-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcore.py
436 lines (337 loc) · 14.8 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from abc import ABC
import torch
import torch.utils.data
import torchvision
import pickle
import random
from cole.helper import *
__BASE_DATA_PATH = '../data'
def set_data_path(path: str):
global __BASE_DATA_PATH
__BASE_DATA_PATH = path
class CLDataLoader:
"""
Sequential dataloader for continual learning tasks.
"""
def __init__(self, task_datasets, bs=10, shuffle=True, task_size=0):
"""
:param task_datasets: Iterable datasets
:param bs: batch size
:param shuffle: shuffle each task independently
:param task_size: Size of the task. If size is 0 or higher than samples in task all data is used.
"""
self.bs = bs
self.datasets = task_datasets
self.data_loaders = []
if task_size < 0:
raise ValueError(f"Task size should be non-negative. Got {task_size}")
for task in task_datasets:
if task_size > len(task) or task_size == 0:
self.data_loaders.append(torch.utils.data.DataLoader(task, self.bs, shuffle=shuffle))
else:
sampler = SizedSampler(task, task_size, batch_size=bs, shuffle=shuffle)
self.data_loaders.append(torch.utils.data.DataLoader(task, batch_sampler=sampler))
def __getitem__(self, item):
return self.data_loaders[item]
def __len__(self):
return len(self.data_loaders)
# TODO: add support for single label dataset, should use different helper function
def get_split_mnist(tasks=None, joint=False):
"""
Get split version of the MNIST dataset.
:param tasks: int or list with task indices. Task 1 has labels 0 and 1, etc.
:param joint: Concatenate tasks in joint dataset
:return: DataSplit object with train_set, test_set en validation members.
"""
if tasks is None:
tasks = [i for i in range(1, 6)]
if type(tasks) is int:
tasks = [tasks]
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))])
train_set = torchvision.datasets.MNIST(__BASE_DATA_PATH, train=True, download=True)
test_set = torchvision.datasets.MNIST(__BASE_DATA_PATH, train=False, download=True)
return make_split_dataset(train_set, test_set, joint, tasks, transform)
def get_single_label_mnist(label):
train_set = torchvision.datasets.MNIST(__BASE_DATA_PATH, train=True, download=True)
test_set = torchvision.datasets.MNIST(__BASE_DATA_PATH, train=False, download=True)
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))])
return make_split_label_set(train_set, test_set, label, transform)
# TODO: add support for single label dataset, should use different helper function
def get_split_cifar10(tasks=None, joint=False):
"""
Get split version of the CIFAR 10 dataset.
:param tasks: int or list with task indices. Task 1 has labels 0 and 1, etc.
:param joint: Concatenate tasks in joint dataset
:return: DataSplit object with train, test en validation members.
"""
if tasks is None:
tasks = [i for i in range(5)]
if type(tasks) is int:
tasks = [tasks]
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))])
train_set = torchvision.datasets.CIFAR10(__BASE_DATA_PATH, train=True, download=True)
test_set = torchvision.datasets.CIFAR10(__BASE_DATA_PATH, train=False, download=True)
return make_split_dataset(train_set, test_set, joint, tasks, transform)
