Skip to content

Latest commit

 

History

History
96 lines (67 loc) · 5.49 KB

README.md

File metadata and controls

96 lines (67 loc) · 5.49 KB

简介

该Repo内容为知乎专栏《机器不学习》的源代码。

专栏地址:https://zhuanlan.zhihu.com/zhaoyeyu

代码框架

TensorFlow

包含内容

1.anna_lstm

基于RNN(LSTM)对《安娜卡列尼娜》英文文本的学习,实现一个字符级别的生成器。

文章地址:《安娜卡列尼娜》文本生成——利用TensorFlow构建LSTM模型

2.skip-gram

实现skip-gram算法的Word2Vec,基于对英文语料的训练,模型学的各个单词的嵌入向量。

文章地址:基于TensorFlow实现Skip-Gram模型

3.generate_lyrics

基于RNN实现歌词生成器。

4.basic_seq2seq

基于RNN Encoder-Decoder结构的Seq2Seq模型,实现对一个单词中字母的排序。

文章地址:从Encoder到Decoder实现Seq2Seq模型

5.denoise_auto_encoder

基于MNIST手写数据集训练了一个自编码器,并在此基础上增加卷积层实现一个卷积自编码器,从而实现对图像的降噪。

文章地址:利用卷积自编码器对图片进行降噪

6.cifar_cnn

对Kaggle上CIFAR图像分类比赛的一个实现,分别对比了KNN和卷积神经网络在数据上的表现效果。

文章地址:利用卷积神经网络处理CIFAR图像分类

7.mnist_gan

基于MNIST手写数据集,训练了一个隐层为Leaky ReLU的生成对抗网络,让模型学会自己生成手写数字。

文章地址:生成对抗网络(GAN)之MNIST数据生成

8.dcgan

基于MNIST数据集训练了一个DCGAN,加入了Batch normalization,加速模型收敛并提升新能。

文章地址:深度卷积GAN之图像生成

基于CIFAR数据集中的马的图像训练一个DCGAN生成马的图像。

9.batch_normalization_discussion

该部分代码基于MNIST手写数据集构造了一个四层的全连接层神经网络。通过改变不同参数来测试BN对于模型性能的影响。同时利用TensorFlow实现底层的batch normalization。

文章地址:Batch Normalization原理与实战

10.machine_translation_seq2seq

该代码基于TensorFlow 1.6版本的Seq2Seq构建了一个基本的英法翻译模型。

文章地址:基于TensorFlow框架的Seq2Seq英法机器翻译模型

11.mt_attention_birnn

该代码基于Keras框架,在基础Seq2Seq模型基础上增加Attention机制与BiRNN,进一步提升翻译模型的效果;同时可视化Attention层,加深读者对Attention工作机制的理解。模型在在训练样本上的BLEU分数接近0.9。

文章地址:基于Keras框架实现加入Attention与BiRNN的机器翻译模型

12.sentiment_analysis

该代码基于TensorFlow 1.6版本,用DNN、LSTM以及CNN分别构建了sentiment analysis模型,并分析与比较了不同模型的性能。

文章地址:DNN/LSTM/Text-CNN情感分类实战与分析

13.image_style_transfer

代码基于TensorFlow 1.6实现了Image Style Transfer模型,实现了图片的风格的学习与转换。

文章地址:基于TensorFlow构建图片风格迁移模型

14.ctr_models

代码基于TensorFlow 2.0版本实现了DeepFM、Deep&Cross、xDeepFM以及AutoInt四个算法。

文章地址:CTR预估模型:DeepFM/Deep&Cross/xDeepFM/AutoInt代码实战与讲解

不定期更新干货,欢迎Star,欢迎Fork。