK9Re9erHFhB3GtIyP5HqulEyn/5bfNw/FE83bjI+iD1BZ2gsgXlVJqtBPfa7dhv6TLn/rP\n43uDidwwMplbvbacx7zGxRh/P72HscdKWJHJXyP7LyodTFzJ700nkba2vo++H7eSW4IvK8Lc07AT\n8iD7DD4W88i+1EVk5DOuxXw/qEmwZo3hu1xEfu3TZADDLbjmcXZc58o3uD143iqsi7ZcjN++Cr6v\ni5/P91jG90Ry+bunZfCC7QJFURqO46PDh9lrpV7YTsdlQLK+8HvrWLuhIUgXehyY93q/5FLEnMU3\n4Xuvg0y6dv9PWLvly+FvSyV86ddjf2gycdlQwho8D+z+xQtGXHInl7+mnsBzEZ0fZ905l7V7/Tcf\nGHEBsWyPnsn3ml//HvbAzhLsaRLmc4nqkWd+b8QLvvPPKpDElkK+OtLL98YeInuMycX4o7ItpZQK\ntWLMugaxnwuP5P10xIN72nECUtu0uatZu8lJzNdeIlEa6SHHF8x3wI4ZuH4ueyeaac9pVEpIrea7\nT3DpoImUzwgJwZi1xHA5FS2r4XfjuMe1+TkoeGqfF6PI83f/MS6zjinDmmwhz3q6LN2eAemQtw33\nOMnBJUURRGIUSdYXUxTfV9VW4VlmZTHRVYbg3uUv5RKsmn3YO115z2VGPHy+l7Vzkn2GUyHW95Tt\nH+PzwpKwLnpbeB+2l2BNp2VUaAkRpZSKLuMyJx3JnBEEQRAEQRAEQRAEQZhG5McZQRAEQRAEQRAE\nQRCEaeSSsiYbkcAM1/E0Rxup8k6lR7Z8LpvpP4N0dR9J39blNROjSN0arsXn6W5A1AGJOueM+/D+\nmFk8Hbq3AilwzD0qirsr0dRXmkqmuzolEikTTefykbQ0pZRKWI70PTOpmO/t5pXwaWX9NG5iFRDa\njiNdPCeJu64kXoZjrH8LaaFdgzyNNW8O2nVuI84WITwlMOFytBsdQDp43HxegX/4HFLLokuQ3kVl\nAn0neAquKRzXkF7P+i/fY+3aPkP6WcJypAvb83j6MXUSGif9zNPB09TObsF1cUYj1S1rJU+j83bx\n+xpIEpYh1dISw9PVT21GSrN7D3cduRiDx5GumXsrd0DqJ9Xa3cRxxmLmDjEjRKZyxbeRTjp4FqnX\nziie9hszD6mvPiIRi9IqqHdsRwpg6lVI0W7/pJa1SyNyjvgijPtJP08HpxJIaxKOyRTGz6l9B0k9\nnAJjg1Mk/TxzAU+vt5ciVbn/ONJJM+K59KFwCVKVqZTCmsHTMJ2D+DxvK/pmYz1PVXVXNRjx3Bw4\nRkXmICUzVOtz2/4PcY74BlLNWbqwUsrixPuoLKKhkkvusmahfw+RlP/0bD6X97RwmevfOPzRcfbv\n5fctu2C7QOCYhT7cvpOPN9rPRog8JFyTelA3MmsCpGDuNi4dCUtA+mxkJsZIRAq/1/WvwyUqMgft\n+hohWevYwdNqHWU4D+omFaKNiYh49KPWXZB/+ge4FIg6c9E1TWluGFFk70DdHaOLeKo+lV0pbqQS\nEDytmOeZlFNxJ7C0TKxPw16+xkcQByTqhsRkTEqp9mrMt1nLsH9o+IxLRW3RuN/ll5cYMd2rTE7w\nPdHYQexVaAo5XS+VUmqcSDPo/Rnt0c4pG+O+6zhkBiM1XJ5mCoEElO77TNq5pyru1hVQyPYj2MT/\n1kjdIofPYE2KzOBOlLYC7AuiS3GvqSRaKaU692C/4MzE+Ta8V8Xaxc25sIyeurzFLeIyDf9W9IMg\nIrPoc/E9RU4O9lFU4lswg8+Trlas21TCnHod3/8dfgrOf4mFuE/jbj4eLLrDaIBZ8ehdRjz4I76G\neDtwDUJLMXdU736ZtfvPn+PfP33xISOuf5lLY7s7sXZ1EJe22V+fx9rVkjnVasM6FuOcb8Sjo3wt\nzVpwLV4j85ctlY+BjBI4JNYe2GzET/70L6zdD56814j7T5A9wcybWLuKfb814uefeMeIF+TxB4oV\nP9mopgoqG5oc4/svOg7cPdjXT+j7tAmsKSNkf+gb5vs+qxNrXHQB9kdjY/y5xWrF+Y8o7BGoI5pV\nk2KPDkNWaI7AvBukyZ/CiOwlKAif5+3jz8qWaOKM14N1wOrkshb/EOba6PyLS15cLcR1NvWizf4/\nQ/eUQVopiBCypjjm8hIDFFruopfsZcO1sieuaiJxvgr3qnNnA2uXNyvTiKnDnJeWZ9Dm/7JvYJxS\nqfdAPd9DxpP5mi4aXk1yl7gW63Yrma9Dtd8RqJM1LRUyrEm//C6tXIqGZM4IgiAIgiAIgiAIgiBM\nI/LjjCAIgiAIgiAIgiAIwjQiP84IgiAIgiAIgiAIgiBMI5esORNE6olEZnGdLtU/RmTiNb02jSkC\nGrWEpZlGrGvrranQaUWkQstHdb5KKTV0DtphqqGmumHaRimlUtZBy9ZL6pjodnQTfmi3qQ2lq2mA\ntWMWjRZo63R7cEW04dRG1t3Cz31yjGvIA01SMfSuY5qtKbVKy7oBFoGhW7gW3kyszUIKoPk7t5/b\nxkXUQwtqTUFtD7+La5ipdt9Jrk31n44YMbWHVUopF7FznByDfm9Us+0zkXoOLtIfqz/h2nCnE/2W\n2vcef5fXryjdgJos1Crc1cD7erBl6myYh8+iRo+5XNMvz8804gkfxoRzLq/z07mnwYjTbuTXlkLr\nP2XeBvvPVC+39As243zrXoGum1qLpmn3sPcoxh+tQ6TX+aEWsyZSh6h3kI8dRyv6BLV4H/NyPefQ\nKdQxobbGdB5TitfNmAqKbykz4p79vO7K+Aju3aQfc4KtlM9TEUTTevYtWF8n5PF24+R+1bfgPBPt\nvF5J1kwIl329GJdjwxiz5w5xzffKb6Kmi5fM5X0nOlm7riFS28KP677k3qWsHa1TROdD3VIxxYlj\nPfcl5p6FN/N6Abp1dSCpewHzQ3Q5r/Vgy8bc2PY5rlncVyxr0c9aP8N5WGK5Jjt+EWrxULv5sGv4\nWhNKtNx0HaL1P7JuKWHvaduO4/OSekD2Uq53Hx1An6Br+EBVF2sXRWriDNVivho4yftE1tcwnw7V\noZ1fv2cTUzsWnQvRlyJaeU0gNg7IceVfzq1pxz0X7mdUa66UUlkrUMvpxMeoZTGh1eOhdbPoXD50\nGvOXT1vD3aP4d9M21ARKOepg7ZykFh+t5RcSxtet5sOw7c5ajuPW6+iMkTV98AT6gm4ROtjC90+B\nJJLsPds+5XuRcLL/sJH1pGM7rxNF7WFNpK7EmLbehZA6d+GkTgWtY6iUUjGkht7JPx0y4vTFmUZM\n7eSVUir7zllG3LwFdt66JTutq0DtuHUrW7pm0jlpsJbbyBbdMUddiLo3TrF/p24ouGC7QFH/yS4j\nNmlWwf4hjKVvr1mPY4rldSs3zMG5xCetMeKKnt2sXRypOfHWZtSfuftRXscl63pY9g6cQv/+8If/\nZsQbf/uv7D1P34taNxYTxsviIF6v5IU3njXia//hCiO+YvZs1i4qBf02Ngt7scoPnmbtaG2ye398\nsxH37OV7DP8I3z8FEh9ZJ/T+OEbmSUtsxAVjpZTyu3GvI5Own+mq4M8jLnIP6b47Mo3Pu9SSmtZ5\no2NCfxb1D41esJ0+diKSMT+MkPpC+jkFBZF5IxZrpLuL7z2tZF830oc6S+MjfI2hz6ZTQef2BiNO\nWM3nn+59WBvCyX6b1oJVSqnIbLIXIM9gtB6eUkoFmXDvmj7AvOco4XtZWvOQ1l9zkTk6upivO127\n8dsBHR9JSzJYu56DpCYtqS87ru1HbPl4rrHEYM6Pns33gN17cI3sRRi/8Sv593bt4r9t6EjmjCAI\ngiAIgiAIgiAIwjQiP84IgiAIgiAIgiAIgiBMI0GTk5NTmzssCIIgCIIgCIIgCIIgXBTJnBEEQRAE\nQRAEQRAEQZhG5McZQRAEQRAEQRAEQRCEaUR+nBEEQRAEQRAEQRAEQZhG5McZQRAEQRAEQRAEQRCE\naUR+nBEEQRAEQRAEQRAEQZhG5McZQRAEQRAEQRAEQRCEaUR+nBEEQRAEQRAEQRAEQZhG5McZQRAE\nQRAEQRAEQRCEaUR+nBEEQRAEQRAEQRAEQZhG5McZQRAEQRAEQRAEQRCEaUR+nBEEQRAEQRAEQRAE\nQZhG5McZQRAEQRAEQRAEQRCEaUR+nBEEQRAEQRAEQRAEQZhG5McZQRAEQRAEQRAEQRCEaUR+nBEE\nQRAEQRAEQRAEQZhG5McZQRAEQRAEQRAEQRCEaUR+nBEEQRAEQRAEQRAEQZhG5McZQRAEQRAEQRAE\nQRCEacR0qRdPb/2jEQ+f72OvhcaGG/GpfeeMOH9mOmsXkRVtxC17G4zYmRfH2k34xo3Y4rQacdXu\nc6xdapwTn7E01Yi9bcNGfObAefaeOdeVGXH1x1VGnL08l7WbnJg0YlO42YjHvH7WrnF/vRGnz8P5\n0nNQSqmQMFxeV90A3t/UwdrZIyKMeMPjj6tA84sbbzRiU0gIe23lglIj/uiLQ0b8yIs/Y+0+f+wF\nIx72eo14xaYVrN3Q+V4jrt5fY8TH6upYuw0L5hpxcCiOyZpuM+KxYR97z2iXx4izbsdx731qJ2s3\nc1WBEb/8p61G/MO//Ii1s1jijdg1hH72yiObWbtrH15vxLG5+Ub88U9eZO0WbVqK4yu9VQWSz3+E\nY/f6eX8s//YSI65/rdKIJ/0TrF3Rd68w4vYvTxixszyFtes52mbEw9W4nwmrMlk7eyr9N76r48gZ\nIz790Sn2nvS8JCOOmZ1oxL2H21g7a7rdiMdc6Aeumn7WbnISYzYiA+/xNg2xdnmb0N/GPPi8ji8a\nWDtbfqwRFyz/pgo05w/8xYgHq7rZayMdbiNOXo+5qf2zWtau4B6MubPPoO/PfOBy1m5iAufZtuu0\nETvKklm76uePGnFoGOa97Dtn4bj/fJS9p/C76HPdhxuNODw5irUbPNtjxK6z6Evj47xvJl+B8w2P\nx3xY/9JJ1i4kHHNq0rocIzZFhLJ2w7VYr4qu3KQCycn3/mDEQcFB7LUI0m97vmwxYncL74/0HM3R\nYUYcvyiNtat+4ZgRJy7PMGKXth7HLsBaODE6hpjMAREpNvaexjfQJ0w2XL/4ZRnq/4b+yk7278kx\nfFd4EvpBsIWvOYOnuow4bjHO1+Kwsnatn2AdX/DgD/+vjun/DUdf+S8cB7l+SvE5gnL6JT4OcjfM\nNOJQO+5jVGoiazcygPs12of1c6iG38e0tSVG3PDuEby/HXNDRLadvSdpVbYR95/BtQ0l/Uoppbr3\nNhmxJQ7XOroonrWja3h4Iu6jxRHO2n35P/uMODgI4yBjBl9P6L5o0cP/ogLJyw8+aMTz71jAXjv4\n8kEjputETnoSa+eYh/mQ7kV69jWzdmnX417T+zZOxptSSg0cx7joHca+NDkT1zl2Ab9GfWT9Gx/B\n5yWsymLt6Hf1kvnFPzDK2nUMYL9ZdivWPronVUqpto+xR3MuxhgY9/JzCjLh/hauuU8Fmrbm9414\n8HwPe613P84z42vFRuztGGbtorIcRuwhr7mbB1k7cxTmOksM+rQtXeu3ZP3sPYW+YE2INOKIBD52\n/COY58MiMAcMNNezdudfw/6raNN8I54cn2TtWj/FHEj3S84ZBaxd0+fYu1vTMD8kFJWxdid/944R\nL3v0ZyqQHHjyV0bc3szv4cpHbzbit37wZyO++5nfsXZnPnzeiB2zME4f3/Q0a3flnDlGvPyx7xhx\nSAhfQ76/4RYjfvSVfzRikwlrYddx/ozZd7jdiNNvKDTiwbN8vxZTnGDEoRG45k1bj7N2tUcajHjV\no1fje6paWLsJsn72VWA+KNp0FWvXduiwEReuDfxYPPcF7kHjJ9XsNTqPxubhWdxss7B29QfQ31OL\nMa7GPfzZJYrst09vwbPC3LsXsnZNb+O5PSIT19o2A8fQspU/95tNmMsnyLN9+g0zWbuWd8/iWK+b\nYcRnX+X30evDfDB302J89hjfyza/i2Ol66xjDl93Tm3G3m7jk08qHcmcEQRBEARBEARBEARBmEYu\nmTkzUIm/wtQ1trPX5t5YbsRZyQnqYpz5HL8iRVvxK9JgHf+LUVwZflUa6cRficYn+K9S9ln4pXrw\nNH7JdJFfymcu4BkxPvKXqsQMZOyEWPjp9x1sNeLGLnx2amwsa5c+H39ZPL8Pf3kID+V/vXWP4q8Z\npmD8Dla4YgZrN9rtUVNJVjyuWaiJn3Pi5fir27VW/NW86wz/i3XRBvzFwlGMX/CtkfwvO94O/DXN\nQr5rwMPPkf76OfPGrxlxzefvGXHSqhz2nuF69Bn615W8efwYslYjg2DGx/gLRePHh1m7yExkdY3T\nv+6V8V9WB8hfeite/NKI9X7RtRsZBFmlKqCkXIb71PtlK3ttuAHZJN5h9PXhkRHW7sSTHxmxlWQ4\n9FXwsR0SgfsWmROD9yTwrIi9v37biLNX5RlxGPm1eObaQvae+HkYO93H8JfczBuLWbsgE8ZLzXP4\na3XRP6xm7SYnfSTGX/vGtHMfrEZ/oVkVtA8oxf9aWrBcBRxPC/6KZy/k2YP03937cG0cc/kv7v4R\n/FU0NA5/+es6fpa185BsjZS1uD/dh/hfhKPIX9oyr0fH7a3EX3aSVmez94z0Yb5t34t+X3B3OWsX\nlY3+k7QSn6FnJoSQv1jXPI+/KOTeO4e1o3+loPOBq3GAtdP/khNIaIYlXVuUUmq0F/+mGaD6X03C\nYvFaz+HWC8ZK8XsTmYrYnutk7QbPYb2imRm2PMxRzR/w/uGYj4yBoSqMD3MUv3b9lcj0tJLsm2it\n/7Z+gL+yhZHMoMh0Pk/SbDxvh8uIfUP8r/+JKzLVVDLSij5sIhljSvHso8bXkWGUs47/xdpRiGyD\nwVpcp4Ea/ldRmnVijsQ+IXUN/zx3B9Yaug+if9FreINnI5rI/XKSrDhvt4u1i1uCLF86v7R+yP/i\nmHUH5oDjzxww4vKHlrF2pVejnXM2rkPrdv7X1gktgzOQlF0724jDnREXbbf8QWQb1m6uZK+d/AB7\nnQX34S+i5hieeUSzGiLSMA70LJPRbty32fNwf+m4GtXmDfrZiWSurXjuS9au9Bpc8xCyX0tczfdK\nMY3YE9DM76FqntFgK8Q8Uv0RMl6zlvPPs2fz+SbQmMMwHwaH8L8ZW+Lx2iTJuOw/wTP3aJYmSeRi\n87BO7ZsYS7GFXey19PVYy+wkS8DVjLWmfTu/P2lXY5yef+MLI9Yzm4ofRGbAhA/9x6Vl+WRch/2T\nJQz7eJ+PZ3FkrMXnNX+BfW5z/wHWLvuOWWqqSLkSWeXzch9ir737/R8bMc2y83h4Rv3xz3A/lqRj\nb7Z6Fj/uePIMUrcT2fGWWJ7d943bkPU+4cd1btqBPWV0Ic9+iszG9yak41nizz+4m7W76yc3GHHN\nc9izzPj2fNau9LZ7jfjHG5FR/8gL32fthpuxDy/+1kYjPv3H91m7GG0/GGhoZlnCPJ5ROtqFuS2a\nZA7RjBqllCorRBbjUA3W+zPHG1m7mFb097I75hmxnu2WTdak0X7MnTRjOrqA7zP8gxhzVHUxXM+z\n74PI3rPizxgvWaVcBTRKMttbPkK2Vex8nnFHFQt0XqdZmUp99ZrpSOaMIAiCIAiCIAiCIAjCNCI/\nzgiCIAiCIAiCIAiCIEwj8uOMIAiCIAiCIAiCIAjCNHLJmjMxZdD1lZdx94GKN6FrzM2C5qqzkWta\ni0mtkqYdcB2xJ/L6FS0VqIOQWAxNnX+cOyBRV6aOBq67/BvtB2vYv2fMRk0S6h415uZ1D+o6oGGN\niURF9sZu7XuIZDlvCerb9J/kGth+NzRqtiic75ibV6weauH1EgJNdg7uT+ZNRew1qke2kDoBo728\nRszxj3HS7s2o53HDb25j7R7/Ndxovvt16CYXkGuhlFJZV0HbPTKCe7/rbWh4F/dzXXb/OfStpGWZ\nRlx8C3fVOf78/xhxYTHuvX0mr5Gw7097jfi6xx82Yv/gNtZu29vQIRYkQ9O/8/Rp1u7GJevUVOGq\ng06yb4C7FKQSne0IcXJa/uNrWLuJCdw3kwnjwDvI3cNMRMu+/ecfG7E9n+vOaZ2Zc6S2FGXGWl6/\n59zTuL/9w6iJUPc5r1PgiIWmv6kV4yqhpoG1o/U/mogOVHclS7kSxxpJ6qDQOlNKceeOqcBPHMg6\ndzSw16hLR9IVORf8f6WUmiR1uDI2QpPe9CGvKUJdXLoPowZGsObYkbwG3+VzYdyHkxpDfSd4H4kr\ngb4891bM0d0Hea0NO6mmX/V73HuzldfnishCPZWib2MctR3gta9ozSIVhDERmRnD2tnTuetRIHGd\ng4Y6VNO4+0jNmQkfalYMneJrSDhxFoska9JoD5934xYTN0BSb8en1ROhNV6spDYNdZOi9aOUUmqA\nrFe09th54hClk0d05h07uQNJzt1wBqG1IajTglJKRebDVYXWzRjQ1s8+L8ZmBl+2AkJUAY7j4JO7\n2GvlD2B9onWPOvdxzXztyxVGTPoPvuAAACAASURBVPcWXRV8XvEQp4eyTagPMTrE18WWDzEPpt+I\nk+7ej++d8QCvaaCIdt3dhjpTR8mxKaWULRx9NX01r8tHOfr0fiNOLsJ8eOipL1i7eQ+jKFfV77FG\nRmnaf93RLJBEkXG///e72WvJMXiNuqUNavXvzGSt6NqPWjxJWh0Xul9sJfcpcQ2vxxWVQ/p3OOY5\nWlNJd/ig604PmUMzNeerqCycky0X19nVxPeQ/aSOXPbXUa+jYwcfs/n3oK7K+V04p9hZvK7FiT/g\n/qb/5iYVaFq2Y45wa46MqRtRx8Xdivs4ru2jY+fiGrZuQR2lhBW8JmGUM9OIw+Kwz3fV8zqYJhNe\n845i/u7Zj/0qdZtRSqnRAcz/ccR5zxLD694Em9HnqMudo5DvP4bI85RrAvdYr7EWNw/XInEx+mPT\nh7w+VfAs/hwXSOxJqK907vNX2WuF67BPOfwB1heTiT8HFs7FmMsqg9OSPof0n8R+pHYH+m19F68b\ntOZWOKhSJzvqUPrRv21h77nv2f824q727TieeF6b5tSrOI/LfgZHyNYje1m75tpnjfjq+airUvcm\nn5/zvoZjPfsy6ugcPc1rgn39gRvUVEJdGO1aPR43eQ4ZJM9jtLadUlpdF1JjKDOf9++m85infOR5\nz6c9+7Vtw28HA034bGsE9li2Iv5813kKfWTGbahN1kXqrek4yHN/kuaUR581ug5gDtCf52l91YJS\njMWO7XzunXlNiboUkjkjCIIgCIIgCIIgCIIwjciPM4IgCIIgCIIgCIIgCNPIJWVNR99D2lZecQZ7\nLcWB1E1qx9fYxNPfff2QUkRFEbs8C5cdpC9DClEHSS3V7aZcJK0xLgEpnmGJxEYxiKfAjREpQRCx\n6avfz9PFSpYifZJaaepCh35iDXZ2D1LqChbzVGGbH6le1hSk71W8dYS1K1sfYN9ljU/2QoL28DdX\nstd+ds/PjDiI2H1/95d3snZ7zsBm8Z6bYU831MRT0Z/64N+NeOujrxnxjAJuS9ZXi2v/0q/fMeKv\nP4aUWSq5UopLBmgK/J/f+EfWbtF6pKE3HUI6uJXYXyql1Ox1SCtrqUAqom6tt2ntL4143y//aMTf\nf/E3rN3h37yIfwRY4RSehP6TOM7HROeuBiOOIqnrVU/zNPTIXIwXausZpFlXnvgI9uPlt8w1Yms8\nT13sPoTU/YI1kC+lLsF7hnsa6FuYda6/DmMs9Qo+dkzEbjZ4F6apMQ/vE9TikqarL/6nVfxYiUUx\ntVn2adLGDnItZ3LX7oAw5qJzEZ+nqAXj6f+GBCimmPdHml4fPQOpnFTGpJRSww1I0x44ivESkW1n\n7fxEYtq1F3Ovux3yuRmb5rH3NO86jnYkDT0kglsSu0m6ffJapCy7NDvD9LUYs+de2IH/v55bsXdV\nYDy7yWckrOQpqC1fQA4Vez23AP57iZ6D1PDOPTxF1kTm0PTLcb66NWTfUaTzdtXjGo1NcLlDbBnk\nBY1vQEYZlsLTwZ3lWKU85L55SZx99Ur2ntHFbUbc8DbS39v6eHp/8Qqsi3RtjSnj0gcq1Wj7FNJi\nPd3Y3YDzHSYSsSRNHjJQxSXSgabyM1zP2Ch+PS127CdqXsB6nfuNuawdlSWFR+M8dYt1O5mzQyyY\nzxre5NJYOiccexZSkuR89LnWz7hsm0rIXOTazrqhjLUbJvsWakHqJXsqpZTyjEJ+ExKOY81eyefo\nDx6DxWuCHXNKwWV8rpjwc2l6IKFrV1Yht33tJ/NfCJFyZs3PZO28xFKdrg36WkOlneZotAsJ53Ne\nsBnH5CaS9VGyfwk28TW34lOsuaXlkOBGpPO5uvdYu7oQ+jHk3Y9+OlSH+z6mlQnY8ySZa9MgWWzb\nxvuYI41LIgPNCClXULCJz9ddh3EsocTeXB+LI/34jIhMXLfWrVwynXULPiMsFs8kA6e1sgRNeF/L\nu5AMD7mxz9DtcS0O7L/onO/rG2HtCm7H5uLEHzCOUq7KY+0sDhxf2yfYM8+4cwNrd/J3bxvxiAfj\nt/jbC1k7izVBTRUHfv2KEdsT+F674BuwpB5+HbLJttN7WDtfL67Ts/dBKjQzhcv7OgdxbW/6r//C\n/3dyidLmR1434k3/87gRNx351Iip5FQppf68CTbghZmQpq3/+UbWruYFPFf5fFir/C7+ebSPxF+W\nacThcRGs3Xv/jOeHmAi8tvKmRaxdx2nIoaIW8rIBgSCU9GFdZu0kUr2BUxgvuvSeQsfESBeX8cbZ\n0E8iiXV6734uj6d7LjpHxy/CcyXd7yqlVPG9WIeojDC6hI+B7i+wpyz+Lq71IFkvlVLK3YQ+R/fx\nSruPdFc/RKRfve18zxtSRX5+4Y8r/3vMX/0vQRAEQRAEQRAEQRAE4f8v5McZQRAEQRAEQRAEQRCE\naeSSsiabFSl1kZnR7LWoPMiaqANJdiF3yTCRNHeaCnryMJcU5SQg1chHUi/z0rio6GRtgxGvWrnE\niDtIalLSqkz2np69SJFqr0UqVu7lBaydpwVpS4MNSEFKW8tTDRsr8XkpsbgOTYd5inv6XKRc0TQo\ni5mnoFZtQ6X6Em6wExC+/8LP8V0vfMRe++Xb/2nE7ccOGfHbT/B2T3z4jBH/cRM+b10qT1/c/jRS\n82596hEjrvv0c9bu8F/wXdffhRTPUZIOnjJ3CXtP21aktxY/tNaITZu580vWOrhIpF6Ge/r+j15i\n7RZsRFps02foj1Wt3Gnj6odG1YX44IdPsX9TSVGgiczA+Isp5ml5JpLSfO5ppDzqKbc1X9YZMXUZ\ns6bwezhOpIRmIi/qO9PM2rWdhiwiPQKyx72/2mzE8x+5jL0n6TJIF/rOow+EaamBrz2GNN2rvonP\n+PL1Q6zd+n+92oiLNkIeWP9qJWsXHIZrYS+E/GDGtzTnk6kzFlFKKZW6oeCir7XtxP3JuhlOLS3v\ncBemlI34DHMk5lTqyKSUUoOV/w97bxmnVdVGD2+mu7uDSYahYUiHlAZFRQQVW7H7MZ6wUB8fOzEQ\nW1SQbpEOaQYYhunu7n4//c+61vkr7+/3es/Ll70+XXhf554Te197n9u1rgWHCY/BkEZJyZhSShVt\ngMtVzF2YExkf4V435jElM2c/5uLgpbiHkoatlFLFW0END00FzTRkGEu1yi+B6uydAnmCvQvT6Zuy\ncS866zEvHXx4/DTmMMXVkmjKxr2IuXUwfdYi6PlN4p5JuYkZToKCb5bkSqlQ5E0Y37ZOPGetrVF7\n3INB2+/qwvkU/H6IjvFKhizJMRAuBZNmTaO8VuEMVXUMY0zSn5VSquYE6oGcY/YmRyvpkOY7AWuk\nScGs6tL/3I3RUoiIxPUHTec1/vTbcP4JGhdhxJWneI1vvCicu3xwbyT1Wimlqs9g35H/C6RMwTNj\nKU9KK6S7lu9IzAkz3dozAXOpcDPmcpNpztp64jmc/hFSrUAvnmOOdqgPbv2xv7H35OfoshXjTO7Z\npKuFUkpVHMY9C2J1899G3g+o894pJmcj4aTj4IO61GKScbUKZ5DIGyF1rjpZQnl2HrheKSF19eBn\n2NYG6ZFzML67uw0yKQdXds3pqIOcQ8qipKuMUkplroCUQkoklGnulAhnVHne4XPiKc9XuFhJxzdH\nPxfKM7vwWRr2/vh72d8fpc+CZ+H+5n0LuWqNL0u8pFuTXOMi5/Ea3yD2d8c+F85kAexGKffz/uH4\nzNcfYylkBj/7cuGqJl1cMs+zy1tUJ+Zm4DSMJb94liJeWrMD5zcNe7aGSpZqRSzCuHXzRV7a++so\nL3AGPvPyYsnT30XqC48b8fJF99BnhXmoa4NjcL2Nplom17sFry8x4pUPfkp5t7wJl9iCiz8bcVsV\ny2aWvo93kPp6zB252LR3snzR2R612zlK1kaeZFJOuv+VX4y4qJqvafJSvI9EjppnxJuefpHyFrzx\noBF3d2NettSy3G7fW3CQikm5RVka8l014xDLG63E/mTozZhX5btyKK+2BvsO6RJo78f7Q1vh1thR\njxoYdj3L2aX7mnS2O/cpakXEdN5bewePwvllHTRi6bamlFIuMXjGcvx4xLIcW8pzpcOm2YktYgLk\n7I6irvmP49YwJSZ5shmaOaOhoaGhoaGhoaGhoaGhoaFxBaF/nNHQ0NDQ0NDQ0NDQ0NDQ0NC4gtA/\nzmhoaGhoaGhoaGhoaGhoaGhcQVy250zEWNiTZu7KoM+a2qAPS56WhP9u0vP6jIJWup/Qq6WOnEB5\n1cKWN+cM9LLVjY2Ud5WwFevtggbQQeih7dwd6JiWVpxrWR20/+6HWXuWW1FhxF4u0Irt+461+kkJ\nuC/2vtCbdV1im0JpbyitvMywturb38i6u6GjcwhkLfF7wkr7znehX7Sx5vOtKYK2O17Y2h3ewLbg\n1/33ThxTALvd9L08fib9c6YRH3oN/WiG3o3nu/W5D+mY8Hj83d5e6D1H3Pc45f3yyGNGXCj0nwue\n4YY+bkEYm7au0Cj3dx5Iee3VwqL5uTuMuK7iLOWV7spWfQUrO0xVc/+P8t/zjFj2pXD15/5PVl/D\nNlNac1fsZT30qCXQav7+8R4jnvYU+4MXi3vrVwZ9f34lekU4vMNWicOehOY2cp6wATRp5q99BOPj\n6NewlR6z2KSTFv0NZN+RvHzWow+aPciIa0X/h6qDJsu+IejnE8hyf4sgV2jmrex43ksb6iYRx99v\nthaFvtcnCs/bLYptD6Mm4Xm1tOQZcXM59/KIFbar2V9hzlqLnkUVwmJcKaXCBmNsSZtROx/uSyH7\nHpWdQg2RFuhKKdXTgdrp0R+9QOpyuEbbi74IUTdCn195nMewz1DuVWZJ+I1D44y877i3kWsC5oG9\n6KNktqv3T40w4pIt0FP7juOmHLIXhU0AxoSNDdfx2jzolx1k3x8rrLkeidznR1o/u0ahf4+XP1t3\nljftMeLWQqzHPZ1s+y2fjew1Z+5BErsMWvXqU+jrYWq3o8Lnc38MSyNiIep84fp0+izpXtTAfsL2\neO9r3Dst5Z5xRpy3GnbkEQuTKM9B9PA48RN6H/Ru5HtzJh1ryOS7UvGBSPNO4rGd9c1JI/5x2x4j\nvnMZW7+e3YleN0PmoFdS7akyyku+FfWg6Fes2y5xXpSX+jjscdtF35aac/x99t6sybckbN3RH8LK\nhvcsGZtwvb5BOHfHIJ477tH4zNkN/QKKq3k9D52JngbOzohtbNiG3dERc7iiGOPFzhl9CsqOc93w\nGoweNB6R6E1w4f1dlOcp+i3kbcGzGfPcrZTXloh1zd0dvb7OfP055ckecCc/wj63uY2tn1PuHqf6\nEnL/ZbYPz/kaNuOyB17EdTzH5DO5lImeiYdeXU95BVWwt520BNdl7cS9IHO/RT8LqwLsdTq6YBts\n7qcl+wHKHlpyfVNKKQcHYfveD+8+FRmnKc9vDNZZ3zCca/q6nyivn6jzLQF4B2tq5D2B7OthaZz5\nfKURP/XN63+ZZ2OD5/v1A8/RZwMT8W6V8Rn2jv7uPCbcPLDvaXPAGnLg/W8pb2YS9n2Vol+a7OEY\n6sN7EWuxEP2yGv1dFtpzfQkXNT73f5in17zAdVfugayt8W5aUsN98Q4tx7kHDMHmc+f6w5RnvheW\nRlMGzisyIYQ/FGPa2h7vJL4TuJ9KoFj/ZU/MtkruCdSQib8l+8qEzOVeTt2tmHOy14/sMyPXIKWU\nKjm/14jlnihkDvem8Y9KNeK6Gsx5Ly/+jaLVFzbtsjeS7CWmlFLWDrgv1ce4f6lEwMTIv/xMKc2c\n0dDQ0NDQ0NDQ0NDQ0NDQ0Lii0D/OaGhoaGhoaGhoaGhoaGhoaFxBXFbWVH0C0oCwoUy3PncQlMq2\nclhtNrez7XB3O+hIPsNBkao8xnR1iXxBO7QycZ1rfjxgxBOuHmbE/ayR15jNdDFpjVwovjvYi2m6\nLg6gnJ3IgXSgvpmpWHFBoJY2VeHavePZequtDJ85CcvpkECm0RWXVqm+RH1RnhFHz5hKn00pxTna\nOeD8ZyxNpbyuFtirDbl/jBGffeoHyis/DSqxZyIonu5OTG3285thxLXNsPtrrcD5SPqpUkoNTh5q\nxNbW+L5Dy1+hvLjxsEVNdIQlm5UN/xbZXAP6ddiI6UZ8dPlHlOcUAtryxg2wHg8XVqxKKbVuN2jB\nI+5+UlkSnQ2go/YzzQlvQXVuLoJsr/IQSz16O0DFqzuDa+9/G9s3NpeAFhsfBVpt/SW2CJz/0jX4\nW8LGeaQDbKClHaxSSjVWwJ5S2kDL8aWUUmXbQCmXNUBSKZVSavcr24xYWuPGDIqgPHdhq1oprPS8\nhrKlaV9S8JVSKvEBSAHytxynzyJmQe5Rcgi0d1tbb8rrbIQEo6sL88UvykTDbEUN8/WFHXl350bK\nO/4mbIMDB4FO+9Gna434npvn0DGPv/yxEb90y2IjzrzAVsMBHqAP557DfR/76ETK844F1TT9M9iH\nJtzFts4tJbhnTUXCxthk81uwAVKrwGXzlCUh5RNmqQdJmQTV3MGXx1X5b7k4v6shpag32Uf7jcG6\n21YDinrhxt2U55aANUVaKLdXg+orpYxKKXVhJe6lizvO+8xXxyjPwRa05N3nIN2ZOXQo5Un6soOY\nR2YL5po07CvkfbF2ZIt3aduthiuLQ9YcKclSSqmS3Zg76ccgGes1+X3bCctsKSmtPML7m/YK7CGG\n3QiZyafLV1OelDjXHAddv1XIxbMOstzGxw17iznDcaP6mda7mCRQz+vTIOGOvXME5ZUdxLVbO6Le\nVpxma+ngSZCdFW7EftBrKK+LblFcvyyJkFmoG9VnWMoaEIn9TPAM7An2v/075Q2Ygj1CzjZ8lrhw\nAeXV10JeU3QMNTN4+BjK6+7GPPULnmLEp7/6xIh7u3kc+Q6JMOKy46jvZpmolFgPuAvrRdExlt43\nZqI2+o/DfjjEZBlfdwl7LLn/HXzXKM67gPGikpXFIS3pbdy5DkjpUPRNGKut1SzvdnTEHqmzAe8h\nQx8YS3nBB7AvOvzTH0acEM/SjMgQ7A0cxR5QzuVd647QMZmlGIOPL19qxOHXDqC88guosTUnMK8q\nCniPJZ/DyQ8gSQueybIPqQnNF/byTsIWWimlCneiliVMUhZF5A2QSlYXsDzrgydWGbGtDWpKUihL\n72XbhbWrMRevWzKF8uQc6+oSe15TG4z6UlyvnRfGUc1pPKc80c5CKaVSYjBHbnvmOiPOWX+B8mJn\nYf879d+4z/9e9CblPfM+bMUPfPyqEQ9J7E95nmIvGjfpZiOOnM7jtzyNJZGWhpT22zjzXJStOspE\nGwdPU83vqIOMz84NdcUzjn9HkLIm33EYC4dWcj0bMAbjvbsNvynIPVZDGu+d5H7kwmqMR0dbli/2\nLMK51l9EPWyN20R5nY2oKVLS3VLCY84lHLIzOx/sb1ry6ymvS1zHn0EzZzQ0NDQ0NDQ0NDQ0NDQ0\nNDSuIPSPMxoaGhoaGhoaGhoaGhoaGhpXEJeVNblEgJJudlyQUgPnMORF+HMnfEdB8y7cALpm6aVy\nyvOPAC1bSmDaO7kT8tBIdDiuFRRwKUOqrGf60Ij+oI9JJ5k313MX95GxoE5JOqCvqTu2dDHxFHRH\nWzemEEqqfUsRaMnmrvAmoxqLQ9K3m+ov0WfSuaC3F/f66C8suYiLBR0t/rZUI374y9co7/P7/mPE\nicLVyey6VVODDuTDZ4EOaS+6aqcksVuH7Mb98T3/NeJlnz5DefUl6PotnbvOfcBdz5MegCvJo7Mg\nzfAwSbBSmjEuBs/HuRbsyqK8R1fco/oK0onI7CxSWQJ6b+L16E7fE8BuKi7ClaJkF+bLzpe2Ut70\nF0DltJqFsV68gR23AkbBbcnWBdRQB0HlS/+VKZj+4Zjn8nxkB3al2PVm+DQ4SnSbXA9GLsUzrD0F\nqmrg5GjKS/8cNOKg8RFG3NXMcionk/TD0kh7B5KduHtYTtDTg3PxHgyaaOlxdkTzFk5ElecwFqwd\nMimvqxnzuWcgvrsug+mfg+4Bdfrgu+hw7+qI+pX2B9eNB2fNMmLpRiCd+5RSKmgcxkh7I+jHZhmb\njQ/u+8D7rjfivN2/UV6rqKM97X9Ob1VKqbC5CaqvIB0HJFVaKaVqjkJCa+uJ2tPVxNcr/7dIUy7m\nb1sZS2i7WvAMizfgGXgOZxpx7QnIFBuqUWvbxPrpkPnX606PoNjKtVQppcbFow5fN/cqI5brvlIs\nYZZuXGUH8iivvQqUdKsESE8q9rEM0zmSv9/SOPDeHiMe91AqfbbnHcjGpj4HyWvNed63SDlBWyUk\nhmlHuFaOvxOOa/L6pySzRiThZkjFqoTTg99oSC7c4lg+/d1La3C8WHPdCtk503sY6kZjDujkrdVN\nlCclN9G3Yr2rz2bJRdFO1J6Q2ZAX7X+bJXcpdwpavsn84+/i9CdY00NHMmVeOpX98QHk8EMXskbO\nKQB7oGqxhhx77QvKi7kTz0bWm6KjByhP0t+lrNAtTuxx+7PUq7EQ62ftMZxDbgmPt3DhLNM+AO5r\nO1btpbzhAyDNqDqOcRQ+i6+99iTWZzsnO3EMS9j6GtLNyCmE99uNGZAa1FyE1NE7gWVIx16HxN5n\niFg/d3M98xUOsin+2Fdd2sr7qnbhyhQu3GfknK9p4rnT1Y3r+OVtuLtc/wTLgqU8RDraOor2B0op\n5eCJe+Es5BJpX7L01EbIIYNSMA/sfViu2Zxfp/oKuT9D9md2RHv2uxeNePcLcCUa/Wgq5T147UtG\n/MKLdxtxt2m/IGVNbm6Yl+Oncd1tKcG7YMBQuPPt+xISsTvfuZmO+e+dkGw/cQ+kgz8f5veH76bA\nTerxRxcZceoAlrC1lGE9lu+fV98/m/I2PY/2DjZiLm75hB3brhbvX30B51CMs4YsbhHS24P73t2G\nsd6UwxLD9nLsYyr3YF13S2bHSCsbzCUpV3KyYzlVQwbWHtcYvDfkn4KMPn5GIh0j9yO+ITjm90Ms\nufv0Dtzf1z971IjL9+ZRXquQM4Zdg/1lRxrX6LIMKdHEbwLmOZGzFi1A+vOrgFJKM2c0NDQ0NDQ0\nNDQ0NDQ0NDQ0rij0jzMaGhoaGhoaGhoaGhoaGhoaVxD6xxkNDQ0NDQ0NDQ0NDQ0NDQ2NK4jL9pxp\nFtZPZvvecH9ox05thIYrYRTbg7UKfX4/W/QmiJ7KVnAtQh89ZgQ0e21Cn62UUq6J0Ny2FkPL51UB\nPddFYZ2tlFLZ5dCErd2+3YjHjmK7wPEJ0JEVVUM35u3KfShCr0VecxHukd9Qvvbs1bDps3GFhs7K\nln8T6z8sQvUl/BJglfzO7f+hzx74FBq7ilOwnx04ki0XQ2ZAU25nB817ezvbV06/C/58Ust9Z+z1\nlNfSAQ1pTw/6jcx+Dr0som8ZTMdsewka3nVC/+n28DuUdzIXNrX3LoauU44DpZT6/T7oTl9ajb41\n/1z4KuXJ/kONQoMpbROVUiqxjfsjWRJVwqradzxrrQu+wXWVbEbfEYdg1ji6i/4Oja3Qwo9awvOg\nuRy6WNmTpbKa9co1r20w4gGLMMZk/5iBS4bRMdJ2LmAUaoCPD1srZx75+k+PMdvl+V4FfXV7Fa5J\n2oErpZTvEPRbqBM2sma72YAJkaovkfgg+i80l7JOt6EONadBWKHK56aUqT+PqMvSslAp7m3R0wOb\nUVtX1vP2E3r1lPvQGyNkA/7uTf/4Fx3z7O23G/H206j/Dw9cRHkF26BDt7ZH/fcbzf0hCg+jb4Ps\nE+USyVbVUpdcfRbj3tFk15yZhp5ZgS/OVZZE7Wn0d3Hpz+fX1oR+E87CRt7cE0f2Geiow7MJmcw9\nSFpr0W/BbQDWPqmnVkqpTtHTJmoO1ifZz8Y3hW1L01eil5FcV28YxvbljcLusugiap6HqadJ2Fys\nEZ3NuA/mfjuOQVhP5fwLmRNHec3F/P2WxsCr0R8p/Uvu62Qn7F5bytFXojmXa2DmdqyZzmKdiPL3\np7yqw7DWzslALY8dFkV5ez+AfezoJSlG7OGNOnph9090TEkNns/M+eOMuMc0RtJFT4iwUWIN6f3r\nrndl+/NwDgP4muSYbi7EPsjThdcdt9Ag1VdIuhU9VLpN6697AvaoTqKXh3kuOnujT0+TN56vtHZV\nSikbB/RSqz2D/iSdte2U192FXgwBk7Ce9HahbuevZVvezlrUgPO5Beqv4ByNPkyF6zD2BoRwM58j\nZ/HZxBD0zWg07Y0T7sBcb2tGXWsu4b6N0vK2LxB/7wTxL9PzEc+u+iTqT3Mer5/Oot9ldzuegUuU\nJ+XJvkL2omfYmH9w3VvzNGzua05jD/LaqlVGvH71e3RM5kH0IRwwC/UlbNAsyruwDn1XvJJhoWzr\nyn0rM1bAUjhgKmpFbDD3dqs9hWfnOxLjtmAd99FxH8B7CUvi0nn0FvHM4143sTOw/7cXVsYZn3Fv\ny4VjsT/a8BX6zRVUVVHekkw8+4xc1NZF7/I+5d/XoQ/koIiTRrz4vf8YsbU195hc9h+M/Yvi/O65\nmfsGBVwVYcQ/v4B+MXd8+CTltbWh3nttwxh9afHblPfslw8a8W+v4j1V1nellLq48ZwRW9oOXSml\nOoQNvb2pp17VQVyLYwiupfyiqRebwLjn0NMn7f219Fl7K/YGoTPwzpkwk/v2dLeitlcfx/yNnYJ+\neLK+KsX7Divx24OfqYfsH8fxjKWVtlMo9386cgw1+9Tbefg73dwHc3Q89jE+KajLLUVcU52ceb9u\nhmbOaGhoaGhoaGhoaGhoaGhoaFxB6B9nNDQ0NDQ0NDQ0NDQ0NDQ0NK4gLitrkrZfw68ZSp81CZqj\nRxMobL3MLFKVe0F1kxbSBSYalKRuSUqwWaI0MhYWhK6xoJTPvxV0uP7vsv2qnQfoQ5JSNzaFqYHN\nZaAvD0sBNTxkOkuwrB1w29yDIGXq7GTKcz9hE+aZjGuq/oOvqTqzQvUlzr79ixEv++R++qyrC1Sr\n4JGgUW9Zv4LyKi9hLFQ2PI/ymQAAIABJREFUbDHi6996jvLaykAdlFS0+2+8kfJufAtyqqz1sBe+\ndeazRvzFLy/QMcNnQ+b0hbDfDhnPPmRL+uE3x63PrzRiaY2olFLhvqB4drVDAmKWsR3Pzjbi62aD\nnrrkxqmUd3A5rBxD/7tAWRK+o0BV7Wrl60ieBymEUxAoe+V7cynPJRSU6ORbcc/KTFaTbmKOSbp6\nbTPb/KYuSzViaRUvbe9coplS7BqJfzs4gPLX1MQ20B7RsMKU1sVf7GRbwfn1oGxHjgaFvP4Cz6ne\nLlD3Y26DjCv9A7ZBzfgQUkT/F9nq0BK48P5BI054IIU+K1gjrGnngRpploVkrMIcG/rETCM+9+5O\nymtowZj2H4l61lbBtHlJpa49C8ro7mOQQSyaxbTsAA+MpSdeuc2IC7ew5XbyI5ON2N4eMoPKS2xn\nKGU5LUKu6hTMc9FWSLfsHIS9qWndibufpXqWhI0b7pdbNMuaWsR86aiFzE7SapVSqrUCa41rBOZE\nRwuvIa1CUiMtyzsbWEohpbJF20Ct9xO02l3/4/ExehHukbRdN9uW1lZgbkcMhRzNLLerFva7FdlY\nLwpNlPRJt0HCINeIS6tOUZ67vLepyuKoOCpseePY4tMuG/uRyoOYL1KSpZRSCQNQe6vF90mrTaWU\nOibqzJFLmCMujkwbn/4Cao6VFej2bW2Yl6tXcw187NWlRpz2A2rDwEW8Z5OSwIbzeCZtlSwd9x4B\nmY/cq9iNZsmFtR3GXEsp5qxnMFugV5xEbfeZlqosCbl21RXz3JHyvobzGI9uSTxu01dgXiTcg3pV\ndpylRw35WFM8xH7OLPnP3QJJUdYW1PTgYVjD5bhXSqmPNm014lGx2G82t7VR3msfYI9x/ejRRmze\ns4weClvZb77Bd9//4mLKK9oPOZ+UD0lpqVJKWTte9lXhb6MuF+Ms3yTF8R4E2U/wNOy3u0x1yt4d\n599YgGflHMLj0SMWz7/mnJBylbFMalAS/taaXZi/Xz3/vBHv38yynGUrPzXi6mrYm9fXc17k1alG\n3NmJv9vZxufgMxZjxtEXMpKeLpZSxC2GJKtw3xEj9hwcoP7/QqJoaRF77Qz67NQnaCEQkYo8n2HB\nlBdVg1o0NTDCiH96gt9H2oVsdtZL84z4jZsfobwnV+HfpftQd5+eu9SIH3yRrbSDB6UacckWrKUX\nT/I+OWhytBHf99kbRrz12f9S3oZjsD3/fA/kSkMKd1Cejz8k5QnDRHsC8c6qlFIhCX0nE1VKqbLf\n8N7QY5K89op/9yvHs4qeGU959RdQb6tz04zYwbSf8xWycPleXXeO9+/ytwPvkbj+oNF4hy89ep6O\nOb0H9TvUG+80ZlnTjIloqfDGO98bcZNo/aCUUk9ee40RV9djT9TSznuxjo4/b2/Rblpnrf5faqpm\nzmhoaGhoaGhoaGhoaGhoaGhcQegfZzQ0NDQ0NDQ0NDQ0NDQ0NDSuIC7Lq3G0g6tHdwtTdVyF9KG+\nuP4v8/xFt3rpQOLrxhRZtzJIo85lQQrl78GURBchi4gbv9SIm5tBOQucwg4IlzaC7pQ6Hd399+84\nSXkpo9AhOnQWZAV1l5iW3VkPqqlXMihNpb8x7a1HdIyXtHE7T6aMhk1llydLw29ihBHXZRXRZ95x\noND26wfa/JzXHqe88gzIMRIdMS7Ksw9Snkci6OGZ30EWUWSitu97aRU+E85Y/1kE+dOL939Ex9gI\nV5lHngM9t72VXZO+e/JHI5aU46oGdv+4/Tl0kP/iUXTPl+NeKaUmDAZ17vPlcMoYHs0OH+OfnqL6\nCg1ZuEenfmX6/7QXrjPitHcg6QtIjaC8H5772Yivfw5UUHOX82Lh0JH80BgjdovzobyGDDzTeTc+\nbMR7ToMaWHGQJTRxMxYacU0lqMLSXUEppapPQSLRJuSGiaHsoCEpn1t+wffd+Ox8yvv9Q7ig+E+A\nU0l9C1MNY2YwPdPSCJmN+Va8K4s+s3XBuHMPB3WzcOdZyuu/aJARNwjZp/lahj8I55Z+QuoXPeka\nysvZv96ILwm3CTl3pg8ZQsfsOY+amtIflgFtw5sor6EAc7MpH3R13+FMZz7+NeRkoWGoIf5j2dWp\nvQ5U04iFmJdnPjtKeTFWPIctiTYhu6o9x/LcoKmgOpeLsZ95jNeGoXFYh6ztsQxLuZNSStkIOq9k\nGNce55rnnSKkKEcwJs5uBaXYLJGwEk5JUj7WXsN03viFYryJtfDcD1yH/sjC2JkxCu5C7m7s3CEl\nE112WBd9TBT82rN9K/eNuwPnKCU/SinlHA7qs3Mw5BLttXxvCjZmGPHgx0DlP/8uU9ZzKnAtfmJP\nY6ZOdwp3vLZKSByqjmB8Dwxnt74f/ov5u/i5a3GuNVwPAlKxF6s8LKRaIexKkbsWc3vQo6B8t9Wy\n24SjF66jUbiCleaanptkxrMhzt+GlGR5hrHE8MzPGJ8BPtg35u3NprzoadjrHX9jkxEPvJ9lp11i\njKx/B1KhoZHs8Bc1D5Ki5nxIrWJmQ4Kas3M7HSOdQnPFWOk0OYEUiVYDHs6YV5/s4PH2/FO3GPFt\n98KtTu5DlVIqZy/mbPAAIRcw7Um7m1lCZGnYOqNeD3mcXXEyf4A8yMYOMsDWSq6VLSWoe1IC2mJy\nnpIy3oLfhLvSHSyPt3FB7ZVrq504fsYDLG0vTIdrj2co9hJSwq0UuyfmbsPexLwPktIZR2fUeBsb\nnrNFx/cbcW+PmHCsuFN1wuFQjVUWRf/52P/WFJ2jz6RbWlsFZOrpHxyhPA/hJvXHCrxbDEzkd7rw\nazHHslbiPa7XJMNZ/eR3Rrz47XuNeMqRPCNuLmA55GcfQ7ZmZ41xdPsnb1Beby+e1fJF+O4nvnqJ\n8uY4oj3D+ifQBmLWa88qBh6W3GuPu5rbapidGi0N3zHYY5vljFJy3iukdWm/nqG8IYuxv5FulB5J\nLB+WznkydjW5YLqEY62RbmulRzDOpPRJKaVe/x7vIQ9fh3ekpAhePzPFHnpUHNaCMB8fUx7eSbLK\nIIdcfC9L/mtP4rMLa4RD4hB+d+nI4bpkhmbOaGhoaGhoaGhoaGhoaGhoaFxB6B9nNDQ0NDQ0NDQ0\nNDQ0NDQ0NK4g9I8zGhoaGhoaGhoaGhoaGhoaGlcQl+05EzMGulOzJrvuFLSLIZOgBzTbvkp9p/ys\nKIM181Ir2CS08SMmDqQ8r3joLnPPwlZQ6pp7Olm36ekBPb08h3CTpqyhCNrD2nToft2ivSkv60to\nmaU9Vm1uDeVFzoWO+MIv0J7Z2fBtbxS684TJyuLwTMA9Kz/Keuu1K78w4tS7YHFae5Z7KRzah74X\nSaLvx5n8fMoL8YJWMHZcjBHHFLP92+e7YAf60bp/G7G9C+71XW7cN0LKST3ioE1Ne/8Q5d2z4j9G\n3NqaZ8Tv3PkB5f326R4jXvIvWF93d/D4efcfq4x4sdDV+o3nfhjv3we7wOUb5ipL4uJm9AFImpJI\nnx1YvtGIO4RduIPpGaZOhrVq6S70wDDbvtak4bgTb0PLXF7H2tySWvQZWL/6PSNuzME8CJvL311Z\ntMeIO4X+vWj9RcrLKkJ9KK7B95nnjrMj+lcseeUGI5bWrkopNeYm9A9oqxYWgFNZz9vbzZplS6N8\nT54RS0tvpZRqKkY/j7oc9IayceF5IPX55QfE903nfjk532HOxt89QXzC19hejfrjJqx9WztQK1fu\n3k3HxAejptRnC1veCrZbbylAnye5htSc5Po/ehlsJGUfF3sPF8prEvpwaQ0fNJg1/Tk/Q4fuu4z7\nAvxdBEzFele+m+3q+1lDN90qrj1uDPdwkBb1Umtt1njLHhEN6eg3ESys1pVS6o8vD+NvjUbd/e51\n9EBYPH48HVOxD31HPAbBGri9ip/hufUYR4cy0GNlZH++piBP9PWQVqdtndznokz0ZnMIxPO1MWnG\nfcexRtvSSFuBPi4JS7inkpM/zkv2XrL3ZOvr0Bm41+Un0VMp9j7uX/HTzVijbhJ20m0N3AeoaBPu\nb/+bYJXc042+YIOjuA9fcic+K16P4z1H8JrbUorxuHc39jBjRyVR3oB7UZdOvYV572DqxeY1PBDx\nQPQL6urhHmZVRbwvsiRk3ykbRx4/3uL684Q9c5epj8uxtegdJ/vNHX1rL+XJHi8pyai15p49jj7I\ns3PD+uTkhN40si4qpdTIibBkHyb6NjqHse3rPeIaT61BjZP1WCml0oVtcI94HqF+bCPeIPae/o2o\n9yZ3cNVSyOuppVF5pNCIOxJ4TsieeCX7cV3NubwfcfDHffcajLFZ/3/1jERt8olDD4xzXxyjvMSl\n6JsxOQ3vIfb+sLj3j+d5XnYeNaWlEXtja2snymuoxn5O1v/+8/gFoLUF35G3AzUkZtZsyvNJwtiq\nuYhjPGN4XLib3mUsidJTsAs3v4OFTcZ9ylyNeeU5kHuQlIteg6HRqCk/b91HeY/Ox/xbfwB9ayYN\n5PdFZ3u8f9Zk490noD/+bmN6NR1z94rlRpy7H72lqssPUJ6nL+rkTQ+jT9Lu/6ykvJ8O4bmt2ofv\nW3EX236PHIG9ckct5kBTJI9z51BRE6KVxdHdhvrTlMvW7h4DcN+qj6FXS+LV/E4i95RybXD14LzC\nI3uMuEv0tfJKDqQ8OZ46RN83OXeaC7iHyy0z0ANuUAJuVFER90RbfNVVRjx2MdbclhKu0ZvW4F1o\n7hTkucXwnLLzwh6hbQPea/rZWlNeRS0/VzM0c0ZDQ0NDQ0NDQ0NDQ0NDQ0PjCkL/OKOhoaGhoaGh\noaGhoaGhoaFxBXFZWZOkNqYfyKTPPAXFM3MbqDtm2UFTNmhR/YR1Z7eJ+iotcT2cQAHs7ea8hgJQ\nkroE/bNkOyzx7N3YqloJ6tPKn7YZ8WQTBS5YyLNqjoF2b5Z0SSs9G1fQYJ2c+e8e+QZ0u8QU0J/P\nH75EeYOv5vOwNBoLQYd/938/0mcPPQpr4+JNeMYnctj69fYPHjPiP16HJfPS9x6gvI52/K3PHvzK\niB/5ku3lQv/9mRF/8gjyhkeDfvbqL7/QMWOE3eTvb35oxB88tozyzn+11ojD5oH++PyPbM1ddBq2\n09++uMaIb39zMeW9uu5TI971L0ij9h9k+7gnVpmt8SyHMf8A3bVwE0uAht4Nit2hD0H/dItn2V7B\nXjxTW2ERWPBrOuU1VUPWMOwRSCGaTZaUVUdBa8w9jO92FdKYwHEsG/LxB4WwpSXPiD8//gPlLbge\nFq6hFzDna5rYPvNAOu5F/lsYe+Y6lPo8KI51Wfg+sp1USvkMZKmapeEurASzvz9On9l7476FzwSl\n2ta5hPIkfT9kOu6vyUVSuUZCYthUCnu/3gCuZ74jIAnKOwqZjrWwrp85dCgdE+wHKqc8H+cIllw4\neKOW56wBldveliUITj6g2zulYtzmbWS7Zom2SoxT12hP+qz2dJk53WIoFPbJjn5sE23vheuVa0N3\nC0t7bMQaUiYkhmZZU2MVxvvA+4Q0r5Ztkqf8e54RS+mqtEBf9fvvdMx08UxTQ13VX0HOpRtnpxrx\n9xv5+8YIG8qQaZA8NRcxPdg1Cs+qTkgoy0/zOCdr5Kv/8vT+PyNoOMZ9+X6W55Zlo0YMXALL7XPf\nnaS8wFjIwWQtcQ3n8fjIq0uNeM+noPXPW76Q8nx9IZvt6MDeqbgMc2fuAl5zbYQUZ2IKxsg9QSx9\nKEzH/XUSx0jrVKWU2vkq9kjtQiY7dsFIynMMgPSr4ggkcjZW/P/8gpJZXmVJnPgccr7+Y5nj7xKJ\nZ2DviOuNFxbqSilVdRzrWI+QiPmN5vtSfhDXKK2aJbVeKaVqhCzTM1HKNjA++i9mH+PctZDDXH/f\n00b8weOPU17sPMi4Bs2DxX2/DXwOUmJ4XOzlouJY/ulajz1rsJDoFW/n/b6VPVPyLQ0HISN0j2bp\nlazzNs5YN5pNEuSo2dirFPyOvXeleL5K8ZiOnoH9oZ0n79+7hDRz2I1/bg2sFL+fxKTAwrwwC3vK\nvL0sC+5qwne7RqPOFR1ha2lre9Te2NnzcQ3tLFlvLMF655eEcVF86A/KKxR7wOmvc334u2ivwpoU\nOIH3fS4ukLPU5UNqO/bmeyjPwQ/3yTcZ4/FakwW8nLOvbfzViC/t/ZbyWsTa8/7z3xjxTXMnGXF9\nM6+lVlYYB1ETIFf64t5/UN4t72O9O7v2tBHHjOY69OE/UeOzD+Dd5J7P3qa8l2643Yj/9fPXRlxZ\nxutsZ2O76ktk7sXcD0tkWdyFdZA4hw5ELWkpYdmjlA66x2I/l7VlK+W1iudj5YCxbpbyS7l8azH2\nRH5jsF8/svcgHSPfJSXixsfQv72H4RpPfQQJmoc7S+pnzhmD8xP7t7qLlZTnGIC9VPAUnEPlHt5j\nBIbw+5kZmjmjoaGhoaGhoaGhoaGhoaGhcQWhf5zR0NDQ0NDQ0NDQ0NDQ0NDQuIK4rKypKRvdhJNn\nJdNnBXtAnY6fC6plyU52A6oqw3f4R4DG02Pi4PvHgP4ZNwDfV3WkiPIkdbhRdGGXDk9WJlptRgno\nvNWNoF85mKj1NsIFxWsEukV3mSh1sttzSRoo7oGeTGWW329li3OKS4qgvIYLopv8fGVxVB1GJ/zb\n506jz87sOGfEv59DfMcsdjixsYEjgZQ8pdgwHb6rC1TsSD8806I/mHIWkYLu8tFXgQJ//RJQen/4\n9GU6xkfIL9ye/h6xSb6z5sudRnxDAj5b8xXLjpa8+7ARW1ttNuLMz5m6PuQJ0OBGPATqbEIhd9te\n9RAkT499m6IsicItkML5j4+gz/JW47kNvhYyBukco5RSMddiXmWtxTEhc9j5xdEL43jfK5uM2NuV\nn3XgNFD2tu0GfXbGNHSxr89j+u2+7+DMNWA+akpbB7u8NV2Cw0fguHAjbtzJkq5xiZC69b8TMo2q\n41w3Kk9gDsju8YffZMqoj6Ae+r5oWZcfpZQKGIXzrTuzhz7rdkFH+p4e0EKbilhOVpeBehE8AZLI\nwl2nKU/KRwIS8UxsbblOVTaiC32UkAb4eMEVYO/Z83RMWATuob0H5FhN+TwnbJxB//SMBV29p4Ol\nVcX78P1RUyHtCJ/Nrg/N5XBWKN8DCZbHFJaGOvn/tUzn7yJUzJfSHbzeyQ7/1oKCHziZKbbH34fz\nQ1Qq6p9cg5RSKlhQZB3dhANJ9jnKs3PF35UOL94uoOZmpLN88dE5oGw3ZaJu23mzI1HsTIzZi5vw\nnG67fRafg3ApsBWSLv8xLBVsrQQt2XsEKMWdDUzXbi9n1yhLwzEIa5q1yeknTFzL6a/h4pJ8I8v7\n5PNy9MW9bshlB5DKA5DEDBqF8dNmcsAr7dhgxJdWQPYoHcJ+/vh1OsZdOGjs+Bz1zG+s6b4XYe8z\n+Fa4p+z5aA/lxYbhmdh6geKftiWN81Iwbndvhixnxq2plFd7jJ3ZLIlBiyE3achgV54m4d4hZUhF\nm1lWLqWYtWmQS3gksrzmhKhRUnofY3JicxRSzmZRDy6VQarQ3cr1r1M4Jb3+AGRr+01zVjqHBSSi\nHkiXRqWUco7GNfVvQa1uMbnpBUTgGiU9X85LpVjy3heoFHtUV5M0Vup1qw5gXU9+5FpKa23FHJMu\nscGToyjPQzg0lfyGdgiNWexMY2WH1yMXUVNDh0npIc/z0mLM39OfQHLnaHI684zDvlTKw83ysYBU\n7JPzDkBu6BTEDmFSanX4O7QuSPnH9ZTXXs0SHkviixXrjfiNOSxT/2oZ2iKMmosaWpnDMq7DPwp5\n3wg4TCbeO5Pydvwbc8nOC7GUgSmllKNwA0wQjmYnj2MfOfMp/m7pypS/9oIRJ0eEU15dOT4LCsDz\n/OHbHZT33ExI9O09UE8ztq+mvDuX32TEu55/xYhHP3MD5fU48/uopRE1CmPOLDWOnYa9gBxLVed5\nn+8pJPXnPsUzPVtQoP4KU+cK2XYlj9MmMTdrRWsD1zOQ8yVNZ9dBJ/HsS7ZgnpeY3g08hPTUNxRy\nfbdEfq9sEeuno/9fu0w2ZKImyPN2S+L1pDmb640ZmjmjoaGhoaGhoaGhoaGhoaGhcQWhf5zR0NDQ\n0NDQ0NDQ0NDQ0NDQuIK4rKwpuwCUJttipi2Fh8CloL221YgrGtiZYfACyCykRCkkmCk+kh4s48Bp\nTBk99SUoUgGi27F0f7IxOV5YCyropCRQn45lMyXdaTOokC3toFhLqpNSSnV1g2rv6gCa2oBpiZSX\n/TuooK3FoEQ5CYqkUkqV53K3Z0sj+kbQxXLXsUPM9BeuM+LJrZA8VRwppLzqQrimSKeV7m6myX7z\nKLqlT5mPv+uZ4E95tRcwnrau2mPEq16B9Mg5jOmtG17eaMQPff4Uzsee3SDuTwFt/NNlH+OYla9Q\nXk8PqMT3fvKkEZ//cDPl2dqCoufiifH40/NMLx89NEH1FXxT4Bxx6lOmgnp7g+J6aTOolmbZXtwt\noJOGTADVt72mlfIK1oBKHRgkOq3nsuuBbxPOSUrY3ER3dqcAlpdEDAU1tLsdVOzZw9hBQ9LQs34D\nDd3dmd1xkh6C40BrI+qLSwRLd6RjjKQyJ85jOUzl3r+mXVoCvb2oKzF3sESiox7U5IzP0DXexoWf\nY/QiSJSK90Fq4BRokvKIuldyGt/nkxhPadaCvu0UjLHkM1xQ21exDHXo/XcZcU8PzrvOjrvxn/gU\nfzf5Jjxj39hBlGdjA5po8Sm42Tj48vP2jYQco1a4ohRuP0t5dReF9Ovla5QlISnzjiFML28tRJ0P\nW4B6YJZ7SQektlLQdOMXsYNGTw/mSGMV5oFvMsuk2puEK6J47iNvQQ3eMpvveVMujnHwhRSju4Md\nSFrE2tVqkh9KSFfD+kug9rr157EjnR0aM5DnMdBP/f8JDyGlbi7l53PumxNGLJ9V/gaWVSY/kmrE\ntZewX/IbwHXFVuxpqo4jz8qWZQzevuOMOHop7meBoNd7DgmgYyr25Bnx9Hvh6lfw8wXKc4rEelq8\nEWMpOYVlrd5i3kv5ofcwXmcbcyA9velVUO8LN2VQnnN/rsWWRGM2zsHFJIepPYv6kJ2Hez7+vqs4\nTziGeSZjn3LiK3a66RF7zDP5kL9Wmva8k5dCjtElnFUiJkHeUH7xBB2TfjHPiOPCId+We02llBp4\nG+pfkXCN6zTJmpxEXfLMhbzLJc6L8qRLUrOoB7n7eG/s5dF3MlGllIq+GbWp6hjvM4KnYs9Vn4a9\nspUVS4V6OnGv3KKxZ7dz4XO3EVL8gYsw3/JPbKK8euESmSP28uOfg+yjrZldAQs345kkLsK7j9kV\n8siXWBcHz4S8O2MX15ewOVir7YVcTkp6lVIq8gbsJQaIZ1qbxxK+toq+kzW9svZ9I/7qfnY2km0n\nVn4I+dMDr9xMeYmDsC+9+DMkYh0mmcvVL95mxL8+/YkRp1w/gvI84lHjx1+HfVNrWZOI2WnowjY8\nw4+3QUr29sqnKK82TThkpWJf+8Kjd1He2S8hu7L3wTOMvJrrUN5vkJeX1KCuFR3kd7aTmyBfv+Vj\ny7ZPUEop1yjUCPP+q/YkrllKMy+VsPxp4gTMkayzqJVW/bjVwppDh/70swkTBlNeVhGksb1C5ugn\nnqNZFt0oZK4Ri/Den7GS21ZUCEllRzXehTrJlU0pawes1dJBrquJ90TSlVrCPZ5/80jfh3E21pys\nNHNGQ0NDQ0NDQ0NDQ0NDQ0ND44pC/zijoaGhoaGhoaGhoaGhoaGhcQWhf5zR0NDQ0NDQ0NDQ0NDQ\n0NDQuIK4bM+ZgeOgdzx3kHXEXqOELllozc19LqS1dszt0EU25rGNlJuw3mouhYbXxmxxmYS/21YO\nHaJfMDSmsgeOUkp1C41a6hKou1qF1l8ppXo6oSl260a8YdMByps8EHpy39HQBxfszaG8iJQII64+\nA12zvdD3K6WUvc1lH8PfxsVP9xlx4r1spf3K4heMeH4KNJkrtm2nvKefucWIm4V+dMMzKylPaqRt\n3NCbYfmt71HeI68vNeK7P4G9cm0Zekesf2mDPEQNiowQf/dLIw4yWZhH34Dn89BK2HGfX7WG8vYf\nwt9KnQpLTv/JkZRXcAy608p96Emy5O3bKa+1hm0VLYnc73GuLqLPkVJKhV6L3hYxntAbV59jHajs\nxeQeg/niHsA9SJoLoVFvF1pfs1bfTVgTjhYWgZ1CZ99ssoHuFbpw1Y156eDDc8JvPDS8/h04xj2a\n+y2Un8Z98RuEnk+dzdwzKTAFn9Xn4xkWruO6NvCRGaovIS2yW0xa54r90OY6BuM5mm1XazNxbX6j\n0PfHwYnvTXs7NPNNwvb99FusrU96CDUxIGmkEefvQ+8X1wTuu5WxETaQUdNhLepk6sESlYK55BOD\ncZq98TfOm42x5RqBtaCrjW0jL/6yzogdg9A7oPog2yMmPzJZ9RXqhG2k/3i216wUvbpk35vAlAGU\n5yL6abXXY73q7ua1q74U66dfxBgjzj/K9dlOzL/eLqxdsj+OtYPNXx5jLSxczX1Q7L0wN52Ccc+9\nB4ZQXtVpMedEjwUbJ+4NIfsv+Ij1U5n06GaLSkujsQD1utOkG/dwgda+swv1J2RmDOXl/Az9esiM\nWCMu3Mt9wWKnLzTi8r2fGXHJjizK6zcd98DFC3PHdxz2Ku5RrF23c8dzrBCW3ZE3J1Oe7CXWK/Y6\njgEulFd5GN/hIyyVa89wfw2fkXh2VSfRJ6SfNT/HqjPCSvtGZVF0iT4DlQe55tu4YNxNfBT1oPwg\n9xWT5yvrTVgc99h58V9vGPHD16CP1Ve7d1NeQgjui+xHYyfmUdz4pXTM1g92GnFROepG7KAIypN9\n2vxT8Vk/09ypPozn4T0W5yMtu5XitcVazLeRj/FaX7yzb620e8VeIGr2BPqsXz+cl0MweqjUV5yn\nPLl/b6tCT4hT6w9RXswc7AX8k/Hd9RfZir0kHeM9SNiWy16F5v5KaSdwn/wysf7WNPG7RtIY9Hlq\nFP25ht/D3SeKd6Kxkm7cAAAgAElEQVQ+NOdiDQ9bwP0t5fPP/xH3pbeb+4eFL+R1yJLI37vHiOOC\neO4kP4peaukrMdY9I7l3WqWYmx98sdaIxyVwP8fa5bDqnvrU1UZcfjCf8qZPRf+XH9/Eu8CKteiN\n98wrd9AxKf9YYMQuLo5GXHOC99NeQzEmuppRNy6u+4ny5HrsJPYsjVU8p7asxntaqeg5k2LDfXTs\n+vh9MW891omgVH4XshPvrnIvP8KHx6Pca8SPw7podYjXu0FR6DEU6oNelbkXTPu5sXhHke8kCbdj\n7+noyHuxwtOwNC/ahLqx4Tj38Empx5ouz7XhIr/PeYrnbSvebY9vOU15su+R7DV7/hvuM+brxntl\nMzRzRkNDQ0NDQ0NDQ0NDQ0NDQ+MKQv84o6GhoaGhoaGhoaGhoaGhoXEFcVl+VEseJAkxMUxh7moG\nta/hHOztvL3ZJrq+DnQ+ab1otn0t3gGKV20u8sx0wGJB90oKBaVfWngnDmeq3PiJEUZctAs0ca8E\ntu6UdqJrvgT1bnBEBOVdLAZl1KUU1xsylvMazv+5RXbOSabexaXG/mmepZB471Qj3vcyU+6mD4Zl\n2Ve7fzfi139g2zhXL1C/Uk+B1u8QzJTopgPnjDh2Eqjcd3cyvfLpe94x4lfeecCIV7z8oxEvnD+R\njtm6Azbq1eJ5j3mR7fhWvwarvqGRkL34DgykPEm9DJ8NCriTUxTlvb30aSOeOQ+00+p0fo5f/+9X\nI35l/XXKkrC2gdQgcCLT96pPgm5ZISjkQx6bRHmZwoZe0g5P5DPtd8LzsEUtP4Xn2VrOMhzPMDx7\nv0RYYRYfhQWp2UKyqwn0TxthL5uwdDrlXfwasg2nUND/nEO4vnjEgeLf1QXab/FGphu7xIBi7D0E\nz13a8imlVOb3kPKMemC0sjSsrCBBcPTjv+0SBXle8f48I3b2YMmXtCzuZ43f152dWXLR3Q36p2+s\nsDCfylKh9gbkNRVDptHPClTp8Gls2VhyBFTOmiKMETNt3mcE1o36EtReaZWulFLlaWeM2C0S98Es\n+/AagjmcuwH0W2sr/v8M/fr1HfXXRVhNSjtNpZTqEbKDemHl6xLG49bODeOgQ1g2eniwvbqUweXs\n2yw+4HNyisN6Wp8Jer6UC3S18HP3GoB50N2J5yYtaZVSqlbIuOR3tNVwPWirgJTAwQ+yICmpU0op\nW1fM+4q9qKE+Y3iP0Vwt7FOHKYujTdCjzXUq/n7IOvI3nsIHpryLZ2FpayUsNPuZpGEdHag/Dv64\nN/7jmTZuYyOtS/GQ5Vws2sn2uFa2+LtSDlrwazrlyVqXX4UxYn2G54rncMwxRz/UeHs/tlX94zOs\nG+FxkD85BPKeoF8BP39LwkFIsmw9WO6bdwTPxnsExnraEV4bMuR+zhEyhkHhvM6+fOutRnw6L8+I\n56dwbdxxGrVx/lTsF7wTsK84t+kTOmbSQkgWV32A/YuXC9/L6hxQ7cOnwGLayp7HW/Bs7Cl7hKzi\n6C+/U560Lpbz8tAbLNUKHxKm+hLS9t0tsZw+C50MmUCbaEVg58rvECffhFS2thm1aMq/r6W8wu3Y\nExZUHzZiWxeWUfoL+aCzqN8XP99jxNG3DpGHqMoczKu46waqv4K0/a1JR20o+IWlWvH3Yvx0toj6\n6upPeZk/QBKjxDyPXMLSRnsPnsOWRICQjtedraDP5Hp8QdjGn3j0Y8rrEecupUzTn2G5+cXPIU05\n/Qme4cT/3E95uwfgHa9FSOzvWzTHiAu3s7xIvtsmPwT54quLn6O8f9zwohGnvYsWDLH3Dqc8W1tI\nwl1dYen87LyFlDeiP+bzLa9B/+nozu+pLfncKsDSaOnA9Tdm1dBnHZWQXQfNxn6zcB1bwNcU4LiW\ndoz17/bupbwY8Q5mI/ZwEaZ64xyK+Sf3NLW52B9mHd9Hx0iZphKqzwkmiVyruN6mDJx3Vkkp5SWH\n4T2kowZ7h9RlqZRX9hvWHedwnLd7EsuRL269oC4HzZzR0NDQ0NDQ0NDQ0NDQ0NDQuILQP85oaGho\naGhoaGhoaGhoaGhoXEFclvvtPgh0qpw9TC8vLwK9MigOLiHtpc2UJ52IOoSLUktxA+VdPA0qUHIq\naEfV+5iCKruSS4JxZBBofh5JTPmTNO2IufjullKmZcuu6UMjQTf29vOgvE7hSJR5Ks+IfUw0yxpB\nrfR0Bp0wflIc5UmZQl/AxgZ0LDNNNmgWqGmTG3E/Wiv5ObZVgaornZxW7PqB8tas22PEWXt/NuIv\nPlhHedLxas+X+4142UuLjTh7DVM8R8eCqjv62aVGbGPD15Q6Gp2+Y5ZAmrL35fWUN+G5uUb8y1Pf\nIO88/92Hb5xnxJvXwbnrgc9Y+jVzDLtFWBKRS3C/zHTeujRQSAOGQxqw52V25QmNwLwInoHnHuXB\nmoG2Jkg1XIWLWk8Hyx2qs0HL84uFHCP6KtCIj7/zER0TsRC0zpMfHDRis5OM/FtOwRi/m17YSHmz\n/wkXAOm64TmMnYuChsOFqOwspDsxd7CMJH/N5amGfxeNxXhWjr48bqW7SPxSnJe1Pd+bCysgG5Oy\nrqLzWymv/HfU1MQ7QOONSJlNeWnffoW/u3C+EVfZort8/g52n4mZje+QDkP11iYphXCLKN4COYZL\nNDus2XtCTmBli+vtNklxpLwjcDSor8HjmL594RNQ3Mc9O15ZEiUbcR3+U1kC2VEHCq9UzEkHNKWU\nshsACUb4KDjoZR37lvIchMOLt5Bltte3UV7216jPCXdBxtrRBmmtg1MwHSPlm9bWcB+4sOlLypMu\nKC5CciblU0opFXAV1szOBpxfyXbeO/S/GXNRumxJVyillKo6IBwb5iuLw38EamB9PjtxSOc9eV25\n356lvJgo1NvduzFfbE2OGjbOoFi7RqOmmqWiLSU4D1t3PBN7d5bsSMjvk24nAVN4bErny5Bu7EHM\nlPSeDjzv0r15OAcfR8qTUsLzZyBZTOiMoDzPOB/VV5Cyzi7hEqiUUqGD8Gzy1+MaJ9zNbkA5L2Gf\n8sclzG0rkwNSdADWlB92wAnk44cfprw/sjDebT3wDM+9C6l8WwfLP+Ve9oE3IJ+69C07gUj3GFkL\n/SdGUJ50LK06gnkU5sPPIvhqzIHtr2H9mPo4u3rWXfxzib6lYO+Pud9cwO8GeVuw9gROw5gu3HqO\n8oLHQIaWPBhyiSOvb6G8kU+mGnG/fpCD5fzA99pvPNaXZvG+Ejj1z+umUkoNfWicEResw16iKIvl\nr7ETsZf1GYS6bnZmPLAc5x4q3PHc4nk98UnBZ5k/oUaV7cmlvNiF/FwtiZUPQqLk784y3l23wynp\n5mexP1wp5p5SSs2fg7U6bA7e1Tb/k/fuM1/E3j33e0iil9/Ec3HWBKw1b34P96cnb0HbgZCp/emY\ntgpI53p78TwW3c7SqjeXQta07IPbjDjzM3bl8U7BuvvqWy8Z8Q2mtg1llyDn8wtBS4Iz33xOeX39\nvhg9FWOzo5b3GV31qLEHPsN7m9lBKmZIhBGfFjLSfyy+nvIysvHOlHQNWiO49Wd30OYSzD+f4Zjb\nzgHIc/Bhyd6e11Fvcyqw7557UyrlWdnh3D0T8ZtHz5esHfcchPr/xxeQ0oWZfvOwdsL3SXmfdMtV\nSilv03ucGZo5o6GhoaGhoaGhoaGhoaGhoXEFoX+c0dDQ0NDQ0NDQ0NDQ0NDQ0LiC0D/OaGhoaGho\naGhoaGhoaGhoaFxBXLbnTMF+6BU7uljnFuCJPiwnjqDPQKQf234FDIXe7sxuaDAHTR5AeYkjoX09\n+Ru0pHUtLZTn7iQ0+JHQm2Wfg9baOZN7xPQTFpe9wlaw8hzrQP2Fxa5jFXRkZptCqUUOT4DWU/a8\nUEopu2JovF2icU5Ze9i6LTCS75ml0dwIPfinO3fSZy9eE2/ECROgQ3eP4J4dna3QYQ6NhlX55mfe\norxZI2Ajd3Ezerfcvmwe5R3diL4fAwZA0y/10S6erCHcfPCYEdc8+4ERL3hrOeUl37XIiKWdsLkP\nwGf3w85yzuJUI04rKKC86lJYgS751wIjbihjK+3kZTeovoLsX1GbXkyfBUyCBtrRGzpGWzfWQ1cd\ngL6z5oy0iWPLuLAp0On+/iKszYffO4byrIUdckM1NP3+IbC49xjM/Z9kn5m8SujYoxtY23rxEp6B\nnRd09t3d3Pfmt9eh/R+9FP2F2qtbKa+xCn0A/JLQ96b0+CnKC5nVt7b20jbZwdRjo2wX6m216P8U\nPZ410U7CWjvjE8wJ75FBlBcyB/O57DR00D1dfA89BuIZXVyN3lBF59H/Ysgdo+iYhlrU6JYy6IGl\n9a5SSnWI3ig15dDJJ97J+m35/wlkL6Oy4mrK8mrFNbaKnmGXvmEbRXMPhr5CezWvT63C5tLWC31C\nmnLZTtgpBH2UanrwDFtLuN9C9R881/8Pwq9NpH8HTccYkX3Zyo9gHoVNDKRjenrQ96K9HWuhHKNK\nKRUwQfRc+SHNiD2H8BpRn4H5bCdsjSNuYEvZjmasJU5RWBcbs/hZuyWy7tzS6OrEebiEuP9l3sm3\noK2va2Z9ecww1N6rxkAz31nL/U+ObEOdGT4Oe5/WQu45Y+OKPUP4AuTlfo8+EuUVtXRMYDmuwzkK\nPYGcA90or2x/Hv6OsBl1CmXt+/crYNk+JxXz3iOB+5U42KFHVv+x2BNkHcymvDHXcW8FS6JNXHt3\nG9c1z0E4X2m5befK6+Jdr6HPXZuYz/tXHaC8i8Jy+7OnHjdip3AeO5MjMaY7RY+G6FswPsr3895B\n2r6WiT4//RdxLy33kAgjbqkV6zZvPZVLIK69XKwrUaLnm1JKFW9Fj51BY9DjQ9qzK6VUazGPU0sj\nSPT9cPbi3liyp1lXB86jrZJrb+EejDvXKNGHqYFrasnuP89LumMB5bW14Xl3iT4ffrGw9t7/0hd0\nTNgkzINTJ3Fvfd14Lu5egz46k67HviV9P/fYHP8I5o6dG/ZBOd9xfxwrsRdLXobvK9zM39fR0Xe9\ngyakYKyGmdanl5e+Z8S1Z7DWyJ4wSikVOhvvI21VmNsL3niA8tY+9aERy16fdy+/ifKc/bG3+ew2\n9HEpO479y8vPfkbHvPgh/pbsy6a6D1HeqBi8sxZtwztdUyOPy8ShmHM33Yz1Q9pDK6VUWwmut+gC\neg3FXT+Lz2/hY0ac8tAzytKQfeC8THvKnnbU2MHTsK5v/5lrZedx5A0Zj7Eg1x2llJq6ADXHMwC9\nL5ubuQ+a7K/VKmp+Uz72Vee2c69QK9ET7bpl2G/WHOP+cv3skOcl9sJh1/EYln0DQ/xRX13jeZ9i\nZfPnnBfPwbxfylh37k/zjO+57KcaGhoaGhoaGhoaGhoaGhoaGn0K/eOMhoaGhoaGhoaGhoaGhoaG\nxhXEZWVNISmwppM2jEoxXd2hFDQ172imvnY1gTqdOALUxcNbTlLegDBIIYZOBg2sKZvp4OezQQfN\nOJtnxK3CmtDNZN1oK6hUJz8HnbD/RJYwtJaAMiklFwnubCHp6sj/Nv57fy/6t4M/qLTWwkYrdloC\n5Z3cCIpiyp9+899D9lf4/kfuZOqmRzgo6/6xoEPmH9xFeVIads2ToNnl/8LWw67xuAduVqB7lR1m\nqdC4xfhbwcMQ29ri+Pb2CjomWMg0Dn8EGcP2Z1+kPN9w/N3QebjXgfFMK0tcONiIM38BXT82iKl8\nG45BdjD4Xpzr5uWbKc/DGfT3he+9pyyJI+/jeocsGUGf9RM/sWZ+iXOV1sxKKVVah7nUeRq0Qxtr\nlu3ZuoNCH5qAe9HdzrRx5wBJy8R3NDeDRn1qPdNvs8thF+goaPF7v2fK6MiJoMge2AVJwIhBbEMf\nOg802MojkG05h7O08eTH+P7hD+NcHXxZOufgxbIcS0NaQ2d9zjWwuweSyxHLxhpxQybLPXxGQ0pp\nKyj61cdYAtMgbGaVkLqY5W7yudoKS+uxz4AKWvw700x9hgl5URlopg1ZNX+ZN2QZZHEXv95BeVE3\ngtIqpUK+Hkz9lVKmoClYT3o6eWwWiLoUM1pZFPaBGDM1x1kS6HcV7Fcbxb3wHR1KedIe3VqsrW4x\nvHZd+h3U+FohqZE2y0op5ZEEaWx3N6QUrhGYB8UHj9MxXsmgL6evQN0InRFDeV0tWFulRb3ZZtNe\nyA9by3GuwUlTKK/g5Hacn1gzW4tZflCXJij47MBpEVQcRb3I2stS4+SbMB6lVMHlMM8xxyDUC7+h\nWE9Ov8Xy4ZhASMrkXsAs3Tq8FbXOLcEXx4g9TMojV9ExPcKuvmSHsHG2Zbv6Ezs2GPH422H5W3u6\nnPKkLC5YyDzrTXbKMfOFPEs8u+jRbOEt61zgf1je/LchztV7BK/bNScxNwOF9NdsQ696oBnu6UAd\nSR7Fa820CRFGnCms61vy2da4rAqys3Kx5obMwvc15/ExjsEYR4k3wybY1pbHR339H0bs4Q9ZQeam\nrZTnkYixE78M1uF563nNcRE27M5CallpWksc/HmdtDQK1qE1Qth8/qz6FGQI4VOEtLqX5Qkjnppj\nxFXnMJ/jIkMoT8qka9Mw9q0d2QK59iw+C5qMGlCVi3sYOj6Sjtn3Iyx2peyvvbOT8ha+joJmZ4+a\n39XMeRLNxRhLAVOi6TNbsdcrElK19jKWYeZvwt7O9zauy38XHoMgCWmvZWnPf9ejhcDp934w4upq\nnge9X6H+FRWj3oT3z6G8387iOv639lkjzvqCx7etZx6O2Yvne/PyhUb8yF3XyUPUN6/AcnveQqzh\nAeMjKM97GOR3Ng6oz/+YyDKpn8S4DJwo1hKXeMrLExK0U6swzxNm8zM0t2ewNPoJSWOvqI1KKeUx\nFOu/lBqZ25kkzcP+vSlHyHBNdtItYj9XkwYpV+x003vqQLnfwTmV5/1mxJU/8/5hwUvXGHHtOcxl\nL9M60dWM/Y2TG37zqD5zhPKqjqImxt2N9h2NeSwzthd76IZL2LvbuTtQ3oCbhqjLQTNnNDQ0NDQ0\nNDQ0NDQ0NDQ0NK4g9I8zGhoaGhoaGhoaGhoaGhoaGlcQl+VHZewBzSpuPFOd20r+vHt77rlC+ndT\nGyikktrn7coOAZIq3iYo0eZOyEE1oC65OIAmZC06M9dfYDmMdI6g/26iGdWfxXHDp4hO1L+y5CJK\ndAAvPY3O7+w/pVR3E67XIRjX22Jy7pAOVH0B33Gg1DsHs0zg1JubjFhKEKxMzlOeSaCz+QSDEm1z\nK0tnqo6D+pUwF65JUdOrKO/JecuM2MsFDjGPfH6fEdvbM/2sVFC2C6rwfaPjWJ4mJVhunngqVrNZ\nvlOXjuc96mlQiSue/Yby3lj/vhFbW4OyNmREFuUl3bJQ9RWkBMg1jOnqmZ9BrhAyT0i/VnAHdSn9\ncxfSPLObQe02yFTChmDsdLcy5bbyBOZ6Uy6ofc7hkDWFBzLd0cMZ8zyjBLTk8QvYDajkIOSLkxZA\n7Hd+Vzrlta+Ck4OkZbtHc90wS9r+D2xdWB5y6q29Rnz1a2ZHob8Pr2ScR+1JdosbcBfugXQqqDvD\nsgOXGFDRG4XkyT2J7/WpH0HjtRH18Uw+O4UsuAkuBrL2Vp7Ow980ycRsnHHfpPNQWwVTcNtr8Hyk\nfMd3bBjl2dnhefX24u/a+3NtDJoEKdPZdzC+vZP4+XoOY2ciS6K9DJTtqJvZTaVTyHi7AjFfzHT1\ntkrcp/yf4DIQMJUlIUEReKZ+9fhu85rW2w2qb8l+SDSdhAtRby9TlHuEc6F0IMzdxBI2twA836Zy\nrPuDHmV5TWcznrW7L6TJnZ1M+22v/HPHCtdolgW7x/uqvkSZkDVFjmJ5Qs1J1Cb5vANn8T4o7XvM\nsQ4x1qVEUSml3MS6GzoVrj3Fe9ixQUpM/1iH7x4wBHR4syzHXoyFogxIedre2U55g8aCRl+yBWuX\ncyTP7fveutWIpdzEOYwdZ6SszUk8R0dfloZKqZCl4ShcmLLXsltHqJCj5f2A+9z/DqaT15xHfZX1\nL/b6aZyXj+8PmYlx4NGf667fRdT16iPYD+X/hHOQ0lSllKo5jvFW9AccDeWYUkqp2NmQYOTs22jE\n5rnjGwXps50dPgufy66rZ97+3YjlXl1KcpRSKmAw78UsjbilqCX5W1l+Ka/t/MfYr7r0531QcxXG\nfs0J3E+/iRGUV7wZkqfBj0P60NXVRHlS7lu8A8f4jcbatfrzbXRMhC9qlqy3MUO4vtg7YMxUpEGC\nW3ic5f+tRdibyfeJuiZeZwMTsd71vwEyttZ6lt0Wb2f5piVxdi2kfkF+vP+yXYT9wpYjeL6zx7Fb\nk9sA3D+PZLxn1Rxlmd2//nevEb9z1wr8HZPk56aHICl66NaXjXj1o28Y8cK3n6ZjfFOw55WynjqT\nrNM3Ge8dRXvPGPFPhz6nvPpCPFOPMKzvK+75N+UNjogw4hnLnzLiE29+SnnTBg1SfQqxl8jZy+84\nXh54j21uQm0yu5EV7sRxUdfA9Ui68SqllINw94yaIust71UaGiB3a63Bnre9FueQMpad6GwcMOYG\nzLzHiLNPfEd58n2xqVrI5/gUlN8YjIuyvXjHCZ7Ge4KslZDW9RMuamlfcV0LGSak7kPV/wXNnNHQ\n0NDQ0NDQ0NDQ0NDQ0NC4gtA/zmhoaGhoaGhoaGhoaGhoaGhcQegfZzQ0NDQ0NDQ0NDQ0NDQ0NDSu\nIC7bc2bgfGjb6s9xH5eKYliMDRwJzZWVPX/lwZ3QiqWMRx+Xg0Kjp5RS7rnoLdDSDivQCD+28Esr\ngH5vYBi0n1WN0MInmbTRdsLaqn8qzrWrjfsAuCVB7yi1zOMGJVJeQx30nrKPjp0n9wHotofeLP94\nnhEHRrBGOTwuXPUlLm2AVrqzm/XfUhsfKOz4/IayjWRdDvpUrHjhCSM2WwTGCsvQ/rOg0Ty8/GvK\nkz1UGlqg6V/1MPISQ1iXPfLJyUYs9bxrd3BvlTnDYXP2z+seMOL/rH6D8jqCoFcsPgBrvhvffZny\nitNh+9sobOF6u7ivwBs3P2bE/16zRlkSsr/SvuVsQ+zvDr2/vSfm0Zj7xlNe3mqMg/j70d+kaFsG\n5ZWdh2Zetqkw60U7GzBP/SZgDJfugm6zpol13FLXniZ6n3R8w1r4YVHQ5gaPhyDTJZK19Rnfob4E\nxELn3FTEfZ0i52NMWFmh98nxjzZR3oC72Kbc0qj4A/fQKYL7PxVuwXNwjYKe3mtUMOV5DUB/lexv\ncP3VpucTEYfj5Fitb2GbS3sf1Njf1h814ulx6ANgthyvFWPEeyDmaZ1pnfASvWA6hSWzhz/3fagr\nQ5+UpmzMMbc41q7n/4oxLHueFO3kMSztES0NaTXZWsnaf9n7xSkY61B3O4/vCxvRf0JaZPs0cc3z\nHoFnSD2frLgnmHu4GCNi0uaswf3yG8bjSGqq5foZFMR23iGzsRZIm2VPzzGUV9m224htbHDtNeWH\nKc93FNbt1gr83TbTvbQW9qR9gbCrsReoP8/9BHxS8ByyfsbYrDrEPfXiZ6Onma0banQvLw3Kygb3\n7fBrqDlRk7lf2uQH0P8pX9jB56ej54IcY0op1U/0h5P966wceC8Wc83VRpzxE6yXzx+9RHk1l3Av\ngiegV0b5Qe6HEXs76nLZHmjwC3P4+0JM1uyWRJ2wOw422RrLmuUSi3qa9iFbpMYuhgW6jRP2Jb29\nvFdyCUQPjKZS1LnTb++jvGoxl8YIG+vCdejl5BTEPRd978FcKt2H+yf7dCmlVG0VLHZdI3BN3iHD\nKa8yB3XcOwL7+IKNZynP0Rlj1jsR+9K8k/yss45gTR+ySFkcmd/uxzkF871pLcceIvwG9JWwd+Ne\nSVnf4blaiV4PZ39ke+XEOfiO9FXoGRM8ncepcyBqWKno0dTgi54Xs6ek0DH9F4014pYajE0nL+6J\ndu5d2Aa7xGFPEz2Jz0H2w6g8IHpkTTSdq+j71lSJvPwfuQ+To+ndyJLILsf1hoT702fbXkO9uX4R\n9vEuEdw3yEX0rmqtEuui6JuplFJKLH8zh6IODX7iBkp7a+m/jHjh/aibF4qwV/rwzufpmFvevMmI\n838RfaZmc63e9cJPRlwl+jZuf4F7xPzzwZuNuGANeniNjOVnGLogwYifv/Z2I35pzSeUl7mN96yW\nhm8q9vJhpn1fwS84/wpxzZFB/LxDJmCNL9iAvZmzqe7JfVpjHdY7RxfeB8kHLmtiWATWS/9E7s1Y\nnY9a1+SEXktOAXwOTQV4V3Bwx28A3kN4/SzciPrtHIZx2lbF+xb/KXh3kf3g3ISttlJKdTa2q8tB\nM2c0NDQ0NDQ0NDQ0NDQ0NDQ0riD0jzMaGhoaGhoaGhoaGhoaGhoaVxCXlTXlbwe90s2XqUCNrZCE\nOApKXXsVW/8lh4MiJamG46eyd1SloMmX1YFmVLT1BOVFB4Ae6C8sDL2bQY+rz6mhY9yE3KH+PCyY\no5awDaqkeZfsBo1T0tiVUqqkBt8/TFhuN6YzbcljmLCf9gINyvx9fY3kOyBh8QhiudKLN8JGLr8S\ndObyd36lPGchq1nyzLVGHDRgAuWd/giypNZW0CsHP8p5ox2XGvHXD75qxFIGM/ZZtqbe/q+vjFjK\nqRZMZ/lOQynodgvGjTbikmNHKe/Ur0IS44nxY+fJtEEHb1DFz+yEHEHaJiql1PX3Tld9hQYx38yy\nA5donHtXq7DbdXekPDlnpSys9BzbLQ68DdKeyqOgf5olHK7CglVS64c9tcSIz69cy9dRhmdD8yg6\nmvKkpWxrA87v2Odsa580B/PPIw7Po3gbU+ullbG8dt9BbLlcl445EMKnZBG0FuL626pYXhR3L+77\neUG990rgcWadDDps/1tgRdlcxvWn4gCo6fnZuIdTn2CL2LZqnAeNaVEPW0rYbt1VyMtq0/HdviOZ\njlp7AVTTnk5oPbpamGrekIWxIKVMLuFMe/YeCLpszQWMTZ/hbPUqn6Ol4T4A80/KCJVSKutb2Ik6\nCJv2iBsHUqWRCGwAACAASURBVJ6Un8ixfmETWysHBOJeBAv7XrMF/KWvYL8rZQEhUzCIq/azJKf+\nLKQZ8ZOwLpQd4Twpk/IIwJrZ2srSBzcvyAVKLuwyYnsvvkedjZA2Vh8rFv+dpWjSor0vkLERlPVo\nk0ygKR97kGFPQA5Uk8HX3FJUb8R27lgjay+wvC92KWR81k6gZUurVqV4LtoKmbHi6UcImAg5T4D4\nOik1Ukqp9G+wroXNB4XePZHrSz8hmZNz1tqK9y2yJsj6b2eSo5mfvyXhnoQ9YOYutoCPF/KVAmFR\n7OPHcph2cc+l/LDkGFuftpVhbxI6HVIhKY9TSinrndlGfPFr1Ln+16MGeIazRKLsNGT+IRPx3e3N\nXNMdXbCnvPA95M3d01k2GRCL/VbeIUhKarJMe1RRXzOPYbwEePA9co1lObGl4RiENgI9Jrl4aw7m\nor1oUVBbzzIGe2985i0knGHXcFuC1go8R1sxZ4s2sTQ2QkioEu6HfMLaGuO5LoSthnPXYY/pPz7C\niCvP8n4k+nbUg/pMvJO4hPJ972rDcw2ejXFmlphLmZyLL9bC7i6WsYVc3XcSw/GDIPGMXMjr3VCf\nO4z4h4dhIT3l8amUl/kp3vfs/SGpSVrKcqXacuzdzxdivYooSae8oUIev/JN7EWnD4aUMdp0rnYO\nmBOD7r7FiC9t5nciKQ+/69N3jHjchm8pL0DILU+9BQnkhGeWUV5dJa7poTdvM+KS8/sp75evd+L8\nrr1fWRpVhzC2AqawVNTOB3MsOQHzKu8IrzU+VtgHhs2LN+Jnlr1LeU/fd6MRF+RA1lSRx1LRMc/M\nN+KyfXlG3DsGtcLeleeOlA0VHcM9lBboSillbQ8Zak0GrsMsjZdW9lKOV7yNa4B/aoQR9xNrZnMe\nt1qwdbNTl4NmzmhoaGhoaGhoaGhoaGhoaGhcQegfZzQ0NDQ0NDQ0NDQ0NDQ0NDSuIC4rawq/GvSf\n6kNMowv3B500dxc6IYeMCKM8KV2I7QXtSDrCKKWUjaD/pFwNyl/TRaZhXiouMeL005AejbwBkgCH\nUnaIsbIFbdxzMLpKF/zKFDi3BNDVPQaA6ttukh/4lYGeJN2p3Adzx+riA3lGHDAMNK+KUyWU5xbP\nMhVLQ9Kjf3j0HfrsmW+eMuL8LaDkR89NpbyODsgEProX3cMHhbPsbPh96Faf8RGo9gkPTKa85ibQ\nPK+6HtIjSTH+8bEP6ZiRqaAfRs+baMTV2RcoLy4KFH1bW8jJOjtZ7pZYA5mPz3DQYP+xmF2dHrhx\nrhFPf2GeEddlMa22u4WdqyyJhAWQE1gLFzCllMpbi3Fs7wPKrVsUU5FdHUFJFKYrJHdSSqny/XlG\nvGcPqJaTpgyjPFs3SCsCB0E6168f5nLgtP50TL/fMWdfffpOI9619Q/K8xR09dzv4ZYSNSSC8iRl\nPvcHUHhjbmUXhcrToCvm7kS9GnzfaMq79IUYz7OVxREwCTTRrlYeL5dWgEaf/Aho6ekfsJSrMhjn\nL+e22cVFCcnEsJshfzr8AVNGE68GHdnDGVTioJFwAHF3H0THVFfjO9ocIXfL+ZZp1C7RqPlBkyGx\naRJyEKWUaisBtTRgbIQRl+xmymjQJIwney+MZ2s7XsqahauapdFSjHO1Mv3dmJtBl+7ugNtL3o9p\nlBc+B1Rf2e3//A6uZTbOkIjUZ2ItvLCb1y7pnDC8A/eo5CTW7cKqKjpm5ETUUym1sbbm+lJ9EuuV\n42SsVb29LKWwskI9kBKl9ro2ypPPraMan5kp1LKuqeuUxTHiIchhL37GEpb4uzD2W2tw381OD+79\nhWQ6G3k9PSzNsBNOTj3tGBdOIeyG0VqKsXU0DTKLG16ElLhwA8t3atOwDgVOwBwLm5dAefnCuatD\nOO2Zr+n/Ye88w+Mqr33/qk3TzKjMqHdZsiTLBffesA2YYjqE3gKEcJKQQnJDKiGcJKSRnJAQEggQ\nAqEkdIwpxsa9S66yLMnqXaMymj6S7ofz3P1f643xfe6T8dX5sH6flj3vjPbs/ba9Z/3XPzKK16j0\nsuxO7rDWvw99i7rBjXr5fikywq9/LLEXYX6Zczefy2uehsQkuxTrScvJDtYu8Qj6PpWIDWnStJF6\n7B8GSyCTikv47N84s4m8xl2G8dZXz+fJ3DmYn0Mh/N3mV7jM0ZQOyVT6XEhydaezFs8mHDfZQ7sq\nuYSN9sXKFdjv6xJDezGXDMSazMW4bzBZ+b7l6G8g47DloK/qDoJdH+HcpOah7594jsvU02ZBGtZw\nEPuCGRdzeUt6JvYQx1/7uxF7SL8ov4WPibajpG+RTVbeBVxONFSHz6B73tQK7uTaRcorpFTjNUcZ\nP0c9W5uNOFCB+5+Uan69j/+ejIkfX6ZiiXMa1gZLMnenqn0GJQlKs3Cf9Isv/Ym1KyKy6ju++oAR\nx8XxdfaDn8Jly0KcX3/9wNOs3cJynPcNC3CPmHsZ+npKAXeC+sH1Dxvx5+/Bfj+OGySq5Tegfxx6\nCvdERVdVs3YOB/rVoWaUfTj5he+xdvOqsG63tGNOP++K81i7L/z6NnUuoa6a1L1OKaUc5eh3FnKv\n4TrJ79MTk4kbbx3uHTfM526op2sxj5bOIS5RS/heIBLBPTe9NxgizoJRL5/XTcQpKa0afS4a1fae\nZPwdeRv7tKrVvARIZBTnpY04KUai3NWPyqHqX8E870y3s3bZ55eqsyGZM4IgCIIgCIIgCIIgCJOI\nPJwRBEEQBEEQBEEQBEGYROThjCAIgiAIgiAIgiAIwiRy1pozh9+AvZ85kTdNNkNfXrIaWrm2rU2s\nXclUaG79rdDF587hlqvDx6Ado9q+5HKurbT2QTffPQzt2MhxvD91Ftc7Hn8N36NgDrStkUGuhWYW\nkqRegP6dsivx+dRCcvQUr2mSR2ondO2Cti4Y4bUmxiNcsxZrqOZ70UVcI7v/59BuLvo2bM2G2rit\nYFbZMiOuJhrNFq2OwdGHoM2978n/MOL4eG6v2fgsapk8vRG2qyunwZ4tz+Vi76m+/iYjfvaL3zZi\nWidDKaXW/RDaxbbdqKOz6bmtrN31P0Ehg6PEuvgbD9zA2h34CDrEogj0pLpW/+1H3jbiqrWfV7GE\n2nknWPm5tBfAcrbrI/RVbzHvj71kvDiIPnvJfdyKvOYZ1H9xEAt190KuzfV14PNqfonrbq/AmE2d\nxjXUflJbhNqhX/4Fbu/c/fHpM7YbC/I6F6FeaO0TrJij+o+0sHbuWZhvnFPQr3b/hveJTNe51db3\n7YLt42gr177mXwodNK0zM+OBC1m73lo+Nv8P3R/weSoYRO2IVD80t1VrKlk7RwlsAb0nMZ7DYdQF\nO7WT10jImQm9ddemLUZszeO6WlqXKEhqPCWYeF2TuET8ThAeJrWg5vN1gtbDGAugL3hOczv4Ys0e\nM5ZYiW2pU9P+t7+Na5N3Ca6nazH/Hl5SE6fnMGq6VK/jtq+73kINpM3P4xqUZvM1bnkVaix4BrDO\nFi4qNuLoLr7OeIjdeO9u1PbJ0mx0m4hNZtSPc569opi1o/NBeBhrjj5me7dgbFJb+6Hj3P686Epe\nMyXWDNTgvJuTubZ+9+OYF5Z8C/XS+vZxm3F/G851/VF8L2qVrpRSoSH06aYdmHujWm0aK6mfQK2r\nbamwx00u5vX6aD2QpCTUbNj22N9Zu1l3oS5Y3XPoVzarhbXL24B+m2DBnNr0XK36LCIRXOO531jL\nXjv1HOpclC1UMaX1FdTRSbTza0ivQdoszH9xibx4RApZo2r/ss+Ii8jYUUopZwXWjTeeQE2X9Teu\nYO06BzG27b1YmwfbUEMpPon/Lnr0T28acc5a1CLo7+b2qzmkjgKtgTB0kPeJtHmoR0Nr0/Rt51bw\nqeS8JJJ9xViIr03JeSnq3IJrotuHT/sS9if+fpyPvj28Dibdv/edxL5vQrPm7iBW58u/Bovs9o3c\n7vrQyWeMeJysNe7zcD5PPMtrVeVV4jX3fNz7BHq9rB2dE0suWol2fn59aD3KkRN8fqTQ48uajzor\np9/gNSHnfOMqda7Y+y729JUX8z103+lXjfjDw6QOB6mDqJRS//HMb8m/MEZCIV7f8ebf/dSIDz75\nRyO+6HuXsHbt75G9Eukfe/+yy4jP/x5f727egPl+9/v4Ti4H3++veAg24BOkvt8Pb/41a/efrz1i\nxHQ/TWvlKKVUzUns386/BfdbpcuuZO28Xr4XizW2bOzhwkO8HmWErOv927EWOqr4vdrHT21BOy/6\nfh+pjaeUUpsPoH/+Z9LtRpxTxfc3/QdQTyaN1F4abcZcS+ttKqXUodcOGnH6R/hOacXaM4UcvDaN\n7I1HtHq3abNJTVnykGL4CK9N1vsJ9gHpBdhbn9ZqnTnryTk7w1ZHMmcEQRAEQRAEQRAEQRAmEXk4\nIwiCIAiCIAiCIAiCMImcVdaU6URKJk11Ukop+xSkBnV8irTnonXcMo7KldxLIYvwNfN0zegYUq5D\nA0ilGmzh0ozSqUgPr3Thb41HkLq484Vd7D2JxBp0xwdIdVp1NbfbHSSpoaYMpEjlLi5i7Vp34Pt6\nDsC2jqasKaVUxQykX+WtgDWYZz+30vbsJv/mCoaYYMtE+tSfv/MSe60kE8fYcxipoJYMfr2bd0L+\n1DaAdK/PPco9Trc8BtvDkTZ8r453eMqorQhpsvdcs96IX90Ii97ynBz2nm0PwwZ8ZiVSf2fcx4/B\nakU/+/aPv2vEX3/kdtYu0YxrPOXa6Ub89uObWLvrH7vOiM1mnK/O2kOs3fl38PTmWGJzIaVu/8/f\nZa9lTEcKoJmkPRdt4JZ+1JbXlouxTW1VlVLKM4o+ffE3LjLiur/y7zubpASXrrjYiFv3Q6bWtamR\nvScxEWORjvn+nTxFefpX8Nmd25EOfmAjT62/9Me49vXPQJrWson3t+Q8fN/Df4Zsq3A6l5tQ+71z\njVWzAvU2YK6jKZS+AS7ZmRjDXEfnyvT5fLxESeo0lZL0DvK517Kj2YgX/y9YR9Y984kRmzP5sZYs\ngMzCtQjp2/FJXK5EU+XbiTWyngYb6oGdoTkVf6tn12nWztuANFbHVKxBA/v5OaIW1zl5KqZQKd2o\nnZ9L1yL0p6gfcjy6DiqllIWk0lKLRT01l9rc33cRxuKIn9sVW5JwniNEDtNIJDSjQS7jrbwC0q/k\nfUi5fXvLHtZudTXmkdbDSGWmMg+luBSYpj8nOsysXXIJ0sjDROrmmpPL2lGJ2JS5KuZkLYYce+gw\nT02uvmKmEScmoj9mzOXzRcMRzIlU+u3K4DKQg3/EnmThVyFjoDaeSimVYMF1LCEp272HYd1Zs4nb\nsk+thFRbLUd6faomrYr6MM839UAmsOyqBaydiUgRvadxDEPeUdZunEjSqC15NMRT4UtumKnOFYXX\noW/W/62GvVa0HvIsUyrkEzmahWnNH7FupNnJ3HOAp6H3k5T8ax681IiTtP69NG+pEY+QOT1KLGoH\n9vLPnnIz7HJDg+gTtHyAUkplLET/a3kVfWJMt24n69hgLZGnNvB1tmwM15DKwlrr+R6V7h3yuMtt\nTPC2op+N+bns316EdSzBROSvfXzsTL0T593Xg/E85eY5rN1wI+bi0TbM31Ou41bsex6DBfepLqwv\nl63DJj17WTF7T9OL2J84cnGtRjq4HNKUhv549Mm38AKRxyilVNW9kHs7S3AdB49xmY+Z3K+c/iek\nVqF+PhZ1S+pYcv2vvm7EXi+3gF/7CF67KBF7sSfu/AJrFwjgPD1640NG/JO3XmPtal+ClClrZbER\n6zbsTUfxeXNvgo3zxdfivHYfPsje88YHO4yYlla44Ed3snZ+b7MRJ9kxTr/z1P2sXd2fsY+6+Tdf\nMeJf3fEIa5dB7rfTqrD/++T7j7F2aUX4ju4vrlaxJikF3yXQxeV4PQcxL+SSvh9v4nkew2R/ctF6\n3GcPNXCp0CpSxuKjI1jXrrHz/WZ4CGtXoAPzsC0f52z0NN+L0ZIq9HmFZw+fe9POw/0T3a82b+Nl\nAnLXY7+w/2msGXl53K4+neyN69/BHD1lRiFr5z3Jn23oSOaMIAiCIAiCIAiCIAjCJCIPZwRBEARB\nEARBEARBECaRs+a4uRciLSgujle497ehmrvVgjSoto+5jMGWjPRKfzvSkU7X8qrkFasrjHi0Huk+\nfV6eVpWWiPQkmhK9ex/Sh6ryeB67L4SUqPJKSF6SSUqUUkr5iXuKYwqqLPtaeLpU8copRlxIKsHr\nVZvHQ0jz7tjebMSppIKzUkq1n+Ip+bEmEkQavj/EJSzH2pD2d/1cpBEe/NWz/ENI+utNv4Sr0/eu\n/wVr9uNX8BnDjUjDdFbyFPiidahGfuLZjUacm47rS+VTSvE+2EJkAjO/eB1rt/dxVEu/+2akH//8\nu39h7X7xJtpF/Uh1s2pV1Ds/gpNJZATuENQlQyml8uZw16NYUvMryMqo7Egppfp2QsKz5juQPtQ/\ntZe1s+Sh2nxoEGMn0MnHGE2l7iPp14FwmLUbOY3U2sNvbsH/EylG1SVcWkXde6ijS1wCf0684ydI\nKc7MQ5+Yfxl3G6v7PVJQq+4nzgsf8xT3488g1TdnOuQ/uWvKWLtPH4MkaxZXy8WE1BlIV9VT22mK\nJnXdyl3OzyGVcJ5+Camg5Xfx9O0uMhfnX4kq9AV8KmfShaY3IWkZD2L+SpuZxd9DHANGifOQvYTP\nbYMkrb/oBkgH4xO5/Mk1F3N20IP+HezxsXZu4npEpVruRVxu0r+LpO+vVzFlhKwH9FoopVTOGkgm\nqAOVPv8N1mDsmN1IcdddrK55aIMRd2w8ZcS5Zfw8JxKnsm4ix6DyHB0q9evfiXVgwxqe3p82B+Ol\n4W2ss7oLCpW02UtJGvEBLpFwLTjzvqLjPS5F1PccsabhWcyPVJqnlFL7XoZrz4qvUPcKLg2ruHuJ\nESd/jHOTNp2PlzIiYQz0on+bU7lbScurWF9SiCyazo+rHjifvceZhT536jWk0MdpjkCdG7GOVZA9\nkt6HE61Y//JWTDtjrJRSja/g/DU+j/k2XuvDzio4zsRaYjgehuSl+l4uz9r56y1GvOh+rM2eGr7f\ncmVjHc9aVWzEI6f4/qNnG/aHgT7MS55aLjGJkLV1oAtzhZXIi9KIC49SSrW9W2fEqdNx3W0uLk0L\ne7F/K711lhGHNHmcmbyPOj12nuSuTiU3QNrYtxdz5tLLuFxioPbc7lG95FzTuUMppdrfxbwQJfKG\n0QAfi/1HIIE1p2NcUQczpZRqfWe7EbuJpKF+96esHZWKzZ8OiZyfSD0GtLktk0hsBhtxPLpjHSV3\nPSnPEObtjj7+nhHbyzHnhzRJV/mtRErXjmOijoZKKdW0cYsRz/5cbOWGVPIfDnMZ79GXXjTiZOIu\nesW3uLvSD6//Fj6PyET/6/Z7WLurvw/5decmzGvdUS6Dpnv5XuJUNkBKS8y66zb2nu+/Arem4UHI\nVpOT+V7xyH+9YcRzv47jC4f5faCjEv/+2wNwo7r+7otYu8Llq4y46zBkM4db+b3yZVrpkFhD+8zA\ncf5dCtbhHJx8B2tV8SKudaSOvkkOXANbOp/P8ufh8/KriQxJu7eqexd/q3Qp7r+pk7Jfuz+hMu4l\nZH+oS+q7N+EzfH7M3WUXcwulEHnekJOBOSrezNc7ayb2CwXzIGUKavdZORfx/qQjmTOCIAiCIAiC\nIAiCIAiTiDycEQRBEARBEARBEARBmETk4YwgCIIgCIIgCIIgCMIkctaaM4P7oDNNm5vNXouOQt/l\nqIT+qnNHA2uXtwpatPr3YaU644pZrF3vJ81GbCuCJjGpjeu5Eoi2vqkGNQfSkqHp1i1D3dQSnOgd\ndRvLZKJzozUL0mbz7z6wC5r+ER8+g1oDK6XU6DZo1ApXQheua9QqirjtZqxJJDVEbrhmDXtt6rUo\nyBAfDxuxvXWnWLtbfg1d5ssP/s2Ib17B7aPbNsJCL+8CaCO3/WU7a0d1xfSaFhDrupxUrjucdyM0\n5RZiOTviOc7aFV8PHbXJiut94RFuZ/jy15/Aaw+sM+IMh4O1oxav7iIcw1Aft5buPga71LKFZ9cT\n/r9y3tdwnU4+u5W9Rs/frl+g5sD0a89j7dqIdts9G3UkSq/ltUoS3kE/CHWjPkJE69+0doKL1FIp\nrYCe3kfqTCnF65MUkTlg788/ZO3cboyJqA/WmoMHuGbelAFtecPfUH/GodX4oPVyHGV47cSTvC7P\ntHVcZxprfKRWF629oZRS9kL0d1s2+mBfLZ9TqWXglFtwDhue4f2x+suoTXHid+gX45pdJ23nOYk5\ndcyHc2Zycovxto9hP5m1AnN8sI/XQ6J1Seh8a9G0xwkWUjNlB47BUc6vY4TUXMhcAT1v6lRuw5w2\nLVOdK0quQQ0gvUZM4wuwUi28AnV+JrRznrMOuulRYplMrRyVUipE6jKlkro/er2XABmn2fNI/R1S\ntqV3c7P6LEpuQf0BvQZJ25uoh1F5Pfpb1Mc13t0fQ+8fH48/nLGyiLUbOgodO61lZCvk6yAd9+cC\n91Lo4u0F/G/PvQbe3adIPRW93tesa1EDa+R4Pz5P08zT67rnTzuNuGxuMWuXPh/9ODKCaz8Rxfiw\npvPPniCW1tRq2dvErTr9bZiLy69GH9784/dZOzWG659Nxvben29hzTIKMTYdxFa9dW8Lazf1Tl7D\nKJbQujDmDL7vozVDRhpxLo5tqWPtVj641ogjZF+rtJpHi26FJSzdr2at4fUW4kjftzY5z/j/yVp/\niyf1gSxuUp/Iw62Qk3NIXbItGG+2PL5nOfVP7MMqb8Q+QK/j1PQCaodFiNV38y5euyMYwViccZmK\nOU6yZ6D1r5RSqvIO7M1CQdT3Ga7vZ+3o+uIka/y+x/7B2s17EPVKjj2Bvl92J98HVdtxXYc60Wdo\nbaxpd13M3tP4JtbZeDPGrG65PXIa/dFJ6z+N8znPNxv7hczFmEepLbtSSjW/jfU4ewX+lqeZ75d6\nDpE6d59TMaXmL3824hm33sheG/Nhb1a6/EojfuiKm1m7z5FaR1NvxL3K6Xe2sXZ7n8D9RGYa5sOq\n+1exdt2PvmnEpjTsYaquv9qIB7p3sfeMkHmT3ue+9eaXWbsbH3/QiNsOfWDEx1+rZe02E4voMNlD\n37Puv1i7t7/5fSNe+V0c3z1/+CZr9/T9qPNZtfbzKtYMNGJcpebxtSbQhfUvvxprFa3XqpRSlddh\nn+Alc2/mcr4XoHsfSyaxz9bKzc24EevxmB9jJH8F7qttOXb2HloLbKQe64S/ld+T9A5iPx0la0ao\nnz8fOEWebSy4B7Xmap7h9xBjb+L4kktx/sxZ/Pj0vbKOZM4IgiAIgiAIgiAIgiBMIvJwRhAEQRAE\nQRAEQRAEYRKJm6A5sYIgCIIgCIIgCIIgCML/VyRzRhAEQRAEQRAEQRAEYRKRhzOCIAiCIAiCIAiC\nIAiTiDycEQRBEARBEARBEARBmETk4YwgCIIgCIIgCIIgCMIkIg9nBEEQBEEQBEEQBEEQJhF5OCMI\ngiAIgiAIgiAIgjCJyMMZQRAEQRAEQRAEQRCESUQezgiCIAiCIAiCIAiCIEwi8nBGEARBEARBEARB\nEARhEpGHM4IgCIIgCIIgCIIgCJOIPJwRBEEQBEEQBEEQBEGYROThjCAIgiAIgiAIgiAIwiQiD2cE\nQRAEQRAEQRAEQRAmEXk4IwiCIAiCIAiCIAiCMInIwxlBEARBEARBEARBEIRJRB7OCIIgCIIgCIIg\nCIIgTCLycEYQBEEQBEEQBEEQBGESSTzbi3WfPGPEnn2d7LXksjQjthemGPGpV4+wdmMTE0acXZ1t\nxCnTMlm7xn8cNeLy62YYcdNrx1i7lNJ0I26oaTbi6rXTjHjkeD97T8QfNuKia9AuyW5m7UZbBo04\nMdlkxH3bW1m7gg2VRuzv8iLuHGHtzG6bEYc9Afx/RjJrl2TH3ypbcIuKNW2nXjPixudr2WvBMM5N\nWiHOrWteLmvnax0y4gRrkhFbMvl3GQuNGXF4iHzndBtr52sbNuL4RDwj9LfjHGatKGLv6Xy/0Yjt\nU1LxWU1DrJ05E38r76KpRrz3V1tZO4fVasSpVRlGfHrfadZu4ZdXGPHAgQ4jtuWnsHaeg114z/3f\nUrHk1K7njdjbMMBeM7txDej1SM5xsnYDNRjDZFiq1MoM1m4sFDXiBHOCEccnJrB23Z/iPOWuLTPi\nnl0YL4kWPsUk2NB3wkNBI86Yn8+PIYhj6N/fbsT62IlPQN+ZGMeXSi7g16Z/P66bhYxL/btHyd8t\nKLtaxZqu9jeNeKiuj72WMtVtxD07Wow4b00Va+dt7TXi+CRckyQHn8/q/rzfiGd8ZYkRt71Xz9pl\nk3FmduK8DRzDdfST8aqUUoXrZxuxpx7HOljTzdpFhkJGXHH3YiMOeb2sXS/5vvYpmIdMTgtrR+eU\nQK8Pn0dipZRKLsH8UH3hPSqWfPyd7xjx2Pg4e82WjOONBCNGnH/pVNau5a06I85dVWLEtG8qpVR4\nBOePjkvvST4HOCpcRty2GfPk1M/NMmI6hyulVGp1lhH378MYc5Dzr5RSQ0fR31KmYbx0vHuKtaPr\nWByZ0z3d/O/O/PwCIx480oN2Wt8puhprdensG1WsOfDcr4w4tZrvR6IBnGvPPswdBZdXsnYRH9ZP\niwtzU0JSEmvX9FLNGT9j4BDfV9F1cuQUrnFcfJwRW7Pt7D2B7lH8g0zsdE5WSinPEZzf9Fk5Rty9\nla93mUsKjbhvTxteiItj7RKT8R0nxvB3M+bxuTzsRR8uqrpWxZKj7zxpxF1kDlFKqen3Y75Jz0B8\n7JUXWLuTezBe1nz/UiM+/SrfK/319Q+N+D//+RsjDgY7WLuxMOaoh29Fu2/+6vP4my/xz176Hez7\ngkGMxT9+8c+s3YxCXJvcqdhPb/xwD2t3w9c2GHGU7H8HdrSzdqMBrME1zc1GvHrpebxdN+brtf/5\nnyrW/HqhHQAAIABJREFUnPgI35Ou40op5STzUXI6+tb4eJi1Gx/HfDvahTkrvYivnxMTGNtdBzEu\nXdPzWLtoCP3W24x7A1dVsREnJPCxONrXjOPOwpyvH2vn3oNGnDW33IgDg3xet7sLjHi4A58dGvCz\ndu7pGOsjHbjG1gx+fCYz9hjp6YtVLKF71GAfX48TydpA9/imNL6+R324huF+fEfnNL5Po3sdkxNx\neDjI2tmyHUZM56iGvxwy4sxV/D6DzqE9WzCnlN40kzXr3oJ5016K+2FfK98rhbpxLhyVWKcHa3tY\nu/S5mJOjo+gv9NwppZR7Nu7NcouuULHm2Kan8A++vVHxJqzrplTcPyWY+L2BOQ3r2FgY4y00GGDt\n4pPwefYc9M3QCN8fjjSStTAB61D6dMyBQW1MWN24/4mPx/GERvkYC5E9ZcSL864tdyoaQN/MOA97\ntkhglLUbJfus8ShOYLx2jpJzcXx5xVcqHcmcEQRBEARBEARBEARBmETOmjljzcJTV/tU/mta2nT8\n6tb2zxP4/0LeLnfdFCP2HMYvN95GD2uXsxBPiAPkqWvBheWsXfPGk0ZcmIdfu4aP4El5wRX8163u\nzXjC6W3CE/DUKv5rWbAPT97GWvD0M9HBn1y2vo7vmz4PTzvrdvBfEstm4olsCvllLuThT/gGD+G8\nlC1QMSfqxxO/QJg/wY8njwcjw/ilYGAf/zXIQn6t83fgybeeoUCzR/Ivxi8HQyd5lgDNyEipxLmx\nkMyI8TH+C0qY/AJkduFJqL+NZyyNnMaTy0Tya9qce/kvBW1v4NfrjIX4RcY9l2cNjUeQDeQmvwqe\nfolniZ1LEqwYqvoTWDoW6S+xphT+q4Q1B78i0Gs4eJT/Yk2zxiyZuO4jJ/mvvDZy7QdqcN2tJHtH\nP1YLyfIZDiDDbfAY/xXBSn7xoMeg/zJiL0aGRKALT7BpJoBS/Ck//VVngmSrKKXUMMlmKeA/PMeE\njg/xK23umlL2Wu0Tu4y4+s55Rrz35x+ydvnzMFfSDKMEy2dP5x0f4e9GtHPY9QnmxyA5h1lr8OtA\nwUXT2Xs6tyGjkWZaWDJ45kfptXPwd7YjYydnGf81M+8C/PrVRH5VthXy+SVAfnUr/Ryyd3p2a7/+\nz+HnNpZU3DnXiP09/Bce+qtZXy3GRP0/j7J2E+TXOX8HPoNmnCjFr9XoKaxdCTYtI82Mf1vNOJf0\nF632nTyzII386kQzM4aO8LFIf0Lq+xTZVAWXV7BmAwcwP2QuJb9Gbmpg7ei86yD7Cr+2NtGxqGar\nmGNKxfxI136llBonv/Ypcm4GDnWxdnT+oeew8YWDrF3qLMzRdD2hGbVKKZW9FP12tAXrWCr55bh/\nL1+bC0kmb+9uZLrQTBmllEqpwFzX+QH2KvTXaqWU6tmOfsLWQj1zhmTQBvrJL+XaL47+TvJLMh/2\n/zbOMvwSTbNflVLK5sD81XpooxEnF6aydgVt2H987fKHjfi8khLW7vplS414qPO4ETuyClm7lrcO\n4/Meuc2I6d4zFOHnvPHdj/F55Dt9+envs3a/vetHRpyZh3aFbr6O5czERrLjANaV4218XTx0GvNm\nqg1zd38b35+v+sG96lxiy8M8b3OnsdfGxjAH9h3H3JE1nWf3+IbxXZKzMa907t/H2rlmIEPGWYJ2\ngQE+l9O500r2pX21mM9Syvl5t2dgbe7ctxefpa3N+YsWGnF/A9YGcyrfsw21NhkxzTqwuPg6SzN4\naIaIfq9hyeOfH0uS85AJQLNZlFKq5WXsF2gmiEn7vvYijM0o2UtYtYxpOofSDJb083JYO3rfMUrG\nXz5Zu8JaNsfQYax/zkpcXz0zI4/cmw6dwP0nzShUSinncswPdjL3mLUsWTvZT/fswDo7FuBzRXiE\n799iDVUyuGbwLMgoybSLjIZIzNfu5Gzst4fq8V30fkHvTcein/29MmYXG/FoJ+4baGZKVDtPffux\njtFz7SzWsrBs6FvhUZqFyo/BT7IH+w6RuaaAryc2olgIDmBdTHLwvu49jf6oitW/IJkzgiAIgiAI\ngiAIgiAIk4g8nBEEQRAEQRAEQRAEQZhE5OGMIAiCIAiCIAiCIAjCJHLWmjNU23byk5PstfHN0H4u\nvBtOINRRQiml6v5ywIhTp0AjO9TIKyZ7g/hbBVXQOcebec0K6uREnQ1GiZuI7vBBnTtoHZ0+TYPv\nJbVKslcXGzGtk6GUYtprE6kaXlzK9Y72KbSCNz67ZR//uy6nQ51LqItE1S1z2Gt9O6EHDPVCU5l9\nPq/Z0PEO6kVQfWHP1mbWLtwP/ebJp+AWM+znes2cUui8O3bjGGbcAy2ur51XPac1OoZPQEtqzePn\nL+cC1DkaqUc/o842SvG6DZ2kLoIlh1e4py4kjhJc0ym3cs1zw194nYFYQutSJGk63YGDqEGQSPpj\nUjKvlTR4FFpa6o5E65YopVQvcVui9V70GkC0nkz6NPT9vkOoe5BenM3eQ+syJOdDm5lWyIsRRKP4\nvqMJ+H4ZM7nrzcQEdKYJZmhRBw5yHTF1NEkiNaSodlkpXr/nXJBcgO88oZ1PVwnmx+PPYOwseHAN\naxcawnfp2dZsxPYSrtWnjly2XIwRWidDKV5/iLoOBDpxDfp3cjeQ8SDOW9YS1Bfp/ZTPbbTqfkpF\nBvl/7uBD6x65F6Fvdr7H65VU3Dcfx1SLfta6ndecad/RbMTrf7ZWxZLwMHGh0+o6jfjRBwuJJr3h\n3ROsXdnF6O+0nhR1cVJKKYsdn+9ejPNi1+pmeInTYMFVqEESIjVrcubq+nGMHVrjKdDD3QeoM0bq\nDIyP9re461c8GdvUuZCug0op1bIddRRovZPMqbwGXOchjPvZN6iY4yT1InSHGKqNp85NaTP4/GAm\ntaxoXSd7Ga+9lz4d82NoCGthktZ/2j/EOaVuJVSbX3RVNXsP7Y82MqeaNPc2WiOG1h/zaU5sphT6\n3UlNgBCfK+l6krkYdRU8Wg2zjNm8JkssSc2Fo5fJxOt/nN7+thGfeh/jqmTFFNZu9lduNuLf3Hu+\nEf/+3sdZu9Lbsd7/6Wt/NeLbH76OtTuyF9ew/o0tRux24tpcfMdq9p5tf99txDdc8jUj9rTyWlX5\nLqwRDuKYOlOr9fX8l36G485Cn12wljvOTG8txvGReVd3Hv3Zzd8w4kfeeEPFGn8H+qAjq4C9NliP\neYA6T01McCsZeg+g4hCnlPF+MXgS/Za6xWRWzWLtRvqw9tjcWLvoHibYz12JvM2oRUTnVH8XP5/9\np1CvkO6/xjVnnkAv5mJ6X0Nd/JRSamwMx0H3NNZMvpcN+knNodTYFvKiNVn0ezBnNa5BPKmP5tRq\n9lB3zy7iOujZy+sdZq3FvQDds+guUdQRlLrM0muoz/1h4jBpcmF+7/mwibWj96ZF16MmH60VppRS\nA3vQf/t34/zrtWm8DajzlELqZ/Vs5nsb32n07eIZKubQ9d5zjJ/3tGmYS0zJ2IP0dfF92nAzxlgi\ncWi1a/VZgqTmGu23ifq9yylSS5P0LR+ZN/T79JQizCORIK5J0MNrS9F6lPSek9ZQUkopB6mHRNdC\n/R7C7io24tAQ9n107lKK1009E5I5IwiCIAiCIAiCIAiCMInIwxlBEARBEARBEARBEIRJ5Kyypjgi\n35mygMtcBo/DOozaglJLT6WUSilCyplrDlJ7s1dxm8Km52GfOtyMFO3c1bxdlKQA+klaLU0NtOVw\nmQtNefcGkEZlSuTHOvsOSGq2P/mpEU9byD11XXMguzr4xA78XTNPI87N4WlRxt+5m1s6H3hq5xnb\nxYoBYuka7OYpXdTuuv09pOP2fNrM2rmXIkWsj0gXkjWJBLVgnHXvIiPufJ/bjCeR1OmxFqSnbn/8\nEyOedwv3FR/Yj9Q2C7Fr3vUelxMtikf6cdSPftHyz+Os3UAX6WczcE2797axdjPux/VqfZ2krWry\np8KrYuwTSqDpt2nVny29oZZ+fZqdNJVP9O7Bd3TP5tbhaTMhRQr2Ia02qtnlUcvB4eOQmaUQ+8Gu\nTxrZe9wLkDrNZWb8OfHYGP4uTZ83u3jq4giRR1LJYuGFPGU3MIjzMkykbtSKTymlIiQN9kz2dv8u\nzR9iHKQd5/byNM3V6cIcRmVMSinVTcZmD0nRHmrk9qepxOLaQ8aOOYv32wCxf6ayrmAvUoSzNdtv\nKrOgMgbax5RSypqK9NxTf9tuxNQGWyme3kztisfG+fVpfL7GiMvvgMRpIspTk80kHTnWtL0BiW/K\ndG7LOFCPa0rXJEsST2EePob+SOWkZjNP581cCckYldpQiYpSSqUQ+12rA2Os7xhkEVlLuLzEQyyz\ncxZCKlO3fwtr56zAZ48Qe+u8y7jE0EOstKkFePs+Pp+689EvJ8K4vjmreR9zz89T55J+Mj/q0k7X\nvDP/bT1tvusjpLrT9Hpmxa2U8hzpIq8hDVq3fvUcwjlMSkMfpmnewyf5vDGwD2nz1Hq++ySXjudv\ngH0s/R45moQ5Lh5z8QA5Ht3mnUqZWv4Bq1xnFZcqNL4AaXvm1y5SsaR9N/ZOEU3q0bK72YiLl+E7\n5iypZO2aPnrfiEvWrDPi6758CWvX8MwhI/7qX2C5PdTO9xULLp9rxG3P4Brc/YdvGXHNL//B3lNE\nrLBf+8ZvjHjNA1ySuecU1o/zAhizqdVcEnjbVQ/hGPZuM+KCBStYux0/ftqIp5A52FHMpYg3516u\nziWumZizPKf4XpFbZuOeJBBoZe2oDIGOZ73UQloF9jf9NZibJia4PCGB7E+iEeybqW28u5LfGwRG\nMK9TuYOzlMscfURK7CD3SLr03lmKuTfJTuQmZD5RSqlwAGs/lY6MnOZ7ArZu8G3fvw39bM8RLm30\nNUFWUvw5aHFaXj3G2uVcCMkhvUek50spvjfxEUvigg18bAfIPEftxwdqcP50O++CKzBPUklrsJPv\nw+zluKbUdp3K5pXiZSCSizE/67KmlErsJej8TMtyKPWv83CsoeUKUnJT2GtxcTjmSAjXxD2LryH+\nXqxRVO7m7+H3n8483FdSmWJcHP+OjkKMJbr3NDmIPFeTDlILcjqudEv0EbJvtpP109/Nrze9Jg6y\n1lvdfD8dDmMOoPOQPZ+fS2rzrrja9L+P+V//SxAEQRAEQRAEQRAEQfj/hTycEQRBEARBEARBEARB\nmETOKmsyk7Ta1Gqevp1M0n+OPo+01fy5vNJ6HnGs6PwYEgfHFJ7mR1PJQoOQHulVuvv6kB5Xshhp\nb7R68mgrr5Y958vLjPj0y6iSTtO1lVLq3V9uNOL58yFR0StHv/woqtWvuxTSnbpdPB2zkLhd0VTD\ntre581W6nadFxRoXSZ3ueJ+nlfmJM0cCqardWdvB2kWGkTJcdB0qkw/V8RTrrArIIg4/BYeXtCye\n0tVP0jJTnJCqRMdwHd94fCN7TzhKXDOS8Z4L7uduNnufhfPBrA28Aj+l6wTkbmO1SKkbn+ASiaO/\nx+cVrEHapSmNSyf0dLlYYk7H39L/zuBhpJCmTkd6syuXj7HwKN5HUy31axjx4lrTFMcEzTktOkbO\nGRl/qVORL6vLkGiaX04Frpunl0v7kqxIUXbNhcQg4g2ydlTu5SUpvOF03m6CHCs9l0Mn+HdPcnJp\nYqxJzcL3Sp3J5Wl0rguSuaP5Je7YkZCMaTuzDPOyLhWlZhZUnkavqVJKZa8oNuKMbLiIZE9BWmhv\n6yf0LSq9BPNjdw3S/Z2VfJ1oeh1zgIvIVAYOc8mdowR9NW0G+vCYj0vpEknKcD2ZXyy5fA5t3wq5\nSRlXR/7bFF4Dhxh6XnVy12KuCHr4mPWegtwhPIhrnVzK5QRO4nDY/ArWLl1SaSHOINFMXLf8ORhj\nkQhPcbcsyiavQdpWcTuXPvgHIH+KS4CsgLoWKqVUxhKs/VSCOp3Iz5RSapCkvFMpYvcW7oZhK+Br\nRqxJZ3JOTRaXQhwciAvMaAt3NqISnhBNoddcUqjkq/harJ8Bze3FTBwnclZC6jEexZysuyE5iYx0\nqAbXirp7KaXUADkGazY5Pu06pmXD0dGyCp/t6+FSimEi4TNn4LjTKrnEJslx7ubUwiUrjbjpww/Z\na9U3QDoZImtm/1HuflJ2wZVGfOylF4343Xf5mrRmLvYSWx95zoinXcf3GLmL8e+R32GvuPenfzfi\nqTdzp0dbJubNN67/sRFfnHYZa/fIy9824k8egRvVipV87n/7f/3WiKNEGrr/tQOs3dTpkE1SWYBJ\ncxErXHCBOpcwVxjeHZVvpNmIrXbsZeO0fkslKMkZOJ/eTt5vx3oxhul81nPkMGtHZQj0nsJdiXsV\nbxd3J4wQyYWrDLLPoJ+PWSql8ZIyDunTili7+ESsf4EB7N11+ZMlGXN572FIhfR5SHeXiiVhImWl\na5pSSqXPJ3MtuWz2qXyPSu/9/KQEgy7jdRI3vIko9p6ew/w8u8nesYWUJMhdh7W54z3tvu1K7G2G\n64n74rXcJY9K6nuI6+24LqObg2vjJ+uHvg9r+Dv63xTiSjx0tJe1y1x27tzvlOIuf7pUKMFMJErk\nNV0GSd3EqDTP5uDzVEIC2Yv34PubHLzfUimTMwvPFHzDmMtNKfx+bCxEnQbJNdHml8z5GHOhEYwP\nm43f91tJKQ0md9P2dvZszFH0/iReK/lC5c1nQjJnBEEQBEEQBEEQBEEQJhF5OCMIgiAIgiAIgiAI\ngjCJyMMZQRAEQRAEQRAEQRCESeSsNWeaXoAGzL2U65f7thMLOvL/gQ6tpgnRDeaSeh26rXF7C7TS\nxdPwt5LSuPY1JwV1GqjuyzUbOq9gP9eAUd1cyfXQ8vm7uZ5u3Z2rjPjk29BtFmXxuhlJxIK7j+i/\ni0u5N92J13D+aC2V6iu5b5auKYw1E+O4Qm1HeS0ZqhXPXIyaAeGBAGsX9UL7uuu3W404GInwduR7\n0row6XO5ZWjCMZzDQwdQg2dGebER2y382odIzZmMKdDC739+Lz8GorH2NUMrXFfDteYJRLPscqJm\nQ6dnkLXLmIVjHyH2pElOrklsq0EdjQpetuHfxk+sBFOruKa/8CJo3CNBtBs61cPaxcXj+6ZMgQ42\nqtX1SJlKbI0Por9kLS/mn0fOX3AAWs2wF3U4UnK4xd5wJ+pOhUI4vkAvr93RfgC27lnLoAnNKFnC\n2o1lY6wP9aA2izOjnLXztGA8hzzo284yXncqoFn9xZoA+dvDG3ntqdLLUcuE6t31c0N12UOHcA51\ny1B7Dq5jx3s4n5ZMG2uXXb3QiLtbULdhlGjhxyPc0jrQc2aL9cIVy1i7wUPv4LOJ7bCtSLNoJPaQ\ndlJrJFPrc307ofGndWbsWq2Wosu4VXcs6d2GY0idwceiMxs1haKkvhK1/lRKKV8j5qWstdBhj57m\ncw8tq+Am8zO1aVVKKc8+1Gxw34xr4PViDRo6+dnrTN4cvEe3lE3MQr20hjfQP+h6rpRS4TGsM9Qm\n9MgzfH6esh52pxY3+iLVlSullPcUqZFzDkpejAXx93ztfC+QWuHWmyul/rWeQJTU56JrqV5PwL0I\nexpfJ/4W1aT/999FrYyRZoxtWsNH/2xa/883irmhtJx/h9Em9C0nmePVOK+3Ex+PtXliAmM7JY9b\npw/UfIrXSP2+1jdOsHa0xk6s6WtCDZUXn+Y16r78xOeNeONvPzDiK37AbaH3P/ZHI06ZifN/80NX\nsXYZ5agT07FvlxG7yqtYu1AANU7Wz8Y89OePPjLixR18H5aVgmv4wPdvNuKTf9jH2hVcibHjIjay\nB369jbVb/Z0Ljfj5r6GOjkurbzjzjluNeNN3fm7ENjOvEzTn6zgvVmvsLe4zZqJvxcfzfV84jHHg\nH8J5C3u5dTq/EyFzkVavhNaPSZ+Ovd1QHZ8f6Tije+imN3YYsW5hnpyH6zhQj/XdWcJrsVnItiOR\n1LbwtvH6OP178X0TSS2Qwgt5naOgD/chtBZikp3vURO0uSOWDJPahbSOnVJKhUkNva7N2AekzuB1\n9+heon8H9tOp5/F29FLTmqDJWp2ypr/WGrGjEid92+OooTdlGq/hQuvW0HN54un9rN2UazCvDZBj\n7Rvha4k5Cf1v+m3zjLj7Y15jrfhyzCO0RpY118Ha0Xou5wJfJ6ltpNl2xyfj37TOzGgLr/NK1zGT\nFe3Gxvhe1mSiNYdwUScm+F7AmYU6T3Qvn1aI/x8e5bWDUgtx3zA2hnUxMZGfT1pvz5aGfqbPQz4P\n6goFe89cq1UppaJucq9WimPoPcT3+/Hms49FyZwRBEEQBEEQBEEQBEGYROThjCAIgiAIgiAIgiAI\nwiRyVllT9hqkW8dp6beOcqQj5ZKUcmoZrZRSiVakLScl4TVfP091rlqHlC5qwzampTqPtCF9Km81\nJBMnXoCda1MPl3PMLCk2Ymsh0s499dxGN2cJ0tt6h5HqNLSZS7CK3EgJzl2CtKWe3W2s3dRLIFMY\nj362bRY9l+cCmq6ZX81TUmnaHnWQzr+UpzD7iKym/VXYy1UvrWDtgt0kbY18YHKuk7XLnwfdjzV3\nkxGb09Ff0qqy2XuSknCe2rcfNOKpTp5eX331LUbctBNWlos06+IEC7p/7XNIHz7/extYu4gf36lr\nK6RRum1wmYvLRWJJxgJIGqglvVJKpc1Eqj1NW00p42ntw6fQ3+PjkYoXp6UueojVbQJJua37E0/r\nzCN2hNSqmqbpDnfx1E0vkW30fIo09OzV3GLPQix2qR13IMCtK222YiMODxG5T4SnEDrzICuYyMVY\njIvTLCldPD0z1hRfhXmud3sre41adHoaG9BuazNrl70W8x5N7dbTtxtfwvWiUiZrDk/rbN6y2YhT\niBRisJbMo5q9fMEV+B405Xukr561S58HqefJf8AKevgIl/lkU5kO+VP6vFlwKdL66Xfv+oiPCSrx\nyrjwfBVLQj049lE7lyFRSW2IWCwy62KlVLgE6ddJTqTPZiwsYO3a38f5HCYyn6l3cNmW7TL0nfbN\nNUZM53eaJq6UUpEIzlHXhxin5XfOYe369+N93gZ838Asfg273kefDRGpZMn5XGLYvRlzaHI+1oWk\nVJ5GHNHsWGMNTdl2z+GSZCrZTLBinchYxK8PtVqlEgJzGrf1NKfge46P49w0vVDD2mWfj3lw29Pb\njXhqMdbtQQ+XXm79J8ZvPtmbpG/iad6ZS7G/oZJF9yxu3+v1YpwO1mEtyDmPS5OdZN8SIXIEWyFf\n6/1UKspP87/Nh7/92IgTEvhc3rcP/fauJx814oev/QJr941nv2HEH/zgVSO+8Ec3sHY/vRk21jd9\n4RIjHjzN15q3fv2+Ed/xuweN2EEkL6+8s4W959ofQ0JFJYu/2LqVtbuXnNuM+egTviY+D239CeSH\nX3rmF0b8xoM/Ye1+dtP9Rnzr968x4hcffZ21sz0JGciy78ZYs62UGunA3tmaydenxETMnf31kPmY\nnHy+yKqea8Qd+3cb8bBWNsBFzlv7+7h2Jm3+SSByFCvZj5hSMbYHj3DrZm8T5ui0Gdi/xsXxW61A\nL9pllGG+Dabwe4ggkbf42zGOgiMe1s7ixFgc9WEPQ+UxSill0yQysSRlGiReYS+fu0dOoRwALX2R\nqMmuqMyTSmN9Dbx/95Kx7aRSst1cLkipfR/zWhqR9x3cX8fazQqWGXEykV8navNL59tYmyvuX2DE\n/T/9mLXzBrAvrXlmjxGXr6vk7cg5onK54eP8PnXkKP5dFdutjVKKr12+jmH2Wlo51pCB41jH8xYu\nYO38o0R+bsF4i0b52hWJoK+mZWP8Wq18ne3vhyyVSpmCfiJ9y+Py0vFx9H16Dzfcy8fsWADPGGzZ\nGB+pOdw6PeLDfpNKHgdrtM8jzywmxiFTdE7hJRTGxEpbEARBEARBEARBEAThfy7ycEYQBEEQBEEQ\nBEEQBGESOaus6fR7SPequm0ue81PJCE0hbxzM5cxWDIhSYiQNPQsLX3bNRMps+NRSCSO/5lXq/eM\nIj0pcxipc998+mkjrizhEokT7Uh9uvM2pKPmLuXpvOEhfN7Cy5BqeOxDLms60go5Qk4d0ohTSrk8\nqfeTZrw2E2lqcen8mdjATpKKt07FHOp6MdjC0yFNKagAP0Aqw5szuESn5RC+c/k8nN9gF09Tcy/B\ndfUTB4yInzsCeYdQcbt0Hb70+DhSwsxmXgmfyprSLoPDzJE3f8/anXz/ZRzPHKTUeVt4aiR1ySqY\niePe89gm1m72/XAIKlyPCu39tVxio8tFYglNLzT9S8o80nFpVfz+Gp7iGRnG+BsLE+ecbH7c6SQd\nt5dI9XI16RF1oKEpvGNhzAd+zb3NSpzPHCWQQ/bt4ZILexEkkNSdKBjl1d59SUgbdJfDiW1igrsL\nmUxIKRz2QAJJK/MrpZRjChnDPIs/JjS9hn6ff0EZey3kR38Mk+9szuRucQlmpPu6F362c0YxcRMY\nJNLG8RBPpxzYCyeYUB9SQRNINflc7VjtLoyXQC/cWfxd3KmAuuAULMR8S13UlFIqdy0+v+NDyGPy\nL+LyyoZnce2Kr8P3010fBg8R14sLVUyh7kotG7mMizq7eRsw10Y8PM07LhGymf696PvBDt6/c9ZD\nOhgZwvgdPM5T9amDm4M4kI1Rx6ggd3mg7hA0dfrdR99l7RZvwNq/7QSu9awXuKOfOxNjNoP0Sz0t\nmzr7RIgLoJ66nrGcu2jEGiqhHWkYYK/ROTB9OpnbglxmnUbSz7s/IWne63m/9ffiuzlyoO2xaGtG\nghVp/iMkHf7Gh35gxFddyDu0mbhHDpL9UVwST8OnTndxpcQGTMWxdoN92HMVzFtrxJ1HtvC/S2S8\ngzVYT/Iu5DK2/kOYX1SMTdQu+S72cw/f/hv22slPMTbb9uC1pZVcTnD8t5CFvV8DmVnRn7ms+vIL\nlxoxlQL/6Mt/YO1uXL7ciLf9+K9GPO1GfPlro1wa5Cf7KBuRgD/0+L2s3Rdu+rERF2ei7z366vef\nY/hcAAAgAElEQVRZu/Q67Ncev/1rRlyZy3VlZdn4jl2bIA297quXsnZNb/I9cKwJ9mEvEZ/Eb0tM\nWdhjp1XiO5uSuTNPNDpyxnYZM3l/pHsBaxZkTbozzVgYYz1M7jWodFyXQo0TqUKAONUmZ3FJQxJx\nGKJ73pDm9BMh9yQlG+bjs4f4/B8JYn9I5dFxcVzqHAp1qnOFhcwH3Z/w+0DqNJVzAdY0Xf7Z+jrW\nl7gEzEumdN5u6p0Yi6FR7CWovFIpfs9pPoZ9VKgb/W2mi8/BdSexr5+ZjrnCXsDlmjmkrAbdn1dd\nwuUwVAKT5MR58GkOR7Scx3A91qMJzU3PWX1mJ8FYYc/GXkr/2/4BrOW0bAJ1XlVKKWsyyggMeyAn\ny8hexdqFQujHZjPKRIyP871FSgr6Ph2/Dgeuz/DwQcXBeE5OxZ5tLMzlviEi2afPMjyth1k7KqN0\n5pH9bzffs9FzRucD2p+VUio+kf9bRzJnBEEQBEEQBEEQBEEQJhF5OCMIgiAIgiAIgiAIgjCJyMMZ\nQRAEQRAEQRAEQRCESeSsNWdMxEou2M9tM0eJPpy4TqokUsNEKaVSpkIf1rsL9SuoVlsppfy90G1R\ni7IppG6CUko9/x+/M+K6DtTU+MKl0Mh2eHhdlUVTof+mjrCdO3jNEFqDxjUb2twosWBTSqkLFqEe\nTcoMfI/ad2pZu9lXQmNsyYDecbiOa/Ddy3n9nViTTOp3jI1yzfzpXdDJj42jTsfUMq6ZL56Lc2PL\ng/Yya3kxa0evMT3ZPVuaWTtqVWovQ92PKedDQz40xO3W09Oh0x4j1s25y2awdp07jhpxkgXHGujh\nNoWp03HtqOa5ei7XZW9+DLaUy76AY2jXLK2n3cPt5GJJMrELpLWRlFJquAF2rtTm0d/G9cu0/hOt\nOxLxcZ1uoIfUdVqMvtm/j9eFSSf1Nei4ik/AM19/G7fiy1k404g7tkEjatLmjaFj0KJmZ8L2kNp0\nK8VtR088954RF13Fdb+9zRib7mnQZKdN55ravj3oI4XcJT4mlFyN4zI5+HemFubUYtg1ixe/aXoJ\nWtieVlz70fe4RnbRbYvxt0hdosHDXB/srIR2uOACHN8gsS3V9bJ1z31kxMXXYo5+8Zsvs3brrkGd\nC9pH9Hmo4Wn0BUcV1oyhk1xbb8lGHz71DN6TMo3rsMMD586GmVomF1/K61f4Ws9sxZ5g0+oouDBO\nx4Low+kL+NzjOYjaOQUbiL6ajHmluJU9tasfI2O74nZukb3zd58acSiC65GXzmun/foXLxlxYjzG\nNp3DlVLq8pWoJRCfSHT2Dj5mfY04R2Fi5116HV/r615E/Y+KlSrm0Pksa1kxe224kdSgIRryqJ/3\n2+QCrK32UtTQGid1t5Ti9Sfcxajzkbkon7UzO8m4J3avFVWoD3Soka87F8+bZ8SLylFfw5rL7dsp\nVOvfV3eUvWZKQd/sHdlpxD3EAl0ppXLWo04UrQkxHuU1ragNcaxxpOP7fvfJ+9lrNmIrPtqN7xsZ\n5bWXEswYm088CPvsr1zC671UF2AtvG7dlUbcqe03889HLYpgD/YVQ0cx7x49ymtyPPLAQ0a8fNEi\nI/7Br+9j7S6agzFclYe6Ts986SnW7t4nv2nE0/Kxf01N5vXLKkl9jM0vwLo9paWLtVt4yyJ1LsmZ\ni71y1/5D7DUL6Vu2FNSh6j3G9+W05gmt+xDv5nVX/D7sSVIyMK4sFj73xsdjzez0v23E1GI33nSM\nvSfBdOZanN27eJ2LiouuN2Jqsx1N5fulwrWYH0a6UUfIVXAea9d9AhbNY+kYfwkWvu6M/1/se/8d\nJkit0EAnr8ORvQ57bVpnZugEX99txLo673zcg4SG+ecNNmCfFiVrXLyJf9/OTahf55qLfZS/FXvj\nDG3NvfQOzKfNrxP77Vm8BtVII8Y9XeMyZ/M9QW8t6hpZXBh/znz+d2v34j4jMog5yrWY1xWktRrP\nBT0HcP+t16P0kf18XCHW/4if15Z05OE6JFnwGYODe1g7zzGswblzUUc0IYHXGEpIwNjmdtw4hvT0\npYoSCOCzPd2kdq22b0mwYH5w5uE+d7SX3+9Yneg/o33of4nJfH9Da7F5SS27JBuvTzVwlNR/4mWx\nlFKSOSMIgiAIgiAIgiAIgjCpyMMZQRAEQRAEQRAEQRCESeSssqaSa5G+l2jlqYF5l5af8bVogKfz\nUhvcqVeuN+LTH29m7T59HelO00j6KE05VUqpn72IdM3GvyD9sfwepKL17uXyFZoaTi3U0st5Knz2\nomlGPNQIydP0VVWsHU2ZpOn+hTmaVKvTe+b4NE9dpLKjc4EpDelU5ixukV29AmmiUWJDZ8nkqciJ\nJD1y3x92GHHhdJ5yV3rlMiOOj0e61/ZHX2LtzvsCJBfODOhHfD6k+46c5vamQc/7Rkxtfsc0a+C9\nb0PuUEwsmivu4nbwQ8SOll77d7/7ImtXNRtpylYiT0tK5H2zl0hi8rjr9L/NKJFLUHtcpZRKm35m\n67sCTXLh70S/o5aDXe81sHYlt0B65G1C6mbGQi6/o+mANlsx/p+kIKbmT6NvUZ4WpAEnkHnD18rH\nBH2t4z2SZpnP0ywT7ZAGUUmlnrpO7Ul7D8OuUU/bzFnJLaNjTd92pCYnpXJZk7MC8xGVp7Vv4inR\nbiKFyFhK7IY128Palw4YsS+E86HLVmY+sMqIh5shrUq04Rr07Gilb1H2KUitbfkHrumK1dwr15aP\nNOWQBzbdOZfwPE4qZbUX47M73uPffdqXIJM69TRSVfU5VHNSjykjpzAv+dt5Om9yCY4j0obX9GtN\nr2+A2OhSmZ5S3IKU9umJCP+C1nRIwU7sxXWPpym88fy3GBOZv/ykf/zqzTdZu4Z6XJvHH3jAiKPj\n/BhObUY7Kp/oHuQW2WYil7aYsEboewy7nac2xxoTST/2dXIJKJVjUsmTbhU/cBCpycmF6Ovxmo11\n/kKkXNtsSJ0ec3P5Xf8pyC/DUczzD99zsxH/8bX32HsuuAJrKbVjLVi8hLXz+TCWEhNxfdwVXL85\n2AzZFLUPzb2Yj1m61mQtwXcaPMFlk3Hx5+43wPbdu4y4cMkq9troKOQEASKbz5zFJdsDJ/B9dz76\nnBGvmzmTtatchve1vVVnxE++8B3WztuMtZrO6TuehmxoNxlTSin1w3vuMeIlN+N69m7l0vtbfn2n\nETe9DNn3rV/i17qnFv1o+XeuNWKzOYu1O/LnvxtxWz+kkpf+/DbWzpF1bqX34TDmVEcJX5/ofmfY\ng2vl0Ob8rFyUNvD70Y5aVSul1GAHbMHtDiJDGuP2vRMTmIuzimEpHwx2qM8iPQvXbrAf9zSpVRms\nndeLY6D7JYuF76f9fkgJLelU2sHnIRvZr1M5VaCHr09UshhrokGc5+RibnMeGcH6MrAX5y99Dpds\nm8ZIKYRduBew5nIba28j1hQzub+JS/jsuYbK/LNWFxtxsFeTTJ3AHijvAsx5Cdr65JiB+2PaJywW\nLlWNT8S8S+XHNhu/SSi+Cntlamtv0uzG9f1/rKHSPHq8SimVQu6ZzXbEvgkug4z4ca47yP7VnMll\nlQ4iBe7Yi7lclwqN1NPSDbjeqVW4507P47Jtau8d9mJdtOfwsRi14JnA+Dj6qTOb3wuMjaGdJQ39\n2xvHZa30WNPPg3RtuJGXM8mYOUWdDcmcEQRBEARBEARBEARBmETk4YwgCIIgCIIgCIIgCMIkclZZ\nU/cnSKmLDnNHF/pYJ3MlUlpDHp4amLMU0opgELIP6h6ilFLrPr/aiFveQzqqq4inlsbHI827/B6k\nDieakdZXuHoee4+vCVWw3cR9xt/OpRQ05TPqJ1W+5/Cq2v37kcJGnVSGjvDK41lEckDlXgEtFd6c\nem7TtxVROyQ5eXo9reaeTFIHh+u5G0j6DHzP6itwTXQnjv4TuHb5s8/He27hKWcON1K6Gt6G84s1\nC2lv/Tt4teyaJvTH1dchjffjl3ewdoUupPhPvQN/N6ClLwa68e+6p7YY8bwNny3NiE9AamNyEU/d\npM5kscZMHAtSSnnVeFrtv3UTHHv0a5NEJBLhYZL+fhWXPwUHID+xFyJ1eOgkT8vr206cja5CGiOV\nJ0xoUpsJ4uQRIn8nLp5XULcX4+8GLBjnw8d4v6Sp2PnkujvK+LWgf4s6p+nHNz5+7twMlFIqnTgG\npJTz9Mq2d84st6LnQikuQ6PSB92ljkpGltyB8dL8xgnWrmMz/k3nAys5huQC3tdff3KTEc8tJe4k\nEZ5CTl1cIkTiuv/1g6xddAznvbwQ8/fUu7kUkaaGUvenkTreL3rqiLTiJhVT0s/DNdQllXSc+hRS\nr+PNXOZStwlp7YkJeC1vGk/ztpcixX+USP+6NafBMEkbP9CEdPCKXKxd6VqKchL5uyfaMdfefcEF\nrF3Jl+4wYj+ZMx1TuPygpRbSNydJVy4+j8uC6bzbvAXp29T9Qiml1Bgfm7HGRNZCfweXCVBHvCQz\nxoE1g59DKl+iMkA99Xx0BKndViv2S0lJfFw5i3C9yvMQdzZjb1GWw/tIXw1x9CJp+HraPN07UdlH\nfy2XgdN1IjSIebN/D5dzJNrxfUeskKVoZhhq/BxeR1sOrs3v7/4+e+1Lz/zKiBv3/MmIU6dyOXvh\nvIuNuHcLxtVIQJO5kO8x415IheLi+G+cx178oxFXXAUnyct/CunSP1bewd4zfT6um3sa9kbplVzm\n0roRcqX8SyBH0+ehgvlrjHigE/JPu2ZBWHoD5teH7thgxJ0HuKuKyUHmUz7sY4LJhGsybuWS5JEm\n9C33tEryHn4gXi9cx8JhrBN0f6SUUjY39gZUymQyffb+LSEBY4Lex+juR8f/AZlYycWQMlpcfM9G\nJRfRKJGbR7iUPzkZ14u6SXU0vMHaUTkslTXRvdx/tyPz19lVFf/PDNZCDjSuyW7Z/pW4pFK5k1JK\nBftxvNQplLouKaWUIvvFBCuub0oF31PlrMHehB7D8EnsF6w5XNoeb6IlE3AuJyb4PNbdjvuOlGJI\nmbpPbGftXGQ8T0zg8wY69rF2tHRE/gZS6kFzPB0iMuhiblQbE6gblL6OjZF+1r2fSPO08iPBXiIV\nIi5eI8f5Pi3qxfXvPAyJcM8Qd72ke/tBHz77+LO4t7/mNn7/HST7jKIrIRmL+Pl9YJgcw3A/xp9e\n8iA5A2PY1412aTP42KZzQnwi1gari39e32Gswe7zVykdyZwRBEEQBEEQBEEQBEGYROThjCAIgiAI\ngiAIgiAIwiQiD2cEQRAEQRAEQRAEQRAmkbPWnBnogGY+NY3rpUpvmWXEg0ehnyxavZy1629ADYyo\nD3VrkvO5Ndq+30O/t/whaIBDoW7WbqS1U52Jwpmob6Jb5025BfrT1jdRXyF7FddkH38eOs64RGga\nOz9uYu1KroOF2vApaOjSZnGbwsbniD54A2wYM5ZxW0KqeTsXUF0nrZ+ilFLt/4QlZB45Rl8b1+BT\njWfOnPOMOC6O1zUJhaB/7zkF7aVukxqJoG+1HUStgtIV0Gc6KrmmOLUHmkIv0Yxe/7NrWbsIOZ8p\nmdAohwYPsXZUG9jUhuMuVZy4JDzDDA9Bo0w1sUop1UX6SSkvsfNvQ8dY6jSufR08jDHiLMc5i/r5\nOLAXoHZJNIDX6GcrpZQ1G/WbGl47YsRpBWmsXRexyJ1bhjo98fHQ9tpshew9Hs9OI7a4UPuF6lKV\n4lbpzH7ayfvbBJGw0npFvlauWR0LElvMRcVGHPRw/am/m/R7LiWNCVZiedn4V94fy25FrRV/L3TG\nnR80snbJBZg7CxahD/b9iddeGhzFd9v6p0+NePG1C1g7qsV2l0PETLX6e37yAnvPBRcvNOKWGmjw\n7RZeS+yjf+B6l5NaGdPmcME71XPX/QEWsenanNpLrIszSO2XYI+Ptau64Tx1rvB3QvOdOo1r3GnN\ntczVxUa8/3lew6F8PmYZE7GA3/sO7xNZdRizY8S6euZt81m73U9hrnU5sFaHSA2glkPcDr1kIda/\n+27ChOVt4HUP6Hei67ZLs0F1zUVNhGAf+l79y4dZu5QsfEbphVhzHMV8fqG1BM4FVCdv0Sw+I17s\nVbwdmF8debwGiOcIdPfUSjs0wOuVZM9Gf6S2q/9q34u1y70cYztuN9aghV/ie6z4RMyVVieuSSTC\n1/C4OLQ7+XvYlo4GuJ13RiXGHB1/rnm89h6tx8BqVZE5Timlenfzmjax5NkfvGLE2am8Nhf9vrTm\nn+cYX+9GLO8a8e/f2WjEG+bzMVa/m9QhnI293ViQr7Obj6L2Sd4s9JehI6itt3L6dPae3DWYD+Pj\nscY9ftcvWbtL1y4yYjpn9u7kNaj6TaghFfXh+Loif2LtZt1+F/k8rJHU7lgppYoWXajOJZ7T2Ic6\n8jPZa6lTsRAnJdE5Qv9tGXtUXzc2Bkl2XmdxgsyjJjdq3dA6MEopZbdj7zg0hDVpLIK5Yegkr6Gh\nyGf7PJhvJ9L4Ht9mQ42hzhPoFzmVK1m7YJBcR2Kf7S5Yyto173oPr83AnsuhOaAnJZ27uoi+Ruy5\nstbye6uOt2Adb8nF/OAo53t8ixt24d7T2F+ayP8rxecbWpMvI3+FdlRbjWikCTXN6N4/LpH3o4Mv\n7jfiOTdgT0brkCmllJPUXPP14t6kYOYlrB29boEA5kK9TtQIuZek9dwi2v1hajUfH7GG7sX9Xbw+\nqp2scXRe0Wsv+Zuxf+3rwXXU6/aEyDht7Ob3+pTUZKzPneS+w5SIfjAe4vVxqE07rbFJawoppZSZ\nWJXTGjHJGXx/Ex+Pe1jaF/R7W28zqTVIatK5p3NrbvramZDMGUEQBEEQBEEQBEEQhElEHs4IgiAI\ngiAIgiAIgiBMImfNG551D1LXh45zm6quT5r05koppQ7+/GX275QqpH37TiGtLGNVEWtHU6w3/eB1\nIx4N8lSyS74NyZM1jaboIaXRZOLp0WYz0pNc85Bu1bOtmbWzZCJ1rvsA0jqL13P7QWsm0saHT0Ay\n5ZrN035H85HeVP8q5CGz7l/M2rW/h5Q/xTNpY0L6TKSFNr1Qy14ruRm22H378J2zVxSzdoMkFZhK\nkhISeArzcCNS06J+pH/Wv8fte0tXIsWLpt4f+wjtdCvLZdehP9qLkMpo1aQziUm4xk3vb8YLWkpd\n6gykbJcTy7iol6cpp5Qh9fX035Cib3JzC/S4hHP3rDNjAfJTgwNcwmEhaeTUklpPhxxuQAphogWp\neO65vN9GiPyw8mbIlXQr8kWkj1itxDY+iuPz+5vZe6xWfA+TCXPDyMBx1o6mzE/74loj7j1Ux9rN\nmYEUT89uSF50mVTuOqSN9+yCJXtKJZel2LK4fDPWtLxyzIjzNvB55dTTSJ3OWIn5sfQG7pfYfwDf\n00NsdJM1SVFuOlJj0+dhDkzQ0jCp7WHKPMhV25v+acQlxIpQKaUSbUi9HyHz+q76etbu8jtw7Ro+\nOmnE7kX5rJ2nBvMGnfPLZvHUUmpbSM/DYAeXsRVlVKtzBU35L7qG/52RU5AE0fM6/ULerotYYWfO\nhfRh1mJua39wJ+bDuctxDY6/wK3IqaV6hMTZaVgLn/3kE/ae65PQDyIk7de9gF+bUiJZbN6Mz+jd\nxqUUvc2YX1yZmJ9LL+d9x7MP183XipTv8TAfswO7kNJfuUrFnIFDGDsTEZ6W7ZqPc+DvwjEm53Br\nWroOUTvzsYBmKU/mOptN0xoQTtdifjClYDyX3oR1OqLJVYeJDM26AHP5QOcu1i4lE9eBSpiT87gc\nqGsr9nb2fOyxIj6+HtP0bVsOpGr63tCUxuelWFKahTW8JIun+w90Q+Z5tBUSk8jp06zdvCpITG5f\nvdqIp9+3kLXb/1tIB9vfxDpUfheXiRYQqUwcSV3Pvwh73FuvmsfeQ9fPsTHMG5+772LWLmsurttT\nX/y9EX/9r0+wdk073jLijAVYB+qfPsDaHXsNctXc8yG1HA9wicD+nz1lxMt/+LCKNSEPxpUth+/5\nJ6IYm8PELtvhnsraUev4gQj226Fh3m9zKiAdopITs5lLaKnMydN4yoife/QfRpybxu81KnIx/vLJ\nnO9w8DU8KYnIQ0vRbnw8zNoNNODvpk/B94tE+HqXNw99NRTCvdr4OP/uVOoXa0pIqYuW146x1wqv\nxdzTRkop0D24Ukq5iCSr9R1cw3RNQptZhvHj6cA9jd/P554gkeS2fQx5uC+EubpAm08LCjGPNL+F\n9bfoUr42m1Ox7+7ajs8ebX6FtyOSLEcR+svEOL8fyV6KPWrbRuyHAx18300tosv4FBUTRsm8nmjn\nZQQCfZibHERORmXASvH9955T6MN/e/tt1u7ua64x4gJil20zcyliuh3nOjEBfTi3Cv3C38JlvHYi\nkw6RchS0nIJSSkVIXwiSeSjB3MfahUcwL9mI/TqVfSvF7wPpvePAcV6eQGRNgiAIgiAIgiAIgiAI\n/4ORhzOCIAiCIAiCIAiCIAiTyFllTVQika6llw8cQmoyTWkqv2M2a7f/CaSWJpHKynue+oi1o6ns\nHi8qRDf28Arq6f+F9KYMJ1IDK+6GlCUzby17T+snu424eA1SGqlbg1JKhUgF5rISpETZsrmzFK0K\nTd2Pjj69j7WLI/H0z0Ov1LWFp9VmreSVzWNNZBRpW3qKMU2tSrIjzT1eq2DuIOeDOjS1fLCXtfM1\nId0yk0gz5tzLpVyeWqSUV6+Hc0Hnpzg3yx5Yzd6TnI6Ux4FTSDdsrd/J2imSLkivla9pmDWj1caP\nn2g24rYB7lbiaoDsIEKcGTJnFPPjy+P9JJbQ8eaYwivuU2eiJCfSAeMSedocddFIK4asbHSAu2mM\nNuPzaApl5lIuH6PjxedDyt7EBM7R6EAze8/EGK6NJY3IbrIWsXZDA+hXgw3oE2nTeBoslXh1h4lU\nZA6XTY6RavJUypRg4nPAyGlIdLL5lBcT0ubjQ2mVeKWUGvRg3ishzlqDR3gV+yiZbxNsGLNVV89k\n7fp34bpS55u0Cn4OLRZc12AQKdH9+yArsWl9e/dfkeJPJTVrVnCbsiiZe9Id6H+dGxtYu/zLiMSL\nyA9Dg7qbDV4bqYOMZtqt/O+e/CPm4pxHNqhYkr0G83XHRi7jSiLOSx21kD9VXMHdWZx5WDeopGjX\np0dYu2SS3kvdMKZczFOs3ceRgmt2oV8FuzE+bly2jL0ndzHGSKgf6by6JHB0GGnJ/g700eEOPp8u\neBDztY/IzEKaywWVtHW+i88O9XK5ZiDMU6VjTRaZz3TnDBVH5KHD6MN9muOVaybGc0o+ZCGj/bxd\n694PjTh3DnLRrVYuITOnIwU+0INz3fY2pACWXC69pLLlzt01RqynzY+FIMk1p+HvhDXZRyZxgPMc\nI+5oM8tZu+Eoxt94GHOAvscI9fPPjyWt/TiGWWu4dHDbLyFpvuzbcFDp1vZfBZdgLI0TCQ11+FBK\nqdxpuNaZS9B3Xvgad7K7/KvrjdhDpHNWJ641df5QSqlwGOP3iXvg0HTTd69i7R677edGvLAc1+Mr\n669n7a5djP1W6n1Y76r+g6+zg8ewtgwQiWxLL0/pn3MF39fHGtcMnBuTicvTxscx/rwjbWf8f6W4\nRCmjHLKXiQku0QqHscabTJAd9LRsZu1GWzCHdWyGXKabuMXQa6AUv19J/xRrw0ghv4+h8hYfkU36\nWrhcKbUK58JiwbgcHeWyoUgIx+RtReyu4NLpoQ5Ii1NSZqlYQucRZyXfo1IZtL0C+76ezXwsmlMx\nd9hLyT2YJjdPTsZ57/Lg/s7bXMPa0TXFNRXjoPZDODL1DvN1zENcLi++GmumZz93Cu75CMd+oAH7\n3/Ov5vc64xGsp3ROSSvksrzEROyPrDno53q5BGeFW51LUqbi88eCfOzQNWWkEeMooLk61Tdj77h2\nJvalVfl8vaMlLaYvxvlwz9dk78SRNp/IqahLlL6fHiYScxtZM/WyENTNmMq4dBeviTG+LzL+Th2f\nK9OIVC/iw2dnTOd7tp4aXspBRzJnBEEQBEEQBEEQBEEQJhF5OCMIgiAIgiAIgiAIgjCJnFXWRFPK\nj750iL1WMBspdg37kd41Uq9JQlKQDp+QjD+3ejq3JQr1Ia2apsXq1aKPb0V677Af7xltR2qa5whP\nMy1Yhb91+LeotJ6+kLvUUBmXLRtpUJ8+xiVYJdUkBZOk4aW4eOoddZxpfxcpjtYc7nCUYD53FdSV\n+te0KwqtZE9T2wc1d67Nf4c87aqHrzDieBM/9sKrqvB5pP90fsQrVduJTMqzB+n/8755pRHTNFWl\nlOrYCaeB3MWQCUSKeCro/l9uNeIwSZsrmsulLq0HkXq+6Cr0kVlail7jJqSC+kmqfVoHP77RJqT5\n5RWrmOI6DynVUS3V0ETS+ahjmJ7WTtPkT/71YyNua+Symcq1SL9LTEb6tS5Fibfg2nvrPzDirOXF\nRqxLBz11SO8NZyPlz1rBJVOOVKSoh72YexwpXB7i60S/rLgT0paW13jKYFIq5CF5FyIldqSRz1eJ\nyXy+iTVUJtbWOMheS7GjivxQHcbfUC1PiZ5yG1LMPSQtXZejOEj66/AxzAHpM7heKykJEpveFoyd\nogsgvwj6+TFUrUS6dO3HSLFOqeYp6cPH8D0SiGySyrGUUmrwKD7fTZzJEkz89wPqFmAm60T9Czyd\nOaWIu2jEku6Psd6ZNce2eNLfy9ZjHOlpv5YsXGvfaaxdCxdzaUbTMaQ356yHFFFPN6ZuZD4yL9GU\naCrjVIqn8xZehnmburoppVTffqQoj7Rhrp3Q3O9O/A7p5XFEFhQd45KhaffB3ca1FGupOZWfSy6+\niz10vOhOdFSiaskk7g78KzNHwoREnPeuzdw1hMo5h4+/Y8T563lquzUFEqWeBsg0TcTxI3Mhd3ui\n83ruIkgVug9yiVwicWmzp6O/DDTydnR9yZ6Nz2t6ZxtrR6U9gR6cP7s29qicNtZccvVyI5gj5lYA\nACAASURBVB4lrnFKKbXgLsgLosSB0JrD92neFszDL/ziDSN+8PmfsHbDJzEu6PW98RefY+1+eOOv\njPirD99qxO9/71kjLinPo29RI93oO6d7MWd++F8fs3ZTstE/Lvnpt4141pEPWTtnEeb+xz8PV6e5\npaWs3dJvrTHi2t9gLV14C5c/net1cTxK5ibtT42NoW9Rif7YGJ9To1FcVyoTi0b5/tDhQJ+Oj8cf\ns6XzGYfu2T+ohSMQdUVs6OZ7p+UXYA/imoO9GB0fSinl78axU7eX3GXc1SkcQN+Mi8P4tdmmsHbD\nfViDqWQqFOT7eIvLps4VPVuajdi1gPdv6t5EncCoi5NSStmz8T5zGr67U5NgUek8vW+jsVJK7dkM\nKafLgf5RmYe/Q+8jlVKqewj9ha7nJ09wd8IZS7EHCtfhO+klIbzETY/eLzmz+B6otx5SbOeUdPVZ\nxCfEfeZrscBzBHuxBAu/v0tyou9nLcBc0lfTzNpN7cb5Dfgg5apewte7ZOJ2mEykR9rWQqVMhUyO\nSnInxrGG29J4n6PjKqUU86buiBbSZE7GcWt7giGyl81cjDVYX0/CRAZty8Xe2tPI74ETTOLWJAiC\nIAiCIAiCIAiC8D8WeTgjCIIgCIIgCIIgCIIwicjDGUEQBEEQBEEQBEEQhEnkrDVnRhqg4bWZuBCU\n1rmYuhj6x2AX12lt2QPN37oLoTXXbTObmmBTdtGPrjXivsNcu73yQdhkH/4DNO4b/wht7qwiXluE\n1ls43Qk9naWNa6G7T0A/mkXsZguLuRb1ZG2zEVcvRv0K9zKuBY94oT1LsqPmRf0bR1k7au17LrCS\n+jlU46fU/2bvvcLkvKp0/9Vd1aGqqzpU5xzUyjlZkoMsWc6WZeMIBmPSwCEOMDAMw5kDwzzDHHM4\nw5APORpjbIxzjrKCJcvKOXRU51xVndP/gme+913bti6G6un/xfpdbal2VX9h77X3V7Xe9Yr4yEo7\ng+rADDZonW5ZBBrIKNVWOf+61mHyfc1bh3oCc+5Yp/rFWmDbmHU39KQnfwnt9OFj+t4vW4pxdn4M\nNSaOvqDriyzaCC3o1ATEi+cPaMvoEapH0/QK9IBpKVoLuuA2WMGdfhj3ru+wrsMRdLSHiWSkB7pY\ntzZDuAb3hu3e+k/pWkNsG93RCP18OF1bn3a+jhoTu06h3k7U0eZuWQp9dNlG6E/HaNyPNui6KqPd\nGB9UlkLqmp9T/bLmY07kV2LsJCfrY2V8aaTJrsxSrw2fh6a/5VnY96p6EiIyQrWvRMvuE0KI7lX/\nIa1X94fZyh7zspCsm0VE4mRhPNoDXW33IT1f0tMQs8fJIrb+D4dVv8JNuDZsWdlzGpp7t47E2R2o\nP3TVV6712u6Yy1qCGjSnn8A8XfvZjapf527Ekf5jmFfZi3QNm64dqBNVeRvqs7S/qi0502ewzgXj\nxlO2smdL+szad9aQj5M1Otd4EhEJ0LrbSZr+wit17Ygxqh/DtWS47oE71tuex3jpzMZ1jTl14/g6\np2Zh/qXn6foFXJMqeyXWzLAzdrjeQs9OxBp3/WzfjjFRq5ePhMA1RDIqdLwYasUxpoRxTzOKtaV8\n516sKcPnEVfKb9S2ma1UoySyHNfmvGPFnrsW8ZFry/QcxP6o77hedzLnaNvad/p/tiMNXY76RUHn\nnNhS2ZeK454c0jWLuKbcGNmlh8r1nBjq0LVBEskY1RX49bPaCvnvKW5WrICV9pf+8S7V72sP3Ou1\nv/7ne7x22/lHVT+uhRihGnADTsz7m3u2eu3nf/ay156g+gjzI7pmyJNPveK1P/Mp7H+5FqOIyNz3\nXO61Oxu2e+0X/9/Lqt+2r9/ktT/yddTEySzT9cbadp7w2lxDqmCRts5uP7RPZpL0IPaKQzFtQ8/x\nIqMEY3WgoUX1K1pY5bX9fqxjgYCuZ9fbhtoegWzsM3pO6vXz0GHEsweeesprf+szn8FnxfXzDu+/\nuO3WXZoax3qcSmsG15gREUlJx/mOjXH9GP27+sQw5mZ6Jp3TKV3nIlhIx5Hgol5c34zto0VE/GGs\nY4H5VD8koteQttdRmyZ/DcZEMKjv4cAA6mSxhTJb14uI9NOe9dVj+Owaqt10251b1HsWjmBtbd+D\n+L76Rj0njj6DZ4HiHKxxjdv1OFr0PtQhChWjFlTncV3Hla3bs6heIK/nIroe2kzAzxOBXD1u+05i\nDRmNYt/I81JEJPUqxEqusxPI13sQfxruP9etyZ6vn4kzqhAv4524JzmlqEE5OTms3lO0Yo3XbjuA\nOe/uR7iOTryJ7kGttixPolo/A7RHcvdBkblYWycmsFfPn6frJo2M6GdnF8ucMQzDMAzDMAzDMAzD\nmEXsyxnDMAzDMAzDMAzDMIxZ5IKypvR8pOtklulU1bMvQu7AdtnJjvXW5ktWeG229g2UagnI5duu\n8NpDPUg3ZitHEZGBFqTpHWxo8Nob5sGiK1Stj5Xt0NJb8dktx1pVv4W3QL6y/Vc7vHZdh04jvnIZ\n+mVUIUWKpUsiIsNkaTo1hjTGOdfOV/1Y/jQTcErl3u9uV6+xLSDLfGo21ap+rX1It2z/La7NtZ+7\nxvlruMdsrRd5v07znhhG6iqn81XdCanM8I90mhrb5B1+HimKa99zkeoXpXT1njNIOX5q/37V7yq6\nj9mFGMOnT2v5U/gwUt5TfRjfBRc7lqZtM5e+HT0HKVnWPCfdjq4Lj6XMGi2l6NiJaz5/K6QKE066\n+puPI90yj+wHf/anP6l+t14DG9Mdf9rjta//0nVem+3kRbTNduMDSAuNXKRt7cfI4n1q6p3nhz8D\nc45T/8M1OnWRrfi69yIdOmuBls2kR2bOalJEpHsXxhZLfkR0Gm/7a5Dp9O4fUP3i3UiljszFWOC0\neRGRwWFIDfbX4/Oumav1WiwHO/tzzJFUsone/evd6j2L1kPO2fk6zqnmmitVv/423OOShUglbnpE\nSxHHunG/c9Yg9b7teZ2WXXkrxi3/3eEWnV4+1odzl+skobAte8erOjW1bBtiO1tXsw2jiEj8DOLp\n5BSnv+u030W3Y/3jlOCzv9LW4TkklWGZLKfpDjZqqWrVnUgJ7tqF2BCe58hhDiFVvHADyRfjWnKR\nswr3t3M7Pm+cJC8iIuG5+PzIOthfst20iMic92hb2UTDUhyWLolo6+VYHe5VvE7bNWdSLM5fg3Pp\nO6HvdwbJLN2xwHS8gJT4FJLR8D1xLThTQ4hZ7W8i3T/Z6ecLYB/UdRrWwLxeiogUb8I9Zpvpipu0\n7S3bmPbsQ0x1x1nuGh3bE8lzLyFd/d4/36tem5jA/ut7H/y0146EdKp+10nIPKfn45zYkl5E5Jf/\n/mevXZCF+3nL329V/b7304e99keuv9pr/+pZSO/7/6xl/bx/naI10x/SMseRGGQFbDebnaHjxm+/\ncL/XLsrGftifrH+PXXgZ4lXNjQu99snfPqn6hZz1NNF0HEY8472yiEjecpZw4v6M9ul51FW/12sX\n1W722ikpWrIYzMH6MjKIz+jdp58H4iOID+/bts1r/3kP9jqfec9N6j2lV2FdHGzFuu0+GwRyMZ+H\nO7GGjDnPAlPjmH8jU4g9vjQ9t7NLce/6mrA3dq2z07NmroQCxyvXCtrdY/4n0XodT3lQZ2dDyxqN\n6lIQdU9BwsjS4nNHtSRuURn2VM/S/n/3G4gbt962Wd6Jnhj29PUP71WvLV0I2WTWYuzlBpz4fv5h\nSAfnfXyt1+59U483FZ93Y2/jS7/gY3rCSU5BjOg9rmViYXre5XsaqVim+g10Yn+XTOUUug/oc44s\nwZ6B5UZ+p9RCfxPWxbQs7EsHunBtg9l6nYm1QWZctAKStO4zx1S/YZJN5q3CGj7ap/c3JQsgf2ud\nesFr+wK65AtbZmdX4/NcaWhmzdvLkf8Ty5wxDMMwDMMwDMMwDMOYRezLGcMwDMMwDMMwDMMwjFnk\ngvlSDc8hLSjXScEprkEaV9MZpD65zi9n2pGGuek2pNO7FafjzUiFDZYgDbH+yR2qH6fqXjwfKZks\ncWrap9OH3vteSG8WXo3U3M7dWr4SPQkJTBdVor7rYzeofpxS2PsG0nnzL9EVxTMqkG63/z6k0RXn\n65S/aAzpU/MulYSzh6RME5OT79iveiMqYk9NaInEpvdc7LUPP4404JYntNtE5iKkeadSSuXJXz+r\n+hVuRkpgOqk7xuNI6xwc0enw8Sb8u4Tco1qePav6kQmQlF5a5bXfn6+ldJ2tJBUiicmWmxeqfnUk\nIShYizTJ08+fVP0W375CZop0kjRwVXwRXa1+agwp0WkZWv4ULH379PzJYS09KqHK8809qEr++bvv\nVv127EEK/folkK013o8U1ALHaWi0F2O95HqkAMfqtUsBqeMkKQlhamJCS8dCBUiLHDiJdNIhJyXd\nF0R6uD9EzgG5eky4Uo1Ew9KPrtfc+AN5QbQTx59dqmWaSz6BOPrmd17z2vkVOkZHViPN8+mvU9r4\nqI4BP/rir732bbdCXsruPvOTqtR7QuTsxg4Qw8M6rdifgWs9SX83zZHvFG7COGH3Cvc+du+Du88Y\nOVWVbp2r+jU9dEJmimAZ1id2bRERaXr0pNtdRETmf3i1+nfWQqSXNz2C94ScdHCWLMabkSafxFZn\nIjJYR85QJBtiKXGak+LeuRPp9Hw/3X7+AObOWAxyjIxImeo3koW5E1mNcV6wXq+LvNbnrcQYjTXp\nGDDMjo6LJeEEy7AHGe7QsrisBYidHC/6DmqHNd6PsMNT9kItH2A3MZbgubKVspsQR9kZix0Sk/w6\n/g93YVwMt+Oz+RxERCZHEOe7ae/j7lsGyQ3OT6n2U+N6nWBnNnbvzHRkcR0v4dznrJGE0tiFY0hK\n0tfyPLk4jk3g2G/7hNY5nnwI+5lnDiAWfvZf71H9PvXvH/Dah34KacvOn+g9aoj2wByXvnYnBnGP\n49T3wK+wP1pyDfp179GORK+9AGnxb16ETOrbH/mI6ldegf1MYwP+1vHz51W/0ZdxXbZ9A+t78XIt\nfT3yE5I0Xy8Jh92L3P1NairGU089JAnTriMQrfGjoyhFEItpd8JucltlV6FghX4mqTiH+bOQ5DG3\n3wV5Q84SbXnEsS1A62IoR7tzDcUwJzhuuA5rHOfDWRgXU1Njqh//m13UklO0/CmYq69ZIpmi+CLO\n+jRG+77+U9hTVtykyx0k07PV6CjGbXKyloXxeUVPIAaUl2ip+N7jeD4JpOEznnjkB157qFnvMfIv\nRTxcRHuRfc/pcZRJ8TUtgvhXfLUuCTFJTlrqPJL1NSraDPkePwe5a1O8iWTuM7AujpIzbN6Smnfs\nF8zCPiEY1Pv8yVxy8hvDvjZvZanqx/OeSyCMDuhzTs/FfjEYxlzsOoF4MB7Tjp2hEtyf0VHE0WRn\n/WQ3Y15nWd4lIjI0hM9Py8G5hyL6fvOc7TuPNSijVMsr++l5pVhvpf7y99/6X4ZhGIZhGIZhGIZh\nGMZ/F/bljGEYhmEYhmEYhmEYxixiX84YhmEYhmEYhmEYhmHMIhesOVNzA/SAZx7X1qdcu2TJTbDR\nOv7YEdWPbULjZ6DnSnMsawOF0H0l+6HZyl2l7bGa/oTjYJuztctgRfjibw+p97zr7s957ede+YXX\n1oo/ESGbQbYAb9vRoLqVkjaw4PIqr+1aAD71I9ht3fBpWCrWP6ytvGpv0DVOEs2a/4F6MWwRKqLt\nrsej0Dkeek3XbAiSXnPOEmgyMyq0ji6JdHqjVDPg4KEzqt8a0nJGyAaWtdxFC4rUew7tgX17+WrY\nWLvXvWgj9I+hCLS+Q6saVL+Wb0KzPUT1HPoOaD04G7zyOZUv01ba9Y+RZd7FklBC5bjOXDtARESo\nrsQI6UVz8rUONHs+tL7Fq2Et19twSvVbWIP5XLwdevoTz+sxMU46ftYbh+ZDN52WrWtQJfmhFY5z\njYlpbaProzoXvS1v4u84tZDaX4YOtOx6xIDO13XtE9ax57Hl7Sl9r13ryUTTfwha+GRHW8/1J1a/\n/yqv3bZT13XqfhP62YV3wGrZtevc9UPUmrp8EWpt3faxv1f9fve1r3rtPz/yqte+YgmsljOrtZVq\n41MYMzmkk89dpWuwsJ4+7yKyTZ7S93u4Expjto5k22URkfhZrCE5KxAf2F5RRCS9YObuY93LiGW1\n18xXr/Gakkr2zMPd2jp3kOJN/yBeK87QdTP6j2C8ZFN9g4wqHXcz50NfnVezymu3DyGexut0TReu\ne8Ox/+QDev2ccx32AdHT0I+n5eu5U74Jf3cogjp0br2AEYqhXCMl7NRbGBnX1yzRcK2kYLGuN8H1\nqzIo9uZepDXzI1QPIH4OY5N1+yIiQ02oa5B/ma7xwkTP4PqOduMzJuKoW8CWtSI6nnE9GjdWBopw\nvjzHCuevVf0GBxFveD0ZdSzRx3pRV4Bt492aVnPet0pmik9+/Fav/ZOP/x/12sYNWMe2bEbNp8IV\n2hJ84Aju9YeWob5g3LEEL6lGbYFNX/0br/3jj/2z6vfZb6BWTdtzsFXNWkr1MCb1vbn11k1e++iz\n2B9Gh4dVv3ffe4fX3vgirutIm54ruWsxJmLdGKP/cN+3Vb+Bbsz1+sdgFfzc06/r4/uUrtOTaNjK\nPrNK10qKdaOmIMfU1Pk6rrD1eQ49T0xPaxtnX4Dq+CThtekp/TjEzxdsvx4oQaxw7dZTab/TQ7bB\nPUnakjhYTM87VLcqPaifd8JhxN6BgQP0in56Ge7HGOa5GCzV62L/OdSaytOX+a8mfwPtycd1DEih\n/X4O1XecnnTrBrEtMc6x7chu1Y/rmMUaEHf379b1n6ZpX/nBK1BPr+E1WDOXrdHx+NCvUR+0pBZ7\njFBAX0u2vm5/Hp+Xv1F/Xmo23ufzYRxNOvbibE09HsdzWs8uXXeq9KZ5MpOwXXa0WVtfh8uwZ0hP\nx1iNx/UzhN+P85yYoBpmQV3jcbAH58bPBm6tpOg5PLuMUT0bFTdK3HUVY2ukD8cQyNf1DpPoub/3\nGPY0EzE9NmPteKbgumy5l+mHvYEB1LxVdePoHET0vuLtsMwZwzAMwzAMwzAMwzCMWcS+nDEMwzAM\nwzAMwzAMw5hFLihrGiCLsqKFWmJSTNIelhCs/sgG1S/42/1eO1QLm9DHfqCtlbd+9Eqv/eRPITe5\nYutFqt/ek0gpX15Z6bVzKJ3+E13Xqvc8X4L0q8HzSENkyZWISIzSklt60V58mU5dj55A6jGnze0/\nqOUHl29FuvCbv0XKKNs6iogsLLtwetNfSx+lxrupVOnFZIPbgjTO67++TfUbbEMaV+yMTs9iDj4C\ny96eONJpK5wcyvNHYOl43wPPee1LF5CVaESnEW76yEav3X8MaZz5G3Q6W88hpJBmbsHnpQW0vSnf\n/96zOKdQjk57y14BOcEIpeG7Eo7izVpGlEjYUpdT+URE4ueRfp1dU0mvaOnIJMm/xsZwvrnVS1S/\n1FRcpxClOC67VVuFszSRU8BTwkhNTc3UKfgZ2ZCZRc8iBbXoEm01ORpFmrafUvBjTqp58ZWIQ2lh\nyCImYtpePWcp4tcISUyy5+lx2XsMc0V09ntCGCFpQNiRBCbTeTY+hnkUdo5xsAHylEO/R8ypXlOl\n+p1oQcpobhjppL/5p39S/SYnMC62XYMUzWdeRMx697U3qvfkrkFMTQ3jHtf/XttNpuZiDqsU1LdY\nRuN3gm5KBx9p19bphRur6E1ojjtyzawl2lIzkUQiSGtPd1JkWe4bJIlSxwt1ql/exUgBX/93m9Fv\nZ4Pqx1ImlqK4aeMse+Q04uxaxKjeAzq1nq1n+fOKl+nU+o6XcUw1d0MqwtbeIiInf4F1u/rd6Dc5\nruUwoWrc+6E2rMdjA1rC0fAkLMbnXyYJZ2oS8TF6XEu08tbA23IsiuPndUdEJKMSNvfT9HnjA/qc\naz8ICcrAWewfsmq1lIsli2xHW0hry3hUf3YK2dUPHMOeLd2xq2dpJ68nfe1aip4Rwf2PRrEPGnPO\nKZPiEssUOSVfRKT5achhC+5JrDyGz+Pqm/Xe86XHEb9GxnBMKY7UNr0I1+n4dqTn1y6rVP1e+wb2\nrMl0b+7+9ntVvzM/RVp7Zw/Wq2/eBztqlliIiCy+A2vrNduwz2nff1D12/1/XsLxbYa8wVEFSw7t\n1/OXol9qql5Ltn8Lc/aST1/ute9x9jJfes83vfbvdn9QEg3LCqec/bGS1l3AJjpnIWJ+LHYU/ZL1\nY07BYux3hgYg8+l6U8tH5pdCGlaxDc8AQyRlcm3tU2gtTErG2pXmyKVZHlqyBXK5yUnHNjmO9X2o\nD7GH90QiIkk+KgWxHDF/2pWLp6TKTMExoHN3s3otNQtrP687A8e7VL+Krdh0Nb4MifVbJSD4W5k1\niKEXXbVM9YqfwV6p6GrsFVlO27dPr4sT9FzANtjzL52r+gVLcEznBhA3Jp7Xa30+rfV9hyEzDpZr\nKS3vS1kuG1mv12NnW59w+Pkpy9l7RhuxP06qwj1NS9P7Lb+f5vMUrkdSkpZth/Ox7x8exJiZGNJr\nCFuV8/hJDWNejQ7psdR9gCRTtL/Mc0qlcHxhGZIbX7hfqBzrfiymy5SwjDsQRhyOJfeqfmwd/nZY\n5oxhGIZhGIZhGIZhGMYsYl/OGIZhGIZhGIZhGIZhzCIXlDVx+lDhpVXqNa5WzP16nNTAwqVIsYss\nQ4rPrZU6Tb73IFKp8jOREhUo1tWdH9+LVNXLNsKppOd1/N3s0mz1nisFqW4TcbhSZBSEVL8ASXzK\nq5HG6EozuAo7yz6u26jTYI/fj5TUyjm4DgWOW8Nov07nTjRhkhC46fB8fcd6OW1Z58517YB0jdOC\no8d1SmCYKpqz00D5ijLVb+cLuDbr5yHttrQaafzZC3Wq3HgMx/fGa0hbXTWs08NiNDZDlahwz84x\nIiJr71nntYNFuA5d+/QY5jS4Yz9CWmKoVTvYJPtn7rtOlTIf1+nl7DDUf67RaweW6GsezMa1TUpC\n6l1Wlk4FHRhAmnvlYrhDjIzoyu0NO5/22pyiF6R55MpNhtNwfJm1SJmcHNf9GF8qOTRkakkXp9qH\n8hGHXFeVnv049uxFkG25cy9n4czJYUS0FG74vHZ6yFmO+KgcuRxnIx/JGFZ9CGN494+1U8H1myEJ\nLbgUMefBbz6u+nG89XUhNXRlNVLbw5U6pvaRvMNPzlr9Azote/FWzG12sHFTRs/+AvLXQBk5bUzq\nc+8/iePzk2yo+zWdRl35bi3VSyTsMHHmD1rGNTKONOi8PMxLdtAQESXJan0RErwM5zqzcwJL7ubc\npiUc7AKRnQ0ntoN//J7XrrzZcakheQ3LCoZadJwsuQ5p97xOZy/ScyVOc7NzL+5HyJHvtT4BaXLp\nzVhn25/T6eCZRTrtO9FESco6Htf3p+cg4gW7ErGziojIEM3hMMm2M9bq2Dvah7GfngcZTS9JjkW0\na9ZwM+7D1HKs22m5Wq7UR85SmeSU57qBcMr2KJ1T9jyd5j3YjfWvZy/a7I4mot3hOl/H/R7v0zG1\ncNPMyX3n33iL156Y0OPWR/vS6s1bvPY/3PwJ1a87inv44+d/7rV//sl7Vb9KkmbPuRwSB763IiIr\nPwe3poFu7HOW3ol56boCNj0EF9I73vUlr/3rH2sJatU6XMtX/wRHpYuv1o5Y/acxrsJVGAfdJx5W\n/WpXYM/KkqFvfPGnqt/PX3lMZpK+4zjetGwtZw9VICZmVmEP0/aqdogZ7sLaMx7DfmLIcVQKlpE0\ng+RpbpwquQwuqiz1Pnviea9dcIne87O+rHAD4mbbDu1WGiSZjj8V691wb7fqFz0HWVPOYsRbV1LK\n8JqRmqblw50HIBUtuFISStvzcCarusNZf2kZj5Es25V79RxF3A2WIv63PKmv3+JPXuO1h/qwJi24\n6Q7Vr37Xk16bJZADR7GPmPPBleo95/73M3gP7enDjhS77zD+bm4prnn2skLVj2XB4Vr0O7nnnOq3\n4lYcx/gA1oHoMT0m0kux1tfoQ08IU+PY3/gDjgwuCbEueh6lKbIr9Lo4OIg9DTsETzkxmiW5LGfP\nX+Osn+wUOI3PC2RjTvQ36v1DhEoZjMdG37bt/jtAUmDtHCbSR/uvoTacRzBP32+fD+vsYBT3mB1o\n3c8Q/QgmIpY5YxiGYRiGYRiGYRiGMavYlzOGYRiGYRiGYRiGYRiziH05YxiGYRiGYRiGYRiGMYtc\nsOZM7mrUbWh5Tmv+Sq6CnpJtyVqO6LoUi98Ni0CuH9B7SFtXRlZC91zdAI1o9w5dS+AH3/2i1x5s\nIgvh5dB9xc9qy6pgGrTRyak45Y4z2hZz+bXQEbMtXKzOscAagf57mKxeVZ0IEam5CvUWWl6GHi7i\n1EhxrZETDddI8KXpW56WA31vK9m9xs9rTevkKM65/HLongeKtH1ZGtmRL9mwxmuf/r22hPzWb37j\ntX/893/vtUe6oWmcHNGa+Ye//ZTXvmQF6id88xd/VP0+d+tNXvv578MqcumiGtUvay70+V1vQD/p\nz9BaQ64zU0wa42mnFsj+n0EDXvntO2WmYEs3EW03XLABx3d+36uqX9GK1W/7ef39+53/ofo245hj\nfd37VK+i1RBK+v3QUHfXU52fNq33HqeaT6zp7N53XvULz8G9aTsM3Wb5Jq2tn5yETj7WhrpIMScG\n5F9EGlaq9xGIaCvbyYlBmUl4vg016TnGlvexBlz3RZ9cp/oVBhCXT90H/fviTQtUvzDZ9KaEcK1v\n+tjVql8Gabu73kCNiTEaZ2zDLiKSvxr2kKd/9obXXvv5y1U/rmuStxzzb7BDx43UfGjPc8gKdOCE\njtF9+7FuJJOGvPj6WtUveg71RBJtiV5xKz7w5G/03CkohS7dH0CsrbxtseqXGoZuPGcBzjfeqsdt\n8xOoEZC5AHUP2C5bRGRqCprsc/t+57VDVMOm8WFt+ch6+okK6Lirt65X/UaHcA+4v/y67AAAIABJ\nREFU5krL03pPkEU1Ebi2mVuzbe7HsC6wljy9WNdSGWx457oKiYBrOLjnkjkX93GCrKELLtY1Jup+\njXUtWIZ5NObo2rkuXzAH8zd65k3Vr/Uw1bohS2H/a6jVNdSlY1T59dhnJJNdtltrw0fjkWtydDi1\nDzIp9pZey7VVdC0ZthgPVWOcTRbrWn4cexJNPI5aLa5NK4/VP37+W17789/UVtABqj3YvGOX1/7Q\n9z+n+vl8iFEjI1ivdlGNChGRHSd+6bU/8x8f8trP/Ah7EbbiFhG5m/a1PyOL3TceP6D6zS3HPnnb\nl7d67R9/6Xeq3x33IMYXL0d9qryLdN2gX/zi8147/hL+1hf+6W7V775Pf8Vrf+gnP5FEw3XL3NoM\nvBflOkdp+TpejPVhPHINPJ57IiKZVZjb/aexDpWtuEb18/sxLpoOP+G1uf5mepa2Go61Yv6O9GCt\nKnJq0/Bc8vmwJ2C7exGRgjVYMxufQH2z3NWOHXAnnsF4z5VRqsdZsGTm6niV34waPe0Ur0REklNw\nXry/Djqxgs+Da+0VXqHrVrXsQNzNpnUxHj+h+vGz1RitNdnLEPu5Fo2IyKZPbvba/VRnhJ+jRHRN\nHHYsP/n4UdWvej2OvYPqqsy7SD+PND6D+kJL/gf2fL2H9bPy+ICuOZloCum4Ys16/8X3Mbucj19f\nw3FaG4bo+WTK2UcGqNZnRhmeIdznz+hp7OcKNmDvOdSL+xMs0mOJ6xr6yHp+Ylg/V8apBhKPTff5\njtfTiuvx7JOUpOfs0AD20FzPJlyunzXcumMuljljGIZhGIZhGIZhGIYxi9iXM4ZhGIZhGIZhGIZh\nGLPIBWVNZ36H1LFCSiUSETn1c6TjznkPUnyWL9a2UqO9SI3n1KKhRp22dG5fvdeefxlSaR+670XV\n7wNk69l/GClNDWdh3ZVXri3PCi6HjWxSMr6PKvXrVCy2tmL7s47+ftWvrBLnGCxFWhZLMUREfGlI\nq6q4Hpah0ZM6pX9qAuly1W9jqfXXEiOpUZJjYVuwDvd1agrH0flqg+rH6Wx8T/NXzFP9ClchhbTz\nMFIMa27S2oJ/7EK6L1ufswVyjKxORUT2nEbaH6cF/9173qX6BSi9/LK1kAxkzdUpqGkh/N1YqO8d\n+zE5i3DvOXVWRGT9imK3e8IYpnRPN60xj2xbJ0gKlpqt5QTDg5Qa344UPV/6O6eD9w3hmvuddONR\nH+afP4x5kFcNKWNf6hH1HpY1sfTB76S+x+oxZkfacO5jI46tYBDnnp5Hcq9pRw5zFMeaXoj0x+gZ\nPcYy2E5zBm4n2wq6NtEcL6rJijLW2Kf6naX087kfhlSNpWUi2iY01oF02tNPHlf9rvnXL3vtompK\n/yTbw6GhevWett2QyOSsRKp8w4M6pTdA8dG/FNc9XKzHUupVSD8+9VPI5xZ8/CLVj9Nih8/j+Hgt\nEBEZoFTVpTdKQml/CfLPue/WAbvlEdi7DtIaF6rOUf1YRpk1H/FmwFkbMuh9/SR7c1OxY3U437ZD\nSKst3+BYvarPRvwLkETA7w+rfnXP7vTaRZuQypzixJfevWRXvxJx8vxTp1W/7KVIKWeZX0aFthEf\naZtZieHAacSSOXdpT9KO1xu8duY83J9onY4Xi//2Kq8db8f5s/xCRCRK8WyCZM1uDFhwx3KvHSS5\nTfsOxO68ddpmlNOj+Zzy1pSqfqO0boTnYFy5tvbhIryv7lFIetMi+n6n0/GxdCRUpuPQOMnCEk3v\nCcyj3/37o+o1H+31PvbdD3jtX/3dfarftTdf7LXHeiA3ee7ZX6t+FbVYEBbec73Xjg5ruddli7DX\n4fXu4i1YFyuv1+PtiS//0GuzPPXS91+s+t3/7ce99kc/CInviqoq1a/40jleu+m1V/D/63W8OtYE\nKXCKH7Gf5aMiIu/7vrYVTzQs7ZwccySBaYhHo1HEuVC5jhe8b+knOWxSiv4NmvdtLPNvPfay6sdy\nt2SSgI72kw19oZaJZcxFfGw/85rXdqUUmUW4PyzH6zmgy0L40nEe4Vo812SVVal+6RGsDbxX9Pm0\njCmYP3MlFJofwX6f9/EiIp0vI34FqxEfpie0zIX3gWeegaR30e3LVb/xKMvjcf2mp/XnDTbi2a1g\nA54D2RZ51NlP871m2Q3LokREClbhWXRyFNLQsUl9DCzTK9+C+965vUn1KyHJLEuZktN0fM4mOe5M\nMBqlUh2ODCkYwVrT34x9kCtdZrt0fp5K8ul9y8QQ5kVmCc5/clJbbrO0mJ8b+o7R/HD2WGkU/6cm\nsM4Od8RVv+xFdD1Jn8bvERHJIIn49DSelaPndekVljLlLsQY6TlxVvVTa3+VvAXLnDEMwzAMwzAM\nwzAMw5hF7MsZwzAMwzAMwzAMwzCMWeSCsqa85UjZcyueBymVtvlPSGcLlOuU6N4zSLONUHpTSqZO\nr6sqQKouV13fvGSJ6scpTSUkcYp0IgX69NO6Yjc7DnTtQQpSoEQfa/QUjjVzEY711As61bCYUrGm\nKQ1q3HFoiJ1D+hS7RA01aheFqWmdPpVocpbiPnLlbBGR/pNIC4uQJC1QqCvhc8rY5Bi5P/l0Ohu7\niOQtwf1JT9fV5S+/G6mlLL/hqtz1u+vUe65ZiVTg9BSMx2HHReLF1yHHe/8/3+61kxyHhECgymtP\njiCFktMaRbTzT+srkHdU3qjdcVhaUPxeSShpNN9cuVL3fozPDJJ0sYuaiHZ54nMcdFw90vNw7/so\nvTKVJAgiIhnlSE9trXvOa5dcgdTe9IhOce9+A3KYAFW7d13EJin1P2cFxq/rZjA6inPvO46xnBrR\nx8rXL+ZImf474Yr/c9+/Qb021AlJS9ODkB5V361T0f0ZGPsnvg+HsIWf0i47aWmYczmlcFIoW6nj\nWX//bq89NY7jmxxFnIs1amlnShbGYNEySKuaJ3eqfiUXI5W/vxmpv5mlWprBcanqdjgbtb2sYwA7\nDAWrMLZKrpij+h373usyUxRsrPLaUUd6OUUV/vladrzSoPqN92GtSM3BtUzN1uOW5bV565AqzlJY\nET2ucksRqw8+B5nZiqv1Wnr4cbh/1CyEvHXgtD6nOLkmsayH5YYiImlFmGOj5ChUdr2WvrILAksE\n2l/U0rnqu5bKTJJD6139g4fVaz7a7+QsISmrk+bdcwJjepTiK8dGEZHcxUipr/8THL7yL9Zy8e69\nkKT5SBrAMT9vwXz1nqQkxE5Oh2eZtohIGsXE4Q7cn6kxLc+dnsScSwlDZsBzXkTfx+49kBdVOBLm\nlLBedxPJvf8Tzkj/+6Evq9dSU3Hf/uGWL3jt//Xrv9Wf8RFIij76t7d47eVLtUSf7+nr/3a/12Zp\nkIjIV+6HM9SKPMgxHv3Td7z2bRv+Rr3nZ7//qtfmtflHX9EuTFctx+cFQoih6z5xqeoXCEAiMOcK\nxGAeKyIin/rn93ntntdxD+e+/zLV77efhKPmh3/6U0k0w93Yg6Q6zwZTU4gRLBd0XSvj5N4arkIM\nnHBcVHuPYI5k0jNJQZVejwcGsI8M5JMUmmLg2JiWofJ1Z0e09IjjLDWGZ42RPsTX4VY9Z4Pk3JUz\nn8ejjkM8F1NpnnYfcaQUVLogf4skFJaVuXusYBXOIz0P6wTHIRGRAEksy9cgZg47zy0sP4+Sm264\n0pGKUymNAXoWHSFpS3qBvjetzyCm56yC3C56UkvqOd7z83FmQK/hvFYP7MHeq3BzlerH963tWRxD\n2TYd75XTsTYvTQi8Fws5UuPhDrzG0uq0kC7pEVmC686yMdeBN7sSTlbD0Ta8p1fP7THaJ7DMK5+k\nuyyR+svfxXuyyrHO+tN1DByic4qdwzOcL1U/a7C8eSyO8eN+N8Lxu30Pyf+X6PXEfe5yscwZwzAM\nwzAMwzAMwzCMWcS+nDEMwzAMwzAMwzAMw5hF7MsZwzAMwzAMwzAMwzCMWeSCNWfGB6CLd20u0/Kh\nGyy9AdpX1154rBe6r1ANdKCuHXDuCtRHYDvWcJX+u6xz85MFMOsG0/z6tO7/6p+8NusBi7L1Z1es\nhC6tfg/07/lhXZsmPB/6ut7d0IiX3qy1gSGy3kryQyfXtVtbb1XepjXaiYYtevl+iGh7vmQ6xt4D\nbarfEOnjqrau9dpNL7+h+gWpjg/XaklOOaj6zbn+aq996DsPeO2MWoyRylUV6j0LyaJzknTEo845\n3XkdagwNU+0Dt07DUBD3OCUMLbM7hiu2oV7H8R/BWvTkn3Sdgvk365oOiYT11C55KzF3UjIwvtOc\nGjFcryUtjLHZ+sox1Y81wWXXoV5EzyE9JtgWb4Tq2/CxuvVx0qiezdQoWWk7Nt3KKpiavUf0MYyR\npSKPPa5bJaI14+FS1LDpPqRrmvQdQd2ambC176DaDEHHcjaFbCRzL0FMfUs9Hhr7XEdppFvXAGna\n/aLXrtyGk6m6bo3+vEmK89n4u8PDONbW0+fUe7hWxkNf+K7XXnv9CtXvzB9exTHcjDhX/5iOGyVX\nomYM20xHlmur0jGq69XxHO7d5MXaMjro6MgTSc8+xPwJxyY4ZxWOt5/saEfGHSvVYmjw46Rzdi3l\nMxdA58z11kYcO8iz+xDL5l+K+FfYhjF26Hk9z3ld45o1I07dA4b3BKU36loyLY/DMjtEcbzxIW3d\nXrAJ9yp6AjUbXA0+H9NMMEq1ypL8jsUnxZWUDKwNE0P6fkeW4H73HcT9dmtjsb48j2rJDDh1DKZp\njYqdw/rJ+6N4z3n1nmT6W7yecw09EZEpup7JZC/ctUvH1NyLcC3YjttdFzlG+1bj+Kacfq0vInaU\nfEgSyqc/cZvX7tzbqF4L12Acl+Viz9Z3vEP14zozbWRZvujj61S/UBZi1Jov5nvtywKfVP32/ttP\nvPbBbux7Dn//Qa+9de1a9Z5Jqpfwu+/ALru2uFj1e2g36oO1fxnrbFO3vteb16CG3vJPvttrH/nZ\ng6rfzr3Ya9/8OdiDp6TovXFb/zvvPxLBSDf2admlupbf2BjW5J6jqO+TPT9f9ePxOUI1K9xaFBGq\nwZhbDKtytscV0TVKuI5EZAFb/jp1JmO4nnlko5uSkqf6tR3CfeQ6Y+lFIdUvvZDsvJOxl3KPlWta\ncv2Z4lV6reeakIkmUEzH7tR35BqjPfTMlLlI1yrxZ2D94/vJtYFERJofRl3RyEWIPVx/RkTXierZ\njzhXehXmcrS+T70ndz32QHt+h/3+8qvfeX/P1/x0m46nyXtxLebdhf3RUJuuOcI1S6eptlmvY6+e\nlKKttRNNZD6eu3pP63pavEdNJ1ttET0e/am47v0dWONDTi2286+i/lqwBHsivp4i2u6a606lBRAD\nUiN6jPCDQ2/LAa/Nz7kiIj6qlRQsxZ5osEnPFa71U3gJYgDbhv/l8zAXC9ZinMVbdX0q15rdxTJn\nDMMwDMMwDMMwDMMwZhH7csYwDMMwDMMwDMMwDGMWuaCsqfUU0nj663W6GKdp+ygVbcKxk66rQ0pW\n+TakKx56Uttdj8fxeUo29IZOEQuRzKnzNaRcsXQnOVl/53T9+zZ5bU7FHSAJg4i27513JY41xUk1\nP/4I5CzV62EFNujYzZ57FTZ2oXSkJA6N6dTouj8iFbJGqwISAssg8tc51p1vIsXw3KtnvHZRpU4Z\nLdmCFM3OQ0hfL9+0WvVreBppgH2Usr7y725U/frbcc5zPrCS3oOU4/L12s6x/sWXvDbfxzlbN6l+\nU1OUkp6CNO/BwVOq32gU9yuDJCaus3nHLqQ6V96EceGmpSX5Z+67TrbZczJGZZhSgn0kD2IrXxGR\nsW6k+vaSRKl0s7as7TpMlsfVuH4+x4IumdIrS0lKxvSf0Kl8bPXNTI5qa8h8slGMtyJtMD03qPvl\nIpUx1oqxE67IUf2G2pFCGijADeZUSpG32sUmGh/FJtfqfJqkOCyX8Pm1RCd7GSz52Oq2/dUG1S9z\nHuLoaBQp/vXPHlD9spcgZTRYgjjf/SZi95zbtc3o2fthmV2Ug2t92JHObPnHa7x2lNYQX7pOLe07\nintXuB73nueeiEiApGtsMd70qF5Pau/StuKJhOd5Spa2fc2iVHtOnz/wo12qXwrJ/XLIste1kGRp\nIktjRjq19Gjth3C+fZR+W3sbUrFz2YJTdJyLrIR84txDR1W/BffAr5OlQLxuiYjMuRNxpO8o1taM\nGi2RYMve/MuQHuzK9+r/gM+v/Jc7JdF07cD+oeiKavXaMMnGpsaxfgaLtMRZpaJTKvbEoF7jg5TO\n3fY85HiFzt9NJllSoAAyAZZFx89oCUvZqsu99lAIsbv3TZ0OHyxFrOO1IeBIKYTGBadsZ87REoQG\nuv+p2ZgH4zUR1Y8tdhPNw3/AnmDrlXrOs6y6nGRNP/o/f1T9vvHwf3htPtbmx06qfuMDh7x2XTPW\nz+v/5T2q38ov3O61B+PYA/70yefwnlXaA5flv629eq/NfODGq7x2OVns5pXpc2899orXvvd9X/Ta\nX/j111U/llF274Lc/j++/CvVb8vSmbW1n1IW9XoDlpKC9SU9j8a+sw/iPZI/iPPy+fSeYTSGfV9K\nCuYly3hFRLJovKcHS+kVmucTOg4nJeFvseRpfPyM6pczH9KZoS7c7/Gofn4appg/VgqZBdv/iujY\nM0YlIwJrtSxuoBn3OFdP57+awUYcX9bSAvXawHHsA7OW47XocR3LJscQl3LoM/qP62e17l78rZJ8\n7D25PIGIvhZVN2LOte6A1DZnsT7WhvuOeO2CTJIfn9XzsorWO5blrV2uy1uwfD96FhbjkWVast38\nCPYwQVozhxq1/Kn4ulqZSQYasW7w/l9EJNmH54vpaayLQ916n8923JFFkJ31HtNrUmQ5xmdaGNd6\npE8/S6dl4zWezyzTm5zU++lYC44pWIh125076VRqgWOIK6vm9aSHpGYll+v7PdiBfgP1ZA/eo8tv\n5K+ukgthmTOGYRiGYRiGYRiGYRiziH05YxiGYRiGYRiGYRiGMYtcUNZUsRYpx5lzdQ7ccBtSgzhd\n1k3LrulCSlPPQaT4LLhjuerXSCldXEm7/BZduZ0zHrMWIYWcJQKhXC0DGKWUs8z5kEHkb9RuQD17\nIPEZo/Ttvjd0KtaaT1zitUdIKhIo1OnBCyklvWs7Uqjn3bNS9RsbuHDV5r+Wc/cjTS+jWKdlp0aQ\nxrVwG9L0+HhFRPpPIq0wlc7r3EOvqX45K5Cqx3Kjlr17Vb8pSl9MJ+ev/sP4O9nzdFoxS9rankX6\ndmfBIdUvoxSpqifuRyqxTp0V8QUx/CdikNXV3KPHJkuoOrdDZhEs15IYTt2cm2BVBbsFuNIeTnnv\neA2uLeFaJ2+V0oDz10LeNtCg03mFU2QpbX9iULsejPowRzIplT3e/M6OADxPOZWbnUn+8rcgC1Cp\nvo7mLLAJY4Kr+7e+eFb1K7oc8oE+SpHNdK7RWHRm52JkFdI4J+I6hbmF4s+iT0PSF23S0s7OnZib\nQZrPb5GW0aUaOIv04cG2d3bjCVcjhbzoUsT/rsM6LZtlaGXr0a/GcedqfBjpw/mXIN666cf8M0HL\nC7h3rntRnMZJdi2uZYbj6td3BunbeW4R/78SjkPjMS1fGaZ03qkJXKNIvnYpYPlE2zMkf63VcjyW\nKbIDWd7aUtWPY1TLEaxXbUcxdubeqF0B2RnjxB/gKlO2Vq+LHdsb5O0ocI6BHf1SMvHZPXv1+ll1\nx2L6bMTTeKtO3w7mz5zjlohI0ZYar932gnYj4/HE0p4hx8mKXRuKNiPGuA4xna/hPFNIApSSocd3\nD8mMA5SK7fNhXo2QA6GISMP25702O+jlOw5mY/2I12mZ+Dy+VyLOmKY1w5VqlV4Pt65xipvjTr+3\nyKYSyMAgrsWjz2np4IZ5OL68zLeX04qIdJ/F/qF7B+JGZIMe31WXQlJ04BNf89pdJPMWEfmXr/zM\na39iGxyQfvjcfV57aEjLNUcGEJ/ff/UVXvvl/doR8nwjyb6TsDeOx7WsM6cG0odb7tzstQej9arf\nzldx7hOTiFcf+qCWoZdeObNSCpblTE/rfdroKGIYyyWmnb1ATgWux/g4rudoVLuphHIx7+NxSN3b\n9r+p+1UgZg8MID6whIXLKYiIlCzZSMcNGenoiJ6zST68r2QupL+hwiO6H2nYe89CDpk/X9c/6DgG\n1xve/47EtZSVnSoTTYAk68OtWmJSei32JgOncW9KrtfjapjiK+83c5YUqn4soYpTOQlXJlV6A/7u\noW8jTmaQZDQtol1Nw4uwYWjfibV54VZdwoFd8kKl2P+mF2g3uBDtqXr2YS1k50MRkcJNVV473oBz\nmnZcZl0X1kTDEiDXJZYdb7nMQVZlieo3SmtNcjKtd2G91vDaGpvG3i6yRMvx+k7humXPw3N/L+1v\n3PfkVmOfEevG/HWdYXk+s8SJ2yIiKbRmspyZSwaIiEyOYNxm1+A5azhHj81oA8ZJgVbWiYhlzhiG\nYRiGYRiGYRiGYcwq9uWMYRiGYRiGYRiGYRjGLGJfzhiGYRiGYRiGYRiGYcwiF6w5w3UBoqe1Xqrn\nCPRSiz6+zmtPjWu9aNmNsJliXbxr+1qxFf2SU/Cd0YBjxcs07UPthZV/gyIfbBMsIhIg+8t9v0Pt\nk0Cq1r+VzIMeM4OsL11tINdb4NoBsTpdN4NteSMXQZN37re6RoqfaobUXiQJZ2oKOsGCy7QO/fCv\n3/DapYug2evu13VD8pKhneOxUHrdPNWv5Wnor6NncD2G6rV2MXMxdJ2sLc1bD4tB10a34yDZsm9C\nXSK2RBUROdWBY6+5Csd37jltpV1SAU15Zwvqroz/TGuPiy7HNetux3mUl+r6PZ3NPTJTDJzCNR93\n7Ki5jkvhpVVeO35e38PULGhV216Bfrlgg7ZXH6SaMaFK1F7IWaSFkb2HoWeO+8meMhNxw9Vt9p8g\ni13SRnO9GBGRcBV0umzpXLBB18NISkII43ofrn3rxDDGGFuguzUfYnFdLyHRZM4hq9xCPX7iZ6C/\nTUqCLjY107FrXoC5o+6dYwHfTve47DrE13ClrmvStQd1Fjh+x0jLnb+sRr3HF8B1nxzBvctdXKX6\ntb2EGgds7dtzTq8nyz51sdceK4FemWt6iYjkXMLxi+pWFehx1k12zXO1C/hfDa9j/qDWL7MFM9tJ\nz/ugrjMWq8e9ZvvG5ld07ZOqPNy3Xpo7k05Nk8hqrC/LPrDWa3fvxXU4/6yuw1R5E2o0LLoLx8e1\nY0REJkhfXbQJdVUGTut4x7XD0nLQbt2p4zjXuuEaZcEyPR9ad+u4nmi4vkvRFXp8D1Hs5NjE9fVE\nRNpexhzLoBoVoQpdA4nrQSWTZbhr1+mnPdcY1dpKjiCe8f0QEcmg9YBjqlsvIGsOWdg2Yv7xfkZE\npPgKzDHXTppJpn3LaC/mbM7StxHQzxCf/Ke7vHbLc3ruzPsQrHOP/QT7vr/79w+rfsFCXL+uAYz9\n6Z06oJZvQCy64k7Eq3u/+ivV7zPvuclrv7wLtZxKTu302hklugYV129oace9+cSPP6uPNVjltTsb\ndnttv1/H9Ps++z2vfeu/3uK1X733BdXv8hsQKx578FWvPXfbtaKZkpkkdzni18hwi3ptkGpR5S5D\nv7Q0XWMi1on7z7UxwkW6dtDoKK1Dh8kSd622N+daGQPtmAcZJRgv/KwiInLy4T+jHz1DFCzT9b4G\ne3GOg53Peu1gvlsgjeqW1aI+S+fxA6pX7nzEL58Pa2Ffk66HNEp7n/x8SShsi5zk/Ozf/DBqIlXc\njlogU+N6XAWohh7XuGILahGR9EKc43AL1fyY0nOW63lm0d4rdw3GRJ/7vEjHULUYzyO8ZovovVz/\nCeyhBuv0vntqAscUKEatm1SndgzH4egxxIDQfG1n3bkbf6tML1sJIVqHa52covfR41QnMYXqAQ51\n6/0c18Xk+n9cm9JlgO4xzz0RkUyq2zPajzicVYv50nNI17abnsDeJ3Me+rk1Z/jfPB4zinVMHe6h\nOrtUX3bgjD73LKqJ01+Hc3dry3LtnLfDMmcMwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAMwzAMYxZJ\nmnb96AzDMAzDMAzDMAzDMIz/NixzxjAMwzAMwzAMwzAMYxaxL2cMwzAMwzAMwzAMwzBmEftyxjAM\nwzAMwzAMwzAMYxaxL2cMwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAMwzAMYxaxL2cMwzAMwzAMwzAM\nwzBmEftyxjAMwzAMwzAMwzAMYxaxL2cMwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAMwzAMYxaxL2cM\nwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAMwzAMYxaxL2cMwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAM\nwzAMYxaxL2cMwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAMwzAMYxaxL2cMwzAMwzAMwzAMwzBmEfty\nxjAMwzAMwzAMwzAMYxaxL2cMwzAMwzAMwzAMwzBmEf+FXtz382957ZG2QfVaLDbktSPlOV57rGdE\n9UsrCnrt8V68drKuWfVbumau1w6UhN/xmAaOdHnt8LyI154cHvfaU+NT6j1tx9u8duWlNV5775MH\nVL/aoiKvnbMS7eQU/R1W//4Or525OM9rH3/lpOpXlJ2Nz0jGZzR0dqp+6ampXvvO735XEs0TX/yi\n1/Yn63MZGB722ivvXO21m548pfpVXD/Pa48NjHrticEx1S9+ts9rT41M4D0TE6rf9PS01668cYHX\nrn/sxDu+J5Kf5bUDpRgjg/X9ql9yqs9rh2pwD3zBVNUvJTPNa/ftxxjxBfS06DnX7bWL11V47VR6\nv4hI7xutXvuSL/8vSSSHHvr+O74WP4drnruu1GtPjurrl5qZ7rV5TI/2Dat+/YcwvtMLM7x25vw8\n1a/j5QavnZSU5LVDcxEPMsqz+C0yOTaJ9z9Xh+NJ86l+I3GMsYob53vtTvolGwgvAAAgAElEQVSb\nIiJZSwtw3Adx3Dlri1W/0U7Er3Eav74MPSaSaHqsvufzkmhe++ev4W/5ktRrwSpcqym6d+G5uapf\n38F2rx1ti3ptd75M0RwrW45xMTE0rvpNT6JfkOaVL5DitXt2nVfv8QXxWlohYnzPyS7VL3dB/tt+\nnhtTh5pxHinZGKeNB5pUvyW3rfDaI51xrz1F40pE5Myuc1779u98RxIJr4vxhgH1WtZinG96Hl2X\n11tUv8i6Eq893IbzyKjQ86XrVZx/0dVYuzjGiYh0vFyPz6hCzEvNwbXse7NdvSdnDebIaDfW84Gj\n+h4y2csw39LzM9RrYwO09tPYG2qJqX7+EOZcko/GAb1HRGSY3nfJl/7pHY/pv8rBB7DWplBsFNHz\nYHoKx5Ua1v06d+P+DNFY4P2RiMjSj67z2u2v4l6VbJmj+vUdQwzr3Yv1pCeKa1FcW6jeMzmMed9+\nHmtVRppen8L5OCeO64Pn9PqZUYv43bwf55eXp8dmJo31xtcQy6ed+zj/5iVee96lH5BEsueH93rt\n7KX6unQ8j2Mqvr7Wa/cf7lD9eI4Ey3COY1G9lx3vx78DJZlee6glqvoNN+HfgQr06zqEPcac25ao\n93Tvxn54IoY9lT9L38NkP+ZL1iJc/+anz6h+xZuqvLYvHXHXT3FbRKTpz9hvFVyCvc1gox4TU6OI\nr+v/9suSaE7v+JXXdvctoXLEs1gD9jrjA/r+RI/3eG3ew6UX6zhVvBlxtOcg7ok7bkc6sGfg9YXn\nmz+kryevcfyewksrVb+2lzA2eR+aEtb7EY6V/NnBQv2MFK3DuWfPw7jo2qufs/LXlXvtkoqbJZH8\n5uMf99opPr0+8bMQ70sqb1qg+sXqcH8n6dmi8PJq1a/5EYzb8Hzsj3gfKiIy3I61NdaAMR0qx7ws\nvWaues9gK+bv/vv3ee05y/U9LN6MY2qj9TdUna36cRznfW5agR6XPRT7g9nBt32PiEjluxZ57ZLK\nxN5DEZHd//ENrz3ao58Nln72aq+9898exTFdrO9PyWULvfZYHOvi/h/sVP3mv2up11ZzbETHgPqX\nEN+WfmCN1z53/xGvvfjT69V7UlLwvNJ7Bu/3O3v+1CzE/5anT3vtqBMDV3/xNhzP09u99nBrXPUb\no3Wi+q5lXjvZr8dmOB/XLDt7tbhY5oxhGIZhGIZhGIZhGMYscsHMmcFGfIPofqscqUDWymAbftVJ\nSdMfWXcU39zyL7tzi/Uv24FifBM8cAiZJSHKjhERSadfacej+AV8rA/fVrnfZpetwS8CA0fw2fxt\nrohI9hJ847z/2cNee9WV+lcO/mWp9Q2c3+ItC1W/Q88f89pVBfjsnFBI9Qun61/jEs2ca5B54P5q\nXhMJeG3OPgq4vxBup1/QNpR57VPPn1D9FlyDb3X5F8fYqW7VL5nGSd8BygSgTJ7ld6xS7+nagWM4\nvQe/jNeu0N9oc/YW/9rA32iKiDS+is/IysY9GWjTv4Zn5mJs+unzYmd7Vb8QjYtEM9iIY+JfzERE\nMijjIikZ385OT+g5O8YZMvQLQ9DJVEvbhDHBv9DzfBMRyV6BXyrHevHZ/It6xysN6j3q+Gh8ZC7R\n5zS4C/e6/lGMsaqt+peW6UlkyWVTtpubScHxJbICsefob95U/XIi75y1lwjaejBm0lJ0nEpOx7VO\nol9IB5v0eORfiIcpI2hwRI/vFD/mGP8C4mZdZC7ALww8F4UyakZGdYZcDv0iPN6PceF3fjHjed72\nJrJvfE4GX/HFiNGdr6Nfql+vJzyHj7+ETMXaVfqXm8xAQGYKziDLWlygXut9E7/EZi/Ca1lL9fhO\ny8HxRU8gNkad+Fx0DX7ljVGGHI97ERGhf/YfxhpXsAmxMX9jBb9Dzj+BX4kmp/ABnCUporPd0iir\niTMoRfSvvHx+HLtEdDYd7ytiZ3pUP86OnAkmhrAfqXtdr2O1G5FpkZyKMTicrH8lK96EcRetw9zu\nfeyY6sdzrukIxnfR5VWqXwr9ijfnw1j/8s/i2mTW6D1R30ncbzfr852Oofc43jMyrsdcWgx7rAXb\nsPcJlmaqfn7KyMhZjJjU/LjOIG6kLNx5l77j4f2XGOtCXJsa1zE/ibLzxmMYqxxbRfQ61LUT607h\nZh1TeO+YlIJrOdqhs8rzL8M8i57G3OZY1ndIZ7EN02ekUSZPuFbfa17XevYiGy/iZA1xluwUxYrW\np3SGjZ/ic5yyFt5yLZP1r76JhvelnAErorPr+Ffvnj1ONuJ6ZCPydRpq0plNbS8jayWjCns23v/+\n5UMwLgo3Vnnt4Q4873DG4V/+jfFYvhX77u79+lg5+yb/YmSzDLfqLMNAAfalPH8bHjiq+nHCSN9+\nPbbeqWNJxTt3+69w2cc3eu24k3XA55uzFPs0f7qOV+m52Due/DmyVqJOdnzVLXjWqv/Tca9deqXO\nRPTR5/cPYo7lF2GscDaWiMjAUczzNe+7CP/vZAUf++kbXjsYwHzLXVOi+lW/F9kT44MYYyPdOm5w\n5qWfMqg66vTf7f/hbq9dcm/iM2dY4VJ6g84q6jqM+LHsA2u99miPngc7/+0Jr73wZmTH1Gxx9hYj\nuB5pEaw7A87z4iX/eLvX7j2Hfcv8jyDjZPe9L6n3lC7APp/3uDm1VarfuQdxPSOrce9KrqpV/ToO\nHfTa2bTeFazXE2lyDGM9lI+5ffbB7aqffyvusWXOGIZhGIZhGIZhGIZh/P8M+3LGMAzDMAzDMAzD\nMAxjFrEvZwzDMAzDMAzDMAzDMGaRC9acmZiEbtOtERA9Dw3g0BjqEXR1aH0n15aJDkGXlr1Sa2R3\nPQp9YWkEOtvWHVqHzvro2jlwIOlqg26wZqPWHbLDE7uM5GVqPe+pnWe99rKLoRcddDSrXFF9mM7d\nrWy9+GJyOKKaHMVlWks/UKdrlyQadhFKK9L1brj6P7t0hOZrhxiuIdD2IjS7XKtARCReT/pN1nK3\nal0nV3PPjOCY5qyFzrv/qNYepxdBj7pk8WIcW25Q9ZuawDF1vtTgtQuv0hryQapbU1KNsdT3pr7f\n7GrCumx2lXm7fyeSoi1UGf7Zc+q1ws1VXpvvp+vMMHge59WzD2PCrXDP855rDxVeoa8fVykfOMtO\nCfi7rlY9yE4ydL1c54VAOhwMCq6o8tpuLRmuQ1R0FbkwOHp0rpfDNQEKanUtkLy1pTKTcBUgt9YD\nuyb5gpgfwTJd64EdfHj+lS/Rx55K82KAdPwtPTrelLRD+xysxN9iF4m0Iu0swPeO+zXXab17yimq\naUA1caqXlat+rKcvWI+aVrETOv6zyxPXmWk8pF2d5l+l638lkpQwzrfxoePqNa4XwdPKdS1jR8HI\nKsQX/mwRkTEat+wWw+uviK71k0eObewS5bqDpVO9scyFmAeuW8pEHGscr2Pt+7SDV/U2XPPBJhxf\nwaVakx2l2jJcE2DUcYTMukLPzUSTSWtcrlPTYJLcacJzsE9wY2UP1Q4JFmMdy83Vc3aIHEDmbmbd\nvf68QCE+o317g9f2pWLc1+3UDizjpNsvuRp7n/4j2hUySmvz/A9B4z49oddwXj+5xtqbP9ROG9Xk\nfBmmOjhVjhNR/0l9HIkkNA81Q+JODTiu28COHK67YyrNA3byGzip6x5wPA3TOubWbGNHQd478HV2\nXdnYpWaC6lL4nJocXBMsm5wK2RFGRCRcg+vS9ARq/qSlOnXOyAkmvYAcYpy/yzFgJmBHN16fRUQm\nhvC3e8lJsvxmXX+uixyvSq5GvYhAkbPfPkE1PKjmVR/VCxPRdVL6aC+atwp1KbhemIhIPsW688+g\nNoZbO4jXMZ5jw079ooHjONY8qk2Tkq3XicpbsB+eGMQYrv/9EdXPrTeXWBDLGrfXqVeW3EMOO/cd\n8tqpjoMq17OM0Jo0WKfrlnHdKK4lUxDXddDYAamC9keFGzA+Dn77ZfUert2XsxLz13UR7tqD50WJ\nIr6X+/Xeg/d1h3++x2uv+exlqh+7yBVvQWwdbXfWxaUzuy7mX44x7Doft7yAZ4/CDRiPkeW6hmzV\nuiqvzc+ElTfoOqI+H2JObx3q2bjjdGQIcW+E6iyyQ+SCG/W6w2tpMB/xcGJCj6U4PRdx/O/v0fWf\nln4INXa4BO9gm35ezJqD+jb9jZgH2Uv0dx5nf7bfaxd/dZu4WOaMYRiGYRiGYRiGYRjGLGJfzhiG\nYRiGYRiGYRiGYcwiF5Q1NXUjZc+10l68DGlXHceRUu7aw3LKWQVZWvcd0JKVy+5c77WPPoFUvLBj\nibroalg1j3RAVhHuR79Dz2qbuXnLq7z2nl2wuGRrbxGREFlaDzUgVeloQ6Pqt3o90tY6+pEiWz6l\nLdQ49f/MXqQ3FTsW3qHCmbUMTc1H6pib2s4WaD6yIG/aVa/6sQSjKIIUsapFZaofW3mefgPnPG9t\njerHqX65ZF/GtpZjjtRlqBnpaPx3ul7Tkobc9UhfjA7i/CafPqv6lZUhLbjrMNLmSldqycWZp2Cz\nyleP5XwiIstuWiYzxfmHYU+ae4m+5n2UDjlF6fihaj3O+JoVUOqwmxLN1nA+strs3KGvM39eWgbS\nbHncNzpytgySRXBKa3+fTiFkudFwG15z7bwnSIIxROmJkbV6LnbvhgSj5XmkZqaHdHrwII0x0RmY\nCWGSJGM18/R9DJRDChE/BelH87Pa/rTiOsgi4g2IP27q9GgXYm/x9UjjLXdSiUd7MUcy50DqwRIy\nV552/mlK2Z6H98y7VNsP/uJnsFTs6MNYWNamU8g7BnDd77n7Oq/d3aklCLGXEPMjtUgfXezMPU4H\nn0lCJB8QEfEHMSfqyO60eHOV6tdJ0rQMkpJlVOo5y9bKeST3KgpoieEI3Wuefw2vYqxXOXJfto6N\nncZ4c9d6ln34SAYx5fSbJDvc87uwZmak6TlWdgvkCF0k0WGJhYjIhGttm2DYxjVzUZ56LZ/kjeOD\niPP9x7VEh9O5+45gDQnN1XPx+INI5V/18Q1e251Xr/1f2IFe+plNXruV0slLHHvTU3/AZ0fpPrIE\nTUQkSLIcnvNtT+l10UdyoDCdR8lCnbreTTIQtjsecWxV2f440bAEiOWBIiJDLZSuTusGSxVERMb6\naE0iWWLQkSI2k/V8zjKkqHOavYhIWiEkoCwH6j8H2VVklV6fWC7HMlHXXp5jMsf+oRG9Lg6RJXP5\nNRgv7S/qfR1LDvsO4H5ODs7s3HPhWJRRpq9763NY/zKq8FrnLr0f4T1l82PYL1XcpGUmbc9gvLP0\n25VTsaxtqBHrUzOVOWhq1s8xAy3ot/DDkPKcf0zby6cVYIx07cHehMeViEhWJcZJ3UOwbuaYLCIy\nTXbpna/j8zIX6rjGlveJhmPZ4ru1NXDvAewxM0gedOaofraqroLtsj+EuBGq0fGUWX4X/haXXxAR\nqaf1L0xjOjkZ87zkkkr1ng6Sx/F+MG+1nrOj9Ex0zT9c67X7T+i9R6AY57vio3jO3f7NF1W/7CDi\nczEtrRlz9J4ge0mRzCTdu2j8LNDlLRZ9fJ3XbnoEku681VpSHzuNWMfPYx17T6l+PB65JEP/QT2v\nOO5VXIWN+f5vPem1B0d1DDzajPt40/uv8NqZtXpOlJIUOFiCvZjvqdOqX6iAnwtxg9IjWk47cAb3\nn2P0lCMXr7pLy7BcLHPGMAzDMAzDMAzDMAxjFrEvZwzDMAzDMAzDMAzDMGaRC8qall6EdMjBRl2R\n+NhhSFbyM5EKVDi3QPWbiCP1i9PUUp1q44OU/lNIsp9CcmoREel6BWlw7X14D7v/tPfrVPjml970\n2uvn4pxOtmhHlyON+OyFpUjFctO3H3lyh9euyEOKFFcQF9GphpW1SKXNcOQm49GZrYTPKceus9F4\nlKRDdJpuCjynnHeQjEjfRZFkksHUrqjy2qlOumF6PtI6uVo9p0SzLENEZKwXx8qV01/Zd1j1Kz6H\ndLYFC5GyyCnLInpshv2o7D1Yp6U4c7aQjIQqjzed0nKg+Dl63xZJKDlrMX7cdHWubM6yg6jjNsFu\nUpwmmFagx8TuP+712mtvWIl++brfoR2Qew1RSmHSacSGVct0Cj67dpUvJoeYEZ3yV38MqZXjJD+s\nqdKppZwGzGOi/rETqh+7zaUFEIcyl+jK9+l52pVoJvGHtAR0kuQTza1IjQw6shB27PBl4DPSsvT4\nHo+9vfOIYzgj5dcu99r5+Uj/HB9HSu/goHYIK70GweL0zxFfizZXqX4f/PBWfAbNj6NndTrzjx98\n0GvnZOAebFm2VPUbG8dYYPcidpATEcnfoKWJiSR6GtdypC2uXstZiZTjsmsh8Wp+WkvTSq9CfI2T\n3EEcmUuMXmP3kCTnZxV2dWE5aE425oTrGMVw2nhqph5vp399wGuzQ0P5Ri1V5fWdX5t05Ektj5M8\nhK6X62DTe0BL3xJNkh+x0h9wXHGOQb5Uvx1jP79Mp9dPzMWcZVennv362OdchTXk9C9xPbMX6BTr\nTEptP/iT17122Wpc9+492iWraCX2KvEzGC/xuF4nkujfEYq35bctUv2ayYHs2PNoL9w4T/Vb9Amk\nuA+1Y38Yc9bPkzsh75u74f2SSPrOQfYTceRKAUpRP/sQpPLJjvNo0UWQC7Kzp+vSydLEvoMk6XL2\nfcPNkBSNdeOaswtivFHvUavuRIr7GO3Jjj90SPWLDuPzAt2Yb3Mv0XJSdj/00xpRdedi1S/ehBif\nTk6evHcVERlznEgTTeHGKjomfW3SaK/Irlu5K/ReYOAs4vJ4DPMy3qLdWYIVGBcsAe07pKUUvCdh\nSSnHudryi9R74q04hv4TiCGVt2sJA6/NaRHM+XHHbajhccQKHkt8DCIivUexJyi8GPKsxoe1myBL\n1hPNq9+H65Hr4rpwAfbhZVvhhJu7Rt/D8yQlKd8G+eu46xZGnz9OLmjBiJZtbfyf7/HaLXuwT4m3\nY/66bpiVN0MGd/+9j3jtyDPa6XbTey722oMkI3z90TdVv2u+BMlT9z48c2Y5JTsWfxRjqYlicMHl\nWnY1OTyzz4vl78L5s/xVRMcFdsOru0/HqXRyLgwW4/ryuBcR6SUXtMgy7AVyVmnpVt9+jO/RSxDz\n591NzyfOM+aSZsSRkS6cxyFyzBLRpSpqr8WYa63XEuaM1+CuxHLz4Xa9B+w/ivfV3AW5vVumQ60B\n+jFJRCxzxjAMwzAMwzAMwzAMY1axL2cMwzAMwzAMwzAMwzBmEftyxjAMwzAMwzAMwzAMYxa5YM0Z\nLrUSKNF6u6UV0B+f3A+9f0m6/sjRNtQNySRd+2Cd1pX6yG5R1WTR5V4kTJaX/vN4z9Ov7fPap51a\nMtevhtUa24NnpOsaDavnoA7AD595xmuvmqPrr1y5DDqy9Ex8xp7tR1S/FD+uxZIFVV67e48+vrRM\nfRyJpu0YaqPMn6drONS9jFoIbCXuC7zz0Mgi69zTe3UtinMd0BBetxWWoU07tIXjwnejzgXrbLt2\nop5NzgqtO0ymsfXK73Z67ap8XTfkqf3QBnK9Dtc6nTXgS1ZDsx1wNKhnnocNYsl8HBPXORIRGevT\nmsJE0rKjwWvnL9bXZYJsQjOphsFIh67ZM0r/DtIcG+vWulK2Te8lu1SfX5/vglrol5vPk756DrT/\nBw/pWhsNneg3dQJ1YdbWas0812hiTX+gWMehEy/Dmq8kF/ElmK7rZpRuQ7zqfgPzL3ZCW5VGpxEf\n5m6QhJOVwTaruhbHmVOIo4VZqL/R3K1rB3FNrQUl0GwnXaa/a/eTZXa4FtcjxbG2TU7Gvw89/AN8\nHolx3VpV+UugzV34KdhDTk9orfk0acM7SK+8plRr8O9f+C9eO1CKOik//dljqt9dWy732hGytuwm\nS2YRkUay0FxygySUzHlUJ8Snr3kPWbZnk266ZIuuz9K7DzG5qw01OnI79FwMlOFacM0srpUgImqd\nDFfD3pvrzESqF/A7ZDhOdZ0GEUOCuTqelpN1O6/h/lQ9F8Nh3NOupu1e+7xjScn2nP2HEQ/cmjNv\nKY6UYA78Etrz/Ij+26Vbcc68LnY263gx9ghifsEm1AaINej9DZ8Kr59ubY9KqtVT/wosf597dLfX\nzgk5e7FFsFUvvxn3eMr57Jd+gJoQSU9R3HSsZFt7MR7Xf/QSr52eq+txnf0F1lmue+b+5OfWeEkk\n1dtQH4HrwIiIZC9B/YlCpz4JU/caYgXH1ppxXb+i7k9YN9beudZrTwzpOD41in0F14lKT6U9rlP/\niePkKK3H82/Q9YCG27GG83yJOva9XCNwmOpiNb6gbdO7Y6iVsXAN9rls/ysiMz4XR7ppb+L8bR5b\n7c9jjXTrYYSqKO6RHXfvoXbVL7KC9hZU44vrJYqI5NBeb3QA1zCcjznq8+l1sWHPQa+dvwH7o+59\nuk5UwQbMOT6PwppN+hhuxz55ZARrxuSkrofENuIjPXQty/S1HHNqfiSSi26DdXjry3q/H6HaMvt+\nhL172UI9L9vO4fnB9wJqJbUf13N77RewD+jai3mZXavrTp29H38rcxHWtXAx/u5oXMd0Xzr+Lte/\n643r2iJ1z2NdK6jGZy+iZz0RkeEOvG+0E/em/Ar9XNn2EsZ27gbUOOL6nCIi+3+4y2vXrHqvJBq2\nPS/ZovflyfRMm7Mc82PCqQk0RfvAk7/FOrHiby9V/Rofx7PV0WdQm+zKr96u+qXnYZ41/BH9QjV4\njgnP0bbfXN9mjOZYTkhfz4rbEWMD+YgbJcd1TPWHsYeOU121wQZd0yqV+k1Qvb2MEv1cWf97qpV6\npbwFy5wxDMMwDMMwDMMwDMOYRezLGcMwDMMwDMMwDMMwjFnkgrImTic8tFenJtcWIaUpm+wfY2e1\njWL5TbBNS89DOm6sXaflFZBsqpts4SadlNH6k0gP5NR/lqh8YPNm9Z7fbUeK9Wuvw57yc+97n+rH\nspdta5G26lppBynNbJwkJREn3ThMVmkZlTjW9EKdVnVuX4PMJHz8HS858qLbINGKnUF632iXThk9\ndqLBa5fnIn3MtczroTTZAbL1rN26UN6J3Dk4Bh/ZHA+16nSxeVff5rULLoK16C8+81vVb908ktyR\nxO31U6dUv6tWrPDav3wAMrYV1dWq30VX4fja9uPzXJlUaK62WU0koTDmWKhKW7GzvSRb6o726HvI\n95SlD08+tU/1yw8jFdZPqb6tnTr9c+7FSHncQPO849UGr731K1pT4ktDyuhoH45nxJFWse1cy27Y\nLpdX6nNf+yFIanypONb2l7S18rBjy/6fpOZqeUjPme637Zcoaq7FdZpy7MOnTuA8kymNvCSix1Wk\nAv/uqEfq5Zv/b5fqV1CAexxZizTet6RXPgbr9LQIrkeoGn/HtQHsOoa5lEJWrcESna4/1IJ4MHgO\nkoGBqL4fVZQ+270TMf69V16u+o3TejDaB2vRjNoc1S/s1ymuiSRWjzWO55GItq1leYOb9jtJkrZM\nWifYWlpEp8/WvdngteddqtONOU1+YgSfPTmKMdbbcFK9x5/OcxHXMpirf7MJkUTAl4L3jPT3igbp\nxuk5eE+oWs/Zll0Y56WXVHltHisiItPjkzKTzN0E/8q81aXqtcE2HEs6WXTmOlLblCykMB99FGnK\ny+9cpfrlLcC8H+pD2nhqWNt/jpHddQXFh5ogjjWyTKfu9xxCyv9QO46bJWgiIsvXYl1ka+Q3yK5X\nRGTJKoyt+gdwT0uu0mn44zTOQkXY00wO6j3b0vfqa5FIzj1yzGuHI3r/xSnlaZQW78p9K1ZBfpJz\nGp/hcyT62bTexxswL0fa9eflXYy9Sews5kgKxa6TD2jr2cXvh/S+YB3eHz+v90DZ8yGfiJHldI5j\nIz5Fc2dqDO1IVMtaMjoxfvto7ctw9hgsx5gJkkge2vqMll6x9C93HdaxjlcaVb9ukmDPfT/2du59\nbHkSUuvCzVVee7hVP5OUrMDeoufwDq/dexBSGefRQAab8RnJqZjnY85+muNNOkmG09MLVL++PuzX\nWX6TnKIl5sOdkM4MnMSewB9MUf2aaD5Xfk1LR/5aOrejJEH1rVqO13sA9yY/H2tmf71eQxbcCGls\nN0mEi5c4ciWSVFbchr+1//++qPq19mGesom8P4DrkjVHX/PBdrwnn54xDzfq8TY8hjW9/wBi6C3r\n1ql+7c9CNll0NSRxbc/pPWruOoyJMVqPA46sqWShXoMSTdUNGPeDPboERwZJnpsfhtQ2PN+RFNHx\nr//yHV77zB9fUv0WfRzX6sD3MK8mxnTc6zsMuVv1nRgjGZlYq84++px6T5Cko0d2Yr/qPs+/8lWs\nITe9F98dLLxnq+pX/+wrXrtqG74fGB/R33mc/SXGAo+zlKC+jzlr9Jh2scwZwzAMwzAMwzAMwzCM\nWcS+nDEMwzAMwzAMwzAMw5hFLihrOrwTadClTmr9+R6k2K24GSmE5x05ATsT+UgiUXHtPNVv8DzS\nAUM5SP/xh7WzSO0qSE5SQkgZeu9lSEGKndLyi5suushrX7IAbgYszRIROdsOOdWC9UiXmp7SaVBH\nd0Pixc4JCy/T53T0Vbp+josJE06fWbemudfgnEec9MqBY3DLOHOgwWvnZ2rpA8uX6siRaflinerM\nZFI6e6BApxxPUqrtUIxcaqo3eu2UefoYWs48geOmFNyt792k+p3f2eC1951DSuHpM9o5aONiJDqy\nlMl1f2rYg8/LIPcnlq2JiMSOkyTmFkkoST7IXM48fly9VlCL400iOYw7bofakfo69DjS/FjGJKId\nriIXIY0411+m+hWvQrp6rBPXufRapODn5OsUT2YyGyn4LX071Wu5y5Hyx9Xq3RRllhX2nEYaccHG\nKtWP03sLV2M+nPr5q6qfW0E/0bS+iLGeUajnBKdbZpHzxHhMS2LYiWPRnYi9U6NaJsWpz3z+447E\nhh0dYiRFHCXpg1uRPqMSczON709Ax+vGP8ORK3shxmnDzg7VL/4k0qMVUF0AACAASURBVK0D5GqS\n49PXKJ8kA/seRWozS1xF9DxYfpskFHb4YImTiE7/Z9fBvje020RfHP2qLkWq8/gF3DRqVkG6lLvq\n/2vvPcPjyq5rwUOkQiEXckYhgwBJgGDOmZ3ZQZ2lVitZlmTJcnjzpBl7xm/8xmM/j0eWbI9sWdlq\nq4PUSd3N7mZq5hxAEiACCSLnWAiFDLwf8/mutY+6Od/3VBj82evXYde5hXtP2Gff6rX2kjKc+VnE\n0+EajC1L02wO/tBNnHc5+zY77WXL5BzORZA0rQtSCpaNGGPMJMkow8iBMH2rdAgca8J3sGwrKET+\nv6KkrdlmMcHyquFrcj2GJUNqkPkQzvXeM5Lanrt/p9NOXwe3ko4Ll0S/2Vk8Z0wSvm9uTspF/P5m\nfN+OUuqHsR0gNw1jjHGnYo8wHX6sVe7ZtL2IbfwclflyfiLSEQ8S1mGdTVrSlhXfhOSw9yrkFyzn\nM8aYvvOQJ+QFWOGU9wjk0rbbzgC58sWVQbpgSwwbqyHHyEwEPT88VdLQU+nfnTcxB6XPVoh+vM3Y\nKbPwYcxnsnWvPSeb6QvQzHxQ5pQz47h3dsYLt86S8U7s2VmSmU32yvwvNAZ7PTQEe9Z23WOnuMUA\nn+ueSkn3n/XjmftPwZUv48FC0Y9dcVjex3vCGGNS9yHejrcgFtljWPtLOAWGkMMh52JT1njG071H\nkzTMPsMHyFmMY8/4o1JaxdJTPsNZXmqMlEYtFGINR2VJeVpMkcxtAwke156TMk6GkvQ+/X7EocEq\n6aTV+1Gz0z5P+Xpso3TF2v48rDSv/QClKnx+OR9r7ofbVRRJ4vspJtljlJQHieH8PPJSfnc0RuYc\nsWloHzp1RfR74rN7nPZIA95NPaulG9wAvStnPIS13fRL6QIcFLS4zmn1P4P0KGa5XC+c+0RkIweM\nJZdYY6QM/ta/vu+0OzqkA1IEOeOytP32j+UYhsXjXYulnn1dx512wlr5fhJK+2X/nz/otP/qc/8g\n+j1A7zH+Vuy/mh++Lfql7cf9tX6A3JMlwsbI+HXjJygZkGbJ0XIOlJt7QZkzCoVCoVAoFAqFQqFQ\nKBRLCP1xRqFQKBQKhUKhUCgUCoViCaE/zigUCoVCoVAoFAqFQqFQLCHuWXMmJBg1C4KD5O84Zbug\n9Z3xQSfvsrSQiRuhA/ORVXN4otQQss55gurPhFo1ZyLJHstHtWXmSA+dbGnV2caaayqM9EnrztUV\n0Pd23STrt3ypp0uNg0YxhbT/s5aFJNdtmR6CBs+2B5+ZW1zLUNbIjln1eNykGyzdCU0la/yMMWbu\nENkZkm71+z+TurzP7dzptGfJLrbjoLRiD42DBtWdgbn3Jxx22uGJUvMdGoW1MD+D+7FrbXCdmY2F\n0G6O79sn+vH8vHYG2lJ7rT++EdZyiVSfxRMp7y9xa5ZZLCRtR72JaMsWOjQGNWJGSdPKtr7GyD12\n6QLq1vSPyn3w1X/+gtPm+iQRHqkFn5lBjZ1wD2pb9F3D+EfGSmvq2FjUNxgcbHbamWt2iX5+P2qz\n9HdBi8v1Vowxpvss6gVEp2E+++i/G2NMLGlnJ0iPPjI4Jvq5LDvfQCOV5pEtTo0xZmU07HYH6lEL\nyq6Dwxr68HjE0e7jst4Xx+WwBOznoXo5Jy6qE3O6GjVi9uwie9ftMqYOXkIthVCyGu54T9rV5z4N\n28M5qlGyOlHWaQiJwD0MXUXszbEsObs+wjOufRRa4fYT8tnHJqX1dyARQnHIjlF+2nPDV6Gnjy2X\ndp09R1GDhGsq2fUR5qiuGtfyCLZqVrBlNteZCaPYwDUZjDEmmmoTuFzQQ4+Py9pcXAQjLhvxdKhJ\nzvUIne+TVENizorPXDshhO5vblzWZZjoovuVyyUg4Hol/g5Z64Gtl1lnHxLtEv3O/tUvnHbpF1Bz\nxra6nZvG2h8awB5ro5pMxhizQDEh4wDykTGqjZFQkS6uYQ2+sF6vbhP9Kp7CfonMRg4TmSlru3Fd\nk9hM7PvaI9IGNSYf64xrXgxckTVx7FwikOBahXbdg6EW5HrBZGlq11NJoXxunuq0tVdLG9lpstLO\nzEG9CH+XPDOaTuD8y1qL8QultTPZL89wHqNZqqM2YfULDsO64nXZb415H9Ulyn8GZ+54ioxX7x1B\nvY6nv3S/02471ij6hYXc81Xhd0bPMdQssm15Y4swry46a+waSD0XsN7jS3De2+uPx41r1g1dl3Wn\nZikvjy/DfLtTkUeN1Usr6LS9qLsy0kjvGrXyzJ3wIc6XfQ11+bhulzHGuDzYV9e/Czvv5AqZiyWR\n/XoMrc3+G7L2S0yeHNtAov80cq7ZCRnz7zSgxsuyS7BK3/WfZU4+TnH4YcqnBy/K9f3hz1ArcMu2\nVU471aqrdv491AbJTMCzP/A3f+207bpf/T0fOe1rTViXe1etEv3yn0Ru809/hnPgqd1bRT9fDeZ+\nfATzu/xza0Q/fn9sfhvnQs4jstYN12BaDOR/hmyi/XJsOg9h7tprMSeTHTK3SNnjddrBlMMUbikQ\n/fjdpfZN1NZJL5b1WbhOWEopxi1mI+qGzs3Jen1XfvQ93Gsdcsov/8Hjot8jT3zdab/0F/+b0858\nQo5726/xzpTzLOZ+qFrGjUnKszzxOFuTt+SIflXfwXm676/lPjBGmTMKhUKhUCgUCoVCoVAoFEsK\n/XFGoVAoFAqFQqFQKBQKhWIJcU+uYlwEKHUtfdICK2kBtLrOy6CsFT0tqV9RmZAUBYXityC2iDNG\nUkNZ5mLTt/nfbrI2TFkNmlFc3FpxzVAOqJvt09fwgeVuzRTH9ErIsaYs+qTHCzpv60XQBhOSpJ1r\n0kqMUXAYnr3+lKSNF2+XdomBRhfZ03lWSHr9WN2A+Th0XZKUaJb69JPk4uu//ynRj60ZPaX4WyGW\nxW4Q0WRP//Uhp51TASpjd4202avrAM14cAzUsZXZUnLBtu9hJLPbuny56Mdrur4WNMIffvvbol99\nJ+h7WWWQsQWFSer6skW0uGO5wzLrz0wP4jO2cnTFSTpvG9lnV5ZBnmDL7NhKN8IDS+fQUGk5yBvI\nP4S54nlfWJDfXXv0R057lv5uZGaT6NdNltOeClAcbbtUtpwOiQJFMnmjtNVjGRzL40KD5RzGr5Z0\nykBj7A5kBxPdkgoaRBMbSvujhmymjTEmLQX03LFGyB2OX5OWi7s3QgsyWIe1Hmw987AP95GfAkr0\n0Y9gZ7jijpTs9Y2AflxM6z7zYRnLQslSOcqLGD3cJeUcsamgkM6MnHXaU8NSnpR5H/rNTYPq6m+T\ntsHLmiTdPJCYIZtItnY1xpiFOayzOLLKrP6wRvYj+nXTOxiL3AMyRkXR+h6+hbjbf6Vd9Isn6/kQ\nN9ZORCzmbXpEnjtDN/F9wzW/dtr8fMYYk7wF8dVvcE53HZZSMpbOsQ27Z4W0DGWZQWgs9uyCZdcb\nmSHP00DDnQzrXF+dlB0IKQStb89KGR+SN2J8W0milLxNnkl3f1HltLNJqheWIJ85luQYbL/LNrCD\nN6QtO98fyz7Xf3GT6MZyI5ZUzlpyMkMy6NBIxPUpy+ad5VS87tna2xhjXJb0L5BgSfOdV2X8i47H\nfbC03Y4V8clYn1P9kB14ZPphrtzFel++D/uUbaCNkXlgGFkIc7xnOr8xxozUID5P0nlurJwi8wHE\n1/AEjCvnrsYY4ynAGcGSocY7UqqVkwjJUOMxSM/j46JFv+QdkpIfaLCUKSpb7vuROySXpFzclrFF\nJdG6o7M0oVxKgNrfx3MmrkeekLY7T/QbqkF8ZMvtkELkl0VfXSeuuf1DnJm8x9IekHKOW7++7rQv\nfAcSHe8Gr+g30Ys1ExGNmBRdIOVJ8yTV6z4H6UmCJX9q/AnefzL+i5R3/K6IKsBZ5U6T6yf0LHKu\n7i7Mpy21dZFMm221OUcxxpjj1ciJuLzAxLSMZSsKvE678IuQwyyj9TE6eosvETLcVw8edNrRbplP\np3fju/mdI7o4XvSLpNg9TrHHfvamy81Oe/WL6512t3XOurPk2AYa/h7kTnUvXROfJa+CpHbTt2AR\nPlzbK/rF5GN98tk6Y+VzTVcRj4ofgUQpc+120W92FuN2+W9fdtosm49Kk/GA3weaenF/mzftEf3+\n+DOfcdrXm5qddkmalKfFVuCcqPrxBfR7bKXoF0052+B1nNXLQiQXZt6S4NlQ5oxCoVAoFAqFQqFQ\nKBQKxRJCf5xRKBQKhUKhUCgUCoVCoVhC3FPWlFIIeUL8oKzov0BV7T3poG3ZFdT9RH1l94XY0iTR\nj6uUhyeDppZYIen0kZGgtQcVgLbkdoO+NzYm6du9VXVOe+gG6E0fXJOUrUd3gwbMjhLzsZKCylIC\npkuNWw4hzVdBvdtSDCeWtHiP6Hf9KCjv5U+agCNtd67T7jsuq7ezPCEzEbQ9mx6YQC5FUUWg7WXf\nJ2VsPRdBGV0WjN/+ml6TlONZH76f5UoHr6K6+ou7pYNPzzDG/fE9m512Z6uU3HFV9l4f1l/Fs7I6\nunkD9/TTP/szp327S9LGV+WA0ssOOLYcyN+Ev1UsWXm/M6aI6hwWJ6nwkz3Yc2ONkM1kW0432Y9h\n7yzMYf+Ge6Rcqe1DrNvCR+9z2qPD0nGLq8a7aU3PTmEv3/zeb8Q18euwT8fvYj59N+UchqeBonz5\nDayJ9c9IGnEMOTkEk5zDdj0IIkohU4XZhcEYY8z8vamGvyum+zGPMZYrRRg5Udx8H2szKtya7zHE\nmVraO1kJ8vumiUIanYr4/dI7R0U/ljk9ex8WbloC9nlkvlwjSbQeXUmgIs9bTiiTA1ibQSHkyJEs\nafJtpyFlcpGkJCZdytP660DZDo0kCeVqSd8OtfZIIOEiZxpbliLugdxZ8krkc4yTxCGWaPIjlpte\nOI0tU9RDo+SZxOcxO8H4JjFebb+WUrIjN7HGcpNx1u/46g7Rb7gWezM6F/s8plTSiNlNiiU5vjvy\nmRJWgxo9QLRmdo8yRj7TYqDppRtOO/2hQvEZuyM1HEf8WfGHm0W/a9856bSnyd1l4aS89ymSDo22\nIEZfOS/nZGUfycEqIaEaJRemX78uXZNykpBL7XwBVOyhakk1Z5expnOgyr/zy3dFvz/642ec9jBR\n0iOSpDwprhh/d6wN4zVpyTWFfHOLCSj4LIwvtGQutFb7TiDvmZySuY07Et8Rno5zp2NArtt9T+Pm\nI0muf/OlK6Jf3na46/Gze1bhrLHXtq+HHEpJ0spyLGOMmR7G+ohIxn5hF1NjpNtYGElLg45ISWsI\nuaGyW0zvXXkeu++QTDTAuY0xxoxS3GNnFmOMmSaJJN9vq+UAmkRnQDC5/81YLqpTvcgN2KXNnSTl\neIZkBwnrIGdn+brtupX5KPJ8dnFZsCQMSemI+WevIP93X5Py//Aw/DtxC86QvjPSjZLl7OzSOXhT\nOslkP7PCLBaazuF8L3tK2uuF0TmWxHmzJdHvPgqXsJQ9eG9p+Olp0S8/FbExwoWzMM5yUOVcKSwM\n8WF0FHE3Pn6juObgn3/Nad+3A2dhcbp0yWs4gvfKbZvxHuRvk85/x9+ABGbLvtVOOyhYciMKtkL6\nxm5/7HZkjMxlFwOcH5d8ZrX4rPrfEOuy7yt32uGJMuYvozIYBZ9CwBhqviP6sfQva91Op81zZYwx\nwcGIYW39OJO888g3Z6fkXkyiPbtjGu9+H/0fH4h+7Pb10Uc464ODpXwsbStkj3zGsQupMca0vgGZ\nHMv8oxKkbHJ+4aK5F5Q5o1AoFAqFQqFQKBQKhUKxhNAfZxQKhUKhUCgUCoVCoVAolhD644xCoVAo\nFAqFQqFQKBQKxRLinjVnQkjTP9UtazhwPZFwsrSeIEtsY6T21UVWm3a/LtKee/dD/+1rlLrp4Tn4\nG7I1VVw+9ICTQ8PimmO/gF6R7dButUkb1PDTeN7lzdB3psRKPe8c6dxCSFsXHyU1q3mlqJfDdmq2\ndWXMiByLQINtLqdmbNtkiD7DUzCPoS2WPeRG6Pd47nwtnaIfW4GyFeHMoKzHc6sdVrDlXq/Tvv9R\nEqXPy/oVX9gO2+4ZsvUsLZd1Q1ivOXQN6yUyXdZNKn0OutjeU9DwrsmTtVq4tsxIB+rKeCyNe+xy\nWUcpkOglW/HCJ6V1mzsF667+ddSRmPzpVdEvdSvqfLA162iH3GMJldhLdS+jHgFb6hojbZK5zszM\nGOYmdb/UWbLWvuDT0PrW/esp0S+6AJrs/D7cD9srGmNM9HLo7sPJGrf1kKw7lb7V67SDyW6WrViN\nMWaslWxWK03AkbgVcaX3hNSN+/wYw4JVmKtlwVKYPdaMe+T93DQq48iqnVjHHVcQ67KT5DrdvBK2\nsJG5WBd3TkIfHBUi7SG5do47E/uq/pdVol/6JjwH180ICZdxY1kInjEyA9/XdlSu4TiyaZ8k29vO\nw42iX4Rl5xtI+G6hHsOcX66f0Pjwj+3HVu7GGBNFY8bnLFshGyNtif3dmN9gt4ynbPU6R7VfeK03\n9sj6A3xeHb4Oa9eYn0nL0IItqKHBdXR4nxtjTDDVTJqbwhoNDpNnSdvb0PuP9kG73V8lvYu5TkPu\nqmdNoBFBa33Iqs3AuUruU7D4HK6TsZKtRZsuoebCP74ia219ejt099ffxljb9qxxq1FLgfObQ++f\nd9oPrVsrrvnx4SNO++Gsh5z2aIOsmVJzDXtkZAL79/N7dot+XPMjpgjrtPN0s+h39yU8RxJZhwdH\nyroZPquOUiAxM4b4N3Rb2qH7GlEnxRWJdRvhjhD9uBZPwhrMZ0aztNyepTxgmuzmExJkfsjnIlth\n9xylmlslsr5SCNX96hjEfQ+8I2M652sVz6GOQkKRrJk0PoB8erQZcTdhg1X7iuLGzDD2c7JX5jaR\n2Ytra5+0BbnyWNOQ+CyMYirnD6O0ho0xpuUQakglU84+e2RO9Ct5CPuZY++F7xwX/Qp2o17EJNke\nh1FNNLvmTIibalVSPQ27lt0CfcZzH5Ms61xwLSK2Ie5vGxT9YpZjvsLJup7jtTHGtL2NOik5y82i\nwX7HWZjB87b04lxMnc8X/bi2T+9p5Ef22fXkPtTWeuVD1P368jefEP3YunpuDus7PBx/5/JP/m9x\nTU4KcoytdAa1WTWonvyzR532h9855LTzqH6bMcZkks12Ij2fPUZ9Z5Gj8Rk+2CLnOiN9ca20O46i\nHlneU7JGEdc/nJnC2rRdoYOCsK9cLtRDyijNFf3icpBjTkygLljVP7wk+sWvR1ze8Axsxvtojaz9\n6h+La/r7cS6m78F7yFCDrKc10Y4Y66YaT299+yei3/oDeCHIewq1L2enZIxOKKfagKHYl321su5q\n/iP33oDKnFEoFAqFQqFQKBQKhUKhWELojzMKhUKhUCgUCoVCoVAoFEuIe8qapog2HlMqaZhsmT3c\nChoi04KMkbbYFz4EDXbEL2VSux/a4LSr3gQ1vrlPUpDyUiBhqSFZUmEaqEQFRZK6WUC2a3e6QZ3+\nnx5/TPTrHQYFLojoo/WdkoJ/6hasssqyQeft8UkabNs10OA2F4CKNXxTUqNtq9xAY24S1Pv0nZJW\nNlILKnDz+WannZgoaaxsWTxHlEyWEBljzGgTKHhTRPkMsezIh+rx2dqtoJnGl2OufHVy7qfIHvnu\nGVC0c9ZIW94hsn7NfgTWhqOtUu7G3xeRDfp2WJykmp97BVZ4kWTbFzstLdHryZq7cJMJKIqfgd3b\naLN8DqaMZm4k2+8hSft1kz01S91csfJ52Soy4/5CukZyF/2doDUOk23kNNGjU3d5xTVxXtALa38I\n2mF4iqSaC54kyXqmpqUsjwme87MYh9gM24IUlODJjlG6RspNBDVehoeAYLwVY8a24sYYE9qAveMn\nquXYpJSwvHrmjNP++mdBrb16oU70YxvmnG0Y9+ROKWuqugxLUu8o1kxqGmJ+33VpL8+Sk4M/ed9p\nJ8ZI6eBtircPfmOf0+6/2CH6sYxkjPZpWIJcF21v1zvtCbpXd7Rcw6FWvAkkXHSmBbmsI5SkmExr\n9/VZMt4hnJlr9mNvd5+VUrc0kuON1CCusczUGGNGqmWs/A+cqMFZlRon7dBZRsdn0E+OSavmb9Gc\nxhNld7xFnndsXx6ZhWtCo2ROEFeBGB9P58es37I4tqybA40YsjCPypGxnG1wr/0MlpcbvrFN9OOY\nw/v0j7/0pOjH9r0Fj0Bu2Pa+tANmmUlrPfKOylyc29fvNolrHlqzxnwcbEviskpICH722odOe+PG\nMtEvKh/jEhSG+YmIlHnKhA/7L4zkE2ONkoa/qKA4lP1AkfiIc9TgcOxTlvQaY0z3MYxn869gaxxm\nybPCSaLPFtnuTCkzGKnHGTLQhBwwrZKk4Z0yHpypR1z7yRtvOO1dW6T3+Ne/CNnG4BXE5Ni8VNFv\nluxdWdrCOb0xUqLTTFbI4aHSvjckZvHiqTFSitN3RpYbmJ/EHku7H2t4ZamUj9S+iveGlEJ8lr63\nQPTrIXmeOw1zV/KIlHCkr0HOPtQBKWZ0Ct4v5uctaWcwxnNhDmvJlSBjWfpDWKtrKdVJ2S3z85gu\nrLNxOhebeuU7xNwHOHcqv4Lk07b55Two0MjfgXGuP3hLfFb8IGJe0PVmpy2kX8YYH+XuOU/gmqwa\nKVuOXYn5/dpaSF7ZGt0YY1J3YDxnp3FeTYdiX4ZGy30+TrlxXQfylOxEKfWbovx60wHE4DhrXZ75\n3nGn3f0R9thEp7Sfzn8R1tTNL1c77aKnZBkD+50r0HC5MR4xWTJHTdqEuNV7Aft02oorbe2Y/4r/\nBEnS2Fit6Dd8GzEsvhjv0qn7pdxt6AbOY54vlvNNTck9MdqMcyiY5Ibrv/2c6Hfxb1522ruewt4J\nT5HS+ISCEqfddgI5wViDPO88a2nM5pH/8plhjDGuJOudx4IyZxQKhUKhUCgUCoVCoVAolhD644xC\noVAoFAqFQqFQKBQKxRLinrKm9iZQieYaJa09mFyKineCojdaJytaNx1HNeYikh5dbZLU3PZroEjV\nEpVsYkrSBg9evuy0x6la+3/+FJx87jS0i2teP3fOaT9QiYrL/kn53TkrQVcMjgANKuSKpFnGRICO\nxG4pJRWSksiSLoZnlaS99V3r+th+gYKfpBTuDEnBjSN6YFQ+qN1MAzZGugQwrcyuOM5U9wn6u7EV\n0lFpeQcovrWXQVksIxp1fIWk1I3cwdoq+xQogMPVks7Gkot5qno+PyMplEHkhnHrEGh4vLaNke4J\nO1aBAm67Mw01Lx6du/sI9ktYgqSXD9G4cOX//M+Ui34jRDefI5ei4DBJk2QnrJkRtNmJyxhjzr8M\nuVdRCSiJPK5cgd4YY1reAK3RRa4WtjyE6a0Ja0GL7H7rhugXTBJBllLYjiED1aAX+qexZgv2F4t+\n6f8/SimmLNlZBN3/9dugRPPeM8aY57bCqeBuNcZ325MbRL9zr4J6mUKSliDr+1augOQpkdw8WN5X\n9aPz4pozdZBQVebher8Vr1dUguo8SutvesCS3JEDwRC59lyvuiP6JZDDELsNuRKlrOnmGcgEKl8w\nAcWMD88Yv9qSE5CUhCUhURbdOi8RlfpZYpi6STqi8T6NX4d9EJEq43jMCuxNdiDZQZLAG43N4hp2\nCkoid5PSrCzRr28E9x51CWdzkuX8wpjog6RkvF0+eyhJJAYu4KyOseJpNzmz5S2Cc9owuQmGWNKr\nmRHQ/zd+c4fT7r8mJc5t55qddnEpJKXvHTwr+pXRmIbdQtzzPiodG3juWC7OkqI9L0hpFe+rs/8I\n55LVz0q5E8tVkz/EfId55Hly69eQn5e/CFeKnGek/OnS9yGvnKF1b4/lvG3lEUAM10FCZJ/HoTHY\nO3x/Yy1SFszS1tgS0OTZLcsYY0bI/YrjV3iapL/HrUSuw7INdnEaqZHOUjtKIeFIjMbebuiSueEs\nnc3srDfeLXOP8HicY1G5yM9nZyW13u/D+ZG5CjlZqCVjsqVggcYoOTRlHigRny2QdJDjoe0Clr0B\n+893E/lD86vVoh+7y7Iz4PSIPLsiInCuBWdH0n/34n7mpJxjchLxwVOKdTDeJSWg9S9jj/H+CDnR\nIvpF5mHcL55FTrBxm5S6sCsur3VbSlHw+dVmsTB6G2uwYI/Mq278Bnnbpi8jf5nolfc33Yd9xftv\n3U75vDH5kFx3fABnTre1F1ne5/JgjMYG4UhUe1JKS72FOGdX5WBNFW2U8rjrr8FJcnYOa3RTnnS2\n3PClzbjm55ecdvHDMp6yE1lXH8Yy0yXHsvrfrjjt3HIp0QkEwkhiPumTzmnNx/GutvFbjzjt7gtS\nxpay3eu06375ntNesMoI9DYjDqavxH4ueGyf6Nd//uDH3mvWbpxxbZeOiM+S6V1tqAlrZKhV3iu/\nM/H77ESnzFumMhCLW8/gfSw5X547cVQCZLgecSjZyu2q/xXvT2X3md+CMmcUCoVCoVAoFAqFQqFQ\nKJYQ+uOMQqFQKBQKhUKhUCgUCsUS4p6yJqZXhoRI6YOHKNYDF0B1PnJDyg6aeiCN+sKePU7bpr//\n5OhRp83So7cuXBD9nqTq9UNjoMR1D4OquuPBteKawhJQipnaG10kHagmulCJ2t8MGiLTnowx5oVH\n8BxMXe+9Ix0zItpAi0qohETHZvkmrJLU+EAjLB50Wpuuep6kDyvXw5mnq7Zb9GPqJVeDr//p1U/s\nxwiyKKgzRAP8qBq0081fxPx2H7srrokuxHxx1XmmERsjnV9q34aDki1XSs6TdLT/QP5mWSm8YBn+\nzc5XTEM05rfXSSDhG8DaTLJkTYm0fjwr0Z7okZTR/vOQEDC9tedUs+jH48z7JTRKrp1OcpxpOgmJ\nwPP/CQ5CA+elxLC1HzTGsXbM4ZYcqVtgmQvL1pg+aoyUMt25AUrwqgckDTa4EXMTFoKwF5Em5SEs\npzKLIKVghw3bAWOeKNsJFHvzH5A078FLoE5zHK07JCvhs6MDOxxnAAAAIABJREFUx8fdWyW12UMO\naSxpY0pwar6UYu4hN49hcv1JsRyB3n7/jPk42M5B24pABeZ99VuuIbTHUnaAcjx8vUf0K10rKciB\nxDIKI9ND0v2C3Xt6PoAkK21vnpEd8YwtH4BW3TYg42RWAvZi6nqcY+w0Z4x0XZmmz0IiMX4sYzLG\nmHxyYfLkYPz/7qe/Fv3GSD78hQWcfR8dvCj67X+aYvd5yCWyH5S07OlhfF9sGdaV7ZoRFLq4/+8o\nKg8y3s6DUj6X/QTkRjynQZbUJYTOFJYCb1su5Uo5j5ZQP8zJWIukjQdRnpW+Jedj/3vdezXiGo7D\n7JbZ9BsZD+Iysefu3wm50sBNuXcK92K+WHp59zUpD8nfhj0WlYXv5jPSGGPSdnjNYoEFmnxWGWPM\n0DXkMPHkoBFpOfkFuTC24Qkf78hkjDFucu/gNey2JIYsk+LY2ncKTmyuFCmf7biDe+XcaLu1jvpa\nER/85EbFbkfGGDPUg3whaBXWaO9FKTMOCsZnobHIK+yx9JGkazHOxRjKObqPy5IHfC8pW7EnItLt\ncce4RfF5MielFG3XkZOwbDttr8z72FmmvwFSCG8l8samS2+Ia1hiOEouLixBM8YYTwb+7evEu0ZP\nq5S75dF16zZA+lZ3VebGq3ZhnfB4ua111v0Rrsu0jqTfFXHlyMNvvnNTfLb5G9ud9pG/O+y0N3xK\nvquNj2FftbyOOJf/vMxZgoMx9zOD+Ft5T8nFWUfSS3bRmezG/li+Q55PjJ7LmJtySzKVW4G1GElu\nr40vy3fgKMoxM8vw3txDsl1jjLlN52zRNryLhUTIc7H4UzK3DTQisxEfbdlZ8ZP428soEZq03JrY\nBS1pM/KWgUvSpTNnC0qBBIXh/PSPyhiQ9zTmdZre+5vfRw4y45O5WEKZ12mnLYc0eaj3sujXP4q1\nkJ6OM23oqpSUZmxDmYg5cuX0PrFK9Bu+jfO04yj2W/4zci/mPy5lbTaUOaNQKBQKhUKhUCgUCoVC\nsYTQH2cUCoVCoVAoFAqFQqFQKJYQ+uOMQqFQKBQKhUKhUCgUCsUS4p41Z1j/XpCfIT7rPN3stJNX\nQ0e3elTaSbuoZsAb52HH6omS+r3VZMeaEQ+96J8eOCD6vXURGrOH18BGq4VqWbB1tDHGtLRCz7t8\nG/SF3SelbV0cWTG6M6GZG/NJPV0L2YoPkF7Nxtq10JmHkr3kSJ3UlXY1oTbE6mc/8ev+h8Gacs+0\nrNmxagvucbAW92HXeognG+WqH2Aeg6w6Lp5kaC/nxqE991iWs5Fe6Bpzy2Ex5m+HxvPIKVnPZm0H\n1sjULL6bLSCNsSxDM6BlnhiU8xhMWvMkqr/wzmsnRD+uHzBKutB0q+ZMymZplRZIJBVh/Ocm5Ryy\n5SDX65j1z4h+2Y9jrvsuQHs+1S9tjQfJJjl9O/ZzTK6s0bSlGHuJ9wtr6/3DcswzqYYG7x22JzbG\nmO6r0KbyXGdk2HapqNsSGwlN58BFaXnL9YZSKxCveulejZH62MUA67KrXr8mPlv5MPS8HhqPundk\nrYcIF565eB/WZs9Z+Sy+cdQk4Hoj8WRNbowxE2TzzDVU2NqYLS6NMSalEnuu7zi0+VfvSi18Qyfm\nYc9KPN/YpNQHz4zCwrCX6ipU7F8h+jWeRG0QroEUFCrrPblT5fkSSITFoTbD2F1pYTs3QXWD2AL+\nqNRQR1H8SyeLxerXZE2IQdJXR7jxdzMeKRT9xmkO40pRx4XrGlVaNdamBjGnE+20F2dlzZA9q6Cp\nvk3WvqWZ0kr70ntVTnt5qddpT5KttjFyr4dGUf2VJll/JWnL4sVTY4xxxaO+yLR/WnzWew7zMEdx\nNON+Wcuo6xz2XHst1nrOmhzRj2tRpFAtmYXZGNEvlqxbe65iX7F1bGlUubgmgyzB3zp42mkXZctz\nsesu+uVtx3OEUZ0VY4yZpZox4604j+09W1CcSP/CuTN4Rcbe5G1yLAKJ6Hzkir56mVel7PI6bY4P\ngzdkPT3+jrkpqlvi9Yh+XH+Hv4/tV40xJjwZscdNtWAmqM7FaJ2MG7nrca/uKuSKaWvkHoumOkls\nJR0WJ+tJ9dP6nR3H+k1aK7+vleoSxVH9J9sO/fZrVEdjEXLU9nfrnXakV9Zn4by87yLqxURkyL3j\npxgWFIIccKpH5iBcF7NsCOd96125LjKSkQel7EUe1Hz1Tacdnij3zgLVXOy8jhxm9JY8P+M8yJde\nPXvWaZdkyD3rP4RYyfXcyrbIOikxxRij0Uasi8RK+X2J6+X8BxLjLYgVqx6VdTi4Jsn6x/De1vGR\nzBc8XuxFzsWq/v6k6Ff5p/uddt4LiIe+JjmHiVvxvOeovuaqjRi/uDJZs7LnJM7qT/3FY7hXsuw2\nRlpOc96d/YhVY41yKq6jxrmCMcYMNeKs5/opzS/L+j3tPYhzhRs/awINrhkWY9mCD9bgXXKoqdlp\nd92UMb+tCvGH65CmpMrvc6djD49SXau5CfnuwnHZUL2XjP1FTvvw//4eX2Jyn0Sdorq3URtqdsR6\n16B6jNnXsX7yn18n+g02Yl1w7UN/r0/0mxnD97tciKNso26MMZu+tdvcC8qcUSgUCoVCoVAoFAqF\nQqFYQuiPMwqFQqFQKBQKhUKhUCgUS4h7yppK14H6GuyWXcOJNl53ClagkS5pD8tWoGw/lWDJmioK\nIVmZngSliWnxxkiKFItKlhMdMGGDpPIN9BE1tx500qgsSYtcICu++NWwXYsR9F1jBq+B2l1M9oM2\nXYpt+rpONDvtfksKVbpX2iUGGpMzGM8oi6Y2QlTgGLLDHO+U9zh6B5Rzvv/CHDnWHW2wIvaRxe5O\nj6SDxzENsxnfPUwSrHSPpBXf7gblbOM2SCS6aySVMc6DtZXxMGhvbHFpjDGn//WU054mKn9RupR9\nsESi5SaeL6JB2t5GWzTFQIKpyZN9kqY7TnbKTKmetaiBN/8dMrHUPFCYB7qknCC1BBK0/nOgEU/1\nS3kCWxMyzTucLAff+P5vxDWFabhm7RZYQ4anyHhQut3rtFvfAPXajkPvvo45rCRppE3BL3oC8pjq\nVyEnigqXtuThjWR3J90bA4KGd2HJOW3JR/pOgwrK9Ojyz0p65TxJE0dJChJnyVa2jJK9Jv13nlNj\njGlrwZ7LLQMN+OxL55w2S02NMeY4Sf/aSFLKEhhjjDnwDCwMDdm2nn9PShaZ7lv2bIXTHrAkEkX7\n8UyTtB7DUy0rWbLRNQ+bgIItH4PCpfyT6bfdJB1MtejkMYU4U+6+AtryrgfXi36zRJFN2wOr1+Fb\nvaJfLJ1Ry5ZhtmvegyTOluDmpYDOzbF6X7mUzbDtOe+r0BC5F0dI8snSBJdHSi7CkzBXkz2gcts2\n1bYFbqARRpKv1O1SehNG98zStbZ36kU/trJPycQcsPTNGCmR6SKr4NyH5XxHRuK8Sti31Wk33XjZ\nadvj4qlAvH4iDPuto0bunarmZlxD+RdLjI2RlHqWdMVGSAlH9c+vOO2szV6n3WedJwmTMkcIJJj+\nHmnlcx3vQoaQ/iDyD5YGGSPjaVwBzv6FBTnOwS6sdzet4TlLKh6VirO17TAkNIPV2LMvnz4trvmC\ne5/TTi7DfEblSIlPz/Fmp13wWdgQu91y/c7thNQqNBrr3HdbSr+iCxDXe0nmz3mTMcaEWTL3QCN5\nKySM3Yel1GWKLMMjcrBWbct2zg1GbuE5E9bLfO7psc1O+4X/+l+d9l9/7WuiX3gGpEfBYchv3JRj\nLcxJafsE5c3eHYjXL/3Lu6LfsevXcQ3FTb+VtzzxRw867TtvkLx5Qf7dkQY8bzzZt09Z9sL8HIEG\n76OgEPl35mfwWXQu9l/MXRkrQmOxVht+iTFKsqRH7UdxZh55G2UW2IbeGGPWUk6YSKULXCRHS8nd\nJq5hGVHLaxjzmFL5HhhJe5OlS10H74h+wZHYOz3dOEs2/slO0c//A5yFqbtw37a1fKJfvmcGGoNV\nyJ36r0k76RHKEyo+j7Nr7Z9sF/26SRrGJQq6u+Q70zy9M2U8BjkYS9aNMcbfhX3VTvKyhDU4WwrL\nZAys/wHJBb+yxWlPDksZ0nZaC7UfQcqYcFeeWyGRkCjxO2Z4vDwXY9JxH8IG/Viz6Nf2Lskmv/jb\nSaoyZxQKhUKhUCgUCoVCoVAolhD644xCoVAoFAqFQqFQKBQKxRLinrImVxLoOiyrMMaY+vOgFrGr\n0/C4lD6wQ0djD+jzCdHRoh9TCCcaIB2Zsqj/O8rKcPPkwBK7ClRSf4ekb0+xrKcIlLqweEm39t0E\n7XR6GDS18ERJmY/MBp1tfhr3F5kl6cFDVPk5mqrf91ZLWlXNYUgdVkpzqoAgpRiUwBu/lg4xBZtA\nvZyhZ7YlX801kEIwdbCvT9IS3WF4Tpax1bwi/25aEe6JnWCuNDQ67Z8fOSKu2UGSiRXNqORuS1Pi\nSdbG9Lj+Kx2i35rHoFuJpKrhnR9KWmJYPL6/sBB/15bYdN+RUoNAIjgC1MiUnZK+N0m0XxdVkJ+6\nLR0CbrbCWYTHrKWvT/Rjp66Xz5xx2s9Mbxb9YtOw3lmGM+sDpTrdksN8ElyWYwhTxaMKsGdDIiS9\n+iEP6IpHDqIav+16wPTjovtJRmjRkpeFLO7v1Tmb4fqQMSZdPkZvg/IaSnTIzvfleozIQqyMW4l9\nNFwj57F0D9y5OGZd+/lF0S+IZDAsLQmlivTs0mOMMQ8/