-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathopeuc.py
720 lines (650 loc) · 34.8 KB
/
opeuc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
# -*- coding: utf-8 -*-
import numpy as np
from problearner import PMLearner, PALearner
from qlearner import Qlearner
from rll import RatioLinearLearner
from rnnl import RatioRKHSLearner, train
from sklearn.model_selection import KFold
import tensorflow as tf
class OPEUC:
def __init__(self, dataset,
QLearner, RatioLearner,
PMLearner, PALearner,
time_difference=None, gamma=0.9,
matrix_based_learning=False,
policy=None):
'''
Parameters
----------
dataset : A Dict
A list with 6 elements.
They are: state, action, mediator,
reward, next state, action under policy to be evaluted.
policy : TYPE
DESCRIPTION.
QLearner : TYPE
A Q-learning model.
RationLearner : TYPE
A deep learning model for learning policy ratio.
PMLearner : TYPE
DESCRIPTION.
PALearner : TYPE
DESCRIPTION.
gamma : TYPE
DESCRIPTION.
Returns
-------
None.
'''
self.state = np.copy(dataset['state'])
self.action = np.copy(dataset['action'])
self.mediator = np.copy(dataset['mediator'])
self.reward = np.copy(dataset['reward'])
self.next_state = np.copy(dataset['next_state'])
self.policy_action = np.copy(dataset['policy_action'])
self.policy_action_next = np.copy(dataset['policy_action_next'])
self.s0 = np.copy(dataset['s0'])
self.policy_action_s0 = np.copy(dataset['policy_action_s0'])
self.target_policy = policy
if time_difference is None:
self.time_difference = np.ones(dataset['action'].shape[0])
else:
self.time_difference = np.copy(time_difference)
self.qLearner = QLearner
self.ratiolearner = RatioLearner
self.pmlearner = PMLearner
self.palearner = PALearner
self.gamma = gamma
self.unique_action = np.unique(self.action)
self.unique_mediator = np.unique(self.mediator)
self.matrix_based_learning = matrix_based_learning
self.opeuc = None
self.intercept = None
self.eif_arr = None
pass
def eif_without_intercept(self, data_tuple):
termI1 = self.compute_termI1(data_tuple)
termI2 = self.compute_termI2(data_tuple)
termI3 = self.compute_termI3(data_tuple)
opeuc = (termI1 + termI2 + termI3) / (1 - self.gamma)
# print([termI1, termI2, termI3, opeuc])
try:
opeuc = opeuc.numpy()[0][0]
except AttributeError:
opeuc = opeuc[0]
# print(opeuc)
return opeuc
def compute_opeuc(self):
data_num = self.state.shape[0]
self.eif_arr = np.array(range(data_num), dtype=float)
if self.matrix_based_learning:
intercept_arr = self.compute_intercept_2(self.s0, self.policy_action_s0)
intercept = np.mean(intercept_arr)
termI1 = self.compute_termI1_2(self.state, self.action, self.mediator,
self.reward, self.next_state, self.policy_action, self.policy_action_next)
termI2 = self.compute_termI2_2(self.state, self.action, self.mediator, self.reward, self.next_state, self.policy_action)
termI3 = self.compute_termI3_2(self.state, self.action, self.mediator, self.reward, self.next_state, self.policy_action)
# print((termI1[0], termI2[0], termI3[0]))
# self.eif_arr = (termI1 + termI2 + termI3) / (1 - self.gamma)
self.eif_arr = termI1 + termI2 + termI3
self.intercept_arr = np.copy(intercept_arr)
print(np.array([intercept, np.mean(termI1), np.mean(termI2), np.mean(termI3)]))
self.eif_arr += intercept
else:
intercept = self.compute_intercept(self.s0, self.policy_action_s0)
for i in range(data_num):
data_tuple = (self.state[i, :], self.action[i], self.mediator[i],
self.reward[i], self.next_state[i], self.policy_action[i])
self.eif_arr[i] = self.eif_without_intercept(data_tuple) + intercept
# print(self.eif_arr[i])
pass
pass
opeuc = np.mean(self.eif_arr)
self.opeuc = opeuc
self.intercept = intercept
self.cis_arr = self.compute_cis(self.state, self.action, self.mediator, self.reward)
self.cis = np.mean(self.cis_arr)
pass
def compute_termI1(self, data_tuple):
state = data_tuple[0].reshape(1, -1)
action = data_tuple[1].reshape(1, -1)
