-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
89 lines (76 loc) · 3.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import collections
import data_loader.data_loaders as module_data
import data_loader.processor as module_processor
from parse_config import ConfigParser
import model.model as module_arch
from pytorch_pretrained_bert.modeling import BertConfig
from agent import Agent
# ~/Projects/PycharmProjects/DeepLearning/NLP/Bert/BertESIM
def train(config):
logger = config.get_logger('train')
# setup data_loader instances
processor = config.initialize(
'processor', module_processor, logger, config)
data_loader = config.initialize(
'data_loader',
module_data,
processor.data_dir,
mode="train",
debug=config.debug_mode)
test_data_loader = config.initialize(
'data_loader',
module_data,
processor.data_dir,
mode="test",
debug=config.debug_mode)
if config.all:
valid_data_loader = test_data_loader
else:
valid_data_loader = data_loader.split_validation()
# build model architecture, then print to console
if config.bert_config_path:
bert_config = BertConfig(config.bert_config_path)
model = config.initialize(
'arch',
module_arch,
config=bert_config,
num_labels=processor.nums_label())
else:
model = config.initialize_bert_model(
'arch', module_arch, num_labels=processor.nums_label())
logger.info(model)
agent = Agent(model,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
test_data_loader=test_data_loader)
agent.train()
return agent.test()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default="ATEC_BERT/config.json", type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('-a', '--all', default=False, type=bool,
help='all for training, test as validation')
args.add_argument('-debug', '--debug', default=False, type=bool,
help='debug')
args.add_argument('-reset', '--reset', default=False, type=bool,
help='debug')
# custom cli options to modify configuration from default values given in
# json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float,
target=('optimizer', 'args', 'lr')),
CustomArgs(['--bs', '--batch_size'], type=int,
target=('data_loader', 'args', 'batch_size')),
CustomArgs(['--ep', '--epoch'], type=int, target=('trainer', 'epochs'))
]
config = ConfigParser(args, options)
# config = MockConfigParser()
train(config)