CRorxw079p57H/s+ORbrpXyVlDmyw9rg\nVfwte12wQ0fn+ziDbDe4uApJgw4oaIlMkSzHGEnLji+AzGzBklSOt+EMyHkc63G4ukf0CyXZrCFH\niHlLStFPLiZMt67tQMwrtuSaiaUYo9tH4bR0o0W6GP7tCUjYvvtHf+S0f3H8uOi3hVztorIx1wOX\npbwm62GsyxiiuDf86xXRjx2kCqT6JyAYIbnSeNOw+MzXAmlFTCbGM7ZUusWl7PTiGnJhtJ1kekjW\nfOkizvvSp54W/a587wdOu+BzcDVxkRtPiFvGwLAYcg2heDZkSVjW5uOsd6eDlp24znLipHgTEoM4\n5H1aOqexG2D/ZawzzgGMMSYyU+ZFgcR0L2j2c9ny77C83XcLsTHYOkPSyJEwLAx55OiAjLtJmZCM\n+XxYqywjNMaY4GDE5ymSIP/qHGSij2/YIK7h85MlKzdekfLPor3YO91nkCsFR0inPnb3Co/FHhtv\nl06mLL/zPodcfbBKxvv0vXlmMRGRijGLKpQ5A+fp8SRvaf+gQfSLoPw7PBk5+0it3AeMt1/9B6d9\nmSRoxhjTSbJAdpWbn0Esn+iV8T+ByiGwQ9GBXZtEv1ySlPJZyLmmMXJdJBQi9tilFnjNsNxreljm\ngFHZUia3WBi4JHPtrMdwNnCssCWa/maci7kHcE3fCXkmhdI4cS5rx55bdP4d+NMHnDZLVDpvHRXX\neJ/BOybf6zJLqtX2BmQpyZSTJ+/yin7thxFHyj8DKeKNfzor+nE+XfXPiBUxbvmeWvqVRTgMCVkH\nIC9KKJTOUw0vf+S0+85Cth2/RuYWwjF3FT6Ls87PO69BQhaegD3b+BP5vjg1hVyZyzjcfgl5iz0u\nN78PudsHfwGHtU0vyr2YthXOl9O0Z9vflfElfg32dsUffsZpX/lvPxP9wjNwtsZX4BrPGpmjBoff\n8+cXZc4oFAqFQqFQKBQKhUKhUCwl9McZhUKhUCgUCoVCoVAoFIolhP44o1AoFAqFQqFQKBQKhUKx\nhLin6KnqfejB8r2WXp1qxrDm1rawPV0HXd6+Clh0TkxKOzAXaQj909CXbVxfKvodOwUtmp8sPhOm\nyH7QK3WVOaPQHl84DHu2spxs0S+eLPcuvXLJaadZls6e5dDN+Vuh4U3eIWvTsD697wQ0wWV7pHX2\njcM1ZjHRXgPdZFqKtNsduIG6ONkPQ1/Y8Ga16JdCYz1K1n+sozbGmD/5vSed9lQ/+qVamuWYbGjx\nBuswNjmD0Jzur6wU16wrgDb3WHX1x/53Y4yJH8Xaysh93GnPjL8q+rFOt+sw9NtRBVLzPEvfx7bT\n2Ru9op83XdZRCiRiyCa55X2pheQaMT6ykAyytPD33QedO6+JrmFZb+HfqcbE1lLsv+++K+0g91XA\n8niGakNlJeBeV2RliWuO3ICue1sa7mfCqt3Bt87Wp756acUXQrWcNq+kfTVvW1xin3ZT7aGMrV7R\nz8wurn2vIY115w2py56n9ZiRh5gVniTrrqRtQu2H8T7UBsjaXyb61f7jSac9dAX7vOxRaXfd8B5q\nYAzc/nh9fo9P1sk6/T5qLqwth+0q1/cyRto1t5Lldt0Z+ex8hmwuRhyy6zotzKLWSls7ajzFr5Pn\nU/C9j7bfCfNklz05KDX9nkrEtZMvQVO+5Qlphx6/EudV5zHEHlvXzjWWhsg+O227jHlVf489G7cC\nY/6pz8Oit/ZwrbiG19/m/Yi1CedkHGN79A/JAnZbqTybea5ZPx6eGiX6Dd1CXZ2h62gvWPawYR5Z\nfyHQ4Hogdg2HWaoHxfWC2miujDGm5AXULTv2zgWnvaVX1mdpasBYr12DuiEN774h+o0PoX5Y068Q\nK1N34/wMtWqmNPwLcpXEbYi3qZtkfsPgdbVgxcqcp7jmAmoZ9VFdI2NkLZCuG6jPERsn57vrKMYs\nM98EFInb8YwTXVb9p2icDcN3cG6kbZU12wZrEBtdHsS5kEhp5zo3h+9PTt7vtEdGZP7m68E+a72D\n+FxJtr62rX1sDPZL7QXUqMhJSRb9hq/hXmNXUh7aJmvJsN3zUDVycHeKnJsZWue9p5CH2fUYQ2Pk\nWAQaoy3IQSIt+3Dei8N1qB0UVybHJj4ftSOCgzGe/Sd/Jfr1jWCs+s6inZssv4/PpOGb+LsJlTib\nE4vlPu++hvcTjmdpVv7r68XfTViP7xu9I/MbtmjursPcT7bL9eOh889Hlu12/R6XR85rIJG2+5Pt\nn098B3VduGZlbITMbVY+jXg6T3E393mZs1z4Ls67wjScuTkHSkQ//o4zPzjltO//S9T6CouWcSMo\nCPc0TXWn/M1yj5X8AWqc9Fch/oWEy/hc+Gm89/aewR5LrZS1vm4cR9woJlvo1F25oh/Xc1kM9BzF\n3NmW1oXPbnXavnbUnBm4IuvK8btV+h4E/dAI+Y7sycX6bH0DeejFhtui35YN2GcJSZRTXsZ4tr4p\n85uCp1BDyzuOGNJzvFn045po2Y8ip+EYYowx1d/DGva34l0yLEHuqTmqz+uiOBqbJ+e77YPr5l5Q\n5oxCoVAoFAqFQqFQKBQKxRJCf5xRKBQKhUKhUCgUCoVCoVhC3JP7XVAAGk5NbbP4rHwDqOftl2BJ\nWZ4jKaNxkaAGHb0Omu5jz+4S/WZGIB2JIDu0eUtmwNTDoTHQ0dqugt6UbEkkQoiSuXYLaEtDFoXw\nzpF6p126maj6ZK9ljDHjdyBtiVkBaunJn50W/So2YoyCwkFXX7Dse+ctOneg4YkCldWdIWmtnlTQ\n69mSOSFDSrnmxkDV4rv98r59ol9INMY6iOh9nlxJ65ydJRoryYHO1mMObDtktlDbvxqSGnemfCa2\nMfX5QB2LzfCKfqf/CnTXGKJXho1IyV31WdxTUQlo1ON3pRwowrt4lqHjRFtOqZQSjr5roE67oyEF\nSNkt6ZBMPSzYhfXd0i+lLN/79tec9oVzoGw/snat6PdRDT5r7Abl9vuvgvL3377+dXHNimyM37JQ\n/DYcHCypmsNVkDvUHgUte9XjFaJf70fNTjsiF3ToSYvi3ngW1rirnoOEw98p6cHLgheXMsp6rZwt\ncn7Yzne0ETE1aUOm6Dc7C+p9Ug5sAUdHb4l+K/4I1pG+9manPXRD2jWneCHpCE9BvB4/i33w0N6N\n4poZHz5zEVU+b7OUsbGtp/83uObq3bui35e+cMBph0TgWBq6Ju/V34b5Ytp5/5k20S+mRMo3AwlX\nImKFbaM7QxLIJJL+jt0dEv3438nbcGZODsizZn4GFPAwstUeqJaysOLPYF+MNmMdsZyt15KmrS6F\nNCqV7sHMyzOXLa3XToCivHqblDXFkty3/yruL3GNjOPBLswvS2om++Szz/ikRDrQYPlzaLSkb6fu\nwXnV8RvISLP3SjlZ86uIgQV0lv7xd34g+v3efshgoguxNif7xkW/dy5fxt89hBjQ8Bewkv3+N2RM\n9awFrZ9tg9P3SQ1R73nsEX5eT06R6Dc3B6neeAueL/3+QtGv6xAo//HpGEuXRfO2paiBBOcsk90y\n5pt57FMPydbYxt4YY4LCsB5T14AK33NNSrt9McgluhvOOG07n+siK/L0ZMz1G7+BtSvbzhtjjG8E\nz8Hf9v4VaaW9sQhzNXkBsSZ5vTwjfPVYByyDGL4p42nSZpzHrl1epz1Y1S362Xsz0Jibwjlhy+xc\nCZjHAbI2js6Xkp2QEKzBzquQlHo/vVL0W+7BO8TkCMap95w8Q66fxHk6zuUafo6m99lZw2ApJks7\nXRHyPCp9Ee8DU0PYb0Eu+Uo2SVbd+fuL6b/LuBFXgtg7UgMJVjxJXI0xppPk+145LL8zQtzI992W\nxD+nD2POeemkZUV++mfYV0kxyONXfk7mniHBGL/lX4ZkeMYvZdV3/x17tmQdYnfjq5CgRuVKGZ13\nB2J1ZB5yT1tO1PIW1oebpLvV78s8bOVTkGpdOQ/pzd7fl+/Ae76Fv9t+EGfOCOWCxhjTeRZnQdrf\nPGoCjbT7cG7wnBpjzHArWZrTPm27IfdOxedRssDQuPXfbBX9sh6GDO3y30OGv3WLlLENtWAMTh1F\nHP38n6GMRoxXSpOb30RZFpZAZj8uY+9II86nu+9hvrf++RdEP0859tI0ydnDEqU0z1OKv9XyK6wF\n7zNSAulvkTI5G8qcUSgUCoVCoVAoFAqFQqFYQuiPMwqFQqFQKBQKhUKhUCgUS4h7ypq620D5c4VK\netONC5B6MMWMZUzGGNM1BPp2hdfrtKeHpMtFz21UGE9IJrpxrHRsKNkKam1IJORPEyRPWBYif3Ma\nIgeS4hcrP7Ff/TFQ4JZVgYo1R9XFjTEmgejqTCOOj5LyGqYtTZObTVSQpGN6rDELNJhyZztnTHSC\nVsiOWbOj0+aTwC5As9bYjFSDUskOLyN1UjoTFgtaNc/D5775mNMeb5X0Y3bNYCrxWLNNU8Z69NUe\nc9rxq6UcKMKFe+gmx6Jil6THMRLWgaI/NyEplMEWBTCQcKdh3gbOS0lDcBDGjyuH91+Q7hpp+0Dr\nHGsCTTAnUT5v3ArQ8jbRWI5a0owJkpnxWH77c59z2kxNNcaYFKJRh0Rg//YckdX9p6cxtrx3pi2p\nQxK5dcwSpTW2RD5TZDMkZ75arFGW3RhjTGS2pLguJm6fkBXpeV9lrcA6s6Wd451Y7/MzcE0abpB7\nLDIdY88V6tP3S2nGNElxuMp+Wgeo0rbc62QVKP8Plexw2v1nJb11Zhjfze4Vn967Q/SrOwsab9lO\nUF3DU2VsnCU5VVYm1im7jhgj10KgwXHJljX5W/AZSyWjiyWtPa4YYztNMsq5CbkevTv2OO2xMVBu\nQ0LkvhrtQEwIiUQcStkLCvm+ZZ/s+tB5FDIzvt4Yuf72fH23056wKOks6XIlYt46D98R/TiGsrwm\nPEnOdcfb9WYxEU73OGHJi0ZpL2U/DfeiEcvNLJZkzVXvNjvt7/3PXxP9jh+Hi4vvJnKdr3/3+6Jf\nUSbkKZevQtKSTU4/VXdlrAxtAVWcnVCK26XsdsO3n3Pac3OQqfh9cs+2vA4pU9wqULkHrshzJ+Mh\nSGzY7TA0TuZsLEcONMJIsm47EfFZwRK5mUF5hiRsxJi3HLrotD2WJCSI8hQ+W1O2eUU/3nOv/N1v\nnHYWnbMVBXIvujOxn7vOQvpgS7s52oRH4NlHa+W6TCR5KUvnJiyXH5ampZArjB2HYko+OScKCOhs\nYCmnMcaEkGOfy3IulF+BmJ+0EmeIf0g6yfRV4axJqqCzcL5F9CvKw7qIyMb8RNC5GmS9Q4w2YXzD\nPbjX0U6Zi0WmYjznZ5CPhJL7pDHyPYnlXez2Z4wxY23Y68EkC+74QOYY9toPJAZvkhTOUofHrsRZ\nHU7PMdIgJY8lxcjnauswH2PWu0DePsSeHpL5xFque8PjWPu+m4h5GSWQgmZslpIp3yDKb/hIXp96\nv5SJjpN8eJ7eR8qfXyP6XX0Jbnr8rtx1SDr/xa/F+0lfE72zkgOkMcYUPVduFhM81pEZVqkGmtdh\nco/c+KdSotX8GiRFy78Aeb1nkxzrm//270678htbnPb1/0e6AKeswHrvIofg//JNnJ/f+vYL4poV\nL+C8G+zGHIw2SZnYEM3xBDlFj/nqRD92sEugd8nW16WMbYokh5w3N/3Ccmf6/yihoMwZhUKhUCgU\nCoVCoVAoFIolhP44o1AoFAqFQqFQKBQKhUKxhNAfZxQKhUKhUCgUCoVCoVAolhD3rDmTuwk650HL\nfjWBdHDNZ6BXD7I0+GEh+BMNXbD8tWvYsNbLNwDdZoxlM338OvS4Q6QnfGADdH4To7KeTWwObKH5\n69gO1hhjNu2Glq/zJnSqHYNSozYyge9fXoExykqRmvnb15vxt0gLPntBamozVkv72UAjnOqVhEZJ\ny9AxP+qIdNRhjsPDpPa1vhPjUbkBet7+Rql1DqX5HvFD48k1XYwxZmoG+uDMBNRjCG7CPax8XGor\nJ8gqs/kCdPd9o1JHvYqszWaGoLGdn5bj7p/6+HoYs36pt67YCwu07g+hE+VnMMaYnEdKzGJhYQ51\nHzIeltanXD/GnYZ6SL0npYa6/TfQUHINjNIn5Dj3kS1xdBHqI8UUyboZxX3Qwy8v8zrt6X7sD+/z\n0q/R34W56juNWglN3TK+FC2H9vj4aVjUp8RKDWxUEtZ2VCHu1d8hbepCIhBvOq8jDuU+LOdskV3t\nxTympUt99LIQxM6eeuh5PRVScxznhe1x3Y8+wvftl5qBiffUAAAesUlEQVRotidlvexok6wdxNal\nodHY90mbEJeO/+ikuKYyF/UJ4kjnPdEuxz00DvFmNdXu4FoHxhiTlYTv8KyCvrjdqjvioppZy+h/\nLbDO3hhjas5Da7/mRRNQzFJ9m6gCj/hsnmoY8ZkW7ZX9hmowv7Pj6BcUKv9/yXAP9O9h0VTDoEPW\n/+A5TCnHOA+1IF7Z8S80GrVBWBtt98t+Et8XRutjrFmuo+lhxNp4WrOhMfLMGbyG/cc1n7iGnDHG\nBEfLfwcabE3ef0XWpeimszCE6kD4auR5V/xV2Lg+RNbc1395RfTb++B6p91xHXO3baWMj0VpGLdt\npbAq57p0xRtkzSi2BB9vwTnrKZd1KRjT02QhfF7amybv8OJeaf9xfS9jjBm8jhoTk71Uz+FBeT7Z\ndZkCic5TzU47c4+Mf2FU+4brAIRY66r7GHKJ/BdwFk5ZdRHnaL0sf/6A0x7zyRg1cBVr6Ynfgz3u\n/BTlgOOyRtb0AP5WxWZYvV49I+sZcG235N1epz0zLGuJnH4JVtKJVPctMVGenxG0dgbpvmOsGlkj\nVKfNbDYBR/8p5ByZT8gzeZZq+/FzekplTSD/GOZxbhpxhefDGGMSKpG3TE9QjTCrXklUHvIJrgXD\ndt52nSyuu3X7x6gZtfzrW0W/ZctwXg2RvXnWfdJud8CNvTnZjzXsipN29Vw/LJjiKFv+GvPbYxtI\nDF1GXI/Ml7X7+mrwjC7KRXpqpWU75+SDY8j33/35MdHPm4waNg30brK5uFj0K9iJGqUn30Q9qSIv\n9ljDK0fFNVyXM+MxfJ+dT4dQvbQgOj9ty+3sAsT02TGsZbue3jyt2bIXUBs12LJXDwlfvNqWxhgT\nTu9PHYdkzaLsByqctq8Wscm2tc88gHU2NYV1MT8v1+P8JGJi8yuoY+i9T54hb/3gkNP+8+99xWkf\n/ifMXVC4HKfBLtSZ4bowrhRZtyqRao6F1SPGn/pbuS64nu6Kr8IqvL9Xvtvmr8CaS1mP57j5Xfl9\nvhG/uReUOaNQKBQKhUKhUCgUCoVCsYTQH2cUCoVCoVAoFAqFQqFQKJYQ95Q13TwOCdHyNXnis95L\nsIaLcYOm5iHLNGOMiQ8C9TB3CDT5IFew6JdA1n2R2aBeMl3bGGPWjYMWdukOqPFtnaCJL1jahOQE\n2F7d/gUsLZPXSZvCiS7Q6JK9oDj2+qSNG1sinj0Dy7BdB9aLfjnZoBW7MyA3mbVsX22b6UDD5cH8\nLFi2vGOdkCFERqFfRI6kv3pJwnPxLKw2tz4srdEO/uqU015D9p8/OHRI9MtOggVpJfVLWoe5Grwo\n6ai8ZvK2gdqdVCft+IY7QTNj6duqDXK+49ogsSk6QNR9izJ66yXQU4seB+2056Nm0W/wMt1vgKm/\nTJ9lGqwxUorCiCuXtN/ITFBNWZJgr8eU3ZCsjFO/8TtSxrDzD3Y6bRfZRjJlu+uItAtkW95L1bC0\ntO2862+BQvpgJSie+c9IGQDbhLKt/cyQlCzGb8S6Yqml71af6NdzG3GkeJsJOFw0j43n7orPWBLo\niQa1dtCSXBz9Z0iZyitBoZwalDRJtt5kynZ4vKR1sqQlhOzgx9oR98o3SLpwMkmeBm+Ampz5kOzH\nsdi2MGRE5GFtdpGtc6QlGxom20NPJeJr/UW5zgoLM81igWnLkx1SUunORJxPypHSAAZboXaQ1TTb\n2BtjzMw41vFYK+JaBMkX/99+2HMj3aDCR6Vj/Eaa5DnD1sgsPYopkPc9N4XY302SwMQ16aJfH9kL\ns8TJpjwHuxGv2t9CjsHr1RhjEq14HWi0k82sv0lSk4seJWkYSbrn5+X5OdGHnKH9HcSzDd+QwaP7\nRLPTjgoHdfrzX3xY9POUYf7ZqnToBtpxZXKNtL5J1stfRQ4yXNcr+i1kg0LefhBSnAl7DZNV8HJ6\njuY3q+S9VmANJ67FXN39mezH8r4V8nF/Z0R6EE+7jzeLz1LpHOuow7pNyZZnTeYjoJ7zPpq07NUT\nihDb2i9Aajs/I9dE8ibIv9jieIrkvvZZ2taLc2iMpB1uS17e2o89PPAKSYRHpJx0/Was32Vk9xxp\n5XWc8/ru4p5syX9orJQmBhoJmxGv+QwyxpiO97FP+X2g40MpuUjZBrlv21uQcMetkvslwgOZyfgg\nztamN6WELGU97mmyDzE//wnsidlZuXdCN2G+wpOxNufn5HiOkHyfpaxtH9wU/YJJqjHrRxy2pacs\np3WzLGeflECyxXHuKhNQ5DyH3Pijv5cSjpJV2IvuZNxfckGS6BdP5TLm/w0ypOw8KdE8eR5y333b\nUdJipEvug/Fm5DCr8r1OO7YQMYCt0Y0xxk/fMUWysLQ98h04KRdJ/sREs9O+9U/y2TMfh8Tn8o9h\nA52XKc9wlvhe/BH6JUbLftmPUI6VYwIOztFDLGv3xtcwJ8lbEedYpm2MMVH0Dj9Mkrb0rXKsGUnb\n8H3Tlkzzvkc2Oe2JXsSsjQ+sdtqeErnPQ9w4Z1leb8usZ/2I+SGRiD38u4YxxuQ8iHHvpBw1d4eU\n03aQ1Jb3bHSulPpFzVk25RaUOaNQKBQKhUKhUCgUCoVCsYTQH2cUCoVCoVAoFAqFQqFQKJYQ95Q1\nFRaDuj7cKCnpniLQ0ZgK1HtNUvCTybXBnQFK09Al2S+EaEd+cvyoq2oS/UKDIW1hBwOu8p1sObqM\n3ILsJZEcDHzXLSpWCejcLP+xv89HUpngIPy+VX9K0iyjiRbFjgUzlowkzpKCBRqTRAOz6aopJE8I\ndmM5THRLSi9j0z5Qyc6+J10p7jsAqt+146i+vSZfUr/KvV7cw2bcA0tihvolRTE2BvN99xSkAEX7\nZAX6qlfhVLAyB7y/MWsNZz1Zaj4OTCc3xpgQmmOWMk2OSerdYDcoxxs/9pv/x1H/8nWn7UmX9Lgu\ncv9Y/izcJmxJIJtmTJBrUkSWpBomFGA8x5pAr0x/qFD04yrygyR3YJme15IhsQRmRS/m/U63rNq/\nIg/zlnY/1g67kRgjaYNRJJ/gtWyMMWNE2U7Zju+eGpBSoKwNi8ATJbCjQcEWuSdqT0IWkZKH+Doz\nLPfs2TpQtpl66a+S0p6NT8JJhp2bJrolFXuyB3ud10LKGqwDf6fci3NEq47Mxnp0xci1NNqBvTR4\nCc/OZ4YxMt4GhSHGR2bJ2OtvBU2ZpX4Fq+S8BYVK2WwgwWsrZU+u+KzjXZwBIdRvekTO4TidcZHZ\nGLOxuzJGsYSK1bpZ63eJfv2tl512fCb46lNTOGcjUiU9Or4Q+3lyDPsvPEpSzacncU8TnVg745Yj\nmptcAcM85JRjOYYMHsGZHktn32/Fq5DF/X9HiSRrHrD+FMsJsg/A2aPjwwbR79ZLkElnb8NaaHu7\nTvRzJUGyteKbO532aJslUSU3xRFyhsp6FJTqxAIZUz1/4uU7d1oJK+Ueu/M66PapO3GvLb+Wco6q\nX0HGu+HLiC/jbXK+eY5vvoxrPFFRol/mDikHCCTCSS4eGh8uPgsl15qc9V6nPT8l3Rgv/vy8016+\nDeNsS8Ab34BjXepOPFNihnTimZrCXpqbhnwsmlxDb96Q+S/nikVUQoAlKsYYM3obe3GgA2favCXl\nZ9lLTB7+7rSV/3lWQvrMLjrGcthiJ5nFAOfE/ZelEx07DbLrFq8/Y4wZofwuh5wBWRZljDH+lTiH\nDMWc4hcrRb/hOkjNUkiqFhSEvTw53Cau4eeY7EHePWY50bH7U/JGfHcryTyNMSZpC3KkCz9FLpZf\nJp3T0vcil+g6BsnFzIjMUdP2yZwjkLj6A9zf7v+0T3zGOQefaTy3xhjjo9yxaBPuteNqu+iXGoec\nY45KYthuwSxn6W/H+vDdxt9JWu0V15z7F5RmWPsZyET7Lsp1OVTzltOOW44z0z8hx5zfaVY/jzIQ\nnOcYY0w3SWVKtkNqmbxRuvlW/SPebwoD/aJhjJml0iG2JJklYCO38V6dfX+FkcC+6j6K8356+JLo\nxTFs6C3k9nEpMo8seAHzEBaGmBUcjPUTGirfi6p++GOnXfLCQ9RPfnfHjRO41xMop7Dq67I2RT/J\nwKfpvSF2uZTJ5lK+0H+OnW+lXNyWj9tQ5oxCoVAoFAqFQqFQKBQKxRJCf5xRKBQKhUKhUCgUCoVC\noVhC6I8zCoVCoVAoFAqFQqFQKBRLiHvWnGHr4vEpqVVdaIAeMzIB2v/RCakvz4iDLtRPmmXfuKz1\n0N4KbRbrCW07q9gI6D3DoqEn/OAcap8kWNZjAz783eRU1CbwrJT2bGz7y5Zs9jOxPjjShXso2SVt\nZGs/gt44cgz9xialJjHU0nIHGixHDrFsl3vPQ8sZT/r/4VppMRydCO0z1xRZ4ZW1HqZIZ5vqgdZ5\n/SNSz8t26UPXu+m/Y+4z1kqt5Ug17imnEprbhsNS33/fV/bgfqjeQaRVW6X/EjSEE62YA9apGiPr\nCrkzMA4LzVKTvnJvuVksFDwGDbVtMxeWiD0x0Y3xty3aU9ZAxxq7HOMSXyRrAiwsYK97VkDfaVtc\nRiegZkXv6Q9wDVms+q36JgtkRds2AM1qRYWsZ+NOxx5mi8GsHVJkOzkhdcD/ge6TslYV63vZ+jQ0\nxqpT8Am25IFCNNW1unrwuvhs5RbED64D8+7pi6JfaRbVAqP6V+nxUh/MtbsmyDZ+ZkbWD/CQfXNI\nOOa4+wL071nb1otrpqexFxcWUN/A3ydrpvBavXkbc8Ix3hhjSh9DnRSuPcJ6bWOM6W7B321sQOwq\nKveKfnY9gkCCrYfZLtUYYzIPYI/1k0a94bUboh9b4nL7/tVSuz1PYxFGcencX/1Q9Evbijg8eve4\n004oR823SctqPYLscdOzH3Pas7Njot9EKMZ52RqqnWbNDdc6cJFde6hlxxlG9VfYPtuOa9M++e9A\ng+sghETLmM+1X/qvYR6TNslaDzkHEPNnpxFT/a3yTM/Yj/jm8UDLHhsrn7Gn+ZjTrvjTZ512cDDO\nHbZtNcaY4WZYp3OdlNmJGdFvvAX31PBT1MoJt2Jgfjmeke3Wue6NMca4k3BPnEvZ62wx6z+FJ2P9\nDF6QdVyGDNkVU/yfHpJjnpHw8bUGO6pknYu4WDwv2zjPbJX7wJ2ImBCZhHoELe9hzFNWS5v46X6M\nGdvX9p6VNU38ZEte14G5yUuWdQvZDvfyG6gHVFIpz/rJGJwfE3TmTFu12MKt2jeBxjhZ2SduyhSf\n8fqJ3IX7n+yXdRHrfwkLd65Nk/eczMtG7iLviPYiR7XtqWMLsS4a/gU1vfwTsFEvfEb6UbPN78Ic\nYnf969IiO7kI85X7GKygg61abFzbrWwXalmEp8j54Ho781O4Jmm9zKH9PTIfCyT4vWh6WL4zVb+O\nXIffJResWkmbXoRlcmQa8nXfLZnLzswihxnoQx26jJXpot+108hhSku8Ttvfhmua7l7jS0zRetS6\nOfFj1J/Z+vwm0W+K1l9IBOYtcbnci6M0NyP1WHs9Pp/ot/oZrINwOhebXpFrp+gpWXMs0PDdQNxM\nXiff78LC8Gy9Jw7immYZKycpfhR/EdbzfI4ZY8xk9/tOO/d57KXR5iHRr+cC3s0bjuLvLn8E9u2Z\n62SNmJIXHnDaCwtYLzUvvSb6JW/BeZe0HnF5uE7WHuVcj+smDV7tEv36mrBWK7+xxWnPWbXO7v4C\nOWH2Xz5lbChzRqFQKBQKhUKhUCgUCoViCaE/zigUCoVCoVAoFAqFQqFQLCHuKWtqugWqUsFaaRnK\nNK4rh0DP2UAUPWMkJTE0BlThxExJwWfpSBZZUrIFrjHG9LaCFpZRAEriw/eBcjbVIymZbG02TnQ2\nf5ek+MWtgoQjfg3ocXE3pd3l6dN43lSy2W46fVf0YzkU0/htmVRSlLTiCjQWZkBzjLKs0e6cxz0v\n3ADFMNbqN0jWc65QovBtlRTUuUn8rZYmyJUmeyUFlW1wo4ha2ncKFO2CL635xGtcCaBQsq2lMcaM\nd/g+tt9Yk1xLWQ9CgjDSBOphkGXhysayTP2d6JD0/+5jkG0s320CCn87nmlqQK6f+NWQLgzfguwj\naauk4M/N4d4TS2CTPNR8R/RjSjRbV6dukzFguBOU0SCy1Q5PBnUxJkOuj/E20Ft3/P52px2bI+81\nIoL/FiiEfS1nRT+2RIzMAA02OELSgyNzsP+miELefELaTy9/ZvGkacZIaactv5zsIpvQRKzbnWVl\nol98EVZk3SXMXW27pJYyZXie5GT5Oz7ZEt0QXTOCpGV33z3Fl5j03aD+To8ivnZ/ZMnJSBq7fhdo\nq5bjpRmuAYWUpWUd16VsLS4SMSA5FTGqr1HSntNjF0/WlLoba3O0WVq7T3RjDufGICuxrSEHRnH2\nPLIbUr2aanmGrCjHOHc24hyy55BlOSMkSfXRPpiz7HBHI7H2e2twprEkyRhjgoIxWe54UP3nXVLW\nOUOypAk6W+dnpFyA7YH7L2DNjvfKeBqVQvvjPhN40Fp3WZaunN80UYwoipLyp4GrkNIkrUesm+6X\nMZpR/fqPnHbiWhkfOfYOdVQ7bU8G6NsDtTJm+cnSXEju0iSFPHkHYuzwdaylCEvuG0u0/G6SqoVZ\ne+r2jyGXiV8DWVOYtX66j+F+C9aZgILzw+RdXvFZUCjO8e4jMi4x4iqQ9/Ea9vllHrmMglboOPqF\n18vnXZjFevfVY/zGGxErUvbJnIXX26wfcaN/VOao3jKsl8Qc7MWmOhn7m+9gXXqTcV4M3pFxkv+d\n92ip07Ylhh0nP3n8AoHkbbQ2a6SkfnYEMpguakfmSmlsEcmXRhrwntD2npS9s2ys632cn3PzMp6V\n/SEs0sOSEB9cZKXN+ZYxxiRU4r0hYwPy12UhZ0S/GJJM8Tmdc0Ce9QPVmMdJkqyz/bYxxrS+jVws\nfg3ywfEuKa/sP4d1EmgbZt4vbPttjDEr9uG5XB4qC5EVK/q1v4tSEKMezKHbimWTLZD3xSQjfrkS\npcw4NBj5R30D3i2SYnBNUo60NI7yYl1tzcJ75Z2D0uY8bQXGueaHsIjO3lcg+hkuK0GyNXenfKaW\nd7FOp+cQQ1KKpUyqj6SO+WtNwFH6FRy27aevis9aTh512qu+BKl7x3sNol/WY5DgNb2BsYkpke+6\n+S+udtqDNyEP6jsl5ZycLnJZkKHLuGai80NxTdIGxMpUL6zdEy1rck8W1ubAtSNOm/ebMcZM0Zme\n/1nIz6+ckjlbGknrfA2Ir2lr5fts3Kpucy8oc0ahUCgUCoVCoVAoFAqFYgmhP84oFAqFQqFQKBQK\nhUKhUCwh7ilr8hajcjHTBI0xJoKoydmJoCoxJdMYY3pONTvt9C2o/LwsVP4ulJALahlTVZcFy37d\nw6CGRt0GzTaCJC+x5ZIGlkg0eXYCsav2958GlWrYB0pTbJSkyu1+BHSuYXIQ6huRFMLydZDNsHvI\nMll82wRbLjiBRstV0PmWXZN0sYxsjJVnNajJC3OS4hlGtG+m4PaftqQUdN3yXZDOJFSkiX6dh0An\njVsJWjFTk7uOS7pYKFH3h0lq5kqStGJeMzzfI1bF96hcyKmmydWJpUvGGNN+E8/IFeknZ+RaTy2T\n7l+BRNtFkns9tFx8NnAZ1FdPOcZyqErS5rreB7087QHIJRrfqBH90jdjnyYTBTA4WO6DYBeopcmb\niCpI9G//kJQExhRgnw/fgpQlPq9U9Kv99a/wdSQzs10K3PRvLvzPjkzGGNP9IdZS9HLcQ/Zmr+hn\nz32g0XEHcxISLF1M2CUsMgd0X3+zrOrPsSSC3OIefH6H/GM0IOMt+I7ei1ZlfVrHE+QGkhqP/REc\nJWPUQBXWHEtFe5okzXuO6LlF+7Fua96vFv2SSR66MIP9nFEhZR8TJAvr68E5kV68eHvPBtOKbfkc\nyyLYeWN2TDq6lJIzF89TxTa5D9hBpGAXnydShjNDdH92Oms7BFeZrPukFKrjA3wWTTT70TvyrGfZ\nZOMrF/Df10hnDHcmqOIsYbY1bD0k/4wpg+QipkjSy1l6sxjg86TJioGFz0MiUfwoJEUxuVLu6yNZ\nA+c6+Z+Trls1/3ge3/0iPmt5Te6DqEJ8/9htSG370rHmYpcniWtaL+FsKHoY66eVHIWMMSaFJBcj\nvSQ7m5Kys8aziJUlD+D7mv9dJi55n4FMsfVNUP6XhUj58GKCpUb95yxnI3KNYomcO0PKSTmmsKws\nv0A6KiWRq8fIHcyNK0mei4PXQLVnmXdUMdb3RKfMFXmfN1O+FhYiU/TgSOSyEZSTedrkmMfn4W8F\nu/EdEdIcx8xQDjxCFPzBOhnHM3dJGVagwVKm1O1e8Rk7FvnIQYXPNGPkO8oo5XpxlfJsmOrDGZ/7\nAtbw1JCUIg7ewhkXX4kY2PYuJBwpm6VEIjgMuUpfLWIKu14aY8xQdQ9dgzxgqEY6xExRPpK2F3PQ\n+G9Vol/yTuRsXEJgol2us6g8KQULJNJz8S4xO2a9B17A3kyj90BjuTVlkxym8ad4xrjVcvym+8iF\nlXKl+sNSerRqJ+LXHL2bxpOjaMd7Mk7GFuB9tvlXiM+5e+X5ee1t3N+e/+V+p33rny+IfiyX4/dX\nW0Z3///6kNMeacRatstvtNyU+VugMTmOtRkSKZ0WE9KwfkLps8wDJeaTME7xNWmzlOPx+2LaWnI+\ntPIllvFFHsa7Y/YDOJvZkckYYyb68Hcv/cM/Oe2CF6S86Nz/+ZLTzn8cEqfxVilZz30CGrK6fznp\ntL078kU/dkDOP7DTabedkFK/rN331qQpc0ahUCgUCoVCoVAoFAqFYgmhP84oFAqFQqFQKBQKhUKh\nUCwh9McZhUKhUCgUCoVCoVAoFIolxD1rznB9hJwKqa207ar/A5c+vC7+HRuB+gH+Y9BqZpZJvTrb\n27H+NjRO2jeWL8CmjOuJLCNbzO4LUnucQNaQ43eGPvYaY4yJLoXWsPEYdMORLmmf2XKxxWmPkC12\nUVmO6NdWC81qchLVb3DLYV+wrEYDjezV0OuF2/poqlfiJ33q2B2pYU7YkEHXYGxmZqTOL22X12nf\negd6zcGrXaJfJNl3TpKFqu8GtMfuLKkNj87DGN4+Atu5gtwi0S8sDlrs2VHUYpi2asSMUm0jXjNR\nibKuSWIidJbBEZg796zUjEZmL56eN6X4k2vJpGyndUcafLv+0zzpO9kqM8OyyGYr3uFr0J8m7ZB6\n0cGLWDsJm1AbhK0SOw9KPa+H9N9skdlddU30m5vAuuKaRL5aqYUfa4IuNPe5lU57xjcl+kUVYe1M\n9SF2TVk1ZmaoRsqKh0zAUXoA93jjTakbv1uNNbiSbEI5xhhjTBLV8+Dvq39X1s3IWY91EUS6dpdb\n6oi5rgHXVEre7XXaF34pddReGt/wdOyXqHAZr5MobrC+PK9crqVQsukNT0aMGq6WGvwIL/Tly8kq\n3ndL9rt5Atrz1c+agILXo20TPUz7KjyFYm2KjLuijhLF5BCrhg1bUnN9m57Dsh6XK5nqblEMSCF7\n5+EbsoZLdAHqm8xOIFbYcaz9DcTaUK6dZp2fMfR9HF9GGwdFP64RNlyFe4r0SlvV6OXSdjPQqH0V\n+y93l6wnwHbig9cRb6eH5V7kOfbdwBqcsWIvj1TnYdT+smvqcY0vrlPRfwWxdm5SnrmF90Pvz5bg\n7giZt4zUoA5H8WdgYdp7pkX0cw8jPrQchb4/wsqD+Dmm6Zz1Pi3tgJtfk3EpkODaYjMjsk5B3lOo\nRzBIlue9VzpEv9zHUZeCvy8oxKp3SHsudT/qf3AeYYy0XGU7b94fRm4d8XdTe3E+JW+XOeU01UUZ\nvon1lrbBqn0SzvWuMDdjd2UdBUM5dAidK2lbvaLbglUbJNBwJWDddlu1BrnO3Did97YtrysRe5b3\nTu9pub7ZSrftbcS2ZdZ8c223mGL8rdgirucj43X3iWanzTVOPKtlzcU4qhvVTzXg4qzaNPHluG6s\nGeuMrXyNMab5NdSD8j6Ndd85IvOg0TpZTyyQyKK6Iy2v3xKflX16g9Pmuk7dJ6RFeyKdV/4JnCEx\nUzLmpezxOm3OEZY/JGPPWCPGrKMe7yD8DpawUdaWOvt/HXPabA+e2y/feVc/ijno+BDvtgnlssZR\nVA7O01zab3YMuPoPp512EJ3hiYWyxlhw0OJyKrpPYU7SdspaU4krEY8WFrC+hxtkPc+4IuyXuBW4\n/7hM+a52/C9/4bT5PdsdKfPIxDWYIx7Ptg9xtvTXyPwmIhoxJe0+1IVpeUvWTit6DrVu6n6JnCCp\nRO7FkBC8s3LN3PTN5aIf1zZdWEB+aJ/b09NyzGwoc0ahUCgUCoVCoVAoFAqFYgmhP84oFAqFQqFQ\nKBQKhUKhUCwhli0sNl9RoVAoFAqFQqFQKBQKhULxiVDmjEKhUCgUCoVCoVAoFArFEkJ/nFEoFAqF\nQqFQKBQKhUKhWELojzMKhUKhUCgUCoVCoVAoFEsI/XFGoVAoFAqFQqFQKBQKhWIJoT/OKBQKhUKh\nUCgUCoVCoVAsIfTHGYVCoVAoFAqFQqFQKBSKJcR/B9xD0UUpl/DCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "id": "kL8MEhNgrx9N", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The first hidden layer of the neural network should be modeling some pretty low level features, so visualizing the weights will probably just show some fuzzy blobs or possibly a few parts of digits. You may also see some neurons that are essentially noise -- these are either unconverged or they are being ignored by higher layers.\n", + "\n", + "It can be interesting to stop training at different numbers of iterations and see the effect.\n", + "\n", + "**Train the classifier for 10, 100 and respectively 1000 steps. Then run this visualization again.**\n", + "\n", + "What differences do you see visually for the different levels of convergence?" + ] + } + ] +} \ No newline at end of file