mediator = data_tuple[2].reshape(1, -1)
reward = data_tuple[3]
next_state = data_tuple[4].reshape(1, -1)
policy_action = data_tuple[5]
termI1 = reward
termI1 -= self.qLearner.get_q_prediction(state, action, mediator)
# print(termI1)
weight_q_value = 0.0
# print("start")
for action_value in self.unique_action:
for mediator_value in self.unique_mediator:
action_value = action_value.reshape(1)
pa_pred = self.palearner.get_pa_prediction(state, action_value)
action_value = action_value.reshape(1, -1)
mediator_value = mediator_value.reshape(1, -1)
pm_pred = self.pmlearner.get_pm_prediction(
state, policy_action, mediator_value)
weight_q_value += self.qLearner.get_q_prediction(
next_state, action_value, mediator_value) * pa_pred * pm_pred
# print([pa_pred, pm_pred, self.qLearner.get_q_prediction(
# next_state, action_value, mediator_value), weight_q_value])
pass
pass
termI1 += np.power(self.gamma, self.time_difference) * weight_q_value
# print(termI1)
termI1 *= self.ratiolearner.get_r_prediction(state)
# print(termI1)
termI1 *= self.pmlearner.get_pm_ratio(state,
policy_action, action, mediator)
# print(termI1)
# print("stop")
return termI1
def compute_termI1_2(self, state, action, mediator, reward, next_state, policy_action, policy_action_next):
long_term = np.copy(reward)
data_point_num = long_term.shape[0]
time_vary_gamma = np.power(self.gamma, self.time_difference)
## non-deterministic policy:
random_pm_ratio = np.zeros(mediator.shape).flatten()
for action_prime in self.unique_action:
action_prime = action_prime.reshape(1, -1)
target_pa = np.apply_along_axis(self.target_policy, 1, next_state, action=action_prime).flatten()
action_prime_batch = np.repeat(action_prime, data_point_num).flatten().reshape(-1, 1)
for action_value in self.unique_action:
action_value = action_value.reshape(1, -1)
est_pa_value = self.palearner.get_pa_prediction(next_state, action_value)
for mediator_value in self.unique_mediator:
mediator_value = mediator_value.reshape(1, -1)
est_pm_value = self.pmlearner.get_pm_prediction(next_state, action_prime_batch, mediator_value)
est_q_value = self.qLearner.get_q_prediction(next_state, action_value, mediator_value)
weight_sum_q = time_vary_gamma * est_pm_value * target_pa * est_pa_value * est_q_value
long_term += weight_sum_q
pass
pass
pass
## non-deterministic policy:
for action_prime in self.unique_action:
action_prime = np.array([action_prime])
target_pa = np.apply_along_axis(self.target_policy, 1, state, action=action_prime).flatten()
action_prime = np.repeat(action_prime, mediator.shape[0]).reshape(-1, 1)
random_pm_ratio += target_pa * self.pmlearner.get_pm_ratio(state, action_prime, action, mediator)
## deterministic policy:
# for action_value in self.unique_action:
# action_value = action_value.reshape(1, -1)
# for mediator_value in self.unique_mediator:
# mediator_value = mediator_value.reshape(1, -1)
# # weight_sum_q = self.qLearner.get_q_prediction(next_state, action_value, mediator_value) * self.pmlearner.get_pm_prediction(
# # state, policy_action, mediator_value) * self.palearner.get_pa_prediction(state, action_value)
# weight_sum_q = self.qLearner.get_q_prediction(next_state, action_value, mediator_value) * self.pmlearner.get_pm_prediction(
# next_state, policy_action_next, mediator_value) * self.palearner.get_pa_prediction(next_state, action_value)
# weight_sum_q *= self.gamma
# long_term += weight_sum_q
# pass
# pass
# random_pm_ratio = self.pmlearner.get_pm_ratio(state, policy_action, action, mediator)
termI1 = long_term - self.qLearner.get_q_prediction(state, action, mediator)
termI1 *= self.ratiolearner.get_r_prediction(state)
termI1 *= random_pm_ratio
termI1 *= 1.0 / (1.0 - time_vary_gamma)
# termI1 = np.mean(termI1)
return termI1
def compute_termI2(self, data_tuple):
state = data_tuple[0].reshape(1, -1)
action = data_tuple[1].reshape(1, -1)
