You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
在图1中,有Dense Pseudo-label 和 Pseudo-box Label两个分支,分别计算了Ldpl损失和Lbox损失,所以Ldpl其实就是对应教师模型输出分类分支后的sigmoid所做的吗?整个模型还是用了NMS来生成伪框监督回归分支的损失计算?
3.3 Dense Pseudo-Label
Since the learning region is selected, unsupervised learning for regression branch can be easily achieved.
3.3中关于回归的分支的叙述较少,上面说由于选择了学习区域,因此回归分支的学习更容易实现,这个更容易实现指的是什么呢?
希望作者能够解答一下
感谢
The text was updated successfully, but these errors were encountered:
在图1中,有Dense Pseudo-label 和 Pseudo-box Label两个分支,分别计算了Ldpl损失和Lbox损失,所以Ldpl其实就是对应教师模型输出分类分支后的sigmoid所做的吗?整个模型还是用了NMS来生成伪框监督回归分支的损失计算?
3.3 Dense Pseudo-Label
Since the learning region is selected, unsupervised learning for regression branch can be easily achieved.
3.3中关于回归的分支的叙述较少,上面说由于选择了学习区域,因此回归分支的学习更容易实现,这个更容易实现指的是什么呢?
希望作者能够解答一下
感谢
The text was updated successfully, but these errors were encountered: