-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_inference.py
executable file
·142 lines (118 loc) · 5.54 KB
/
hf_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
from pathlib import Path
import numpy as np
import jsonlines
import argparse
from datasets import load_dataset, Dataset, DatasetDict
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
from transformers import EarlyStoppingCallback, IntervalStrategy
from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score
import wandb
from tqdm import tqdm
from hf_finetune import compute_metrics, convert_label_to_index, tokenize_function, init_tokenizer, LABEL_TO_INDEX, IDX_TO_LABEL
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
wandb.init(project="huggingface")
def build_args():
parser = argparse.ArgumentParser()
parser.add_argument("--data_is_split_into_words", action="store_true")
parser.add_argument("--dataset", type=str, default="az")
parser.add_argument("--data_dir", type=str, required=True)
parser.add_argument("--inference_file", type=str, default="../../data/az+s2/bio/s2_stitched_train_head_100000.jsonl")
#parser.add_argument("--inference_file", type=str, default="../../data/az+s2/bio/test_100.jsonl")
parser.add_argument("--out_dir", type=str, default="models")
parser.add_argument("--tokenizer", type=str, required=True)
parser.add_argument("--model", type=str, default="bert-base-cased")
parser.add_argument("--checkpoint", type=str, default="./models/checkpoint-2500")
parser.add_argument("--epochs", type=int, default=5)
parser.add_argument("--lr", type=float, default=2e-5)
parser.add_argument("--train_batch_size", type=int, default=8)
parser.add_argument("--eval_batch_size", type=int, default=32)
parser.add_argument("--shuffle_train", action="store_true")
parser.add_argument("--early_stop_patience", type=int, default=3)
return parser.parse_args()
# functions
def main():
args = build_args()
data_dir = Path(args.data_dir)
DATASET=args.dataset
if DATASET=="pubmed":
num_labels=5
#data_dir = os.path.join("data", DATASET, "sents") # change to parag if needed
elif DATASET=="az":
num_labels=7
#data_dir = os.path.join("data", DATASET, "az_papers", "sents") # change to parag if needed
else:
raise NotImplementedError
# do the data loader thing
test_path = data_dir / "test.jsonl"
if Path.exists(test_path):
data_files = {'test': test_path}
else:
if os.path.exists(args.inference_file):
data_files = {'test': args.inference_file}
else:
raise FileNotFoundError
for split, path in data_files.items():
data_files[split] = list(jsonlines.open(path))
if 'label' in data_files[split][0].keys(): # hacky. i don't like it >:(
data_files[split] = convert_label_to_index(data_files[split], DATASET)
init_tokenizer(args.tokenizer)
dataset = DatasetDict()
for k, v in data_files.items():
dataset[k] = Dataset.from_list(v)
dataset[k] = dataset[k].map(tokenize_function, batched=True, fn_kwargs = {"args": args})
#tokenized_datasets = dataset.map(tokenize_function, batched=True)
#shuffled_train_dataset = dataset["train"]
#eval_dataset = dataset["validation"]
eval_dataset = dataset['test']
# load model
model = AutoModelForSequenceClassification.from_pretrained(
args.checkpoint,
num_labels=num_labels
)
# https://huggingface.co/docs/transformers/training
training_args = TrainingArguments(
output_dir=args.out_dir,
#evaluation_strategy="epoch",
evaluation_strategy = IntervalStrategy.STEPS, # "steps"
eval_steps = 50, # Evaluation and Save happens every 50 steps
save_total_limit = 5, # Only last 5 models are saved. Older ones are deleted.
learning_rate=args.lr,
num_train_epochs = args.epochs,
#per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.eval_batch_size,
metric_for_best_model = 'accuracy',
load_best_model_at_end=True,
)
# init trainer
trainer = Trainer(
model=model,
args=training_args,
#train_dataset=shuffled_train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
callbacks = [EarlyStoppingCallback(early_stopping_patience=args.early_stop_patience)],
)
predictions = trainer.predict(dataset['test'])
probfile_dir = Path(training_args.output_dir) / "predictions"
probfile_dir.mkdir(parents=True, exist_ok=True)
np.savez(probfile_dir / "predictions.npz", probs=np.asanyarray(predictions), dtype=object)
print(f"Written probs to {probfile_dir}")
predictions = predictions[0]
predictions = np.argmax(predictions, axis=1)
output_predict_file = probfile_dir / "predictions.jsonl"
with jsonlines.open(output_predict_file, "w") as f:
for i, line in enumerate(tqdm(dataset['test'])):
out_d = {'text': line['text'],
'seq_tag': line['seq_tag'],
'pattern_indices': line['pattern_indices'],
'patterns': line['patterns'],
"label": IDX_TO_LABEL[DATASET][int(predictions[i])],
'is_az': False,
}
f.write(out_d)
print("Written postprocessed preds to", output_predict_file)
if __name__=="__main__":
main()