mediator = data_tuple[2].reshape(1, -1)
policy_action = data_tuple[5].reshape(1, -1)
termI2 = 0.0
if action == policy_action:
# print("start")
for action_value in self.unique_action:
action_value = action_value.reshape(1, -1)
weight_q_value = np.array(0.0)
for mediator_value in self.unique_mediator:
mediator_value = mediator_value.reshape(1, -1)
pm_pred = self.pmlearner.get_pm_prediction(
state, action, mediator_value)
weight_q_one_term = pm_pred
weight_q_one_term *= self.qLearner.get_q_prediction(
state, action_value, mediator_value)
# print(weight_q_one_term)
weight_q_value += weight_q_one_term[0]
pass
q_value = self.qLearner.get_q_prediction(
state, action_value, mediator)
termI2_i = (q_value - weight_q_value) * \
self.palearner.get_pa_ratio(state, action_value, action)
termI2 += termI2_i[0]
# print(termI2)
pass
termI2 *= self.ratiolearner.get_r_prediction(state)
# print("stop")
return termI2
def compute_termI2_2(self, state, action, mediator, reward, next_state, policy_action):
data_point_num = reward.shape
termI2_complete = np.zeros(data_point_num)
## deterministic policy
# sub_index = np.where(action == policy_action)[0]
# state = state[sub_index]
# action = action[sub_index]
# mediator = mediator[sub_index]
# reward = reward[sub_index]
# next_state = next_state[sub_index]
termI2 = np.zeros(reward.shape)
for action_value in self.unique_action:
action_value = action_value.reshape(1, -1)
q_fix_action = self.qLearner.get_q_prediction(state, action_value, mediator)
weight_q_sum = np.zeros(reward.shape)
for mediator_value in self.unique_mediator:
mediator_value = mediator_value.reshape(1, -1)
# action_value_batch = np.repeat(action_value, data_point_num).flatten().reshape(-1, 1)
# pm_est = self.pmlearner.get_pm_prediction(state, action_value_batch, mediator_value)
pm_est = self.pmlearner.get_pm_prediction(state, action, mediator_value)
q_est = self.qLearner.get_q_prediction(state, action_value, mediator_value)
weight_q_sum += pm_est * q_est
pass
q_diff = q_fix_action - weight_q_sum
q_diff *= self.palearner.get_pa_prediction(state, action_value)
termI2 += q_diff
pass
ratio_pred = self.ratiolearner.get_r_prediction(state)
termI2 *= ratio_pred
## deterministic policy
# termI2_complete[sub_index] = termI2
## non-deterministic policy
policy_pa = self.target_policy_pa(self.target_policy, state, action)
pa_est = self.palearner.get_pa_prediction(state, action)
pa_ratio = policy_pa / pa_est
termI2_complete = termI2 * pa_ratio
time_vary_gamma = np.power(self.gamma, self.time_difference)
termI2_complete *= 1.0 / (1.0 - time_vary_gamma)
return termI2_complete
def compute_termI3(self, data_tuple):
state = data_tuple[0].reshape(1, -1)
action = data_tuple[1].reshape(1, -1)
policy_action = data_tuple[5].reshape(1, -1)
termI3 = 0
for mediator_value in self.unique_mediator:
weight_q_value = 0.0
mediator_value = mediator_value.reshape(1, -1)
for action_value in self.unique_action:
action_value = action_value.reshape(1, -1)
pa_pred = self.palearner.get_pa_prediction(state, action_value)
weight_q_value += pa_pred * \
self.qLearner.get_q_prediction(
state, action_value, mediator_value)
pass
q_value = self.qLearner.get_q_prediction(
state, action, mediator_value)
termI3 += (q_value - weight_q_value) * \
self.pmlearner.get_pm_prediction(
state, policy_action, mediator_value)
pass
termI3 *= self.ratiolearner.get_r_prediction(state)
return termI3
def compute_termI3_2(self, state, action, mediator, reward, next_state, policy_action):
termI3 = np.zeros(reward.shape)
## non-deterministic policy:
for action_prime in self.unique_action:
action_prime = np.array([action_prime])
policy_pa = np.apply_along_axis(self.target_policy, 1, state, action=action_prime).flatten()
for mediator_value in self.unique_mediator:
mediator_value = mediator_value.reshape(1, -1)
q_fix_mediator = self.qLearner.get_q_prediction(state, action, mediator_value)
weight_q_sum = np.zeros(reward.shape)
for action_value in self.unique_action:
action_value = action_value.reshape(1, -1)
q_est = self.qLearner.get_q_prediction(state, action_value, mediator_value)
pa_est = self.palearner.get_pa_prediction(state, action_value)
weight_q_sum += q_est * pa_est
pass
q_diff = q_fix_mediator - weight_q_sum
q_diff *= policy_pa
action_prime_tmp = np.repeat(action_prime, reward.shape[0]).reshape(-1, 1)
pm_est = self.pmlearner.get_pm_prediction(state, action_prime_tmp, mediator_value)
q_diff *= pm_est
termI3 += q_diff
pass
pass
## deterministic policy:
# for mediator_value in self.unique_mediator:
# mediator_value = mediator_value.reshape(1, -1)
# q_fix_mediator = self.qLearner.get_q_prediction(state, action, mediator_value)
# weight_q_sum = np.zeros(reward.shape)
# for action_value in self.unique_action:
# action_value = action_value.reshape(1, -1)
# weight_q_sum += self.qLearner.get_q_prediction(state, action_value, mediator_value) * self.palearner.get_pa_prediction(state, action_value)
# pass
# q_diff = q_fix_mediator - weight_q_sum
# q_diff *= self.pmlearner.get_pm_prediction(state, policy_action, mediator_value)
# termI3 += q_diff
# pass
termI3 *= self.ratiolearner.get_r_prediction(state)
time_vary_gamma = np.power(self.gamma, self.time_difference)
termI3 *= 1.0 / (1.0 - time_vary_gamma)
# termI3 = np.mean(termI3)
return termI3
def compute_intercept(self, s0, policy_action_s0):
num_trajectory = s0.shape[0]
intercept = 0.0
for i in range(num_trajectory):
s0_value = s0[i].reshape(1, -1)
for action_value in self.unique_action:
for mediator_value in self.unique_mediator:
mediator_value = mediator_value.reshape(1, -1)
action_value = action_value.reshape(1, -1)
est_q_value = self.qLearner.get_q_prediction(
s0_value, action_value, mediator_value)
est_pm_value = self.pmlearner.get_pm_prediction(
s0_value, policy_action_s0[i].reshape(1, -1), mediator_value)
est_pa_value = self.palearner.get_pa_prediction(
s0_value, action_value)
intercept += est_q_value * est_pm_value * est_pa_value
intercept /= (1.0 * num_trajectory)
return intercept
def compute_intercept_2(self, s0, policy_action_s0):
num_trajectory = s0.shape[0]
intercept = np.zeros(num_trajectory)
## non-deterministic policy:
for action_prime in self.unique_action:
action_prime = action_prime.reshape(1, -1)
target_pa = np.apply_along_axis(self.target_policy, 1, s0, action=action_prime).flatten()
action_prime_batch = np.repeat(action_prime, num_trajectory).flatten().reshape(-1, 1)
for action_value in self.unique_action:
action_value = action_value.reshape(1, -1)
est_pa_value = self.palearner.get_pa_prediction(s0, action_value)
for mediator_value in self.unique_mediator:
mediator_value = mediator_value.reshape(1, -1)
est_pm_value = self.pmlearner.get_pm_prediction(s0, action_prime_batch, mediator_value)
est_q_value = self.qLearner.get_q_prediction(s0, action_value, mediator_value)
intercept_one = est_pm_value * target_pa * est_pa_value * est_q_value
intercept += intercept_one
# print((mediator_value[0, 0], action_value[0, 0], action_prime[0, 0], intercept_one.mean(), intercept_one.min(), intercept_one.max()))
pass
pass
pass
## deterministic policy:
# for action_value in self.unique_action:
# for mediator_value in self.unique_mediator:
# mediator_value = mediator_value.reshape(1, -1)
# action_value = action_value.reshape(1, -1)
# est_q_value = self.qLearner.get_q_prediction(
# s0, action_value, mediator_value)
# est_pm_value = self.pmlearner.get_pm_prediction(
# s0, policy_action_s0.reshape(1, -1), mediator_value)
# est_pa_value = self.palearner.get_pa_prediction(
# s0, action_value)
# intercept += est_q_value * est_pm_value * est_pa_value
# intercept = np.mean(intercept)
return intercept
def compute_cis(self, state, action, mediator, reward):
'''
Confounded important sampling method.
'''
data_point_num = reward.shape
weight_pm = np.zeros(data_point_num)
for action_prime in self.unique_action:
action_prime = action_prime.reshape(1, -1)
target_pa = np.apply_along_axis(self.target_policy, 1, state, action=action_prime).flatten()
action_prime_batch = np.repeat(action_prime, data_point_num).flatten().reshape(-1, 1)
est_pm_value = self.pmlearner.get_pm_prediction(state, action_prime_batch, mediator)
weight_pm += target_pa * est_pm_value
pass
pm_est = self.pmlearner.get_pm_prediction(state, action, mediator)
pm_ratio = weight_pm / pm_est
is_est = pm_ratio * reward * self.ratiolearner.get_r_prediction(state)
time_vary_gamma = np.power(self.gamma, self.time_difference)
is_est = is_est / (1 - time_vary_gamma)
return is_est
def get_opeuc(self):
return self.opeuc
def target_policy_pa(self, target_policy, state, action):
num = action.shape[0]
target_pa = list(range(num))
for i in range(num):
target_pa[i] = target_policy(state[i], action[i])
pass
target_pa = np.array(target_pa).flatten()
return target_pa
def nuisance_estimate_uc(s0, iid_dataset, target_policy, time_difference, gamma,
palearner_setting, pmlearner_setting, qlearner_setting, ratiolearner_setting):
## Train conditional probability of action given state
discrete_state = palearner_setting['discrete_state']
rbf_dim = palearner_setting['rbf_dim']
cv_score = palearner_setting['cv_score']
verbose = palearner_setting['verbose']
palearner = PALearner(iid_dataset, discrete_state,
rbf_dim, cv_score, verbose)
palearner.train()
## Train conditional probability of mediator given state and action
discrete_state = pmlearner_setting['discrete_state']
discrete_action = pmlearner_setting['discrete_action']
rbf_dim = pmlearner_setting['rbf_dim']
cv_score = pmlearner_setting['cv_score']
verbose = palearner_setting['verbose']
pmlearner = PMLearner(iid_dataset, discrete_state,
discrete_action, rbf_dim, cv_score, verbose)
pmlearner.train()
## Train Q-estimator
epoch = qlearner_setting['epoch']
rbf_dim = qlearner_setting['rbf_dim']
verbose = qlearner_setting['verbose']
model = qlearner_setting['model']
eps = qlearner_setting['eps']
prespecific_rbf_dim_candidate = type(rbf_dim) is list and len(rbf_dim) > 1
if rbf_dim is None or prespecific_rbf_dim_candidate:
nfold = 5
kf = KFold(n_splits=nfold, shuffle=True, random_state=1)
if rbf_dim is None:
## select model for fitted q iteration:
if model == "linear":
dim_start = s0.shape[1]
dim_end = dim_start * 20
cv_size = 30
elif model == "forest":
dim_start = 3
dim_end = 30
cv_size = 10
else:
pass
if dim_end - dim_start < cv_size:
cv_size = dim_end - dim_start
optional_rbf_dim = np.linspace(
dim_start, dim_end, num=cv_size, dtype=int)
else:
optional_rbf_dim = np.array(rbf_dim).flatten()
rmse_arr = np.zeros(optional_rbf_dim.shape)
for index, rbf_dim_value in enumerate(optional_rbf_dim):
for train_index, test_index in kf.split(iid_dataset[0]):
# print("TRAIN:", train_index, "TEST:", test_index)
iid_dataset_train = [iid_dataset[0][train_index], iid_dataset[1][train_index],
iid_dataset[2][train_index], iid_dataset[3][train_index],
iid_dataset[4][train_index]]
train_time_difference = time_difference[train_index]
new_state, new_action, new_mediator, new_reward, new_next_state = iid_dataset[0][test_index], iid_dataset[
1][test_index], iid_dataset[2][test_index], iid_dataset[3][test_index], iid_dataset[4][test_index]
qlearner = Qlearner(iid_dataset_train, target_policy, pmlearner,
palearner, time_difference=train_time_difference,
gamma=gamma, epoch=epoch, verbose=verbose,
model=model, rbf_dim=rbf_dim_value, eps=eps)
qlearner.fit()
qlearner.time_difference = time_difference[test_index]
rmse_arr[index] += qlearner.goodness_of_fit(
target_policy, new_state, new_action, new_mediator, new_reward, new_next_state)
pass
pass
rbf_dim = optional_rbf_dim[np.argmin(rmse_arr)]
if verbose:
print("Optimal RBF feature of Q-estimator:", rbf_dim)
elif type(rbf_dim) is list:
rbf_dim = rbf_dim[0]
else:
pass
qlearner = Qlearner(iid_dataset, target_policy, pmlearner,
palearner, time_difference=time_difference,
gamma=gamma, epoch=epoch,
verbose=verbose, model=model, rbf_dim=rbf_dim, eps=eps)
qlearner.fit()
## Train Ratio estimator:
ratio_rbf_dim = ratiolearner_setting['rbf_ndims']
rlearner_type = ratiolearner_setting['mode']
if 'truncate' in ratiolearner_setting.keys():
truncate = ratiolearner_setting['truncate']
else:
truncate = 20
prespecific_rbf_dim_candidate = type(ratio_rbf_dim) is list and len(ratio_rbf_dim) > 1
if rlearner_type == 'linear':
if ratio_rbf_dim is None or prespecific_rbf_dim_candidate:
nfold = 5
dim_start = s0.shape[1]
dim_end = dim_start * 50
kf_s0 = KFold(n_splits=nfold, shuffle=True, random_state=1)
kf = KFold(n_splits=nfold, shuffle=True, random_state=1)
if ratio_rbf_dim is None:
optional_rbf_dim = np.linspace(
dim_start, dim_end, num=50, dtype=int)
else:
optional_rbf_dim = np.array(ratio_rbf_dim).flatten()
rmse_arr = np.zeros(optional_rbf_dim.shape)
for index, rbf_dim_value in enumerate(optional_rbf_dim):
for index_state, index_s0 in zip(kf.split(iid_dataset[0]), kf.split(s0)):
train_index = index_state[0]
test_index = index_state[1]
s0_train_index = index_s0[0]
s0_test_index = index_s0[1]
dataset_train = {'s0': s0[s0_train_index], 'state': iid_dataset[0][train_index], "next_state": iid_dataset[4][train_index],
'action': iid_dataset[1][train_index], 'mediator': iid_dataset[2][train_index]}
ratiolearner = RatioLinearLearner(dataset_train, target_policy, pmlearner,
time_difference=time_difference, gamma=gamma,
ndim=rbf_dim_value, truncate=truncate)
ratiolearner.fit()
new_s0, new_state, new_action, new_mediator, new_reward, new_next_state = s0[s0_test_index], iid_dataset[0][test_index], iid_dataset[
1][test_index], iid_dataset[2][test_index], iid_dataset[3][test_index], iid_dataset[4][test_index]
rmse_arr[index] += ratiolearner.goodness_of_fit(
target_policy, new_s0, new_state, new_action, new_mediator, new_reward, new_next_state)
pass
pass
ratio_rbf_dim = optional_rbf_dim[np.argmin(rmse_arr)]
if verbose:
print("Optimal RBF feature of Ratio-estimator:", ratio_rbf_dim)
elif type(ratio_rbf_dim) is list:
ratio_rbf_dim = ratio_rbf_dim[0]
else:
pass
dataset = {'s0': s0, 'state': iid_dataset[0],
"next_state": iid_dataset[4], 'action': iid_dataset[1], 'mediator': iid_dataset[2]}
ratiolearner = RatioLinearLearner(dataset, target_policy, pmlearner,
time_difference=time_difference, gamma=gamma,
ndim=ratio_rbf_dim, truncate=truncate)
ratiolearner.fit()
# rll_prediction = ratiolearner.get_ratio_prediction(iid_dataset[0])
# print("RLL prediction: ", (np.quantile(
# rll_prediction, q=np.array([0.0, 0.25, 0.5, 0.75, 1.0])), np.mean(rll_prediction)))
elif rlearner_type == 'ANN':
if ratio_rbf_dim is None or prespecific_rbf_dim_candidate:
ratio_rbf_dim = 10
elif type(ratio_rbf_dim) is list:
ratio_rbf_dim = ratio_rbf_dim[0]
else:
pass
dataset = {'s0': s0, 'state': iid_dataset[0], "next_state": iid_dataset[4], 'action': iid_dataset[1], 'mediator': iid_dataset[2]}
ratiolearner = RatioRKHSLearner(hidden_node=ratio_rbf_dim, truncate=truncate)
lr = 1e-3
optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
train(ratiolearner, optimizer, dataset, target_policy, pmlearner, gamma=gamma)
pass
return qlearner, ratiolearner, pmlearner, palearner
def opeuc_run(s0, iid_dataset, target_policy, time_difference=None, gamma=0.9,
palearner_setting={'discrete_state': False, 'rbf_dim': None, 'cv_score': 'accuracy', 'verbose': True},
pmlearner_setting={'discrete_state': False, 'discrete_action': False, 'rbf_dim': None, 'cv_score': 'accuracy', 'verbose': True},
qlearner_setting={'epoch': 100, 'verbose': True, 'rbf_dim': None},
ratiolearner_setting={'mode': 'linear', 'rbf_ndims': None,
'batch_size': 32, 'epoch': 100, 'lr': 0.01, 'verbose': True},
new_iid_dataset=None, matrix_based_ope=True):
qlearner, ratiolearner, pmlearner, palearner = nuisance_estimate_uc(
s0, iid_dataset, target_policy, time_difference, gamma, palearner_setting, pmlearner_setting, qlearner_setting, ratiolearner_setting)
if new_iid_dataset is None:
np.random.seed(1)
target_action_s0 = np.apply_along_axis(target_policy, 1, s0).flatten()
np.random.seed(1)
target_action = np.apply_along_axis(target_policy, 1, iid_dataset[0]).flatten()
np.random.seed(1)
target_action_next = np.apply_along_axis(target_policy, 1, iid_dataset[4]).flatten()
# policy_ratio = pmlearner.get_pm_ratio(
# iid_dataset[0], target_action, iid_dataset[1], iid_dataset[2])
# dataset = {'s0': s0, 'policy_action_s0': target_action_s0,
# 'state': iid_dataset[0],
# 'action': iid_dataset[1], 'policy_action': target_action,
# 'mediator': iid_dataset[2], 'reward': iid_dataset[3],
# 'next_state': iid_dataset[4], 'policy_ratio': policy_ratio}
dataset = {'s0': s0, 'policy_action_s0': target_action_s0,
'state': iid_dataset[0],
'action': iid_dataset[1], 'policy_action': target_action,
'policy_action_next': target_action_next,
'mediator': iid_dataset[2], 'reward': iid_dataset[3],
'next_state': iid_dataset[4]}
opeuc = OPEUC(dataset, qlearner, ratiolearner,
pmlearner, palearner, time_difference, gamma, matrix_based_ope, target_policy)
else:
opeuc = OPEUC(new_iid_dataset, qlearner, ratiolearner,
