-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathdenoise.py
157 lines (133 loc) · 6.42 KB
/
denoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Adapted from https://github.com/NVIDIA/waveglow under the BSD 3-Clause License.
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import os
import argparse
import json
from tqdm import tqdm
from copy import deepcopy
import numpy as np
import torch
import torch.nn as nn
# from torch.utils.tensorboard import SummaryWriter
import random
random.seed(0)
torch.manual_seed(0)
np.random.seed(0)
from scipy.io.wavfile import write as wavwrite
from scipy.io.wavfile import read as wavread
from dataset import load_CleanNoisyPairDataset
from util import rescale, find_max_epoch, print_size, sampling
from network import CleanUNet
def denoise(output_directory, ckpt_iter, subset, dump=False):
"""
Denoise audio
Parameters:
output_directory (str): save generated speeches to this path
ckpt_iter (int or 'max'): the pretrained checkpoint to be loaded;
automitically selects the maximum iteration if 'max' is selected
subset (str): training, testing, validation
dump (bool): whether save enhanced (denoised) audio
"""
# setup local experiment path
exp_path = train_config["exp_path"]
print('exp_path:', exp_path)
# load data
loader_config = deepcopy(trainset_config)
loader_config["crop_length_sec"] = 0
dataloader = load_CleanNoisyPairDataset(
**loader_config,
subset=subset,
batch_size=1,
num_gpus=1
)
# predefine model
net = CleanUNet(**network_config).cuda()
print_size(net)
# load checkpoint
ckpt_directory = os.path.join(train_config["log"]["directory"], exp_path, 'checkpoint')
if ckpt_iter == 'max':
ckpt_iter = find_max_epoch(ckpt_directory)
if ckpt_iter != 'pretrained':
ckpt_iter = int(ckpt_iter)
model_path = os.path.join(ckpt_directory, '{}.pkl'.format(ckpt_iter))
checkpoint = torch.load(model_path, map_location='cpu')
net.load_state_dict(checkpoint['model_state_dict'])
net.eval()
# get output directory ready
if ckpt_iter == "pretrained":
speech_directory = os.path.join(output_directory, exp_path, 'speech', ckpt_iter)
else:
speech_directory = os.path.join(output_directory, exp_path, 'speech', '{}k'.format(ckpt_iter//1000))
if dump and not os.path.isdir(speech_directory):
os.makedirs(speech_directory)
os.chmod(speech_directory, 0o775)
print("speech_directory: ", speech_directory, flush=True)
# inference
all_generated_audio = []
all_clean_audio = []
sortkey = lambda name: '_'.join(name.split('/')[-1].split('_')[1:])
for clean_audio, noisy_audio, fileid in tqdm(dataloader):
filename = sortkey(fileid[0][0])
noisy_audio = noisy_audio.cuda()
LENGTH = len(noisy_audio[0].squeeze())
generated_audio = sampling(net, noisy_audio)
if dump:
wavwrite(os.path.join(speech_directory, 'enhanced_{}'.format(filename)),
trainset_config["sample_rate"],
generated_audio[0].squeeze().cpu().numpy())
else:
all_clean_audio.append(clean_audio[0].squeeze().cpu().numpy())
all_generated_audio.append(generated_audio[0].squeeze().cpu().numpy())
return all_clean_audio, all_generated_audio
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='config.json',
help='JSON file for configuration')
parser.add_argument('-ckpt_iter', '--ckpt_iter', default='max',
help='Which checkpoint to use; assign a number or "max" or "pretrained"')
parser.add_argument('-subset', '--subset', type=str, choices=['training', 'testing', 'validation'],
default='testing', help='subset for denoising')
args = parser.parse_args()
# Parse configs. Globals nicer in this case
with open(args.config) as f:
data = f.read()
config = json.loads(data)
gen_config = config["gen_config"]
global network_config
network_config = config["network_config"] # to define wavenet
global train_config
train_config = config["train_config"] # train config
global trainset_config
trainset_config = config["trainset_config"] # to read trainset configurations
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
if args.subset == "testing":
denoise(gen_config["output_directory"],
subset=args.subset,
ckpt_iter=args.ckpt_iter,
dump=True)