# TODO: Merge with other datasets getters, use task label file for other datasets too. Refactor reader.
def get_split_mini_imagenet(tasks=None, nb_tasks=20):
if tasks is None:
tasks = [i for i in range(1, nb_tasks+1)]
if type(tasks) is int:
tasks = [tasks]
with open(f"{__BASE_DATA_PATH}/miniImageNet/miniImageNet.pkl", "rb") as f:
dataset = pickle.load(f)
task_labels = []
with open(f"{__BASE_DATA_PATH}/miniImageNet/split_{nb_tasks}", "r") as f:
counter = 1
while True:
line = f.readline()
if not line:
break
if counter in tasks:
task_labels.append([int(e) for e in line.rstrip().split(" ")])
counter += 1
train_x, test_x = [], []
train_y, test_y = [], []
for i in range(0, len(dataset["labels"]), 600):
train_x.extend(dataset["data"][i:i + 500])
test_x.extend(dataset["data"][i + 500:i + 600])
train_y.extend(dataset["labels"][i:i + 500])
test_y.extend(dataset["labels"][i + 500:i + 600])
train_x, test_x = np.array(train_x), np.array(test_x)
train_y, test_y = np.array(train_y), np.array(test_y)
train_ds, test_ds = [], []
for labels in task_labels:
train_label_idx = [y in labels for y in train_y]
test_label_idx = [y in labels for y in test_y]
train_ds.append((train_x[train_label_idx], train_y[train_label_idx]))
test_ds.append((test_x[test_label_idx], test_y[test_label_idx]))
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
train_ds = [XYDataset(x[0], x[1], transform=transform) for x in train_ds]
test_ds = [XYDataset(x[0], x[1], transform=transform) for x in test_ds]
return DataSplit(train_ds, None, test_ds)
class MLP(nn.Module, ABC):
def __init__(self, nb_classes=10, hid_nodes=400, hid_layers=2, down_sample=1, input_size=28):
"""
Simple 2-layer MLP with RELU activation
:param nb_classes: nb of outputs nodes, i.e. classes
:param hid_nodes: nb of hidden nodes per layer
:param hid_layers: nb of hidden layers in model
:param down_sample: down sample data before entering model with a factor down_sample
:param input_size: data width/height before possible down_sampling
"""
super(MLP, self).__init__()
if down_sample < 1:
raise ValueError(f"down_sample should be 1 or greater, got {down_sample}")
if hid_layers < 1:
raise ValueError(f"hid_layers should be 1 or greater, got {hid_layers}")
self.input_size = (input_size // down_sample) * (input_size // down_sample)
self.down_sample = nn.MaxPool2d(down_sample) if down_sample > 1 else None
layers = [nn.Linear(self.input_size, hid_nodes), nn.ReLU(True)]
for _ in range(1, hid_layers):
layers.extend([nn.Linear(hid_nodes, hid_nodes), nn.ReLU(True)])
self.hidden = nn.Sequential(*layers)
self.output = nn.Linear(hid_nodes, nb_classes)
def forward(self, x):
if self.down_sample is not None:
x = self.down_sample(x)
x = x.view(-1, self.input_size)
x = self.hidden(x)
return self.output(x)
def feature(self, x):
if self.down_sample is not None:
x = self.down_sample(x)
x = x.view(-1, self.input_size)
return self.hidden(x)
def get_resnet18(nb_classes=10, input_size=None):
"""
:param nb_classes: nb classes or output nodes
:param input_size: defines size of input layer Resnet18
:return: ResNet18 object
"""
input_size = [3, 32, 32] if input_size is None else input_size
return ResNet(BasicBlock, [2, 2, 2, 2], nb_classes, 20, input_size)
def step(model, optimizer, data, target, loss_func=None):
"""
Updates a model a single step, based on the cross entropy loss of the given and target.
Loss func can be any function returning a loss and taking arguments (data, target, model).
"""
if loss_func is None:
loss_func = loss_wrapper("CE")
optimizer.zero_grad()
output = model(data)
loss = loss_func(output, target, model)
loss.backward()
optimizer.step()
def test(model, loaders, avg=True, device='cpu', loss_func=None):
"""
Returns (mean) loss and (mean) accuracy of all loaders in loaders.
:param loaders: iterable of data loaders
:param avg: if True, the average across all tasks is returned. The average is calculated with equal weight to all
tasks, independent of the actual size of the task.
:return: (int, int) or (arr, arr) if avg is False
"""
model.eval()
acc_arr = []
loss_arr = []
for loader in loaders:
loss, acc = test_dataset(model, loader, device, loss_func)
acc_arr.append(acc)
loss_arr.append(loss.item())
model.train()
if avg:
return 100 * np.mean(acc_arr), np.mean(loss_arr)
else:
return acc_arr, loss_arr
# TODO: make sampler retriever abstract (?) such that user can implement own.
# TODO: although it acts as a dataset, transformed tensors are stored instead of raw images as in XYDataset
class Buffer(torch.utils.data.Dataset):
def __init__(self, size, sampler='reservoir', retriever='random'):
"""
Buffer class, to be used as ER buffer. Works as a torch dataset.