pmlearner, palearner, time_difference, gamma, matrix_based_ope, target_policy)
opeuc.compute_opeuc()
return opeuc
def opeuc_cross_fit(s0, iid_dataset, target_policy, nfold=2, gamma=0.9,
palearner_setting={
'discrete_state': False, 'rbf_dim': None, 'cv_score': 'accuracy', 'verbose': True},
pmlearner_setting={'discrete_state': False, 'discrete_action': False,
'rbf_dim': None, 'cv_score': 'accuracy', 'verbose': True},
qlearner_setting={'epoch': 100,
'verbose': True, 'rbf_dim': None},
ratiolearner_setting={'mode': 'linear', 'rbf_ndims': None,
'batch_size': 32, 'epoch': 100, 'lr': 0.01, 'verbose': True}, matrix_based_ope=True, split_seed=1):
trajectory_num = s0.shape[0]
time_num = int(iid_dataset[0].shape[0] / trajectory_num)
np.random.seed(split_seed)
random_index = np.arange(trajectory_num)
np.random.shuffle(random_index)
opeuc_obj_list = []
part_num = int(trajectory_num/2)
for i in range(nfold):
if i + 1 == nfold:
part_index = range(i*part_num, trajectory_num)
else:
part_index = range(i*part_num, (i+1)*part_num)
part_index = random_index[part_index]
part_s0 = np.copy(s0)[part_index, :]
remain_index = list(
set(range(trajectory_num)).difference(set(part_index)))
part_iid_index = np.array([])
for index in part_index:
part_iid_index = np.append(
part_iid_index, index * time_num + np.arange(time_num))
pass
part_iid_index = part_iid_index.astype(int)
part_iid_index = part_iid_index.tolist()
part_iid_data = [np.copy(iid_dataset[0])[part_iid_index, :],
np.copy(iid_dataset[1])[part_iid_index],
np.copy(iid_dataset[2])[part_iid_index],
np.copy(iid_dataset[3])[part_iid_index],
np.copy(iid_dataset[4])[part_iid_index, :]]
# qlearner, ratiolearner, pmlearner, palearner = nuisance_estimate_uc(
# part_s0, part_iid_data, target_policy, gamma, palearner_setting, pmlearner_setting, qlearner_setting, ratiolearner_setting)
target_action = np.apply_along_axis(target_policy, 1, iid_dataset[0]).flatten()
target_action_next = np.apply_along_axis(target_policy, 1, iid_dataset[4]).flatten()
# policy_ratio = pmlearner.get_pm_ratio(
# iid_dataset[0], target_action, iid_dataset[1], iid_dataset[2])
remain_iid_index = list(set(range(iid_dataset[0].shape[0])).difference(set(part_iid_index)))
remain_s0 = np.copy(s0)[remain_index, :]
target_action_s0 = np.apply_along_axis(target_policy, 1, remain_s0).flatten()
remain_iid_dataset = {'s0': remain_s0, 'policy_action_s0': target_action_s0,
'state': np.copy(iid_dataset[0])[remain_iid_index, :],
'action': np.copy(iid_dataset[1])[remain_iid_index],
'policy_action': np.copy(target_action)[remain_iid_index],
'policy_action_next': np.copy(target_action_next)[remain_iid_index],
'mediator': np.copy(iid_dataset[2])[remain_iid_index],
'reward': np.copy(iid_dataset[3])[remain_iid_index],
'next_state': np.copy(iid_dataset[4])[remain_iid_index, :]}
opeuc_obj = opeuc_run(part_s0, part_iid_data, target_policy, gamma,
palearner_setting, pmlearner_setting, qlearner_setting, ratiolearner_setting, remain_iid_dataset, matrix_based_ope)
opeuc_obj_list.append(opeuc_obj)
pass
return opeuc_obj_list