:param size: Buffer size
:param sampler: Sampler to use. Options: 'reservoir' (def) or 'first_in'
:param retriever: Retriever to use. Options: 'random' (def)
"""
super(Buffer, self).__init__()
self.data = {} # Dictionary, key is label value is x
self.size = size
self.sampler = _set_sampler(sampler)(self)
self.retriever = _set_retriever(retriever)(self)
# TODO: None is returned during iteration
def __getitem__(self, item):
for label in self.data:
if item >= len(self.data[label]):
item -= len(self.data[label])
else:
return self.data[label][item], label
def __len__(self):
return sum([len(self.data[label]) for label in self.data])
def __repr__(self):
rep = ""
for label in self.data:
rep += f"{label}: {len(self.data[label])} \n"
rep += f"Total: {len(self)}/{self.size}"
return rep
def pop(self, item):
for label in self.data:
if item >= len(self.data[label]):
item -= len(self.data[label])
else:
self.data[label].pop(item)
break
def add_item(self, x, y):
x = x.to('cpu')
if isinstance(y, torch.Tensor):
y = y.item()
try:
self.data[y].append(x)
except KeyError:
self.data.update([(y, [x])])
# TODO Single sample sampling should be easier, now (itr, itr) is expected
def sample(self, data):
self.sampler(data)
def sample_individual(self, x, y):
"""
Version to add individual samples to buffer. Because it shouldn't be use during training,
type checks can be performed, so any type that can be converted to a torch.Tensor is accepted.
"""
if not type(y) == torch.Tensor:
y = torch.tensor(y, dtype=torch.long)
if not type(x) == torch.Tensor:
x = torch.tensor(x)
self.sampler(([x], [y]))
def retrieve(self, data, size):
return self.retriever(data, size)
class ReservoirSampler:
def __init__(self, buffer: Buffer):
self.buffer = buffer
self.seen_samples = 0
def __call__(self, data, **kwargs):
for idx, (x, y) in enumerate(zip(*data)):
if len(self.buffer) < self.buffer.size:
self.buffer.add_item(x, y)
else:
r = np.random.randint(0, self.seen_samples + idx)
if r < self.buffer.size:
self.buffer.pop(r)
self.buffer.add_item(x, y)
self.seen_samples += len(data[0])
class FirstInSampler:
def __init__(self, buffer: Buffer):
"""
Samples only first buffer.size samples, all later samples are discarded.
"""
self.buffer = buffer
def __call__(self, data, **kwargs):
free_space = self.buffer.size - len(self.buffer)
if free_space > 0:
for i, (x, y) in enumerate(zip(*data)):
self.buffer.add_item(x, y)
if i - 1 == free_space:
break
class BalancedSampler:
def __init__(self, buffer: Buffer):
"""
Samples only first buffer.size samples, but balances classes.
"""
self.buffer = buffer
self.keys = []
self.current_size = buffer.size
def __call__(self, data, **kwargs):
for (x, y) in zip(*data):
if y in self.keys:
if len(self.buffer.data[y.item()]) < self.current_size:
self.buffer.add_item(x, y)
else:
self.keys.append(y.item())
self.current_size = self.buffer.size // len(self.keys)
self.resize_buffer()
self.buffer.add_item(x, y)
def resize_buffer(self):
for key in self.buffer.data.keys():
self.buffer.data[key] = self.buffer.data[key][:self.current_size]
class RandomRetriever:
def __init__(self, buffer: Buffer):
"""
Samples at random samples. Only samples with labels not in the current batch are considered.
If no samples are found None, None is returned.
"""
self.buffer = buffer
def __call__(self, data, size, **kwargs):
_, labels = data
y = set([label.item() for label in labels])
allowed_labels = set(self.buffer.data.keys()) - set(y)
if len(allowed_labels) == 0:
return None, None
else:
max_size = sum([len(self.buffer.data[label]) for label in allowed_labels])
try:
idx = np.array(sorted(random.sample(range(max_size), size)))
except ValueError: # max_size is smaller than size
idx = np.array(list(range(max_size)))
data_iter = iter(allowed_labels)
curr_label = next(data_iter)
retrieved_x, retrieved_y = [], []
for c, i in enumerate(idx):
while i >= len(self.buffer.data[curr_label]):
i -= len(self.buffer.data[curr_label])
idx[c + 1:] -= len(self.buffer.data[curr_label])
curr_label = next(data_iter)
retrieved_x.append(self.buffer.data[curr_label][i])
retrieved_y.append(curr_label)
return torch.stack(retrieved_x), torch.tensor(retrieved_y)
def _set_sampler(s):
return {
'reservoir': ReservoirSampler,
'first_in': FirstInSampler,
'balanced': BalancedSampler
}.get(s)
def _set_retriever(r):
return {
'random': RandomRetriever
}.get(r)